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Why we can’t live without arrays

• Need at least one type with variable size!
– Bucket for puddles of data.  (Linked lists are only bandoliers.)

• Strongly typed (consonant with the rest of Java)
– → must be generic

• Smallest memory footprint ( ±ϵ )
– → must have at least a few packed representations (byte[])

• Efficiency:  Minimum cache line accesses ( ±ϵ )
• Notation (yes, notation counts when programming)

– Definition:   int a[] = {1,2,3}; 
– Element access:   a[1] += 5; 

• (Type safety and security are non-negotiable.)
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Why arrays bother users

• Choose any flavor you want as long as it’s vanilla.
– Length is never mutable.  Body is always attached.
– Elements are always homogeneous.  (No C array+struct.)
– Elements are always mutable (but never volatile).
– Rank is always unity.  Rows are always ragged.
– Size is as big as you want, if you have modest expectations.

• T[] is covariant in T.  (And there is no top Array type.)
– Sometimes this seems to help.  (Generic element types instead?)
– Sometimes it’s just confusing.
– Array store check is a hidden cost.

• Not a real object type.  (Arrays.copyOf(a)!?) 
– Will the real toString method please expel the fake one?
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Why arrays bother JVM implementors

• Lots of ad hoc special rules for arrays.
• Irregular appearance of fields and methods.
• Must provide generic instances Q[] on app. request.
• Suffer from megacephaly:  Big headers.

– Can you synch. on an array?  Yes, but don’t.
• Big arrays provide bulky work units for GCs.
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My so-called Meme

what Java coders
say they want

what Java coders
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what the JVM 
should provide to 

Java coders
what we manage to 
build into the JVM

what the coders
finally receive
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What Java coders say they want...

• Rank > 1 (Fortran matrices, etc.)
• Size ≥ 231 (“long” indexes)
• operator overloading

– a[i], a[i]=x is really my method for my favorite array 1.01
– maybe a[i,j...]; maybe a[i]+=x
– (hey, look at all those C++ and Scala folks having fun!)

• layout control
– array of structs; type with variable arrays
– foreign (C) data access (w/ nio, JNI)
– copy-free access to slices of data, scatter/gather
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What Java coders say they want... (2)

• safe decomposition and sharing
– final, volatile, etc.

• heterogeneous puddles of data
– tagged data
– buckets of less-structured data
– serialization without tears (!?)
– JSON/XML blobs (with pointers instead of bytes)

• flat-data performance
– assume contiguous storage, close to the metal
– dead-reckoned addresses → loop transforms in JIT
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Speculative ravings follow!

• “View” of one Blind Man feeling the Elephant
• This is not a language design talk.

– (Unless you believe invokedynamic is a language feature.)
• These thoughts are JVM-centric.

– cowardly ducking away from controversy
– most people care passionately about notation
– JVM internals are mainly for us plumbers

• Let’s make progress...
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What users "really" want (I think)

• Increase small scale collocation
– Graceful use of cache lines
– More dead reckoning of indexes; structs of arrays of structs

• Allow large-scale decomposition (tasks, etc.)
– NOT large-scale contiguity (no terabyte memory blocks)

• Memory fencing/protection for safe sharing
• Compose complex sharing patterns

– from a few independent and powerful primitives
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rank: what the JVM should provide

• Which square matrix?  Row-major? Col-major?
• About a dozen important sparse representations too.
• This is about cache-grace, not A[i][j] vs. A[i,j]
• Key operation:  index computation

– Must be a library-defined method, not a new part of the JVM.
• Requirement:  Library definition of many array types.
• Key operation:  loop decomposition

– Today, this is a job for off-the-shelf BLAS/LAPACK type code.
– Need to serialize chunk access between GC and BLAS
– Requirement: pinning
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bigness: what the JVM should provide

• Size ≥ 231   A[(long)x] = 5
– Hard requirement?  More like a “red face test”.

• Warning: Big (contiguous) Data → Big Copies
• Requirement: Library definition of array types.

– Hello, Scala & Fortress!
• Anti-pattern:  planet-sized contiguous memory chunks

– Modern GCs are regionalized.
– Regions are continents, not galaxies.
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resize: what the JVM should provide

• Supply a safe resize operation for arrays.
– But only to decrease size.

• Arrays.chop(T[] a, int newlength)
• Needed to reduce copying in StringBuilder, etc.



     © 2012 Oracle Corporation

notation: what the JVM should provide

• operator overloading?
– The JVM’s ops are arraylength, aaload, iastore, etc.
– Also System.arrayCopy, Arrays.copyOf, etc.

• Requirement: Re-interpret existing bytecodes
– as shorthand for patterns like x.length()
– verifier & JVM still hardwires privileged legacy types
– verifier treats arraylength as invokevirtual
– descriptor is A.getArrayLength()int (with A from verifier)
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layout: what the JVM should provide

• Need a little more from the GC / heap manager
– GC owns low-level memory layouts
– That’s where the cache help has to be.

• Requirement: hybrid arrays
– GC sees object with length (like legacy arrays)

• “Envelope + body” are fused into “head + tail”.
– Dead-reckoned addressing:  sizeof(hdr) + sizeof(elm) * N
– GC knows how to find references in head and tail.
– Requirement:  Tail can be periodic repetition of small struct.

• Java sees a plain instance
– Head is a first-class Java object with methods and everything.
– Tail is accessed by new intrinsics.  Private to enclosing class.
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layout: what the JVM should provide

• Foreign data can be accessed via Unsafe.
• This should be encapsulated via header file import.
• Cf. CLR “delegate marshalling”, etc.
• LAPACK/BLAS needs to dictate layout details.

– Copy-on-invoke is a lose.
– ...Although the memory fabric is surely doing copies.
– ...But we don’t want the JVM to interpose on memory ops!
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hybrid arrays in the VM

• From our SCCS history, for Klass::layout_helper
– src/share/vm/oops/SCCS/s.klass.hpp
– D 1.136 07/01/29 21:20:30 jrose 281 280
– c 6516018 Replace size_helper and is_objArray by more 

capable layout_helper.
• The layout-helper allows arbitrary (small) header size

– lh_header_size_mask = 0xFF   // :-)
– This is where the instance variables will go!
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sharing: what the JVM should provide

• How to share?
• Java arrays are an uneasy fit in the JMM
• Key idea:  JMM assumes serialized access 

– Also multiple-readers of final values.
• Requirement:  memory fences for arrays.

– Explicit release and acquire for array slices.
– Release-as-final for slices.
– Release-as-volatile, acquire-as-volatile, probably.
– (JMM experts, please correct this!)

• Key use case:  Partition a work set w/o copying.
– Fork, join, steal, repeat.
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tags: what the JVM should provide

• heterogeneous containment?
• standard boxing is not cache-graceful
• fixnums?  tagged unions?  (working on this...)
• periodic-array-of-struct will reduce pressure for this
• but may still need non-periodic sequences
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flatness: what the JVM should provide

• flat data, but please don't look behind the curtain
– assume flat storage, but there can be no proof

• trust JVM to provide as-if-flat performance (or better)
• low-pause technologies can help (“arraylets”)
• Claim: There is a natural largest scale for flat data.
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More about library types

• in one step remove size & rank limits
• encapsulate complex layout algorithms
• Requirement: Value types for small structs / tuples

– https://blogs.oracle.com/jrose/entry/value_types_in_the_vm
• We still need to build on nio, unsafe, etc.
• Hybrid arrays can be built from Java + MHs + unsafe

– Existing newInvokeSpecial direct MH does this now.
– Can build new ones that incorporate the hybrid “tail”.

• Non-periodic access can be done cheaply
– Assuming encapsulated cursor values, with scalarization.

• Possible to build many patterns from few primitives.

https://blogs.oracle.com/jrose/entry/value_types_in_the_vm
https://blogs.oracle.com/jrose/entry/value_types_in_the_vm
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What library types can define...

• Index width, number of indexes
• Type of indexes (associative arrays)
• Resize capability (how many indirections?)
• Periodicity (random vs. streaming access)
• Storage classes (final, volatile)
• Fencing / sharing / serialized access
• Compound or BLAS operations
• Super types
• Convenience methods
• Contiguity 



     © 2012 Oracle Corporation

More about operator overloading
 

• No, we won’t go and be C++!
• Java has to be “close to the metal”.  No surprises.
• Even library-defined arrays have to avoid surprises

– No excessive layers of indirection or cache accesses.
– This is why we need hybrids.

• Probably just getArrayElement, setArrayElement
• slicing? (lvalues, index ranges): can do with libraries

– work as much as possible within the existing language
– (syntax, op spellings)

• for complex, application-specific notations: DSLs!
• residual language extension:  allow multi-arg a[i,j,k]
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Hard problem: Type templating

• Array appear to require a templating mechanism.
– Type erasure won’t cut it, if you want primitives & structs.

• General-case reification not needed
– Library classes can record “type dope” in ad hoc manner.
– Cf. checked versions of list, set, etc.
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Hard problem: Type templating (2)

• Need something like this:
template class BigSparseArray<template E>
 extends template ? super BigSparseArray<E>
{
 public E getArrayElement(long x) { ... }
}

• Type parameter(s) matches a “hole” in the body.
– Holes are filled in by copying and pasting, in class loader.
– Requires explicit value (struct) types to maintain sanity.
 value E getArrayElement(long x) { ... }
 ref   E getArrayElement(long x) { ... }
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Power tools: JSR 292

• invokedynamic for truly new instructions (needed?)
• method handles for composing hybrid objects

– new_hybrid_object + invokespecial (of regular constructor)
• maybe, method handles for privileged intrinsics
• New JVM pattern:  Bootstrap method

– Statically defined, lazily called method with static arguments.
• Possible BSM use cases

– On-the-fly template instantiation (class loader calls BSM)
– Use (with indy?) for defining the “holes” in a template.
– Use for native method definition.
– Useful for “intercessory” metaobject queries.
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Killer Use Cases for Arrays 2.0

• fused (1-node) implementation of java.lang.String 
– | header | length | hash | body | → | header2 | char[] |

• cache-graceful impl. of HashMap<Integer,String> 
– Should be an array of struct { int, ref }.
– 2-node representation.  Envelope needed for resizing.

• cache-graceful B... trees (finally!)
• views on foreign data ( N2IO Direct{Data}Buffer )
• (your contribution here...)
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Questions?
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Questions?

(where’s the outrage?)
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