
Pages / … / L-World Value Types

Created by Karen Kinnear, last modified just a moment ago

L-World Nullability

Proposal
We can offer new value types the language benefits of catching nullability problems at compile time
And offer the ability to migrate value-based classes to value types
If we continue the JVM design of maximum leniency in handling nulls, based on container-based flattenability
And - if we add for javac, the ability to distinguish between new value types and value-based classes migrating to value types
Summary: Give javac the ability to be strict with new value types, and to choose appropriate leniency/strictness for migrating value types

Use Cases
new value types
backward compatibility:

 live value types treated as Object, Interface or [Object, [Interface
so usable by existing code for fields, method arguments, method bodies
this is a key advantage of L-World design with Object as root

forward migration: value-based classes that migrate to value types
note: this is a bounded problem - there are a limited number of known value-based classes and probably a limited number of candidates for migration

Migration and Nullability

Migration includes multiple steps
value-based class migrations to value class: e.g. FIELDC
Container choosing flattenable for a field that is now a value class: CONTC declares FIELDC

Container needs to opt-in to make this choice
Container may need to change method contents
Container may need to change APIs

Client of container: CLIENT
Assumes null is a valid value to write to existing field CONTC.FIELDC
Uses existing APIs, assumes null is a valid argument/return value

Subclass of container: SUBC
Assumes null is a valid value to write to inherited field CONTC.FIELDC
May need to change its own method contents
May need to change its own APIs

Client of subclass: SUBCCLIENT
Assumes null is a valid value to write to existing field SUBC.FIELDC which is inherited from CONTC
Uses Subclass existing APIs, assumes null is a valid argument/return value

separate compilation can occur for each of the above classes
obviously migrating class change must be first to matter, with this model, container needs to be second
others can recompile separately in any order
 so class file version is not sufficient to indicate awareness of a value-based class migrating to a value type, or of field flattening
there are multiple players, often in a single bytecode - e.g. SUBCCLIENT putfield SUBC.FIELDC which is inherited from CONTC.

Goal of the chart is to describe the multiple potential steps of migration, with worst case having separate recompilation of each class.

The chart tries to highlight the touch points for javac, i.e. recompilation - so that opportunities to choose javac behavior.
key: "null" means - expects nullability

Migration:

expect null

today vbc→value class

FIELDC

container: flattenable

CONTC

recompiled client:

CLIENT

recompile subclass:

SUBC

recompile client of subclass:

SUBCCLIENT

FIELDC null Value Type Value Type Value Type Value Type Value Type

CONTC null null Flattenable.

Maybe API changes?

JAVAC? Warnings?

Flattenable Flattenable Flattenable

CLIENT null null null JAVAC? warnings? null null

SUBC null null null null JAVAC? warnings? null

SUBCCLIENT null null null null null JAVAC? warnings?

JVM Perspective - leniency
The JVM needs to be able to handle all the use cases above
As well as non-java languages
backward compatibility

L-World design proposal of L<>; signatures which do not distinguish value types from identity objects allows backward compatibility
migration implications

Container-based flattenable/non-nullable allows JVM to support migration (and languages that want other options)
Nullability is ok for LVT, operand stack, argument passing
Nullability is only checked when published to a flattenable container
JVM does not need to know about migration, it needs to be lenient to allow all the migration steps to work in whatever order they occur

i.e. I do not think it helps the vm know that a given value type has been migrated or not
there are multiple class files involved in key interactions - so the jvm need to be as lenient as it can

https://wiki.se.oracle.com/collector/pages.action?key=JPG&src=breadcrumbs-collector
https://wiki.se.oracle.com/display/JPG/L-World+Value+Types?src=breadcrumbs-parent
https://wiki.se.oracle.com/display/~acorn
https://wiki.se.oracle.com/pages/diffpagesbyversion.action?pageId=91424640&selectedPageVersions=4&selectedPageVersions=5
https://wiki.se.oracle.com/display/JPG/L-World+Nullability

bytecodes (including instanceof and checkcast) therefore need to retain the existing behaviors relative to null except explicitly for publishing
putfield - NPE if attempting to store null to a flattenable field
aastore/aaload: - NPE if attempting to store null to a flattenable value type array/ if loading null from a flattenable value type array

note: initial prototype assuming all value type arrays are flattenable

Javac perspective - new proposal
The ideal world for javac is to make all value types flattenable by default, whether in fields or arrays

to be able to give early warning at compile time for nullability
to be able to insert null checks in the bytecodes

Proposal: by allowing javac to distinguish between newly created value types and migrated value types, javac can choose different
strictness/leniency options

new value types
javac could make all new value types flattenable by default, whether in fields or arrays
because value types are final, and we disallow conversion from a value type to an identity object:

when javac knows it is always statically dealing with a new value type
disallow assignment of null to a new value type
disallow casted to null or comparing null to a new value type
disallow comparison with == or != for statically known new value types

and javac can inject null checks before bytecodes when it knows it is always dealing with a new value type - e.g.
withfield, aastore
checkcast, instanceof

javac communicates to the JVM by setting fields to ACC_FLATTENABLE for all new value types
javac could choose to offer customers an option (as could any language)
this proposal is based on an understanding that java would prefer to make this simpler from a user point of view

migration of value-based-classes to value types
recommend that migration to a value type requires communication with the language - e.g. an annotation
For migrating value types

make migrated value types NOT flattenable by default
give the container author a chance to opt-in

javac now has a choice of how to handle warning and byte code generation
choice of strictness/leniency
potential to ease migration by handling clients and subclasses of migrating types differently (independent of flattenable opt-in by author)

Joint Effort
Brian has stated a goal that where possible, javac issue a warning where runtime would throw an exception, as is done today for ClassCastExceptions
For new value types, I believe that model is possible
For migrating value-based-class to value types I believe we need a joint effort

Identity handling
value based classes are "supposed" to already not assume identity, so we expect fewer surprises there
the proposal for value based classes is to offer multiple levels of assistance

JDK 11
add a runtime flag to catch identity issues with value based classes

javac
javac would disallow

calling java.lang.Object methods that do not support identity
runtime

core libraries
java.lang.Object methods such as wait*, notify* - will throw an exception if operating on a live value type

JVM
JVM would throw an exception e.g. sync - if operating on a live value type

nullability handling for migration
value based classes support nullability today, so we expect to run into this issue far more often
propose multiple levels of assistance

JDK 11
we could add a runtime flag to catch nullability issues with value based classes

javac
this is a language decision
a couple of thoughts

I don't know if it helps to know if files are recompiled together or not, but it might
John suggested that if the container of the value-based class is in the JDK, does javac know when the JDK "is the latest"? (-target? -release?)

runtime
JVM would throw NPE at publishing

Potential Experiments
Recommend experiments with core libraries to migrate some value-based classes to value classes

In particular we need experiments with client, subclasses and clients of subclasses that are separately compiled
initial prototype is assuming all arrays of value types are flattenable - we will want experimental feedback for migrated value types, the declarers of their arrays, clients and
subclasses which are independently compiled

we should consider later finding out the cost of not requiring all value type arrays to be flattenable (in case it is not too onerous), so as to ease migration for arrays

No labels

http://www.atlassian.com/

