1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_bsd.inline.hpp"
  40 #include "os_share_bsd.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "semaphore_bsd.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/align.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/growableArray.hpp"
  70 #include "utilities/vmError.hpp"
  71 
  72 // put OS-includes here
  73 # include <sys/types.h>
  74 # include <sys/mman.h>
  75 # include <sys/stat.h>
  76 # include <sys/select.h>
  77 # include <pthread.h>
  78 # include <signal.h>
  79 # include <errno.h>
  80 # include <dlfcn.h>
  81 # include <stdio.h>
  82 # include <unistd.h>
  83 # include <sys/resource.h>
  84 # include <pthread.h>
  85 # include <sys/stat.h>
  86 # include <sys/time.h>
  87 # include <sys/times.h>
  88 # include <sys/utsname.h>
  89 # include <sys/socket.h>
  90 # include <sys/wait.h>
  91 # include <time.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <sys/param.h>
  98 # include <sys/sysctl.h>
  99 # include <sys/ipc.h>
 100 # include <sys/shm.h>
 101 #ifndef __APPLE__
 102 # include <link.h>
 103 #endif
 104 # include <stdint.h>
 105 # include <inttypes.h>
 106 # include <sys/ioctl.h>
 107 # include <sys/syscall.h>
 108 
 109 #if defined(__FreeBSD__) || defined(__NetBSD__)
 110   #include <elf.h>
 111 #endif
 112 
 113 #ifdef __APPLE__
 114   #include <mach/mach.h> // semaphore_* API
 115   #include <mach-o/dyld.h>
 116   #include <sys/proc_info.h>
 117   #include <objc/objc-auto.h>
 118 #endif
 119 
 120 #ifndef MAP_ANONYMOUS
 121   #define MAP_ANONYMOUS MAP_ANON
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 
 129 #define LARGEPAGES_BIT (1 << 6)
 130 
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Bsd::_physical_memory = 0;
 134 
 135 #ifdef __APPLE__
 136 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 137 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 138 #else
 139 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 #endif
 141 pthread_t os::Bsd::_main_thread;
 142 int os::Bsd::_page_size = -1;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 
 161 ////////////////////////////////////////////////////////////////////////////////
 162 // utility functions
 163 
 164 static int SR_initialize();
 165 
 166 julong os::available_memory() {
 167   return Bsd::available_memory();
 168 }
 169 
 170 // available here means free
 171 julong os::Bsd::available_memory() {
 172   uint64_t available = physical_memory() >> 2;
 173 #ifdef __APPLE__
 174   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 175   vm_statistics64_data_t vmstat;
 176   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 177                                          (host_info64_t)&vmstat, &count);
 178   assert(kerr == KERN_SUCCESS,
 179          "host_statistics64 failed - check mach_host_self() and count");
 180   if (kerr == KERN_SUCCESS) {
 181     available = vmstat.free_count * os::vm_page_size();
 182   }
 183 #endif
 184   return available;
 185 }
 186 
 187 julong os::physical_memory() {
 188   return Bsd::physical_memory();
 189 }
 190 
 191 // Return true if user is running as root.
 192 
 193 bool os::have_special_privileges() {
 194   static bool init = false;
 195   static bool privileges = false;
 196   if (!init) {
 197     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 198     init = true;
 199   }
 200   return privileges;
 201 }
 202 
 203 
 204 
 205 // Cpu architecture string
 206 #if   defined(ZERO)
 207 static char cpu_arch[] = ZERO_LIBARCH;
 208 #elif defined(IA64)
 209 static char cpu_arch[] = "ia64";
 210 #elif defined(IA32)
 211 static char cpu_arch[] = "i386";
 212 #elif defined(AMD64)
 213 static char cpu_arch[] = "amd64";
 214 #elif defined(ARM)
 215 static char cpu_arch[] = "arm";
 216 #elif defined(PPC32)
 217 static char cpu_arch[] = "ppc";
 218 #elif defined(SPARC)
 219   #ifdef _LP64
 220 static char cpu_arch[] = "sparcv9";
 221   #else
 222 static char cpu_arch[] = "sparc";
 223   #endif
 224 #else
 225   #error Add appropriate cpu_arch setting
 226 #endif
 227 
 228 // Compiler variant
 229 #ifdef COMPILER2
 230   #define COMPILER_VARIANT "server"
 231 #else
 232   #define COMPILER_VARIANT "client"
 233 #endif
 234 
 235 
 236 void os::Bsd::initialize_system_info() {
 237   int mib[2];
 238   size_t len;
 239   int cpu_val;
 240   julong mem_val;
 241 
 242   // get processors count via hw.ncpus sysctl
 243   mib[0] = CTL_HW;
 244   mib[1] = HW_NCPU;
 245   len = sizeof(cpu_val);
 246   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 247     assert(len == sizeof(cpu_val), "unexpected data size");
 248     set_processor_count(cpu_val);
 249   } else {
 250     set_processor_count(1);   // fallback
 251   }
 252 
 253   // get physical memory via hw.memsize sysctl (hw.memsize is used
 254   // since it returns a 64 bit value)
 255   mib[0] = CTL_HW;
 256 
 257 #if defined (HW_MEMSIZE) // Apple
 258   mib[1] = HW_MEMSIZE;
 259 #elif defined(HW_PHYSMEM) // Most of BSD
 260   mib[1] = HW_PHYSMEM;
 261 #elif defined(HW_REALMEM) // Old FreeBSD
 262   mib[1] = HW_REALMEM;
 263 #else
 264   #error No ways to get physmem
 265 #endif
 266 
 267   len = sizeof(mem_val);
 268   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 269     assert(len == sizeof(mem_val), "unexpected data size");
 270     _physical_memory = mem_val;
 271   } else {
 272     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 273   }
 274 
 275 #ifdef __OpenBSD__
 276   {
 277     // limit _physical_memory memory view on OpenBSD since
 278     // datasize rlimit restricts us anyway.
 279     struct rlimit limits;
 280     getrlimit(RLIMIT_DATA, &limits);
 281     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 282   }
 283 #endif
 284 }
 285 
 286 #ifdef __APPLE__
 287 static const char *get_home() {
 288   const char *home_dir = ::getenv("HOME");
 289   if ((home_dir == NULL) || (*home_dir == '\0')) {
 290     struct passwd *passwd_info = getpwuid(geteuid());
 291     if (passwd_info != NULL) {
 292       home_dir = passwd_info->pw_dir;
 293     }
 294   }
 295 
 296   return home_dir;
 297 }
 298 #endif
 299 
 300 void os::init_system_properties_values() {
 301   // The next steps are taken in the product version:
 302   //
 303   // Obtain the JAVA_HOME value from the location of libjvm.so.
 304   // This library should be located at:
 305   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 306   //
 307   // If "/jre/lib/" appears at the right place in the path, then we
 308   // assume libjvm.so is installed in a JDK and we use this path.
 309   //
 310   // Otherwise exit with message: "Could not create the Java virtual machine."
 311   //
 312   // The following extra steps are taken in the debugging version:
 313   //
 314   // If "/jre/lib/" does NOT appear at the right place in the path
 315   // instead of exit check for $JAVA_HOME environment variable.
 316   //
 317   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 318   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 319   // it looks like libjvm.so is installed there
 320   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 321   //
 322   // Otherwise exit.
 323   //
 324   // Important note: if the location of libjvm.so changes this
 325   // code needs to be changed accordingly.
 326 
 327   // See ld(1):
 328   //      The linker uses the following search paths to locate required
 329   //      shared libraries:
 330   //        1: ...
 331   //        ...
 332   //        7: The default directories, normally /lib and /usr/lib.
 333 #ifndef DEFAULT_LIBPATH
 334   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 335 #endif
 336 
 337 // Base path of extensions installed on the system.
 338 #define SYS_EXT_DIR     "/usr/java/packages"
 339 #define EXTENSIONS_DIR  "/lib/ext"
 340 
 341 #ifndef __APPLE__
 342 
 343   // Buffer that fits several sprintfs.
 344   // Note that the space for the colon and the trailing null are provided
 345   // by the nulls included by the sizeof operator.
 346   const size_t bufsize =
 347     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 348          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 349   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 350 
 351   // sysclasspath, java_home, dll_dir
 352   {
 353     char *pslash;
 354     os::jvm_path(buf, bufsize);
 355 
 356     // Found the full path to libjvm.so.
 357     // Now cut the path to <java_home>/jre if we can.
 358     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 359     pslash = strrchr(buf, '/');
 360     if (pslash != NULL) {
 361       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 362     }
 363     Arguments::set_dll_dir(buf);
 364 
 365     if (pslash != NULL) {
 366       pslash = strrchr(buf, '/');
 367       if (pslash != NULL) {
 368         *pslash = '\0';          // Get rid of /<arch>.
 369         pslash = strrchr(buf, '/');
 370         if (pslash != NULL) {
 371           *pslash = '\0';        // Get rid of /lib.
 372         }
 373       }
 374     }
 375     Arguments::set_java_home(buf);
 376     set_boot_path('/', ':');
 377   }
 378 
 379   // Where to look for native libraries.
 380   //
 381   // Note: Due to a legacy implementation, most of the library path
 382   // is set in the launcher. This was to accomodate linking restrictions
 383   // on legacy Bsd implementations (which are no longer supported).
 384   // Eventually, all the library path setting will be done here.
 385   //
 386   // However, to prevent the proliferation of improperly built native
 387   // libraries, the new path component /usr/java/packages is added here.
 388   // Eventually, all the library path setting will be done here.
 389   {
 390     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 391     // should always exist (until the legacy problem cited above is
 392     // addressed).
 393     const char *v = ::getenv("LD_LIBRARY_PATH");
 394     const char *v_colon = ":";
 395     if (v == NULL) { v = ""; v_colon = ""; }
 396     // That's +1 for the colon and +1 for the trailing '\0'.
 397     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 398                                                      strlen(v) + 1 +
 399                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 400                                                      mtInternal);
 401     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 402     Arguments::set_library_path(ld_library_path);
 403     FREE_C_HEAP_ARRAY(char, ld_library_path);
 404   }
 405 
 406   // Extensions directories.
 407   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 408   Arguments::set_ext_dirs(buf);
 409 
 410   FREE_C_HEAP_ARRAY(char, buf);
 411 
 412 #else // __APPLE__
 413 
 414   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 415   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 416 
 417   const char *user_home_dir = get_home();
 418   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 419   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 420     sizeof(SYS_EXTENSIONS_DIRS);
 421 
 422   // Buffer that fits several sprintfs.
 423   // Note that the space for the colon and the trailing null are provided
 424   // by the nulls included by the sizeof operator.
 425   const size_t bufsize =
 426     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 427          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 428   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 429 
 430   // sysclasspath, java_home, dll_dir
 431   {
 432     char *pslash;
 433     os::jvm_path(buf, bufsize);
 434 
 435     // Found the full path to libjvm.so.
 436     // Now cut the path to <java_home>/jre if we can.
 437     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 438     pslash = strrchr(buf, '/');
 439     if (pslash != NULL) {
 440       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 441     }
 442 #ifdef STATIC_BUILD
 443     strcat(buf, "/lib");
 444 #endif
 445 
 446     Arguments::set_dll_dir(buf);
 447 
 448     if (pslash != NULL) {
 449       pslash = strrchr(buf, '/');
 450       if (pslash != NULL) {
 451         *pslash = '\0';          // Get rid of /lib.
 452       }
 453     }
 454     Arguments::set_java_home(buf);
 455     set_boot_path('/', ':');
 456   }
 457 
 458   // Where to look for native libraries.
 459   //
 460   // Note: Due to a legacy implementation, most of the library path
 461   // is set in the launcher. This was to accomodate linking restrictions
 462   // on legacy Bsd implementations (which are no longer supported).
 463   // Eventually, all the library path setting will be done here.
 464   //
 465   // However, to prevent the proliferation of improperly built native
 466   // libraries, the new path component /usr/java/packages is added here.
 467   // Eventually, all the library path setting will be done here.
 468   {
 469     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 470     // should always exist (until the legacy problem cited above is
 471     // addressed).
 472     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 473     // can specify a directory inside an app wrapper
 474     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 475     const char *l_colon = ":";
 476     if (l == NULL) { l = ""; l_colon = ""; }
 477 
 478     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 479     const char *v_colon = ":";
 480     if (v == NULL) { v = ""; v_colon = ""; }
 481 
 482     // Apple's Java6 has "." at the beginning of java.library.path.
 483     // OpenJDK on Windows has "." at the end of java.library.path.
 484     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 485     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 486     // "." is appended to the end of java.library.path. Yes, this
 487     // could cause a change in behavior, but Apple's Java6 behavior
 488     // can be achieved by putting "." at the beginning of the
 489     // JAVA_LIBRARY_PATH environment variable.
 490     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 491                                                      strlen(v) + 1 + strlen(l) + 1 +
 492                                                      system_ext_size + 3,
 493                                                      mtInternal);
 494     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 495             v, v_colon, l, l_colon, user_home_dir);
 496     Arguments::set_library_path(ld_library_path);
 497     FREE_C_HEAP_ARRAY(char, ld_library_path);
 498   }
 499 
 500   // Extensions directories.
 501   //
 502   // Note that the space for the colon and the trailing null are provided
 503   // by the nulls included by the sizeof operator (so actually one byte more
 504   // than necessary is allocated).
 505   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 506           user_home_dir, Arguments::get_java_home());
 507   Arguments::set_ext_dirs(buf);
 508 
 509   FREE_C_HEAP_ARRAY(char, buf);
 510 
 511 #undef SYS_EXTENSIONS_DIR
 512 #undef SYS_EXTENSIONS_DIRS
 513 
 514 #endif // __APPLE__
 515 
 516 #undef SYS_EXT_DIR
 517 #undef EXTENSIONS_DIR
 518 }
 519 
 520 ////////////////////////////////////////////////////////////////////////////////
 521 // breakpoint support
 522 
 523 void os::breakpoint() {
 524   BREAKPOINT;
 525 }
 526 
 527 extern "C" void breakpoint() {
 528   // use debugger to set breakpoint here
 529 }
 530 
 531 ////////////////////////////////////////////////////////////////////////////////
 532 // signal support
 533 
 534 debug_only(static bool signal_sets_initialized = false);
 535 static sigset_t unblocked_sigs, vm_sigs;
 536 
 537 bool os::Bsd::is_sig_ignored(int sig) {
 538   struct sigaction oact;
 539   sigaction(sig, (struct sigaction*)NULL, &oact);
 540   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 541                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 542   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 543     return true;
 544   } else {
 545     return false;
 546   }
 547 }
 548 
 549 void os::Bsd::signal_sets_init() {
 550   // Should also have an assertion stating we are still single-threaded.
 551   assert(!signal_sets_initialized, "Already initialized");
 552   // Fill in signals that are necessarily unblocked for all threads in
 553   // the VM. Currently, we unblock the following signals:
 554   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 555   //                         by -Xrs (=ReduceSignalUsage));
 556   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 557   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 558   // the dispositions or masks wrt these signals.
 559   // Programs embedding the VM that want to use the above signals for their
 560   // own purposes must, at this time, use the "-Xrs" option to prevent
 561   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 562   // (See bug 4345157, and other related bugs).
 563   // In reality, though, unblocking these signals is really a nop, since
 564   // these signals are not blocked by default.
 565   sigemptyset(&unblocked_sigs);
 566   sigaddset(&unblocked_sigs, SIGILL);
 567   sigaddset(&unblocked_sigs, SIGSEGV);
 568   sigaddset(&unblocked_sigs, SIGBUS);
 569   sigaddset(&unblocked_sigs, SIGFPE);
 570   sigaddset(&unblocked_sigs, SR_signum);
 571 
 572   if (!ReduceSignalUsage) {
 573     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 574       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 575 
 576     }
 577     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 578       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 579     }
 580     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 581       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 582     }
 583   }
 584   // Fill in signals that are blocked by all but the VM thread.
 585   sigemptyset(&vm_sigs);
 586   if (!ReduceSignalUsage) {
 587     sigaddset(&vm_sigs, BREAK_SIGNAL);
 588   }
 589   debug_only(signal_sets_initialized = true);
 590 
 591 }
 592 
 593 // These are signals that are unblocked while a thread is running Java.
 594 // (For some reason, they get blocked by default.)
 595 sigset_t* os::Bsd::unblocked_signals() {
 596   assert(signal_sets_initialized, "Not initialized");
 597   return &unblocked_sigs;
 598 }
 599 
 600 // These are the signals that are blocked while a (non-VM) thread is
 601 // running Java. Only the VM thread handles these signals.
 602 sigset_t* os::Bsd::vm_signals() {
 603   assert(signal_sets_initialized, "Not initialized");
 604   return &vm_sigs;
 605 }
 606 
 607 void os::Bsd::hotspot_sigmask(Thread* thread) {
 608 
 609   //Save caller's signal mask before setting VM signal mask
 610   sigset_t caller_sigmask;
 611   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 612 
 613   OSThread* osthread = thread->osthread();
 614   osthread->set_caller_sigmask(caller_sigmask);
 615 
 616   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 617 
 618   if (!ReduceSignalUsage) {
 619     if (thread->is_VM_thread()) {
 620       // Only the VM thread handles BREAK_SIGNAL ...
 621       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 622     } else {
 623       // ... all other threads block BREAK_SIGNAL
 624       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 625     }
 626   }
 627 }
 628 
 629 
 630 //////////////////////////////////////////////////////////////////////////////
 631 // create new thread
 632 
 633 #ifdef __APPLE__
 634 // library handle for calling objc_registerThreadWithCollector()
 635 // without static linking to the libobjc library
 636   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 637   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 638 typedef void (*objc_registerThreadWithCollector_t)();
 639 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 640 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 641 #endif
 642 
 643 #ifdef __APPLE__
 644 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 645   // Additional thread_id used to correlate threads in SA
 646   thread_identifier_info_data_t     m_ident_info;
 647   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 648 
 649   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 650               (thread_info_t) &m_ident_info, &count);
 651 
 652   return m_ident_info.thread_id;
 653 }
 654 #endif
 655 
 656 // Thread start routine for all newly created threads
 657 static void *thread_native_entry(Thread *thread) {
 658   // Try to randomize the cache line index of hot stack frames.
 659   // This helps when threads of the same stack traces evict each other's
 660   // cache lines. The threads can be either from the same JVM instance, or
 661   // from different JVM instances. The benefit is especially true for
 662   // processors with hyperthreading technology.
 663   static int counter = 0;
 664   int pid = os::current_process_id();
 665   alloca(((pid ^ counter++) & 7) * 128);
 666 
 667   thread->initialize_thread_current();
 668 
 669   OSThread* osthread = thread->osthread();
 670   Monitor* sync = osthread->startThread_lock();
 671 
 672   osthread->set_thread_id(os::Bsd::gettid());
 673 
 674   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 675     os::current_thread_id(), (uintx) pthread_self());
 676 
 677 #ifdef __APPLE__
 678   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 679   guarantee(unique_thread_id != 0, "unique thread id was not found");
 680   osthread->set_unique_thread_id(unique_thread_id);
 681 #endif
 682   // initialize signal mask for this thread
 683   os::Bsd::hotspot_sigmask(thread);
 684 
 685   // initialize floating point control register
 686   os::Bsd::init_thread_fpu_state();
 687 
 688 #ifdef __APPLE__
 689   // register thread with objc gc
 690   if (objc_registerThreadWithCollectorFunction != NULL) {
 691     objc_registerThreadWithCollectorFunction();
 692   }
 693 #endif
 694 
 695   // handshaking with parent thread
 696   {
 697     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 698 
 699     // notify parent thread
 700     osthread->set_state(INITIALIZED);
 701     sync->notify_all();
 702 
 703     // wait until os::start_thread()
 704     while (osthread->get_state() == INITIALIZED) {
 705       sync->wait(Mutex::_no_safepoint_check_flag);
 706     }
 707   }
 708 
 709   // call one more level start routine
 710   thread->run();
 711 
 712   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 713     os::current_thread_id(), (uintx) pthread_self());
 714 
 715   // If a thread has not deleted itself ("delete this") as part of its
 716   // termination sequence, we have to ensure thread-local-storage is
 717   // cleared before we actually terminate. No threads should ever be
 718   // deleted asynchronously with respect to their termination.
 719   if (Thread::current_or_null_safe() != NULL) {
 720     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 721     thread->clear_thread_current();
 722   }
 723 
 724   return 0;
 725 }
 726 
 727 bool os::create_thread(Thread* thread, ThreadType thr_type,
 728                        size_t req_stack_size) {
 729   assert(thread->osthread() == NULL, "caller responsible");
 730 
 731   // Allocate the OSThread object
 732   OSThread* osthread = new OSThread(NULL, NULL);
 733   if (osthread == NULL) {
 734     return false;
 735   }
 736 
 737   // set the correct thread state
 738   osthread->set_thread_type(thr_type);
 739 
 740   // Initial state is ALLOCATED but not INITIALIZED
 741   osthread->set_state(ALLOCATED);
 742 
 743   thread->set_osthread(osthread);
 744 
 745   // init thread attributes
 746   pthread_attr_t attr;
 747   pthread_attr_init(&attr);
 748   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 749 
 750   // calculate stack size if it's not specified by caller
 751   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 752   int status = pthread_attr_setstacksize(&attr, stack_size);
 753   assert_status(status == 0, status, "pthread_attr_setstacksize");
 754 
 755   ThreadState state;
 756 
 757   {
 758     pthread_t tid;
 759     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 760 
 761     char buf[64];
 762     if (ret == 0) {
 763       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 764         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 765     } else {
 766       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 767         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 768     }
 769 
 770     pthread_attr_destroy(&attr);
 771 
 772     if (ret != 0) {
 773       // Need to clean up stuff we've allocated so far
 774       thread->set_osthread(NULL);
 775       delete osthread;
 776       return false;
 777     }
 778 
 779     // Store pthread info into the OSThread
 780     osthread->set_pthread_id(tid);
 781 
 782     // Wait until child thread is either initialized or aborted
 783     {
 784       Monitor* sync_with_child = osthread->startThread_lock();
 785       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 786       while ((state = osthread->get_state()) == ALLOCATED) {
 787         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 788       }
 789     }
 790 
 791   }
 792 
 793   // Aborted due to thread limit being reached
 794   if (state == ZOMBIE) {
 795     thread->set_osthread(NULL);
 796     delete osthread;
 797     return false;
 798   }
 799 
 800   // The thread is returned suspended (in state INITIALIZED),
 801   // and is started higher up in the call chain
 802   assert(state == INITIALIZED, "race condition");
 803   return true;
 804 }
 805 
 806 /////////////////////////////////////////////////////////////////////////////
 807 // attach existing thread
 808 
 809 // bootstrap the main thread
 810 bool os::create_main_thread(JavaThread* thread) {
 811   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 812   return create_attached_thread(thread);
 813 }
 814 
 815 bool os::create_attached_thread(JavaThread* thread) {
 816 #ifdef ASSERT
 817   thread->verify_not_published();
 818 #endif
 819 
 820   // Allocate the OSThread object
 821   OSThread* osthread = new OSThread(NULL, NULL);
 822 
 823   if (osthread == NULL) {
 824     return false;
 825   }
 826 
 827   osthread->set_thread_id(os::Bsd::gettid());
 828 
 829   // Store pthread info into the OSThread
 830 #ifdef __APPLE__
 831   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 832   guarantee(unique_thread_id != 0, "just checking");
 833   osthread->set_unique_thread_id(unique_thread_id);
 834 #endif
 835   osthread->set_pthread_id(::pthread_self());
 836 
 837   // initialize floating point control register
 838   os::Bsd::init_thread_fpu_state();
 839 
 840   // Initial thread state is RUNNABLE
 841   osthread->set_state(RUNNABLE);
 842 
 843   thread->set_osthread(osthread);
 844 
 845   // initialize signal mask for this thread
 846   // and save the caller's signal mask
 847   os::Bsd::hotspot_sigmask(thread);
 848 
 849   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 850     os::current_thread_id(), (uintx) pthread_self());
 851 
 852   return true;
 853 }
 854 
 855 void os::pd_start_thread(Thread* thread) {
 856   OSThread * osthread = thread->osthread();
 857   assert(osthread->get_state() != INITIALIZED, "just checking");
 858   Monitor* sync_with_child = osthread->startThread_lock();
 859   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 860   sync_with_child->notify();
 861 }
 862 
 863 // Free Bsd resources related to the OSThread
 864 void os::free_thread(OSThread* osthread) {
 865   assert(osthread != NULL, "osthread not set");
 866 
 867   // We are told to free resources of the argument thread,
 868   // but we can only really operate on the current thread.
 869   assert(Thread::current()->osthread() == osthread,
 870          "os::free_thread but not current thread");
 871 
 872   // Restore caller's signal mask
 873   sigset_t sigmask = osthread->caller_sigmask();
 874   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 875 
 876   delete osthread;
 877 }
 878 
 879 // Unlike Linux we don't try to handle the initial process
 880 // thread in any special way - so just report 'false'
 881 bool os::is_primordial_thread(void) {
 882     return false;
 883 }
 884 
 885 ////////////////////////////////////////////////////////////////////////////////
 886 // time support
 887 
 888 // Time since start-up in seconds to a fine granularity.
 889 // Used by VMSelfDestructTimer and the MemProfiler.
 890 double os::elapsedTime() {
 891 
 892   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 893 }
 894 
 895 jlong os::elapsed_counter() {
 896   return javaTimeNanos() - initial_time_count;
 897 }
 898 
 899 jlong os::elapsed_frequency() {
 900   return NANOSECS_PER_SEC; // nanosecond resolution
 901 }
 902 
 903 bool os::supports_vtime() { return true; }
 904 bool os::enable_vtime()   { return false; }
 905 bool os::vtime_enabled()  { return false; }
 906 
 907 double os::elapsedVTime() {
 908   // better than nothing, but not much
 909   return elapsedTime();
 910 }
 911 
 912 jlong os::javaTimeMillis() {
 913   timeval time;
 914   int status = gettimeofday(&time, NULL);
 915   assert(status != -1, "bsd error");
 916   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 917 }
 918 
 919 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 920   timeval time;
 921   int status = gettimeofday(&time, NULL);
 922   assert(status != -1, "bsd error");
 923   seconds = jlong(time.tv_sec);
 924   nanos = jlong(time.tv_usec) * 1000;
 925 }
 926 
 927 #ifndef __APPLE__
 928   #ifndef CLOCK_MONOTONIC
 929     #define CLOCK_MONOTONIC (1)
 930   #endif
 931 #endif
 932 
 933 #ifdef __APPLE__
 934 void os::Bsd::clock_init() {
 935   mach_timebase_info(&_timebase_info);
 936 }
 937 #else
 938 void os::Bsd::clock_init() {
 939   struct timespec res;
 940   struct timespec tp;
 941   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 942       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 943     // yes, monotonic clock is supported
 944     _clock_gettime = ::clock_gettime;
 945   }
 946 }
 947 #endif
 948 
 949 
 950 
 951 #ifdef __APPLE__
 952 
 953 jlong os::javaTimeNanos() {
 954   const uint64_t tm = mach_absolute_time();
 955   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 956   const uint64_t prev = Bsd::_max_abstime;
 957   if (now <= prev) {
 958     return prev;   // same or retrograde time;
 959   }
 960   const uint64_t obsv = Atomic::cmpxchg(now, &Bsd::_max_abstime, prev);
 961   assert(obsv >= prev, "invariant");   // Monotonicity
 962   // If the CAS succeeded then we're done and return "now".
 963   // If the CAS failed and the observed value "obsv" is >= now then
 964   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 965   // some other thread raced this thread and installed a new value, in which case
 966   // we could either (a) retry the entire operation, (b) retry trying to install now
 967   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 968   // we might discard a higher "now" value in deference to a slightly lower but freshly
 969   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 970   // to (a) or (b) -- and greatly reduces coherence traffic.
 971   // We might also condition (c) on the magnitude of the delta between obsv and now.
 972   // Avoiding excessive CAS operations to hot RW locations is critical.
 973   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 974   return (prev == obsv) ? now : obsv;
 975 }
 976 
 977 #else // __APPLE__
 978 
 979 jlong os::javaTimeNanos() {
 980   if (os::supports_monotonic_clock()) {
 981     struct timespec tp;
 982     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
 983     assert(status == 0, "gettime error");
 984     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
 985     return result;
 986   } else {
 987     timeval time;
 988     int status = gettimeofday(&time, NULL);
 989     assert(status != -1, "bsd error");
 990     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
 991     return 1000 * usecs;
 992   }
 993 }
 994 
 995 #endif // __APPLE__
 996 
 997 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 998   if (os::supports_monotonic_clock()) {
 999     info_ptr->max_value = ALL_64_BITS;
1000 
1001     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1002     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1003     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1004   } else {
1005     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1006     info_ptr->max_value = ALL_64_BITS;
1007 
1008     // gettimeofday is a real time clock so it skips
1009     info_ptr->may_skip_backward = true;
1010     info_ptr->may_skip_forward = true;
1011   }
1012 
1013   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1014 }
1015 
1016 // Return the real, user, and system times in seconds from an
1017 // arbitrary fixed point in the past.
1018 bool os::getTimesSecs(double* process_real_time,
1019                       double* process_user_time,
1020                       double* process_system_time) {
1021   struct tms ticks;
1022   clock_t real_ticks = times(&ticks);
1023 
1024   if (real_ticks == (clock_t) (-1)) {
1025     return false;
1026   } else {
1027     double ticks_per_second = (double) clock_tics_per_sec;
1028     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1029     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1030     *process_real_time = ((double) real_ticks) / ticks_per_second;
1031 
1032     return true;
1033   }
1034 }
1035 
1036 
1037 char * os::local_time_string(char *buf, size_t buflen) {
1038   struct tm t;
1039   time_t long_time;
1040   time(&long_time);
1041   localtime_r(&long_time, &t);
1042   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1043                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1044                t.tm_hour, t.tm_min, t.tm_sec);
1045   return buf;
1046 }
1047 
1048 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1049   return localtime_r(clock, res);
1050 }
1051 
1052 ////////////////////////////////////////////////////////////////////////////////
1053 // runtime exit support
1054 
1055 // Note: os::shutdown() might be called very early during initialization, or
1056 // called from signal handler. Before adding something to os::shutdown(), make
1057 // sure it is async-safe and can handle partially initialized VM.
1058 void os::shutdown() {
1059 
1060   // allow PerfMemory to attempt cleanup of any persistent resources
1061   perfMemory_exit();
1062 
1063   // needs to remove object in file system
1064   AttachListener::abort();
1065 
1066   // flush buffered output, finish log files
1067   ostream_abort();
1068 
1069   // Check for abort hook
1070   abort_hook_t abort_hook = Arguments::abort_hook();
1071   if (abort_hook != NULL) {
1072     abort_hook();
1073   }
1074 
1075 }
1076 
1077 // Note: os::abort() might be called very early during initialization, or
1078 // called from signal handler. Before adding something to os::abort(), make
1079 // sure it is async-safe and can handle partially initialized VM.
1080 void os::abort(bool dump_core, void* siginfo, const void* context) {
1081   os::shutdown();
1082   if (dump_core) {
1083 #ifndef PRODUCT
1084     fdStream out(defaultStream::output_fd());
1085     out.print_raw("Current thread is ");
1086     char buf[16];
1087     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1088     out.print_raw_cr(buf);
1089     out.print_raw_cr("Dumping core ...");
1090 #endif
1091     ::abort(); // dump core
1092   }
1093 
1094   ::exit(1);
1095 }
1096 
1097 // Die immediately, no exit hook, no abort hook, no cleanup.
1098 void os::die() {
1099   // _exit() on BsdThreads only kills current thread
1100   ::abort();
1101 }
1102 
1103 // This method is a copy of JDK's sysGetLastErrorString
1104 // from src/solaris/hpi/src/system_md.c
1105 
1106 size_t os::lasterror(char *buf, size_t len) {
1107   if (errno == 0)  return 0;
1108 
1109   const char *s = os::strerror(errno);
1110   size_t n = ::strlen(s);
1111   if (n >= len) {
1112     n = len - 1;
1113   }
1114   ::strncpy(buf, s, n);
1115   buf[n] = '\0';
1116   return n;
1117 }
1118 
1119 // Information of current thread in variety of formats
1120 pid_t os::Bsd::gettid() {
1121   int retval = -1;
1122 
1123 #ifdef __APPLE__ //XNU kernel
1124   // despite the fact mach port is actually not a thread id use it
1125   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1126   retval = ::pthread_mach_thread_np(::pthread_self());
1127   guarantee(retval != 0, "just checking");
1128   return retval;
1129 
1130 #else
1131   #ifdef __FreeBSD__
1132   retval = syscall(SYS_thr_self);
1133   #else
1134     #ifdef __OpenBSD__
1135   retval = syscall(SYS_getthrid);
1136     #else
1137       #ifdef __NetBSD__
1138   retval = (pid_t) syscall(SYS__lwp_self);
1139       #endif
1140     #endif
1141   #endif
1142 #endif
1143 
1144   if (retval == -1) {
1145     return getpid();
1146   }
1147 }
1148 
1149 intx os::current_thread_id() {
1150 #ifdef __APPLE__
1151   return (intx)::pthread_mach_thread_np(::pthread_self());
1152 #else
1153   return (intx)::pthread_self();
1154 #endif
1155 }
1156 
1157 int os::current_process_id() {
1158 
1159   // Under the old bsd thread library, bsd gives each thread
1160   // its own process id. Because of this each thread will return
1161   // a different pid if this method were to return the result
1162   // of getpid(2). Bsd provides no api that returns the pid
1163   // of the launcher thread for the vm. This implementation
1164   // returns a unique pid, the pid of the launcher thread
1165   // that starts the vm 'process'.
1166 
1167   // Under the NPTL, getpid() returns the same pid as the
1168   // launcher thread rather than a unique pid per thread.
1169   // Use gettid() if you want the old pre NPTL behaviour.
1170 
1171   // if you are looking for the result of a call to getpid() that
1172   // returns a unique pid for the calling thread, then look at the
1173   // OSThread::thread_id() method in osThread_bsd.hpp file
1174 
1175   return (int)(_initial_pid ? _initial_pid : getpid());
1176 }
1177 
1178 // DLL functions
1179 
1180 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1181 
1182 // This must be hard coded because it's the system's temporary
1183 // directory not the java application's temp directory, ala java.io.tmpdir.
1184 #ifdef __APPLE__
1185 // macosx has a secure per-user temporary directory
1186 char temp_path_storage[PATH_MAX];
1187 const char* os::get_temp_directory() {
1188   static char *temp_path = NULL;
1189   if (temp_path == NULL) {
1190     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1191     if (pathSize == 0 || pathSize > PATH_MAX) {
1192       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1193     }
1194     temp_path = temp_path_storage;
1195   }
1196   return temp_path;
1197 }
1198 #else // __APPLE__
1199 const char* os::get_temp_directory() { return "/tmp"; }
1200 #endif // __APPLE__
1201 
1202 // check if addr is inside libjvm.so
1203 bool os::address_is_in_vm(address addr) {
1204   static address libjvm_base_addr;
1205   Dl_info dlinfo;
1206 
1207   if (libjvm_base_addr == NULL) {
1208     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1209       libjvm_base_addr = (address)dlinfo.dli_fbase;
1210     }
1211     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1212   }
1213 
1214   if (dladdr((void *)addr, &dlinfo) != 0) {
1215     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1216   }
1217 
1218   return false;
1219 }
1220 
1221 
1222 #define MACH_MAXSYMLEN 256
1223 
1224 bool os::dll_address_to_function_name(address addr, char *buf,
1225                                       int buflen, int *offset,
1226                                       bool demangle) {
1227   // buf is not optional, but offset is optional
1228   assert(buf != NULL, "sanity check");
1229 
1230   Dl_info dlinfo;
1231   char localbuf[MACH_MAXSYMLEN];
1232 
1233   if (dladdr((void*)addr, &dlinfo) != 0) {
1234     // see if we have a matching symbol
1235     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1236       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1237         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1238       }
1239       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1240       return true;
1241     }
1242     // no matching symbol so try for just file info
1243     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1244       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1245                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1246         return true;
1247       }
1248     }
1249 
1250     // Handle non-dynamic manually:
1251     if (dlinfo.dli_fbase != NULL &&
1252         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1253                         dlinfo.dli_fbase)) {
1254       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1255         jio_snprintf(buf, buflen, "%s", localbuf);
1256       }
1257       return true;
1258     }
1259   }
1260   buf[0] = '\0';
1261   if (offset != NULL) *offset = -1;
1262   return false;
1263 }
1264 
1265 // ported from solaris version
1266 bool os::dll_address_to_library_name(address addr, char* buf,
1267                                      int buflen, int* offset) {
1268   // buf is not optional, but offset is optional
1269   assert(buf != NULL, "sanity check");
1270 
1271   Dl_info dlinfo;
1272 
1273   if (dladdr((void*)addr, &dlinfo) != 0) {
1274     if (dlinfo.dli_fname != NULL) {
1275       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1276     }
1277     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1278       *offset = addr - (address)dlinfo.dli_fbase;
1279     }
1280     return true;
1281   }
1282 
1283   buf[0] = '\0';
1284   if (offset) *offset = -1;
1285   return false;
1286 }
1287 
1288 // Loads .dll/.so and
1289 // in case of error it checks if .dll/.so was built for the
1290 // same architecture as Hotspot is running on
1291 
1292 #ifdef __APPLE__
1293 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1294 #ifdef STATIC_BUILD
1295   return os::get_default_process_handle();
1296 #else
1297   void * result= ::dlopen(filename, RTLD_LAZY);
1298   if (result != NULL) {
1299     // Successful loading
1300     return result;
1301   }
1302 
1303   // Read system error message into ebuf
1304   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1305   ebuf[ebuflen-1]='\0';
1306 
1307   return NULL;
1308 #endif // STATIC_BUILD
1309 }
1310 #else
1311 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1312 #ifdef STATIC_BUILD
1313   return os::get_default_process_handle();
1314 #else
1315   void * result= ::dlopen(filename, RTLD_LAZY);
1316   if (result != NULL) {
1317     // Successful loading
1318     return result;
1319   }
1320 
1321   Elf32_Ehdr elf_head;
1322 
1323   // Read system error message into ebuf
1324   // It may or may not be overwritten below
1325   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1326   ebuf[ebuflen-1]='\0';
1327   int diag_msg_max_length=ebuflen-strlen(ebuf);
1328   char* diag_msg_buf=ebuf+strlen(ebuf);
1329 
1330   if (diag_msg_max_length==0) {
1331     // No more space in ebuf for additional diagnostics message
1332     return NULL;
1333   }
1334 
1335 
1336   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1337 
1338   if (file_descriptor < 0) {
1339     // Can't open library, report dlerror() message
1340     return NULL;
1341   }
1342 
1343   bool failed_to_read_elf_head=
1344     (sizeof(elf_head)!=
1345      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1346 
1347   ::close(file_descriptor);
1348   if (failed_to_read_elf_head) {
1349     // file i/o error - report dlerror() msg
1350     return NULL;
1351   }
1352 
1353   typedef struct {
1354     Elf32_Half  code;         // Actual value as defined in elf.h
1355     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1356     char        elf_class;    // 32 or 64 bit
1357     char        endianess;    // MSB or LSB
1358     char*       name;         // String representation
1359   } arch_t;
1360 
1361   #ifndef EM_486
1362     #define EM_486          6               /* Intel 80486 */
1363   #endif
1364 
1365   #ifndef EM_MIPS_RS3_LE
1366     #define EM_MIPS_RS3_LE  10              /* MIPS */
1367   #endif
1368 
1369   #ifndef EM_PPC64
1370     #define EM_PPC64        21              /* PowerPC64 */
1371   #endif
1372 
1373   #ifndef EM_S390
1374     #define EM_S390         22              /* IBM System/390 */
1375   #endif
1376 
1377   #ifndef EM_IA_64
1378     #define EM_IA_64        50              /* HP/Intel IA-64 */
1379   #endif
1380 
1381   #ifndef EM_X86_64
1382     #define EM_X86_64       62              /* AMD x86-64 */
1383   #endif
1384 
1385   static const arch_t arch_array[]={
1386     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1387     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1388     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1389     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1390     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1391     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1392     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1393     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1394     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1395     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1396     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1397     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1398     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1399     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1400     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1401     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1402   };
1403 
1404   #if  (defined IA32)
1405   static  Elf32_Half running_arch_code=EM_386;
1406   #elif   (defined AMD64)
1407   static  Elf32_Half running_arch_code=EM_X86_64;
1408   #elif  (defined IA64)
1409   static  Elf32_Half running_arch_code=EM_IA_64;
1410   #elif  (defined __sparc) && (defined _LP64)
1411   static  Elf32_Half running_arch_code=EM_SPARCV9;
1412   #elif  (defined __sparc) && (!defined _LP64)
1413   static  Elf32_Half running_arch_code=EM_SPARC;
1414   #elif  (defined __powerpc64__)
1415   static  Elf32_Half running_arch_code=EM_PPC64;
1416   #elif  (defined __powerpc__)
1417   static  Elf32_Half running_arch_code=EM_PPC;
1418   #elif  (defined ARM)
1419   static  Elf32_Half running_arch_code=EM_ARM;
1420   #elif  (defined S390)
1421   static  Elf32_Half running_arch_code=EM_S390;
1422   #elif  (defined ALPHA)
1423   static  Elf32_Half running_arch_code=EM_ALPHA;
1424   #elif  (defined MIPSEL)
1425   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1426   #elif  (defined PARISC)
1427   static  Elf32_Half running_arch_code=EM_PARISC;
1428   #elif  (defined MIPS)
1429   static  Elf32_Half running_arch_code=EM_MIPS;
1430   #elif  (defined M68K)
1431   static  Elf32_Half running_arch_code=EM_68K;
1432   #else
1433     #error Method os::dll_load requires that one of following is defined:\
1434          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1435   #endif
1436 
1437   // Identify compatability class for VM's architecture and library's architecture
1438   // Obtain string descriptions for architectures
1439 
1440   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1441   int running_arch_index=-1;
1442 
1443   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1444     if (running_arch_code == arch_array[i].code) {
1445       running_arch_index    = i;
1446     }
1447     if (lib_arch.code == arch_array[i].code) {
1448       lib_arch.compat_class = arch_array[i].compat_class;
1449       lib_arch.name         = arch_array[i].name;
1450     }
1451   }
1452 
1453   assert(running_arch_index != -1,
1454          "Didn't find running architecture code (running_arch_code) in arch_array");
1455   if (running_arch_index == -1) {
1456     // Even though running architecture detection failed
1457     // we may still continue with reporting dlerror() message
1458     return NULL;
1459   }
1460 
1461   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1462     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1463     return NULL;
1464   }
1465 
1466 #ifndef S390
1467   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1468     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1469     return NULL;
1470   }
1471 #endif // !S390
1472 
1473   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1474     if (lib_arch.name!=NULL) {
1475       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1476                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1477                  lib_arch.name, arch_array[running_arch_index].name);
1478     } else {
1479       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1480                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1481                  lib_arch.code,
1482                  arch_array[running_arch_index].name);
1483     }
1484   }
1485 
1486   return NULL;
1487 #endif // STATIC_BUILD
1488 }
1489 #endif // !__APPLE__
1490 
1491 void* os::get_default_process_handle() {
1492 #ifdef __APPLE__
1493   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1494   // to avoid finding unexpected symbols on second (or later)
1495   // loads of a library.
1496   return (void*)::dlopen(NULL, RTLD_FIRST);
1497 #else
1498   return (void*)::dlopen(NULL, RTLD_LAZY);
1499 #endif
1500 }
1501 
1502 // XXX: Do we need a lock around this as per Linux?
1503 void* os::dll_lookup(void* handle, const char* name) {
1504   return dlsym(handle, name);
1505 }
1506 
1507 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1508   outputStream * out = (outputStream *) param;
1509   out->print_cr(INTPTR_FORMAT " \t%s", (intptr_t)base_address, name);
1510   return 0;
1511 }
1512 
1513 void os::print_dll_info(outputStream *st) {
1514   st->print_cr("Dynamic libraries:");
1515   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1516     st->print_cr("Error: Cannot print dynamic libraries.");
1517   }
1518 }
1519 
1520 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1521 #ifdef RTLD_DI_LINKMAP
1522   Dl_info dli;
1523   void *handle;
1524   Link_map *map;
1525   Link_map *p;
1526 
1527   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1528       dli.dli_fname == NULL) {
1529     return 1;
1530   }
1531   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1532   if (handle == NULL) {
1533     return 1;
1534   }
1535   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1536   if (map == NULL) {
1537     dlclose(handle);
1538     return 1;
1539   }
1540 
1541   while (map->l_prev != NULL)
1542     map = map->l_prev;
1543 
1544   while (map != NULL) {
1545     // Value for top_address is returned as 0 since we don't have any information about module size
1546     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1547       dlclose(handle);
1548       return 1;
1549     }
1550     map = map->l_next;
1551   }
1552 
1553   dlclose(handle);
1554 #elif defined(__APPLE__)
1555   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1556     // Value for top_address is returned as 0 since we don't have any information about module size
1557     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1558       return 1;
1559     }
1560   }
1561   return 0;
1562 #else
1563   return 1;
1564 #endif
1565 }
1566 
1567 void os::get_summary_os_info(char* buf, size_t buflen) {
1568   // These buffers are small because we want this to be brief
1569   // and not use a lot of stack while generating the hs_err file.
1570   char os[100];
1571   size_t size = sizeof(os);
1572   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1573   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1574 #ifdef __APPLE__
1575       strncpy(os, "Darwin", sizeof(os));
1576 #elif __OpenBSD__
1577       strncpy(os, "OpenBSD", sizeof(os));
1578 #else
1579       strncpy(os, "BSD", sizeof(os));
1580 #endif
1581   }
1582 
1583   char release[100];
1584   size = sizeof(release);
1585   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1586   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1587       // if error, leave blank
1588       strncpy(release, "", sizeof(release));
1589   }
1590   snprintf(buf, buflen, "%s %s", os, release);
1591 }
1592 
1593 void os::print_os_info_brief(outputStream* st) {
1594   os::Posix::print_uname_info(st);
1595 }
1596 
1597 void os::print_os_info(outputStream* st) {
1598   st->print("OS:");
1599 
1600   os::Posix::print_uname_info(st);
1601 
1602   os::Posix::print_rlimit_info(st);
1603 
1604   os::Posix::print_load_average(st);
1605 }
1606 
1607 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1608   // Nothing to do for now.
1609 }
1610 
1611 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1612   unsigned int mhz;
1613   size_t size = sizeof(mhz);
1614   int mib[] = { CTL_HW, HW_CPU_FREQ };
1615   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1616     mhz = 1;  // looks like an error but can be divided by
1617   } else {
1618     mhz /= 1000000;  // reported in millions
1619   }
1620 
1621   char model[100];
1622   size = sizeof(model);
1623   int mib_model[] = { CTL_HW, HW_MODEL };
1624   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1625     strncpy(model, cpu_arch, sizeof(model));
1626   }
1627 
1628   char machine[100];
1629   size = sizeof(machine);
1630   int mib_machine[] = { CTL_HW, HW_MACHINE };
1631   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1632       strncpy(machine, "", sizeof(machine));
1633   }
1634 
1635   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1636 }
1637 
1638 void os::print_memory_info(outputStream* st) {
1639 
1640   st->print("Memory:");
1641   st->print(" %dk page", os::vm_page_size()>>10);
1642 
1643   st->print(", physical " UINT64_FORMAT "k",
1644             os::physical_memory() >> 10);
1645   st->print("(" UINT64_FORMAT "k free)",
1646             os::available_memory() >> 10);
1647   st->cr();
1648 }
1649 
1650 static void print_signal_handler(outputStream* st, int sig,
1651                                  char* buf, size_t buflen);
1652 
1653 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1654   st->print_cr("Signal Handlers:");
1655   print_signal_handler(st, SIGSEGV, buf, buflen);
1656   print_signal_handler(st, SIGBUS , buf, buflen);
1657   print_signal_handler(st, SIGFPE , buf, buflen);
1658   print_signal_handler(st, SIGPIPE, buf, buflen);
1659   print_signal_handler(st, SIGXFSZ, buf, buflen);
1660   print_signal_handler(st, SIGILL , buf, buflen);
1661   print_signal_handler(st, SR_signum, buf, buflen);
1662   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1663   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1664   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1665   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1666 }
1667 
1668 static char saved_jvm_path[MAXPATHLEN] = {0};
1669 
1670 // Find the full path to the current module, libjvm
1671 void os::jvm_path(char *buf, jint buflen) {
1672   // Error checking.
1673   if (buflen < MAXPATHLEN) {
1674     assert(false, "must use a large-enough buffer");
1675     buf[0] = '\0';
1676     return;
1677   }
1678   // Lazy resolve the path to current module.
1679   if (saved_jvm_path[0] != 0) {
1680     strcpy(buf, saved_jvm_path);
1681     return;
1682   }
1683 
1684   char dli_fname[MAXPATHLEN];
1685   bool ret = dll_address_to_library_name(
1686                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1687                                          dli_fname, sizeof(dli_fname), NULL);
1688   assert(ret, "cannot locate libjvm");
1689   char *rp = NULL;
1690   if (ret && dli_fname[0] != '\0') {
1691     rp = os::Posix::realpath(dli_fname, buf, buflen);
1692   }
1693   if (rp == NULL) {
1694     return;
1695   }
1696 
1697   if (Arguments::sun_java_launcher_is_altjvm()) {
1698     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1699     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1700     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1701     // appears at the right place in the string, then assume we are
1702     // installed in a JDK and we're done. Otherwise, check for a
1703     // JAVA_HOME environment variable and construct a path to the JVM
1704     // being overridden.
1705 
1706     const char *p = buf + strlen(buf) - 1;
1707     for (int count = 0; p > buf && count < 5; ++count) {
1708       for (--p; p > buf && *p != '/'; --p)
1709         /* empty */ ;
1710     }
1711 
1712     if (strncmp(p, "/jre/lib/", 9) != 0) {
1713       // Look for JAVA_HOME in the environment.
1714       char* java_home_var = ::getenv("JAVA_HOME");
1715       if (java_home_var != NULL && java_home_var[0] != 0) {
1716         char* jrelib_p;
1717         int len;
1718 
1719         // Check the current module name "libjvm"
1720         p = strrchr(buf, '/');
1721         assert(strstr(p, "/libjvm") == p, "invalid library name");
1722 
1723         rp = os::Posix::realpath(java_home_var, buf, buflen);
1724         if (rp == NULL) {
1725           return;
1726         }
1727 
1728         // determine if this is a legacy image or modules image
1729         // modules image doesn't have "jre" subdirectory
1730         len = strlen(buf);
1731         assert(len < buflen, "Ran out of buffer space");
1732         jrelib_p = buf + len;
1733 
1734         // Add the appropriate library subdir
1735         snprintf(jrelib_p, buflen-len, "/jre/lib");
1736         if (0 != access(buf, F_OK)) {
1737           snprintf(jrelib_p, buflen-len, "/lib");
1738         }
1739 
1740         // Add the appropriate client or server subdir
1741         len = strlen(buf);
1742         jrelib_p = buf + len;
1743         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1744         if (0 != access(buf, F_OK)) {
1745           snprintf(jrelib_p, buflen-len, "%s", "");
1746         }
1747 
1748         // If the path exists within JAVA_HOME, add the JVM library name
1749         // to complete the path to JVM being overridden.  Otherwise fallback
1750         // to the path to the current library.
1751         if (0 == access(buf, F_OK)) {
1752           // Use current module name "libjvm"
1753           len = strlen(buf);
1754           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1755         } else {
1756           // Fall back to path of current library
1757           rp = os::Posix::realpath(dli_fname, buf, buflen);
1758           if (rp == NULL) {
1759             return;
1760           }
1761         }
1762       }
1763     }
1764   }
1765 
1766   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1767   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1768 }
1769 
1770 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1771   // no prefix required, not even "_"
1772 }
1773 
1774 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1775   // no suffix required
1776 }
1777 
1778 ////////////////////////////////////////////////////////////////////////////////
1779 // sun.misc.Signal support
1780 
1781 static volatile jint sigint_count = 0;
1782 
1783 static void UserHandler(int sig, void *siginfo, void *context) {
1784   // 4511530 - sem_post is serialized and handled by the manager thread. When
1785   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1786   // don't want to flood the manager thread with sem_post requests.
1787   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1788     return;
1789   }
1790 
1791   // Ctrl-C is pressed during error reporting, likely because the error
1792   // handler fails to abort. Let VM die immediately.
1793   if (sig == SIGINT && VMError::is_error_reported()) {
1794     os::die();
1795   }
1796 
1797   os::signal_notify(sig);
1798 }
1799 
1800 void* os::user_handler() {
1801   return CAST_FROM_FN_PTR(void*, UserHandler);
1802 }
1803 
1804 extern "C" {
1805   typedef void (*sa_handler_t)(int);
1806   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1807 }
1808 
1809 void* os::signal(int signal_number, void* handler) {
1810   struct sigaction sigAct, oldSigAct;
1811 
1812   sigfillset(&(sigAct.sa_mask));
1813   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1814   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1815 
1816   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1817     // -1 means registration failed
1818     return (void *)-1;
1819   }
1820 
1821   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1822 }
1823 
1824 void os::signal_raise(int signal_number) {
1825   ::raise(signal_number);
1826 }
1827 
1828 // The following code is moved from os.cpp for making this
1829 // code platform specific, which it is by its very nature.
1830 
1831 // Will be modified when max signal is changed to be dynamic
1832 int os::sigexitnum_pd() {
1833   return NSIG;
1834 }
1835 
1836 // a counter for each possible signal value
1837 static volatile jint pending_signals[NSIG+1] = { 0 };
1838 
1839 // Bsd(POSIX) specific hand shaking semaphore.
1840 #ifdef __APPLE__
1841 typedef semaphore_t os_semaphore_t;
1842 
1843   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1844   #define SEM_WAIT(sem)           semaphore_wait(sem)
1845   #define SEM_POST(sem)           semaphore_signal(sem)
1846   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1847 #else
1848 typedef sem_t os_semaphore_t;
1849 
1850   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1851   #define SEM_WAIT(sem)           sem_wait(&sem)
1852   #define SEM_POST(sem)           sem_post(&sem)
1853   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1854 #endif
1855 
1856 #ifdef __APPLE__
1857 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1858 
1859 static const char* sem_init_strerror(kern_return_t value) {
1860   switch (value) {
1861     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1862     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1863     default:                     return "Unknown";
1864   }
1865 }
1866 
1867 OSXSemaphore::OSXSemaphore(uint value) {
1868   kern_return_t ret = SEM_INIT(_semaphore, value);
1869 
1870   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1871 }
1872 
1873 OSXSemaphore::~OSXSemaphore() {
1874   SEM_DESTROY(_semaphore);
1875 }
1876 
1877 void OSXSemaphore::signal(uint count) {
1878   for (uint i = 0; i < count; i++) {
1879     kern_return_t ret = SEM_POST(_semaphore);
1880 
1881     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1882   }
1883 }
1884 
1885 void OSXSemaphore::wait() {
1886   kern_return_t ret;
1887   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1888     // Semaphore was interrupted. Retry.
1889   }
1890   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1891 }
1892 
1893 jlong OSXSemaphore::currenttime() {
1894   struct timeval tv;
1895   gettimeofday(&tv, NULL);
1896   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1897 }
1898 
1899 bool OSXSemaphore::trywait() {
1900   return timedwait(0, 0);
1901 }
1902 
1903 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1904   kern_return_t kr = KERN_ABORTED;
1905   mach_timespec_t waitspec;
1906   waitspec.tv_sec = sec;
1907   waitspec.tv_nsec = nsec;
1908 
1909   jlong starttime = currenttime();
1910 
1911   kr = semaphore_timedwait(_semaphore, waitspec);
1912   while (kr == KERN_ABORTED) {
1913     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1914 
1915     jlong current = currenttime();
1916     jlong passedtime = current - starttime;
1917 
1918     if (passedtime >= totalwait) {
1919       waitspec.tv_sec = 0;
1920       waitspec.tv_nsec = 0;
1921     } else {
1922       jlong waittime = totalwait - (current - starttime);
1923       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
1924       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
1925     }
1926 
1927     kr = semaphore_timedwait(_semaphore, waitspec);
1928   }
1929 
1930   return kr == KERN_SUCCESS;
1931 }
1932 
1933 #else
1934 // Use POSIX implementation of semaphores.
1935 
1936 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
1937   struct timespec ts;
1938   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
1939 
1940   return ts;
1941 }
1942 
1943 #endif // __APPLE__
1944 
1945 static os_semaphore_t sig_sem;
1946 
1947 #ifdef __APPLE__
1948 static OSXSemaphore sr_semaphore;
1949 #else
1950 static PosixSemaphore sr_semaphore;
1951 #endif
1952 
1953 void os::signal_init_pd() {
1954   // Initialize signal structures
1955   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1956 
1957   // Initialize signal semaphore
1958   ::SEM_INIT(sig_sem, 0);
1959 }
1960 
1961 void os::signal_notify(int sig) {
1962   Atomic::inc(&pending_signals[sig]);
1963   ::SEM_POST(sig_sem);
1964 }
1965 
1966 static int check_pending_signals(bool wait) {
1967   Atomic::store(0, &sigint_count);
1968   for (;;) {
1969     for (int i = 0; i < NSIG + 1; i++) {
1970       jint n = pending_signals[i];
1971       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1972         return i;
1973       }
1974     }
1975     if (!wait) {
1976       return -1;
1977     }
1978     JavaThread *thread = JavaThread::current();
1979     ThreadBlockInVM tbivm(thread);
1980 
1981     bool threadIsSuspended;
1982     do {
1983       thread->set_suspend_equivalent();
1984       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1985       ::SEM_WAIT(sig_sem);
1986 
1987       // were we externally suspended while we were waiting?
1988       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1989       if (threadIsSuspended) {
1990         // The semaphore has been incremented, but while we were waiting
1991         // another thread suspended us. We don't want to continue running
1992         // while suspended because that would surprise the thread that
1993         // suspended us.
1994         ::SEM_POST(sig_sem);
1995 
1996         thread->java_suspend_self();
1997       }
1998     } while (threadIsSuspended);
1999   }
2000 }
2001 
2002 int os::signal_lookup() {
2003   return check_pending_signals(false);
2004 }
2005 
2006 int os::signal_wait() {
2007   return check_pending_signals(true);
2008 }
2009 
2010 ////////////////////////////////////////////////////////////////////////////////
2011 // Virtual Memory
2012 
2013 int os::vm_page_size() {
2014   // Seems redundant as all get out
2015   assert(os::Bsd::page_size() != -1, "must call os::init");
2016   return os::Bsd::page_size();
2017 }
2018 
2019 // Solaris allocates memory by pages.
2020 int os::vm_allocation_granularity() {
2021   assert(os::Bsd::page_size() != -1, "must call os::init");
2022   return os::Bsd::page_size();
2023 }
2024 
2025 // Rationale behind this function:
2026 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2027 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2028 //  samples for JITted code. Here we create private executable mapping over the code cache
2029 //  and then we can use standard (well, almost, as mapping can change) way to provide
2030 //  info for the reporting script by storing timestamp and location of symbol
2031 void bsd_wrap_code(char* base, size_t size) {
2032   static volatile jint cnt = 0;
2033 
2034   if (!UseOprofile) {
2035     return;
2036   }
2037 
2038   char buf[PATH_MAX + 1];
2039   int num = Atomic::add(1, &cnt);
2040 
2041   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2042            os::get_temp_directory(), os::current_process_id(), num);
2043   unlink(buf);
2044 
2045   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2046 
2047   if (fd != -1) {
2048     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2049     if (rv != (off_t)-1) {
2050       if (::write(fd, "", 1) == 1) {
2051         mmap(base, size,
2052              PROT_READ|PROT_WRITE|PROT_EXEC,
2053              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2054       }
2055     }
2056     ::close(fd);
2057     unlink(buf);
2058   }
2059 }
2060 
2061 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2062                                     int err) {
2063   warning("INFO: os::commit_memory(" INTPTR_FORMAT ", " SIZE_FORMAT
2064           ", %d) failed; error='%s' (errno=%d)", (intptr_t)addr, size, exec,
2065            os::errno_name(err), err);
2066 }
2067 
2068 // NOTE: Bsd kernel does not really reserve the pages for us.
2069 //       All it does is to check if there are enough free pages
2070 //       left at the time of mmap(). This could be a potential
2071 //       problem.
2072 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2073   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2074 #ifdef __OpenBSD__
2075   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2076   if (::mprotect(addr, size, prot) == 0) {
2077     return true;
2078   }
2079 #else
2080   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2081                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2082   if (res != (uintptr_t) MAP_FAILED) {
2083     return true;
2084   }
2085 #endif
2086 
2087   // Warn about any commit errors we see in non-product builds just
2088   // in case mmap() doesn't work as described on the man page.
2089   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2090 
2091   return false;
2092 }
2093 
2094 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2095                           bool exec) {
2096   // alignment_hint is ignored on this OS
2097   return pd_commit_memory(addr, size, exec);
2098 }
2099 
2100 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2101                                   const char* mesg) {
2102   assert(mesg != NULL, "mesg must be specified");
2103   if (!pd_commit_memory(addr, size, exec)) {
2104     // add extra info in product mode for vm_exit_out_of_memory():
2105     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2106     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2107   }
2108 }
2109 
2110 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2111                                   size_t alignment_hint, bool exec,
2112                                   const char* mesg) {
2113   // alignment_hint is ignored on this OS
2114   pd_commit_memory_or_exit(addr, size, exec, mesg);
2115 }
2116 
2117 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2118 }
2119 
2120 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2121   ::madvise(addr, bytes, MADV_DONTNEED);
2122 }
2123 
2124 void os::numa_make_global(char *addr, size_t bytes) {
2125 }
2126 
2127 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2128 }
2129 
2130 bool os::numa_topology_changed()   { return false; }
2131 
2132 size_t os::numa_get_groups_num() {
2133   return 1;
2134 }
2135 
2136 int os::numa_get_group_id() {
2137   return 0;
2138 }
2139 
2140 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2141   if (size > 0) {
2142     ids[0] = 0;
2143     return 1;
2144   }
2145   return 0;
2146 }
2147 
2148 bool os::get_page_info(char *start, page_info* info) {
2149   return false;
2150 }
2151 
2152 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2153   return end;
2154 }
2155 
2156 
2157 bool os::pd_uncommit_memory(char* addr, size_t size) {
2158 #ifdef __OpenBSD__
2159   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2160   return ::mprotect(addr, size, PROT_NONE) == 0;
2161 #else
2162   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2163                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2164   return res  != (uintptr_t) MAP_FAILED;
2165 #endif
2166 }
2167 
2168 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2169   return os::commit_memory(addr, size, !ExecMem);
2170 }
2171 
2172 // If this is a growable mapping, remove the guard pages entirely by
2173 // munmap()ping them.  If not, just call uncommit_memory().
2174 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2175   return os::uncommit_memory(addr, size);
2176 }
2177 
2178 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2179 // at 'requested_addr'. If there are existing memory mappings at the same
2180 // location, however, they will be overwritten. If 'fixed' is false,
2181 // 'requested_addr' is only treated as a hint, the return value may or
2182 // may not start from the requested address. Unlike Bsd mmap(), this
2183 // function returns NULL to indicate failure.
2184 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2185   char * addr;
2186   int flags;
2187 
2188   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2189   if (fixed) {
2190     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2191     flags |= MAP_FIXED;
2192   }
2193 
2194   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2195   // touch an uncommitted page. Otherwise, the read/write might
2196   // succeed if we have enough swap space to back the physical page.
2197   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2198                        flags, -1, 0);
2199 
2200   return addr == MAP_FAILED ? NULL : addr;
2201 }
2202 
2203 static int anon_munmap(char * addr, size_t size) {
2204   return ::munmap(addr, size) == 0;
2205 }
2206 
2207 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2208                             size_t alignment_hint) {
2209   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2210 }
2211 
2212 bool os::pd_release_memory(char* addr, size_t size) {
2213   return anon_munmap(addr, size);
2214 }
2215 
2216 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2217   // Bsd wants the mprotect address argument to be page aligned.
2218   char* bottom = (char*)align_down((intptr_t)addr, os::Bsd::page_size());
2219 
2220   // According to SUSv3, mprotect() should only be used with mappings
2221   // established by mmap(), and mmap() always maps whole pages. Unaligned
2222   // 'addr' likely indicates problem in the VM (e.g. trying to change
2223   // protection of malloc'ed or statically allocated memory). Check the
2224   // caller if you hit this assert.
2225   assert(addr == bottom, "sanity check");
2226 
2227   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2228   return ::mprotect(bottom, size, prot) == 0;
2229 }
2230 
2231 // Set protections specified
2232 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2233                         bool is_committed) {
2234   unsigned int p = 0;
2235   switch (prot) {
2236   case MEM_PROT_NONE: p = PROT_NONE; break;
2237   case MEM_PROT_READ: p = PROT_READ; break;
2238   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2239   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2240   default:
2241     ShouldNotReachHere();
2242   }
2243   // is_committed is unused.
2244   return bsd_mprotect(addr, bytes, p);
2245 }
2246 
2247 bool os::guard_memory(char* addr, size_t size) {
2248   return bsd_mprotect(addr, size, PROT_NONE);
2249 }
2250 
2251 bool os::unguard_memory(char* addr, size_t size) {
2252   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2253 }
2254 
2255 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2256   return false;
2257 }
2258 
2259 // Large page support
2260 
2261 static size_t _large_page_size = 0;
2262 
2263 void os::large_page_init() {
2264 }
2265 
2266 
2267 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2268   fatal("This code is not used or maintained.");
2269 
2270   // "exec" is passed in but not used.  Creating the shared image for
2271   // the code cache doesn't have an SHM_X executable permission to check.
2272   assert(UseLargePages && UseSHM, "only for SHM large pages");
2273 
2274   key_t key = IPC_PRIVATE;
2275   char *addr;
2276 
2277   bool warn_on_failure = UseLargePages &&
2278                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2279                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2280 
2281   // Create a large shared memory region to attach to based on size.
2282   // Currently, size is the total size of the heap
2283   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2284   if (shmid == -1) {
2285     // Possible reasons for shmget failure:
2286     // 1. shmmax is too small for Java heap.
2287     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2288     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2289     // 2. not enough large page memory.
2290     //    > check available large pages: cat /proc/meminfo
2291     //    > increase amount of large pages:
2292     //          echo new_value > /proc/sys/vm/nr_hugepages
2293     //      Note 1: different Bsd may use different name for this property,
2294     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2295     //      Note 2: it's possible there's enough physical memory available but
2296     //            they are so fragmented after a long run that they can't
2297     //            coalesce into large pages. Try to reserve large pages when
2298     //            the system is still "fresh".
2299     if (warn_on_failure) {
2300       warning("Failed to reserve shared memory (errno = %d).", errno);
2301     }
2302     return NULL;
2303   }
2304 
2305   // attach to the region
2306   addr = (char*)shmat(shmid, req_addr, 0);
2307   int err = errno;
2308 
2309   // Remove shmid. If shmat() is successful, the actual shared memory segment
2310   // will be deleted when it's detached by shmdt() or when the process
2311   // terminates. If shmat() is not successful this will remove the shared
2312   // segment immediately.
2313   shmctl(shmid, IPC_RMID, NULL);
2314 
2315   if ((intptr_t)addr == -1) {
2316     if (warn_on_failure) {
2317       warning("Failed to attach shared memory (errno = %d).", err);
2318     }
2319     return NULL;
2320   }
2321 
2322   // The memory is committed
2323   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2324 
2325   return addr;
2326 }
2327 
2328 bool os::release_memory_special(char* base, size_t bytes) {
2329   if (MemTracker::tracking_level() > NMT_minimal) {
2330     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2331     // detaching the SHM segment will also delete it, see reserve_memory_special()
2332     int rslt = shmdt(base);
2333     if (rslt == 0) {
2334       tkr.record((address)base, bytes);
2335       return true;
2336     } else {
2337       return false;
2338     }
2339   } else {
2340     return shmdt(base) == 0;
2341   }
2342 }
2343 
2344 size_t os::large_page_size() {
2345   return _large_page_size;
2346 }
2347 
2348 // HugeTLBFS allows application to commit large page memory on demand;
2349 // with SysV SHM the entire memory region must be allocated as shared
2350 // memory.
2351 bool os::can_commit_large_page_memory() {
2352   return UseHugeTLBFS;
2353 }
2354 
2355 bool os::can_execute_large_page_memory() {
2356   return UseHugeTLBFS;
2357 }
2358 
2359 // Reserve memory at an arbitrary address, only if that area is
2360 // available (and not reserved for something else).
2361 
2362 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2363   const int max_tries = 10;
2364   char* base[max_tries];
2365   size_t size[max_tries];
2366   const size_t gap = 0x000000;
2367 
2368   // Assert only that the size is a multiple of the page size, since
2369   // that's all that mmap requires, and since that's all we really know
2370   // about at this low abstraction level.  If we need higher alignment,
2371   // we can either pass an alignment to this method or verify alignment
2372   // in one of the methods further up the call chain.  See bug 5044738.
2373   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2374 
2375   // Repeatedly allocate blocks until the block is allocated at the
2376   // right spot.
2377 
2378   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2379   // if kernel honors the hint then we can return immediately.
2380   char * addr = anon_mmap(requested_addr, bytes, false);
2381   if (addr == requested_addr) {
2382     return requested_addr;
2383   }
2384 
2385   if (addr != NULL) {
2386     // mmap() is successful but it fails to reserve at the requested address
2387     anon_munmap(addr, bytes);
2388   }
2389 
2390   int i;
2391   for (i = 0; i < max_tries; ++i) {
2392     base[i] = reserve_memory(bytes);
2393 
2394     if (base[i] != NULL) {
2395       // Is this the block we wanted?
2396       if (base[i] == requested_addr) {
2397         size[i] = bytes;
2398         break;
2399       }
2400 
2401       // Does this overlap the block we wanted? Give back the overlapped
2402       // parts and try again.
2403 
2404       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2405       if (top_overlap >= 0 && top_overlap < bytes) {
2406         unmap_memory(base[i], top_overlap);
2407         base[i] += top_overlap;
2408         size[i] = bytes - top_overlap;
2409       } else {
2410         size_t bottom_overlap = base[i] + bytes - requested_addr;
2411         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2412           unmap_memory(requested_addr, bottom_overlap);
2413           size[i] = bytes - bottom_overlap;
2414         } else {
2415           size[i] = bytes;
2416         }
2417       }
2418     }
2419   }
2420 
2421   // Give back the unused reserved pieces.
2422 
2423   for (int j = 0; j < i; ++j) {
2424     if (base[j] != NULL) {
2425       unmap_memory(base[j], size[j]);
2426     }
2427   }
2428 
2429   if (i < max_tries) {
2430     return requested_addr;
2431   } else {
2432     return NULL;
2433   }
2434 }
2435 
2436 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2437   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2438 }
2439 
2440 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2441   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2442 }
2443 
2444 void os::naked_short_sleep(jlong ms) {
2445   struct timespec req;
2446 
2447   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2448   req.tv_sec = 0;
2449   if (ms > 0) {
2450     req.tv_nsec = (ms % 1000) * 1000000;
2451   } else {
2452     req.tv_nsec = 1;
2453   }
2454 
2455   nanosleep(&req, NULL);
2456 
2457   return;
2458 }
2459 
2460 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2461 void os::infinite_sleep() {
2462   while (true) {    // sleep forever ...
2463     ::sleep(100);   // ... 100 seconds at a time
2464   }
2465 }
2466 
2467 // Used to convert frequent JVM_Yield() to nops
2468 bool os::dont_yield() {
2469   return DontYieldALot;
2470 }
2471 
2472 void os::naked_yield() {
2473   sched_yield();
2474 }
2475 
2476 ////////////////////////////////////////////////////////////////////////////////
2477 // thread priority support
2478 
2479 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2480 // only supports dynamic priority, static priority must be zero. For real-time
2481 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2482 // However, for large multi-threaded applications, SCHED_RR is not only slower
2483 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2484 // of 5 runs - Sep 2005).
2485 //
2486 // The following code actually changes the niceness of kernel-thread/LWP. It
2487 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2488 // not the entire user process, and user level threads are 1:1 mapped to kernel
2489 // threads. It has always been the case, but could change in the future. For
2490 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2491 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2492 
2493 #if !defined(__APPLE__)
2494 int os::java_to_os_priority[CriticalPriority + 1] = {
2495   19,              // 0 Entry should never be used
2496 
2497    0,              // 1 MinPriority
2498    3,              // 2
2499    6,              // 3
2500 
2501   10,              // 4
2502   15,              // 5 NormPriority
2503   18,              // 6
2504 
2505   21,              // 7
2506   25,              // 8
2507   28,              // 9 NearMaxPriority
2508 
2509   31,              // 10 MaxPriority
2510 
2511   31               // 11 CriticalPriority
2512 };
2513 #else
2514 // Using Mach high-level priority assignments
2515 int os::java_to_os_priority[CriticalPriority + 1] = {
2516    0,              // 0 Entry should never be used (MINPRI_USER)
2517 
2518   27,              // 1 MinPriority
2519   28,              // 2
2520   29,              // 3
2521 
2522   30,              // 4
2523   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2524   32,              // 6
2525 
2526   33,              // 7
2527   34,              // 8
2528   35,              // 9 NearMaxPriority
2529 
2530   36,              // 10 MaxPriority
2531 
2532   36               // 11 CriticalPriority
2533 };
2534 #endif
2535 
2536 static int prio_init() {
2537   if (ThreadPriorityPolicy == 1) {
2538     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2539     // if effective uid is not root. Perhaps, a more elegant way of doing
2540     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2541     if (geteuid() != 0) {
2542       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2543         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2544       }
2545       ThreadPriorityPolicy = 0;
2546     }
2547   }
2548   if (UseCriticalJavaThreadPriority) {
2549     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2550   }
2551   return 0;
2552 }
2553 
2554 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2555   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2556 
2557 #ifdef __OpenBSD__
2558   // OpenBSD pthread_setprio starves low priority threads
2559   return OS_OK;
2560 #elif defined(__FreeBSD__)
2561   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2562 #elif defined(__APPLE__) || defined(__NetBSD__)
2563   struct sched_param sp;
2564   int policy;
2565   pthread_t self = pthread_self();
2566 
2567   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2568     return OS_ERR;
2569   }
2570 
2571   sp.sched_priority = newpri;
2572   if (pthread_setschedparam(self, policy, &sp) != 0) {
2573     return OS_ERR;
2574   }
2575 
2576   return OS_OK;
2577 #else
2578   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2579   return (ret == 0) ? OS_OK : OS_ERR;
2580 #endif
2581 }
2582 
2583 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2584   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2585     *priority_ptr = java_to_os_priority[NormPriority];
2586     return OS_OK;
2587   }
2588 
2589   errno = 0;
2590 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2591   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2592 #elif defined(__APPLE__) || defined(__NetBSD__)
2593   int policy;
2594   struct sched_param sp;
2595 
2596   pthread_getschedparam(pthread_self(), &policy, &sp);
2597   *priority_ptr = sp.sched_priority;
2598 #else
2599   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2600 #endif
2601   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2602 }
2603 
2604 // Hint to the underlying OS that a task switch would not be good.
2605 // Void return because it's a hint and can fail.
2606 void os::hint_no_preempt() {}
2607 
2608 ////////////////////////////////////////////////////////////////////////////////
2609 // suspend/resume support
2610 
2611 //  The low-level signal-based suspend/resume support is a remnant from the
2612 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2613 //  within hotspot. Currently used by JFR's OSThreadSampler
2614 //
2615 //  The remaining code is greatly simplified from the more general suspension
2616 //  code that used to be used.
2617 //
2618 //  The protocol is quite simple:
2619 //  - suspend:
2620 //      - sends a signal to the target thread
2621 //      - polls the suspend state of the osthread using a yield loop
2622 //      - target thread signal handler (SR_handler) sets suspend state
2623 //        and blocks in sigsuspend until continued
2624 //  - resume:
2625 //      - sets target osthread state to continue
2626 //      - sends signal to end the sigsuspend loop in the SR_handler
2627 //
2628 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2629 //  but is checked for NULL in SR_handler as a thread termination indicator.
2630 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2631 //
2632 //  Note that resume_clear_context() and suspend_save_context() are needed
2633 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2634 //  which in part is used by:
2635 //    - Forte Analyzer: AsyncGetCallTrace()
2636 //    - StackBanging: get_frame_at_stack_banging_point()
2637 
2638 static void resume_clear_context(OSThread *osthread) {
2639   osthread->set_ucontext(NULL);
2640   osthread->set_siginfo(NULL);
2641 }
2642 
2643 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2644   osthread->set_ucontext(context);
2645   osthread->set_siginfo(siginfo);
2646 }
2647 
2648 // Handler function invoked when a thread's execution is suspended or
2649 // resumed. We have to be careful that only async-safe functions are
2650 // called here (Note: most pthread functions are not async safe and
2651 // should be avoided.)
2652 //
2653 // Note: sigwait() is a more natural fit than sigsuspend() from an
2654 // interface point of view, but sigwait() prevents the signal hander
2655 // from being run. libpthread would get very confused by not having
2656 // its signal handlers run and prevents sigwait()'s use with the
2657 // mutex granting granting signal.
2658 //
2659 // Currently only ever called on the VMThread or JavaThread
2660 //
2661 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2662   // Save and restore errno to avoid confusing native code with EINTR
2663   // after sigsuspend.
2664   int old_errno = errno;
2665 
2666   Thread* thread = Thread::current_or_null_safe();
2667   assert(thread != NULL, "Missing current thread in SR_handler");
2668 
2669   // On some systems we have seen signal delivery get "stuck" until the signal
2670   // mask is changed as part of thread termination. Check that the current thread
2671   // has not already terminated (via SR_lock()) - else the following assertion
2672   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2673   // destructor has completed.
2674 
2675   if (thread->SR_lock() == NULL) {
2676     return;
2677   }
2678 
2679   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2680 
2681   OSThread* osthread = thread->osthread();
2682 
2683   os::SuspendResume::State current = osthread->sr.state();
2684   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2685     suspend_save_context(osthread, siginfo, context);
2686 
2687     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2688     os::SuspendResume::State state = osthread->sr.suspended();
2689     if (state == os::SuspendResume::SR_SUSPENDED) {
2690       sigset_t suspend_set;  // signals for sigsuspend()
2691 
2692       // get current set of blocked signals and unblock resume signal
2693       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2694       sigdelset(&suspend_set, SR_signum);
2695 
2696       sr_semaphore.signal();
2697       // wait here until we are resumed
2698       while (1) {
2699         sigsuspend(&suspend_set);
2700 
2701         os::SuspendResume::State result = osthread->sr.running();
2702         if (result == os::SuspendResume::SR_RUNNING) {
2703           sr_semaphore.signal();
2704           break;
2705         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2706           ShouldNotReachHere();
2707         }
2708       }
2709 
2710     } else if (state == os::SuspendResume::SR_RUNNING) {
2711       // request was cancelled, continue
2712     } else {
2713       ShouldNotReachHere();
2714     }
2715 
2716     resume_clear_context(osthread);
2717   } else if (current == os::SuspendResume::SR_RUNNING) {
2718     // request was cancelled, continue
2719   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2720     // ignore
2721   } else {
2722     // ignore
2723   }
2724 
2725   errno = old_errno;
2726 }
2727 
2728 
2729 static int SR_initialize() {
2730   struct sigaction act;
2731   char *s;
2732   // Get signal number to use for suspend/resume
2733   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2734     int sig = ::strtol(s, 0, 10);
2735     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2736         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2737       SR_signum = sig;
2738     } else {
2739       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2740               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2741     }
2742   }
2743 
2744   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2745          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2746 
2747   sigemptyset(&SR_sigset);
2748   sigaddset(&SR_sigset, SR_signum);
2749 
2750   // Set up signal handler for suspend/resume
2751   act.sa_flags = SA_RESTART|SA_SIGINFO;
2752   act.sa_handler = (void (*)(int)) SR_handler;
2753 
2754   // SR_signum is blocked by default.
2755   // 4528190 - We also need to block pthread restart signal (32 on all
2756   // supported Bsd platforms). Note that BsdThreads need to block
2757   // this signal for all threads to work properly. So we don't have
2758   // to use hard-coded signal number when setting up the mask.
2759   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2760 
2761   if (sigaction(SR_signum, &act, 0) == -1) {
2762     return -1;
2763   }
2764 
2765   // Save signal flag
2766   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2767   return 0;
2768 }
2769 
2770 static int sr_notify(OSThread* osthread) {
2771   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2772   assert_status(status == 0, status, "pthread_kill");
2773   return status;
2774 }
2775 
2776 // "Randomly" selected value for how long we want to spin
2777 // before bailing out on suspending a thread, also how often
2778 // we send a signal to a thread we want to resume
2779 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2780 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2781 
2782 // returns true on success and false on error - really an error is fatal
2783 // but this seems the normal response to library errors
2784 static bool do_suspend(OSThread* osthread) {
2785   assert(osthread->sr.is_running(), "thread should be running");
2786   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2787 
2788   // mark as suspended and send signal
2789   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2790     // failed to switch, state wasn't running?
2791     ShouldNotReachHere();
2792     return false;
2793   }
2794 
2795   if (sr_notify(osthread) != 0) {
2796     ShouldNotReachHere();
2797   }
2798 
2799   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2800   while (true) {
2801     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2802       break;
2803     } else {
2804       // timeout
2805       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2806       if (cancelled == os::SuspendResume::SR_RUNNING) {
2807         return false;
2808       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2809         // make sure that we consume the signal on the semaphore as well
2810         sr_semaphore.wait();
2811         break;
2812       } else {
2813         ShouldNotReachHere();
2814         return false;
2815       }
2816     }
2817   }
2818 
2819   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2820   return true;
2821 }
2822 
2823 static void do_resume(OSThread* osthread) {
2824   assert(osthread->sr.is_suspended(), "thread should be suspended");
2825   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2826 
2827   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2828     // failed to switch to WAKEUP_REQUEST
2829     ShouldNotReachHere();
2830     return;
2831   }
2832 
2833   while (true) {
2834     if (sr_notify(osthread) == 0) {
2835       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2836         if (osthread->sr.is_running()) {
2837           return;
2838         }
2839       }
2840     } else {
2841       ShouldNotReachHere();
2842     }
2843   }
2844 
2845   guarantee(osthread->sr.is_running(), "Must be running!");
2846 }
2847 
2848 ///////////////////////////////////////////////////////////////////////////////////
2849 // signal handling (except suspend/resume)
2850 
2851 // This routine may be used by user applications as a "hook" to catch signals.
2852 // The user-defined signal handler must pass unrecognized signals to this
2853 // routine, and if it returns true (non-zero), then the signal handler must
2854 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2855 // routine will never retun false (zero), but instead will execute a VM panic
2856 // routine kill the process.
2857 //
2858 // If this routine returns false, it is OK to call it again.  This allows
2859 // the user-defined signal handler to perform checks either before or after
2860 // the VM performs its own checks.  Naturally, the user code would be making
2861 // a serious error if it tried to handle an exception (such as a null check
2862 // or breakpoint) that the VM was generating for its own correct operation.
2863 //
2864 // This routine may recognize any of the following kinds of signals:
2865 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2866 // It should be consulted by handlers for any of those signals.
2867 //
2868 // The caller of this routine must pass in the three arguments supplied
2869 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2870 // field of the structure passed to sigaction().  This routine assumes that
2871 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2872 //
2873 // Note that the VM will print warnings if it detects conflicting signal
2874 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2875 //
2876 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2877                                                void* ucontext,
2878                                                int abort_if_unrecognized);
2879 
2880 void signalHandler(int sig, siginfo_t* info, void* uc) {
2881   assert(info != NULL && uc != NULL, "it must be old kernel");
2882   int orig_errno = errno;  // Preserve errno value over signal handler.
2883   JVM_handle_bsd_signal(sig, info, uc, true);
2884   errno = orig_errno;
2885 }
2886 
2887 
2888 // This boolean allows users to forward their own non-matching signals
2889 // to JVM_handle_bsd_signal, harmlessly.
2890 bool os::Bsd::signal_handlers_are_installed = false;
2891 
2892 // For signal-chaining
2893 struct sigaction sigact[NSIG];
2894 uint32_t sigs = 0;
2895 #if (32 < NSIG-1)
2896 #error "Not all signals can be encoded in sigs. Adapt its type!"
2897 #endif
2898 bool os::Bsd::libjsig_is_loaded = false;
2899 typedef struct sigaction *(*get_signal_t)(int);
2900 get_signal_t os::Bsd::get_signal_action = NULL;
2901 
2902 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2903   struct sigaction *actp = NULL;
2904 
2905   if (libjsig_is_loaded) {
2906     // Retrieve the old signal handler from libjsig
2907     actp = (*get_signal_action)(sig);
2908   }
2909   if (actp == NULL) {
2910     // Retrieve the preinstalled signal handler from jvm
2911     actp = get_preinstalled_handler(sig);
2912   }
2913 
2914   return actp;
2915 }
2916 
2917 static bool call_chained_handler(struct sigaction *actp, int sig,
2918                                  siginfo_t *siginfo, void *context) {
2919   // Call the old signal handler
2920   if (actp->sa_handler == SIG_DFL) {
2921     // It's more reasonable to let jvm treat it as an unexpected exception
2922     // instead of taking the default action.
2923     return false;
2924   } else if (actp->sa_handler != SIG_IGN) {
2925     if ((actp->sa_flags & SA_NODEFER) == 0) {
2926       // automaticlly block the signal
2927       sigaddset(&(actp->sa_mask), sig);
2928     }
2929 
2930     sa_handler_t hand;
2931     sa_sigaction_t sa;
2932     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2933     // retrieve the chained handler
2934     if (siginfo_flag_set) {
2935       sa = actp->sa_sigaction;
2936     } else {
2937       hand = actp->sa_handler;
2938     }
2939 
2940     if ((actp->sa_flags & SA_RESETHAND) != 0) {
2941       actp->sa_handler = SIG_DFL;
2942     }
2943 
2944     // try to honor the signal mask
2945     sigset_t oset;
2946     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
2947 
2948     // call into the chained handler
2949     if (siginfo_flag_set) {
2950       (*sa)(sig, siginfo, context);
2951     } else {
2952       (*hand)(sig);
2953     }
2954 
2955     // restore the signal mask
2956     pthread_sigmask(SIG_SETMASK, &oset, 0);
2957   }
2958   // Tell jvm's signal handler the signal is taken care of.
2959   return true;
2960 }
2961 
2962 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
2963   bool chained = false;
2964   // signal-chaining
2965   if (UseSignalChaining) {
2966     struct sigaction *actp = get_chained_signal_action(sig);
2967     if (actp != NULL) {
2968       chained = call_chained_handler(actp, sig, siginfo, context);
2969     }
2970   }
2971   return chained;
2972 }
2973 
2974 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
2975   if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
2976     return &sigact[sig];
2977   }
2978   return NULL;
2979 }
2980 
2981 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
2982   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
2983   sigact[sig] = oldAct;
2984   sigs |= (uint32_t)1 << (sig-1);
2985 }
2986 
2987 // for diagnostic
2988 int sigflags[NSIG];
2989 
2990 int os::Bsd::get_our_sigflags(int sig) {
2991   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
2992   return sigflags[sig];
2993 }
2994 
2995 void os::Bsd::set_our_sigflags(int sig, int flags) {
2996   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
2997   if (sig > 0 && sig < NSIG) {
2998     sigflags[sig] = flags;
2999   }
3000 }
3001 
3002 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3003   // Check for overwrite.
3004   struct sigaction oldAct;
3005   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3006 
3007   void* oldhand = oldAct.sa_sigaction
3008                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3009                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3010   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3011       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3012       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3013     if (AllowUserSignalHandlers || !set_installed) {
3014       // Do not overwrite; user takes responsibility to forward to us.
3015       return;
3016     } else if (UseSignalChaining) {
3017       // save the old handler in jvm
3018       save_preinstalled_handler(sig, oldAct);
3019       // libjsig also interposes the sigaction() call below and saves the
3020       // old sigaction on it own.
3021     } else {
3022       fatal("Encountered unexpected pre-existing sigaction handler "
3023             "%#lx for signal %d.", (long)oldhand, sig);
3024     }
3025   }
3026 
3027   struct sigaction sigAct;
3028   sigfillset(&(sigAct.sa_mask));
3029   sigAct.sa_handler = SIG_DFL;
3030   if (!set_installed) {
3031     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3032   } else {
3033     sigAct.sa_sigaction = signalHandler;
3034     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3035   }
3036 #ifdef __APPLE__
3037   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3038   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3039   // if the signal handler declares it will handle it on alternate stack.
3040   // Notice we only declare we will handle it on alt stack, but we are not
3041   // actually going to use real alt stack - this is just a workaround.
3042   // Please see ux_exception.c, method catch_mach_exception_raise for details
3043   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3044   if (sig == SIGSEGV) {
3045     sigAct.sa_flags |= SA_ONSTACK;
3046   }
3047 #endif
3048 
3049   // Save flags, which are set by ours
3050   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3051   sigflags[sig] = sigAct.sa_flags;
3052 
3053   int ret = sigaction(sig, &sigAct, &oldAct);
3054   assert(ret == 0, "check");
3055 
3056   void* oldhand2  = oldAct.sa_sigaction
3057                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3058                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3059   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3060 }
3061 
3062 // install signal handlers for signals that HotSpot needs to
3063 // handle in order to support Java-level exception handling.
3064 
3065 void os::Bsd::install_signal_handlers() {
3066   if (!signal_handlers_are_installed) {
3067     signal_handlers_are_installed = true;
3068 
3069     // signal-chaining
3070     typedef void (*signal_setting_t)();
3071     signal_setting_t begin_signal_setting = NULL;
3072     signal_setting_t end_signal_setting = NULL;
3073     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3074                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3075     if (begin_signal_setting != NULL) {
3076       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3077                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3078       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3079                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3080       libjsig_is_loaded = true;
3081       assert(UseSignalChaining, "should enable signal-chaining");
3082     }
3083     if (libjsig_is_loaded) {
3084       // Tell libjsig jvm is setting signal handlers
3085       (*begin_signal_setting)();
3086     }
3087 
3088     set_signal_handler(SIGSEGV, true);
3089     set_signal_handler(SIGPIPE, true);
3090     set_signal_handler(SIGBUS, true);
3091     set_signal_handler(SIGILL, true);
3092     set_signal_handler(SIGFPE, true);
3093     set_signal_handler(SIGXFSZ, true);
3094 
3095 #if defined(__APPLE__)
3096     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3097     // signals caught and handled by the JVM. To work around this, we reset the mach task
3098     // signal handler that's placed on our process by CrashReporter. This disables
3099     // CrashReporter-based reporting.
3100     //
3101     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3102     // on caught fatal signals.
3103     //
3104     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3105     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3106     // exception handling, while leaving the standard BSD signal handlers functional.
3107     kern_return_t kr;
3108     kr = task_set_exception_ports(mach_task_self(),
3109                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3110                                   MACH_PORT_NULL,
3111                                   EXCEPTION_STATE_IDENTITY,
3112                                   MACHINE_THREAD_STATE);
3113 
3114     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3115 #endif
3116 
3117     if (libjsig_is_loaded) {
3118       // Tell libjsig jvm finishes setting signal handlers
3119       (*end_signal_setting)();
3120     }
3121 
3122     // We don't activate signal checker if libjsig is in place, we trust ourselves
3123     // and if UserSignalHandler is installed all bets are off
3124     if (CheckJNICalls) {
3125       if (libjsig_is_loaded) {
3126         if (PrintJNIResolving) {
3127           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3128         }
3129         check_signals = false;
3130       }
3131       if (AllowUserSignalHandlers) {
3132         if (PrintJNIResolving) {
3133           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3134         }
3135         check_signals = false;
3136       }
3137     }
3138   }
3139 }
3140 
3141 
3142 /////
3143 // glibc on Bsd platform uses non-documented flag
3144 // to indicate, that some special sort of signal
3145 // trampoline is used.
3146 // We will never set this flag, and we should
3147 // ignore this flag in our diagnostic
3148 #ifdef SIGNIFICANT_SIGNAL_MASK
3149   #undef SIGNIFICANT_SIGNAL_MASK
3150 #endif
3151 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3152 
3153 static const char* get_signal_handler_name(address handler,
3154                                            char* buf, int buflen) {
3155   int offset;
3156   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3157   if (found) {
3158     // skip directory names
3159     const char *p1, *p2;
3160     p1 = buf;
3161     size_t len = strlen(os::file_separator());
3162     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3163     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3164   } else {
3165     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3166   }
3167   return buf;
3168 }
3169 
3170 static void print_signal_handler(outputStream* st, int sig,
3171                                  char* buf, size_t buflen) {
3172   struct sigaction sa;
3173 
3174   sigaction(sig, NULL, &sa);
3175 
3176   // See comment for SIGNIFICANT_SIGNAL_MASK define
3177   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3178 
3179   st->print("%s: ", os::exception_name(sig, buf, buflen));
3180 
3181   address handler = (sa.sa_flags & SA_SIGINFO)
3182     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3183     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3184 
3185   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3186     st->print("SIG_DFL");
3187   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3188     st->print("SIG_IGN");
3189   } else {
3190     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3191   }
3192 
3193   st->print(", sa_mask[0]=");
3194   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3195 
3196   address rh = VMError::get_resetted_sighandler(sig);
3197   // May be, handler was resetted by VMError?
3198   if (rh != NULL) {
3199     handler = rh;
3200     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3201   }
3202 
3203   st->print(", sa_flags=");
3204   os::Posix::print_sa_flags(st, sa.sa_flags);
3205 
3206   // Check: is it our handler?
3207   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3208       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3209     // It is our signal handler
3210     // check for flags, reset system-used one!
3211     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3212       st->print(
3213                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3214                 os::Bsd::get_our_sigflags(sig));
3215     }
3216   }
3217   st->cr();
3218 }
3219 
3220 
3221 #define DO_SIGNAL_CHECK(sig)                      \
3222   do {                                            \
3223     if (!sigismember(&check_signal_done, sig)) {  \
3224       os::Bsd::check_signal_handler(sig);         \
3225     }                                             \
3226   } while (0)
3227 
3228 // This method is a periodic task to check for misbehaving JNI applications
3229 // under CheckJNI, we can add any periodic checks here
3230 
3231 void os::run_periodic_checks() {
3232 
3233   if (check_signals == false) return;
3234 
3235   // SEGV and BUS if overridden could potentially prevent
3236   // generation of hs*.log in the event of a crash, debugging
3237   // such a case can be very challenging, so we absolutely
3238   // check the following for a good measure:
3239   DO_SIGNAL_CHECK(SIGSEGV);
3240   DO_SIGNAL_CHECK(SIGILL);
3241   DO_SIGNAL_CHECK(SIGFPE);
3242   DO_SIGNAL_CHECK(SIGBUS);
3243   DO_SIGNAL_CHECK(SIGPIPE);
3244   DO_SIGNAL_CHECK(SIGXFSZ);
3245 
3246 
3247   // ReduceSignalUsage allows the user to override these handlers
3248   // see comments at the very top and jvm_md.h
3249   if (!ReduceSignalUsage) {
3250     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3251     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3252     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3253     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3254   }
3255 
3256   DO_SIGNAL_CHECK(SR_signum);
3257 }
3258 
3259 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3260 
3261 static os_sigaction_t os_sigaction = NULL;
3262 
3263 void os::Bsd::check_signal_handler(int sig) {
3264   char buf[O_BUFLEN];
3265   address jvmHandler = NULL;
3266 
3267 
3268   struct sigaction act;
3269   if (os_sigaction == NULL) {
3270     // only trust the default sigaction, in case it has been interposed
3271     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3272     if (os_sigaction == NULL) return;
3273   }
3274 
3275   os_sigaction(sig, (struct sigaction*)NULL, &act);
3276 
3277 
3278   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3279 
3280   address thisHandler = (act.sa_flags & SA_SIGINFO)
3281     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3282     : CAST_FROM_FN_PTR(address, act.sa_handler);
3283 
3284 
3285   switch (sig) {
3286   case SIGSEGV:
3287   case SIGBUS:
3288   case SIGFPE:
3289   case SIGPIPE:
3290   case SIGILL:
3291   case SIGXFSZ:
3292     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3293     break;
3294 
3295   case SHUTDOWN1_SIGNAL:
3296   case SHUTDOWN2_SIGNAL:
3297   case SHUTDOWN3_SIGNAL:
3298   case BREAK_SIGNAL:
3299     jvmHandler = (address)user_handler();
3300     break;
3301 
3302   default:
3303     if (sig == SR_signum) {
3304       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3305     } else {
3306       return;
3307     }
3308     break;
3309   }
3310 
3311   if (thisHandler != jvmHandler) {
3312     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3313     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3314     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3315     // No need to check this sig any longer
3316     sigaddset(&check_signal_done, sig);
3317     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3318     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3319       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3320                     exception_name(sig, buf, O_BUFLEN));
3321     }
3322   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3323     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3324     tty->print("expected:");
3325     os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3326     tty->cr();
3327     tty->print("  found:");
3328     os::Posix::print_sa_flags(tty, act.sa_flags);
3329     tty->cr();
3330     // No need to check this sig any longer
3331     sigaddset(&check_signal_done, sig);
3332   }
3333 
3334   // Dump all the signal
3335   if (sigismember(&check_signal_done, sig)) {
3336     print_signal_handlers(tty, buf, O_BUFLEN);
3337   }
3338 }
3339 
3340 extern void report_error(char* file_name, int line_no, char* title,
3341                          char* format, ...);
3342 
3343 // this is called _before_ the most of global arguments have been parsed
3344 void os::init(void) {
3345   char dummy;   // used to get a guess on initial stack address
3346 
3347   // With BsdThreads the JavaMain thread pid (primordial thread)
3348   // is different than the pid of the java launcher thread.
3349   // So, on Bsd, the launcher thread pid is passed to the VM
3350   // via the sun.java.launcher.pid property.
3351   // Use this property instead of getpid() if it was correctly passed.
3352   // See bug 6351349.
3353   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3354 
3355   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3356 
3357   clock_tics_per_sec = CLK_TCK;
3358 
3359   init_random(1234567);
3360 
3361   Bsd::set_page_size(getpagesize());
3362   if (Bsd::page_size() == -1) {
3363     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
3364   }
3365   init_page_sizes((size_t) Bsd::page_size());
3366 
3367   Bsd::initialize_system_info();
3368 
3369   // main_thread points to the thread that created/loaded the JVM
3370   Bsd::_main_thread = pthread_self();
3371 
3372   Bsd::clock_init();
3373   initial_time_count = javaTimeNanos();
3374 
3375 #ifdef __APPLE__
3376   // XXXDARWIN
3377   // Work around the unaligned VM callbacks in hotspot's
3378   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3379   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3380   // alignment when doing symbol lookup. To work around this, we force early
3381   // binding of all symbols now, thus binding when alignment is known-good.
3382   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3383 #endif
3384 
3385   os::Posix::init();
3386 }
3387 
3388 // To install functions for atexit system call
3389 extern "C" {
3390   static void perfMemory_exit_helper() {
3391     perfMemory_exit();
3392   }
3393 }
3394 
3395 // this is called _after_ the global arguments have been parsed
3396 jint os::init_2(void) {
3397 
3398   os::Posix::init_2();
3399 
3400   // initialize suspend/resume support - must do this before signal_sets_init()
3401   if (SR_initialize() != 0) {
3402     perror("SR_initialize failed");
3403     return JNI_ERR;
3404   }
3405 
3406   Bsd::signal_sets_init();
3407   Bsd::install_signal_handlers();
3408 
3409   // Check and sets minimum stack sizes against command line options
3410   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3411     return JNI_ERR;
3412   }
3413 
3414   if (MaxFDLimit) {
3415     // set the number of file descriptors to max. print out error
3416     // if getrlimit/setrlimit fails but continue regardless.
3417     struct rlimit nbr_files;
3418     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3419     if (status != 0) {
3420       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3421     } else {
3422       nbr_files.rlim_cur = nbr_files.rlim_max;
3423 
3424 #ifdef __APPLE__
3425       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3426       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3427       // be used instead
3428       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3429 #endif
3430 
3431       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3432       if (status != 0) {
3433         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3434       }
3435     }
3436   }
3437 
3438   // at-exit methods are called in the reverse order of their registration.
3439   // atexit functions are called on return from main or as a result of a
3440   // call to exit(3C). There can be only 32 of these functions registered
3441   // and atexit() does not set errno.
3442 
3443   if (PerfAllowAtExitRegistration) {
3444     // only register atexit functions if PerfAllowAtExitRegistration is set.
3445     // atexit functions can be delayed until process exit time, which
3446     // can be problematic for embedded VM situations. Embedded VMs should
3447     // call DestroyJavaVM() to assure that VM resources are released.
3448 
3449     // note: perfMemory_exit_helper atexit function may be removed in
3450     // the future if the appropriate cleanup code can be added to the
3451     // VM_Exit VMOperation's doit method.
3452     if (atexit(perfMemory_exit_helper) != 0) {
3453       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3454     }
3455   }
3456 
3457   // initialize thread priority policy
3458   prio_init();
3459 
3460 #ifdef __APPLE__
3461   // dynamically link to objective c gc registration
3462   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3463   if (handleLibObjc != NULL) {
3464     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3465   }
3466 #endif
3467 
3468   return JNI_OK;
3469 }
3470 
3471 // Mark the polling page as unreadable
3472 void os::make_polling_page_unreadable(void) {
3473   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3474     fatal("Could not disable polling page");
3475   }
3476 }
3477 
3478 // Mark the polling page as readable
3479 void os::make_polling_page_readable(void) {
3480   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3481     fatal("Could not enable polling page");
3482   }
3483 }
3484 
3485 int os::active_processor_count() {
3486   return _processor_count;
3487 }
3488 
3489 void os::set_native_thread_name(const char *name) {
3490 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3491   // This is only supported in Snow Leopard and beyond
3492   if (name != NULL) {
3493     // Add a "Java: " prefix to the name
3494     char buf[MAXTHREADNAMESIZE];
3495     snprintf(buf, sizeof(buf), "Java: %s", name);
3496     pthread_setname_np(buf);
3497   }
3498 #endif
3499 }
3500 
3501 bool os::distribute_processes(uint length, uint* distribution) {
3502   // Not yet implemented.
3503   return false;
3504 }
3505 
3506 bool os::bind_to_processor(uint processor_id) {
3507   // Not yet implemented.
3508   return false;
3509 }
3510 
3511 void os::SuspendedThreadTask::internal_do_task() {
3512   if (do_suspend(_thread->osthread())) {
3513     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3514     do_task(context);
3515     do_resume(_thread->osthread());
3516   }
3517 }
3518 
3519 ////////////////////////////////////////////////////////////////////////////////
3520 // debug support
3521 
3522 bool os::find(address addr, outputStream* st) {
3523   Dl_info dlinfo;
3524   memset(&dlinfo, 0, sizeof(dlinfo));
3525   if (dladdr(addr, &dlinfo) != 0) {
3526     st->print(INTPTR_FORMAT ": ", (intptr_t)addr);
3527     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3528       st->print("%s+%#x", dlinfo.dli_sname,
3529                 (uint)((uintptr_t)addr - (uintptr_t)dlinfo.dli_saddr));
3530     } else if (dlinfo.dli_fbase != NULL) {
3531       st->print("<offset %#x>", (uint)((uintptr_t)addr - (uintptr_t)dlinfo.dli_fbase));
3532     } else {
3533       st->print("<absolute address>");
3534     }
3535     if (dlinfo.dli_fname != NULL) {
3536       st->print(" in %s", dlinfo.dli_fname);
3537     }
3538     if (dlinfo.dli_fbase != NULL) {
3539       st->print(" at " INTPTR_FORMAT, (intptr_t)dlinfo.dli_fbase);
3540     }
3541     st->cr();
3542 
3543     if (Verbose) {
3544       // decode some bytes around the PC
3545       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3546       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3547       address       lowest = (address) dlinfo.dli_sname;
3548       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3549       if (begin < lowest)  begin = lowest;
3550       Dl_info dlinfo2;
3551       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3552           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3553         end = (address) dlinfo2.dli_saddr;
3554       }
3555       Disassembler::decode(begin, end, st);
3556     }
3557     return true;
3558   }
3559   return false;
3560 }
3561 
3562 ////////////////////////////////////////////////////////////////////////////////
3563 // misc
3564 
3565 // This does not do anything on Bsd. This is basically a hook for being
3566 // able to use structured exception handling (thread-local exception filters)
3567 // on, e.g., Win32.
3568 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3569                               const methodHandle& method, JavaCallArguments* args,
3570                               Thread* thread) {
3571   f(value, method, args, thread);
3572 }
3573 
3574 void os::print_statistics() {
3575 }
3576 
3577 bool os::message_box(const char* title, const char* message) {
3578   int i;
3579   fdStream err(defaultStream::error_fd());
3580   for (i = 0; i < 78; i++) err.print_raw("=");
3581   err.cr();
3582   err.print_raw_cr(title);
3583   for (i = 0; i < 78; i++) err.print_raw("-");
3584   err.cr();
3585   err.print_raw_cr(message);
3586   for (i = 0; i < 78; i++) err.print_raw("=");
3587   err.cr();
3588 
3589   char buf[16];
3590   // Prevent process from exiting upon "read error" without consuming all CPU
3591   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3592 
3593   return buf[0] == 'y' || buf[0] == 'Y';
3594 }
3595 
3596 int os::stat(const char *path, struct stat *sbuf) {
3597   char pathbuf[MAX_PATH];
3598   if (strlen(path) > MAX_PATH - 1) {
3599     errno = ENAMETOOLONG;
3600     return -1;
3601   }
3602   os::native_path(strcpy(pathbuf, path));
3603   return ::stat(pathbuf, sbuf);
3604 }
3605 
3606 static inline struct timespec get_mtime(const char* filename) {
3607   struct stat st;
3608   int ret = os::stat(filename, &st);
3609   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
3610 #ifdef __APPLE__
3611   return st.st_mtimespec;
3612 #else
3613   return st.st_mtim;
3614 #endif
3615 }
3616 
3617 int os::compare_file_modified_times(const char* file1, const char* file2) {
3618   struct timespec filetime1 = get_mtime(file1);
3619   struct timespec filetime2 = get_mtime(file2);
3620   int diff = filetime1.tv_sec - filetime2.tv_sec;
3621   if (diff == 0) {
3622     return filetime1.tv_nsec - filetime2.tv_nsec;
3623   }
3624   return diff;
3625 }
3626 
3627 // Is a (classpath) directory empty?
3628 bool os::dir_is_empty(const char* path) {
3629   DIR *dir = NULL;
3630   struct dirent *ptr;
3631 
3632   dir = opendir(path);
3633   if (dir == NULL) return true;
3634 
3635   // Scan the directory
3636   bool result = true;
3637   char buf[sizeof(struct dirent) + MAX_PATH];
3638   while (result && (ptr = ::readdir(dir)) != NULL) {
3639     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3640       result = false;
3641     }
3642   }
3643   closedir(dir);
3644   return result;
3645 }
3646 
3647 // This code originates from JDK's sysOpen and open64_w
3648 // from src/solaris/hpi/src/system_md.c
3649 
3650 int os::open(const char *path, int oflag, int mode) {
3651   if (strlen(path) > MAX_PATH - 1) {
3652     errno = ENAMETOOLONG;
3653     return -1;
3654   }
3655   int fd;
3656 
3657   fd = ::open(path, oflag, mode);
3658   if (fd == -1) return -1;
3659 
3660   // If the open succeeded, the file might still be a directory
3661   {
3662     struct stat buf;
3663     int ret = ::fstat(fd, &buf);
3664     int st_mode = buf.st_mode;
3665 
3666     if (ret != -1) {
3667       if ((st_mode & S_IFMT) == S_IFDIR) {
3668         errno = EISDIR;
3669         ::close(fd);
3670         return -1;
3671       }
3672     } else {
3673       ::close(fd);
3674       return -1;
3675     }
3676   }
3677 
3678   // All file descriptors that are opened in the JVM and not
3679   // specifically destined for a subprocess should have the
3680   // close-on-exec flag set.  If we don't set it, then careless 3rd
3681   // party native code might fork and exec without closing all
3682   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3683   // UNIXProcess.c), and this in turn might:
3684   //
3685   // - cause end-of-file to fail to be detected on some file
3686   //   descriptors, resulting in mysterious hangs, or
3687   //
3688   // - might cause an fopen in the subprocess to fail on a system
3689   //   suffering from bug 1085341.
3690   //
3691   // (Yes, the default setting of the close-on-exec flag is a Unix
3692   // design flaw)
3693   //
3694   // See:
3695   // 1085341: 32-bit stdio routines should support file descriptors >255
3696   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3697   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3698   //
3699 #ifdef FD_CLOEXEC
3700   {
3701     int flags = ::fcntl(fd, F_GETFD);
3702     if (flags != -1) {
3703       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3704     }
3705   }
3706 #endif
3707 
3708   return fd;
3709 }
3710 
3711 
3712 // create binary file, rewriting existing file if required
3713 int os::create_binary_file(const char* path, bool rewrite_existing) {
3714   int oflags = O_WRONLY | O_CREAT;
3715   if (!rewrite_existing) {
3716     oflags |= O_EXCL;
3717   }
3718   return ::open(path, oflags, S_IREAD | S_IWRITE);
3719 }
3720 
3721 // return current position of file pointer
3722 jlong os::current_file_offset(int fd) {
3723   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3724 }
3725 
3726 // move file pointer to the specified offset
3727 jlong os::seek_to_file_offset(int fd, jlong offset) {
3728   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3729 }
3730 
3731 // This code originates from JDK's sysAvailable
3732 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3733 
3734 int os::available(int fd, jlong *bytes) {
3735   jlong cur, end;
3736   int mode;
3737   struct stat buf;
3738 
3739   if (::fstat(fd, &buf) >= 0) {
3740     mode = buf.st_mode;
3741     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3742       int n;
3743       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3744         *bytes = n;
3745         return 1;
3746       }
3747     }
3748   }
3749   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3750     return 0;
3751   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3752     return 0;
3753   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3754     return 0;
3755   }
3756   *bytes = end - cur;
3757   return 1;
3758 }
3759 
3760 // Map a block of memory.
3761 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3762                         char *addr, size_t bytes, bool read_only,
3763                         bool allow_exec) {
3764   int prot;
3765   int flags;
3766 
3767   if (read_only) {
3768     prot = PROT_READ;
3769     flags = MAP_SHARED;
3770   } else {
3771     prot = PROT_READ | PROT_WRITE;
3772     flags = MAP_PRIVATE;
3773   }
3774 
3775   if (allow_exec) {
3776     prot |= PROT_EXEC;
3777   }
3778 
3779   if (addr != NULL) {
3780     flags |= MAP_FIXED;
3781   }
3782 
3783   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3784                                      fd, file_offset);
3785   if (mapped_address == MAP_FAILED) {
3786     return NULL;
3787   }
3788   return mapped_address;
3789 }
3790 
3791 
3792 // Remap a block of memory.
3793 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3794                           char *addr, size_t bytes, bool read_only,
3795                           bool allow_exec) {
3796   // same as map_memory() on this OS
3797   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3798                         allow_exec);
3799 }
3800 
3801 
3802 // Unmap a block of memory.
3803 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3804   return munmap(addr, bytes) == 0;
3805 }
3806 
3807 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3808 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3809 // of a thread.
3810 //
3811 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3812 // the fast estimate available on the platform.
3813 
3814 jlong os::current_thread_cpu_time() {
3815 #ifdef __APPLE__
3816   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3817 #else
3818   Unimplemented();
3819   return 0;
3820 #endif
3821 }
3822 
3823 jlong os::thread_cpu_time(Thread* thread) {
3824 #ifdef __APPLE__
3825   return os::thread_cpu_time(thread, true /* user + sys */);
3826 #else
3827   Unimplemented();
3828   return 0;
3829 #endif
3830 }
3831 
3832 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3833 #ifdef __APPLE__
3834   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3835 #else
3836   Unimplemented();
3837   return 0;
3838 #endif
3839 }
3840 
3841 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3842 #ifdef __APPLE__
3843   struct thread_basic_info tinfo;
3844   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3845   kern_return_t kr;
3846   thread_t mach_thread;
3847 
3848   mach_thread = thread->osthread()->thread_id();
3849   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3850   if (kr != KERN_SUCCESS) {
3851     return -1;
3852   }
3853 
3854   if (user_sys_cpu_time) {
3855     jlong nanos;
3856     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3857     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3858     return nanos;
3859   } else {
3860     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3861   }
3862 #else
3863   Unimplemented();
3864   return 0;
3865 #endif
3866 }
3867 
3868 
3869 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3870   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3871   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3872   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3873   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3874 }
3875 
3876 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3877   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3878   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3879   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3880   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3881 }
3882 
3883 bool os::is_thread_cpu_time_supported() {
3884 #ifdef __APPLE__
3885   return true;
3886 #else
3887   return false;
3888 #endif
3889 }
3890 
3891 // System loadavg support.  Returns -1 if load average cannot be obtained.
3892 // Bsd doesn't yet have a (official) notion of processor sets,
3893 // so just return the system wide load average.
3894 int os::loadavg(double loadavg[], int nelem) {
3895   return ::getloadavg(loadavg, nelem);
3896 }
3897 
3898 void os::pause() {
3899   char filename[MAX_PATH];
3900   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3901     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3902   } else {
3903     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3904   }
3905 
3906   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3907   if (fd != -1) {
3908     struct stat buf;
3909     ::close(fd);
3910     while (::stat(filename, &buf) == 0) {
3911       (void)::poll(NULL, 0, 100);
3912     }
3913   } else {
3914     jio_fprintf(stderr,
3915                 "Could not open pause file '%s', continuing immediately.\n", filename);
3916   }
3917 }
3918 
3919 // Darwin has no "environ" in a dynamic library.
3920 #ifdef __APPLE__
3921   #include <crt_externs.h>
3922   #define environ (*_NSGetEnviron())
3923 #else
3924 extern char** environ;
3925 #endif
3926 
3927 // Run the specified command in a separate process. Return its exit value,
3928 // or -1 on failure (e.g. can't fork a new process).
3929 // Unlike system(), this function can be called from signal handler. It
3930 // doesn't block SIGINT et al.
3931 int os::fork_and_exec(char* cmd) {
3932   const char * argv[4] = {"sh", "-c", cmd, NULL};
3933 
3934   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
3935   // pthread_atfork handlers and reset pthread library. All we need is a
3936   // separate process to execve. Make a direct syscall to fork process.
3937   // On IA64 there's no fork syscall, we have to use fork() and hope for
3938   // the best...
3939   pid_t pid = fork();
3940 
3941   if (pid < 0) {
3942     // fork failed
3943     return -1;
3944 
3945   } else if (pid == 0) {
3946     // child process
3947 
3948     // execve() in BsdThreads will call pthread_kill_other_threads_np()
3949     // first to kill every thread on the thread list. Because this list is
3950     // not reset by fork() (see notes above), execve() will instead kill
3951     // every thread in the parent process. We know this is the only thread
3952     // in the new process, so make a system call directly.
3953     // IA64 should use normal execve() from glibc to match the glibc fork()
3954     // above.
3955     execve("/bin/sh", (char* const*)argv, environ);
3956 
3957     // execve failed
3958     _exit(-1);
3959 
3960   } else  {
3961     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
3962     // care about the actual exit code, for now.
3963 
3964     int status;
3965 
3966     // Wait for the child process to exit.  This returns immediately if
3967     // the child has already exited. */
3968     while (waitpid(pid, &status, 0) < 0) {
3969       switch (errno) {
3970       case ECHILD: return 0;
3971       case EINTR: break;
3972       default: return -1;
3973       }
3974     }
3975 
3976     if (WIFEXITED(status)) {
3977       // The child exited normally; get its exit code.
3978       return WEXITSTATUS(status);
3979     } else if (WIFSIGNALED(status)) {
3980       // The child exited because of a signal
3981       // The best value to return is 0x80 + signal number,
3982       // because that is what all Unix shells do, and because
3983       // it allows callers to distinguish between process exit and
3984       // process death by signal.
3985       return 0x80 + WTERMSIG(status);
3986     } else {
3987       // Unknown exit code; pass it through
3988       return status;
3989     }
3990   }
3991 }
3992 
3993 // is_headless_jre()
3994 //
3995 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
3996 // in order to report if we are running in a headless jre
3997 //
3998 // Since JDK8 xawt/libmawt.so was moved into the same directory
3999 // as libawt.so, and renamed libawt_xawt.so
4000 //
4001 bool os::is_headless_jre() {
4002 #ifdef __APPLE__
4003   // We no longer build headless-only on Mac OS X
4004   return false;
4005 #else
4006   struct stat statbuf;
4007   char buf[MAXPATHLEN];
4008   char libmawtpath[MAXPATHLEN];
4009   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4010   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4011   char *p;
4012 
4013   // Get path to libjvm.so
4014   os::jvm_path(buf, sizeof(buf));
4015 
4016   // Get rid of libjvm.so
4017   p = strrchr(buf, '/');
4018   if (p == NULL) {
4019     return false;
4020   } else {
4021     *p = '\0';
4022   }
4023 
4024   // Get rid of client or server
4025   p = strrchr(buf, '/');
4026   if (p == NULL) {
4027     return false;
4028   } else {
4029     *p = '\0';
4030   }
4031 
4032   // check xawt/libmawt.so
4033   strcpy(libmawtpath, buf);
4034   strcat(libmawtpath, xawtstr);
4035   if (::stat(libmawtpath, &statbuf) == 0) return false;
4036 
4037   // check libawt_xawt.so
4038   strcpy(libmawtpath, buf);
4039   strcat(libmawtpath, new_xawtstr);
4040   if (::stat(libmawtpath, &statbuf) == 0) return false;
4041 
4042   return true;
4043 #endif
4044 }
4045 
4046 // Get the default path to the core file
4047 // Returns the length of the string
4048 int os::get_core_path(char* buffer, size_t bufferSize) {
4049   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4050 
4051   // Truncate if theoretical string was longer than bufferSize
4052   n = MIN2(n, (int)bufferSize);
4053 
4054   return n;
4055 }
4056 
4057 #ifndef PRODUCT
4058 void TestReserveMemorySpecial_test() {
4059   // No tests available for this platform
4060 }
4061 #endif
4062 
4063 bool os::start_debugging(char *buf, int buflen) {
4064   int len = (int)strlen(buf);
4065   char *p = &buf[len];
4066 
4067   jio_snprintf(p, buflen-len,
4068              "\n\n"
4069              "Do you want to debug the problem?\n\n"
4070              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4071              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4072              "Otherwise, press RETURN to abort...",
4073              os::current_process_id(), os::current_process_id(),
4074              os::current_thread_id(), os::current_thread_id());
4075 
4076   bool yes = os::message_box("Unexpected Error", buf);
4077 
4078   if (yes) {
4079     // yes, user asked VM to launch debugger
4080     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4081                      os::current_process_id(), os::current_process_id());
4082 
4083     os::fork_and_exec(buf);
4084     yes = false;
4085   }
4086   return yes;
4087 }