
Featherweight Defenders

Brian Goetz

January 31, 2011

1 Introduction

As a means of modeling the semantics of virtual extension methods (also known
as defender methods) in Java, we describe a lightweight model of Java in the
style of Featherweight Java (Pierce et al.), called Featherweight Defenders (or
FD).

In this model, there are classes and interfaces, with single inheritance of
classes and multiple inheritance of interfaces. Each class or interface may or may
not specify a single method m(), which has no arguments but has a specified
return type. Interface methods may have specified defaults or not, methods
can be covariantly overridden, class methods may be abstract (indicated by the
absence of a method body), and concrete class methods may be reabstracted.

I believe that this includes all the inheritance features that are relevant to
resolution of extension methods.

2 Syntax

The metavariables A, B, C, and D (and their derivatives) range over class names
and the metavariables I, and J range over interface names. The metavariables
T , U , and V range over all types. The metavariable k ranges over a set of
nominal identifiers, typed in the static typing context Γ. The metavariable
S ranges over sets of functions. The metavariable e ranges over expressions.
Figure 1 shows the syntatic forms for FD.

T ::= Object | C | I
K ::= class C extends D implements I1, ..., In { [T m() [k]] }
L ::= interface I extends I1, ..., In { [T m() [default k]] }
e ::= x | e.m() | new C()

Figure 1: FD language syntax

1

For simplicity of modeling, we have distorted the syntax somewhat to make
the declaration of a method body in a class and a method default in an interface
more similar. The absence of a method body k in a class definition indicates
that the method is abstract.

The identifiers k represent names; set-theoretic operations on sets of iden-
tifiers treat identically named identifiers as being the same element. (So, for
example, combining {k} ∪ {k} simply yields the set {k}.) For set-theoretic
operations, nil is treated as the empty set.

3 Ancillary functions

As in Featherweight Java, we use an ancillary function mtype(T) to indicate
the type of m() in type T . If m() is not a member of T , then mtype(T) will be
nil. We introduce an ancillary function mdef(I) to indicate the identity of the
default method, if any, for m() in interface I. Similarly, we introduce mbody(C)
to indicate the identity of a method body for m() in class C (which may have
been declared in C or in a superclass.) Finally, we use mres(C) to indicate the
resolution of m() in C, which may have come from a body declared in C or a
superclass, or may have come from a default in an interface.

We introduce the function interfaces(T) to record the superinterfaces of a
class or interface, which will be used when we compute the set of candidate
defaults for a method in a class.

We also define a function lbinc for computing an inclusive lower bound for a
set of types. The inclusive lower bound for a set of types T1, ..., Tn is the lower
bound of T1, ..., Tn if T1, ..., Tn contains its lower bound, and nil otherwise. This
is used to determine whether a set of types can contribute a consistent return
type for the method m(), and if so lbinc(T1, ..., Tn) evaluates to that most specific
return type. We define lbinc(T1, ..., Tn) as follows:

lbinc(T1, ..., Tn) =

mtype(Ti) if ∃i such that mtype(Ti) 6= nil, and

∀j 6=i [mtype(Tj) = nil ∨mtype(Ti) <: mtype(Tj)]

nil otherwise

Judgements may include conditions of the form T = lbinc(T1, ..., Tn). If lbinc
evaluates to nil, then these conditions are presumed to not hold.

Finally, we define prune(I1, ..., In) as follows:

occludes(I, J) = I <: J ∧ I 6= J ∧ mdef(I) 6= nil

prune(I1, ..., In) = { Ii : ∀j 6=i ¬occludes(Ij , Ii) }

4 Preliminaries

Figure 2 shows some general typing judgements needed by FD, and the subtyp-
ing judgements for classes and interfaces, as well as the base rules for the class

2

Object.

S-Refl
T <: T

S-Trans
T <: U U <: S

T <: S

T-Sub
Γ ` k : S S <: T

Γ ` k : T

T-Object
Object OK mtype(Object) = nil

S-ClassDef
class C extends D implements I1, ..., In{...}

C <: D ∀i C <: Ii
interfaces(C) = interfaces(D) ∪

⋃
i interfaces(Ii)

S-IntDef
interface I extends I1, ..., In{...}

∀i I <: Ii
interfaces(I) = { I } ∪

⋃
i interfaces(Ii)

Figure 2: Basic subtyping rules

5 Method typing

For each class or interface, the ancillary function mtype(T) identifies the type
of the function m() in T . The rule T-Invoke shows how mtype(C) is used in
typing of method invocation expressions.

T-Var
Γ ` x : Γ(x)

T-New
C OK

Γ ` new C() : C

T-Invoke
Γ ` e : C C OK T = mtype(C)

Γ ` e.m() : T

Figure 3: Expression typing

Figure 4 illustrates the rules for computing mtype(I) and mdef(I) for in-
terfaces. The predicate I OK indicates that interface I is properly typed and

3

provides at most one appropriate default for m(). For each syntactic form (de-
clare method with a default, declare method without a default, don’t declare
the method), the interface rules are mutually exclusive; at most one will apply
to any given class.

Many of the preconditions in these rules deal with proper covariant overrid-
ing, which can happen explicitly (where an interface declares a signature for a
method when the method also appears in superinterface) or implicitly (where
an interface extends multiple interfaces which provide the same method name
but not exactly the same return type.) Further, in the presence of covariant
overrides, the available default(s) must return a value compatible with the most
specific return type.1

6 Interface pruning

In FD, as in Java, it is allowable for a class or interface to extend an interface
both directly and indirectly, as in the following example:

interface Collection { void m() default k }

interface Set extends Collection { void m() default l }

class MySet implements Set , Collection { }

Here, MySet implements Collection both directly and indirectly. This id-
iom is common as a documentation device, but in Java 7 and earlier the addi-
tional declaration of Collection has no effect, because it is already implicit in
the extension of Set. This behavior should continue to hold true in the presence
of extension methods.

The design of extension methods calls for “redundant” inheritance from less-
specific interfaces (such as Collection in the example above) to not be con-
sidered further in the inheritance decision, except inasmuch as the less-specific
interface has already contributed to its subinterface. If a class extends interfaces
I and J , where I <: J , J , and I contributes a default method for m(), then J
is pruned from consideration in contributing a default. This is handled by the
prune(I1, ..., In) function in the method resolution rules for classes.

7 Class method typing

Figure 5 shows the rules for defining mtype(C), mbody(C), and mres(C). In-
tuitively, these rules say that method bodies defined in a class take precedence
over methods defined in superclasses or interfaces, that a method inherited from
a superclass takes precedence over a default inherited from an interface, that
methods can be covariantly overriden, that if multiple interfaces contribute a
default, they must be identical to be considered, and that that there must always
be a consistent, most-specific return type for methods.

1We could choose instead to simply require an interface to declare a default when covari-
antly overriding a method; in this case we would simply remove rules T-IntDefOvr and
T-IntDefInh.

4

T-IntDef

interface I extends I1, ..., In{ T m() default k }
∀i Ii OK Γ ` k : T

∀i [mtype(Ii) = nil ∨ T <: mtype(Ii)]

mtype(I) = T mdef(I) = k I OK

T-IntSimpleOvr

interface I extends I1, ..., In{ T m() }
∀i Ii OK

∀i [mtype(Ii) = nil ∨ T <: mtype(Ii)]∣∣∣ ⋃J∈prune(interfaces(I)){ mdef(J) }
∣∣∣ = 0

mtype(I) = T I OK

T-IntDefOvr

interface I extends I1, ..., In{ T m() }
∀i Ii OK

∀i [mtype(Ii) = nil ∨ T <: mtype(Ii)]
S =

⋃
J∈prune(interfaces(I)){ mdef(J) }

| S | = 1 ∃kk ∈ S Γ ` k : T

mtype(I) = T I OK

T-IntSimpleInh

interface I extends I1, ..., In{ }
∀i Ii OK T = lbinc(I1, ..., In)∣∣∣ ⋃J∈prune(interfaces(I)){ mdef(J) }

∣∣∣ = 0

mtype(I) = T I OK

T-IntDefInh

interface I extends I1, ..., In{ }
∀i Ii OK T = lbinc(I1, ..., In)

S =
⋃

J∈prune(interfaces(I)){ mdef(J) }
| S | = 1 ∃kk ∈ S Γ ` k : T

mtype(I) = T I OK

T-IntNone

interface I extends I1, ..., In{ }
∀i Ii OK ∀i mtype(I) = nil

mtype(I) = nil I OK

Figure 4: Interface method typing and defaults

5

The predicate C OK indicates that C has typed correctly; it does not by itself
mean that method resolution for m() in C succeeds. For method resolution in
C to succeed, we need both C OK and mres(C) 6= nil.

T-ClassConc

class C extends D implements I1, ..., In{ T m() k }
Γ ` k : T ∀i Ii OK D OK

∀U∈{D,I1,...,In} [mtype(U) = nil ∨ T <: mtype(U)]

mtype(C) = T C OK mbody(C) = k

T-ClassAbs

class C extends D implements I1, ..., In{ T m() }
∀i Ii OK D OK

∀U∈{D,I1,...,In} [mtype(U) = nil ∨ T <: mtype(U)]

mtype(C) = T C OK mbody(C) = nil

T-ClassInh

class C extends D implements I1, ..., In{ }
∀i Ii OK D OK T = lbinc(D, I1, ..., In)

mtype(C) = T C OK mbody(C) = mbody(D)

T-ClassNone

class C extends D implements I1, ..., In{ }
∀i Ii OK D OK ∀i mtype(Ii) = nil mtype(D) = nil

mtype(C) = nil C OK

R-Body

class C extends D implements I1, ..., In{ . . . }
C OK mbody(C) 6= nil

mres(C) = mbody(C)

R-Defender

class C extends D implements I1, ..., In{ . . . }
C OK mbody(C) = nil T = mtype(C)

S =
⋃

I∈prune(interfaces(C)){ mdef(I) }
| S | = 1 ∃kk ∈ S Γ ` k : T

mres(C) = k

Figure 5: Class method typing and resolution

6

