1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/metaspaceShared.hpp"
  29 #include "memory/padded.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/biasedLocking.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/objectMonitor.inline.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/synchronizer.hpp"
  43 #include "runtime/thread.inline.hpp"
  44 #include "runtime/vframe.hpp"
  45 #include "trace/traceMacros.hpp"
  46 #include "trace/tracing.hpp"
  47 #include "utilities/dtrace.hpp"
  48 #include "utilities/events.hpp"
  49 #include "utilities/preserveException.hpp"
  50 
  51 // The "core" versions of monitor enter and exit reside in this file.
  52 // The interpreter and compilers contain specialized transliterated
  53 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  54 // for instance.  If you make changes here, make sure to modify the
  55 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  56 //
  57 // -----------------------------------------------------------------------------
  58 
  59 #ifdef DTRACE_ENABLED
  60 
  61 // Only bother with this argument setup if dtrace is available
  62 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  63 
  64 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  65   char* bytes = NULL;                                                      \
  66   int len = 0;                                                             \
  67   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  68   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  69   if (klassname != NULL) {                                                 \
  70     bytes = (char*)klassname->bytes();                                     \
  71     len = klassname->utf8_length();                                        \
  72   }
  73 
  74 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  75   {                                                                        \
  76     if (DTraceMonitorProbes) {                                             \
  77       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  78       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  79                            (uintptr_t)(monitor), bytes, len, (millis));    \
  80     }                                                                      \
  81   }
  82 
  83 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  84 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  85 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  86 
  87 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  88   {                                                                        \
  89     if (DTraceMonitorProbes) {                                             \
  90       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  91       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  92                                     (uintptr_t)(monitor), bytes, len);     \
  93     }                                                                      \
  94   }
  95 
  96 #else //  ndef DTRACE_ENABLED
  97 
  98 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
  99 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 100 
 101 #endif // ndef DTRACE_ENABLED
 102 
 103 // This exists only as a workaround of dtrace bug 6254741
 104 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 105   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 106   return 0;
 107 }
 108 
 109 #define NINFLATIONLOCKS 256
 110 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 111 
 112 // global list of blocks of monitors
 113 // gBlockList is really PaddedEnd<ObjectMonitor> *, but we don't
 114 // want to expose the PaddedEnd template more than necessary.
 115 ObjectMonitor * volatile ObjectSynchronizer::gBlockList = NULL;
 116 // global monitor free list
 117 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 118 ObjectMonitor * ObjectSynchronizer::gFreeListNextSafepoint  = NULL;
 119 ObjectMonitor * ObjectSynchronizer::gFreeListNextSafepointTail  = NULL;
 120 // global monitor in-use list, for moribund threads,
 121 // monitors they inflated need to be scanned for deflation
 122 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 123 // count of entries in gOmInUseList
 124 int ObjectSynchronizer::gOmInUseCount = 0;
 125 
 126 bool ObjectSynchronizer::_should_deflate_idle_monitors_conc = false;
 127 
 128 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 129 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 130 static int gMonitorFreeCountNextSafepoint = 0;
 131 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 132 
 133 static void post_monitor_inflate_event(EventJavaMonitorInflate&,
 134                                        const oop,
 135                                        const ObjectSynchronizer::InflateCause);
 136 
 137 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 138 
 139 
 140 // =====================> Quick functions
 141 
 142 // The quick_* forms are special fast-path variants used to improve
 143 // performance.  In the simplest case, a "quick_*" implementation could
 144 // simply return false, in which case the caller will perform the necessary
 145 // state transitions and call the slow-path form.
 146 // The fast-path is designed to handle frequently arising cases in an efficient
 147 // manner and is just a degenerate "optimistic" variant of the slow-path.
 148 // returns true  -- to indicate the call was satisfied.
 149 // returns false -- to indicate the call needs the services of the slow-path.
 150 // A no-loitering ordinance is in effect for code in the quick_* family
 151 // operators: safepoints or indefinite blocking (blocking that might span a
 152 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 153 // entry.
 154 //
 155 // Consider: An interesting optimization is to have the JIT recognize the
 156 // following common idiom:
 157 //   synchronized (someobj) { .... ; notify(); }
 158 // That is, we find a notify() or notifyAll() call that immediately precedes
 159 // the monitorexit operation.  In that case the JIT could fuse the operations
 160 // into a single notifyAndExit() runtime primitive.
 161 
 162 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 163   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 164   assert(self->is_Java_thread(), "invariant");
 165   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 166   NoSafepointVerifier nsv;
 167   if (obj == NULL) return false;  // slow-path for invalid obj
 168   const markOop mark = obj->mark();
 169 
 170   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 171     // Degenerate notify
 172     // stack-locked by caller so by definition the implied waitset is empty.
 173     return true;
 174   }
 175 
 176   if (mark->has_monitor()) {
 177     ObjectMonitor * const mon = mark->monitor();
 178     assert(mon->object() == obj, "invariant");
 179     if (mon->owner() != self) return false;  // slow-path for IMS exception
 180 
 181     if (mon->first_waiter() != NULL) {
 182       // We have one or more waiters. Since this is an inflated monitor
 183       // that we own, we can transfer one or more threads from the waitset
 184       // to the entrylist here and now, avoiding the slow-path.
 185       if (all) {
 186         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 187       } else {
 188         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 189       }
 190       int tally = 0;
 191       do {
 192         mon->INotify(self);
 193         ++tally;
 194       } while (mon->first_waiter() != NULL && all);
 195       OM_PERFDATA_OP(Notifications, inc(tally));
 196     }
 197     return true;
 198   }
 199 
 200   // biased locking and any other IMS exception states take the slow-path
 201   return false;
 202 }
 203 
 204 
 205 // The LockNode emitted directly at the synchronization site would have
 206 // been too big if it were to have included support for the cases of inflated
 207 // recursive enter and exit, so they go here instead.
 208 // Note that we can't safely call AsyncPrintJavaStack() from within
 209 // quick_enter() as our thread state remains _in_Java.
 210 
 211 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 212                                      BasicLock * lock) {
 213   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 214   assert(Self->is_Java_thread(), "invariant");
 215   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 216   NoSafepointVerifier nsv;
 217   if (obj == NULL) return false;       // Need to throw NPE
 218   const markOop mark = obj->mark();
 219 
 220   if (mark->has_monitor()) {
 221     ObjectMonitor * const m = mark->monitor();
 222     assert(m->object() == obj, "invariant");
 223     Thread * const owner = (Thread *) m->_owner;
 224 
 225     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 226     // and observability
 227     // Case: light contention possibly amenable to TLE
 228     // Case: TLE inimical operations such as nested/recursive synchronization
 229 
 230     if (owner == Self) {
 231       m->_recursions++;
 232       return true;
 233     }
 234 
 235     // This Java Monitor is inflated so obj's header will never be
 236     // displaced to this thread's BasicLock. Make the displaced header
 237     // non-NULL so this BasicLock is not seen as recursive nor as
 238     // being locked. We do this unconditionally so that this thread's
 239     // BasicLock cannot be mis-interpreted by any stack walkers. For
 240     // performance reasons, stack walkers generally first check for
 241     // Biased Locking in the object's header, the second check is for
 242     // stack-locking in the object's header, the third check is for
 243     // recursive stack-locking in the displaced header in the BasicLock,
 244     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 245     lock->set_displaced_header(markOopDesc::unused_mark());
 246 
 247     if (owner == NULL &&
 248         Atomic::cmpxchg_ptr(Self, &(m->_owner), NULL) == NULL) {
 249       assert(m->_recursions == 0, "invariant");
 250       assert(m->_owner == Self, "invariant");
 251       return true;
 252     }
 253   }
 254 
 255   // Note that we could inflate in quick_enter.
 256   // This is likely a useful optimization
 257   // Critically, in quick_enter() we must not:
 258   // -- perform bias revocation, or
 259   // -- block indefinitely, or
 260   // -- reach a safepoint
 261 
 262   return false;        // revert to slow-path
 263 }
 264 
 265 // -----------------------------------------------------------------------------
 266 //  Fast Monitor Enter/Exit
 267 // This the fast monitor enter. The interpreter and compiler use
 268 // some assembly copies of this code. Make sure update those code
 269 // if the following function is changed. The implementation is
 270 // extremely sensitive to race condition. Be careful.
 271 
 272 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 273                                     bool attempt_rebias, TRAPS) {
 274   if (UseBiasedLocking) {
 275     if (!SafepointSynchronize::is_at_safepoint()) {
 276       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 277       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 278         return;
 279       }
 280     } else {
 281       assert(!attempt_rebias, "can not rebias toward VM thread");
 282       BiasedLocking::revoke_at_safepoint(obj);
 283     }
 284     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 285   }
 286 
 287   slow_enter(obj, lock, THREAD);
 288 }
 289 
 290 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 291   markOop mark = object->mark();
 292   // We cannot check for Biased Locking if we are racing an inflation.
 293   assert(mark == markOopDesc::INFLATING() ||
 294          !mark->has_bias_pattern(), "should not see bias pattern here");
 295 
 296   markOop dhw = lock->displaced_header();
 297   if (dhw == NULL) {
 298     // If the displaced header is NULL, then this exit matches up with
 299     // a recursive enter. No real work to do here except for diagnostics.
 300 #ifndef PRODUCT
 301     if (mark != markOopDesc::INFLATING()) {
 302       // Only do diagnostics if we are not racing an inflation. Simply
 303       // exiting a recursive enter of a Java Monitor that is being
 304       // inflated is safe; see the has_monitor() comment below.
 305       assert(!mark->is_neutral(), "invariant");
 306       assert(!mark->has_locker() ||
 307              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 308       if (mark->has_monitor()) {
 309         // The BasicLock's displaced_header is marked as a recursive
 310         // enter and we have an inflated Java Monitor (ObjectMonitor).
 311         // This is a special case where the Java Monitor was inflated
 312         // after this thread entered the stack-lock recursively. When a
 313         // Java Monitor is inflated, we cannot safely walk the Java
 314         // Monitor owner's stack and update the BasicLocks because a
 315         // Java Monitor can be asynchronously inflated by a thread that
 316         // does not own the Java Monitor.
 317         ObjectMonitor * m = mark->monitor();
 318         assert(((oop)(m->object()))->mark() == mark, "invariant");
 319         assert(m->is_entered(THREAD), "invariant");
 320       }
 321     }
 322 #endif
 323     return;
 324   }
 325 
 326   if (mark == (markOop) lock) {
 327     // If the object is stack-locked by the current thread, try to
 328     // swing the displaced header from the BasicLock back to the mark.
 329     assert(dhw->is_neutral(), "invariant");
 330     if ((markOop) Atomic::cmpxchg_ptr(dhw, object->mark_addr(), mark) == mark) {
 331       TEVENT(fast_exit: release stack-lock);
 332       return;
 333     }
 334   }
 335 
 336   // We have to take the slow-path of possible inflation and then exit.
 337   ObjectSynchronizer::inflate(THREAD,
 338                               object,
 339                               inflate_cause_vm_internal)->exit(true, THREAD);
 340 }
 341 
 342 // -----------------------------------------------------------------------------
 343 // Interpreter/Compiler Slow Case
 344 // This routine is used to handle interpreter/compiler slow case
 345 // We don't need to use fast path here, because it must have been
 346 // failed in the interpreter/compiler code.
 347 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 348   do {
 349     markOop mark = obj->mark();
 350     assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 351 
 352     if (mark->is_neutral()) {
 353       // Anticipate successful CAS -- the ST of the displaced mark must
 354       // be visible <= the ST performed by the CAS.
 355       lock->set_displaced_header(mark);
 356       if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 357         TEVENT(slow_enter: release stacklock);
 358         return;
 359       }
 360       // Fall through to inflate() ...
 361     } else if (mark->has_locker() &&
 362                THREAD->is_lock_owned((address)mark->locker())) {
 363       assert(lock != mark->locker(), "must not re-lock the same lock");
 364       assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 365       lock->set_displaced_header(NULL);
 366       return;
 367     }
 368 
 369     // The object header will never be displaced to this lock,
 370     // so it does not matter what the value is, except that it
 371     // must be non-zero to avoid looking like a re-entrant lock,
 372     // and must not look locked either.
 373     lock->set_displaced_header(markOopDesc::unused_mark());
 374   } while (!ObjectSynchronizer::inflate(THREAD,
 375                                 obj(),
 376                                 inflate_cause_monitor_enter)->enter(THREAD));
 377 }
 378 
 379 // This routine is used to handle interpreter/compiler slow case
 380 // We don't need to use fast path here, because it must have
 381 // failed in the interpreter/compiler code. Simply use the heavy
 382 // weight monitor should be ok, unless someone find otherwise.
 383 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 384   fast_exit(object, lock, THREAD);
 385 }
 386 
 387 // -----------------------------------------------------------------------------
 388 // Class Loader  support to workaround deadlocks on the class loader lock objects
 389 // Also used by GC
 390 // complete_exit()/reenter() are used to wait on a nested lock
 391 // i.e. to give up an outer lock completely and then re-enter
 392 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 393 //  1) complete_exit lock1 - saving recursion count
 394 //  2) wait on lock2
 395 //  3) when notified on lock2, unlock lock2
 396 //  4) reenter lock1 with original recursion count
 397 //  5) lock lock2
 398 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 399 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 400   TEVENT(complete_exit);
 401   if (UseBiasedLocking) {
 402     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 403     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 404   }
 405 
 406   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 407                                                        obj(),
 408                                                        inflate_cause_vm_internal);
 409 
 410   return monitor->complete_exit(THREAD);
 411 }
 412 
 413 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 414 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 415   TEVENT(reenter);
 416   if (UseBiasedLocking) {
 417     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 418     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 419   }
 420 
 421   ObjectMonitor* monitor;
 422   do {
 423     monitor = ObjectSynchronizer::inflate(THREAD,
 424                                           obj(),
 425                                           inflate_cause_vm_internal);
 426   } while(!monitor->reenter(recursion, THREAD));
 427 }
 428 // -----------------------------------------------------------------------------
 429 // JNI locks on java objects
 430 // NOTE: must use heavy weight monitor to handle jni monitor enter
 431 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 432   // the current locking is from JNI instead of Java code
 433   TEVENT(jni_enter);
 434   if (UseBiasedLocking) {
 435     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 436     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 437   }
 438   THREAD->set_current_pending_monitor_is_from_java(false);
 439   while (!ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD));
 440   THREAD->set_current_pending_monitor_is_from_java(true);
 441 }
 442 
 443 // NOTE: must use heavy weight monitor to handle jni monitor exit
 444 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 445   TEVENT(jni_exit);
 446   if (UseBiasedLocking) {
 447     Handle h_obj(THREAD, obj);
 448     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 449     obj = h_obj();
 450   }
 451   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 452 
 453   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 454                                                        obj,
 455                                                        inflate_cause_jni_exit);
 456   // If this thread has locked the object, exit the monitor.  Note:  can't use
 457   // monitor->check(CHECK); must exit even if an exception is pending.
 458   if (monitor->check(THREAD)) {
 459     monitor->exit(true, THREAD);
 460   }
 461 }
 462 
 463 // -----------------------------------------------------------------------------
 464 // Internal VM locks on java objects
 465 // standard constructor, allows locking failures
 466 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 467   _dolock = doLock;
 468   _thread = thread;
 469   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 470   _obj = obj;
 471 
 472   if (_dolock) {
 473     TEVENT(ObjectLocker);
 474 
 475     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 476   }
 477 }
 478 
 479 ObjectLocker::~ObjectLocker() {
 480   if (_dolock) {
 481     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 482   }
 483 }
 484 
 485 
 486 // -----------------------------------------------------------------------------
 487 //  Wait/Notify/NotifyAll
 488 // NOTE: must use heavy weight monitor to handle wait()
 489 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 490   if (UseBiasedLocking) {
 491     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 492     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 493   }
 494   if (millis < 0) {
 495     TEVENT(wait - throw IAX);
 496     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 497   }
 498   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 499                                                        obj(),
 500                                                        inflate_cause_wait);
 501 
 502   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 503   monitor->wait(millis, true, THREAD);
 504 
 505   // This dummy call is in place to get around dtrace bug 6254741.  Once
 506   // that's fixed we can uncomment the following line, remove the call
 507   // and change this function back into a "void" func.
 508   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 509   return dtrace_waited_probe(monitor, obj, THREAD);
 510 }
 511 
 512 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 513   if (UseBiasedLocking) {
 514     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 515     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 516   }
 517   if (millis < 0) {
 518     TEVENT(wait - throw IAX);
 519     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 520   }
 521   ObjectSynchronizer::inflate(THREAD,
 522                               obj(),
 523                               inflate_cause_wait)->wait(millis, false, THREAD);
 524 }
 525 
 526 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 527   if (UseBiasedLocking) {
 528     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 529     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 530   }
 531 
 532   markOop mark = obj->mark();
 533   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 534     return;
 535   }
 536   ObjectSynchronizer::inflate(THREAD,
 537                               obj(),
 538                               inflate_cause_notify)->notify(THREAD);
 539 }
 540 
 541 // NOTE: see comment of notify()
 542 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 543   if (UseBiasedLocking) {
 544     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 545     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 546   }
 547 
 548   markOop mark = obj->mark();
 549   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 550     return;
 551   }
 552   ObjectSynchronizer::inflate(THREAD,
 553                               obj(),
 554                               inflate_cause_notify)->notifyAll(THREAD);
 555 }
 556 
 557 // -----------------------------------------------------------------------------
 558 // Hash Code handling
 559 //
 560 // Performance concern:
 561 // OrderAccess::storestore() calls release() which at one time stored 0
 562 // into the global volatile OrderAccess::dummy variable. This store was
 563 // unnecessary for correctness. Many threads storing into a common location
 564 // causes considerable cache migration or "sloshing" on large SMP systems.
 565 // As such, I avoided using OrderAccess::storestore(). In some cases
 566 // OrderAccess::fence() -- which incurs local latency on the executing
 567 // processor -- is a better choice as it scales on SMP systems.
 568 //
 569 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 570 // a discussion of coherency costs. Note that all our current reference
 571 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 572 // x64, and SPARC.
 573 //
 574 // As a general policy we use "volatile" to control compiler-based reordering
 575 // and explicit fences (barriers) to control for architectural reordering
 576 // performed by the CPU(s) or platform.
 577 
 578 struct SharedGlobals {
 579   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 580   // These are highly shared mostly-read variables.
 581   // To avoid false-sharing they need to be the sole occupants of a cache line.
 582   volatile int stwRandom;
 583   volatile int stwCycle;
 584   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 585   // Hot RW variable -- Sequester to avoid false-sharing
 586   volatile int hcSequence;
 587   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 588 };
 589 
 590 static SharedGlobals GVars;
 591 static int MonitorScavengeThreshold = 1000000;
 592 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 593 
 594 static markOop ReadStableMark(oop obj) {
 595   markOop mark = obj->mark();
 596   if (!mark->is_being_inflated()) {
 597     return mark;       // normal fast-path return
 598   }
 599 
 600   int its = 0;
 601   for (;;) {
 602     markOop mark = obj->mark();
 603     if (!mark->is_being_inflated()) {
 604       return mark;    // normal fast-path return
 605     }
 606 
 607     // The object is being inflated by some other thread.
 608     // The caller of ReadStableMark() must wait for inflation to complete.
 609     // Avoid live-lock
 610     // TODO: consider calling SafepointSynchronize::do_call_back() while
 611     // spinning to see if there's a safepoint pending.  If so, immediately
 612     // yielding or blocking would be appropriate.  Avoid spinning while
 613     // there is a safepoint pending.
 614     // TODO: add inflation contention performance counters.
 615     // TODO: restrict the aggregate number of spinners.
 616 
 617     ++its;
 618     if (its > 10000 || !os::is_MP()) {
 619       if (its & 1) {
 620         os::naked_yield();
 621         TEVENT(Inflate: INFLATING - yield);
 622       } else {
 623         // Note that the following code attenuates the livelock problem but is not
 624         // a complete remedy.  A more complete solution would require that the inflating
 625         // thread hold the associated inflation lock.  The following code simply restricts
 626         // the number of spinners to at most one.  We'll have N-2 threads blocked
 627         // on the inflationlock, 1 thread holding the inflation lock and using
 628         // a yield/park strategy, and 1 thread in the midst of inflation.
 629         // A more refined approach would be to change the encoding of INFLATING
 630         // to allow encapsulation of a native thread pointer.  Threads waiting for
 631         // inflation to complete would use CAS to push themselves onto a singly linked
 632         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 633         // and calling park().  When inflation was complete the thread that accomplished inflation
 634         // would detach the list and set the markword to inflated with a single CAS and
 635         // then for each thread on the list, set the flag and unpark() the thread.
 636         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 637         // wakes at most one thread whereas we need to wake the entire list.
 638         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 639         int YieldThenBlock = 0;
 640         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 641         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 642         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 643         while (obj->mark() == markOopDesc::INFLATING()) {
 644           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 645           // so we periodically call Self->_ParkEvent->park(1).
 646           // We use a mixed spin/yield/block mechanism.
 647           if ((YieldThenBlock++) >= 16) {
 648             Thread::current()->_ParkEvent->park(1);
 649           } else {
 650             os::naked_yield();
 651           }
 652         }
 653         Thread::muxRelease(gInflationLocks + ix);
 654         TEVENT(Inflate: INFLATING - yield/park);
 655       }
 656     } else {
 657       SpinPause();       // SMP-polite spinning
 658     }
 659   }
 660 }
 661 
 662 // hashCode() generation :
 663 //
 664 // Possibilities:
 665 // * MD5Digest of {obj,stwRandom}
 666 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 667 // * A DES- or AES-style SBox[] mechanism
 668 // * One of the Phi-based schemes, such as:
 669 //   2654435761 = 2^32 * Phi (golden ratio)
 670 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 671 // * A variation of Marsaglia's shift-xor RNG scheme.
 672 // * (obj ^ stwRandom) is appealing, but can result
 673 //   in undesirable regularity in the hashCode values of adjacent objects
 674 //   (objects allocated back-to-back, in particular).  This could potentially
 675 //   result in hashtable collisions and reduced hashtable efficiency.
 676 //   There are simple ways to "diffuse" the middle address bits over the
 677 //   generated hashCode values:
 678 
 679 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 680   intptr_t value = 0;
 681   if (hashCode == 0) {
 682     // This form uses an unguarded global Park-Miller RNG,
 683     // so it's possible for two threads to race and generate the same RNG.
 684     // On MP system we'll have lots of RW access to a global, so the
 685     // mechanism induces lots of coherency traffic.
 686     value = os::random();
 687   } else if (hashCode == 1) {
 688     // This variation has the property of being stable (idempotent)
 689     // between STW operations.  This can be useful in some of the 1-0
 690     // synchronization schemes.
 691     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 692     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 693   } else if (hashCode == 2) {
 694     value = 1;            // for sensitivity testing
 695   } else if (hashCode == 3) {
 696     value = ++GVars.hcSequence;
 697   } else if (hashCode == 4) {
 698     value = cast_from_oop<intptr_t>(obj);
 699   } else {
 700     // Marsaglia's xor-shift scheme with thread-specific state
 701     // This is probably the best overall implementation -- we'll
 702     // likely make this the default in future releases.
 703     unsigned t = Self->_hashStateX;
 704     t ^= (t << 11);
 705     Self->_hashStateX = Self->_hashStateY;
 706     Self->_hashStateY = Self->_hashStateZ;
 707     Self->_hashStateZ = Self->_hashStateW;
 708     unsigned v = Self->_hashStateW;
 709     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 710     Self->_hashStateW = v;
 711     value = v;
 712   }
 713 
 714   value &= markOopDesc::hash_mask;
 715   if (value == 0) value = 0xBAD;
 716   assert(value != markOopDesc::no_hash, "invariant");
 717   TEVENT(hashCode: GENERATE);
 718   return value;
 719 }
 720 
 721 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 722  Retry:
 723   if (UseBiasedLocking) {
 724     // NOTE: many places throughout the JVM do not expect a safepoint
 725     // to be taken here, in particular most operations on perm gen
 726     // objects. However, we only ever bias Java instances and all of
 727     // the call sites of identity_hash that might revoke biases have
 728     // been checked to make sure they can handle a safepoint. The
 729     // added check of the bias pattern is to avoid useless calls to
 730     // thread-local storage.
 731     if (obj->mark()->has_bias_pattern()) {
 732       // Handle for oop obj in case of STW safepoint
 733       Handle hobj(Self, obj);
 734       // Relaxing assertion for bug 6320749.
 735       assert(Universe::verify_in_progress() ||
 736              !SafepointSynchronize::is_at_safepoint(),
 737              "biases should not be seen by VM thread here");
 738       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 739       obj = hobj();
 740       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 741     }
 742   }
 743 
 744   // hashCode() is a heap mutator ...
 745   // Relaxing assertion for bug 6320749.
 746   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 747          !SafepointSynchronize::is_at_safepoint(), "invariant");
 748   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 749          Self->is_Java_thread() , "invariant");
 750   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 751          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 752 
 753   ObjectMonitor* monitor = NULL;
 754   markOop temp, test;
 755   intptr_t hash;
 756   markOop mark = ReadStableMark(obj);
 757 
 758   // object should remain ineligible for biased locking
 759   assert(!mark->has_bias_pattern(), "invariant");
 760 
 761   if (mark->is_neutral()) {
 762     hash = mark->hash();              // this is a normal header
 763     if (hash) {                       // if it has hash, just return it
 764       return hash;
 765     }
 766     hash = get_next_hash(Self, obj);  // allocate a new hash code
 767     temp = mark->copy_set_hash(hash); // merge the hash code into header
 768     // use (machine word version) atomic operation to install the hash
 769     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 770     if (test == mark) {
 771       return hash;
 772     }
 773     // If atomic operation failed, we must inflate the header
 774     // into heavy weight monitor. We could add more code here
 775     // for fast path, but it does not worth the complexity.
 776   } else if (mark->has_monitor()) {
 777     monitor = mark->monitor();
 778     temp = monitor->header();
 779     assert(temp->is_neutral() || temp->hash() == 0 && temp->is_marked(), "invariant");
 780     hash = temp->hash();
 781     if (hash) {
 782       return hash;
 783     }
 784     // Skip to the following code to reduce code size
 785   } else if (Self->is_lock_owned((address)mark->locker())) {
 786     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 787     assert(temp->is_neutral(), "invariant");
 788     hash = temp->hash();              // by current thread, check if the displaced
 789     if (hash) {                       // header contains hash code
 790       return hash;
 791     }
 792     // WARNING:
 793     //   The displaced header is strictly immutable.
 794     // It can NOT be changed in ANY cases. So we have
 795     // to inflate the header into heavyweight monitor
 796     // even the current thread owns the lock. The reason
 797     // is the BasicLock (stack slot) will be asynchronously
 798     // read by other threads during the inflate() function.
 799     // Any change to stack may not propagate to other threads
 800     // correctly.
 801   }
 802 
 803   // Inflate the monitor to set hash code
 804   monitor = ObjectSynchronizer::inflate(Self, obj, inflate_cause_hash_code);
 805   // Load displaced header and check it has hash code
 806   mark = monitor->header();
 807   assert(mark->is_neutral() || mark->hash() == 0 && mark->is_marked(), "invariant");
 808   hash = mark->hash();
 809   if (hash == 0) {
 810     hash = get_next_hash(Self, obj);
 811     temp = mark->set_unmarked()->copy_set_hash(hash); // merge hash code into header
 812     assert(temp->is_neutral(), "invariant");
 813     if (mark->is_marked()) {
 814       // Monitor is being deflated. Try installing mark word with hash code into obj.
 815       markOop monitor_mark = markOopDesc::encode(monitor);
 816       if (obj->cas_set_mark(temp, monitor_mark) == monitor_mark) {
 817         return hash;
 818       } else {
 819         // Somebody else installed a new mark word in obj. Start over. We are making progress,
 820         // as the new mark word is not a pointer to monitor.
 821         goto Retry;
 822       }
 823     }
 824     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 825     if (test != mark) {
 826       // The only update to the header in the monitor (outside GC) is install
 827       // the hash code or mark the header to signal that the monitor is being
 828       // deflated. If someone add new usage of displaced header, please update
 829       // this code.
 830       if (test->is_marked()) {
 831         // Monitor is being deflated. Make progress by starting over.
 832         assert(test->hash() == 0, "invariant");
 833         goto Retry;
 834       }
 835       hash = test->hash();
 836       assert(test->is_neutral(), "invariant");
 837       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 838     }
 839   }
 840   // We finally get the hash
 841   return hash;
 842 }
 843 
 844 // Deprecated -- use FastHashCode() instead.
 845 
 846 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 847   return FastHashCode(Thread::current(), obj());
 848 }
 849 
 850 
 851 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 852                                                    Handle h_obj) {
 853   if (UseBiasedLocking) {
 854     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 855     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 856   }
 857 
 858   assert(thread == JavaThread::current(), "Can only be called on current thread");
 859   oop obj = h_obj();
 860 
 861   markOop mark = ReadStableMark(obj);
 862 
 863   // Uncontended case, header points to stack
 864   if (mark->has_locker()) {
 865     return thread->is_lock_owned((address)mark->locker());
 866   }
 867   // Contended case, header points to ObjectMonitor (tagged pointer)
 868   if (mark->has_monitor()) {
 869     ObjectMonitor* monitor = mark->monitor();
 870     return monitor->is_entered(thread) != 0;
 871   }
 872   // Unlocked case, header in place
 873   assert(mark->is_neutral(), "sanity check");
 874   return false;
 875 }
 876 
 877 // Be aware of this method could revoke bias of the lock object.
 878 // This method queries the ownership of the lock handle specified by 'h_obj'.
 879 // If the current thread owns the lock, it returns owner_self. If no
 880 // thread owns the lock, it returns owner_none. Otherwise, it will return
 881 // owner_other.
 882 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 883 (JavaThread *self, Handle h_obj) {
 884   // The caller must beware this method can revoke bias, and
 885   // revocation can result in a safepoint.
 886   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 887   assert(self->thread_state() != _thread_blocked, "invariant");
 888 
 889   // Possible mark states: neutral, biased, stack-locked, inflated
 890 
 891   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 892     // CASE: biased
 893     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 894     assert(!h_obj->mark()->has_bias_pattern(),
 895            "biases should be revoked by now");
 896   }
 897 
 898   assert(self == JavaThread::current(), "Can only be called on current thread");
 899   oop obj = h_obj();
 900   markOop mark = ReadStableMark(obj);
 901 
 902   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 903   if (mark->has_locker()) {
 904     return self->is_lock_owned((address)mark->locker()) ?
 905       owner_self : owner_other;
 906   }
 907 
 908   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 909   // The Object:ObjectMonitor relationship is stable as long as we're
 910   // not at a safepoint.
 911   if (mark->has_monitor()) {
 912     void * owner = mark->monitor()->_owner;
 913     if (owner == NULL) return owner_none;
 914     return (owner == self ||
 915             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 916   }
 917 
 918   // CASE: neutral
 919   assert(mark->is_neutral(), "sanity check");
 920   return owner_none;           // it's unlocked
 921 }
 922 
 923 // FIXME: jvmti should call this
 924 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 925   if (UseBiasedLocking) {
 926     if (SafepointSynchronize::is_at_safepoint()) {
 927       BiasedLocking::revoke_at_safepoint(h_obj);
 928     } else {
 929       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 930     }
 931     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 932   }
 933 
 934   oop obj = h_obj();
 935   address owner = NULL;
 936 
 937   markOop mark = ReadStableMark(obj);
 938 
 939   // Uncontended case, header points to stack
 940   if (mark->has_locker()) {
 941     owner = (address) mark->locker();
 942   }
 943 
 944   // Contended case, header points to ObjectMonitor (tagged pointer)
 945   if (mark->has_monitor()) {
 946     ObjectMonitor* monitor = mark->monitor();
 947     assert(monitor != NULL, "monitor should be non-null");
 948     owner = (address) monitor->owner();
 949   }
 950 
 951   if (owner != NULL) {
 952     // owning_thread_from_monitor_owner() may also return NULL here
 953     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 954   }
 955 
 956   // Unlocked case, header in place
 957   // Cannot have assertion since this object may have been
 958   // locked by another thread when reaching here.
 959   // assert(mark->is_neutral(), "sanity check");
 960 
 961   return NULL;
 962 }
 963 
 964 // Visitors ...
 965 
 966 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 967   PaddedEnd<ObjectMonitor> * block =
 968     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
 969   while (block != NULL) {
 970     assert(block->object() == CHAINMARKER, "must be a block header");
 971     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 972       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 973       oop object = (oop)mid->object();
 974       if (object != NULL) {
 975         closure->do_monitor(mid);
 976       }
 977     }
 978     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 979   }
 980 }
 981 
 982 // Get the next block in the block list.
 983 static inline ObjectMonitor* next(ObjectMonitor* block) {
 984   assert(block->object() == CHAINMARKER, "must be a block header");
 985   block = block->FreeNext;
 986   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 987   return block;
 988 }
 989 
 990 
 991 void ObjectSynchronizer::oops_do(OopClosure* f) {
 992   if (MonitorInUseLists) {
 993     // When using thread local monitor lists, we only scan the
 994     // global used list here (for moribund threads), and
 995     // the thread-local monitors in Thread::oops_do().
 996     global_used_oops_do(f);
 997   } else {
 998     global_oops_do(f);
 999   }
1000 }
1001 
1002 void ObjectSynchronizer::global_oops_do(OopClosure* f) {
1003   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1004   PaddedEnd<ObjectMonitor> * block =
1005     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1006   for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1007     assert(block->object() == CHAINMARKER, "must be a block header");
1008     for (int i = 1; i < _BLOCKSIZE; i++) {
1009       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
1010       if (mid->is_active()) {
1011         assert(mid->object() != NULL, "invariant");
1012         f->do_oop((oop*)mid->object_addr());
1013       }
1014     }
1015   }
1016 }
1017 
1018 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1019   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1020   list_oops_do(gOmInUseList, f);
1021 }
1022 
1023 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1024   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1025   list_oops_do(thread->omInUseList, f);
1026 }
1027 
1028 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1029   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1030   ObjectMonitor* mid;
1031   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1032     if (mid->object() != NULL) {
1033       f->do_oop((oop*)mid->object_addr());
1034     }
1035   }
1036 }
1037 
1038 
1039 // -----------------------------------------------------------------------------
1040 // ObjectMonitor Lifecycle
1041 // -----------------------
1042 // Inflation unlinks monitors from the global gFreeList and
1043 // associates them with objects.  Deflation -- which occurs at
1044 // STW-time -- disassociates idle monitors from objects.  Such
1045 // scavenged monitors are returned to the gFreeList.
1046 //
1047 // The global list is protected by gListLock.  All the critical sections
1048 // are short and operate in constant-time.
1049 //
1050 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1051 //
1052 // Lifecycle:
1053 // --   unassigned and on the global free list
1054 // --   unassigned and on a thread's private omFreeList
1055 // --   assigned to an object.  The object is inflated and the mark refers
1056 //      to the objectmonitor.
1057 
1058 
1059 // Constraining monitor pool growth via MonitorBound ...
1060 //
1061 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1062 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1063 // an inordinate number of monitors in circulation.
1064 // To avoid that scenario we can artificially induce a STW safepoint
1065 // if the pool appears to be growing past some reasonable bound.
1066 // Generally we favor time in space-time tradeoffs, but as there's no
1067 // natural back-pressure on the # of extant monitors we need to impose some
1068 // type of limit.  Beware that if MonitorBound is set to too low a value
1069 // we could just loop. In addition, if MonitorBound is set to a low value
1070 // we'll incur more safepoints, which are harmful to performance.
1071 // See also: GuaranteedSafepointInterval
1072 //
1073 // The current implementation uses asynchronous VM operations.
1074 
1075 static void InduceScavenge(Thread * Self, const char * Whence) {
1076   // Induce STW safepoint to trim monitors
1077   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1078   // More precisely, trigger an asynchronous STW safepoint as the number
1079   // of active monitors passes the specified threshold.
1080   // TODO: assert thread state is reasonable
1081 
1082   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1083     if (ObjectMonitor::Knob_Verbose) {
1084       tty->print_cr("INFO: Monitor scavenge - Induced STW @%s (%d)",
1085                     Whence, ForceMonitorScavenge) ;
1086       tty->flush();
1087     }
1088     // Induce a 'null' safepoint to scavenge monitors
1089     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1090     // to the VMthread and have a lifespan longer than that of this activation record.
1091     // The VMThread will delete the op when completed.
1092     VMThread::execute(new VM_ScavengeMonitors());
1093 
1094     if (ObjectMonitor::Knob_Verbose) {
1095       tty->print_cr("INFO: Monitor scavenge - STW posted @%s (%d)",
1096                     Whence, ForceMonitorScavenge) ;
1097       tty->flush();
1098     }
1099   }
1100 }
1101 
1102 void ObjectSynchronizer::verifyInUse(Thread *Self) {
1103   ObjectMonitor* mid;
1104   int in_use_tally = 0;
1105   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1106     in_use_tally++;
1107     guarantee(mid->is_active(), "invariant");
1108   }
1109   guarantee(in_use_tally == Self->omInUseCount, "in-use count off");
1110 
1111   int free_tally = 0;
1112   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1113     free_tally++;
1114     guarantee(mid->is_free(), "invariant");
1115   }
1116   guarantee(free_tally == Self->omFreeCount, "free count off");
1117 }
1118 
1119 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1120   // A large MAXPRIVATE value reduces both list lock contention
1121   // and list coherency traffic, but also tends to increase the
1122   // number of objectMonitors in circulation as well as the STW
1123   // scavenge costs.  As usual, we lean toward time in space-time
1124   // tradeoffs.
1125   const int MAXPRIVATE = 1024;
1126   for (;;) {
1127     ObjectMonitor * m;
1128 
1129     // 1: try to allocate from the thread's local omFreeList.
1130     // Threads will attempt to allocate first from their local list, then
1131     // from the global list, and only after those attempts fail will the thread
1132     // attempt to instantiate new monitors.   Thread-local free lists take
1133     // heat off the gListLock and improve allocation latency, as well as reducing
1134     // coherency traffic on the shared global list.
1135     m = Self->omFreeList;
1136     if (m != NULL) {
1137       Self->omFreeList = m->FreeNext;
1138       Self->omFreeCount--;
1139       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1140       guarantee(m->object() == NULL, "invariant");
1141       m->set_allocation_state(ObjectMonitor::New);
1142       if (MonitorInUseLists) {
1143         m->FreeNext = Self->omInUseList;
1144         Self->omInUseList = m;
1145         Self->omInUseCount++;
1146         if (ObjectMonitor::Knob_VerifyInUse) {
1147           verifyInUse(Self);
1148         }
1149       } else {
1150         m->FreeNext = NULL;
1151       }
1152       assert(!m->is_free(), "post-condition");
1153       return m;
1154     }
1155 
1156     // 2: try to allocate from the global gFreeList
1157     // CONSIDER: use muxTry() instead of muxAcquire().
1158     // If the muxTry() fails then drop immediately into case 3.
1159     // If we're using thread-local free lists then try
1160     // to reprovision the caller's free list.
1161     if (gFreeList != NULL) {
1162       // Reprovision the thread's omFreeList.
1163       // Use bulk transfers to reduce the allocation rate and heat
1164       // on various locks.
1165       Thread::muxAcquire(&gListLock, "omAlloc");
1166       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1167         gMonitorFreeCount--;
1168         ObjectMonitor * take = gFreeList;
1169         gFreeList = take->FreeNext;
1170         take->set_object(NULL);
1171         take->set_owner(NULL);
1172         take->_count = 0;
1173         guarantee(!take->is_busy(), "invariant");
1174         take->Recycle();
1175         assert(take->is_free(), "invariant");
1176         omRelease(Self, take, false);
1177       }
1178       Thread::muxRelease(&gListLock);
1179       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1180       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1181       TEVENT(omFirst - reprovision);
1182 
1183       const int mx = MonitorBound;
1184       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1185         // We can't safely induce a STW safepoint from omAlloc() as our thread
1186         // state may not be appropriate for such activities and callers may hold
1187         // naked oops, so instead we defer the action.
1188         InduceScavenge(Self, "omAlloc");
1189       }
1190       continue;
1191     }
1192 
1193     // 3: allocate a block of new ObjectMonitors
1194     // Both the local and global free lists are empty -- resort to malloc().
1195     // In the current implementation objectMonitors are TSM - immortal.
1196     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1197     // each ObjectMonitor to start at the beginning of a cache line,
1198     // so we use align_size_up().
1199     // A better solution would be to use C++ placement-new.
1200     // BEWARE: As it stands currently, we don't run the ctors!
1201     assert(_BLOCKSIZE > 1, "invariant");
1202     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1203     PaddedEnd<ObjectMonitor> * temp;
1204     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1205     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1206                                                       mtInternal);
1207     temp = (PaddedEnd<ObjectMonitor> *)
1208              align_size_up((intptr_t)real_malloc_addr,
1209                            DEFAULT_CACHE_LINE_SIZE);
1210 
1211     // NOTE: (almost) no way to recover if allocation failed.
1212     // We might be able to induce a STW safepoint and scavenge enough
1213     // objectMonitors to permit progress.
1214     if (temp == NULL) {
1215       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1216                             "Allocate ObjectMonitors");
1217     }
1218     (void)memset((void *) temp, 0, neededsize);
1219 
1220     // Format the block.
1221     // initialize the linked list, each monitor points to its next
1222     // forming the single linked free list, the very first monitor
1223     // will points to next block, which forms the block list.
1224     // The trick of using the 1st element in the block as gBlockList
1225     // linkage should be reconsidered.  A better implementation would
1226     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1227 
1228     for (int i = 1; i < _BLOCKSIZE; i++) {
1229       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1230       assert(temp[i].is_free(), "invariant");
1231     }
1232 
1233     // terminate the last monitor as the end of list
1234     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1235 
1236     // Element [0] is reserved for global list linkage
1237     temp[0].set_object(CHAINMARKER);
1238 
1239     // Consider carving out this thread's current request from the
1240     // block in hand.  This avoids some lock traffic and redundant
1241     // list activity.
1242 
1243     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1244     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1245     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1246     gMonitorPopulation += _BLOCKSIZE-1;
1247     gMonitorFreeCount += _BLOCKSIZE-1;
1248 
1249     // Add the new block to the list of extant blocks (gBlockList).
1250     // The very first objectMonitor in a block is reserved and dedicated.
1251     // It serves as blocklist "next" linkage.
1252     temp[0].FreeNext = gBlockList;
1253     // There are lock-free uses of gBlockList so make sure that
1254     // the previous stores happen before we update gBlockList.
1255     OrderAccess::release_store_ptr(&gBlockList, temp);
1256 
1257     // Add the new string of objectMonitors to the global free list
1258     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1259     gFreeList = temp + 1;
1260     Thread::muxRelease(&gListLock);
1261     TEVENT(Allocate block of monitors);
1262   }
1263 }
1264 
1265 // Place "m" on the caller's private per-thread omFreeList.
1266 // In practice there's no need to clamp or limit the number of
1267 // monitors on a thread's omFreeList as the only time we'll call
1268 // omRelease is to return a monitor to the free list after a CAS
1269 // attempt failed.  This doesn't allow unbounded #s of monitors to
1270 // accumulate on a thread's free list.
1271 //
1272 // Key constraint: all ObjectMonitors on a thread's free list and the global
1273 // free list must have their object field set to null. This prevents the
1274 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1275 
1276 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1277                                    bool fromPerThreadAlloc) {
1278   guarantee(m->object() == NULL, "invariant");
1279   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1280   m->set_allocation_state(ObjectMonitor::Free);
1281   // Remove from omInUseList
1282   if (MonitorInUseLists && fromPerThreadAlloc) {
1283     ObjectMonitor* cur_mid_in_use = NULL;
1284     bool extracted = false;
1285     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1286       if (m == mid) {
1287         // extract from per-thread in-use list
1288         if (mid == Self->omInUseList) {
1289           Self->omInUseList = mid->FreeNext;
1290         } else if (cur_mid_in_use != NULL) {
1291           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1292         }
1293         extracted = true;
1294         Self->omInUseCount--;
1295         if (ObjectMonitor::Knob_VerifyInUse) {
1296           verifyInUse(Self);
1297         }
1298         break;
1299       }
1300     }
1301     assert(extracted, "Should have extracted from in-use list");
1302   }
1303 
1304   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1305   m->FreeNext = Self->omFreeList;
1306   Self->omFreeList = m;
1307   Self->omFreeCount++;
1308 }
1309 
1310 // Return the monitors of a moribund thread's local free list to
1311 // the global free list.  Typically a thread calls omFlush() when
1312 // it's dying.  We could also consider having the VM thread steal
1313 // monitors from threads that have not run java code over a few
1314 // consecutive STW safepoints.  Relatedly, we might decay
1315 // omFreeProvision at STW safepoints.
1316 //
1317 // Also return the monitors of a moribund thread's omInUseList to
1318 // a global gOmInUseList under the global list lock so these
1319 // will continue to be scanned.
1320 //
1321 // We currently call omFlush() from Threads::remove() _before the thread
1322 // has been excised from the thread list and is no longer a mutator.
1323 // This means that omFlush() can not run concurrently with a safepoint and
1324 // interleave with the scavenge operator. In particular, this ensures that
1325 // the thread's monitors are scanned by a GC safepoint, either via
1326 // Thread::oops_do() (if safepoint happens before omFlush()) or via
1327 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1328 // monitors have been transferred to the global in-use list).
1329 
1330 void ObjectSynchronizer::omFlush(Thread * Self) {
1331   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1332   Self->omFreeList = NULL;
1333   ObjectMonitor * tail = NULL;
1334   int tally = 0;
1335   if (list != NULL) {
1336     ObjectMonitor * s;
1337     // The thread is going away, the per-thread free monitors
1338     // are freed via set_owner(NULL)
1339     // Link them to tail, which will be linked into the global free list
1340     // gFreeList below, under the gListLock
1341     for (s = list; s != NULL; s = s->FreeNext) {
1342       tally++;
1343       tail = s;
1344       guarantee(s->object() == NULL, "invariant");
1345       guarantee(!s->is_busy(), "invariant");
1346       s->set_owner(NULL);   // redundant but good hygiene
1347       TEVENT(omFlush - Move one);
1348     }
1349     guarantee(tail != NULL && list != NULL, "invariant");
1350   }
1351 
1352   ObjectMonitor * inUseList = Self->omInUseList;
1353   ObjectMonitor * inUseTail = NULL;
1354   int inUseTally = 0;
1355   if (inUseList != NULL) {
1356     Self->omInUseList = NULL;
1357     ObjectMonitor *cur_om;
1358     // The thread is going away, however the omInUseList inflated
1359     // monitors may still be in-use by other threads.
1360     // Link them to inUseTail, which will be linked into the global in-use list
1361     // gOmInUseList below, under the gListLock
1362     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1363       inUseTail = cur_om;
1364       inUseTally++;
1365     }
1366     assert(Self->omInUseCount == inUseTally, "in-use count off");
1367     Self->omInUseCount = 0;
1368     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1369   }
1370 
1371   Thread::muxAcquire(&gListLock, "omFlush");
1372   if (tail != NULL) {
1373     tail->FreeNext = gFreeList;
1374     gFreeList = list;
1375     gMonitorFreeCount += tally;
1376     assert(Self->omFreeCount == tally, "free-count off");
1377     Self->omFreeCount = 0;
1378   }
1379 
1380   if (inUseTail != NULL) {
1381     inUseTail->FreeNext = gOmInUseList;
1382     gOmInUseList = inUseList;
1383     gOmInUseCount += inUseTally;
1384   }
1385 
1386   Thread::muxRelease(&gListLock);
1387   TEVENT(omFlush);
1388 }
1389 
1390 // Fast path code shared by multiple functions
1391 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1392   markOop mark = obj->mark();
1393   if (mark->has_monitor()) {
1394     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1395     markOop dmw = mark->monitor()->header();
1396     assert(dmw->is_neutral() || dmw->hash() == 0 && dmw->is_marked(), "monitor must record a good object header");
1397     if (dmw->is_neutral()) {
1398       return mark->monitor();
1399     }
1400   }
1401   return ObjectSynchronizer::inflate(Thread::current(),
1402                                      obj,
1403                                      inflate_cause_vm_internal);
1404 }
1405 
1406 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1407                                                      oop object,
1408                                                      const InflateCause cause) {
1409  Retry:
1410   // Inflate mutates the heap ...
1411   // Relaxing assertion for bug 6320749.
1412   assert(Universe::verify_in_progress() ||
1413          !SafepointSynchronize::is_at_safepoint(), "invariant");
1414 
1415   EventJavaMonitorInflate event;
1416 
1417   for (;;) {
1418     const markOop mark = object->mark();
1419     assert(!mark->has_bias_pattern(), "invariant");
1420 
1421     // The mark can be in one of the following states:
1422     // *  Inflated     - just return
1423     // *  Stack-locked - coerce it to inflated
1424     // *  INFLATING    - busy wait for conversion to complete
1425     // *  Neutral      - aggressively inflate the object.
1426     // *  BIASED       - Illegal.  We should never see this
1427 
1428     // CASE: inflated
1429     if (mark->has_monitor()) {
1430       ObjectMonitor * inf = mark->monitor();
1431       markOop dmw = inf->header();
1432       assert(dmw->is_neutral() || dmw->hash() == 0 && dmw->is_marked(), "invariant");
1433       if (dmw->is_marked()) {
1434         goto Retry;
1435       }
1436       assert(inf->object() == object, "invariant");
1437       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1438       event.cancel(); // let's not post an inflation event, unless we did the deed ourselves
1439       return inf;
1440     }
1441 
1442     // CASE: inflation in progress - inflating over a stack-lock.
1443     // Some other thread is converting from stack-locked to inflated.
1444     // Only that thread can complete inflation -- other threads must wait.
1445     // The INFLATING value is transient.
1446     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1447     // We could always eliminate polling by parking the thread on some auxiliary list.
1448     if (mark == markOopDesc::INFLATING()) {
1449       TEVENT(Inflate: spin while INFLATING);
1450       ReadStableMark(object);
1451       continue;
1452     }
1453 
1454     // CASE: stack-locked
1455     // Could be stack-locked either by this thread or by some other thread.
1456     //
1457     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1458     // to install INFLATING into the mark word.  We originally installed INFLATING,
1459     // allocated the objectmonitor, and then finally STed the address of the
1460     // objectmonitor into the mark.  This was correct, but artificially lengthened
1461     // the interval in which INFLATED appeared in the mark, thus increasing
1462     // the odds of inflation contention.
1463     //
1464     // We now use per-thread private objectmonitor free lists.
1465     // These list are reprovisioned from the global free list outside the
1466     // critical INFLATING...ST interval.  A thread can transfer
1467     // multiple objectmonitors en-mass from the global free list to its local free list.
1468     // This reduces coherency traffic and lock contention on the global free list.
1469     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1470     // before or after the CAS(INFLATING) operation.
1471     // See the comments in omAlloc().
1472 
1473     if (mark->has_locker()) {
1474       ObjectMonitor * m = omAlloc(Self);
1475       // Optimistically prepare the objectmonitor - anticipate successful CAS
1476       // We do this before the CAS in order to minimize the length of time
1477       // in which INFLATING appears in the mark.
1478       m->Recycle();
1479       m->_Responsible  = NULL;
1480       m->_recursions   = 0;
1481       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1482 
1483       markOop cmp = (markOop) Atomic::cmpxchg_ptr(markOopDesc::INFLATING(), object->mark_addr(), mark);
1484       if (cmp != mark) {
1485         omRelease(Self, m, true);
1486         continue;       // Interference -- just retry
1487       }
1488 
1489       // We've successfully installed INFLATING (0) into the mark-word.
1490       // This is the only case where 0 will appear in a mark-word.
1491       // Only the singular thread that successfully swings the mark-word
1492       // to 0 can perform (or more precisely, complete) inflation.
1493       //
1494       // Why do we CAS a 0 into the mark-word instead of just CASing the
1495       // mark-word from the stack-locked value directly to the new inflated state?
1496       // Consider what happens when a thread unlocks a stack-locked object.
1497       // It attempts to use CAS to swing the displaced header value from the
1498       // on-stack basiclock back into the object header.  Recall also that the
1499       // header value (hashcode, etc) can reside in (a) the object header, or
1500       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1501       // header in an objectMonitor.  The inflate() routine must copy the header
1502       // value from the basiclock on the owner's stack to the objectMonitor, all
1503       // the while preserving the hashCode stability invariants.  If the owner
1504       // decides to release the lock while the value is 0, the unlock will fail
1505       // and control will eventually pass from slow_exit() to inflate.  The owner
1506       // will then spin, waiting for the 0 value to disappear.   Put another way,
1507       // the 0 causes the owner to stall if the owner happens to try to
1508       // drop the lock (restoring the header from the basiclock to the object)
1509       // while inflation is in-progress.  This protocol avoids races that might
1510       // would otherwise permit hashCode values to change or "flicker" for an object.
1511       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1512       // 0 serves as a "BUSY" inflate-in-progress indicator.
1513 
1514 
1515       // fetch the displaced mark from the owner's stack.
1516       // The owner can't die or unwind past the lock while our INFLATING
1517       // object is in the mark.  Furthermore the owner can't complete
1518       // an unlock on the object, either.
1519       markOop dmw = mark->displaced_mark_helper();
1520       assert(dmw->is_neutral(), "invariant");
1521 
1522       // Setup monitor fields to proper values -- prepare the monitor
1523       m->set_header(dmw);
1524 
1525       // Optimization: if the mark->locker stack address is associated
1526       // with this thread we could simply set m->_owner = Self.
1527       // Note that a thread can inflate an object
1528       // that it has stack-locked -- as might happen in wait() -- directly
1529       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1530       m->set_owner(mark->locker());
1531       m->set_object(object);
1532       // TODO-FIXME: assert BasicLock->dhw != 0.
1533 
1534       // Must preserve store ordering. The monitor state must
1535       // be stable at the time of publishing the monitor address.
1536       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1537       object->release_set_mark(markOopDesc::encode(m));
1538 
1539       // Hopefully the performance counters are allocated on distinct cache lines
1540       // to avoid false sharing on MP systems ...
1541       OM_PERFDATA_OP(Inflations, inc());
1542       TEVENT(Inflate: overwrite stacklock);
1543       if (log_is_enabled(Debug, monitorinflation)) {
1544         if (object->is_instance()) {
1545           ResourceMark rm;
1546           log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1547                                       p2i(object), p2i(object->mark()),
1548                                       object->klass()->external_name());
1549         }
1550       }
1551       if (event.should_commit()) {
1552         post_monitor_inflate_event(event, object, cause);
1553       }
1554       return m;
1555     }
1556 
1557     // CASE: neutral
1558     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1559     // If we know we're inflating for entry it's better to inflate by swinging a
1560     // pre-locked objectMonitor pointer into the object header.   A successful
1561     // CAS inflates the object *and* confers ownership to the inflating thread.
1562     // In the current implementation we use a 2-step mechanism where we CAS()
1563     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1564     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1565     // would be useful.
1566 
1567     assert(mark->is_neutral(), "invariant");
1568     ObjectMonitor * m = omAlloc(Self);
1569     // prepare m for installation - set monitor to initial state
1570     m->Recycle();
1571     m->set_header(mark);
1572     m->set_owner(NULL);
1573     m->set_object(object);
1574     m->_recursions   = 0;
1575     m->_Responsible  = NULL;
1576     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1577 
1578     if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1579       m->set_object(NULL);
1580       m->set_owner(NULL);
1581       m->Recycle();
1582       omRelease(Self, m, true);
1583       m = NULL;
1584       continue;
1585       // interference - the markword changed - just retry.
1586       // The state-transitions are one-way, so there's no chance of
1587       // live-lock -- "Inflated" is an absorbing state.
1588     }
1589 
1590     // Hopefully the performance counters are allocated on distinct
1591     // cache lines to avoid false sharing on MP systems ...
1592     OM_PERFDATA_OP(Inflations, inc());
1593     TEVENT(Inflate: overwrite neutral);
1594     if (log_is_enabled(Debug, monitorinflation)) {
1595       if (object->is_instance()) {
1596         ResourceMark rm;
1597         log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1598                                     p2i(object), p2i(object->mark()),
1599                                     object->klass()->external_name());
1600       }
1601     }
1602     if (event.should_commit()) {
1603       post_monitor_inflate_event(event, object, cause);
1604     }
1605     return m;
1606   }
1607 }
1608 
1609 
1610 // Deflate_idle_monitors() is called at all safepoints, immediately
1611 // after all mutators are stopped, but before any objects have moved.
1612 // It traverses the list of known monitors, deflating where possible.
1613 // The scavenged monitor are returned to the monitor free list.
1614 //
1615 // Beware that we scavenge at *every* stop-the-world point.
1616 // Having a large number of monitors in-circulation negatively
1617 // impacts the performance of some applications (e.g., PointBase).
1618 // Broadly, we want to minimize the # of monitors in circulation.
1619 //
1620 // We have added a flag, MonitorInUseLists, which creates a list
1621 // of active monitors for each thread. deflate_idle_monitors()
1622 // only scans the per-thread in-use lists. omAlloc() puts all
1623 // assigned monitors on the per-thread list. deflate_idle_monitors()
1624 // returns the non-busy monitors to the global free list.
1625 // When a thread dies, omFlush() adds the list of active monitors for
1626 // that thread to a global gOmInUseList acquiring the
1627 // global list lock. deflate_idle_monitors() acquires the global
1628 // list lock to scan for non-busy monitors to the global free list.
1629 // An alternative could have used a single global in-use list. The
1630 // downside would have been the additional cost of acquiring the global list lock
1631 // for every omAlloc().
1632 //
1633 // Perversely, the heap size -- and thus the STW safepoint rate --
1634 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1635 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1636 // This is an unfortunate aspect of this design.
1637 
1638 enum ManifestConstants {
1639   ClearResponsibleAtSTW = 0
1640 };
1641 
1642 void ObjectSynchronizer::do_safepoint_work() {
1643   if (MonitorInUseLists || !AsyncDeflateIdleMonitors) {
1644     ObjectSynchronizer::deflate_idle_monitors();
1645     return;
1646   }
1647   assert(AsyncDeflateIdleMonitors, "oops");
1648   if (gFreeListNextSafepoint != NULL) {
1649 #ifdef ASSERT
1650     for (ObjectMonitor* monitor = gFreeListNextSafepoint; monitor != NULL; monitor = monitor->FreeNext) {
1651       guarantee(monitor->owner() == NULL, "invariant");
1652       guarantee(monitor->waiters() == 0, "invariant");
1653       guarantee(monitor->recursions() == 0, "invariant");
1654       guarantee(monitor->object() != NULL, "invariant");
1655       guarantee(monitor->header() != 0, "invariant");
1656       guarantee(monitor->is_free(), "invariant");
1657     }
1658     guarantee(gFreeListNextSafepointTail != NULL, "invariant");
1659 #endif // def ASSERT
1660 
1661     Thread::muxAcquire(&gListLock, "do_safepoint_work");
1662     gFreeListNextSafepointTail->FreeNext = gFreeList;
1663     gFreeList = gFreeListNextSafepoint;
1664     gMonitorFreeCount += gMonitorFreeCountNextSafepoint;
1665     Thread::muxRelease(&gListLock);
1666 
1667     gFreeListNextSafepoint = NULL;
1668     gFreeListNextSafepointTail = NULL;
1669     gMonitorFreeCountNextSafepoint = 0;
1670   }
1671   set_should_deflate_idle_monitors_conc();
1672   MutexLockerEx ml(Service_lock, Mutex::_no_safepoint_check_flag);
1673   Service_lock->notify_all();
1674 }
1675 
1676 void ObjectSynchronizer::append_to_freelist_for_after_safepoint(int nScavenged, ObjectMonitor* const head, ObjectMonitor* const tail) {
1677 #ifdef ASSERT
1678   int count = 0;
1679   for(ObjectMonitor* m = head; m != NULL; m = m->FreeNext) { count++; }
1680   guarantee(count == nScavenged, "invariant");
1681 #endif // def ASSERT
1682   if (head != NULL) {
1683     assert(tail->FreeNext == NULL, "invariant");
1684     tail->FreeNext = gFreeListNextSafepoint;
1685     gFreeListNextSafepoint = head;
1686   }
1687   if (gFreeListNextSafepointTail == NULL) {
1688     gFreeListNextSafepointTail = tail;
1689   }
1690   gMonitorFreeCountNextSafepoint += nScavenged;
1691   OM_PERFDATA_OP(Deflations, inc(nScavenged));
1692 }
1693 
1694 void ObjectSynchronizer::deflate_idle_monitors_conc() {
1695   assert(Thread::current()->is_Java_thread(), "precondition");
1696   _should_deflate_idle_monitors_conc = false;
1697   if (MonitorInUseLists) {
1698     return; // Don't want to run over the thread list for now.
1699   }
1700 
1701   ObjectMonitor* freeHeadp = NULL;
1702   ObjectMonitor* freeTailp = NULL;
1703   int nScavenged = 0;
1704   int nInuse = 0;
1705   int nInCirculation = 0;
1706 
1707   PaddedEnd<ObjectMonitor> * block =
1708     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1709   for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1710     // Iterate over all extant monitors - Scavenge all idle monitors.
1711     assert(block->object() == CHAINMARKER, "must be a block header");
1712     if (SafepointSynchronize::is_synchronizing()) {
1713       append_to_freelist_for_after_safepoint(nScavenged, freeHeadp, freeTailp);
1714       nScavenged = 0;
1715       freeHeadp = NULL;
1716       freeTailp = NULL;
1717       JavaThread* const jt = (JavaThread*) Thread::current();
1718       ThreadBlockInVM blocker(jt);
1719     }
1720     nInCirculation += _BLOCKSIZE;
1721     for (int i = 1; i < _BLOCKSIZE; i++) {
1722       ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1723       if (!mid->is_old()) {
1724         // Skip deflating newly allocated or free monitors.
1725         if (mid->is_new()) {
1726           // Mark mid as "old".
1727           mid->set_allocation_state(ObjectMonitor::Old);
1728         }
1729         continue;
1730       }
1731 
1732       oop obj = (oop)mid->object();
1733       assert(obj != NULL, "invariant");
1734 
1735       if (mid->try_disable_monitor()) {
1736         mid->FreeNext = NULL;
1737         if (freeHeadp == NULL) { freeHeadp = mid; }
1738         if (freeTailp != NULL) { freeTailp->FreeNext = mid; }
1739         freeTailp = mid;
1740         nScavenged++;
1741       } else {
1742         nInuse++;
1743       }
1744     }
1745   }
1746   append_to_freelist_for_after_safepoint(nScavenged, freeHeadp, freeTailp);
1747   OM_PERFDATA_OP(MonExtant, set_value(nInCirculation));
1748 }
1749 
1750 // Deflate a single monitor if not in-use
1751 // Return true if deflated, false if in-use
1752 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1753                                          ObjectMonitor** freeHeadp,
1754                                          ObjectMonitor** freeTailp) {
1755   bool deflated;
1756   // Normal case ... The monitor is associated with obj.
1757   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1758   guarantee(mid == obj->mark()->monitor(), "invariant");
1759   guarantee(mid->header()->is_neutral(), "invariant");
1760 
1761   if (mid->is_busy()) {
1762     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1763     deflated = false;
1764   } else {
1765     // Deflate the monitor if it is no longer being used
1766     // It's idle - scavenge and return to the global free list
1767     // plain old deflation ...
1768     TEVENT(deflate_idle_monitors - scavenge1);
1769     if (log_is_enabled(Debug, monitorinflation)) {
1770       if (obj->is_instance()) {
1771         ResourceMark rm;
1772         log_debug(monitorinflation)("Deflating object " INTPTR_FORMAT " , "
1773                                     "mark " INTPTR_FORMAT " , type %s",
1774                                     p2i(obj), p2i(obj->mark()),
1775                                     obj->klass()->external_name());
1776       }
1777     }
1778 
1779     // Restore the header back to obj
1780     obj->release_set_mark(mid->header());
1781     mid->clear();
1782 
1783     assert(mid->object() == NULL, "invariant");
1784     assert(mid->is_free(), "invariant");
1785 
1786     // Move the object to the working free list defined by freeHeadp, freeTailp
1787     if (*freeHeadp == NULL) *freeHeadp = mid;
1788     if (*freeTailp != NULL) {
1789       ObjectMonitor * prevtail = *freeTailp;
1790       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1791       prevtail->FreeNext = mid;
1792     }
1793     *freeTailp = mid;
1794     deflated = true;
1795   }
1796   return deflated;
1797 }
1798 
1799 // Walk a given monitor list, and deflate idle monitors
1800 // The given list could be a per-thread list or a global list
1801 // Caller acquires gListLock
1802 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1803                                              ObjectMonitor** freeHeadp,
1804                                              ObjectMonitor** freeTailp) {
1805   ObjectMonitor* mid;
1806   ObjectMonitor* next;
1807   ObjectMonitor* cur_mid_in_use = NULL;
1808   int deflated_count = 0;
1809 
1810   for (mid = *listHeadp; mid != NULL;) {
1811     oop obj = (oop) mid->object();
1812     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1813       // if deflate_monitor succeeded,
1814       // extract from per-thread in-use list
1815       if (mid == *listHeadp) {
1816         *listHeadp = mid->FreeNext;
1817       } else if (cur_mid_in_use != NULL) {
1818         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1819       }
1820       next = mid->FreeNext;
1821       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1822       mid = next;
1823       deflated_count++;
1824     } else {
1825       cur_mid_in_use = mid;
1826       mid = mid->FreeNext;
1827     }
1828   }
1829   return deflated_count;
1830 }
1831 
1832 void ObjectSynchronizer::deflate_idle_monitors() {
1833   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1834   int nInuse = 0;              // currently associated with objects
1835   int nInCirculation = 0;      // extant
1836   int nScavenged = 0;          // reclaimed
1837   bool deflated = false;
1838 
1839   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1840   ObjectMonitor * freeTailp = NULL;
1841 
1842   TEVENT(deflate_idle_monitors);
1843   // Prevent omFlush from changing mids in Thread dtor's during deflation
1844   // And in case the vm thread is acquiring a lock during a safepoint
1845   // See e.g. 6320749
1846   Thread::muxAcquire(&gListLock, "scavenge - return");
1847 
1848   if (MonitorInUseLists) {
1849     int inUse = 0;
1850     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1851       nInCirculation+= cur->omInUseCount;
1852       int deflated_count = deflate_monitor_list(cur->omInUseList_addr(), &freeHeadp, &freeTailp);
1853       cur->omInUseCount-= deflated_count;
1854       if (ObjectMonitor::Knob_VerifyInUse) {
1855         verifyInUse(cur);
1856       }
1857       nScavenged += deflated_count;
1858       nInuse += cur->omInUseCount;
1859     }
1860 
1861     // For moribund threads, scan gOmInUseList
1862     if (gOmInUseList) {
1863       nInCirculation += gOmInUseCount;
1864       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1865       gOmInUseCount-= deflated_count;
1866       nScavenged += deflated_count;
1867       nInuse += gOmInUseCount;
1868     }
1869 
1870   } else {
1871     PaddedEnd<ObjectMonitor> * block =
1872       (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1873     for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1874       // Iterate over all extant monitors - Scavenge all idle monitors.
1875       assert(block->object() == CHAINMARKER, "must be a block header");
1876       nInCirculation += _BLOCKSIZE;
1877       for (int i = 1; i < _BLOCKSIZE; i++) {
1878         ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1879         oop obj = (oop)mid->object();
1880 
1881         if (obj == NULL) {
1882           // The monitor is not associated with an object.
1883           // The monitor should either be a thread-specific private
1884           // free list or the global free list.
1885           // obj == NULL IMPLIES mid->is_busy() == 0
1886           guarantee(!mid->is_busy(), "invariant");
1887           continue;
1888         }
1889         deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1890 
1891         if (deflated) {
1892           mid->FreeNext = NULL;
1893           nScavenged++;
1894         } else {
1895           nInuse++;
1896         }
1897       }
1898     }
1899   }
1900 
1901   gMonitorFreeCount += nScavenged;
1902 
1903   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1904 
1905   if (ObjectMonitor::Knob_Verbose) {
1906     tty->print_cr("INFO: Deflate: InCirc=%d InUse=%d Scavenged=%d "
1907                   "ForceMonitorScavenge=%d : pop=%d free=%d",
1908                   nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1909                   gMonitorPopulation, gMonitorFreeCount);
1910     tty->flush();
1911   }
1912 
1913   ForceMonitorScavenge = 0;    // Reset
1914 
1915   // Move the scavenged monitors back to the global free list.
1916   if (freeHeadp != NULL) {
1917     guarantee(freeTailp != NULL && nScavenged > 0, "invariant");
1918     assert(freeTailp->FreeNext == NULL, "invariant");
1919     // constant-time list splice - prepend scavenged segment to gFreeList
1920     freeTailp->FreeNext = gFreeList;
1921     gFreeList = freeHeadp;
1922   }
1923   Thread::muxRelease(&gListLock);
1924 
1925   OM_PERFDATA_OP(Deflations, inc(nScavenged));
1926   OM_PERFDATA_OP(MonExtant, set_value(nInCirculation));
1927 
1928   // TODO: Add objectMonitor leak detection.
1929   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1930   GVars.stwRandom = os::random();
1931   GVars.stwCycle++;
1932 }
1933 
1934 // Monitor cleanup on JavaThread::exit
1935 
1936 // Iterate through monitor cache and attempt to release thread's monitors
1937 // Gives up on a particular monitor if an exception occurs, but continues
1938 // the overall iteration, swallowing the exception.
1939 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1940  private:
1941   TRAPS;
1942 
1943  public:
1944   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1945   void do_monitor(ObjectMonitor* mid) {
1946     if (mid->owner() == THREAD) {
1947       if (ObjectMonitor::Knob_VerifyMatch != 0) {
1948         ResourceMark rm;
1949         Handle obj(THREAD, (oop) mid->object());
1950         tty->print("INFO: unexpected locked object:");
1951         javaVFrame::print_locked_object_class_name(tty, obj, "locked");
1952         fatal("exiting JavaThread=" INTPTR_FORMAT
1953               " unexpectedly owns ObjectMonitor=" INTPTR_FORMAT,
1954               p2i(THREAD), p2i(mid));
1955       }
1956       (void)mid->complete_exit(CHECK);
1957     }
1958   }
1959 };
1960 
1961 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1962 // ignored.  This is meant to be called during JNI thread detach which assumes
1963 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1964 // Scanning the extant monitor list can be time consuming.
1965 // A simple optimization is to add a per-thread flag that indicates a thread
1966 // called jni_monitorenter() during its lifetime.
1967 //
1968 // Instead of No_Savepoint_Verifier it might be cheaper to
1969 // use an idiom of the form:
1970 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1971 //   <code that must not run at safepoint>
1972 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1973 // Since the tests are extremely cheap we could leave them enabled
1974 // for normal product builds.
1975 
1976 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1977   assert(THREAD == JavaThread::current(), "must be current Java thread");
1978   NoSafepointVerifier nsv;
1979   ReleaseJavaMonitorsClosure rjmc(THREAD);
1980   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1981   ObjectSynchronizer::monitors_iterate(&rjmc);
1982   Thread::muxRelease(&gListLock);
1983   THREAD->clear_pending_exception();
1984 }
1985 
1986 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1987   switch (cause) {
1988     case inflate_cause_vm_internal:    return "VM Internal";
1989     case inflate_cause_monitor_enter:  return "Monitor Enter";
1990     case inflate_cause_wait:           return "Monitor Wait";
1991     case inflate_cause_notify:         return "Monitor Notify";
1992     case inflate_cause_hash_code:      return "Monitor Hash Code";
1993     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1994     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1995     default:
1996       ShouldNotReachHere();
1997   }
1998   return "Unknown";
1999 }
2000 
2001 static void post_monitor_inflate_event(EventJavaMonitorInflate& event,
2002                                        const oop obj,
2003                                        const ObjectSynchronizer::InflateCause cause) {
2004 #if INCLUDE_TRACE
2005   assert(event.should_commit(), "check outside");
2006   event.set_monitorClass(obj->klass());
2007   event.set_address((TYPE_ADDRESS)(uintptr_t)(void*)obj);
2008   event.set_cause((u1)cause);
2009   event.commit();
2010 #endif
2011 }
2012 
2013 //------------------------------------------------------------------------------
2014 // Debugging code
2015 
2016 void ObjectSynchronizer::sanity_checks(const bool verbose,
2017                                        const uint cache_line_size,
2018                                        int *error_cnt_ptr,
2019                                        int *warning_cnt_ptr) {
2020   u_char *addr_begin      = (u_char*)&GVars;
2021   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
2022   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
2023 
2024   if (verbose) {
2025     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
2026                   sizeof(SharedGlobals));
2027   }
2028 
2029   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
2030   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
2031 
2032   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
2033   if (verbose) {
2034     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
2035   }
2036 
2037   if (cache_line_size != 0) {
2038     // We were able to determine the L1 data cache line size so
2039     // do some cache line specific sanity checks
2040 
2041     if (offset_stwRandom < cache_line_size) {
2042       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
2043                     "to the struct beginning than a cache line which permits "
2044                     "false sharing.");
2045       (*warning_cnt_ptr)++;
2046     }
2047 
2048     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
2049       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
2050                     "SharedGlobals.hcSequence fields are closer than a cache "
2051                     "line which permits false sharing.");
2052       (*warning_cnt_ptr)++;
2053     }
2054 
2055     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
2056       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
2057                     "to the struct end than a cache line which permits false "
2058                     "sharing.");
2059       (*warning_cnt_ptr)++;
2060     }
2061   }
2062 }
2063 
2064 #ifndef PRODUCT
2065 
2066 // Check if monitor belongs to the monitor cache
2067 // The list is grow-only so it's *relatively* safe to traverse
2068 // the list of extant blocks without taking a lock.
2069 
2070 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
2071   PaddedEnd<ObjectMonitor> * block =
2072     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
2073   while (block != NULL) {
2074     assert(block->object() == CHAINMARKER, "must be a block header");
2075     if (monitor > (ObjectMonitor *)&block[0] &&
2076         monitor < (ObjectMonitor *)&block[_BLOCKSIZE]) {
2077       address mon = (address)monitor;
2078       address blk = (address)block;
2079       size_t diff = mon - blk;
2080       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
2081       return 1;
2082     }
2083     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
2084   }
2085   return 0;
2086 }
2087 
2088 #endif