1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1Log.hpp"
  37 #include "gc_implementation/g1/g1MarkSweep.hpp"
  38 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  39 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  40 #include "gc_implementation/g1/heapRegion.inline.hpp"
  41 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  42 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  43 #include "gc_implementation/g1/vm_operations_g1.hpp"
  44 #include "gc_implementation/shared/isGCActiveMark.hpp"
  45 #include "memory/gcLocker.inline.hpp"
  46 #include "memory/genOopClosures.inline.hpp"
  47 #include "memory/generationSpec.hpp"
  48 #include "memory/referenceProcessor.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/oop.pcgc.inline.hpp"
  51 #include "runtime/aprofiler.hpp"
  52 #include "runtime/vmThread.hpp"
  53 
  54 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  55 
  56 // turn it on so that the contents of the young list (scan-only /
  57 // to-be-collected) are printed at "strategic" points before / during
  58 // / after the collection --- this is useful for debugging
  59 #define YOUNG_LIST_VERBOSE 0
  60 // CURRENT STATUS
  61 // This file is under construction.  Search for "FIXME".
  62 
  63 // INVARIANTS/NOTES
  64 //
  65 // All allocation activity covered by the G1CollectedHeap interface is
  66 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  67 // and allocate_new_tlab, which are the "entry" points to the
  68 // allocation code from the rest of the JVM.  (Note that this does not
  69 // apply to TLAB allocation, which is not part of this interface: it
  70 // is done by clients of this interface.)
  71 
  72 // Notes on implementation of parallelism in different tasks.
  73 //
  74 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  75 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  76 // It does use run_task() which sets _n_workers in the task.
  77 // G1ParTask executes g1_process_strong_roots() ->
  78 // SharedHeap::process_strong_roots() which calls eventuall to
  79 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  80 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  81 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  82 //
  83 
  84 // Local to this file.
  85 
  86 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  87   SuspendibleThreadSet* _sts;
  88   G1RemSet* _g1rs;
  89   ConcurrentG1Refine* _cg1r;
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  93                               G1RemSet* g1rs,
  94                               ConcurrentG1Refine* cg1r) :
  95     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  96   {}
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && _sts->should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 116   int _calls;
 117   G1CollectedHeap* _g1h;
 118   CardTableModRefBS* _ctbs;
 119   int _histo[256];
 120 public:
 121   ClearLoggedCardTableEntryClosure() :
 122     _calls(0)
 123   {
 124     _g1h = G1CollectedHeap::heap();
 125     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 126     for (int i = 0; i < 256; i++) _histo[i] = 0;
 127   }
 128   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 129     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 130       _calls++;
 131       unsigned char* ujb = (unsigned char*)card_ptr;
 132       int ind = (int)(*ujb);
 133       _histo[ind]++;
 134       *card_ptr = -1;
 135     }
 136     return true;
 137   }
 138   int calls() { return _calls; }
 139   void print_histo() {
 140     gclog_or_tty->print_cr("Card table value histogram:");
 141     for (int i = 0; i < 256; i++) {
 142       if (_histo[i] != 0) {
 143         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 144       }
 145     }
 146   }
 147 };
 148 
 149 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 150   int _calls;
 151   G1CollectedHeap* _g1h;
 152   CardTableModRefBS* _ctbs;
 153 public:
 154   RedirtyLoggedCardTableEntryClosure() :
 155     _calls(0)
 156   {
 157     _g1h = G1CollectedHeap::heap();
 158     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 159   }
 160   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 161     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 162       _calls++;
 163       *card_ptr = 0;
 164     }
 165     return true;
 166   }
 167   int calls() { return _calls; }
 168 };
 169 
 170 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 171 public:
 172   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 173     *card_ptr = CardTableModRefBS::dirty_card_val();
 174     return true;
 175   }
 176 };
 177 
 178 YoungList::YoungList(G1CollectedHeap* g1h) :
 179     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 180     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 181   guarantee(check_list_empty(false), "just making sure...");
 182 }
 183 
 184 void YoungList::push_region(HeapRegion *hr) {
 185   assert(!hr->is_young(), "should not already be young");
 186   assert(hr->get_next_young_region() == NULL, "cause it should!");
 187 
 188   hr->set_next_young_region(_head);
 189   _head = hr;
 190 
 191   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 192   ++_length;
 193 }
 194 
 195 void YoungList::add_survivor_region(HeapRegion* hr) {
 196   assert(hr->is_survivor(), "should be flagged as survivor region");
 197   assert(hr->get_next_young_region() == NULL, "cause it should!");
 198 
 199   hr->set_next_young_region(_survivor_head);
 200   if (_survivor_head == NULL) {
 201     _survivor_tail = hr;
 202   }
 203   _survivor_head = hr;
 204   ++_survivor_length;
 205 }
 206 
 207 void YoungList::empty_list(HeapRegion* list) {
 208   while (list != NULL) {
 209     HeapRegion* next = list->get_next_young_region();
 210     list->set_next_young_region(NULL);
 211     list->uninstall_surv_rate_group();
 212     list->set_not_young();
 213     list = next;
 214   }
 215 }
 216 
 217 void YoungList::empty_list() {
 218   assert(check_list_well_formed(), "young list should be well formed");
 219 
 220   empty_list(_head);
 221   _head = NULL;
 222   _length = 0;
 223 
 224   empty_list(_survivor_head);
 225   _survivor_head = NULL;
 226   _survivor_tail = NULL;
 227   _survivor_length = 0;
 228 
 229   _last_sampled_rs_lengths = 0;
 230 
 231   assert(check_list_empty(false), "just making sure...");
 232 }
 233 
 234 bool YoungList::check_list_well_formed() {
 235   bool ret = true;
 236 
 237   uint length = 0;
 238   HeapRegion* curr = _head;
 239   HeapRegion* last = NULL;
 240   while (curr != NULL) {
 241     if (!curr->is_young()) {
 242       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 243                              "incorrectly tagged (y: %d, surv: %d)",
 244                              curr->bottom(), curr->end(),
 245                              curr->is_young(), curr->is_survivor());
 246       ret = false;
 247     }
 248     ++length;
 249     last = curr;
 250     curr = curr->get_next_young_region();
 251   }
 252   ret = ret && (length == _length);
 253 
 254   if (!ret) {
 255     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 256     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 257                            length, _length);
 258   }
 259 
 260   return ret;
 261 }
 262 
 263 bool YoungList::check_list_empty(bool check_sample) {
 264   bool ret = true;
 265 
 266   if (_length != 0) {
 267     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 268                   _length);
 269     ret = false;
 270   }
 271   if (check_sample && _last_sampled_rs_lengths != 0) {
 272     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 273     ret = false;
 274   }
 275   if (_head != NULL) {
 276     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 277     ret = false;
 278   }
 279   if (!ret) {
 280     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 281   }
 282 
 283   return ret;
 284 }
 285 
 286 void
 287 YoungList::rs_length_sampling_init() {
 288   _sampled_rs_lengths = 0;
 289   _curr               = _head;
 290 }
 291 
 292 bool
 293 YoungList::rs_length_sampling_more() {
 294   return _curr != NULL;
 295 }
 296 
 297 void
 298 YoungList::rs_length_sampling_next() {
 299   assert( _curr != NULL, "invariant" );
 300   size_t rs_length = _curr->rem_set()->occupied();
 301 
 302   _sampled_rs_lengths += rs_length;
 303 
 304   // The current region may not yet have been added to the
 305   // incremental collection set (it gets added when it is
 306   // retired as the current allocation region).
 307   if (_curr->in_collection_set()) {
 308     // Update the collection set policy information for this region
 309     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 310   }
 311 
 312   _curr = _curr->get_next_young_region();
 313   if (_curr == NULL) {
 314     _last_sampled_rs_lengths = _sampled_rs_lengths;
 315     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 316   }
 317 }
 318 
 319 void
 320 YoungList::reset_auxilary_lists() {
 321   guarantee( is_empty(), "young list should be empty" );
 322   assert(check_list_well_formed(), "young list should be well formed");
 323 
 324   // Add survivor regions to SurvRateGroup.
 325   _g1h->g1_policy()->note_start_adding_survivor_regions();
 326   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 327 
 328   int young_index_in_cset = 0;
 329   for (HeapRegion* curr = _survivor_head;
 330        curr != NULL;
 331        curr = curr->get_next_young_region()) {
 332     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 333 
 334     // The region is a non-empty survivor so let's add it to
 335     // the incremental collection set for the next evacuation
 336     // pause.
 337     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 338     young_index_in_cset += 1;
 339   }
 340   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 341   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 342 
 343   _head   = _survivor_head;
 344   _length = _survivor_length;
 345   if (_survivor_head != NULL) {
 346     assert(_survivor_tail != NULL, "cause it shouldn't be");
 347     assert(_survivor_length > 0, "invariant");
 348     _survivor_tail->set_next_young_region(NULL);
 349   }
 350 
 351   // Don't clear the survivor list handles until the start of
 352   // the next evacuation pause - we need it in order to re-tag
 353   // the survivor regions from this evacuation pause as 'young'
 354   // at the start of the next.
 355 
 356   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 357 
 358   assert(check_list_well_formed(), "young list should be well formed");
 359 }
 360 
 361 void YoungList::print() {
 362   HeapRegion* lists[] = {_head,   _survivor_head};
 363   const char* names[] = {"YOUNG", "SURVIVOR"};
 364 
 365   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 366     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 367     HeapRegion *curr = lists[list];
 368     if (curr == NULL)
 369       gclog_or_tty->print_cr("  empty");
 370     while (curr != NULL) {
 371       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 372                              HR_FORMAT_PARAMS(curr),
 373                              curr->prev_top_at_mark_start(),
 374                              curr->next_top_at_mark_start(),
 375                              curr->age_in_surv_rate_group_cond());
 376       curr = curr->get_next_young_region();
 377     }
 378   }
 379 
 380   gclog_or_tty->print_cr("");
 381 }
 382 
 383 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 384 {
 385   // Claim the right to put the region on the dirty cards region list
 386   // by installing a self pointer.
 387   HeapRegion* next = hr->get_next_dirty_cards_region();
 388   if (next == NULL) {
 389     HeapRegion* res = (HeapRegion*)
 390       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 391                           NULL);
 392     if (res == NULL) {
 393       HeapRegion* head;
 394       do {
 395         // Put the region to the dirty cards region list.
 396         head = _dirty_cards_region_list;
 397         next = (HeapRegion*)
 398           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 399         if (next == head) {
 400           assert(hr->get_next_dirty_cards_region() == hr,
 401                  "hr->get_next_dirty_cards_region() != hr");
 402           if (next == NULL) {
 403             // The last region in the list points to itself.
 404             hr->set_next_dirty_cards_region(hr);
 405           } else {
 406             hr->set_next_dirty_cards_region(next);
 407           }
 408         }
 409       } while (next != head);
 410     }
 411   }
 412 }
 413 
 414 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 415 {
 416   HeapRegion* head;
 417   HeapRegion* hr;
 418   do {
 419     head = _dirty_cards_region_list;
 420     if (head == NULL) {
 421       return NULL;
 422     }
 423     HeapRegion* new_head = head->get_next_dirty_cards_region();
 424     if (head == new_head) {
 425       // The last region.
 426       new_head = NULL;
 427     }
 428     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 429                                           head);
 430   } while (hr != head);
 431   assert(hr != NULL, "invariant");
 432   hr->set_next_dirty_cards_region(NULL);
 433   return hr;
 434 }
 435 
 436 void G1CollectedHeap::stop_conc_gc_threads() {
 437   _cg1r->stop();
 438   _cmThread->stop();
 439 }
 440 
 441 #ifdef ASSERT
 442 // A region is added to the collection set as it is retired
 443 // so an address p can point to a region which will be in the
 444 // collection set but has not yet been retired.  This method
 445 // therefore is only accurate during a GC pause after all
 446 // regions have been retired.  It is used for debugging
 447 // to check if an nmethod has references to objects that can
 448 // be move during a partial collection.  Though it can be
 449 // inaccurate, it is sufficient for G1 because the conservative
 450 // implementation of is_scavengable() for G1 will indicate that
 451 // all nmethods must be scanned during a partial collection.
 452 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 453   HeapRegion* hr = heap_region_containing(p);
 454   return hr != NULL && hr->in_collection_set();
 455 }
 456 #endif
 457 
 458 // Returns true if the reference points to an object that
 459 // can move in an incremental collecction.
 460 bool G1CollectedHeap::is_scavengable(const void* p) {
 461   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 462   G1CollectorPolicy* g1p = g1h->g1_policy();
 463   HeapRegion* hr = heap_region_containing(p);
 464   if (hr == NULL) {
 465      // perm gen (or null)
 466      return false;
 467   } else {
 468     return !hr->isHumongous();
 469   }
 470 }
 471 
 472 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 473   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 474   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 475 
 476   // Count the dirty cards at the start.
 477   CountNonCleanMemRegionClosure count1(this);
 478   ct_bs->mod_card_iterate(&count1);
 479   int orig_count = count1.n();
 480 
 481   // First clear the logged cards.
 482   ClearLoggedCardTableEntryClosure clear;
 483   dcqs.set_closure(&clear);
 484   dcqs.apply_closure_to_all_completed_buffers();
 485   dcqs.iterate_closure_all_threads(false);
 486   clear.print_histo();
 487 
 488   // Now ensure that there's no dirty cards.
 489   CountNonCleanMemRegionClosure count2(this);
 490   ct_bs->mod_card_iterate(&count2);
 491   if (count2.n() != 0) {
 492     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 493                            count2.n(), orig_count);
 494   }
 495   guarantee(count2.n() == 0, "Card table should be clean.");
 496 
 497   RedirtyLoggedCardTableEntryClosure redirty;
 498   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 499   dcqs.apply_closure_to_all_completed_buffers();
 500   dcqs.iterate_closure_all_threads(false);
 501   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 502                          clear.calls(), orig_count);
 503   guarantee(redirty.calls() == clear.calls(),
 504             "Or else mechanism is broken.");
 505 
 506   CountNonCleanMemRegionClosure count3(this);
 507   ct_bs->mod_card_iterate(&count3);
 508   if (count3.n() != orig_count) {
 509     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 510                            orig_count, count3.n());
 511     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 512   }
 513 
 514   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 515 }
 516 
 517 // Private class members.
 518 
 519 G1CollectedHeap* G1CollectedHeap::_g1h;
 520 
 521 // Private methods.
 522 
 523 HeapRegion*
 524 G1CollectedHeap::new_region_try_secondary_free_list() {
 525   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 526   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 527     if (!_secondary_free_list.is_empty()) {
 528       if (G1ConcRegionFreeingVerbose) {
 529         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 530                                "secondary_free_list has %u entries",
 531                                _secondary_free_list.length());
 532       }
 533       // It looks as if there are free regions available on the
 534       // secondary_free_list. Let's move them to the free_list and try
 535       // again to allocate from it.
 536       append_secondary_free_list();
 537 
 538       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 539              "empty we should have moved at least one entry to the free_list");
 540       HeapRegion* res = _free_list.remove_head();
 541       if (G1ConcRegionFreeingVerbose) {
 542         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 543                                "allocated "HR_FORMAT" from secondary_free_list",
 544                                HR_FORMAT_PARAMS(res));
 545       }
 546       return res;
 547     }
 548 
 549     // Wait here until we get notifed either when (a) there are no
 550     // more free regions coming or (b) some regions have been moved on
 551     // the secondary_free_list.
 552     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 553   }
 554 
 555   if (G1ConcRegionFreeingVerbose) {
 556     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 557                            "could not allocate from secondary_free_list");
 558   }
 559   return NULL;
 560 }
 561 
 562 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 563   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 564          "the only time we use this to allocate a humongous region is "
 565          "when we are allocating a single humongous region");
 566 
 567   HeapRegion* res;
 568   if (G1StressConcRegionFreeing) {
 569     if (!_secondary_free_list.is_empty()) {
 570       if (G1ConcRegionFreeingVerbose) {
 571         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 572                                "forced to look at the secondary_free_list");
 573       }
 574       res = new_region_try_secondary_free_list();
 575       if (res != NULL) {
 576         return res;
 577       }
 578     }
 579   }
 580   res = _free_list.remove_head_or_null();
 581   if (res == NULL) {
 582     if (G1ConcRegionFreeingVerbose) {
 583       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 584                              "res == NULL, trying the secondary_free_list");
 585     }
 586     res = new_region_try_secondary_free_list();
 587   }
 588   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 589     // Currently, only attempts to allocate GC alloc regions set
 590     // do_expand to true. So, we should only reach here during a
 591     // safepoint. If this assumption changes we might have to
 592     // reconsider the use of _expand_heap_after_alloc_failure.
 593     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 594 
 595     ergo_verbose1(ErgoHeapSizing,
 596                   "attempt heap expansion",
 597                   ergo_format_reason("region allocation request failed")
 598                   ergo_format_byte("allocation request"),
 599                   word_size * HeapWordSize);
 600     if (expand(word_size * HeapWordSize)) {
 601       // Given that expand() succeeded in expanding the heap, and we
 602       // always expand the heap by an amount aligned to the heap
 603       // region size, the free list should in theory not be empty. So
 604       // it would probably be OK to use remove_head(). But the extra
 605       // check for NULL is unlikely to be a performance issue here (we
 606       // just expanded the heap!) so let's just be conservative and
 607       // use remove_head_or_null().
 608       res = _free_list.remove_head_or_null();
 609     } else {
 610       _expand_heap_after_alloc_failure = false;
 611     }
 612   }
 613   return res;
 614 }
 615 
 616 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 617                                                         size_t word_size) {
 618   assert(isHumongous(word_size), "word_size should be humongous");
 619   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 620 
 621   uint first = G1_NULL_HRS_INDEX;
 622   if (num_regions == 1) {
 623     // Only one region to allocate, no need to go through the slower
 624     // path. The caller will attempt the expasion if this fails, so
 625     // let's not try to expand here too.
 626     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 627     if (hr != NULL) {
 628       first = hr->hrs_index();
 629     } else {
 630       first = G1_NULL_HRS_INDEX;
 631     }
 632   } else {
 633     // We can't allocate humongous regions while cleanupComplete() is
 634     // running, since some of the regions we find to be empty might not
 635     // yet be added to the free list and it is not straightforward to
 636     // know which list they are on so that we can remove them. Note
 637     // that we only need to do this if we need to allocate more than
 638     // one region to satisfy the current humongous allocation
 639     // request. If we are only allocating one region we use the common
 640     // region allocation code (see above).
 641     wait_while_free_regions_coming();
 642     append_secondary_free_list_if_not_empty_with_lock();
 643 
 644     if (free_regions() >= num_regions) {
 645       first = _hrs.find_contiguous(num_regions);
 646       if (first != G1_NULL_HRS_INDEX) {
 647         for (uint i = first; i < first + num_regions; ++i) {
 648           HeapRegion* hr = region_at(i);
 649           assert(hr->is_empty(), "sanity");
 650           assert(is_on_master_free_list(hr), "sanity");
 651           hr->set_pending_removal(true);
 652         }
 653         _free_list.remove_all_pending(num_regions);
 654       }
 655     }
 656   }
 657   return first;
 658 }
 659 
 660 HeapWord*
 661 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 662                                                            uint num_regions,
 663                                                            size_t word_size) {
 664   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 665   assert(isHumongous(word_size), "word_size should be humongous");
 666   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 667 
 668   // Index of last region in the series + 1.
 669   uint last = first + num_regions;
 670 
 671   // We need to initialize the region(s) we just discovered. This is
 672   // a bit tricky given that it can happen concurrently with
 673   // refinement threads refining cards on these regions and
 674   // potentially wanting to refine the BOT as they are scanning
 675   // those cards (this can happen shortly after a cleanup; see CR
 676   // 6991377). So we have to set up the region(s) carefully and in
 677   // a specific order.
 678 
 679   // The word size sum of all the regions we will allocate.
 680   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 681   assert(word_size <= word_size_sum, "sanity");
 682 
 683   // This will be the "starts humongous" region.
 684   HeapRegion* first_hr = region_at(first);
 685   // The header of the new object will be placed at the bottom of
 686   // the first region.
 687   HeapWord* new_obj = first_hr->bottom();
 688   // This will be the new end of the first region in the series that
 689   // should also match the end of the last region in the seriers.
 690   HeapWord* new_end = new_obj + word_size_sum;
 691   // This will be the new top of the first region that will reflect
 692   // this allocation.
 693   HeapWord* new_top = new_obj + word_size;
 694 
 695   // First, we need to zero the header of the space that we will be
 696   // allocating. When we update top further down, some refinement
 697   // threads might try to scan the region. By zeroing the header we
 698   // ensure that any thread that will try to scan the region will
 699   // come across the zero klass word and bail out.
 700   //
 701   // NOTE: It would not have been correct to have used
 702   // CollectedHeap::fill_with_object() and make the space look like
 703   // an int array. The thread that is doing the allocation will
 704   // later update the object header to a potentially different array
 705   // type and, for a very short period of time, the klass and length
 706   // fields will be inconsistent. This could cause a refinement
 707   // thread to calculate the object size incorrectly.
 708   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 709 
 710   // We will set up the first region as "starts humongous". This
 711   // will also update the BOT covering all the regions to reflect
 712   // that there is a single object that starts at the bottom of the
 713   // first region.
 714   first_hr->set_startsHumongous(new_top, new_end);
 715 
 716   // Then, if there are any, we will set up the "continues
 717   // humongous" regions.
 718   HeapRegion* hr = NULL;
 719   for (uint i = first + 1; i < last; ++i) {
 720     hr = region_at(i);
 721     hr->set_continuesHumongous(first_hr);
 722   }
 723   // If we have "continues humongous" regions (hr != NULL), then the
 724   // end of the last one should match new_end.
 725   assert(hr == NULL || hr->end() == new_end, "sanity");
 726 
 727   // Up to this point no concurrent thread would have been able to
 728   // do any scanning on any region in this series. All the top
 729   // fields still point to bottom, so the intersection between
 730   // [bottom,top] and [card_start,card_end] will be empty. Before we
 731   // update the top fields, we'll do a storestore to make sure that
 732   // no thread sees the update to top before the zeroing of the
 733   // object header and the BOT initialization.
 734   OrderAccess::storestore();
 735 
 736   // Now that the BOT and the object header have been initialized,
 737   // we can update top of the "starts humongous" region.
 738   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 739          "new_top should be in this region");
 740   first_hr->set_top(new_top);
 741   if (_hr_printer.is_active()) {
 742     HeapWord* bottom = first_hr->bottom();
 743     HeapWord* end = first_hr->orig_end();
 744     if ((first + 1) == last) {
 745       // the series has a single humongous region
 746       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 747     } else {
 748       // the series has more than one humongous regions
 749       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 750     }
 751   }
 752 
 753   // Now, we will update the top fields of the "continues humongous"
 754   // regions. The reason we need to do this is that, otherwise,
 755   // these regions would look empty and this will confuse parts of
 756   // G1. For example, the code that looks for a consecutive number
 757   // of empty regions will consider them empty and try to
 758   // re-allocate them. We can extend is_empty() to also include
 759   // !continuesHumongous(), but it is easier to just update the top
 760   // fields here. The way we set top for all regions (i.e., top ==
 761   // end for all regions but the last one, top == new_top for the
 762   // last one) is actually used when we will free up the humongous
 763   // region in free_humongous_region().
 764   hr = NULL;
 765   for (uint i = first + 1; i < last; ++i) {
 766     hr = region_at(i);
 767     if ((i + 1) == last) {
 768       // last continues humongous region
 769       assert(hr->bottom() < new_top && new_top <= hr->end(),
 770              "new_top should fall on this region");
 771       hr->set_top(new_top);
 772       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 773     } else {
 774       // not last one
 775       assert(new_top > hr->end(), "new_top should be above this region");
 776       hr->set_top(hr->end());
 777       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 778     }
 779   }
 780   // If we have continues humongous regions (hr != NULL), then the
 781   // end of the last one should match new_end and its top should
 782   // match new_top.
 783   assert(hr == NULL ||
 784          (hr->end() == new_end && hr->top() == new_top), "sanity");
 785 
 786   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 787   _summary_bytes_used += first_hr->used();
 788   _humongous_set.add(first_hr);
 789 
 790   return new_obj;
 791 }
 792 
 793 // If could fit into free regions w/o expansion, try.
 794 // Otherwise, if can expand, do so.
 795 // Otherwise, if using ex regions might help, try with ex given back.
 796 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 797   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 798 
 799   verify_region_sets_optional();
 800 
 801   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 802   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 803   uint x_num = expansion_regions();
 804   uint fs = _hrs.free_suffix();
 805   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 806   if (first == G1_NULL_HRS_INDEX) {
 807     // The only thing we can do now is attempt expansion.
 808     if (fs + x_num >= num_regions) {
 809       // If the number of regions we're trying to allocate for this
 810       // object is at most the number of regions in the free suffix,
 811       // then the call to humongous_obj_allocate_find_first() above
 812       // should have succeeded and we wouldn't be here.
 813       //
 814       // We should only be trying to expand when the free suffix is
 815       // not sufficient for the object _and_ we have some expansion
 816       // room available.
 817       assert(num_regions > fs, "earlier allocation should have succeeded");
 818 
 819       ergo_verbose1(ErgoHeapSizing,
 820                     "attempt heap expansion",
 821                     ergo_format_reason("humongous allocation request failed")
 822                     ergo_format_byte("allocation request"),
 823                     word_size * HeapWordSize);
 824       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 825         // Even though the heap was expanded, it might not have
 826         // reached the desired size. So, we cannot assume that the
 827         // allocation will succeed.
 828         first = humongous_obj_allocate_find_first(num_regions, word_size);
 829       }
 830     }
 831   }
 832 
 833   HeapWord* result = NULL;
 834   if (first != G1_NULL_HRS_INDEX) {
 835     result =
 836       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 837     assert(result != NULL, "it should always return a valid result");
 838 
 839     // A successful humongous object allocation changes the used space
 840     // information of the old generation so we need to recalculate the
 841     // sizes and update the jstat counters here.
 842     g1mm()->update_sizes();
 843   }
 844 
 845   verify_region_sets_optional();
 846 
 847   return result;
 848 }
 849 
 850 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 851   assert_heap_not_locked_and_not_at_safepoint();
 852   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 853 
 854   unsigned int dummy_gc_count_before;
 855   return attempt_allocation(word_size, &dummy_gc_count_before);
 856 }
 857 
 858 HeapWord*
 859 G1CollectedHeap::mem_allocate(size_t word_size,
 860                               bool*  gc_overhead_limit_was_exceeded) {
 861   assert_heap_not_locked_and_not_at_safepoint();
 862 
 863   // Loop until the allocation is satisified, or unsatisfied after GC.
 864   for (int try_count = 1; /* we'll return */; try_count += 1) {
 865     unsigned int gc_count_before;
 866 
 867     HeapWord* result = NULL;
 868     if (!isHumongous(word_size)) {
 869       result = attempt_allocation(word_size, &gc_count_before);
 870     } else {
 871       result = attempt_allocation_humongous(word_size, &gc_count_before);
 872     }
 873     if (result != NULL) {
 874       return result;
 875     }
 876 
 877     // Create the garbage collection operation...
 878     VM_G1CollectForAllocation op(gc_count_before, word_size);
 879     // ...and get the VM thread to execute it.
 880     VMThread::execute(&op);
 881 
 882     if (op.prologue_succeeded() && op.pause_succeeded()) {
 883       // If the operation was successful we'll return the result even
 884       // if it is NULL. If the allocation attempt failed immediately
 885       // after a Full GC, it's unlikely we'll be able to allocate now.
 886       HeapWord* result = op.result();
 887       if (result != NULL && !isHumongous(word_size)) {
 888         // Allocations that take place on VM operations do not do any
 889         // card dirtying and we have to do it here. We only have to do
 890         // this for non-humongous allocations, though.
 891         dirty_young_block(result, word_size);
 892       }
 893       return result;
 894     } else {
 895       assert(op.result() == NULL,
 896              "the result should be NULL if the VM op did not succeed");
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 911                                            unsigned int *gc_count_before_ret) {
 912   // Make sure you read the note in attempt_allocation_humongous().
 913 
 914   assert_heap_not_locked_and_not_at_safepoint();
 915   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 916          "be called for humongous allocation requests");
 917 
 918   // We should only get here after the first-level allocation attempt
 919   // (attempt_allocation()) failed to allocate.
 920 
 921   // We will loop until a) we manage to successfully perform the
 922   // allocation or b) we successfully schedule a collection which
 923   // fails to perform the allocation. b) is the only case when we'll
 924   // return NULL.
 925   HeapWord* result = NULL;
 926   for (int try_count = 1; /* we'll return */; try_count += 1) {
 927     bool should_try_gc;
 928     unsigned int gc_count_before;
 929 
 930     {
 931       MutexLockerEx x(Heap_lock);
 932 
 933       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 934                                                       false /* bot_updates */);
 935       if (result != NULL) {
 936         return result;
 937       }
 938 
 939       // If we reach here, attempt_allocation_locked() above failed to
 940       // allocate a new region. So the mutator alloc region should be NULL.
 941       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 942 
 943       if (GC_locker::is_active_and_needs_gc()) {
 944         if (g1_policy()->can_expand_young_list()) {
 945           // No need for an ergo verbose message here,
 946           // can_expand_young_list() does this when it returns true.
 947           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 948                                                       false /* bot_updates */);
 949           if (result != NULL) {
 950             return result;
 951           }
 952         }
 953         should_try_gc = false;
 954       } else {
 955         // Read the GC count while still holding the Heap_lock.
 956         gc_count_before = total_collections();
 957         should_try_gc = true;
 958       }
 959     }
 960 
 961     if (should_try_gc) {
 962       bool succeeded;
 963       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 964       if (result != NULL) {
 965         assert(succeeded, "only way to get back a non-NULL result");
 966         return result;
 967       }
 968 
 969       if (succeeded) {
 970         // If we get here we successfully scheduled a collection which
 971         // failed to allocate. No point in trying to allocate
 972         // further. We'll just return NULL.
 973         MutexLockerEx x(Heap_lock);
 974         *gc_count_before_ret = total_collections();
 975         return NULL;
 976       }
 977     } else {
 978       GC_locker::stall_until_clear();
 979     }
 980 
 981     // We can reach here if we were unsuccessul in scheduling a
 982     // collection (because another thread beat us to it) or if we were
 983     // stalled due to the GC locker. In either can we should retry the
 984     // allocation attempt in case another thread successfully
 985     // performed a collection and reclaimed enough space. We do the
 986     // first attempt (without holding the Heap_lock) here and the
 987     // follow-on attempt will be at the start of the next loop
 988     // iteration (after taking the Heap_lock).
 989     result = _mutator_alloc_region.attempt_allocation(word_size,
 990                                                       false /* bot_updates */);
 991     if (result != NULL) {
 992       return result;
 993     }
 994 
 995     // Give a warning if we seem to be looping forever.
 996     if ((QueuedAllocationWarningCount > 0) &&
 997         (try_count % QueuedAllocationWarningCount == 0)) {
 998       warning("G1CollectedHeap::attempt_allocation_slow() "
 999               "retries %d times", try_count);
1000     }
1001   }
1002 
1003   ShouldNotReachHere();
1004   return NULL;
1005 }
1006 
1007 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1008                                           unsigned int * gc_count_before_ret) {
1009   // The structure of this method has a lot of similarities to
1010   // attempt_allocation_slow(). The reason these two were not merged
1011   // into a single one is that such a method would require several "if
1012   // allocation is not humongous do this, otherwise do that"
1013   // conditional paths which would obscure its flow. In fact, an early
1014   // version of this code did use a unified method which was harder to
1015   // follow and, as a result, it had subtle bugs that were hard to
1016   // track down. So keeping these two methods separate allows each to
1017   // be more readable. It will be good to keep these two in sync as
1018   // much as possible.
1019 
1020   assert_heap_not_locked_and_not_at_safepoint();
1021   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1022          "should only be called for humongous allocations");
1023 
1024   // Humongous objects can exhaust the heap quickly, so we should check if we
1025   // need to start a marking cycle at each humongous object allocation. We do
1026   // the check before we do the actual allocation. The reason for doing it
1027   // before the allocation is that we avoid having to keep track of the newly
1028   // allocated memory while we do a GC.
1029   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1030                                            word_size)) {
1031     collect(GCCause::_g1_humongous_allocation);
1032   }
1033 
1034   // We will loop until a) we manage to successfully perform the
1035   // allocation or b) we successfully schedule a collection which
1036   // fails to perform the allocation. b) is the only case when we'll
1037   // return NULL.
1038   HeapWord* result = NULL;
1039   for (int try_count = 1; /* we'll return */; try_count += 1) {
1040     bool should_try_gc;
1041     unsigned int gc_count_before;
1042 
1043     {
1044       MutexLockerEx x(Heap_lock);
1045 
1046       // Given that humongous objects are not allocated in young
1047       // regions, we'll first try to do the allocation without doing a
1048       // collection hoping that there's enough space in the heap.
1049       result = humongous_obj_allocate(word_size);
1050       if (result != NULL) {
1051         return result;
1052       }
1053 
1054       if (GC_locker::is_active_and_needs_gc()) {
1055         should_try_gc = false;
1056       } else {
1057         // Read the GC count while still holding the Heap_lock.
1058         gc_count_before = total_collections();
1059         should_try_gc = true;
1060       }
1061     }
1062 
1063     if (should_try_gc) {
1064       // If we failed to allocate the humongous object, we should try to
1065       // do a collection pause (if we're allowed) in case it reclaims
1066       // enough space for the allocation to succeed after the pause.
1067 
1068       bool succeeded;
1069       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1070       if (result != NULL) {
1071         assert(succeeded, "only way to get back a non-NULL result");
1072         return result;
1073       }
1074 
1075       if (succeeded) {
1076         // If we get here we successfully scheduled a collection which
1077         // failed to allocate. No point in trying to allocate
1078         // further. We'll just return NULL.
1079         MutexLockerEx x(Heap_lock);
1080         *gc_count_before_ret = total_collections();
1081         return NULL;
1082       }
1083     } else {
1084       GC_locker::stall_until_clear();
1085     }
1086 
1087     // We can reach here if we were unsuccessul in scheduling a
1088     // collection (because another thread beat us to it) or if we were
1089     // stalled due to the GC locker. In either can we should retry the
1090     // allocation attempt in case another thread successfully
1091     // performed a collection and reclaimed enough space.  Give a
1092     // warning if we seem to be looping forever.
1093 
1094     if ((QueuedAllocationWarningCount > 0) &&
1095         (try_count % QueuedAllocationWarningCount == 0)) {
1096       warning("G1CollectedHeap::attempt_allocation_humongous() "
1097               "retries %d times", try_count);
1098     }
1099   }
1100 
1101   ShouldNotReachHere();
1102   return NULL;
1103 }
1104 
1105 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1106                                        bool expect_null_mutator_alloc_region) {
1107   assert_at_safepoint(true /* should_be_vm_thread */);
1108   assert(_mutator_alloc_region.get() == NULL ||
1109                                              !expect_null_mutator_alloc_region,
1110          "the current alloc region was unexpectedly found to be non-NULL");
1111 
1112   if (!isHumongous(word_size)) {
1113     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1114                                                       false /* bot_updates */);
1115   } else {
1116     HeapWord* result = humongous_obj_allocate(word_size);
1117     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1118       g1_policy()->set_initiate_conc_mark_if_possible();
1119     }
1120     return result;
1121   }
1122 
1123   ShouldNotReachHere();
1124 }
1125 
1126 class PostMCRemSetClearClosure: public HeapRegionClosure {
1127   ModRefBarrierSet* _mr_bs;
1128 public:
1129   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1130   bool doHeapRegion(HeapRegion* r) {
1131     r->reset_gc_time_stamp();
1132     if (r->continuesHumongous())
1133       return false;
1134     HeapRegionRemSet* hrrs = r->rem_set();
1135     if (hrrs != NULL) hrrs->clear();
1136     // You might think here that we could clear just the cards
1137     // corresponding to the used region.  But no: if we leave a dirty card
1138     // in a region we might allocate into, then it would prevent that card
1139     // from being enqueued, and cause it to be missed.
1140     // Re: the performance cost: we shouldn't be doing full GC anyway!
1141     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1142     return false;
1143   }
1144 };
1145 
1146 
1147 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
1148   ModRefBarrierSet* _mr_bs;
1149 public:
1150   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
1151   bool doHeapRegion(HeapRegion* r) {
1152     if (r->continuesHumongous()) return false;
1153     if (r->used_region().word_size() != 0) {
1154       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
1155     }
1156     return false;
1157   }
1158 };
1159 
1160 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1161   G1CollectedHeap*   _g1h;
1162   UpdateRSOopClosure _cl;
1163   int                _worker_i;
1164 public:
1165   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1166     _cl(g1->g1_rem_set(), worker_i),
1167     _worker_i(worker_i),
1168     _g1h(g1)
1169   { }
1170 
1171   bool doHeapRegion(HeapRegion* r) {
1172     if (!r->continuesHumongous()) {
1173       _cl.set_from(r);
1174       r->oop_iterate(&_cl);
1175     }
1176     return false;
1177   }
1178 };
1179 
1180 class ParRebuildRSTask: public AbstractGangTask {
1181   G1CollectedHeap* _g1;
1182 public:
1183   ParRebuildRSTask(G1CollectedHeap* g1)
1184     : AbstractGangTask("ParRebuildRSTask"),
1185       _g1(g1)
1186   { }
1187 
1188   void work(uint worker_id) {
1189     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1190     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1191                                           _g1->workers()->active_workers(),
1192                                          HeapRegion::RebuildRSClaimValue);
1193   }
1194 };
1195 
1196 class PostCompactionPrinterClosure: public HeapRegionClosure {
1197 private:
1198   G1HRPrinter* _hr_printer;
1199 public:
1200   bool doHeapRegion(HeapRegion* hr) {
1201     assert(!hr->is_young(), "not expecting to find young regions");
1202     // We only generate output for non-empty regions.
1203     if (!hr->is_empty()) {
1204       if (!hr->isHumongous()) {
1205         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1206       } else if (hr->startsHumongous()) {
1207         if (hr->capacity() == HeapRegion::GrainBytes) {
1208           // single humongous region
1209           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1210         } else {
1211           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1212         }
1213       } else {
1214         assert(hr->continuesHumongous(), "only way to get here");
1215         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1216       }
1217     }
1218     return false;
1219   }
1220 
1221   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1222     : _hr_printer(hr_printer) { }
1223 };
1224 
1225 bool G1CollectedHeap::do_collection(bool explicit_gc,
1226                                     bool clear_all_soft_refs,
1227                                     size_t word_size) {
1228   assert_at_safepoint(true /* should_be_vm_thread */);
1229 
1230   if (GC_locker::check_active_before_gc()) {
1231     return false;
1232   }
1233 
1234   SvcGCMarker sgcm(SvcGCMarker::FULL);
1235   ResourceMark rm;
1236 
1237   print_heap_before_gc();
1238 
1239   HRSPhaseSetter x(HRSPhaseFullGC);
1240   verify_region_sets_optional();
1241 
1242   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1243                            collector_policy()->should_clear_all_soft_refs();
1244 
1245   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1246 
1247   {
1248     IsGCActiveMark x;
1249 
1250     // Timing
1251     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1252     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1253     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1254 
1255     TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1256     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1257     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1258 
1259     double start = os::elapsedTime();
1260     g1_policy()->record_full_collection_start();
1261 
1262     // Note: When we have a more flexible GC logging framework that
1263     // allows us to add optional attributes to a GC log record we
1264     // could consider timing and reporting how long we wait in the
1265     // following two methods.
1266     wait_while_free_regions_coming();
1267     // If we start the compaction before the CM threads finish
1268     // scanning the root regions we might trip them over as we'll
1269     // be moving objects / updating references. So let's wait until
1270     // they are done. By telling them to abort, they should complete
1271     // early.
1272     _cm->root_regions()->abort();
1273     _cm->root_regions()->wait_until_scan_finished();
1274     append_secondary_free_list_if_not_empty_with_lock();
1275 
1276     gc_prologue(true);
1277     increment_total_collections(true /* full gc */);
1278 
1279     size_t g1h_prev_used = used();
1280     assert(used() == recalculate_used(), "Should be equal");
1281 
1282     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
1283       HandleMark hm;  // Discard invalid handles created during verification
1284       gclog_or_tty->print(" VerifyBeforeGC:");
1285       prepare_for_verify();
1286       Universe::verify(/* silent      */ false,
1287                        /* option      */ VerifyOption_G1UsePrevMarking);
1288 
1289     }
1290     pre_full_gc_dump();
1291 
1292     COMPILER2_PRESENT(DerivedPointerTable::clear());
1293 
1294     // Disable discovery and empty the discovered lists
1295     // for the CM ref processor.
1296     ref_processor_cm()->disable_discovery();
1297     ref_processor_cm()->abandon_partial_discovery();
1298     ref_processor_cm()->verify_no_references_recorded();
1299 
1300     // Abandon current iterations of concurrent marking and concurrent
1301     // refinement, if any are in progress. We have to do this before
1302     // wait_until_scan_finished() below.
1303     concurrent_mark()->abort();
1304 
1305     // Make sure we'll choose a new allocation region afterwards.
1306     release_mutator_alloc_region();
1307     abandon_gc_alloc_regions();
1308     g1_rem_set()->cleanupHRRS();
1309 
1310     // We should call this after we retire any currently active alloc
1311     // regions so that all the ALLOC / RETIRE events are generated
1312     // before the start GC event.
1313     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1314 
1315     // We may have added regions to the current incremental collection
1316     // set between the last GC or pause and now. We need to clear the
1317     // incremental collection set and then start rebuilding it afresh
1318     // after this full GC.
1319     abandon_collection_set(g1_policy()->inc_cset_head());
1320     g1_policy()->clear_incremental_cset();
1321     g1_policy()->stop_incremental_cset_building();
1322 
1323     tear_down_region_sets(false /* free_list_only */);
1324     g1_policy()->set_gcs_are_young(true);
1325 
1326     // See the comments in g1CollectedHeap.hpp and
1327     // G1CollectedHeap::ref_processing_init() about
1328     // how reference processing currently works in G1.
1329 
1330     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1331     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1332 
1333     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1334     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1335 
1336     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1337     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1338 
1339     // Do collection work
1340     {
1341       HandleMark hm;  // Discard invalid handles created during gc
1342       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1343     }
1344 
1345     assert(free_regions() == 0, "we should not have added any free regions");
1346     rebuild_region_sets(false /* free_list_only */);
1347 
1348     // Enqueue any discovered reference objects that have
1349     // not been removed from the discovered lists.
1350     ref_processor_stw()->enqueue_discovered_references();
1351 
1352     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1353 
1354     MemoryService::track_memory_usage();
1355 
1356     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
1357       HandleMark hm;  // Discard invalid handles created during verification
1358       gclog_or_tty->print(" VerifyAfterGC:");
1359       prepare_for_verify();
1360       Universe::verify(/* silent      */ false,
1361                        /* option      */ VerifyOption_G1UsePrevMarking);
1362 
1363     }
1364 
1365     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1366     ref_processor_stw()->verify_no_references_recorded();
1367 
1368     // Note: since we've just done a full GC, concurrent
1369     // marking is no longer active. Therefore we need not
1370     // re-enable reference discovery for the CM ref processor.
1371     // That will be done at the start of the next marking cycle.
1372     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1373     ref_processor_cm()->verify_no_references_recorded();
1374 
1375     reset_gc_time_stamp();
1376     // Since everything potentially moved, we will clear all remembered
1377     // sets, and clear all cards.  Later we will rebuild remebered
1378     // sets. We will also reset the GC time stamps of the regions.
1379     PostMCRemSetClearClosure rs_clear(mr_bs());
1380     heap_region_iterate(&rs_clear);
1381 
1382     // Resize the heap if necessary.
1383     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1384 
1385     if (_hr_printer.is_active()) {
1386       // We should do this after we potentially resize the heap so
1387       // that all the COMMIT / UNCOMMIT events are generated before
1388       // the end GC event.
1389 
1390       PostCompactionPrinterClosure cl(hr_printer());
1391       heap_region_iterate(&cl);
1392 
1393       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1394     }
1395 
1396     if (_cg1r->use_cache()) {
1397       _cg1r->clear_and_record_card_counts();
1398       _cg1r->clear_hot_cache();
1399     }
1400 
1401     // Rebuild remembered sets of all regions.
1402     if (G1CollectedHeap::use_parallel_gc_threads()) {
1403       uint n_workers =
1404         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1405                                        workers()->active_workers(),
1406                                        Threads::number_of_non_daemon_threads());
1407       assert(UseDynamicNumberOfGCThreads ||
1408              n_workers == workers()->total_workers(),
1409              "If not dynamic should be using all the  workers");
1410       workers()->set_active_workers(n_workers);
1411       // Set parallel threads in the heap (_n_par_threads) only
1412       // before a parallel phase and always reset it to 0 after
1413       // the phase so that the number of parallel threads does
1414       // no get carried forward to a serial phase where there
1415       // may be code that is "possibly_parallel".
1416       set_par_threads(n_workers);
1417 
1418       ParRebuildRSTask rebuild_rs_task(this);
1419       assert(check_heap_region_claim_values(
1420              HeapRegion::InitialClaimValue), "sanity check");
1421       assert(UseDynamicNumberOfGCThreads ||
1422              workers()->active_workers() == workers()->total_workers(),
1423         "Unless dynamic should use total workers");
1424       // Use the most recent number of  active workers
1425       assert(workers()->active_workers() > 0,
1426         "Active workers not properly set");
1427       set_par_threads(workers()->active_workers());
1428       workers()->run_task(&rebuild_rs_task);
1429       set_par_threads(0);
1430       assert(check_heap_region_claim_values(
1431              HeapRegion::RebuildRSClaimValue), "sanity check");
1432       reset_heap_region_claim_values();
1433     } else {
1434       RebuildRSOutOfRegionClosure rebuild_rs(this);
1435       heap_region_iterate(&rebuild_rs);
1436     }
1437 
1438     if (G1Log::fine()) {
1439       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1440     }
1441 
1442     if (true) { // FIXME
1443       // Ask the permanent generation to adjust size for full collections
1444       perm()->compute_new_size();
1445     }
1446 
1447     // Start a new incremental collection set for the next pause
1448     assert(g1_policy()->collection_set() == NULL, "must be");
1449     g1_policy()->start_incremental_cset_building();
1450 
1451     // Clear the _cset_fast_test bitmap in anticipation of adding
1452     // regions to the incremental collection set for the next
1453     // evacuation pause.
1454     clear_cset_fast_test();
1455 
1456     init_mutator_alloc_region();
1457 
1458     double end = os::elapsedTime();
1459     g1_policy()->record_full_collection_end();
1460 
1461 #ifdef TRACESPINNING
1462     ParallelTaskTerminator::print_termination_counts();
1463 #endif
1464 
1465     gc_epilogue(true);
1466 
1467     // Discard all rset updates
1468     JavaThread::dirty_card_queue_set().abandon_logs();
1469     assert(!G1DeferredRSUpdate
1470            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1471   }
1472 
1473   _young_list->reset_sampled_info();
1474   // At this point there should be no regions in the
1475   // entire heap tagged as young.
1476   assert( check_young_list_empty(true /* check_heap */),
1477     "young list should be empty at this point");
1478 
1479   // Update the number of full collections that have been completed.
1480   increment_full_collections_completed(false /* concurrent */);
1481 
1482   _hrs.verify_optional();
1483   verify_region_sets_optional();
1484 
1485   print_heap_after_gc();
1486   g1mm()->update_sizes();
1487   post_full_gc_dump();
1488 
1489   return true;
1490 }
1491 
1492 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1493   // do_collection() will return whether it succeeded in performing
1494   // the GC. Currently, there is no facility on the
1495   // do_full_collection() API to notify the caller than the collection
1496   // did not succeed (e.g., because it was locked out by the GC
1497   // locker). So, right now, we'll ignore the return value.
1498   bool dummy = do_collection(true,                /* explicit_gc */
1499                              clear_all_soft_refs,
1500                              0                    /* word_size */);
1501 }
1502 
1503 // This code is mostly copied from TenuredGeneration.
1504 void
1505 G1CollectedHeap::
1506 resize_if_necessary_after_full_collection(size_t word_size) {
1507   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1508 
1509   // Include the current allocation, if any, and bytes that will be
1510   // pre-allocated to support collections, as "used".
1511   const size_t used_after_gc = used();
1512   const size_t capacity_after_gc = capacity();
1513   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1514 
1515   // This is enforced in arguments.cpp.
1516   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1517          "otherwise the code below doesn't make sense");
1518 
1519   // We don't have floating point command-line arguments
1520   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1521   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1522   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1523   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1524 
1525   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1526   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1527 
1528   // We have to be careful here as these two calculations can overflow
1529   // 32-bit size_t's.
1530   double used_after_gc_d = (double) used_after_gc;
1531   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1532   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1533 
1534   // Let's make sure that they are both under the max heap size, which
1535   // by default will make them fit into a size_t.
1536   double desired_capacity_upper_bound = (double) max_heap_size;
1537   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1538                                     desired_capacity_upper_bound);
1539   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1540                                     desired_capacity_upper_bound);
1541 
1542   // We can now safely turn them into size_t's.
1543   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1544   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1545 
1546   // This assert only makes sense here, before we adjust them
1547   // with respect to the min and max heap size.
1548   assert(minimum_desired_capacity <= maximum_desired_capacity,
1549          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1550                  "maximum_desired_capacity = "SIZE_FORMAT,
1551                  minimum_desired_capacity, maximum_desired_capacity));
1552 
1553   // Should not be greater than the heap max size. No need to adjust
1554   // it with respect to the heap min size as it's a lower bound (i.e.,
1555   // we'll try to make the capacity larger than it, not smaller).
1556   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1557   // Should not be less than the heap min size. No need to adjust it
1558   // with respect to the heap max size as it's an upper bound (i.e.,
1559   // we'll try to make the capacity smaller than it, not greater).
1560   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1561 
1562   if (capacity_after_gc < minimum_desired_capacity) {
1563     // Don't expand unless it's significant
1564     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1565     ergo_verbose4(ErgoHeapSizing,
1566                   "attempt heap expansion",
1567                   ergo_format_reason("capacity lower than "
1568                                      "min desired capacity after Full GC")
1569                   ergo_format_byte("capacity")
1570                   ergo_format_byte("occupancy")
1571                   ergo_format_byte_perc("min desired capacity"),
1572                   capacity_after_gc, used_after_gc,
1573                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1574     expand(expand_bytes);
1575 
1576     // No expansion, now see if we want to shrink
1577   } else if (capacity_after_gc > maximum_desired_capacity) {
1578     // Capacity too large, compute shrinking size
1579     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1580     ergo_verbose4(ErgoHeapSizing,
1581                   "attempt heap shrinking",
1582                   ergo_format_reason("capacity higher than "
1583                                      "max desired capacity after Full GC")
1584                   ergo_format_byte("capacity")
1585                   ergo_format_byte("occupancy")
1586                   ergo_format_byte_perc("max desired capacity"),
1587                   capacity_after_gc, used_after_gc,
1588                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1589     shrink(shrink_bytes);
1590   }
1591 }
1592 
1593 
1594 HeapWord*
1595 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1596                                            bool* succeeded) {
1597   assert_at_safepoint(true /* should_be_vm_thread */);
1598 
1599   *succeeded = true;
1600   // Let's attempt the allocation first.
1601   HeapWord* result =
1602     attempt_allocation_at_safepoint(word_size,
1603                                  false /* expect_null_mutator_alloc_region */);
1604   if (result != NULL) {
1605     assert(*succeeded, "sanity");
1606     return result;
1607   }
1608 
1609   // In a G1 heap, we're supposed to keep allocation from failing by
1610   // incremental pauses.  Therefore, at least for now, we'll favor
1611   // expansion over collection.  (This might change in the future if we can
1612   // do something smarter than full collection to satisfy a failed alloc.)
1613   result = expand_and_allocate(word_size);
1614   if (result != NULL) {
1615     assert(*succeeded, "sanity");
1616     return result;
1617   }
1618 
1619   // Expansion didn't work, we'll try to do a Full GC.
1620   bool gc_succeeded = do_collection(false, /* explicit_gc */
1621                                     false, /* clear_all_soft_refs */
1622                                     word_size);
1623   if (!gc_succeeded) {
1624     *succeeded = false;
1625     return NULL;
1626   }
1627 
1628   // Retry the allocation
1629   result = attempt_allocation_at_safepoint(word_size,
1630                                   true /* expect_null_mutator_alloc_region */);
1631   if (result != NULL) {
1632     assert(*succeeded, "sanity");
1633     return result;
1634   }
1635 
1636   // Then, try a Full GC that will collect all soft references.
1637   gc_succeeded = do_collection(false, /* explicit_gc */
1638                                true,  /* clear_all_soft_refs */
1639                                word_size);
1640   if (!gc_succeeded) {
1641     *succeeded = false;
1642     return NULL;
1643   }
1644 
1645   // Retry the allocation once more
1646   result = attempt_allocation_at_safepoint(word_size,
1647                                   true /* expect_null_mutator_alloc_region */);
1648   if (result != NULL) {
1649     assert(*succeeded, "sanity");
1650     return result;
1651   }
1652 
1653   assert(!collector_policy()->should_clear_all_soft_refs(),
1654          "Flag should have been handled and cleared prior to this point");
1655 
1656   // What else?  We might try synchronous finalization later.  If the total
1657   // space available is large enough for the allocation, then a more
1658   // complete compaction phase than we've tried so far might be
1659   // appropriate.
1660   assert(*succeeded, "sanity");
1661   return NULL;
1662 }
1663 
1664 // Attempting to expand the heap sufficiently
1665 // to support an allocation of the given "word_size".  If
1666 // successful, perform the allocation and return the address of the
1667 // allocated block, or else "NULL".
1668 
1669 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1670   assert_at_safepoint(true /* should_be_vm_thread */);
1671 
1672   verify_region_sets_optional();
1673 
1674   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1675   ergo_verbose1(ErgoHeapSizing,
1676                 "attempt heap expansion",
1677                 ergo_format_reason("allocation request failed")
1678                 ergo_format_byte("allocation request"),
1679                 word_size * HeapWordSize);
1680   if (expand(expand_bytes)) {
1681     _hrs.verify_optional();
1682     verify_region_sets_optional();
1683     return attempt_allocation_at_safepoint(word_size,
1684                                  false /* expect_null_mutator_alloc_region */);
1685   }
1686   return NULL;
1687 }
1688 
1689 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1690                                              HeapWord* new_end) {
1691   assert(old_end != new_end, "don't call this otherwise");
1692   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1693 
1694   // Update the committed mem region.
1695   _g1_committed.set_end(new_end);
1696   // Tell the card table about the update.
1697   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1698   // Tell the BOT about the update.
1699   _bot_shared->resize(_g1_committed.word_size());
1700 }
1701 
1702 bool G1CollectedHeap::expand(size_t expand_bytes) {
1703   size_t old_mem_size = _g1_storage.committed_size();
1704   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1705   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1706                                        HeapRegion::GrainBytes);
1707   ergo_verbose2(ErgoHeapSizing,
1708                 "expand the heap",
1709                 ergo_format_byte("requested expansion amount")
1710                 ergo_format_byte("attempted expansion amount"),
1711                 expand_bytes, aligned_expand_bytes);
1712 
1713   // First commit the memory.
1714   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1715   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1716   if (successful) {
1717     // Then propagate this update to the necessary data structures.
1718     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1719     update_committed_space(old_end, new_end);
1720 
1721     FreeRegionList expansion_list("Local Expansion List");
1722     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1723     assert(mr.start() == old_end, "post-condition");
1724     // mr might be a smaller region than what was requested if
1725     // expand_by() was unable to allocate the HeapRegion instances
1726     assert(mr.end() <= new_end, "post-condition");
1727 
1728     size_t actual_expand_bytes = mr.byte_size();
1729     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1730     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1731            "post-condition");
1732     if (actual_expand_bytes < aligned_expand_bytes) {
1733       // We could not expand _hrs to the desired size. In this case we
1734       // need to shrink the committed space accordingly.
1735       assert(mr.end() < new_end, "invariant");
1736 
1737       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1738       // First uncommit the memory.
1739       _g1_storage.shrink_by(diff_bytes);
1740       // Then propagate this update to the necessary data structures.
1741       update_committed_space(new_end, mr.end());
1742     }
1743     _free_list.add_as_tail(&expansion_list);
1744 
1745     if (_hr_printer.is_active()) {
1746       HeapWord* curr = mr.start();
1747       while (curr < mr.end()) {
1748         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1749         _hr_printer.commit(curr, curr_end);
1750         curr = curr_end;
1751       }
1752       assert(curr == mr.end(), "post-condition");
1753     }
1754     g1_policy()->record_new_heap_size(n_regions());
1755   } else {
1756     ergo_verbose0(ErgoHeapSizing,
1757                   "did not expand the heap",
1758                   ergo_format_reason("heap expansion operation failed"));
1759     // The expansion of the virtual storage space was unsuccessful.
1760     // Let's see if it was because we ran out of swap.
1761     if (G1ExitOnExpansionFailure &&
1762         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1763       // We had head room...
1764       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1765     }
1766   }
1767   return successful;
1768 }
1769 
1770 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1771   size_t old_mem_size = _g1_storage.committed_size();
1772   size_t aligned_shrink_bytes =
1773     ReservedSpace::page_align_size_down(shrink_bytes);
1774   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1775                                          HeapRegion::GrainBytes);
1776   uint num_regions_deleted = 0;
1777   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1778   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1779   assert(mr.end() == old_end, "post-condition");
1780 
1781   ergo_verbose3(ErgoHeapSizing,
1782                 "shrink the heap",
1783                 ergo_format_byte("requested shrinking amount")
1784                 ergo_format_byte("aligned shrinking amount")
1785                 ergo_format_byte("attempted shrinking amount"),
1786                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1787   if (mr.byte_size() > 0) {
1788     if (_hr_printer.is_active()) {
1789       HeapWord* curr = mr.end();
1790       while (curr > mr.start()) {
1791         HeapWord* curr_end = curr;
1792         curr -= HeapRegion::GrainWords;
1793         _hr_printer.uncommit(curr, curr_end);
1794       }
1795       assert(curr == mr.start(), "post-condition");
1796     }
1797 
1798     _g1_storage.shrink_by(mr.byte_size());
1799     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1800     assert(mr.start() == new_end, "post-condition");
1801 
1802     _expansion_regions += num_regions_deleted;
1803     update_committed_space(old_end, new_end);
1804     HeapRegionRemSet::shrink_heap(n_regions());
1805     g1_policy()->record_new_heap_size(n_regions());
1806   } else {
1807     ergo_verbose0(ErgoHeapSizing,
1808                   "did not shrink the heap",
1809                   ergo_format_reason("heap shrinking operation failed"));
1810   }
1811 }
1812 
1813 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1814   verify_region_sets_optional();
1815 
1816   // We should only reach here at the end of a Full GC which means we
1817   // should not not be holding to any GC alloc regions. The method
1818   // below will make sure of that and do any remaining clean up.
1819   abandon_gc_alloc_regions();
1820 
1821   // Instead of tearing down / rebuilding the free lists here, we
1822   // could instead use the remove_all_pending() method on free_list to
1823   // remove only the ones that we need to remove.
1824   tear_down_region_sets(true /* free_list_only */);
1825   shrink_helper(shrink_bytes);
1826   rebuild_region_sets(true /* free_list_only */);
1827 
1828   _hrs.verify_optional();
1829   verify_region_sets_optional();
1830 }
1831 
1832 // Public methods.
1833 
1834 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1835 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1836 #endif // _MSC_VER
1837 
1838 
1839 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1840   SharedHeap(policy_),
1841   _g1_policy(policy_),
1842   _dirty_card_queue_set(false),
1843   _into_cset_dirty_card_queue_set(false),
1844   _is_alive_closure_cm(this),
1845   _is_alive_closure_stw(this),
1846   _ref_processor_cm(NULL),
1847   _ref_processor_stw(NULL),
1848   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1849   _bot_shared(NULL),
1850   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1851   _evac_failure_scan_stack(NULL) ,
1852   _mark_in_progress(false),
1853   _cg1r(NULL), _summary_bytes_used(0),
1854   _g1mm(NULL),
1855   _refine_cte_cl(NULL),
1856   _full_collection(false),
1857   _free_list("Master Free List"),
1858   _secondary_free_list("Secondary Free List"),
1859   _old_set("Old Set"),
1860   _humongous_set("Master Humongous Set"),
1861   _free_regions_coming(false),
1862   _young_list(new YoungList(this)),
1863   _gc_time_stamp(0),
1864   _retained_old_gc_alloc_region(NULL),
1865   _expand_heap_after_alloc_failure(true),
1866   _surviving_young_words(NULL),
1867   _full_collections_completed(0),
1868   _in_cset_fast_test(NULL),
1869   _in_cset_fast_test_base(NULL),
1870   _dirty_cards_region_list(NULL),
1871   _worker_cset_start_region(NULL),
1872   _worker_cset_start_region_time_stamp(NULL) {
1873   _g1h = this; // To catch bugs.
1874   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1875     vm_exit_during_initialization("Failed necessary allocation.");
1876   }
1877 
1878   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1879 
1880   int n_queues = MAX2((int)ParallelGCThreads, 1);
1881   _task_queues = new RefToScanQueueSet(n_queues);
1882 
1883   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1884   assert(n_rem_sets > 0, "Invariant.");
1885 
1886   HeapRegionRemSetIterator** iter_arr =
1887     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1888   for (int i = 0; i < n_queues; i++) {
1889     iter_arr[i] = new HeapRegionRemSetIterator();
1890   }
1891   _rem_set_iterator = iter_arr;
1892 
1893   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues);
1894   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues);
1895 
1896   for (int i = 0; i < n_queues; i++) {
1897     RefToScanQueue* q = new RefToScanQueue();
1898     q->initialize();
1899     _task_queues->register_queue(i, q);
1900   }
1901 
1902   clear_cset_start_regions();
1903 
1904   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1905 }
1906 
1907 jint G1CollectedHeap::initialize() {
1908   CollectedHeap::pre_initialize();
1909   os::enable_vtime();
1910 
1911   G1Log::init();
1912 
1913   // Necessary to satisfy locking discipline assertions.
1914 
1915   MutexLocker x(Heap_lock);
1916 
1917   // We have to initialize the printer before committing the heap, as
1918   // it will be used then.
1919   _hr_printer.set_active(G1PrintHeapRegions);
1920 
1921   // While there are no constraints in the GC code that HeapWordSize
1922   // be any particular value, there are multiple other areas in the
1923   // system which believe this to be true (e.g. oop->object_size in some
1924   // cases incorrectly returns the size in wordSize units rather than
1925   // HeapWordSize).
1926   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1927 
1928   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1929   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1930 
1931   // Ensure that the sizes are properly aligned.
1932   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1933   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1934 
1935   _cg1r = new ConcurrentG1Refine();
1936 
1937   // Reserve the maximum.
1938   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1939   // Includes the perm-gen.
1940 
1941   // When compressed oops are enabled, the preferred heap base
1942   // is calculated by subtracting the requested size from the
1943   // 32Gb boundary and using the result as the base address for
1944   // heap reservation. If the requested size is not aligned to
1945   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1946   // into the ReservedHeapSpace constructor) then the actual
1947   // base of the reserved heap may end up differing from the
1948   // address that was requested (i.e. the preferred heap base).
1949   // If this happens then we could end up using a non-optimal
1950   // compressed oops mode.
1951 
1952   // Since max_byte_size is aligned to the size of a heap region (checked
1953   // above), we also need to align the perm gen size as it might not be.
1954   const size_t total_reserved = max_byte_size +
1955                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
1956   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
1957 
1958   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
1959 
1960   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
1961                             UseLargePages, addr);
1962 
1963   if (UseCompressedOops) {
1964     if (addr != NULL && !heap_rs.is_reserved()) {
1965       // Failed to reserve at specified address - the requested memory
1966       // region is taken already, for example, by 'java' launcher.
1967       // Try again to reserver heap higher.
1968       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
1969 
1970       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
1971                                  UseLargePages, addr);
1972 
1973       if (addr != NULL && !heap_rs0.is_reserved()) {
1974         // Failed to reserve at specified address again - give up.
1975         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
1976         assert(addr == NULL, "");
1977 
1978         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
1979                                    UseLargePages, addr);
1980         heap_rs = heap_rs1;
1981       } else {
1982         heap_rs = heap_rs0;
1983       }
1984     }
1985   }
1986 
1987   if (!heap_rs.is_reserved()) {
1988     vm_exit_during_initialization("Could not reserve enough space for object heap");
1989     return JNI_ENOMEM;
1990   }
1991 
1992   // It is important to do this in a way such that concurrent readers can't
1993   // temporarily think somethings in the heap.  (I've actually seen this
1994   // happen in asserts: DLD.)
1995   _reserved.set_word_size(0);
1996   _reserved.set_start((HeapWord*)heap_rs.base());
1997   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1998 
1999   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2000 
2001   // Create the gen rem set (and barrier set) for the entire reserved region.
2002   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2003   set_barrier_set(rem_set()->bs());
2004   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2005     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2006   } else {
2007     vm_exit_during_initialization("G1 requires a mod ref bs.");
2008     return JNI_ENOMEM;
2009   }
2010 
2011   // Also create a G1 rem set.
2012   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2013     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2014   } else {
2015     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2016     return JNI_ENOMEM;
2017   }
2018 
2019   // Carve out the G1 part of the heap.
2020 
2021   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2022   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2023                            g1_rs.size()/HeapWordSize);
2024   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2025 
2026   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2027 
2028   _g1_storage.initialize(g1_rs, 0);
2029   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2030   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2031                   (HeapWord*) _g1_reserved.end(),
2032                   _expansion_regions);
2033 
2034   // 6843694 - ensure that the maximum region index can fit
2035   // in the remembered set structures.
2036   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2037   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2038 
2039   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2040   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2041   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2042             "too many cards per region");
2043 
2044   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2045 
2046   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2047                                              heap_word_size(init_byte_size));
2048 
2049   _g1h = this;
2050 
2051    _in_cset_fast_test_length = max_regions();
2052    _in_cset_fast_test_base =
2053                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length);
2054 
2055    // We're biasing _in_cset_fast_test to avoid subtracting the
2056    // beginning of the heap every time we want to index; basically
2057    // it's the same with what we do with the card table.
2058    _in_cset_fast_test = _in_cset_fast_test_base -
2059                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2060 
2061    // Clear the _cset_fast_test bitmap in anticipation of adding
2062    // regions to the incremental collection set for the first
2063    // evacuation pause.
2064    clear_cset_fast_test();
2065 
2066   // Create the ConcurrentMark data structure and thread.
2067   // (Must do this late, so that "max_regions" is defined.)
2068   _cm       = new ConcurrentMark(heap_rs, max_regions());
2069   _cmThread = _cm->cmThread();
2070 
2071   // Initialize the from_card cache structure of HeapRegionRemSet.
2072   HeapRegionRemSet::init_heap(max_regions());
2073 
2074   // Now expand into the initial heap size.
2075   if (!expand(init_byte_size)) {
2076     vm_exit_during_initialization("Failed to allocate initial heap.");
2077     return JNI_ENOMEM;
2078   }
2079 
2080   // Perform any initialization actions delegated to the policy.
2081   g1_policy()->init();
2082 
2083   _refine_cte_cl =
2084     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2085                                     g1_rem_set(),
2086                                     concurrent_g1_refine());
2087   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2088 
2089   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2090                                                SATB_Q_FL_lock,
2091                                                G1SATBProcessCompletedThreshold,
2092                                                Shared_SATB_Q_lock);
2093 
2094   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2095                                                 DirtyCardQ_FL_lock,
2096                                                 concurrent_g1_refine()->yellow_zone(),
2097                                                 concurrent_g1_refine()->red_zone(),
2098                                                 Shared_DirtyCardQ_lock);
2099 
2100   if (G1DeferredRSUpdate) {
2101     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2102                                       DirtyCardQ_FL_lock,
2103                                       -1, // never trigger processing
2104                                       -1, // no limit on length
2105                                       Shared_DirtyCardQ_lock,
2106                                       &JavaThread::dirty_card_queue_set());
2107   }
2108 
2109   // Initialize the card queue set used to hold cards containing
2110   // references into the collection set.
2111   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2112                                              DirtyCardQ_FL_lock,
2113                                              -1, // never trigger processing
2114                                              -1, // no limit on length
2115                                              Shared_DirtyCardQ_lock,
2116                                              &JavaThread::dirty_card_queue_set());
2117 
2118   // In case we're keeping closure specialization stats, initialize those
2119   // counts and that mechanism.
2120   SpecializationStats::clear();
2121 
2122   // Do later initialization work for concurrent refinement.
2123   _cg1r->init();
2124 
2125   // Here we allocate the dummy full region that is required by the
2126   // G1AllocRegion class. If we don't pass an address in the reserved
2127   // space here, lots of asserts fire.
2128 
2129   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2130                                              _g1_reserved.start());
2131   // We'll re-use the same region whether the alloc region will
2132   // require BOT updates or not and, if it doesn't, then a non-young
2133   // region will complain that it cannot support allocations without
2134   // BOT updates. So we'll tag the dummy region as young to avoid that.
2135   dummy_region->set_young();
2136   // Make sure it's full.
2137   dummy_region->set_top(dummy_region->end());
2138   G1AllocRegion::setup(this, dummy_region);
2139 
2140   init_mutator_alloc_region();
2141 
2142   // Do create of the monitoring and management support so that
2143   // values in the heap have been properly initialized.
2144   _g1mm = new G1MonitoringSupport(this);
2145 
2146   return JNI_OK;
2147 }
2148 
2149 void G1CollectedHeap::ref_processing_init() {
2150   // Reference processing in G1 currently works as follows:
2151   //
2152   // * There are two reference processor instances. One is
2153   //   used to record and process discovered references
2154   //   during concurrent marking; the other is used to
2155   //   record and process references during STW pauses
2156   //   (both full and incremental).
2157   // * Both ref processors need to 'span' the entire heap as
2158   //   the regions in the collection set may be dotted around.
2159   //
2160   // * For the concurrent marking ref processor:
2161   //   * Reference discovery is enabled at initial marking.
2162   //   * Reference discovery is disabled and the discovered
2163   //     references processed etc during remarking.
2164   //   * Reference discovery is MT (see below).
2165   //   * Reference discovery requires a barrier (see below).
2166   //   * Reference processing may or may not be MT
2167   //     (depending on the value of ParallelRefProcEnabled
2168   //     and ParallelGCThreads).
2169   //   * A full GC disables reference discovery by the CM
2170   //     ref processor and abandons any entries on it's
2171   //     discovered lists.
2172   //
2173   // * For the STW processor:
2174   //   * Non MT discovery is enabled at the start of a full GC.
2175   //   * Processing and enqueueing during a full GC is non-MT.
2176   //   * During a full GC, references are processed after marking.
2177   //
2178   //   * Discovery (may or may not be MT) is enabled at the start
2179   //     of an incremental evacuation pause.
2180   //   * References are processed near the end of a STW evacuation pause.
2181   //   * For both types of GC:
2182   //     * Discovery is atomic - i.e. not concurrent.
2183   //     * Reference discovery will not need a barrier.
2184 
2185   SharedHeap::ref_processing_init();
2186   MemRegion mr = reserved_region();
2187 
2188   // Concurrent Mark ref processor
2189   _ref_processor_cm =
2190     new ReferenceProcessor(mr,    // span
2191                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2192                                 // mt processing
2193                            (int) ParallelGCThreads,
2194                                 // degree of mt processing
2195                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2196                                 // mt discovery
2197                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2198                                 // degree of mt discovery
2199                            false,
2200                                 // Reference discovery is not atomic
2201                            &_is_alive_closure_cm,
2202                                 // is alive closure
2203                                 // (for efficiency/performance)
2204                            true);
2205                                 // Setting next fields of discovered
2206                                 // lists requires a barrier.
2207 
2208   // STW ref processor
2209   _ref_processor_stw =
2210     new ReferenceProcessor(mr,    // span
2211                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2212                                 // mt processing
2213                            MAX2((int)ParallelGCThreads, 1),
2214                                 // degree of mt processing
2215                            (ParallelGCThreads > 1),
2216                                 // mt discovery
2217                            MAX2((int)ParallelGCThreads, 1),
2218                                 // degree of mt discovery
2219                            true,
2220                                 // Reference discovery is atomic
2221                            &_is_alive_closure_stw,
2222                                 // is alive closure
2223                                 // (for efficiency/performance)
2224                            false);
2225                                 // Setting next fields of discovered
2226                                 // lists requires a barrier.
2227 }
2228 
2229 size_t G1CollectedHeap::capacity() const {
2230   return _g1_committed.byte_size();
2231 }
2232 
2233 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2234                                                  DirtyCardQueue* into_cset_dcq,
2235                                                  bool concurrent,
2236                                                  int worker_i) {
2237   // Clean cards in the hot card cache
2238   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2239 
2240   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2241   int n_completed_buffers = 0;
2242   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2243     n_completed_buffers++;
2244   }
2245   g1_policy()->record_update_rs_processed_buffers(worker_i,
2246                                                   (double) n_completed_buffers);
2247   dcqs.clear_n_completed_buffers();
2248   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2249 }
2250 
2251 
2252 // Computes the sum of the storage used by the various regions.
2253 
2254 size_t G1CollectedHeap::used() const {
2255   assert(Heap_lock->owner() != NULL,
2256          "Should be owned on this thread's behalf.");
2257   size_t result = _summary_bytes_used;
2258   // Read only once in case it is set to NULL concurrently
2259   HeapRegion* hr = _mutator_alloc_region.get();
2260   if (hr != NULL)
2261     result += hr->used();
2262   return result;
2263 }
2264 
2265 size_t G1CollectedHeap::used_unlocked() const {
2266   size_t result = _summary_bytes_used;
2267   return result;
2268 }
2269 
2270 class SumUsedClosure: public HeapRegionClosure {
2271   size_t _used;
2272 public:
2273   SumUsedClosure() : _used(0) {}
2274   bool doHeapRegion(HeapRegion* r) {
2275     if (!r->continuesHumongous()) {
2276       _used += r->used();
2277     }
2278     return false;
2279   }
2280   size_t result() { return _used; }
2281 };
2282 
2283 size_t G1CollectedHeap::recalculate_used() const {
2284   SumUsedClosure blk;
2285   heap_region_iterate(&blk);
2286   return blk.result();
2287 }
2288 
2289 size_t G1CollectedHeap::unsafe_max_alloc() {
2290   if (free_regions() > 0) return HeapRegion::GrainBytes;
2291   // otherwise, is there space in the current allocation region?
2292 
2293   // We need to store the current allocation region in a local variable
2294   // here. The problem is that this method doesn't take any locks and
2295   // there may be other threads which overwrite the current allocation
2296   // region field. attempt_allocation(), for example, sets it to NULL
2297   // and this can happen *after* the NULL check here but before the call
2298   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2299   // to be a problem in the optimized build, since the two loads of the
2300   // current allocation region field are optimized away.
2301   HeapRegion* hr = _mutator_alloc_region.get();
2302   if (hr == NULL) {
2303     return 0;
2304   }
2305   return hr->free();
2306 }
2307 
2308 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2309   switch (cause) {
2310     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2311     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2312     case GCCause::_g1_humongous_allocation: return true;
2313     default:                                return false;
2314   }
2315 }
2316 
2317 #ifndef PRODUCT
2318 void G1CollectedHeap::allocate_dummy_regions() {
2319   // Let's fill up most of the region
2320   size_t word_size = HeapRegion::GrainWords - 1024;
2321   // And as a result the region we'll allocate will be humongous.
2322   guarantee(isHumongous(word_size), "sanity");
2323 
2324   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2325     // Let's use the existing mechanism for the allocation
2326     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2327     if (dummy_obj != NULL) {
2328       MemRegion mr(dummy_obj, word_size);
2329       CollectedHeap::fill_with_object(mr);
2330     } else {
2331       // If we can't allocate once, we probably cannot allocate
2332       // again. Let's get out of the loop.
2333       break;
2334     }
2335   }
2336 }
2337 #endif // !PRODUCT
2338 
2339 void G1CollectedHeap::increment_full_collections_completed(bool concurrent) {
2340   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2341 
2342   // We assume that if concurrent == true, then the caller is a
2343   // concurrent thread that was joined the Suspendible Thread
2344   // Set. If there's ever a cheap way to check this, we should add an
2345   // assert here.
2346 
2347   // We have already incremented _total_full_collections at the start
2348   // of the GC, so total_full_collections() represents how many full
2349   // collections have been started.
2350   unsigned int full_collections_started = total_full_collections();
2351 
2352   // Given that this method is called at the end of a Full GC or of a
2353   // concurrent cycle, and those can be nested (i.e., a Full GC can
2354   // interrupt a concurrent cycle), the number of full collections
2355   // completed should be either one (in the case where there was no
2356   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2357   // behind the number of full collections started.
2358 
2359   // This is the case for the inner caller, i.e. a Full GC.
2360   assert(concurrent ||
2361          (full_collections_started == _full_collections_completed + 1) ||
2362          (full_collections_started == _full_collections_completed + 2),
2363          err_msg("for inner caller (Full GC): full_collections_started = %u "
2364                  "is inconsistent with _full_collections_completed = %u",
2365                  full_collections_started, _full_collections_completed));
2366 
2367   // This is the case for the outer caller, i.e. the concurrent cycle.
2368   assert(!concurrent ||
2369          (full_collections_started == _full_collections_completed + 1),
2370          err_msg("for outer caller (concurrent cycle): "
2371                  "full_collections_started = %u "
2372                  "is inconsistent with _full_collections_completed = %u",
2373                  full_collections_started, _full_collections_completed));
2374 
2375   _full_collections_completed += 1;
2376 
2377   // We need to clear the "in_progress" flag in the CM thread before
2378   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2379   // is set) so that if a waiter requests another System.gc() it doesn't
2380   // incorrectly see that a marking cyle is still in progress.
2381   if (concurrent) {
2382     _cmThread->clear_in_progress();
2383   }
2384 
2385   // This notify_all() will ensure that a thread that called
2386   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2387   // and it's waiting for a full GC to finish will be woken up. It is
2388   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2389   FullGCCount_lock->notify_all();
2390 }
2391 
2392 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2393   assert_at_safepoint(true /* should_be_vm_thread */);
2394   GCCauseSetter gcs(this, cause);
2395   switch (cause) {
2396     case GCCause::_heap_inspection:
2397     case GCCause::_heap_dump: {
2398       HandleMark hm;
2399       do_full_collection(false);         // don't clear all soft refs
2400       break;
2401     }
2402     default: // XXX FIX ME
2403       ShouldNotReachHere(); // Unexpected use of this function
2404   }
2405 }
2406 
2407 void G1CollectedHeap::collect(GCCause::Cause cause) {
2408   assert_heap_not_locked();
2409 
2410   unsigned int gc_count_before;
2411   unsigned int full_gc_count_before;
2412   bool retry_gc;
2413 
2414   do {
2415     retry_gc = false;
2416 
2417     {
2418       MutexLocker ml(Heap_lock);
2419 
2420       // Read the GC count while holding the Heap_lock
2421       gc_count_before = total_collections();
2422       full_gc_count_before = total_full_collections();
2423     }
2424 
2425     if (should_do_concurrent_full_gc(cause)) {
2426       // Schedule an initial-mark evacuation pause that will start a
2427       // concurrent cycle. We're setting word_size to 0 which means that
2428       // we are not requesting a post-GC allocation.
2429       VM_G1IncCollectionPause op(gc_count_before,
2430                                  0,     /* word_size */
2431                                  true,  /* should_initiate_conc_mark */
2432                                  g1_policy()->max_pause_time_ms(),
2433                                  cause);
2434 
2435       VMThread::execute(&op);
2436       if (!op.pause_succeeded()) {
2437         if (full_gc_count_before == total_full_collections()) {
2438           retry_gc = op.should_retry_gc();
2439         } else {
2440           // A Full GC happened while we were trying to schedule the
2441           // initial-mark GC. No point in starting a new cycle given
2442           // that the whole heap was collected anyway.
2443         }
2444 
2445         if (retry_gc) {
2446           if (GC_locker::is_active_and_needs_gc()) {
2447             GC_locker::stall_until_clear();
2448           }
2449         }
2450       }
2451     } else {
2452       if (cause == GCCause::_gc_locker
2453           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2454 
2455         // Schedule a standard evacuation pause. We're setting word_size
2456         // to 0 which means that we are not requesting a post-GC allocation.
2457         VM_G1IncCollectionPause op(gc_count_before,
2458                                    0,     /* word_size */
2459                                    false, /* should_initiate_conc_mark */
2460                                    g1_policy()->max_pause_time_ms(),
2461                                    cause);
2462         VMThread::execute(&op);
2463       } else {
2464         // Schedule a Full GC.
2465         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2466         VMThread::execute(&op);
2467       }
2468     }
2469   } while (retry_gc);
2470 }
2471 
2472 bool G1CollectedHeap::is_in(const void* p) const {
2473   if (_g1_committed.contains(p)) {
2474     // Given that we know that p is in the committed space,
2475     // heap_region_containing_raw() should successfully
2476     // return the containing region.
2477     HeapRegion* hr = heap_region_containing_raw(p);
2478     return hr->is_in(p);
2479   } else {
2480     return _perm_gen->as_gen()->is_in(p);
2481   }
2482 }
2483 
2484 // Iteration functions.
2485 
2486 // Iterates an OopClosure over all ref-containing fields of objects
2487 // within a HeapRegion.
2488 
2489 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2490   MemRegion _mr;
2491   OopClosure* _cl;
2492 public:
2493   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2494     : _mr(mr), _cl(cl) {}
2495   bool doHeapRegion(HeapRegion* r) {
2496     if (! r->continuesHumongous()) {
2497       r->oop_iterate(_cl);
2498     }
2499     return false;
2500   }
2501 };
2502 
2503 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2504   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2505   heap_region_iterate(&blk);
2506   if (do_perm) {
2507     perm_gen()->oop_iterate(cl);
2508   }
2509 }
2510 
2511 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2512   IterateOopClosureRegionClosure blk(mr, cl);
2513   heap_region_iterate(&blk);
2514   if (do_perm) {
2515     perm_gen()->oop_iterate(cl);
2516   }
2517 }
2518 
2519 // Iterates an ObjectClosure over all objects within a HeapRegion.
2520 
2521 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2522   ObjectClosure* _cl;
2523 public:
2524   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2525   bool doHeapRegion(HeapRegion* r) {
2526     if (! r->continuesHumongous()) {
2527       r->object_iterate(_cl);
2528     }
2529     return false;
2530   }
2531 };
2532 
2533 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2534   IterateObjectClosureRegionClosure blk(cl);
2535   heap_region_iterate(&blk);
2536   if (do_perm) {
2537     perm_gen()->object_iterate(cl);
2538   }
2539 }
2540 
2541 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2542   // FIXME: is this right?
2543   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2544 }
2545 
2546 // Calls a SpaceClosure on a HeapRegion.
2547 
2548 class SpaceClosureRegionClosure: public HeapRegionClosure {
2549   SpaceClosure* _cl;
2550 public:
2551   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2552   bool doHeapRegion(HeapRegion* r) {
2553     _cl->do_space(r);
2554     return false;
2555   }
2556 };
2557 
2558 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2559   SpaceClosureRegionClosure blk(cl);
2560   heap_region_iterate(&blk);
2561 }
2562 
2563 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2564   _hrs.iterate(cl);
2565 }
2566 
2567 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
2568                                                HeapRegionClosure* cl) const {
2569   _hrs.iterate_from(r, cl);
2570 }
2571 
2572 void
2573 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2574                                                  uint worker,
2575                                                  uint no_of_par_workers,
2576                                                  jint claim_value) {
2577   const uint regions = n_regions();
2578   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2579                              no_of_par_workers :
2580                              1);
2581   assert(UseDynamicNumberOfGCThreads ||
2582          no_of_par_workers == workers()->total_workers(),
2583          "Non dynamic should use fixed number of workers");
2584   // try to spread out the starting points of the workers
2585   const uint start_index = regions / max_workers * worker;
2586 
2587   // each worker will actually look at all regions
2588   for (uint count = 0; count < regions; ++count) {
2589     const uint index = (start_index + count) % regions;
2590     assert(0 <= index && index < regions, "sanity");
2591     HeapRegion* r = region_at(index);
2592     // we'll ignore "continues humongous" regions (we'll process them
2593     // when we come across their corresponding "start humongous"
2594     // region) and regions already claimed
2595     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2596       continue;
2597     }
2598     // OK, try to claim it
2599     if (r->claimHeapRegion(claim_value)) {
2600       // success!
2601       assert(!r->continuesHumongous(), "sanity");
2602       if (r->startsHumongous()) {
2603         // If the region is "starts humongous" we'll iterate over its
2604         // "continues humongous" first; in fact we'll do them
2605         // first. The order is important. In on case, calling the
2606         // closure on the "starts humongous" region might de-allocate
2607         // and clear all its "continues humongous" regions and, as a
2608         // result, we might end up processing them twice. So, we'll do
2609         // them first (notice: most closures will ignore them anyway) and
2610         // then we'll do the "starts humongous" region.
2611         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2612           HeapRegion* chr = region_at(ch_index);
2613 
2614           // if the region has already been claimed or it's not
2615           // "continues humongous" we're done
2616           if (chr->claim_value() == claim_value ||
2617               !chr->continuesHumongous()) {
2618             break;
2619           }
2620 
2621           // Noone should have claimed it directly. We can given
2622           // that we claimed its "starts humongous" region.
2623           assert(chr->claim_value() != claim_value, "sanity");
2624           assert(chr->humongous_start_region() == r, "sanity");
2625 
2626           if (chr->claimHeapRegion(claim_value)) {
2627             // we should always be able to claim it; noone else should
2628             // be trying to claim this region
2629 
2630             bool res2 = cl->doHeapRegion(chr);
2631             assert(!res2, "Should not abort");
2632 
2633             // Right now, this holds (i.e., no closure that actually
2634             // does something with "continues humongous" regions
2635             // clears them). We might have to weaken it in the future,
2636             // but let's leave these two asserts here for extra safety.
2637             assert(chr->continuesHumongous(), "should still be the case");
2638             assert(chr->humongous_start_region() == r, "sanity");
2639           } else {
2640             guarantee(false, "we should not reach here");
2641           }
2642         }
2643       }
2644 
2645       assert(!r->continuesHumongous(), "sanity");
2646       bool res = cl->doHeapRegion(r);
2647       assert(!res, "Should not abort");
2648     }
2649   }
2650 }
2651 
2652 class ResetClaimValuesClosure: public HeapRegionClosure {
2653 public:
2654   bool doHeapRegion(HeapRegion* r) {
2655     r->set_claim_value(HeapRegion::InitialClaimValue);
2656     return false;
2657   }
2658 };
2659 
2660 void G1CollectedHeap::reset_heap_region_claim_values() {
2661   ResetClaimValuesClosure blk;
2662   heap_region_iterate(&blk);
2663 }
2664 
2665 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2666   ResetClaimValuesClosure blk;
2667   collection_set_iterate(&blk);
2668 }
2669 
2670 #ifdef ASSERT
2671 // This checks whether all regions in the heap have the correct claim
2672 // value. I also piggy-backed on this a check to ensure that the
2673 // humongous_start_region() information on "continues humongous"
2674 // regions is correct.
2675 
2676 class CheckClaimValuesClosure : public HeapRegionClosure {
2677 private:
2678   jint _claim_value;
2679   uint _failures;
2680   HeapRegion* _sh_region;
2681 
2682 public:
2683   CheckClaimValuesClosure(jint claim_value) :
2684     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2685   bool doHeapRegion(HeapRegion* r) {
2686     if (r->claim_value() != _claim_value) {
2687       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2688                              "claim value = %d, should be %d",
2689                              HR_FORMAT_PARAMS(r),
2690                              r->claim_value(), _claim_value);
2691       ++_failures;
2692     }
2693     if (!r->isHumongous()) {
2694       _sh_region = NULL;
2695     } else if (r->startsHumongous()) {
2696       _sh_region = r;
2697     } else if (r->continuesHumongous()) {
2698       if (r->humongous_start_region() != _sh_region) {
2699         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2700                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2701                                HR_FORMAT_PARAMS(r),
2702                                r->humongous_start_region(),
2703                                _sh_region);
2704         ++_failures;
2705       }
2706     }
2707     return false;
2708   }
2709   uint failures() { return _failures; }
2710 };
2711 
2712 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2713   CheckClaimValuesClosure cl(claim_value);
2714   heap_region_iterate(&cl);
2715   return cl.failures() == 0;
2716 }
2717 
2718 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2719 private:
2720   jint _claim_value;
2721   uint _failures;
2722 
2723 public:
2724   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2725     _claim_value(claim_value), _failures(0) { }
2726 
2727   uint failures() { return _failures; }
2728 
2729   bool doHeapRegion(HeapRegion* hr) {
2730     assert(hr->in_collection_set(), "how?");
2731     assert(!hr->isHumongous(), "H-region in CSet");
2732     if (hr->claim_value() != _claim_value) {
2733       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2734                              "claim value = %d, should be %d",
2735                              HR_FORMAT_PARAMS(hr),
2736                              hr->claim_value(), _claim_value);
2737       _failures += 1;
2738     }
2739     return false;
2740   }
2741 };
2742 
2743 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2744   CheckClaimValuesInCSetHRClosure cl(claim_value);
2745   collection_set_iterate(&cl);
2746   return cl.failures() == 0;
2747 }
2748 #endif // ASSERT
2749 
2750 // Clear the cached CSet starting regions and (more importantly)
2751 // the time stamps. Called when we reset the GC time stamp.
2752 void G1CollectedHeap::clear_cset_start_regions() {
2753   assert(_worker_cset_start_region != NULL, "sanity");
2754   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2755 
2756   int n_queues = MAX2((int)ParallelGCThreads, 1);
2757   for (int i = 0; i < n_queues; i++) {
2758     _worker_cset_start_region[i] = NULL;
2759     _worker_cset_start_region_time_stamp[i] = 0;
2760   }
2761 }
2762 
2763 // Given the id of a worker, obtain or calculate a suitable
2764 // starting region for iterating over the current collection set.
2765 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2766   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2767 
2768   HeapRegion* result = NULL;
2769   unsigned gc_time_stamp = get_gc_time_stamp();
2770 
2771   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2772     // Cached starting region for current worker was set
2773     // during the current pause - so it's valid.
2774     // Note: the cached starting heap region may be NULL
2775     // (when the collection set is empty).
2776     result = _worker_cset_start_region[worker_i];
2777     assert(result == NULL || result->in_collection_set(), "sanity");
2778     return result;
2779   }
2780 
2781   // The cached entry was not valid so let's calculate
2782   // a suitable starting heap region for this worker.
2783 
2784   // We want the parallel threads to start their collection
2785   // set iteration at different collection set regions to
2786   // avoid contention.
2787   // If we have:
2788   //          n collection set regions
2789   //          p threads
2790   // Then thread t will start at region floor ((t * n) / p)
2791 
2792   result = g1_policy()->collection_set();
2793   if (G1CollectedHeap::use_parallel_gc_threads()) {
2794     uint cs_size = g1_policy()->cset_region_length();
2795     uint active_workers = workers()->active_workers();
2796     assert(UseDynamicNumberOfGCThreads ||
2797              active_workers == workers()->total_workers(),
2798              "Unless dynamic should use total workers");
2799 
2800     uint end_ind   = (cs_size * worker_i) / active_workers;
2801     uint start_ind = 0;
2802 
2803     if (worker_i > 0 &&
2804         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2805       // Previous workers starting region is valid
2806       // so let's iterate from there
2807       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2808       result = _worker_cset_start_region[worker_i - 1];
2809     }
2810 
2811     for (uint i = start_ind; i < end_ind; i++) {
2812       result = result->next_in_collection_set();
2813     }
2814   }
2815 
2816   // Note: the calculated starting heap region may be NULL
2817   // (when the collection set is empty).
2818   assert(result == NULL || result->in_collection_set(), "sanity");
2819   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2820          "should be updated only once per pause");
2821   _worker_cset_start_region[worker_i] = result;
2822   OrderAccess::storestore();
2823   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2824   return result;
2825 }
2826 
2827 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2828   HeapRegion* r = g1_policy()->collection_set();
2829   while (r != NULL) {
2830     HeapRegion* next = r->next_in_collection_set();
2831     if (cl->doHeapRegion(r)) {
2832       cl->incomplete();
2833       return;
2834     }
2835     r = next;
2836   }
2837 }
2838 
2839 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2840                                                   HeapRegionClosure *cl) {
2841   if (r == NULL) {
2842     // The CSet is empty so there's nothing to do.
2843     return;
2844   }
2845 
2846   assert(r->in_collection_set(),
2847          "Start region must be a member of the collection set.");
2848   HeapRegion* cur = r;
2849   while (cur != NULL) {
2850     HeapRegion* next = cur->next_in_collection_set();
2851     if (cl->doHeapRegion(cur) && false) {
2852       cl->incomplete();
2853       return;
2854     }
2855     cur = next;
2856   }
2857   cur = g1_policy()->collection_set();
2858   while (cur != r) {
2859     HeapRegion* next = cur->next_in_collection_set();
2860     if (cl->doHeapRegion(cur) && false) {
2861       cl->incomplete();
2862       return;
2863     }
2864     cur = next;
2865   }
2866 }
2867 
2868 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2869   return n_regions() > 0 ? region_at(0) : NULL;
2870 }
2871 
2872 
2873 Space* G1CollectedHeap::space_containing(const void* addr) const {
2874   Space* res = heap_region_containing(addr);
2875   if (res == NULL)
2876     res = perm_gen()->space_containing(addr);
2877   return res;
2878 }
2879 
2880 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2881   Space* sp = space_containing(addr);
2882   if (sp != NULL) {
2883     return sp->block_start(addr);
2884   }
2885   return NULL;
2886 }
2887 
2888 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2889   Space* sp = space_containing(addr);
2890   assert(sp != NULL, "block_size of address outside of heap");
2891   return sp->block_size(addr);
2892 }
2893 
2894 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2895   Space* sp = space_containing(addr);
2896   return sp->block_is_obj(addr);
2897 }
2898 
2899 bool G1CollectedHeap::supports_tlab_allocation() const {
2900   return true;
2901 }
2902 
2903 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2904   return HeapRegion::GrainBytes;
2905 }
2906 
2907 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2908   // Return the remaining space in the cur alloc region, but not less than
2909   // the min TLAB size.
2910 
2911   // Also, this value can be at most the humongous object threshold,
2912   // since we can't allow tlabs to grow big enough to accomodate
2913   // humongous objects.
2914 
2915   HeapRegion* hr = _mutator_alloc_region.get();
2916   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2917   if (hr == NULL) {
2918     return max_tlab_size;
2919   } else {
2920     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2921   }
2922 }
2923 
2924 size_t G1CollectedHeap::max_capacity() const {
2925   return _g1_reserved.byte_size();
2926 }
2927 
2928 jlong G1CollectedHeap::millis_since_last_gc() {
2929   // assert(false, "NYI");
2930   return 0;
2931 }
2932 
2933 void G1CollectedHeap::prepare_for_verify() {
2934   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2935     ensure_parsability(false);
2936   }
2937   g1_rem_set()->prepare_for_verify();
2938 }
2939 
2940 class VerifyLivenessOopClosure: public OopClosure {
2941   G1CollectedHeap* _g1h;
2942   VerifyOption _vo;
2943 public:
2944   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2945     _g1h(g1h), _vo(vo)
2946   { }
2947   void do_oop(narrowOop *p) { do_oop_work(p); }
2948   void do_oop(      oop *p) { do_oop_work(p); }
2949 
2950   template <class T> void do_oop_work(T *p) {
2951     oop obj = oopDesc::load_decode_heap_oop(p);
2952     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2953               "Dead object referenced by a not dead object");
2954   }
2955 };
2956 
2957 class VerifyObjsInRegionClosure: public ObjectClosure {
2958 private:
2959   G1CollectedHeap* _g1h;
2960   size_t _live_bytes;
2961   HeapRegion *_hr;
2962   VerifyOption _vo;
2963 public:
2964   // _vo == UsePrevMarking -> use "prev" marking information,
2965   // _vo == UseNextMarking -> use "next" marking information,
2966   // _vo == UseMarkWord    -> use mark word from object header.
2967   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2968     : _live_bytes(0), _hr(hr), _vo(vo) {
2969     _g1h = G1CollectedHeap::heap();
2970   }
2971   void do_object(oop o) {
2972     VerifyLivenessOopClosure isLive(_g1h, _vo);
2973     assert(o != NULL, "Huh?");
2974     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2975       // If the object is alive according to the mark word,
2976       // then verify that the marking information agrees.
2977       // Note we can't verify the contra-positive of the
2978       // above: if the object is dead (according to the mark
2979       // word), it may not be marked, or may have been marked
2980       // but has since became dead, or may have been allocated
2981       // since the last marking.
2982       if (_vo == VerifyOption_G1UseMarkWord) {
2983         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2984       }
2985 
2986       o->oop_iterate(&isLive);
2987       if (!_hr->obj_allocated_since_prev_marking(o)) {
2988         size_t obj_size = o->size();    // Make sure we don't overflow
2989         _live_bytes += (obj_size * HeapWordSize);
2990       }
2991     }
2992   }
2993   size_t live_bytes() { return _live_bytes; }
2994 };
2995 
2996 class PrintObjsInRegionClosure : public ObjectClosure {
2997   HeapRegion *_hr;
2998   G1CollectedHeap *_g1;
2999 public:
3000   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3001     _g1 = G1CollectedHeap::heap();
3002   };
3003 
3004   void do_object(oop o) {
3005     if (o != NULL) {
3006       HeapWord *start = (HeapWord *) o;
3007       size_t word_sz = o->size();
3008       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3009                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3010                           (void*) o, word_sz,
3011                           _g1->isMarkedPrev(o),
3012                           _g1->isMarkedNext(o),
3013                           _hr->obj_allocated_since_prev_marking(o));
3014       HeapWord *end = start + word_sz;
3015       HeapWord *cur;
3016       int *val;
3017       for (cur = start; cur < end; cur++) {
3018         val = (int *) cur;
3019         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3020       }
3021     }
3022   }
3023 };
3024 
3025 class VerifyRegionClosure: public HeapRegionClosure {
3026 private:
3027   bool         _par;
3028   VerifyOption _vo;
3029   bool         _failures;
3030 public:
3031   // _vo == UsePrevMarking -> use "prev" marking information,
3032   // _vo == UseNextMarking -> use "next" marking information,
3033   // _vo == UseMarkWord    -> use mark word from object header.
3034   VerifyRegionClosure(bool par, VerifyOption vo)
3035     : _par(par),
3036       _vo(vo),
3037       _failures(false) {}
3038 
3039   bool failures() {
3040     return _failures;
3041   }
3042 
3043   bool doHeapRegion(HeapRegion* r) {
3044     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
3045               "Should be unclaimed at verify points.");
3046     if (!r->continuesHumongous()) {
3047       bool failures = false;
3048       r->verify(_vo, &failures);
3049       if (failures) {
3050         _failures = true;
3051       } else {
3052         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3053         r->object_iterate(&not_dead_yet_cl);
3054         if (_vo != VerifyOption_G1UseNextMarking) {
3055           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3056             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3057                                    "max_live_bytes "SIZE_FORMAT" "
3058                                    "< calculated "SIZE_FORMAT,
3059                                    r->bottom(), r->end(),
3060                                    r->max_live_bytes(),
3061                                  not_dead_yet_cl.live_bytes());
3062             _failures = true;
3063           }
3064         } else {
3065           // When vo == UseNextMarking we cannot currently do a sanity
3066           // check on the live bytes as the calculation has not been
3067           // finalized yet.
3068         }
3069       }
3070     }
3071     return false; // stop the region iteration if we hit a failure
3072   }
3073 };
3074 
3075 class VerifyRootsClosure: public OopsInGenClosure {
3076 private:
3077   G1CollectedHeap* _g1h;
3078   VerifyOption     _vo;
3079   bool             _failures;
3080 public:
3081   // _vo == UsePrevMarking -> use "prev" marking information,
3082   // _vo == UseNextMarking -> use "next" marking information,
3083   // _vo == UseMarkWord    -> use mark word from object header.
3084   VerifyRootsClosure(VerifyOption vo) :
3085     _g1h(G1CollectedHeap::heap()),
3086     _vo(vo),
3087     _failures(false) { }
3088 
3089   bool failures() { return _failures; }
3090 
3091   template <class T> void do_oop_nv(T* p) {
3092     T heap_oop = oopDesc::load_heap_oop(p);
3093     if (!oopDesc::is_null(heap_oop)) {
3094       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3095       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3096         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3097                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3098         if (_vo == VerifyOption_G1UseMarkWord) {
3099           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3100         }
3101         obj->print_on(gclog_or_tty);
3102         _failures = true;
3103       }
3104     }
3105   }
3106 
3107   void do_oop(oop* p)       { do_oop_nv(p); }
3108   void do_oop(narrowOop* p) { do_oop_nv(p); }
3109 };
3110 
3111 // This is the task used for parallel heap verification.
3112 
3113 class G1ParVerifyTask: public AbstractGangTask {
3114 private:
3115   G1CollectedHeap* _g1h;
3116   VerifyOption     _vo;
3117   bool             _failures;
3118 
3119 public:
3120   // _vo == UsePrevMarking -> use "prev" marking information,
3121   // _vo == UseNextMarking -> use "next" marking information,
3122   // _vo == UseMarkWord    -> use mark word from object header.
3123   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3124     AbstractGangTask("Parallel verify task"),
3125     _g1h(g1h),
3126     _vo(vo),
3127     _failures(false) { }
3128 
3129   bool failures() {
3130     return _failures;
3131   }
3132 
3133   void work(uint worker_id) {
3134     HandleMark hm;
3135     VerifyRegionClosure blk(true, _vo);
3136     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3137                                           _g1h->workers()->active_workers(),
3138                                           HeapRegion::ParVerifyClaimValue);
3139     if (blk.failures()) {
3140       _failures = true;
3141     }
3142   }
3143 };
3144 
3145 void G1CollectedHeap::verify(bool silent) {
3146   verify(silent, VerifyOption_G1UsePrevMarking);
3147 }
3148 
3149 void G1CollectedHeap::verify(bool silent,
3150                              VerifyOption vo) {
3151   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3152     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3153     VerifyRootsClosure rootsCl(vo);
3154 
3155     assert(Thread::current()->is_VM_thread(),
3156       "Expected to be executed serially by the VM thread at this point");
3157 
3158     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3159 
3160     // We apply the relevant closures to all the oops in the
3161     // system dictionary, the string table and the code cache.
3162     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3163 
3164     process_strong_roots(true,      // activate StrongRootsScope
3165                          true,      // we set "collecting perm gen" to true,
3166                                     // so we don't reset the dirty cards in the perm gen.
3167                          ScanningOption(so),  // roots scanning options
3168                          &rootsCl,
3169                          &blobsCl,
3170                          &rootsCl);
3171 
3172     // If we're verifying after the marking phase of a Full GC then we can't
3173     // treat the perm gen as roots into the G1 heap. Some of the objects in
3174     // the perm gen may be dead and hence not marked. If one of these dead
3175     // objects is considered to be a root then we may end up with a false
3176     // "Root location <x> points to dead ob <y>" failure.
3177     if (vo != VerifyOption_G1UseMarkWord) {
3178       // Since we used "collecting_perm_gen" == true above, we will not have
3179       // checked the refs from perm into the G1-collected heap. We check those
3180       // references explicitly below. Whether the relevant cards are dirty
3181       // is checked further below in the rem set verification.
3182       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3183       perm_gen()->oop_iterate(&rootsCl);
3184     }
3185     bool failures = rootsCl.failures();
3186 
3187     if (vo != VerifyOption_G1UseMarkWord) {
3188       // If we're verifying during a full GC then the region sets
3189       // will have been torn down at the start of the GC. Therefore
3190       // verifying the region sets will fail. So we only verify
3191       // the region sets when not in a full GC.
3192       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3193       verify_region_sets();
3194     }
3195 
3196     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3197     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3198       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3199              "sanity check");
3200 
3201       G1ParVerifyTask task(this, vo);
3202       assert(UseDynamicNumberOfGCThreads ||
3203         workers()->active_workers() == workers()->total_workers(),
3204         "If not dynamic should be using all the workers");
3205       int n_workers = workers()->active_workers();
3206       set_par_threads(n_workers);
3207       workers()->run_task(&task);
3208       set_par_threads(0);
3209       if (task.failures()) {
3210         failures = true;
3211       }
3212 
3213       // Checks that the expected amount of parallel work was done.
3214       // The implication is that n_workers is > 0.
3215       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3216              "sanity check");
3217 
3218       reset_heap_region_claim_values();
3219 
3220       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3221              "sanity check");
3222     } else {
3223       VerifyRegionClosure blk(false, vo);
3224       heap_region_iterate(&blk);
3225       if (blk.failures()) {
3226         failures = true;
3227       }
3228     }
3229     if (!silent) gclog_or_tty->print("RemSet ");
3230     rem_set()->verify();
3231 
3232     if (failures) {
3233       gclog_or_tty->print_cr("Heap:");
3234       // It helps to have the per-region information in the output to
3235       // help us track down what went wrong. This is why we call
3236       // print_extended_on() instead of print_on().
3237       print_extended_on(gclog_or_tty);
3238       gclog_or_tty->print_cr("");
3239 #ifndef PRODUCT
3240       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3241         concurrent_mark()->print_reachable("at-verification-failure",
3242                                            vo, false /* all */);
3243       }
3244 #endif
3245       gclog_or_tty->flush();
3246     }
3247     guarantee(!failures, "there should not have been any failures");
3248   } else {
3249     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3250   }
3251 }
3252 
3253 class PrintRegionClosure: public HeapRegionClosure {
3254   outputStream* _st;
3255 public:
3256   PrintRegionClosure(outputStream* st) : _st(st) {}
3257   bool doHeapRegion(HeapRegion* r) {
3258     r->print_on(_st);
3259     return false;
3260   }
3261 };
3262 
3263 void G1CollectedHeap::print_on(outputStream* st) const {
3264   st->print(" %-20s", "garbage-first heap");
3265   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3266             capacity()/K, used_unlocked()/K);
3267   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3268             _g1_storage.low_boundary(),
3269             _g1_storage.high(),
3270             _g1_storage.high_boundary());
3271   st->cr();
3272   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3273   uint young_regions = _young_list->length();
3274   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3275             (size_t) young_regions * HeapRegion::GrainBytes / K);
3276   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3277   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3278             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3279   st->cr();
3280   perm()->as_gen()->print_on(st);
3281 }
3282 
3283 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3284   print_on(st);
3285 
3286   // Print the per-region information.
3287   st->cr();
3288   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3289                "HS=humongous(starts), HC=humongous(continues), "
3290                "CS=collection set, F=free, TS=gc time stamp, "
3291                "PTAMS=previous top-at-mark-start, "
3292                "NTAMS=next top-at-mark-start)");
3293   PrintRegionClosure blk(st);
3294   heap_region_iterate(&blk);
3295 }
3296 
3297 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3298   if (G1CollectedHeap::use_parallel_gc_threads()) {
3299     workers()->print_worker_threads_on(st);
3300   }
3301   _cmThread->print_on(st);
3302   st->cr();
3303   _cm->print_worker_threads_on(st);
3304   _cg1r->print_worker_threads_on(st);
3305   st->cr();
3306 }
3307 
3308 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3309   if (G1CollectedHeap::use_parallel_gc_threads()) {
3310     workers()->threads_do(tc);
3311   }
3312   tc->do_thread(_cmThread);
3313   _cg1r->threads_do(tc);
3314 }
3315 
3316 void G1CollectedHeap::print_tracing_info() const {
3317   // We'll overload this to mean "trace GC pause statistics."
3318   if (TraceGen0Time || TraceGen1Time) {
3319     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3320     // to that.
3321     g1_policy()->print_tracing_info();
3322   }
3323   if (G1SummarizeRSetStats) {
3324     g1_rem_set()->print_summary_info();
3325   }
3326   if (G1SummarizeConcMark) {
3327     concurrent_mark()->print_summary_info();
3328   }
3329   g1_policy()->print_yg_surv_rate_info();
3330   SpecializationStats::print();
3331 }
3332 
3333 #ifndef PRODUCT
3334 // Helpful for debugging RSet issues.
3335 
3336 class PrintRSetsClosure : public HeapRegionClosure {
3337 private:
3338   const char* _msg;
3339   size_t _occupied_sum;
3340 
3341 public:
3342   bool doHeapRegion(HeapRegion* r) {
3343     HeapRegionRemSet* hrrs = r->rem_set();
3344     size_t occupied = hrrs->occupied();
3345     _occupied_sum += occupied;
3346 
3347     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3348                            HR_FORMAT_PARAMS(r));
3349     if (occupied == 0) {
3350       gclog_or_tty->print_cr("  RSet is empty");
3351     } else {
3352       hrrs->print();
3353     }
3354     gclog_or_tty->print_cr("----------");
3355     return false;
3356   }
3357 
3358   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3359     gclog_or_tty->cr();
3360     gclog_or_tty->print_cr("========================================");
3361     gclog_or_tty->print_cr(msg);
3362     gclog_or_tty->cr();
3363   }
3364 
3365   ~PrintRSetsClosure() {
3366     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3367     gclog_or_tty->print_cr("========================================");
3368     gclog_or_tty->cr();
3369   }
3370 };
3371 
3372 void G1CollectedHeap::print_cset_rsets() {
3373   PrintRSetsClosure cl("Printing CSet RSets");
3374   collection_set_iterate(&cl);
3375 }
3376 
3377 void G1CollectedHeap::print_all_rsets() {
3378   PrintRSetsClosure cl("Printing All RSets");;
3379   heap_region_iterate(&cl);
3380 }
3381 #endif // PRODUCT
3382 
3383 G1CollectedHeap* G1CollectedHeap::heap() {
3384   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3385          "not a garbage-first heap");
3386   return _g1h;
3387 }
3388 
3389 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3390   // always_do_update_barrier = false;
3391   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3392   // Call allocation profiler
3393   AllocationProfiler::iterate_since_last_gc();
3394   // Fill TLAB's and such
3395   ensure_parsability(true);
3396 }
3397 
3398 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3399   // FIXME: what is this about?
3400   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3401   // is set.
3402   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3403                         "derived pointer present"));
3404   // always_do_update_barrier = true;
3405 
3406   // We have just completed a GC. Update the soft reference
3407   // policy with the new heap occupancy
3408   Universe::update_heap_info_at_gc();
3409 }
3410 
3411 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3412                                                unsigned int gc_count_before,
3413                                                bool* succeeded) {
3414   assert_heap_not_locked_and_not_at_safepoint();
3415   g1_policy()->record_stop_world_start();
3416   VM_G1IncCollectionPause op(gc_count_before,
3417                              word_size,
3418                              false, /* should_initiate_conc_mark */
3419                              g1_policy()->max_pause_time_ms(),
3420                              GCCause::_g1_inc_collection_pause);
3421   VMThread::execute(&op);
3422 
3423   HeapWord* result = op.result();
3424   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3425   assert(result == NULL || ret_succeeded,
3426          "the result should be NULL if the VM did not succeed");
3427   *succeeded = ret_succeeded;
3428 
3429   assert_heap_not_locked();
3430   return result;
3431 }
3432 
3433 void
3434 G1CollectedHeap::doConcurrentMark() {
3435   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3436   if (!_cmThread->in_progress()) {
3437     _cmThread->set_started();
3438     CGC_lock->notify();
3439   }
3440 }
3441 
3442 size_t G1CollectedHeap::pending_card_num() {
3443   size_t extra_cards = 0;
3444   JavaThread *curr = Threads::first();
3445   while (curr != NULL) {
3446     DirtyCardQueue& dcq = curr->dirty_card_queue();
3447     extra_cards += dcq.size();
3448     curr = curr->next();
3449   }
3450   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3451   size_t buffer_size = dcqs.buffer_size();
3452   size_t buffer_num = dcqs.completed_buffers_num();
3453   return buffer_size * buffer_num + extra_cards;
3454 }
3455 
3456 size_t G1CollectedHeap::max_pending_card_num() {
3457   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3458   size_t buffer_size = dcqs.buffer_size();
3459   size_t buffer_num  = dcqs.completed_buffers_num();
3460   int thread_num  = Threads::number_of_threads();
3461   return (buffer_num + thread_num) * buffer_size;
3462 }
3463 
3464 size_t G1CollectedHeap::cards_scanned() {
3465   return g1_rem_set()->cardsScanned();
3466 }
3467 
3468 void
3469 G1CollectedHeap::setup_surviving_young_words() {
3470   assert(_surviving_young_words == NULL, "pre-condition");
3471   uint array_length = g1_policy()->young_cset_region_length();
3472   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length);
3473   if (_surviving_young_words == NULL) {
3474     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3475                           "Not enough space for young surv words summary.");
3476   }
3477   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3478 #ifdef ASSERT
3479   for (uint i = 0;  i < array_length; ++i) {
3480     assert( _surviving_young_words[i] == 0, "memset above" );
3481   }
3482 #endif // !ASSERT
3483 }
3484 
3485 void
3486 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3487   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3488   uint array_length = g1_policy()->young_cset_region_length();
3489   for (uint i = 0; i < array_length; ++i) {
3490     _surviving_young_words[i] += surv_young_words[i];
3491   }
3492 }
3493 
3494 void
3495 G1CollectedHeap::cleanup_surviving_young_words() {
3496   guarantee( _surviving_young_words != NULL, "pre-condition" );
3497   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3498   _surviving_young_words = NULL;
3499 }
3500 
3501 #ifdef ASSERT
3502 class VerifyCSetClosure: public HeapRegionClosure {
3503 public:
3504   bool doHeapRegion(HeapRegion* hr) {
3505     // Here we check that the CSet region's RSet is ready for parallel
3506     // iteration. The fields that we'll verify are only manipulated
3507     // when the region is part of a CSet and is collected. Afterwards,
3508     // we reset these fields when we clear the region's RSet (when the
3509     // region is freed) so they are ready when the region is
3510     // re-allocated. The only exception to this is if there's an
3511     // evacuation failure and instead of freeing the region we leave
3512     // it in the heap. In that case, we reset these fields during
3513     // evacuation failure handling.
3514     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3515 
3516     // Here's a good place to add any other checks we'd like to
3517     // perform on CSet regions.
3518     return false;
3519   }
3520 };
3521 #endif // ASSERT
3522 
3523 #if TASKQUEUE_STATS
3524 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3525   st->print_raw_cr("GC Task Stats");
3526   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3527   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3528 }
3529 
3530 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3531   print_taskqueue_stats_hdr(st);
3532 
3533   TaskQueueStats totals;
3534   const int n = workers() != NULL ? workers()->total_workers() : 1;
3535   for (int i = 0; i < n; ++i) {
3536     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3537     totals += task_queue(i)->stats;
3538   }
3539   st->print_raw("tot "); totals.print(st); st->cr();
3540 
3541   DEBUG_ONLY(totals.verify());
3542 }
3543 
3544 void G1CollectedHeap::reset_taskqueue_stats() {
3545   const int n = workers() != NULL ? workers()->total_workers() : 1;
3546   for (int i = 0; i < n; ++i) {
3547     task_queue(i)->stats.reset();
3548   }
3549 }
3550 #endif // TASKQUEUE_STATS
3551 
3552 bool
3553 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3554   assert_at_safepoint(true /* should_be_vm_thread */);
3555   guarantee(!is_gc_active(), "collection is not reentrant");
3556 
3557   if (GC_locker::check_active_before_gc()) {
3558     return false;
3559   }
3560 
3561   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3562   ResourceMark rm;
3563 
3564   print_heap_before_gc();
3565 
3566   HRSPhaseSetter x(HRSPhaseEvacuation);
3567   verify_region_sets_optional();
3568   verify_dirty_young_regions();
3569 
3570   // This call will decide whether this pause is an initial-mark
3571   // pause. If it is, during_initial_mark_pause() will return true
3572   // for the duration of this pause.
3573   g1_policy()->decide_on_conc_mark_initiation();
3574 
3575   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3576   assert(!g1_policy()->during_initial_mark_pause() ||
3577           g1_policy()->gcs_are_young(), "sanity");
3578 
3579   // We also do not allow mixed GCs during marking.
3580   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3581 
3582   // Record whether this pause is an initial mark. When the current
3583   // thread has completed its logging output and it's safe to signal
3584   // the CM thread, the flag's value in the policy has been reset.
3585   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3586 
3587   // Inner scope for scope based logging, timers, and stats collection
3588   {
3589     if (g1_policy()->during_initial_mark_pause()) {
3590       // We are about to start a marking cycle, so we increment the
3591       // full collection counter.
3592       increment_total_full_collections();
3593     }
3594     // if the log level is "finer" is on, we'll print long statistics information
3595     // in the collector policy code, so let's not print this as the output
3596     // is messy if we do.
3597     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
3598     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3599 
3600     TraceTime t(GCCauseString("GC pause", gc_cause())
3601       .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3602       .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : ""),
3603       G1Log::fine() && !G1Log::finer(),
3604       true, gclog_or_tty);
3605 
3606     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3607     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3608 
3609     // If the secondary_free_list is not empty, append it to the
3610     // free_list. No need to wait for the cleanup operation to finish;
3611     // the region allocation code will check the secondary_free_list
3612     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3613     // set, skip this step so that the region allocation code has to
3614     // get entries from the secondary_free_list.
3615     if (!G1StressConcRegionFreeing) {
3616       append_secondary_free_list_if_not_empty_with_lock();
3617     }
3618 
3619     assert(check_young_list_well_formed(),
3620       "young list should be well formed");
3621 
3622     // Don't dynamically change the number of GC threads this early.  A value of
3623     // 0 is used to indicate serial work.  When parallel work is done,
3624     // it will be set.
3625 
3626     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3627       IsGCActiveMark x;
3628 
3629       gc_prologue(false);
3630       increment_total_collections(false /* full gc */);
3631       increment_gc_time_stamp();
3632 
3633       if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
3634         HandleMark hm;  // Discard invalid handles created during verification
3635         gclog_or_tty->print(" VerifyBeforeGC:");
3636         prepare_for_verify();
3637         Universe::verify(/* silent      */ false,
3638                          /* option      */ VerifyOption_G1UsePrevMarking);
3639       }
3640 
3641       COMPILER2_PRESENT(DerivedPointerTable::clear());
3642 
3643       // Please see comment in g1CollectedHeap.hpp and
3644       // G1CollectedHeap::ref_processing_init() to see how
3645       // reference processing currently works in G1.
3646 
3647       // Enable discovery in the STW reference processor
3648       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3649                                             true /*verify_no_refs*/);
3650 
3651       {
3652         // We want to temporarily turn off discovery by the
3653         // CM ref processor, if necessary, and turn it back on
3654         // on again later if we do. Using a scoped
3655         // NoRefDiscovery object will do this.
3656         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3657 
3658         // Forget the current alloc region (we might even choose it to be part
3659         // of the collection set!).
3660         release_mutator_alloc_region();
3661 
3662         // We should call this after we retire the mutator alloc
3663         // region(s) so that all the ALLOC / RETIRE events are generated
3664         // before the start GC event.
3665         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3666 
3667         // The elapsed time induced by the start time below deliberately elides
3668         // the possible verification above.
3669         double start_time_sec = os::elapsedTime();
3670         size_t start_used_bytes = used();
3671 
3672 #if YOUNG_LIST_VERBOSE
3673         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3674         _young_list->print();
3675         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3676 #endif // YOUNG_LIST_VERBOSE
3677 
3678         g1_policy()->record_collection_pause_start(start_time_sec,
3679                                                    start_used_bytes);
3680 
3681         double scan_wait_start = os::elapsedTime();
3682         // We have to wait until the CM threads finish scanning the
3683         // root regions as it's the only way to ensure that all the
3684         // objects on them have been correctly scanned before we start
3685         // moving them during the GC.
3686         bool waited = _cm->root_regions()->wait_until_scan_finished();
3687         if (waited) {
3688           double scan_wait_end = os::elapsedTime();
3689           double wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3690           g1_policy()->record_root_region_scan_wait_time(wait_time_ms);
3691         }
3692 
3693 #if YOUNG_LIST_VERBOSE
3694         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3695         _young_list->print();
3696 #endif // YOUNG_LIST_VERBOSE
3697 
3698         if (g1_policy()->during_initial_mark_pause()) {
3699           concurrent_mark()->checkpointRootsInitialPre();
3700         }
3701         perm_gen()->save_marks();
3702 
3703 #if YOUNG_LIST_VERBOSE
3704         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3705         _young_list->print();
3706         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3707 #endif // YOUNG_LIST_VERBOSE
3708 
3709         g1_policy()->finalize_cset(target_pause_time_ms);
3710 
3711         _cm->note_start_of_gc();
3712         // We should not verify the per-thread SATB buffers given that
3713         // we have not filtered them yet (we'll do so during the
3714         // GC). We also call this after finalize_cset() to
3715         // ensure that the CSet has been finalized.
3716         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3717                                  true  /* verify_enqueued_buffers */,
3718                                  false /* verify_thread_buffers */,
3719                                  true  /* verify_fingers */);
3720 
3721         if (_hr_printer.is_active()) {
3722           HeapRegion* hr = g1_policy()->collection_set();
3723           while (hr != NULL) {
3724             G1HRPrinter::RegionType type;
3725             if (!hr->is_young()) {
3726               type = G1HRPrinter::Old;
3727             } else if (hr->is_survivor()) {
3728               type = G1HRPrinter::Survivor;
3729             } else {
3730               type = G1HRPrinter::Eden;
3731             }
3732             _hr_printer.cset(hr);
3733             hr = hr->next_in_collection_set();
3734           }
3735         }
3736 
3737 #ifdef ASSERT
3738         VerifyCSetClosure cl;
3739         collection_set_iterate(&cl);
3740 #endif // ASSERT
3741 
3742         setup_surviving_young_words();
3743 
3744         // Initialize the GC alloc regions.
3745         init_gc_alloc_regions();
3746 
3747         // Actually do the work...
3748         evacuate_collection_set();
3749 
3750         // We do this to mainly verify the per-thread SATB buffers
3751         // (which have been filtered by now) since we didn't verify
3752         // them earlier. No point in re-checking the stacks / enqueued
3753         // buffers given that the CSet has not changed since last time
3754         // we checked.
3755         _cm->verify_no_cset_oops(false /* verify_stacks */,
3756                                  false /* verify_enqueued_buffers */,
3757                                  true  /* verify_thread_buffers */,
3758                                  true  /* verify_fingers */);
3759 
3760         free_collection_set(g1_policy()->collection_set());
3761         g1_policy()->clear_collection_set();
3762 
3763         cleanup_surviving_young_words();
3764 
3765         // Start a new incremental collection set for the next pause.
3766         g1_policy()->start_incremental_cset_building();
3767 
3768         // Clear the _cset_fast_test bitmap in anticipation of adding
3769         // regions to the incremental collection set for the next
3770         // evacuation pause.
3771         clear_cset_fast_test();
3772 
3773         _young_list->reset_sampled_info();
3774 
3775         // Don't check the whole heap at this point as the
3776         // GC alloc regions from this pause have been tagged
3777         // as survivors and moved on to the survivor list.
3778         // Survivor regions will fail the !is_young() check.
3779         assert(check_young_list_empty(false /* check_heap */),
3780           "young list should be empty");
3781 
3782 #if YOUNG_LIST_VERBOSE
3783         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3784         _young_list->print();
3785 #endif // YOUNG_LIST_VERBOSE
3786 
3787         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3788                                             _young_list->first_survivor_region(),
3789                                             _young_list->last_survivor_region());
3790 
3791         _young_list->reset_auxilary_lists();
3792 
3793         if (evacuation_failed()) {
3794           _summary_bytes_used = recalculate_used();
3795         } else {
3796           // The "used" of the the collection set have already been subtracted
3797           // when they were freed.  Add in the bytes evacuated.
3798           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3799         }
3800 
3801         if (g1_policy()->during_initial_mark_pause()) {
3802           // We have to do this before we notify the CM threads that
3803           // they can start working to make sure that all the
3804           // appropriate initialization is done on the CM object.
3805           concurrent_mark()->checkpointRootsInitialPost();
3806           set_marking_started();
3807           // Note that we don't actually trigger the CM thread at
3808           // this point. We do that later when we're sure that
3809           // the current thread has completed its logging output.
3810         }
3811 
3812         allocate_dummy_regions();
3813 
3814 #if YOUNG_LIST_VERBOSE
3815         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3816         _young_list->print();
3817         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3818 #endif // YOUNG_LIST_VERBOSE
3819 
3820         init_mutator_alloc_region();
3821 
3822         {
3823           size_t expand_bytes = g1_policy()->expansion_amount();
3824           if (expand_bytes > 0) {
3825             size_t bytes_before = capacity();
3826             // No need for an ergo verbose message here,
3827             // expansion_amount() does this when it returns a value > 0.
3828             if (!expand(expand_bytes)) {
3829               // We failed to expand the heap so let's verify that
3830               // committed/uncommitted amount match the backing store
3831               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
3832               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
3833             }
3834           }
3835         }
3836 
3837         // We redo the verificaiton but now wrt to the new CSet which
3838         // has just got initialized after the previous CSet was freed.
3839         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3840                                  true  /* verify_enqueued_buffers */,
3841                                  true  /* verify_thread_buffers */,
3842                                  true  /* verify_fingers */);
3843         _cm->note_end_of_gc();
3844 
3845         double end_time_sec = os::elapsedTime();
3846         double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
3847         g1_policy()->record_pause_time_ms(pause_time_ms);
3848         int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3849                                 workers()->active_workers() : 1);
3850         g1_policy()->record_collection_pause_end(active_workers);
3851 
3852         MemoryService::track_memory_usage();
3853 
3854         // In prepare_for_verify() below we'll need to scan the deferred
3855         // update buffers to bring the RSets up-to-date if
3856         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3857         // the update buffers we'll probably need to scan cards on the
3858         // regions we just allocated to (i.e., the GC alloc
3859         // regions). However, during the last GC we called
3860         // set_saved_mark() on all the GC alloc regions, so card
3861         // scanning might skip the [saved_mark_word()...top()] area of
3862         // those regions (i.e., the area we allocated objects into
3863         // during the last GC). But it shouldn't. Given that
3864         // saved_mark_word() is conditional on whether the GC time stamp
3865         // on the region is current or not, by incrementing the GC time
3866         // stamp here we invalidate all the GC time stamps on all the
3867         // regions and saved_mark_word() will simply return top() for
3868         // all the regions. This is a nicer way of ensuring this rather
3869         // than iterating over the regions and fixing them. In fact, the
3870         // GC time stamp increment here also ensures that
3871         // saved_mark_word() will return top() between pauses, i.e.,
3872         // during concurrent refinement. So we don't need the
3873         // is_gc_active() check to decided which top to use when
3874         // scanning cards (see CR 7039627).
3875         increment_gc_time_stamp();
3876 
3877         if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
3878           HandleMark hm;  // Discard invalid handles created during verification
3879           gclog_or_tty->print(" VerifyAfterGC:");
3880           prepare_for_verify();
3881           Universe::verify(/* silent      */ false,
3882                            /* option      */ VerifyOption_G1UsePrevMarking);
3883         }
3884 
3885         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3886         ref_processor_stw()->verify_no_references_recorded();
3887 
3888         // CM reference discovery will be re-enabled if necessary.
3889       }
3890 
3891       // We should do this after we potentially expand the heap so
3892       // that all the COMMIT events are generated before the end GC
3893       // event, and after we retire the GC alloc regions so that all
3894       // RETIRE events are generated before the end GC event.
3895       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3896 
3897       // We have to do this after we decide whether to expand the heap or not.
3898       g1_policy()->print_heap_transition();
3899 
3900       if (mark_in_progress()) {
3901         concurrent_mark()->update_g1_committed();
3902       }
3903 
3904 #ifdef TRACESPINNING
3905       ParallelTaskTerminator::print_termination_counts();
3906 #endif
3907 
3908       gc_epilogue(false);
3909     }
3910 
3911     if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
3912       gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
3913       print_tracing_info();
3914       vm_exit(-1);
3915     }
3916   }
3917 
3918   // The closing of the inner scope, immediately above, will complete
3919   // logging at the "fine" level. The record_collection_pause_end() call
3920   // above will complete logging at the "finer" level.
3921   //
3922   // It is not yet to safe, however, to tell the concurrent mark to
3923   // start as we have some optional output below. We don't want the
3924   // output from the concurrent mark thread interfering with this
3925   // logging output either.
3926 
3927   _hrs.verify_optional();
3928   verify_region_sets_optional();
3929 
3930   TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
3931   TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3932 
3933   print_heap_after_gc();
3934   g1mm()->update_sizes();
3935 
3936   if (G1SummarizeRSetStats &&
3937       (G1SummarizeRSetStatsPeriod > 0) &&
3938       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3939     g1_rem_set()->print_summary_info();
3940   }
3941 
3942   // It should now be safe to tell the concurrent mark thread to start
3943   // without its logging output interfering with the logging output
3944   // that came from the pause.
3945 
3946   if (should_start_conc_mark) {
3947     // CAUTION: after the doConcurrentMark() call below,
3948     // the concurrent marking thread(s) could be running
3949     // concurrently with us. Make sure that anything after
3950     // this point does not assume that we are the only GC thread
3951     // running. Note: of course, the actual marking work will
3952     // not start until the safepoint itself is released in
3953     // ConcurrentGCThread::safepoint_desynchronize().
3954     doConcurrentMark();
3955   }
3956 
3957   return true;
3958 }
3959 
3960 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
3961 {
3962   size_t gclab_word_size;
3963   switch (purpose) {
3964     case GCAllocForSurvived:
3965       gclab_word_size = YoungPLABSize;
3966       break;
3967     case GCAllocForTenured:
3968       gclab_word_size = OldPLABSize;
3969       break;
3970     default:
3971       assert(false, "unknown GCAllocPurpose");
3972       gclab_word_size = OldPLABSize;
3973       break;
3974   }
3975   return gclab_word_size;
3976 }
3977 
3978 void G1CollectedHeap::init_mutator_alloc_region() {
3979   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
3980   _mutator_alloc_region.init();
3981 }
3982 
3983 void G1CollectedHeap::release_mutator_alloc_region() {
3984   _mutator_alloc_region.release();
3985   assert(_mutator_alloc_region.get() == NULL, "post-condition");
3986 }
3987 
3988 void G1CollectedHeap::init_gc_alloc_regions() {
3989   assert_at_safepoint(true /* should_be_vm_thread */);
3990 
3991   _survivor_gc_alloc_region.init();
3992   _old_gc_alloc_region.init();
3993   HeapRegion* retained_region = _retained_old_gc_alloc_region;
3994   _retained_old_gc_alloc_region = NULL;
3995 
3996   // We will discard the current GC alloc region if:
3997   // a) it's in the collection set (it can happen!),
3998   // b) it's already full (no point in using it),
3999   // c) it's empty (this means that it was emptied during
4000   // a cleanup and it should be on the free list now), or
4001   // d) it's humongous (this means that it was emptied
4002   // during a cleanup and was added to the free list, but
4003   // has been subseqently used to allocate a humongous
4004   // object that may be less than the region size).
4005   if (retained_region != NULL &&
4006       !retained_region->in_collection_set() &&
4007       !(retained_region->top() == retained_region->end()) &&
4008       !retained_region->is_empty() &&
4009       !retained_region->isHumongous()) {
4010     retained_region->set_saved_mark();
4011     // The retained region was added to the old region set when it was
4012     // retired. We have to remove it now, since we don't allow regions
4013     // we allocate to in the region sets. We'll re-add it later, when
4014     // it's retired again.
4015     _old_set.remove(retained_region);
4016     bool during_im = g1_policy()->during_initial_mark_pause();
4017     retained_region->note_start_of_copying(during_im);
4018     _old_gc_alloc_region.set(retained_region);
4019     _hr_printer.reuse(retained_region);
4020   }
4021 }
4022 
4023 void G1CollectedHeap::release_gc_alloc_regions() {
4024   _survivor_gc_alloc_region.release();
4025   // If we have an old GC alloc region to release, we'll save it in
4026   // _retained_old_gc_alloc_region. If we don't
4027   // _retained_old_gc_alloc_region will become NULL. This is what we
4028   // want either way so no reason to check explicitly for either
4029   // condition.
4030   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4031 }
4032 
4033 void G1CollectedHeap::abandon_gc_alloc_regions() {
4034   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4035   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4036   _retained_old_gc_alloc_region = NULL;
4037 }
4038 
4039 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4040   _drain_in_progress = false;
4041   set_evac_failure_closure(cl);
4042   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4043 }
4044 
4045 void G1CollectedHeap::finalize_for_evac_failure() {
4046   assert(_evac_failure_scan_stack != NULL &&
4047          _evac_failure_scan_stack->length() == 0,
4048          "Postcondition");
4049   assert(!_drain_in_progress, "Postcondition");
4050   delete _evac_failure_scan_stack;
4051   _evac_failure_scan_stack = NULL;
4052 }
4053 
4054 void G1CollectedHeap::remove_self_forwarding_pointers() {
4055   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4056 
4057   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4058 
4059   if (G1CollectedHeap::use_parallel_gc_threads()) {
4060     set_par_threads();
4061     workers()->run_task(&rsfp_task);
4062     set_par_threads(0);
4063   } else {
4064     rsfp_task.work(0);
4065   }
4066 
4067   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4068 
4069   // Reset the claim values in the regions in the collection set.
4070   reset_cset_heap_region_claim_values();
4071 
4072   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4073 
4074   // Now restore saved marks, if any.
4075   if (_objs_with_preserved_marks != NULL) {
4076     assert(_preserved_marks_of_objs != NULL, "Both or none.");
4077     guarantee(_objs_with_preserved_marks->length() ==
4078               _preserved_marks_of_objs->length(), "Both or none.");
4079     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
4080       oop obj   = _objs_with_preserved_marks->at(i);
4081       markOop m = _preserved_marks_of_objs->at(i);
4082       obj->set_mark(m);
4083     }
4084 
4085     // Delete the preserved marks growable arrays (allocated on the C heap).
4086     delete _objs_with_preserved_marks;
4087     delete _preserved_marks_of_objs;
4088     _objs_with_preserved_marks = NULL;
4089     _preserved_marks_of_objs = NULL;
4090   }
4091 }
4092 
4093 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4094   _evac_failure_scan_stack->push(obj);
4095 }
4096 
4097 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4098   assert(_evac_failure_scan_stack != NULL, "precondition");
4099 
4100   while (_evac_failure_scan_stack->length() > 0) {
4101      oop obj = _evac_failure_scan_stack->pop();
4102      _evac_failure_closure->set_region(heap_region_containing(obj));
4103      obj->oop_iterate_backwards(_evac_failure_closure);
4104   }
4105 }
4106 
4107 oop
4108 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4109                                                oop old) {
4110   assert(obj_in_cs(old),
4111          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4112                  (HeapWord*) old));
4113   markOop m = old->mark();
4114   oop forward_ptr = old->forward_to_atomic(old);
4115   if (forward_ptr == NULL) {
4116     // Forward-to-self succeeded.
4117 
4118     if (_evac_failure_closure != cl) {
4119       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4120       assert(!_drain_in_progress,
4121              "Should only be true while someone holds the lock.");
4122       // Set the global evac-failure closure to the current thread's.
4123       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4124       set_evac_failure_closure(cl);
4125       // Now do the common part.
4126       handle_evacuation_failure_common(old, m);
4127       // Reset to NULL.
4128       set_evac_failure_closure(NULL);
4129     } else {
4130       // The lock is already held, and this is recursive.
4131       assert(_drain_in_progress, "This should only be the recursive case.");
4132       handle_evacuation_failure_common(old, m);
4133     }
4134     return old;
4135   } else {
4136     // Forward-to-self failed. Either someone else managed to allocate
4137     // space for this object (old != forward_ptr) or they beat us in
4138     // self-forwarding it (old == forward_ptr).
4139     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4140            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4141                    "should not be in the CSet",
4142                    (HeapWord*) old, (HeapWord*) forward_ptr));
4143     return forward_ptr;
4144   }
4145 }
4146 
4147 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4148   set_evacuation_failed(true);
4149 
4150   preserve_mark_if_necessary(old, m);
4151 
4152   HeapRegion* r = heap_region_containing(old);
4153   if (!r->evacuation_failed()) {
4154     r->set_evacuation_failed(true);
4155     _hr_printer.evac_failure(r);
4156   }
4157 
4158   push_on_evac_failure_scan_stack(old);
4159 
4160   if (!_drain_in_progress) {
4161     // prevent recursion in copy_to_survivor_space()
4162     _drain_in_progress = true;
4163     drain_evac_failure_scan_stack();
4164     _drain_in_progress = false;
4165   }
4166 }
4167 
4168 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4169   assert(evacuation_failed(), "Oversaving!");
4170   // We want to call the "for_promotion_failure" version only in the
4171   // case of a promotion failure.
4172   if (m->must_be_preserved_for_promotion_failure(obj)) {
4173     if (_objs_with_preserved_marks == NULL) {
4174       assert(_preserved_marks_of_objs == NULL, "Both or none.");
4175       _objs_with_preserved_marks =
4176         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
4177       _preserved_marks_of_objs =
4178         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
4179     }
4180     _objs_with_preserved_marks->push(obj);
4181     _preserved_marks_of_objs->push(m);
4182   }
4183 }
4184 
4185 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4186                                                   size_t word_size) {
4187   if (purpose == GCAllocForSurvived) {
4188     HeapWord* result = survivor_attempt_allocation(word_size);
4189     if (result != NULL) {
4190       return result;
4191     } else {
4192       // Let's try to allocate in the old gen in case we can fit the
4193       // object there.
4194       return old_attempt_allocation(word_size);
4195     }
4196   } else {
4197     assert(purpose ==  GCAllocForTenured, "sanity");
4198     HeapWord* result = old_attempt_allocation(word_size);
4199     if (result != NULL) {
4200       return result;
4201     } else {
4202       // Let's try to allocate in the survivors in case we can fit the
4203       // object there.
4204       return survivor_attempt_allocation(word_size);
4205     }
4206   }
4207 
4208   ShouldNotReachHere();
4209   // Trying to keep some compilers happy.
4210   return NULL;
4211 }
4212 
4213 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4214   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4215 
4216 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4217   : _g1h(g1h),
4218     _refs(g1h->task_queue(queue_num)),
4219     _dcq(&g1h->dirty_card_queue_set()),
4220     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4221     _g1_rem(g1h->g1_rem_set()),
4222     _hash_seed(17), _queue_num(queue_num),
4223     _term_attempts(0),
4224     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4225     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4226     _age_table(false),
4227     _strong_roots_time(0), _term_time(0),
4228     _alloc_buffer_waste(0), _undo_waste(0) {
4229   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4230   // we "sacrifice" entry 0 to keep track of surviving bytes for
4231   // non-young regions (where the age is -1)
4232   // We also add a few elements at the beginning and at the end in
4233   // an attempt to eliminate cache contention
4234   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4235   uint array_length = PADDING_ELEM_NUM +
4236                       real_length +
4237                       PADDING_ELEM_NUM;
4238   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
4239   if (_surviving_young_words_base == NULL)
4240     vm_exit_out_of_memory(array_length * sizeof(size_t),
4241                           "Not enough space for young surv histo.");
4242   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4243   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4244 
4245   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4246   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4247 
4248   _start = os::elapsedTime();
4249 }
4250 
4251 void
4252 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4253 {
4254   st->print_raw_cr("GC Termination Stats");
4255   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4256                    " ------waste (KiB)------");
4257   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4258                    "  total   alloc    undo");
4259   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4260                    " ------- ------- -------");
4261 }
4262 
4263 void
4264 G1ParScanThreadState::print_termination_stats(int i,
4265                                               outputStream* const st) const
4266 {
4267   const double elapsed_ms = elapsed_time() * 1000.0;
4268   const double s_roots_ms = strong_roots_time() * 1000.0;
4269   const double term_ms    = term_time() * 1000.0;
4270   st->print_cr("%3d %9.2f %9.2f %6.2f "
4271                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4272                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4273                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4274                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4275                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4276                alloc_buffer_waste() * HeapWordSize / K,
4277                undo_waste() * HeapWordSize / K);
4278 }
4279 
4280 #ifdef ASSERT
4281 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4282   assert(ref != NULL, "invariant");
4283   assert(UseCompressedOops, "sanity");
4284   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4285   oop p = oopDesc::load_decode_heap_oop(ref);
4286   assert(_g1h->is_in_g1_reserved(p),
4287          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4288   return true;
4289 }
4290 
4291 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4292   assert(ref != NULL, "invariant");
4293   if (has_partial_array_mask(ref)) {
4294     // Must be in the collection set--it's already been copied.
4295     oop p = clear_partial_array_mask(ref);
4296     assert(_g1h->obj_in_cs(p),
4297            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4298   } else {
4299     oop p = oopDesc::load_decode_heap_oop(ref);
4300     assert(_g1h->is_in_g1_reserved(p),
4301            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4302   }
4303   return true;
4304 }
4305 
4306 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4307   if (ref.is_narrow()) {
4308     return verify_ref((narrowOop*) ref);
4309   } else {
4310     return verify_ref((oop*) ref);
4311   }
4312 }
4313 #endif // ASSERT
4314 
4315 void G1ParScanThreadState::trim_queue() {
4316   assert(_evac_cl != NULL, "not set");
4317   assert(_evac_failure_cl != NULL, "not set");
4318   assert(_partial_scan_cl != NULL, "not set");
4319 
4320   StarTask ref;
4321   do {
4322     // Drain the overflow stack first, so other threads can steal.
4323     while (refs()->pop_overflow(ref)) {
4324       deal_with_reference(ref);
4325     }
4326 
4327     while (refs()->pop_local(ref)) {
4328       deal_with_reference(ref);
4329     }
4330   } while (!refs()->is_empty());
4331 }
4332 
4333 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4334                                      G1ParScanThreadState* par_scan_state) :
4335   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4336   _par_scan_state(par_scan_state),
4337   _worker_id(par_scan_state->queue_num()),
4338   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4339   _mark_in_progress(_g1->mark_in_progress()) { }
4340 
4341 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4342 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4343 #ifdef ASSERT
4344   HeapRegion* hr = _g1->heap_region_containing(obj);
4345   assert(hr != NULL, "sanity");
4346   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4347 #endif // ASSERT
4348 
4349   // We know that the object is not moving so it's safe to read its size.
4350   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4351 }
4352 
4353 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4354 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4355   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4356 #ifdef ASSERT
4357   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4358   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4359   assert(from_obj != to_obj, "should not be self-forwarded");
4360 
4361   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4362   assert(from_hr != NULL, "sanity");
4363   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4364 
4365   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4366   assert(to_hr != NULL, "sanity");
4367   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4368 #endif // ASSERT
4369 
4370   // The object might be in the process of being copied by another
4371   // worker so we cannot trust that its to-space image is
4372   // well-formed. So we have to read its size from its from-space
4373   // image which we know should not be changing.
4374   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4375 }
4376 
4377 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4378 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4379   ::copy_to_survivor_space(oop old) {
4380   size_t word_sz = old->size();
4381   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4382   // +1 to make the -1 indexes valid...
4383   int       young_index = from_region->young_index_in_cset()+1;
4384   assert( (from_region->is_young() && young_index >  0) ||
4385          (!from_region->is_young() && young_index == 0), "invariant" );
4386   G1CollectorPolicy* g1p = _g1->g1_policy();
4387   markOop m = old->mark();
4388   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4389                                            : m->age();
4390   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4391                                                              word_sz);
4392   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4393   oop       obj     = oop(obj_ptr);
4394 
4395   if (obj_ptr == NULL) {
4396     // This will either forward-to-self, or detect that someone else has
4397     // installed a forwarding pointer.
4398     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4399     return _g1->handle_evacuation_failure_par(cl, old);
4400   }
4401 
4402   // We're going to allocate linearly, so might as well prefetch ahead.
4403   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4404 
4405   oop forward_ptr = old->forward_to_atomic(obj);
4406   if (forward_ptr == NULL) {
4407     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4408     if (g1p->track_object_age(alloc_purpose)) {
4409       // We could simply do obj->incr_age(). However, this causes a
4410       // performance issue. obj->incr_age() will first check whether
4411       // the object has a displaced mark by checking its mark word;
4412       // getting the mark word from the new location of the object
4413       // stalls. So, given that we already have the mark word and we
4414       // are about to install it anyway, it's better to increase the
4415       // age on the mark word, when the object does not have a
4416       // displaced mark word. We're not expecting many objects to have
4417       // a displaced marked word, so that case is not optimized
4418       // further (it could be...) and we simply call obj->incr_age().
4419 
4420       if (m->has_displaced_mark_helper()) {
4421         // in this case, we have to install the mark word first,
4422         // otherwise obj looks to be forwarded (the old mark word,
4423         // which contains the forward pointer, was copied)
4424         obj->set_mark(m);
4425         obj->incr_age();
4426       } else {
4427         m = m->incr_age();
4428         obj->set_mark(m);
4429       }
4430       _par_scan_state->age_table()->add(obj, word_sz);
4431     } else {
4432       obj->set_mark(m);
4433     }
4434 
4435     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4436     surv_young_words[young_index] += word_sz;
4437 
4438     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4439       // We keep track of the next start index in the length field of
4440       // the to-space object. The actual length can be found in the
4441       // length field of the from-space object.
4442       arrayOop(obj)->set_length(0);
4443       oop* old_p = set_partial_array_mask(old);
4444       _par_scan_state->push_on_queue(old_p);
4445     } else {
4446       // No point in using the slower heap_region_containing() method,
4447       // given that we know obj is in the heap.
4448       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4449       obj->oop_iterate_backwards(&_scanner);
4450     }
4451   } else {
4452     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4453     obj = forward_ptr;
4454   }
4455   return obj;
4456 }
4457 
4458 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4459 template <class T>
4460 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4461 ::do_oop_work(T* p) {
4462   oop obj = oopDesc::load_decode_heap_oop(p);
4463   assert(barrier != G1BarrierRS || obj != NULL,
4464          "Precondition: G1BarrierRS implies obj is non-NULL");
4465 
4466   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4467 
4468   // here the null check is implicit in the cset_fast_test() test
4469   if (_g1->in_cset_fast_test(obj)) {
4470     oop forwardee;
4471     if (obj->is_forwarded()) {
4472       forwardee = obj->forwardee();
4473     } else {
4474       forwardee = copy_to_survivor_space(obj);
4475     }
4476     assert(forwardee != NULL, "forwardee should not be NULL");
4477     oopDesc::encode_store_heap_oop(p, forwardee);
4478     if (do_mark_object && forwardee != obj) {
4479       // If the object is self-forwarded we don't need to explicitly
4480       // mark it, the evacuation failure protocol will do so.
4481       mark_forwarded_object(obj, forwardee);
4482     }
4483 
4484     // When scanning the RS, we only care about objs in CS.
4485     if (barrier == G1BarrierRS) {
4486       _par_scan_state->update_rs(_from, p, _worker_id);
4487     }
4488   } else {
4489     // The object is not in collection set. If we're a root scanning
4490     // closure during an initial mark pause (i.e. do_mark_object will
4491     // be true) then attempt to mark the object.
4492     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4493       mark_object(obj);
4494     }
4495   }
4496 
4497   if (barrier == G1BarrierEvac && obj != NULL) {
4498     _par_scan_state->update_rs(_from, p, _worker_id);
4499   }
4500 
4501   if (do_gen_barrier && obj != NULL) {
4502     par_do_barrier(p);
4503   }
4504 }
4505 
4506 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4507 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4508 
4509 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4510   assert(has_partial_array_mask(p), "invariant");
4511   oop from_obj = clear_partial_array_mask(p);
4512 
4513   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4514   assert(from_obj->is_objArray(), "must be obj array");
4515   objArrayOop from_obj_array = objArrayOop(from_obj);
4516   // The from-space object contains the real length.
4517   int length                 = from_obj_array->length();
4518 
4519   assert(from_obj->is_forwarded(), "must be forwarded");
4520   oop to_obj                 = from_obj->forwardee();
4521   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4522   objArrayOop to_obj_array   = objArrayOop(to_obj);
4523   // We keep track of the next start index in the length field of the
4524   // to-space object.
4525   int next_index             = to_obj_array->length();
4526   assert(0 <= next_index && next_index < length,
4527          err_msg("invariant, next index: %d, length: %d", next_index, length));
4528 
4529   int start                  = next_index;
4530   int end                    = length;
4531   int remainder              = end - start;
4532   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4533   if (remainder > 2 * ParGCArrayScanChunk) {
4534     end = start + ParGCArrayScanChunk;
4535     to_obj_array->set_length(end);
4536     // Push the remainder before we process the range in case another
4537     // worker has run out of things to do and can steal it.
4538     oop* from_obj_p = set_partial_array_mask(from_obj);
4539     _par_scan_state->push_on_queue(from_obj_p);
4540   } else {
4541     assert(length == end, "sanity");
4542     // We'll process the final range for this object. Restore the length
4543     // so that the heap remains parsable in case of evacuation failure.
4544     to_obj_array->set_length(end);
4545   }
4546   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4547   // Process indexes [start,end). It will also process the header
4548   // along with the first chunk (i.e., the chunk with start == 0).
4549   // Note that at this point the length field of to_obj_array is not
4550   // correct given that we are using it to keep track of the next
4551   // start index. oop_iterate_range() (thankfully!) ignores the length
4552   // field and only relies on the start / end parameters.  It does
4553   // however return the size of the object which will be incorrect. So
4554   // we have to ignore it even if we wanted to use it.
4555   to_obj_array->oop_iterate_range(&_scanner, start, end);
4556 }
4557 
4558 class G1ParEvacuateFollowersClosure : public VoidClosure {
4559 protected:
4560   G1CollectedHeap*              _g1h;
4561   G1ParScanThreadState*         _par_scan_state;
4562   RefToScanQueueSet*            _queues;
4563   ParallelTaskTerminator*       _terminator;
4564 
4565   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4566   RefToScanQueueSet*      queues()         { return _queues; }
4567   ParallelTaskTerminator* terminator()     { return _terminator; }
4568 
4569 public:
4570   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4571                                 G1ParScanThreadState* par_scan_state,
4572                                 RefToScanQueueSet* queues,
4573                                 ParallelTaskTerminator* terminator)
4574     : _g1h(g1h), _par_scan_state(par_scan_state),
4575       _queues(queues), _terminator(terminator) {}
4576 
4577   void do_void();
4578 
4579 private:
4580   inline bool offer_termination();
4581 };
4582 
4583 bool G1ParEvacuateFollowersClosure::offer_termination() {
4584   G1ParScanThreadState* const pss = par_scan_state();
4585   pss->start_term_time();
4586   const bool res = terminator()->offer_termination();
4587   pss->end_term_time();
4588   return res;
4589 }
4590 
4591 void G1ParEvacuateFollowersClosure::do_void() {
4592   StarTask stolen_task;
4593   G1ParScanThreadState* const pss = par_scan_state();
4594   pss->trim_queue();
4595 
4596   do {
4597     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4598       assert(pss->verify_task(stolen_task), "sanity");
4599       if (stolen_task.is_narrow()) {
4600         pss->deal_with_reference((narrowOop*) stolen_task);
4601       } else {
4602         pss->deal_with_reference((oop*) stolen_task);
4603       }
4604 
4605       // We've just processed a reference and we might have made
4606       // available new entries on the queues. So we have to make sure
4607       // we drain the queues as necessary.
4608       pss->trim_queue();
4609     }
4610   } while (!offer_termination());
4611 
4612   pss->retire_alloc_buffers();
4613 }
4614 
4615 class G1ParTask : public AbstractGangTask {
4616 protected:
4617   G1CollectedHeap*       _g1h;
4618   RefToScanQueueSet      *_queues;
4619   ParallelTaskTerminator _terminator;
4620   uint _n_workers;
4621 
4622   Mutex _stats_lock;
4623   Mutex* stats_lock() { return &_stats_lock; }
4624 
4625   size_t getNCards() {
4626     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4627       / G1BlockOffsetSharedArray::N_bytes;
4628   }
4629 
4630 public:
4631   G1ParTask(G1CollectedHeap* g1h,
4632             RefToScanQueueSet *task_queues)
4633     : AbstractGangTask("G1 collection"),
4634       _g1h(g1h),
4635       _queues(task_queues),
4636       _terminator(0, _queues),
4637       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4638   {}
4639 
4640   RefToScanQueueSet* queues() { return _queues; }
4641 
4642   RefToScanQueue *work_queue(int i) {
4643     return queues()->queue(i);
4644   }
4645 
4646   ParallelTaskTerminator* terminator() { return &_terminator; }
4647 
4648   virtual void set_for_termination(int active_workers) {
4649     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4650     // in the young space (_par_seq_tasks) in the G1 heap
4651     // for SequentialSubTasksDone.
4652     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4653     // both of which need setting by set_n_termination().
4654     _g1h->SharedHeap::set_n_termination(active_workers);
4655     _g1h->set_n_termination(active_workers);
4656     terminator()->reset_for_reuse(active_workers);
4657     _n_workers = active_workers;
4658   }
4659 
4660   void work(uint worker_id) {
4661     if (worker_id >= _n_workers) return;  // no work needed this round
4662 
4663     double start_time_ms = os::elapsedTime() * 1000.0;
4664     _g1h->g1_policy()->record_gc_worker_start_time(worker_id, start_time_ms);
4665 
4666     {
4667       ResourceMark rm;
4668       HandleMark   hm;
4669 
4670       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4671 
4672       G1ParScanThreadState            pss(_g1h, worker_id);
4673       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4674       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4675       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4676 
4677       pss.set_evac_closure(&scan_evac_cl);
4678       pss.set_evac_failure_closure(&evac_failure_cl);
4679       pss.set_partial_scan_closure(&partial_scan_cl);
4680 
4681       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4682       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4683 
4684       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4685       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4686 
4687       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4688       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4689 
4690       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4691         // We also need to mark copied objects.
4692         scan_root_cl = &scan_mark_root_cl;
4693         scan_perm_cl = &scan_mark_perm_cl;
4694       }
4695 
4696       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4697 
4698       pss.start_strong_roots();
4699       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4700                                     SharedHeap::SO_AllClasses,
4701                                     scan_root_cl,
4702                                     &push_heap_rs_cl,
4703                                     scan_perm_cl,
4704                                     worker_id);
4705       pss.end_strong_roots();
4706 
4707       {
4708         double start = os::elapsedTime();
4709         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4710         evac.do_void();
4711         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4712         double term_ms = pss.term_time()*1000.0;
4713         _g1h->g1_policy()->record_obj_copy_time(worker_id, elapsed_ms-term_ms);
4714         _g1h->g1_policy()->record_termination(worker_id, term_ms, pss.term_attempts());
4715       }
4716       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4717       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4718 
4719       // Clean up any par-expanded rem sets.
4720       HeapRegionRemSet::par_cleanup();
4721 
4722       if (ParallelGCVerbose) {
4723         MutexLocker x(stats_lock());
4724         pss.print_termination_stats(worker_id);
4725       }
4726 
4727       assert(pss.refs()->is_empty(), "should be empty");
4728 
4729       // Close the inner scope so that the ResourceMark and HandleMark
4730       // destructors are executed here and are included as part of the
4731       // "GC Worker Time".
4732     }
4733 
4734     double end_time_ms = os::elapsedTime() * 1000.0;
4735     _g1h->g1_policy()->record_gc_worker_end_time(worker_id, end_time_ms);
4736   }
4737 };
4738 
4739 // *** Common G1 Evacuation Stuff
4740 
4741 // Closures that support the filtering of CodeBlobs scanned during
4742 // external root scanning.
4743 
4744 // Closure applied to reference fields in code blobs (specifically nmethods)
4745 // to determine whether an nmethod contains references that point into
4746 // the collection set. Used as a predicate when walking code roots so
4747 // that only nmethods that point into the collection set are added to the
4748 // 'marked' list.
4749 
4750 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4751 
4752   class G1PointsIntoCSOopClosure : public OopClosure {
4753     G1CollectedHeap* _g1;
4754     bool _points_into_cs;
4755   public:
4756     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4757       _g1(g1), _points_into_cs(false) { }
4758 
4759     bool points_into_cs() const { return _points_into_cs; }
4760 
4761     template <class T>
4762     void do_oop_nv(T* p) {
4763       if (!_points_into_cs) {
4764         T heap_oop = oopDesc::load_heap_oop(p);
4765         if (!oopDesc::is_null(heap_oop) &&
4766             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4767           _points_into_cs = true;
4768         }
4769       }
4770     }
4771 
4772     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4773     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4774   };
4775 
4776   G1CollectedHeap* _g1;
4777 
4778 public:
4779   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4780     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4781 
4782   virtual void do_code_blob(CodeBlob* cb) {
4783     nmethod* nm = cb->as_nmethod_or_null();
4784     if (nm != NULL && !(nm->test_oops_do_mark())) {
4785       G1PointsIntoCSOopClosure predicate_cl(_g1);
4786       nm->oops_do(&predicate_cl);
4787 
4788       if (predicate_cl.points_into_cs()) {
4789         // At least one of the reference fields or the oop relocations
4790         // in the nmethod points into the collection set. We have to
4791         // 'mark' this nmethod.
4792         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
4793         // or MarkingCodeBlobClosure::do_code_blob() change.
4794         if (!nm->test_set_oops_do_mark()) {
4795           do_newly_marked_nmethod(nm);
4796         }
4797       }
4798     }
4799   }
4800 };
4801 
4802 // This method is run in a GC worker.
4803 
4804 void
4805 G1CollectedHeap::
4806 g1_process_strong_roots(bool collecting_perm_gen,
4807                         ScanningOption so,
4808                         OopClosure* scan_non_heap_roots,
4809                         OopsInHeapRegionClosure* scan_rs,
4810                         OopsInGenClosure* scan_perm,
4811                         int worker_i) {
4812 
4813   // First scan the strong roots, including the perm gen.
4814   double ext_roots_start = os::elapsedTime();
4815   double closure_app_time_sec = 0.0;
4816 
4817   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4818   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4819   buf_scan_perm.set_generation(perm_gen());
4820 
4821   // Walk the code cache w/o buffering, because StarTask cannot handle
4822   // unaligned oop locations.
4823   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
4824 
4825   process_strong_roots(false, // no scoping; this is parallel code
4826                        collecting_perm_gen, so,
4827                        &buf_scan_non_heap_roots,
4828                        &eager_scan_code_roots,
4829                        &buf_scan_perm);
4830 
4831   // Now the CM ref_processor roots.
4832   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4833     // We need to treat the discovered reference lists of the
4834     // concurrent mark ref processor as roots and keep entries
4835     // (which are added by the marking threads) on them live
4836     // until they can be processed at the end of marking.
4837     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4838   }
4839 
4840   // Finish up any enqueued closure apps (attributed as object copy time).
4841   buf_scan_non_heap_roots.done();
4842   buf_scan_perm.done();
4843 
4844   double ext_roots_end = os::elapsedTime();
4845 
4846   g1_policy()->reset_obj_copy_time(worker_i);
4847   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
4848                                 buf_scan_non_heap_roots.closure_app_seconds();
4849   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4850 
4851   double ext_root_time_ms =
4852     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4853 
4854   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4855 
4856   // During conc marking we have to filter the per-thread SATB buffers
4857   // to make sure we remove any oops into the CSet (which will show up
4858   // as implicitly live).
4859   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4860     if (mark_in_progress()) {
4861       JavaThread::satb_mark_queue_set().filter_thread_buffers();
4862     }
4863   }
4864   double satb_filtering_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4865   g1_policy()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4866 
4867   // Now scan the complement of the collection set.
4868   if (scan_rs != NULL) {
4869     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4870   }
4871 
4872   _process_strong_tasks->all_tasks_completed();
4873 }
4874 
4875 void
4876 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4877                                        OopClosure* non_root_closure) {
4878   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
4879   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
4880 }
4881 
4882 // Weak Reference Processing support
4883 
4884 // An always "is_alive" closure that is used to preserve referents.
4885 // If the object is non-null then it's alive.  Used in the preservation
4886 // of referent objects that are pointed to by reference objects
4887 // discovered by the CM ref processor.
4888 class G1AlwaysAliveClosure: public BoolObjectClosure {
4889   G1CollectedHeap* _g1;
4890 public:
4891   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4892   void do_object(oop p) { assert(false, "Do not call."); }
4893   bool do_object_b(oop p) {
4894     if (p != NULL) {
4895       return true;
4896     }
4897     return false;
4898   }
4899 };
4900 
4901 bool G1STWIsAliveClosure::do_object_b(oop p) {
4902   // An object is reachable if it is outside the collection set,
4903   // or is inside and copied.
4904   return !_g1->obj_in_cs(p) || p->is_forwarded();
4905 }
4906 
4907 // Non Copying Keep Alive closure
4908 class G1KeepAliveClosure: public OopClosure {
4909   G1CollectedHeap* _g1;
4910 public:
4911   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4912   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4913   void do_oop(      oop* p) {
4914     oop obj = *p;
4915 
4916     if (_g1->obj_in_cs(obj)) {
4917       assert( obj->is_forwarded(), "invariant" );
4918       *p = obj->forwardee();
4919     }
4920   }
4921 };
4922 
4923 // Copying Keep Alive closure - can be called from both
4924 // serial and parallel code as long as different worker
4925 // threads utilize different G1ParScanThreadState instances
4926 // and different queues.
4927 
4928 class G1CopyingKeepAliveClosure: public OopClosure {
4929   G1CollectedHeap*         _g1h;
4930   OopClosure*              _copy_non_heap_obj_cl;
4931   OopsInHeapRegionClosure* _copy_perm_obj_cl;
4932   G1ParScanThreadState*    _par_scan_state;
4933 
4934 public:
4935   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4936                             OopClosure* non_heap_obj_cl,
4937                             OopsInHeapRegionClosure* perm_obj_cl,
4938                             G1ParScanThreadState* pss):
4939     _g1h(g1h),
4940     _copy_non_heap_obj_cl(non_heap_obj_cl),
4941     _copy_perm_obj_cl(perm_obj_cl),
4942     _par_scan_state(pss)
4943   {}
4944 
4945   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4946   virtual void do_oop(      oop* p) { do_oop_work(p); }
4947 
4948   template <class T> void do_oop_work(T* p) {
4949     oop obj = oopDesc::load_decode_heap_oop(p);
4950 
4951     if (_g1h->obj_in_cs(obj)) {
4952       // If the referent object has been forwarded (either copied
4953       // to a new location or to itself in the event of an
4954       // evacuation failure) then we need to update the reference
4955       // field and, if both reference and referent are in the G1
4956       // heap, update the RSet for the referent.
4957       //
4958       // If the referent has not been forwarded then we have to keep
4959       // it alive by policy. Therefore we have copy the referent.
4960       //
4961       // If the reference field is in the G1 heap then we can push
4962       // on the PSS queue. When the queue is drained (after each
4963       // phase of reference processing) the object and it's followers
4964       // will be copied, the reference field set to point to the
4965       // new location, and the RSet updated. Otherwise we need to
4966       // use the the non-heap or perm closures directly to copy
4967       // the refernt object and update the pointer, while avoiding
4968       // updating the RSet.
4969 
4970       if (_g1h->is_in_g1_reserved(p)) {
4971         _par_scan_state->push_on_queue(p);
4972       } else {
4973         // The reference field is not in the G1 heap.
4974         if (_g1h->perm_gen()->is_in(p)) {
4975           _copy_perm_obj_cl->do_oop(p);
4976         } else {
4977           _copy_non_heap_obj_cl->do_oop(p);
4978         }
4979       }
4980     }
4981   }
4982 };
4983 
4984 // Serial drain queue closure. Called as the 'complete_gc'
4985 // closure for each discovered list in some of the
4986 // reference processing phases.
4987 
4988 class G1STWDrainQueueClosure: public VoidClosure {
4989 protected:
4990   G1CollectedHeap* _g1h;
4991   G1ParScanThreadState* _par_scan_state;
4992 
4993   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4994 
4995 public:
4996   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4997     _g1h(g1h),
4998     _par_scan_state(pss)
4999   { }
5000 
5001   void do_void() {
5002     G1ParScanThreadState* const pss = par_scan_state();
5003     pss->trim_queue();
5004   }
5005 };
5006 
5007 // Parallel Reference Processing closures
5008 
5009 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5010 // processing during G1 evacuation pauses.
5011 
5012 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5013 private:
5014   G1CollectedHeap*   _g1h;
5015   RefToScanQueueSet* _queues;
5016   FlexibleWorkGang*  _workers;
5017   int                _active_workers;
5018 
5019 public:
5020   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5021                         FlexibleWorkGang* workers,
5022                         RefToScanQueueSet *task_queues,
5023                         int n_workers) :
5024     _g1h(g1h),
5025     _queues(task_queues),
5026     _workers(workers),
5027     _active_workers(n_workers)
5028   {
5029     assert(n_workers > 0, "shouldn't call this otherwise");
5030   }
5031 
5032   // Executes the given task using concurrent marking worker threads.
5033   virtual void execute(ProcessTask& task);
5034   virtual void execute(EnqueueTask& task);
5035 };
5036 
5037 // Gang task for possibly parallel reference processing
5038 
5039 class G1STWRefProcTaskProxy: public AbstractGangTask {
5040   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5041   ProcessTask&     _proc_task;
5042   G1CollectedHeap* _g1h;
5043   RefToScanQueueSet *_task_queues;
5044   ParallelTaskTerminator* _terminator;
5045 
5046 public:
5047   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5048                      G1CollectedHeap* g1h,
5049                      RefToScanQueueSet *task_queues,
5050                      ParallelTaskTerminator* terminator) :
5051     AbstractGangTask("Process reference objects in parallel"),
5052     _proc_task(proc_task),
5053     _g1h(g1h),
5054     _task_queues(task_queues),
5055     _terminator(terminator)
5056   {}
5057 
5058   virtual void work(uint worker_id) {
5059     // The reference processing task executed by a single worker.
5060     ResourceMark rm;
5061     HandleMark   hm;
5062 
5063     G1STWIsAliveClosure is_alive(_g1h);
5064 
5065     G1ParScanThreadState pss(_g1h, worker_id);
5066 
5067     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5068     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5069     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5070 
5071     pss.set_evac_closure(&scan_evac_cl);
5072     pss.set_evac_failure_closure(&evac_failure_cl);
5073     pss.set_partial_scan_closure(&partial_scan_cl);
5074 
5075     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5076     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5077 
5078     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5079     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5080 
5081     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5082     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5083 
5084     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5085       // We also need to mark copied objects.
5086       copy_non_heap_cl = &copy_mark_non_heap_cl;
5087       copy_perm_cl = &copy_mark_perm_cl;
5088     }
5089 
5090     // Keep alive closure.
5091     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5092 
5093     // Complete GC closure
5094     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5095 
5096     // Call the reference processing task's work routine.
5097     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5098 
5099     // Note we cannot assert that the refs array is empty here as not all
5100     // of the processing tasks (specifically phase2 - pp2_work) execute
5101     // the complete_gc closure (which ordinarily would drain the queue) so
5102     // the queue may not be empty.
5103   }
5104 };
5105 
5106 // Driver routine for parallel reference processing.
5107 // Creates an instance of the ref processing gang
5108 // task and has the worker threads execute it.
5109 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5110   assert(_workers != NULL, "Need parallel worker threads.");
5111 
5112   ParallelTaskTerminator terminator(_active_workers, _queues);
5113   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5114 
5115   _g1h->set_par_threads(_active_workers);
5116   _workers->run_task(&proc_task_proxy);
5117   _g1h->set_par_threads(0);
5118 }
5119 
5120 // Gang task for parallel reference enqueueing.
5121 
5122 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5123   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5124   EnqueueTask& _enq_task;
5125 
5126 public:
5127   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5128     AbstractGangTask("Enqueue reference objects in parallel"),
5129     _enq_task(enq_task)
5130   { }
5131 
5132   virtual void work(uint worker_id) {
5133     _enq_task.work(worker_id);
5134   }
5135 };
5136 
5137 // Driver routine for parallel reference enqueing.
5138 // Creates an instance of the ref enqueueing gang
5139 // task and has the worker threads execute it.
5140 
5141 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5142   assert(_workers != NULL, "Need parallel worker threads.");
5143 
5144   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5145 
5146   _g1h->set_par_threads(_active_workers);
5147   _workers->run_task(&enq_task_proxy);
5148   _g1h->set_par_threads(0);
5149 }
5150 
5151 // End of weak reference support closures
5152 
5153 // Abstract task used to preserve (i.e. copy) any referent objects
5154 // that are in the collection set and are pointed to by reference
5155 // objects discovered by the CM ref processor.
5156 
5157 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5158 protected:
5159   G1CollectedHeap* _g1h;
5160   RefToScanQueueSet      *_queues;
5161   ParallelTaskTerminator _terminator;
5162   uint _n_workers;
5163 
5164 public:
5165   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5166     AbstractGangTask("ParPreserveCMReferents"),
5167     _g1h(g1h),
5168     _queues(task_queues),
5169     _terminator(workers, _queues),
5170     _n_workers(workers)
5171   { }
5172 
5173   void work(uint worker_id) {
5174     ResourceMark rm;
5175     HandleMark   hm;
5176 
5177     G1ParScanThreadState            pss(_g1h, worker_id);
5178     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5179     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5180     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5181 
5182     pss.set_evac_closure(&scan_evac_cl);
5183     pss.set_evac_failure_closure(&evac_failure_cl);
5184     pss.set_partial_scan_closure(&partial_scan_cl);
5185 
5186     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5187 
5188 
5189     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5190     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5191 
5192     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5193     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5194 
5195     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5196     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5197 
5198     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5199       // We also need to mark copied objects.
5200       copy_non_heap_cl = &copy_mark_non_heap_cl;
5201       copy_perm_cl = &copy_mark_perm_cl;
5202     }
5203 
5204     // Is alive closure
5205     G1AlwaysAliveClosure always_alive(_g1h);
5206 
5207     // Copying keep alive closure. Applied to referent objects that need
5208     // to be copied.
5209     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5210 
5211     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5212 
5213     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5214     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5215 
5216     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5217     // So this must be true - but assert just in case someone decides to
5218     // change the worker ids.
5219     assert(0 <= worker_id && worker_id < limit, "sanity");
5220     assert(!rp->discovery_is_atomic(), "check this code");
5221 
5222     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5223     for (uint idx = worker_id; idx < limit; idx += stride) {
5224       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5225 
5226       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5227       while (iter.has_next()) {
5228         // Since discovery is not atomic for the CM ref processor, we
5229         // can see some null referent objects.
5230         iter.load_ptrs(DEBUG_ONLY(true));
5231         oop ref = iter.obj();
5232 
5233         // This will filter nulls.
5234         if (iter.is_referent_alive()) {
5235           iter.make_referent_alive();
5236         }
5237         iter.move_to_next();
5238       }
5239     }
5240 
5241     // Drain the queue - which may cause stealing
5242     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5243     drain_queue.do_void();
5244     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5245     assert(pss.refs()->is_empty(), "should be");
5246   }
5247 };
5248 
5249 // Weak Reference processing during an evacuation pause (part 1).
5250 void G1CollectedHeap::process_discovered_references() {
5251   double ref_proc_start = os::elapsedTime();
5252 
5253   ReferenceProcessor* rp = _ref_processor_stw;
5254   assert(rp->discovery_enabled(), "should have been enabled");
5255 
5256   // Any reference objects, in the collection set, that were 'discovered'
5257   // by the CM ref processor should have already been copied (either by
5258   // applying the external root copy closure to the discovered lists, or
5259   // by following an RSet entry).
5260   //
5261   // But some of the referents, that are in the collection set, that these
5262   // reference objects point to may not have been copied: the STW ref
5263   // processor would have seen that the reference object had already
5264   // been 'discovered' and would have skipped discovering the reference,
5265   // but would not have treated the reference object as a regular oop.
5266   // As a reult the copy closure would not have been applied to the
5267   // referent object.
5268   //
5269   // We need to explicitly copy these referent objects - the references
5270   // will be processed at the end of remarking.
5271   //
5272   // We also need to do this copying before we process the reference
5273   // objects discovered by the STW ref processor in case one of these
5274   // referents points to another object which is also referenced by an
5275   // object discovered by the STW ref processor.
5276 
5277   uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5278                         workers()->active_workers() : 1);
5279 
5280   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5281            active_workers == workers()->active_workers(),
5282            "Need to reset active_workers");
5283 
5284   set_par_threads(active_workers);
5285   G1ParPreserveCMReferentsTask keep_cm_referents(this, active_workers, _task_queues);
5286 
5287   if (G1CollectedHeap::use_parallel_gc_threads()) {
5288     workers()->run_task(&keep_cm_referents);
5289   } else {
5290     keep_cm_referents.work(0);
5291   }
5292 
5293   set_par_threads(0);
5294 
5295   // Closure to test whether a referent is alive.
5296   G1STWIsAliveClosure is_alive(this);
5297 
5298   // Even when parallel reference processing is enabled, the processing
5299   // of JNI refs is serial and performed serially by the current thread
5300   // rather than by a worker. The following PSS will be used for processing
5301   // JNI refs.
5302 
5303   // Use only a single queue for this PSS.
5304   G1ParScanThreadState pss(this, 0);
5305 
5306   // We do not embed a reference processor in the copying/scanning
5307   // closures while we're actually processing the discovered
5308   // reference objects.
5309   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5310   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5311   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5312 
5313   pss.set_evac_closure(&scan_evac_cl);
5314   pss.set_evac_failure_closure(&evac_failure_cl);
5315   pss.set_partial_scan_closure(&partial_scan_cl);
5316 
5317   assert(pss.refs()->is_empty(), "pre-condition");
5318 
5319   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5320   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5321 
5322   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5323   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5324 
5325   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5326   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5327 
5328   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5329     // We also need to mark copied objects.
5330     copy_non_heap_cl = &copy_mark_non_heap_cl;
5331     copy_perm_cl = &copy_mark_perm_cl;
5332   }
5333 
5334   // Keep alive closure.
5335   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5336 
5337   // Serial Complete GC closure
5338   G1STWDrainQueueClosure drain_queue(this, &pss);
5339 
5340   // Setup the soft refs policy...
5341   rp->setup_policy(false);
5342 
5343   if (!rp->processing_is_mt()) {
5344     // Serial reference processing...
5345     rp->process_discovered_references(&is_alive,
5346                                       &keep_alive,
5347                                       &drain_queue,
5348                                       NULL);
5349   } else {
5350     // Parallel reference processing
5351     assert(rp->num_q() == active_workers, "sanity");
5352     assert(active_workers <= rp->max_num_q(), "sanity");
5353 
5354     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5355     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5356   }
5357 
5358   // We have completed copying any necessary live referent objects
5359   // (that were not copied during the actual pause) so we can
5360   // retire any active alloc buffers
5361   pss.retire_alloc_buffers();
5362   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5363 
5364   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5365   g1_policy()->record_ref_proc_time(ref_proc_time * 1000.0);
5366 }
5367 
5368 // Weak Reference processing during an evacuation pause (part 2).
5369 void G1CollectedHeap::enqueue_discovered_references() {
5370   double ref_enq_start = os::elapsedTime();
5371 
5372   ReferenceProcessor* rp = _ref_processor_stw;
5373   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5374 
5375   // Now enqueue any remaining on the discovered lists on to
5376   // the pending list.
5377   if (!rp->processing_is_mt()) {
5378     // Serial reference processing...
5379     rp->enqueue_discovered_references();
5380   } else {
5381     // Parallel reference enqueuing
5382 
5383     uint active_workers = (ParallelGCThreads > 0 ? workers()->active_workers() : 1);
5384     assert(active_workers == workers()->active_workers(),
5385            "Need to reset active_workers");
5386     assert(rp->num_q() == active_workers, "sanity");
5387     assert(active_workers <= rp->max_num_q(), "sanity");
5388 
5389     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, active_workers);
5390     rp->enqueue_discovered_references(&par_task_executor);
5391   }
5392 
5393   rp->verify_no_references_recorded();
5394   assert(!rp->discovery_enabled(), "should have been disabled");
5395 
5396   // FIXME
5397   // CM's reference processing also cleans up the string and symbol tables.
5398   // Should we do that here also? We could, but it is a serial operation
5399   // and could signicantly increase the pause time.
5400 
5401   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5402   g1_policy()->record_ref_enq_time(ref_enq_time * 1000.0);
5403 }
5404 
5405 void G1CollectedHeap::evacuate_collection_set() {
5406   _expand_heap_after_alloc_failure = true;
5407   set_evacuation_failed(false);
5408 
5409   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5410   concurrent_g1_refine()->set_use_cache(false);
5411   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5412 
5413   uint n_workers;
5414   if (G1CollectedHeap::use_parallel_gc_threads()) {
5415     n_workers =
5416       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5417                                      workers()->active_workers(),
5418                                      Threads::number_of_non_daemon_threads());
5419     assert(UseDynamicNumberOfGCThreads ||
5420            n_workers == workers()->total_workers(),
5421            "If not dynamic should be using all the  workers");
5422     workers()->set_active_workers(n_workers);
5423     set_par_threads(n_workers);
5424   } else {
5425     assert(n_par_threads() == 0,
5426            "Should be the original non-parallel value");
5427     n_workers = 1;
5428   }
5429 
5430   G1ParTask g1_par_task(this, _task_queues);
5431 
5432   init_for_evac_failure(NULL);
5433 
5434   rem_set()->prepare_for_younger_refs_iterate(true);
5435 
5436   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5437   double start_par_time_sec = os::elapsedTime();
5438   double end_par_time_sec;
5439 
5440   {
5441     StrongRootsScope srs(this);
5442 
5443     if (G1CollectedHeap::use_parallel_gc_threads()) {
5444       // The individual threads will set their evac-failure closures.
5445       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5446       // These tasks use ShareHeap::_process_strong_tasks
5447       assert(UseDynamicNumberOfGCThreads ||
5448              workers()->active_workers() == workers()->total_workers(),
5449              "If not dynamic should be using all the  workers");
5450       workers()->run_task(&g1_par_task);
5451     } else {
5452       g1_par_task.set_for_termination(n_workers);
5453       g1_par_task.work(0);
5454     }
5455     end_par_time_sec = os::elapsedTime();
5456 
5457     // Closing the inner scope will execute the destructor
5458     // for the StrongRootsScope object. We record the current
5459     // elapsed time before closing the scope so that time
5460     // taken for the SRS destructor is NOT included in the
5461     // reported parallel time.
5462   }
5463 
5464   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5465   g1_policy()->record_par_time(par_time_ms);
5466 
5467   double code_root_fixup_time_ms =
5468         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5469   g1_policy()->record_code_root_fixup_time(code_root_fixup_time_ms);
5470 
5471   set_par_threads(0);
5472 
5473   // Process any discovered reference objects - we have
5474   // to do this _before_ we retire the GC alloc regions
5475   // as we may have to copy some 'reachable' referent
5476   // objects (and their reachable sub-graphs) that were
5477   // not copied during the pause.
5478   process_discovered_references();
5479 
5480   // Weak root processing.
5481   // Note: when JSR 292 is enabled and code blobs can contain
5482   // non-perm oops then we will need to process the code blobs
5483   // here too.
5484   {
5485     G1STWIsAliveClosure is_alive(this);
5486     G1KeepAliveClosure keep_alive(this);
5487     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5488   }
5489 
5490   release_gc_alloc_regions();
5491   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5492 
5493   concurrent_g1_refine()->clear_hot_cache();
5494   concurrent_g1_refine()->set_use_cache(true);
5495 
5496   finalize_for_evac_failure();
5497 
5498   if (evacuation_failed()) {
5499     remove_self_forwarding_pointers();
5500     if (G1Log::finer()) {
5501       gclog_or_tty->print(" (to-space overflow)");
5502     } else if (G1Log::fine()) {
5503       gclog_or_tty->print("--");
5504     }
5505   }
5506 
5507   // Enqueue any remaining references remaining on the STW
5508   // reference processor's discovered lists. We need to do
5509   // this after the card table is cleaned (and verified) as
5510   // the act of enqueuing entries on to the pending list
5511   // will log these updates (and dirty their associated
5512   // cards). We need these updates logged to update any
5513   // RSets.
5514   enqueue_discovered_references();
5515 
5516   if (G1DeferredRSUpdate) {
5517     RedirtyLoggedCardTableEntryFastClosure redirty;
5518     dirty_card_queue_set().set_closure(&redirty);
5519     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5520 
5521     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5522     dcq.merge_bufferlists(&dirty_card_queue_set());
5523     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5524   }
5525   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5526 }
5527 
5528 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5529                                      size_t* pre_used,
5530                                      FreeRegionList* free_list,
5531                                      OldRegionSet* old_proxy_set,
5532                                      HumongousRegionSet* humongous_proxy_set,
5533                                      HRRSCleanupTask* hrrs_cleanup_task,
5534                                      bool par) {
5535   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5536     if (hr->isHumongous()) {
5537       assert(hr->startsHumongous(), "we should only see starts humongous");
5538       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5539     } else {
5540       _old_set.remove_with_proxy(hr, old_proxy_set);
5541       free_region(hr, pre_used, free_list, par);
5542     }
5543   } else {
5544     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5545   }
5546 }
5547 
5548 void G1CollectedHeap::free_region(HeapRegion* hr,
5549                                   size_t* pre_used,
5550                                   FreeRegionList* free_list,
5551                                   bool par) {
5552   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5553   assert(!hr->is_empty(), "the region should not be empty");
5554   assert(free_list != NULL, "pre-condition");
5555 
5556   *pre_used += hr->used();
5557   hr->hr_clear(par, true /* clear_space */);
5558   free_list->add_as_head(hr);
5559 }
5560 
5561 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5562                                      size_t* pre_used,
5563                                      FreeRegionList* free_list,
5564                                      HumongousRegionSet* humongous_proxy_set,
5565                                      bool par) {
5566   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5567   assert(free_list != NULL, "pre-condition");
5568   assert(humongous_proxy_set != NULL, "pre-condition");
5569 
5570   size_t hr_used = hr->used();
5571   size_t hr_capacity = hr->capacity();
5572   size_t hr_pre_used = 0;
5573   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5574   hr->set_notHumongous();
5575   free_region(hr, &hr_pre_used, free_list, par);
5576 
5577   uint i = hr->hrs_index() + 1;
5578   uint num = 1;
5579   while (i < n_regions()) {
5580     HeapRegion* curr_hr = region_at(i);
5581     if (!curr_hr->continuesHumongous()) {
5582       break;
5583     }
5584     curr_hr->set_notHumongous();
5585     free_region(curr_hr, &hr_pre_used, free_list, par);
5586     num += 1;
5587     i += 1;
5588   }
5589   assert(hr_pre_used == hr_used,
5590          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5591                  "should be the same", hr_pre_used, hr_used));
5592   *pre_used += hr_pre_used;
5593 }
5594 
5595 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5596                                        FreeRegionList* free_list,
5597                                        OldRegionSet* old_proxy_set,
5598                                        HumongousRegionSet* humongous_proxy_set,
5599                                        bool par) {
5600   if (pre_used > 0) {
5601     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5602     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5603     assert(_summary_bytes_used >= pre_used,
5604            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5605                    "should be >= pre_used: "SIZE_FORMAT,
5606                    _summary_bytes_used, pre_used));
5607     _summary_bytes_used -= pre_used;
5608   }
5609   if (free_list != NULL && !free_list->is_empty()) {
5610     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5611     _free_list.add_as_head(free_list);
5612   }
5613   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5614     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5615     _old_set.update_from_proxy(old_proxy_set);
5616   }
5617   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5618     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5619     _humongous_set.update_from_proxy(humongous_proxy_set);
5620   }
5621 }
5622 
5623 class G1ParCleanupCTTask : public AbstractGangTask {
5624   CardTableModRefBS* _ct_bs;
5625   G1CollectedHeap* _g1h;
5626   HeapRegion* volatile _su_head;
5627 public:
5628   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5629                      G1CollectedHeap* g1h) :
5630     AbstractGangTask("G1 Par Cleanup CT Task"),
5631     _ct_bs(ct_bs), _g1h(g1h) { }
5632 
5633   void work(uint worker_id) {
5634     HeapRegion* r;
5635     while (r = _g1h->pop_dirty_cards_region()) {
5636       clear_cards(r);
5637     }
5638   }
5639 
5640   void clear_cards(HeapRegion* r) {
5641     // Cards of the survivors should have already been dirtied.
5642     if (!r->is_survivor()) {
5643       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5644     }
5645   }
5646 };
5647 
5648 #ifndef PRODUCT
5649 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5650   G1CollectedHeap* _g1h;
5651   CardTableModRefBS* _ct_bs;
5652 public:
5653   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5654     : _g1h(g1h), _ct_bs(ct_bs) { }
5655   virtual bool doHeapRegion(HeapRegion* r) {
5656     if (r->is_survivor()) {
5657       _g1h->verify_dirty_region(r);
5658     } else {
5659       _g1h->verify_not_dirty_region(r);
5660     }
5661     return false;
5662   }
5663 };
5664 
5665 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5666   // All of the region should be clean.
5667   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5668   MemRegion mr(hr->bottom(), hr->end());
5669   ct_bs->verify_not_dirty_region(mr);
5670 }
5671 
5672 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5673   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5674   // dirty allocated blocks as they allocate them. The thread that
5675   // retires each region and replaces it with a new one will do a
5676   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5677   // not dirty that area (one less thing to have to do while holding
5678   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5679   // is dirty.
5680   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5681   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5682   ct_bs->verify_dirty_region(mr);
5683 }
5684 
5685 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5686   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5687   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5688     verify_dirty_region(hr);
5689   }
5690 }
5691 
5692 void G1CollectedHeap::verify_dirty_young_regions() {
5693   verify_dirty_young_list(_young_list->first_region());
5694   verify_dirty_young_list(_young_list->first_survivor_region());
5695 }
5696 #endif
5697 
5698 void G1CollectedHeap::cleanUpCardTable() {
5699   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5700   double start = os::elapsedTime();
5701 
5702   {
5703     // Iterate over the dirty cards region list.
5704     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5705 
5706     if (G1CollectedHeap::use_parallel_gc_threads()) {
5707       set_par_threads();
5708       workers()->run_task(&cleanup_task);
5709       set_par_threads(0);
5710     } else {
5711       while (_dirty_cards_region_list) {
5712         HeapRegion* r = _dirty_cards_region_list;
5713         cleanup_task.clear_cards(r);
5714         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5715         if (_dirty_cards_region_list == r) {
5716           // The last region.
5717           _dirty_cards_region_list = NULL;
5718         }
5719         r->set_next_dirty_cards_region(NULL);
5720       }
5721     }
5722 #ifndef PRODUCT
5723     if (G1VerifyCTCleanup || VerifyAfterGC) {
5724       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5725       heap_region_iterate(&cleanup_verifier);
5726     }
5727 #endif
5728   }
5729 
5730   double elapsed = os::elapsedTime() - start;
5731   g1_policy()->record_clear_ct_time(elapsed * 1000.0);
5732 }
5733 
5734 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5735   size_t pre_used = 0;
5736   FreeRegionList local_free_list("Local List for CSet Freeing");
5737 
5738   double young_time_ms     = 0.0;
5739   double non_young_time_ms = 0.0;
5740 
5741   // Since the collection set is a superset of the the young list,
5742   // all we need to do to clear the young list is clear its
5743   // head and length, and unlink any young regions in the code below
5744   _young_list->clear();
5745 
5746   G1CollectorPolicy* policy = g1_policy();
5747 
5748   double start_sec = os::elapsedTime();
5749   bool non_young = true;
5750 
5751   HeapRegion* cur = cs_head;
5752   int age_bound = -1;
5753   size_t rs_lengths = 0;
5754 
5755   while (cur != NULL) {
5756     assert(!is_on_master_free_list(cur), "sanity");
5757     if (non_young) {
5758       if (cur->is_young()) {
5759         double end_sec = os::elapsedTime();
5760         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5761         non_young_time_ms += elapsed_ms;
5762 
5763         start_sec = os::elapsedTime();
5764         non_young = false;
5765       }
5766     } else {
5767       if (!cur->is_young()) {
5768         double end_sec = os::elapsedTime();
5769         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5770         young_time_ms += elapsed_ms;
5771 
5772         start_sec = os::elapsedTime();
5773         non_young = true;
5774       }
5775     }
5776 
5777     rs_lengths += cur->rem_set()->occupied();
5778 
5779     HeapRegion* next = cur->next_in_collection_set();
5780     assert(cur->in_collection_set(), "bad CS");
5781     cur->set_next_in_collection_set(NULL);
5782     cur->set_in_collection_set(false);
5783 
5784     if (cur->is_young()) {
5785       int index = cur->young_index_in_cset();
5786       assert(index != -1, "invariant");
5787       assert((uint) index < policy->young_cset_region_length(), "invariant");
5788       size_t words_survived = _surviving_young_words[index];
5789       cur->record_surv_words_in_group(words_survived);
5790 
5791       // At this point the we have 'popped' cur from the collection set
5792       // (linked via next_in_collection_set()) but it is still in the
5793       // young list (linked via next_young_region()). Clear the
5794       // _next_young_region field.
5795       cur->set_next_young_region(NULL);
5796     } else {
5797       int index = cur->young_index_in_cset();
5798       assert(index == -1, "invariant");
5799     }
5800 
5801     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5802             (!cur->is_young() && cur->young_index_in_cset() == -1),
5803             "invariant" );
5804 
5805     if (!cur->evacuation_failed()) {
5806       MemRegion used_mr = cur->used_region();
5807 
5808       // And the region is empty.
5809       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5810       free_region(cur, &pre_used, &local_free_list, false /* par */);
5811     } else {
5812       cur->uninstall_surv_rate_group();
5813       if (cur->is_young()) {
5814         cur->set_young_index_in_cset(-1);
5815       }
5816       cur->set_not_young();
5817       cur->set_evacuation_failed(false);
5818       // The region is now considered to be old.
5819       _old_set.add(cur);
5820     }
5821     cur = next;
5822   }
5823 
5824   policy->record_max_rs_lengths(rs_lengths);
5825   policy->cset_regions_freed();
5826 
5827   double end_sec = os::elapsedTime();
5828   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5829 
5830   if (non_young) {
5831     non_young_time_ms += elapsed_ms;
5832   } else {
5833     young_time_ms += elapsed_ms;
5834   }
5835 
5836   update_sets_after_freeing_regions(pre_used, &local_free_list,
5837                                     NULL /* old_proxy_set */,
5838                                     NULL /* humongous_proxy_set */,
5839                                     false /* par */);
5840   policy->record_young_free_cset_time_ms(young_time_ms);
5841   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
5842 }
5843 
5844 // This routine is similar to the above but does not record
5845 // any policy statistics or update free lists; we are abandoning
5846 // the current incremental collection set in preparation of a
5847 // full collection. After the full GC we will start to build up
5848 // the incremental collection set again.
5849 // This is only called when we're doing a full collection
5850 // and is immediately followed by the tearing down of the young list.
5851 
5852 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5853   HeapRegion* cur = cs_head;
5854 
5855   while (cur != NULL) {
5856     HeapRegion* next = cur->next_in_collection_set();
5857     assert(cur->in_collection_set(), "bad CS");
5858     cur->set_next_in_collection_set(NULL);
5859     cur->set_in_collection_set(false);
5860     cur->set_young_index_in_cset(-1);
5861     cur = next;
5862   }
5863 }
5864 
5865 void G1CollectedHeap::set_free_regions_coming() {
5866   if (G1ConcRegionFreeingVerbose) {
5867     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5868                            "setting free regions coming");
5869   }
5870 
5871   assert(!free_regions_coming(), "pre-condition");
5872   _free_regions_coming = true;
5873 }
5874 
5875 void G1CollectedHeap::reset_free_regions_coming() {
5876   assert(free_regions_coming(), "pre-condition");
5877 
5878   {
5879     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5880     _free_regions_coming = false;
5881     SecondaryFreeList_lock->notify_all();
5882   }
5883 
5884   if (G1ConcRegionFreeingVerbose) {
5885     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5886                            "reset free regions coming");
5887   }
5888 }
5889 
5890 void G1CollectedHeap::wait_while_free_regions_coming() {
5891   // Most of the time we won't have to wait, so let's do a quick test
5892   // first before we take the lock.
5893   if (!free_regions_coming()) {
5894     return;
5895   }
5896 
5897   if (G1ConcRegionFreeingVerbose) {
5898     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5899                            "waiting for free regions");
5900   }
5901 
5902   {
5903     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5904     while (free_regions_coming()) {
5905       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5906     }
5907   }
5908 
5909   if (G1ConcRegionFreeingVerbose) {
5910     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5911                            "done waiting for free regions");
5912   }
5913 }
5914 
5915 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5916   assert(heap_lock_held_for_gc(),
5917               "the heap lock should already be held by or for this thread");
5918   _young_list->push_region(hr);
5919 }
5920 
5921 class NoYoungRegionsClosure: public HeapRegionClosure {
5922 private:
5923   bool _success;
5924 public:
5925   NoYoungRegionsClosure() : _success(true) { }
5926   bool doHeapRegion(HeapRegion* r) {
5927     if (r->is_young()) {
5928       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5929                              r->bottom(), r->end());
5930       _success = false;
5931     }
5932     return false;
5933   }
5934   bool success() { return _success; }
5935 };
5936 
5937 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5938   bool ret = _young_list->check_list_empty(check_sample);
5939 
5940   if (check_heap) {
5941     NoYoungRegionsClosure closure;
5942     heap_region_iterate(&closure);
5943     ret = ret && closure.success();
5944   }
5945 
5946   return ret;
5947 }
5948 
5949 class TearDownRegionSetsClosure : public HeapRegionClosure {
5950 private:
5951   OldRegionSet *_old_set;
5952 
5953 public:
5954   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
5955 
5956   bool doHeapRegion(HeapRegion* r) {
5957     if (r->is_empty()) {
5958       // We ignore empty regions, we'll empty the free list afterwards
5959     } else if (r->is_young()) {
5960       // We ignore young regions, we'll empty the young list afterwards
5961     } else if (r->isHumongous()) {
5962       // We ignore humongous regions, we're not tearing down the
5963       // humongous region set
5964     } else {
5965       // The rest should be old
5966       _old_set->remove(r);
5967     }
5968     return false;
5969   }
5970 
5971   ~TearDownRegionSetsClosure() {
5972     assert(_old_set->is_empty(), "post-condition");
5973   }
5974 };
5975 
5976 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5977   assert_at_safepoint(true /* should_be_vm_thread */);
5978 
5979   if (!free_list_only) {
5980     TearDownRegionSetsClosure cl(&_old_set);
5981     heap_region_iterate(&cl);
5982 
5983     // Need to do this after the heap iteration to be able to
5984     // recognize the young regions and ignore them during the iteration.
5985     _young_list->empty_list();
5986   }
5987   _free_list.remove_all();
5988 }
5989 
5990 class RebuildRegionSetsClosure : public HeapRegionClosure {
5991 private:
5992   bool            _free_list_only;
5993   OldRegionSet*   _old_set;
5994   FreeRegionList* _free_list;
5995   size_t          _total_used;
5996 
5997 public:
5998   RebuildRegionSetsClosure(bool free_list_only,
5999                            OldRegionSet* old_set, FreeRegionList* free_list) :
6000     _free_list_only(free_list_only),
6001     _old_set(old_set), _free_list(free_list), _total_used(0) {
6002     assert(_free_list->is_empty(), "pre-condition");
6003     if (!free_list_only) {
6004       assert(_old_set->is_empty(), "pre-condition");
6005     }
6006   }
6007 
6008   bool doHeapRegion(HeapRegion* r) {
6009     if (r->continuesHumongous()) {
6010       return false;
6011     }
6012 
6013     if (r->is_empty()) {
6014       // Add free regions to the free list
6015       _free_list->add_as_tail(r);
6016     } else if (!_free_list_only) {
6017       assert(!r->is_young(), "we should not come across young regions");
6018 
6019       if (r->isHumongous()) {
6020         // We ignore humongous regions, we left the humongous set unchanged
6021       } else {
6022         // The rest should be old, add them to the old set
6023         _old_set->add(r);
6024       }
6025       _total_used += r->used();
6026     }
6027 
6028     return false;
6029   }
6030 
6031   size_t total_used() {
6032     return _total_used;
6033   }
6034 };
6035 
6036 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6037   assert_at_safepoint(true /* should_be_vm_thread */);
6038 
6039   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6040   heap_region_iterate(&cl);
6041 
6042   if (!free_list_only) {
6043     _summary_bytes_used = cl.total_used();
6044   }
6045   assert(_summary_bytes_used == recalculate_used(),
6046          err_msg("inconsistent _summary_bytes_used, "
6047                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6048                  _summary_bytes_used, recalculate_used()));
6049 }
6050 
6051 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6052   _refine_cte_cl->set_concurrent(concurrent);
6053 }
6054 
6055 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6056   HeapRegion* hr = heap_region_containing(p);
6057   if (hr == NULL) {
6058     return is_in_permanent(p);
6059   } else {
6060     return hr->is_in(p);
6061   }
6062 }
6063 
6064 // Methods for the mutator alloc region
6065 
6066 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6067                                                       bool force) {
6068   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6069   assert(!force || g1_policy()->can_expand_young_list(),
6070          "if force is true we should be able to expand the young list");
6071   bool young_list_full = g1_policy()->is_young_list_full();
6072   if (force || !young_list_full) {
6073     HeapRegion* new_alloc_region = new_region(word_size,
6074                                               false /* do_expand */);
6075     if (new_alloc_region != NULL) {
6076       set_region_short_lived_locked(new_alloc_region);
6077       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6078       return new_alloc_region;
6079     }
6080   }
6081   return NULL;
6082 }
6083 
6084 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6085                                                   size_t allocated_bytes) {
6086   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6087   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6088 
6089   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6090   _summary_bytes_used += allocated_bytes;
6091   _hr_printer.retire(alloc_region);
6092   // We update the eden sizes here, when the region is retired,
6093   // instead of when it's allocated, since this is the point that its
6094   // used space has been recored in _summary_bytes_used.
6095   g1mm()->update_eden_size();
6096 }
6097 
6098 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6099                                                     bool force) {
6100   return _g1h->new_mutator_alloc_region(word_size, force);
6101 }
6102 
6103 void G1CollectedHeap::set_par_threads() {
6104   // Don't change the number of workers.  Use the value previously set
6105   // in the workgroup.
6106   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6107   uint n_workers = workers()->active_workers();
6108   assert(UseDynamicNumberOfGCThreads ||
6109            n_workers == workers()->total_workers(),
6110       "Otherwise should be using the total number of workers");
6111   if (n_workers == 0) {
6112     assert(false, "Should have been set in prior evacuation pause.");
6113     n_workers = ParallelGCThreads;
6114     workers()->set_active_workers(n_workers);
6115   }
6116   set_par_threads(n_workers);
6117 }
6118 
6119 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6120                                        size_t allocated_bytes) {
6121   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6122 }
6123 
6124 // Methods for the GC alloc regions
6125 
6126 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6127                                                  uint count,
6128                                                  GCAllocPurpose ap) {
6129   assert(FreeList_lock->owned_by_self(), "pre-condition");
6130 
6131   if (count < g1_policy()->max_regions(ap)) {
6132     HeapRegion* new_alloc_region = new_region(word_size,
6133                                               true /* do_expand */);
6134     if (new_alloc_region != NULL) {
6135       // We really only need to do this for old regions given that we
6136       // should never scan survivors. But it doesn't hurt to do it
6137       // for survivors too.
6138       new_alloc_region->set_saved_mark();
6139       if (ap == GCAllocForSurvived) {
6140         new_alloc_region->set_survivor();
6141         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6142       } else {
6143         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6144       }
6145       bool during_im = g1_policy()->during_initial_mark_pause();
6146       new_alloc_region->note_start_of_copying(during_im);
6147       return new_alloc_region;
6148     } else {
6149       g1_policy()->note_alloc_region_limit_reached(ap);
6150     }
6151   }
6152   return NULL;
6153 }
6154 
6155 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6156                                              size_t allocated_bytes,
6157                                              GCAllocPurpose ap) {
6158   bool during_im = g1_policy()->during_initial_mark_pause();
6159   alloc_region->note_end_of_copying(during_im);
6160   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6161   if (ap == GCAllocForSurvived) {
6162     young_list()->add_survivor_region(alloc_region);
6163   } else {
6164     _old_set.add(alloc_region);
6165   }
6166   _hr_printer.retire(alloc_region);
6167 }
6168 
6169 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6170                                                        bool force) {
6171   assert(!force, "not supported for GC alloc regions");
6172   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6173 }
6174 
6175 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6176                                           size_t allocated_bytes) {
6177   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6178                                GCAllocForSurvived);
6179 }
6180 
6181 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6182                                                   bool force) {
6183   assert(!force, "not supported for GC alloc regions");
6184   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6185 }
6186 
6187 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6188                                      size_t allocated_bytes) {
6189   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6190                                GCAllocForTenured);
6191 }
6192 // Heap region set verification
6193 
6194 class VerifyRegionListsClosure : public HeapRegionClosure {
6195 private:
6196   FreeRegionList*     _free_list;
6197   OldRegionSet*       _old_set;
6198   HumongousRegionSet* _humongous_set;
6199   uint                _region_count;
6200 
6201 public:
6202   VerifyRegionListsClosure(OldRegionSet* old_set,
6203                            HumongousRegionSet* humongous_set,
6204                            FreeRegionList* free_list) :
6205     _old_set(old_set), _humongous_set(humongous_set),
6206     _free_list(free_list), _region_count(0) { }
6207 
6208   uint region_count() { return _region_count; }
6209 
6210   bool doHeapRegion(HeapRegion* hr) {
6211     _region_count += 1;
6212 
6213     if (hr->continuesHumongous()) {
6214       return false;
6215     }
6216 
6217     if (hr->is_young()) {
6218       // TODO
6219     } else if (hr->startsHumongous()) {
6220       _humongous_set->verify_next_region(hr);
6221     } else if (hr->is_empty()) {
6222       _free_list->verify_next_region(hr);
6223     } else {
6224       _old_set->verify_next_region(hr);
6225     }
6226     return false;
6227   }
6228 };
6229 
6230 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6231                                              HeapWord* bottom) {
6232   HeapWord* end = bottom + HeapRegion::GrainWords;
6233   MemRegion mr(bottom, end);
6234   assert(_g1_reserved.contains(mr), "invariant");
6235   // This might return NULL if the allocation fails
6236   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6237 }
6238 
6239 void G1CollectedHeap::verify_region_sets() {
6240   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6241 
6242   // First, check the explicit lists.
6243   _free_list.verify();
6244   {
6245     // Given that a concurrent operation might be adding regions to
6246     // the secondary free list we have to take the lock before
6247     // verifying it.
6248     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6249     _secondary_free_list.verify();
6250   }
6251   _old_set.verify();
6252   _humongous_set.verify();
6253 
6254   // If a concurrent region freeing operation is in progress it will
6255   // be difficult to correctly attributed any free regions we come
6256   // across to the correct free list given that they might belong to
6257   // one of several (free_list, secondary_free_list, any local lists,
6258   // etc.). So, if that's the case we will skip the rest of the
6259   // verification operation. Alternatively, waiting for the concurrent
6260   // operation to complete will have a non-trivial effect on the GC's
6261   // operation (no concurrent operation will last longer than the
6262   // interval between two calls to verification) and it might hide
6263   // any issues that we would like to catch during testing.
6264   if (free_regions_coming()) {
6265     return;
6266   }
6267 
6268   // Make sure we append the secondary_free_list on the free_list so
6269   // that all free regions we will come across can be safely
6270   // attributed to the free_list.
6271   append_secondary_free_list_if_not_empty_with_lock();
6272 
6273   // Finally, make sure that the region accounting in the lists is
6274   // consistent with what we see in the heap.
6275   _old_set.verify_start();
6276   _humongous_set.verify_start();
6277   _free_list.verify_start();
6278 
6279   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6280   heap_region_iterate(&cl);
6281 
6282   _old_set.verify_end();
6283   _humongous_set.verify_end();
6284   _free_list.verify_end();
6285 }