1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "memory/cardTableRS.hpp"
  28 #include "memory/genCollectedHeap.hpp"
  29 #include "memory/generation.hpp"
  30 #include "memory/space.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/java.hpp"
  33 #include "runtime/os.hpp"
  34 #ifndef SERIALGC
  35 #include "gc_implementation/g1/concurrentMark.hpp"
  36 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  37 #endif
  38 
  39 CardTableRS::CardTableRS(MemRegion whole_heap,
  40                          int max_covered_regions) :
  41   GenRemSet(),
  42   _cur_youngergen_card_val(youngergenP1_card),
  43   _regions_to_iterate(max_covered_regions - 1)
  44 {
  45 #ifndef SERIALGC
  46   if (UseG1GC) {
  47       _ct_bs = new G1SATBCardTableLoggingModRefBS(whole_heap,
  48                                                   max_covered_regions);
  49   } else {
  50     _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  51   }
  52 #else
  53   _ct_bs = new CardTableModRefBSForCTRS(whole_heap, max_covered_regions);
  54 #endif
  55   set_bs(_ct_bs);
  56   _last_cur_val_in_gen = new jbyte[GenCollectedHeap::max_gens + 1];
  57   if (_last_cur_val_in_gen == NULL) {
  58     vm_exit_during_initialization("Could not last_cur_val_in_gen array.");
  59   }
  60   for (int i = 0; i < GenCollectedHeap::max_gens + 1; i++) {
  61     _last_cur_val_in_gen[i] = clean_card_val();
  62   }
  63   _ct_bs->set_CTRS(this);
  64 }
  65 
  66 void CardTableRS::resize_covered_region(MemRegion new_region) {
  67   _ct_bs->resize_covered_region(new_region);
  68 }
  69 
  70 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  71   for (jbyte v = youngergenP1_card;
  72        v < cur_youngergen_and_prev_nonclean_card;
  73        v++) {
  74     bool seen = false;
  75     for (int g = 0; g < _regions_to_iterate; g++) {
  76       if (_last_cur_val_in_gen[g] == v) {
  77         seen = true;
  78         break;
  79       }
  80     }
  81     if (!seen) return v;
  82   }
  83   ShouldNotReachHere();
  84   return 0;
  85 }
  86 
  87 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
  88   // Parallel or sequential, we must always set the prev to equal the
  89   // last one written.
  90   if (parallel) {
  91     // Find a parallel value to be used next.
  92     jbyte next_val = find_unused_youngergenP_card_value();
  93     set_cur_youngergen_card_val(next_val);
  94 
  95   } else {
  96     // In an sequential traversal we will always write youngergen, so that
  97     // the inline barrier is  correct.
  98     set_cur_youngergen_card_val(youngergen_card);
  99   }
 100 }
 101 
 102 void CardTableRS::younger_refs_iterate(Generation* g,
 103                                        OopsInGenClosure* blk) {
 104   _last_cur_val_in_gen[g->level()+1] = cur_youngergen_card_val();
 105   g->younger_refs_iterate(blk);
 106 }
 107 
 108 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
 109   if (_is_par) {
 110     return clear_card_parallel(entry);
 111   } else {
 112     return clear_card_serial(entry);
 113   }
 114 }
 115 
 116 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
 117   while (true) {
 118     // In the parallel case, we may have to do this several times.
 119     jbyte entry_val = *entry;
 120     assert(entry_val != CardTableRS::clean_card_val(),
 121            "We shouldn't be looking at clean cards, and this should "
 122            "be the only place they get cleaned.");
 123     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 124         || _ct->is_prev_youngergen_card_val(entry_val)) {
 125       jbyte res =
 126         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 127       if (res == entry_val) {
 128         break;
 129       } else {
 130         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 131                "The CAS above should only fail if another thread did "
 132                "a GC write barrier.");
 133       }
 134     } else if (entry_val ==
 135                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 136       // Parallelism shouldn't matter in this case.  Only the thread
 137       // assigned to scan the card should change this value.
 138       *entry = _ct->cur_youngergen_card_val();
 139       break;
 140     } else {
 141       assert(entry_val == _ct->cur_youngergen_card_val(),
 142              "Should be the only possibility.");
 143       // In this case, the card was clean before, and become
 144       // cur_youngergen only because of processing of a promoted object.
 145       // We don't have to look at the card.
 146       return false;
 147     }
 148   }
 149   return true;
 150 }
 151 
 152 
 153 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
 154   jbyte entry_val = *entry;
 155   assert(entry_val != CardTableRS::clean_card_val(),
 156          "We shouldn't be looking at clean cards, and this should "
 157          "be the only place they get cleaned.");
 158   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 159          "This should be possible in the sequential case.");
 160   *entry = CardTableRS::clean_card_val();
 161   return true;
 162 }
 163 
 164 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
 165   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct) :
 166     _dirty_card_closure(dirty_card_closure), _ct(ct) {
 167     // Cannot yet substitute active_workers for n_par_threads
 168     // in the case where parallelism is being turned off by
 169     // setting n_par_threads to 0.
 170     _is_par = (SharedHeap::heap()->n_par_threads() > 0);
 171     assert(!_is_par ||
 172            (SharedHeap::heap()->n_par_threads() ==
 173             SharedHeap::heap()->workers()->active_workers()), "Mismatch");
 174 }
 175 
 176 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
 177   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
 178 }
 179 
 180 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
 181   assert(mr.word_size() > 0, "Error");
 182   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
 183   // mr.end() may not necessarily be card aligned.
 184   jbyte* cur_entry = _ct->byte_for(mr.last());
 185   const jbyte* limit = _ct->byte_for(mr.start());
 186   HeapWord* end_of_non_clean = mr.end();
 187   HeapWord* start_of_non_clean = end_of_non_clean;
 188   while (cur_entry >= limit) {
 189     HeapWord* cur_hw = _ct->addr_for(cur_entry);
 190     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
 191       // Continue the dirty range by opening the
 192       // dirty window one card to the left.
 193       start_of_non_clean = cur_hw;
 194 
 195       cur_entry--;
 196     } else {
 197       // We hit a "clean" card; process any non-empty
 198       // "dirty" range accumulated so far.
 199       if (start_of_non_clean < end_of_non_clean) {
 200         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 201         _dirty_card_closure->do_MemRegion(mrd);
 202       }
 203 
 204       // fast forward through potential continuous range of clean cards
 205       if (is_word_aligned(cur_entry)) {
 206         jbyte* cur_row = cur_entry - BytesPerWord;
 207         while(cur_row >= limit) {
 208           if (*((intptr_t*)cur_row) ==  CardTableRS::clean_card_row()) {
 209                 cur_row -= BytesPerWord;
 210             }
 211             else {
 212                 break;
 213             }
 214         }
 215         cur_entry = cur_row + (BytesPerWord - 1);
 216         HeapWord* last_hw = _ct->addr_for(cur_row + BytesPerWord);
 217         end_of_non_clean = last_hw;
 218         start_of_non_clean = last_hw;
 219       } else {
 220           // Reset the dirty window, while continuing to look
 221           // for the next dirty card that will start a
 222           // new dirty window.
 223           end_of_non_clean = cur_hw;
 224           start_of_non_clean = cur_hw;
 225           cur_entry--;
 226       }
 227     }
 228     // Note that "cur_entry" leads "start_of_non_clean" in
 229     // its leftward excursion after this point
 230     // in the loop and, when we hit the left end of "mr",
 231     // will point off of the left end of the card-table
 232     // for "mr".
 233   }
 234   // If the first card of "mr" was dirty, we will have
 235   // been left with a dirty window, co-initial with "mr",
 236   // which we now process.
 237   if (start_of_non_clean < end_of_non_clean) {
 238     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 239     _dirty_card_closure->do_MemRegion(mrd);
 240   }
 241 }
 242 
 243 // clean (by dirty->clean before) ==> cur_younger_gen
 244 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 245 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 246 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 247 // cur-younger-gen                ==> cur_younger_gen
 248 // cur_youngergen_and_prev_nonclean_card ==> no change.
 249 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 250   jbyte* entry = ct_bs()->byte_for(field);
 251   do {
 252     jbyte entry_val = *entry;
 253     // We put this first because it's probably the most common case.
 254     if (entry_val == clean_card_val()) {
 255       // No threat of contention with cleaning threads.
 256       *entry = cur_youngergen_card_val();
 257       return;
 258     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 259                || is_prev_youngergen_card_val(entry_val)) {
 260       // Mark it as both cur and prev youngergen; card cleaning thread will
 261       // eventually remove the previous stuff.
 262       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 263       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 264       // Did the CAS succeed?
 265       if (res == entry_val) return;
 266       // Otherwise, retry, to see the new value.
 267       continue;
 268     } else {
 269       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 270              || entry_val == cur_youngergen_card_val(),
 271              "should be only possibilities.");
 272       return;
 273     }
 274   } while (true);
 275 }
 276 
 277 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 278                                                 OopsInGenClosure* cl) {
 279   const MemRegion urasm = sp->used_region_at_save_marks();
 280 #ifdef ASSERT
 281   // Convert the assertion check to a warning if we are running
 282   // CMS+ParNew until related bug is fixed.
 283   MemRegion ur    = sp->used_region();
 284   assert(ur.contains(urasm) || (UseConcMarkSweepGC && UseParNewGC),
 285          err_msg("Did you forget to call save_marks()? "
 286                  "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 287                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 288                  urasm.start(), urasm.end(), ur.start(), ur.end()));
 289   // In the case of CMS+ParNew, issue a warning
 290   if (!ur.contains(urasm)) {
 291     assert(UseConcMarkSweepGC && UseParNewGC, "Tautology: see assert above");
 292     warning("CMS+ParNew: Did you forget to call save_marks()? "
 293             "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 294             "[" PTR_FORMAT ", " PTR_FORMAT ")",
 295              urasm.start(), urasm.end(), ur.start(), ur.end());
 296     MemRegion ur2 = sp->used_region();
 297     MemRegion urasm2 = sp->used_region_at_save_marks();
 298     if (!ur.equals(ur2)) {
 299       warning("CMS+ParNew: Flickering used_region()!!");
 300     }
 301     if (!urasm.equals(urasm2)) {
 302       warning("CMS+ParNew: Flickering used_region_at_save_marks()!!");
 303     }
 304     ShouldNotReachHere();
 305   }
 306 #endif
 307   _ct_bs->non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this);
 308 }
 309 
 310 void CardTableRS::clear_into_younger(Generation* gen, bool clear_perm) {
 311   GenCollectedHeap* gch = GenCollectedHeap::heap();
 312   // Generations younger than gen have been evacuated. We can clear
 313   // card table entries for gen (we know that it has no pointers
 314   // to younger gens) and for those below. The card tables for
 315   // the youngest gen need never be cleared, and those for perm gen
 316   // will be cleared based on the parameter clear_perm.
 317   // There's a bit of subtlety in the clear() and invalidate()
 318   // methods that we exploit here and in invalidate_or_clear()
 319   // below to avoid missing cards at the fringes. If clear() or
 320   // invalidate() are changed in the future, this code should
 321   // be revisited. 20040107.ysr
 322   Generation* g = gen;
 323   for(Generation* prev_gen = gch->prev_gen(g);
 324       prev_gen != NULL;
 325       g = prev_gen, prev_gen = gch->prev_gen(g)) {
 326     MemRegion to_be_cleared_mr = g->prev_used_region();
 327     clear(to_be_cleared_mr);
 328   }
 329   // Clear perm gen cards if asked to do so.
 330   if (clear_perm) {
 331     MemRegion to_be_cleared_mr = gch->perm_gen()->prev_used_region();
 332     clear(to_be_cleared_mr);
 333   }
 334 }
 335 
 336 void CardTableRS::invalidate_or_clear(Generation* gen, bool younger,
 337                                       bool perm) {
 338   GenCollectedHeap* gch = GenCollectedHeap::heap();
 339   // For each generation gen (and younger and/or perm)
 340   // invalidate the cards for the currently occupied part
 341   // of that generation and clear the cards for the
 342   // unoccupied part of the generation (if any, making use
 343   // of that generation's prev_used_region to determine that
 344   // region). No need to do anything for the youngest
 345   // generation. Also see note#20040107.ysr above.
 346   Generation* g = gen;
 347   for(Generation* prev_gen = gch->prev_gen(g); prev_gen != NULL;
 348       g = prev_gen, prev_gen = gch->prev_gen(g))  {
 349     MemRegion used_mr = g->used_region();
 350     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
 351     if (!to_be_cleared_mr.is_empty()) {
 352       clear(to_be_cleared_mr);
 353     }
 354     invalidate(used_mr);
 355     if (!younger) break;
 356   }
 357   // Clear perm gen cards if asked to do so.
 358   if (perm) {
 359     g = gch->perm_gen();
 360     MemRegion used_mr = g->used_region();
 361     MemRegion to_be_cleared_mr = g->prev_used_region().minus(used_mr);
 362     if (!to_be_cleared_mr.is_empty()) {
 363       clear(to_be_cleared_mr);
 364     }
 365     invalidate(used_mr);
 366   }
 367 }
 368 
 369 
 370 class VerifyCleanCardClosure: public OopClosure {
 371 private:
 372   HeapWord* _boundary;
 373   HeapWord* _begin;
 374   HeapWord* _end;
 375 protected:
 376   template <class T> void do_oop_work(T* p) {
 377     HeapWord* jp = (HeapWord*)p;
 378     assert(jp >= _begin && jp < _end,
 379            err_msg("Error: jp " PTR_FORMAT " should be within "
 380                    "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
 381                    _begin, _end));
 382     oop obj = oopDesc::load_decode_heap_oop(p);
 383     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
 384               err_msg("pointer " PTR_FORMAT " at " PTR_FORMAT " on "
 385                       "clean card crosses boundary" PTR_FORMAT,
 386                       (HeapWord*)obj, jp, _boundary));
 387   }
 388 
 389 public:
 390   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 391     _boundary(b), _begin(begin), _end(end) {
 392     assert(b <= begin,
 393            err_msg("Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
 394                    b, begin));
 395     assert(begin <= end,
 396            err_msg("Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
 397                    begin, end));
 398   }
 399 
 400   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 401   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 402 };
 403 
 404 class VerifyCTSpaceClosure: public SpaceClosure {
 405 private:
 406   CardTableRS* _ct;
 407   HeapWord* _boundary;
 408 public:
 409   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 410     _ct(ct), _boundary(boundary) {}
 411   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 412 };
 413 
 414 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 415   CardTableRS* _ct;
 416 public:
 417   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 418   void do_generation(Generation* gen) {
 419     // Skip the youngest generation.
 420     if (gen->level() == 0) return;
 421     // Normally, we're interested in pointers to younger generations.
 422     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 423     gen->space_iterate(&blk, true);
 424   }
 425 };
 426 
 427 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 428   // We don't need to do young-gen spaces.
 429   if (s->end() <= gen_boundary) return;
 430   MemRegion used = s->used_region();
 431 
 432   jbyte* cur_entry = byte_for(used.start());
 433   jbyte* limit = byte_after(used.last());
 434   while (cur_entry < limit) {
 435     if (*cur_entry == CardTableModRefBS::clean_card) {
 436       jbyte* first_dirty = cur_entry+1;
 437       while (first_dirty < limit &&
 438              *first_dirty == CardTableModRefBS::clean_card) {
 439         first_dirty++;
 440       }
 441       // If the first object is a regular object, and it has a
 442       // young-to-old field, that would mark the previous card.
 443       HeapWord* boundary = addr_for(cur_entry);
 444       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 445       HeapWord* boundary_block = s->block_start(boundary);
 446       HeapWord* begin = boundary;             // Until proven otherwise.
 447       HeapWord* start_block = boundary_block; // Until proven otherwise.
 448       if (boundary_block < boundary) {
 449         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 450           oop boundary_obj = oop(boundary_block);
 451           if (!boundary_obj->is_objArray() &&
 452               !boundary_obj->is_typeArray()) {
 453             guarantee(cur_entry > byte_for(used.start()),
 454                       "else boundary would be boundary_block");
 455             if (*byte_for(boundary_block) != CardTableModRefBS::clean_card) {
 456               begin = boundary_block + s->block_size(boundary_block);
 457               start_block = begin;
 458             }
 459           }
 460         }
 461       }
 462       // Now traverse objects until end.
 463       if (begin < end) {
 464         MemRegion mr(begin, end);
 465         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 466         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
 467           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 468             oop(cur)->oop_iterate(&verify_blk, mr);
 469           }
 470         }
 471       }
 472       cur_entry = first_dirty;
 473     } else {
 474       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 475       // is a transient value, that cannot be in the card table
 476       // except during GC, and thus assert that:
 477       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 478       //        "Illegal CT value");
 479       // That however, need not hold, as will become clear in the
 480       // following...
 481 
 482       // We'd normally expect that if we are in the parallel case,
 483       // we can't have left a prev value (which would be different
 484       // from the current value) in the card table, and so we'd like to
 485       // assert that:
 486       // guarantee(cur_youngergen_card_val() == youngergen_card
 487       //           || !is_prev_youngergen_card_val(*cur_entry),
 488       //           "Illegal CT value");
 489       // That, however, may not hold occasionally, because of
 490       // CMS or MSC in the old gen. To wit, consider the
 491       // following two simple illustrative scenarios:
 492       // (a) CMS: Consider the case where a large object L
 493       //     spanning several cards is allocated in the old
 494       //     gen, and has a young gen reference stored in it, dirtying
 495       //     some interior cards. A young collection scans the card,
 496       //     finds a young ref and installs a youngergenP_n value.
 497       //     L then goes dead. Now a CMS collection starts,
 498       //     finds L dead and sweeps it up. Assume that L is
 499       //     abutting _unallocated_blk, so _unallocated_blk is
 500       //     adjusted down to (below) L. Assume further that
 501       //     no young collection intervenes during this CMS cycle.
 502       //     The next young gen cycle will not get to look at this
 503       //     youngergenP_n card since it lies in the unoccupied
 504       //     part of the space.
 505       //     Some young collections later the blocks on this
 506       //     card can be re-allocated either due to direct allocation
 507       //     or due to absorbing promotions. At this time, the
 508       //     before-gc verification will fail the above assert.
 509       // (b) MSC: In this case, an object L with a young reference
 510       //     is on a card that (therefore) holds a youngergen_n value.
 511       //     Suppose also that L lies towards the end of the used
 512       //     the used space before GC. An MSC collection
 513       //     occurs that compacts to such an extent that this
 514       //     card is no longer in the occupied part of the space.
 515       //     Since current code in MSC does not always clear cards
 516       //     in the unused part of old gen, this stale youngergen_n
 517       //     value is left behind and can later be covered by
 518       //     an object when promotion or direct allocation
 519       //     re-allocates that part of the heap.
 520       //
 521       // Fortunately, the presence of such stale card values is
 522       // "only" a minor annoyance in that subsequent young collections
 523       // might needlessly scan such cards, but would still never corrupt
 524       // the heap as a result. However, it's likely not to be a significant
 525       // performance inhibitor in practice. For instance,
 526       // some recent measurements with unoccupied cards eagerly cleared
 527       // out to maintain this invariant, showed next to no
 528       // change in young collection times; of course one can construct
 529       // degenerate examples where the cost can be significant.)
 530       // Note, in particular, that if the "stale" card is modified
 531       // after re-allocation, it would be dirty, not "stale". Thus,
 532       // we can never have a younger ref in such a card and it is
 533       // safe not to scan that card in any collection. [As we see
 534       // below, we do some unnecessary scanning
 535       // in some cases in the current parallel scanning algorithm.]
 536       //
 537       // The main point below is that the parallel card scanning code
 538       // deals correctly with these stale card values. There are two main
 539       // cases to consider where we have a stale "younger gen" value and a
 540       // "derivative" case to consider, where we have a stale
 541       // "cur_younger_gen_and_prev_non_clean" value, as will become
 542       // apparent in the case analysis below.
 543       // o Case 1. If the stale value corresponds to a younger_gen_n
 544       //   value other than the cur_younger_gen value then the code
 545       //   treats this as being tantamount to a prev_younger_gen
 546       //   card. This means that the card may be unnecessarily scanned.
 547       //   There are two sub-cases to consider:
 548       //   o Case 1a. Let us say that the card is in the occupied part
 549       //     of the generation at the time the collection begins. In
 550       //     that case the card will be either cleared when it is scanned
 551       //     for young pointers, or will be set to cur_younger_gen as a
 552       //     result of promotion. (We have elided the normal case where
 553       //     the scanning thread and the promoting thread interleave
 554       //     possibly resulting in a transient
 555       //     cur_younger_gen_and_prev_non_clean value before settling
 556       //     to cur_younger_gen. [End Case 1a.]
 557       //   o Case 1b. Consider now the case when the card is in the unoccupied
 558       //     part of the space which becomes occupied because of promotions
 559       //     into it during the current young GC. In this case the card
 560       //     will never be scanned for young references. The current
 561       //     code will set the card value to either
 562       //     cur_younger_gen_and_prev_non_clean or leave
 563       //     it with its stale value -- because the promotions didn't
 564       //     result in any younger refs on that card. Of these two
 565       //     cases, the latter will be covered in Case 1a during
 566       //     a subsequent scan. To deal with the former case, we need
 567       //     to further consider how we deal with a stale value of
 568       //     cur_younger_gen_and_prev_non_clean in our case analysis
 569       //     below. This we do in Case 3 below. [End Case 1b]
 570       //   [End Case 1]
 571       // o Case 2. If the stale value corresponds to cur_younger_gen being
 572       //   a value not necessarily written by a current promotion, the
 573       //   card will not be scanned by the younger refs scanning code.
 574       //   (This is OK since as we argued above such cards cannot contain
 575       //   any younger refs.) The result is that this value will be
 576       //   treated as a prev_younger_gen value in a subsequent collection,
 577       //   which is addressed in Case 1 above. [End Case 2]
 578       // o Case 3. We here consider the "derivative" case from Case 1b. above
 579       //   because of which we may find a stale
 580       //   cur_younger_gen_and_prev_non_clean card value in the table.
 581       //   Once again, as in Case 1, we consider two subcases, depending
 582       //   on whether the card lies in the occupied or unoccupied part
 583       //   of the space at the start of the young collection.
 584       //   o Case 3a. Let us say the card is in the occupied part of
 585       //     the old gen at the start of the young collection. In that
 586       //     case, the card will be scanned by the younger refs scanning
 587       //     code which will set it to cur_younger_gen. In a subsequent
 588       //     scan, the card will be considered again and get its final
 589       //     correct value. [End Case 3a]
 590       //   o Case 3b. Now consider the case where the card is in the
 591       //     unoccupied part of the old gen, and is occupied as a result
 592       //     of promotions during thus young gc. In that case,
 593       //     the card will not be scanned for younger refs. The presence
 594       //     of newly promoted objects on the card will then result in
 595       //     its keeping the value cur_younger_gen_and_prev_non_clean
 596       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 597       //   [End Case 3]
 598       //
 599       // (Please refer to the code in the helper class
 600       // ClearNonCleanCardWrapper and in CardTableModRefBS for details.)
 601       //
 602       // The informal arguments above can be tightened into a formal
 603       // correctness proof and it behooves us to write up such a proof,
 604       // or to use model checking to prove that there are no lingering
 605       // concerns.
 606       //
 607       // Clearly because of Case 3b one cannot bound the time for
 608       // which a card will retain what we have called a "stale" value.
 609       // However, one can obtain a Loose upper bound on the redundant
 610       // work as a result of such stale values. Note first that any
 611       // time a stale card lies in the occupied part of the space at
 612       // the start of the collection, it is scanned by younger refs
 613       // code and we can define a rank function on card values that
 614       // declines when this is so. Note also that when a card does not
 615       // lie in the occupied part of the space at the beginning of a
 616       // young collection, its rank can either decline or stay unchanged.
 617       // In this case, no extra work is done in terms of redundant
 618       // younger refs scanning of that card.
 619       // Then, the case analysis above reveals that, in the worst case,
 620       // any such stale card will be scanned unnecessarily at most twice.
 621       //
 622       // It is nonethelss advisable to try and get rid of some of this
 623       // redundant work in a subsequent (low priority) re-design of
 624       // the card-scanning code, if only to simplify the underlying
 625       // state machine analysis/proof. ysr 1/28/2002. XXX
 626       cur_entry++;
 627     }
 628   }
 629 }
 630 
 631 void CardTableRS::verify() {
 632   // At present, we only know how to verify the card table RS for
 633   // generational heaps.
 634   VerifyCTGenClosure blk(this);
 635   CollectedHeap* ch = Universe::heap();
 636   // We will do the perm-gen portion of the card table, too.
 637   Generation* pg = SharedHeap::heap()->perm_gen();
 638   HeapWord* pg_boundary = pg->reserved().start();
 639 
 640   if (ch->kind() == CollectedHeap::GenCollectedHeap) {
 641     GenCollectedHeap::heap()->generation_iterate(&blk, false);
 642     _ct_bs->verify();
 643 
 644     // If the old gen collections also collect perm, then we are only
 645     // interested in perm-to-young pointers, not perm-to-old pointers.
 646     GenCollectedHeap* gch = GenCollectedHeap::heap();
 647     CollectorPolicy* cp = gch->collector_policy();
 648     if (cp->is_mark_sweep_policy() || cp->is_concurrent_mark_sweep_policy()) {
 649       pg_boundary = gch->get_gen(1)->reserved().start();
 650     }
 651   }
 652   VerifyCTSpaceClosure perm_space_blk(this, pg_boundary);
 653   SharedHeap::heap()->perm_gen()->space_iterate(&perm_space_blk, true);
 654 }
 655 
 656 
 657 void CardTableRS::verify_aligned_region_empty(MemRegion mr) {
 658   if (!mr.is_empty()) {
 659     jbyte* cur_entry = byte_for(mr.start());
 660     jbyte* limit = byte_after(mr.last());
 661     // The region mr may not start on a card boundary so
 662     // the first card may reflect a write to the space
 663     // just prior to mr.
 664     if (!is_aligned(mr.start())) {
 665       cur_entry++;
 666     }
 667     for (;cur_entry < limit; cur_entry++) {
 668       guarantee(*cur_entry == CardTableModRefBS::clean_card,
 669                 "Unexpected dirty card found");
 670     }
 671   }
 672 }