1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  30 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  31 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  32 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  34 #include "gc_implementation/parallelScavenge/psOldGen.hpp"
  35 #include "gc_implementation/parallelScavenge/psPermGen.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  38 #include "gc_implementation/shared/isGCActiveMark.hpp"
  39 #include "gc_implementation/shared/spaceDecorator.hpp"
  40 #include "gc_interface/gcCause.hpp"
  41 #include "memory/gcLocker.inline.hpp"
  42 #include "memory/referencePolicy.hpp"
  43 #include "memory/referenceProcessor.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/fprofiler.hpp"
  47 #include "runtime/safepoint.hpp"
  48 #include "runtime/vmThread.hpp"
  49 #include "services/management.hpp"
  50 #include "services/memoryService.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/stack.inline.hpp"
  53 
  54 elapsedTimer        PSMarkSweep::_accumulated_time;
  55 unsigned int        PSMarkSweep::_total_invocations = 0;
  56 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  57 CollectorCounters*  PSMarkSweep::_counters = NULL;
  58 
  59 void PSMarkSweep::initialize() {
  60   MemRegion mr = Universe::heap()->reserved_region();
  61   _ref_processor = new ReferenceProcessor(mr);     // a vanilla ref proc
  62   _counters = new CollectorCounters("PSMarkSweep", 1);
  63 }
  64 
  65 // This method contains all heap specific policy for invoking mark sweep.
  66 // PSMarkSweep::invoke_no_policy() will only attempt to mark-sweep-compact
  67 // the heap. It will do nothing further. If we need to bail out for policy
  68 // reasons, scavenge before full gc, or any other specialized behavior, it
  69 // needs to be added here.
  70 //
  71 // Note that this method should only be called from the vm_thread while
  72 // at a safepoint!
  73 //
  74 // Note that the all_soft_refs_clear flag in the collector policy
  75 // may be true because this method can be called without intervening
  76 // activity.  For example when the heap space is tight and full measure
  77 // are being taken to free space.
  78 
  79 void PSMarkSweep::invoke(bool maximum_heap_compaction) {
  80   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
  81   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
  82   assert(!Universe::heap()->is_gc_active(), "not reentrant");
  83 
  84   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
  85   GCCause::Cause gc_cause = heap->gc_cause();
  86   PSAdaptiveSizePolicy* policy = heap->size_policy();
  87   IsGCActiveMark mark;
  88 
  89   if (ScavengeBeforeFullGC) {
  90     PSScavenge::invoke_no_policy();
  91   }
  92 
  93   const bool clear_all_soft_refs =
  94     heap->collector_policy()->should_clear_all_soft_refs();
  95 
  96   int count = (maximum_heap_compaction)?1:MarkSweepAlwaysCompactCount;
  97   IntFlagSetting flag_setting(MarkSweepAlwaysCompactCount, count);
  98   PSMarkSweep::invoke_no_policy(clear_all_soft_refs || maximum_heap_compaction);
  99 }
 100 
 101 // This method contains no policy. You should probably
 102 // be calling invoke() instead.
 103 bool PSMarkSweep::invoke_no_policy(bool clear_all_softrefs) {
 104   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
 105   assert(ref_processor() != NULL, "Sanity");
 106 
 107   if (GC_locker::check_active_before_gc()) {
 108     return false;
 109   }
 110 
 111   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 112   GCCause::Cause gc_cause = heap->gc_cause();
 113   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 114   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 115 
 116   // The scope of casr should end after code that can change
 117   // CollectorPolicy::_should_clear_all_soft_refs.
 118   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 119 
 120   PSYoungGen* young_gen = heap->young_gen();
 121   PSOldGen* old_gen = heap->old_gen();
 122   PSPermGen* perm_gen = heap->perm_gen();
 123 
 124   // Increment the invocation count
 125   heap->increment_total_collections(true /* full */);
 126 
 127   // Save information needed to minimize mangling
 128   heap->record_gen_tops_before_GC();
 129 
 130   // We need to track unique mark sweep invocations as well.
 131   _total_invocations++;
 132 
 133   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 134 
 135   heap->print_heap_before_gc();
 136 
 137   // Fill in TLABs
 138   heap->accumulate_statistics_all_tlabs();
 139   heap->ensure_parsability(true);  // retire TLABs
 140 
 141   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 142     HandleMark hm;  // Discard invalid handles created during verification
 143     gclog_or_tty->print(" VerifyBeforeGC:");
 144     Universe::verify(true);
 145   }
 146 
 147   // Verify object start arrays
 148   if (VerifyObjectStartArray &&
 149       VerifyBeforeGC) {
 150     old_gen->verify_object_start_array();
 151     perm_gen->verify_object_start_array();
 152   }
 153 
 154   heap->pre_full_gc_dump();
 155 
 156   // Filled in below to track the state of the young gen after the collection.
 157   bool eden_empty;
 158   bool survivors_empty;
 159   bool young_gen_empty;
 160 
 161   {
 162     HandleMark hm;
 163 
 164     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 165     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 166     TraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, gclog_or_tty);
 167     TraceCollectorStats tcs(counters());
 168     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 169 
 170     if (TraceGen1Time) accumulated_time()->start();
 171 
 172     // Let the size policy know we're starting
 173     size_policy->major_collection_begin();
 174 
 175     // When collecting the permanent generation methodOops may be moving,
 176     // so we either have to flush all bcp data or convert it into bci.
 177     CodeCache::gc_prologue();
 178     Threads::gc_prologue();
 179     BiasedLocking::preserve_marks();
 180 
 181     // Capture heap size before collection for printing.
 182     size_t prev_used = heap->used();
 183 
 184     // Capture perm gen size before collection for sizing.
 185     size_t perm_gen_prev_used = perm_gen->used_in_bytes();
 186 
 187     // For PrintGCDetails
 188     size_t old_gen_prev_used = old_gen->used_in_bytes();
 189     size_t young_gen_prev_used = young_gen->used_in_bytes();
 190 
 191     allocate_stacks();
 192 
 193     COMPILER2_PRESENT(DerivedPointerTable::clear());
 194 
 195     ref_processor()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 196     ref_processor()->setup_policy(clear_all_softrefs);
 197 
 198     mark_sweep_phase1(clear_all_softrefs);
 199 
 200     mark_sweep_phase2();
 201 
 202     // Don't add any more derived pointers during phase3
 203     COMPILER2_PRESENT(assert(DerivedPointerTable::is_active(), "Sanity"));
 204     COMPILER2_PRESENT(DerivedPointerTable::set_active(false));
 205 
 206     mark_sweep_phase3();
 207 
 208     mark_sweep_phase4();
 209 
 210     restore_marks();
 211 
 212     deallocate_stacks();
 213 
 214     if (ZapUnusedHeapArea) {
 215       // Do a complete mangle (top to end) because the usage for
 216       // scratch does not maintain a top pointer.
 217       young_gen->to_space()->mangle_unused_area_complete();
 218     }
 219 
 220     eden_empty = young_gen->eden_space()->is_empty();
 221     if (!eden_empty) {
 222       eden_empty = absorb_live_data_from_eden(size_policy, young_gen, old_gen);
 223     }
 224 
 225     // Update heap occupancy information which is used as
 226     // input to soft ref clearing policy at the next gc.
 227     Universe::update_heap_info_at_gc();
 228 
 229     survivors_empty = young_gen->from_space()->is_empty() &&
 230                       young_gen->to_space()->is_empty();
 231     young_gen_empty = eden_empty && survivors_empty;
 232 
 233     BarrierSet* bs = heap->barrier_set();
 234     if (bs->is_a(BarrierSet::ModRef)) {
 235       ModRefBarrierSet* modBS = (ModRefBarrierSet*)bs;
 236       MemRegion old_mr = heap->old_gen()->reserved();
 237       MemRegion perm_mr = heap->perm_gen()->reserved();
 238       assert(perm_mr.end() <= old_mr.start(), "Generations out of order");
 239 
 240       if (young_gen_empty) {
 241         modBS->clear(MemRegion(perm_mr.start(), old_mr.end()));
 242       } else {
 243         modBS->invalidate(MemRegion(perm_mr.start(), old_mr.end()));
 244       }
 245     }
 246 
 247     BiasedLocking::restore_marks();
 248     Threads::gc_epilogue();
 249     CodeCache::gc_epilogue();
 250     JvmtiExport::gc_epilogue();
 251 
 252     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 253 
 254     ref_processor()->enqueue_discovered_references(NULL);
 255 
 256     // Update time of last GC
 257     reset_millis_since_last_gc();
 258 
 259     // Let the size policy know we're done
 260     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 261 
 262     if (UseAdaptiveSizePolicy) {
 263 
 264       if (PrintAdaptiveSizePolicy) {
 265         gclog_or_tty->print("AdaptiveSizeStart: ");
 266         gclog_or_tty->stamp();
 267         gclog_or_tty->print_cr(" collection: %d ",
 268                        heap->total_collections());
 269         if (Verbose) {
 270           gclog_or_tty->print("old_gen_capacity: %d young_gen_capacity: %d"
 271             " perm_gen_capacity: %d ",
 272             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes(),
 273             perm_gen->capacity_in_bytes());
 274         }
 275       }
 276 
 277       // Don't check if the size_policy is ready here.  Let
 278       // the size_policy check that internally.
 279       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 280           ((gc_cause != GCCause::_java_lang_system_gc) ||
 281             UseAdaptiveSizePolicyWithSystemGC)) {
 282         // Calculate optimal free space amounts
 283         assert(young_gen->max_size() >
 284           young_gen->from_space()->capacity_in_bytes() +
 285           young_gen->to_space()->capacity_in_bytes(),
 286           "Sizes of space in young gen are out-of-bounds");
 287         size_t max_eden_size = young_gen->max_size() -
 288           young_gen->from_space()->capacity_in_bytes() -
 289           young_gen->to_space()->capacity_in_bytes();
 290         size_policy->compute_generation_free_space(young_gen->used_in_bytes(),
 291                                  young_gen->eden_space()->used_in_bytes(),
 292                                  old_gen->used_in_bytes(),
 293                                  perm_gen->used_in_bytes(),
 294                                  young_gen->eden_space()->capacity_in_bytes(),
 295                                  old_gen->max_gen_size(),
 296                                  max_eden_size,
 297                                  true /* full gc*/,
 298                                  gc_cause,
 299                                  heap->collector_policy());
 300 
 301         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 302 
 303         // Don't resize the young generation at an major collection.  A
 304         // desired young generation size may have been calculated but
 305         // resizing the young generation complicates the code because the
 306         // resizing of the old generation may have moved the boundary
 307         // between the young generation and the old generation.  Let the
 308         // young generation resizing happen at the minor collections.
 309       }
 310       if (PrintAdaptiveSizePolicy) {
 311         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 312                        heap->total_collections());
 313       }
 314     }
 315 
 316     if (UsePerfData) {
 317       heap->gc_policy_counters()->update_counters();
 318       heap->gc_policy_counters()->update_old_capacity(
 319         old_gen->capacity_in_bytes());
 320       heap->gc_policy_counters()->update_young_capacity(
 321         young_gen->capacity_in_bytes());
 322     }
 323 
 324     heap->resize_all_tlabs();
 325 
 326     // We collected the perm gen, so we'll resize it here.
 327     perm_gen->compute_new_size(perm_gen_prev_used);
 328 
 329     if (TraceGen1Time) accumulated_time()->stop();
 330 
 331     if (PrintGC) {
 332       if (PrintGCDetails) {
 333         // Don't print a GC timestamp here.  This is after the GC so
 334         // would be confusing.
 335         young_gen->print_used_change(young_gen_prev_used);
 336         old_gen->print_used_change(old_gen_prev_used);
 337       }
 338       heap->print_heap_change(prev_used);
 339       // Do perm gen after heap becase prev_used does
 340       // not include the perm gen (done this way in the other
 341       // collectors).
 342       if (PrintGCDetails) {
 343         perm_gen->print_used_change(perm_gen_prev_used);
 344       }
 345     }
 346 
 347     // Track memory usage and detect low memory
 348     MemoryService::track_memory_usage();
 349     heap->update_counters();
 350   }
 351 
 352   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 353     HandleMark hm;  // Discard invalid handles created during verification
 354     gclog_or_tty->print(" VerifyAfterGC:");
 355     Universe::verify(false);
 356   }
 357 
 358   // Re-verify object start arrays
 359   if (VerifyObjectStartArray &&
 360       VerifyAfterGC) {
 361     old_gen->verify_object_start_array();
 362     perm_gen->verify_object_start_array();
 363   }
 364 
 365   if (ZapUnusedHeapArea) {
 366     old_gen->object_space()->check_mangled_unused_area_complete();
 367     perm_gen->object_space()->check_mangled_unused_area_complete();
 368   }
 369 
 370   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 371 
 372   heap->print_heap_after_gc();
 373 
 374   heap->post_full_gc_dump();
 375 
 376 #ifdef TRACESPINNING
 377   ParallelTaskTerminator::print_termination_counts();
 378 #endif
 379 
 380   return true;
 381 }
 382 
 383 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 384                                              PSYoungGen* young_gen,
 385                                              PSOldGen* old_gen) {
 386   MutableSpace* const eden_space = young_gen->eden_space();
 387   assert(!eden_space->is_empty(), "eden must be non-empty");
 388   assert(young_gen->virtual_space()->alignment() ==
 389          old_gen->virtual_space()->alignment(), "alignments do not match");
 390 
 391   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 392     return false;
 393   }
 394 
 395   // Both generations must be completely committed.
 396   if (young_gen->virtual_space()->uncommitted_size() != 0) {
 397     return false;
 398   }
 399   if (old_gen->virtual_space()->uncommitted_size() != 0) {
 400     return false;
 401   }
 402 
 403   // Figure out how much to take from eden.  Include the average amount promoted
 404   // in the total; otherwise the next young gen GC will simply bail out to a
 405   // full GC.
 406   const size_t alignment = old_gen->virtual_space()->alignment();
 407   const size_t eden_used = eden_space->used_in_bytes();
 408   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 409   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 410   const size_t eden_capacity = eden_space->capacity_in_bytes();
 411 
 412   if (absorb_size >= eden_capacity) {
 413     return false; // Must leave some space in eden.
 414   }
 415 
 416   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 417   if (new_young_size < young_gen->min_gen_size()) {
 418     return false; // Respect young gen minimum size.
 419   }
 420 
 421   if (TraceAdaptiveGCBoundary && Verbose) {
 422     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 423                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 424                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 425                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 426                         absorb_size / K,
 427                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 428                         young_gen->from_space()->used_in_bytes() / K,
 429                         young_gen->to_space()->used_in_bytes() / K,
 430                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 431   }
 432 
 433   // Fill the unused part of the old gen.
 434   MutableSpace* const old_space = old_gen->object_space();
 435   HeapWord* const unused_start = old_space->top();
 436   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 437 
 438   if (unused_words > 0) {
 439     if (unused_words < CollectedHeap::min_fill_size()) {
 440       return false;  // If the old gen cannot be filled, must give up.
 441     }
 442     CollectedHeap::fill_with_objects(unused_start, unused_words);
 443   }
 444 
 445   // Take the live data from eden and set both top and end in the old gen to
 446   // eden top.  (Need to set end because reset_after_change() mangles the region
 447   // from end to virtual_space->high() in debug builds).
 448   HeapWord* const new_top = eden_space->top();
 449   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 450                                         absorb_size);
 451   young_gen->reset_after_change();
 452   old_space->set_top(new_top);
 453   old_space->set_end(new_top);
 454   old_gen->reset_after_change();
 455 
 456   // Update the object start array for the filler object and the data from eden.
 457   ObjectStartArray* const start_array = old_gen->start_array();
 458   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
 459     start_array->allocate_block(p);
 460   }
 461 
 462   // Could update the promoted average here, but it is not typically updated at
 463   // full GCs and the value to use is unclear.  Something like
 464   //
 465   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
 466 
 467   size_policy->set_bytes_absorbed_from_eden(absorb_size);
 468   return true;
 469 }
 470 
 471 void PSMarkSweep::allocate_stacks() {
 472   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 473   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 474 
 475   PSYoungGen* young_gen = heap->young_gen();
 476 
 477   MutableSpace* to_space = young_gen->to_space();
 478   _preserved_marks = (PreservedMark*)to_space->top();
 479   _preserved_count = 0;
 480 
 481   // We want to calculate the size in bytes first.
 482   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 483   // Now divide by the size of a PreservedMark
 484   _preserved_count_max /= sizeof(PreservedMark);
 485 }
 486 
 487 
 488 void PSMarkSweep::deallocate_stacks() {
 489   _preserved_mark_stack.clear(true);
 490   _preserved_oop_stack.clear(true);
 491   _marking_stack.clear();
 492   _objarray_stack.clear(true);
 493   _revisit_klass_stack.clear(true);
 494   _revisit_mdo_stack.clear(true);
 495 }
 496 
 497 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 498   // Recursively traverse all live objects and mark them
 499   TraceTime tm("phase 1", PrintGCDetails && Verbose, true, gclog_or_tty);
 500   trace(" 1");
 501 
 502   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 503   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 504 
 505   // General strong roots.
 506   {
 507     ParallelScavengeHeap::ParStrongRootsScope psrs;
 508     Universe::oops_do(mark_and_push_closure());
 509     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 510     CodeBlobToOopClosure each_active_code_blob(mark_and_push_closure(), /*do_marking=*/ true);
 511     Threads::oops_do(mark_and_push_closure(), &each_active_code_blob);
 512     ObjectSynchronizer::oops_do(mark_and_push_closure());
 513     FlatProfiler::oops_do(mark_and_push_closure());
 514     Management::oops_do(mark_and_push_closure());
 515     JvmtiExport::oops_do(mark_and_push_closure());
 516     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 517     // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
 518     //CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure(mark_and_push_closure()));
 519   }
 520 
 521   // Flush marking stack.
 522   follow_stack();
 523 
 524   // Process reference objects found during marking
 525   {
 526     ref_processor()->setup_policy(clear_all_softrefs);
 527     ref_processor()->process_discovered_references(
 528       is_alive_closure(), mark_and_push_closure(), follow_stack_closure(), NULL);
 529   }
 530 
 531   // Follow system dictionary roots and unload classes
 532   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 533 
 534   // Follow code cache roots
 535   CodeCache::do_unloading(is_alive_closure(), mark_and_push_closure(),
 536                           purged_class);
 537   follow_stack(); // Flush marking stack
 538 
 539   // Update subklass/sibling/implementor links of live klasses
 540   follow_weak_klass_links();
 541   assert(_marking_stack.is_empty(), "just drained");
 542 
 543   // Visit memoized mdo's and clear unmarked weak refs
 544   follow_mdo_weak_refs();
 545   assert(_marking_stack.is_empty(), "just drained");
 546 
 547   // Visit interned string tables and delete unmarked oops
 548   StringTable::unlink(is_alive_closure());
 549   // Clean up unreferenced symbols in symbol table.
 550   SymbolTable::unlink();
 551 
 552   assert(_marking_stack.is_empty(), "stack should be empty by now");
 553 }
 554 
 555 
 556 void PSMarkSweep::mark_sweep_phase2() {
 557   TraceTime tm("phase 2", PrintGCDetails && Verbose, true, gclog_or_tty);
 558   trace("2");
 559 
 560   // Now all live objects are marked, compute the new object addresses.
 561 
 562   // It is imperative that we traverse perm_gen LAST. If dead space is
 563   // allowed a range of dead object may get overwritten by a dead int
 564   // array. If perm_gen is not traversed last a klassOop may get
 565   // overwritten. This is fine since it is dead, but if the class has dead
 566   // instances we have to skip them, and in order to find their size we
 567   // need the klassOop!
 568   //
 569   // It is not required that we traverse spaces in the same order in
 570   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 571   // tracking expects us to do so. See comment under phase4.
 572 
 573   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 574   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 575 
 576   PSOldGen* old_gen = heap->old_gen();
 577   PSPermGen* perm_gen = heap->perm_gen();
 578 
 579   // Begin compacting into the old gen
 580   PSMarkSweepDecorator::set_destination_decorator_tenured();
 581 
 582   // This will also compact the young gen spaces.
 583   old_gen->precompact();
 584 
 585   // Compact the perm gen into the perm gen
 586   PSMarkSweepDecorator::set_destination_decorator_perm_gen();
 587 
 588   perm_gen->precompact();
 589 }
 590 
 591 // This should be moved to the shared markSweep code!
 592 class PSAlwaysTrueClosure: public BoolObjectClosure {
 593 public:
 594   void do_object(oop p) { ShouldNotReachHere(); }
 595   bool do_object_b(oop p) { return true; }
 596 };
 597 static PSAlwaysTrueClosure always_true;
 598 
 599 void PSMarkSweep::mark_sweep_phase3() {
 600   // Adjust the pointers to reflect the new locations
 601   TraceTime tm("phase 3", PrintGCDetails && Verbose, true, gclog_or_tty);
 602   trace("3");
 603 
 604   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 605   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 606 
 607   PSYoungGen* young_gen = heap->young_gen();
 608   PSOldGen* old_gen = heap->old_gen();
 609   PSPermGen* perm_gen = heap->perm_gen();
 610 
 611   // General strong roots.
 612   Universe::oops_do(adjust_root_pointer_closure());
 613   JNIHandles::oops_do(adjust_root_pointer_closure());   // Global (strong) JNI handles
 614   Threads::oops_do(adjust_root_pointer_closure(), NULL);
 615   ObjectSynchronizer::oops_do(adjust_root_pointer_closure());
 616   FlatProfiler::oops_do(adjust_root_pointer_closure());
 617   Management::oops_do(adjust_root_pointer_closure());
 618   JvmtiExport::oops_do(adjust_root_pointer_closure());
 619   // SO_AllClasses
 620   SystemDictionary::oops_do(adjust_root_pointer_closure());
 621   //CodeCache::scavenge_root_nmethods_oops_do(adjust_root_pointer_closure());
 622 
 623   // Now adjust pointers in remaining weak roots.  (All of which should
 624   // have been cleared if they pointed to non-surviving objects.)
 625   // Global (weak) JNI handles
 626   JNIHandles::weak_oops_do(&always_true, adjust_root_pointer_closure());
 627 
 628   CodeCache::oops_do(adjust_pointer_closure());
 629   StringTable::oops_do(adjust_root_pointer_closure());
 630   ref_processor()->weak_oops_do(adjust_root_pointer_closure());
 631   PSScavenge::reference_processor()->weak_oops_do(adjust_root_pointer_closure());
 632 
 633   adjust_marks();
 634 
 635   young_gen->adjust_pointers();
 636   old_gen->adjust_pointers();
 637   perm_gen->adjust_pointers();
 638 }
 639 
 640 void PSMarkSweep::mark_sweep_phase4() {
 641   EventMark m("4 compact heap");
 642   TraceTime tm("phase 4", PrintGCDetails && Verbose, true, gclog_or_tty);
 643   trace("4");
 644 
 645   // All pointers are now adjusted, move objects accordingly
 646 
 647   // It is imperative that we traverse perm_gen first in phase4. All
 648   // classes must be allocated earlier than their instances, and traversing
 649   // perm_gen first makes sure that all klassOops have moved to their new
 650   // location before any instance does a dispatch through it's klass!
 651   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 652   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 653 
 654   PSYoungGen* young_gen = heap->young_gen();
 655   PSOldGen* old_gen = heap->old_gen();
 656   PSPermGen* perm_gen = heap->perm_gen();
 657 
 658   perm_gen->compact();
 659   old_gen->compact();
 660   young_gen->compact();
 661 }
 662 
 663 jlong PSMarkSweep::millis_since_last_gc() {
 664   // We need a monotonically non-deccreasing time in ms but
 665   // os::javaTimeMillis() does not guarantee monotonicity.
 666   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 667   jlong ret_val = now - _time_of_last_gc;
 668   // XXX See note in genCollectedHeap::millis_since_last_gc().
 669   if (ret_val < 0) {
 670     NOT_PRODUCT(warning("time warp: "INT64_FORMAT, ret_val);)
 671     return 0;
 672   }
 673   return ret_val;
 674 }
 675 
 676 void PSMarkSweep::reset_millis_since_last_gc() {
 677   // We need a monotonically non-deccreasing time in ms but
 678   // os::javaTimeMillis() does not guarantee monotonicity.
 679   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 680 }