1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/extendedPC.hpp"
  46 #include "runtime/globals.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "semaphore_posix.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 // Signal number used to suspend/resume a thread
 158 
 159 // do not use any signal number less than SIGSEGV, see 4355769
 160 static int SR_signum = SIGUSR2;
 161 sigset_t SR_sigset;
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 // Return true if user is running as root.
 184 
 185 bool os::have_special_privileges() {
 186   static bool init = false;
 187   static bool privileges = false;
 188   if (!init) {
 189     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 190     init = true;
 191   }
 192   return privileges;
 193 }
 194 
 195 
 196 #ifndef SYS_gettid
 197 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 198   #ifdef __ia64__
 199     #define SYS_gettid 1105
 200   #else
 201     #ifdef __i386__
 202       #define SYS_gettid 224
 203     #else
 204       #ifdef __amd64__
 205         #define SYS_gettid 186
 206       #else
 207         #ifdef __sparc__
 208           #define SYS_gettid 143
 209         #else
 210           #error define gettid for the arch
 211         #endif
 212       #endif
 213     #endif
 214   #endif
 215 #endif
 216 
 217 
 218 // pid_t gettid()
 219 //
 220 // Returns the kernel thread id of the currently running thread. Kernel
 221 // thread id is used to access /proc.
 222 pid_t os::Linux::gettid() {
 223   int rslt = syscall(SYS_gettid);
 224   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 225   return (pid_t)rslt;
 226 }
 227 
 228 // Most versions of linux have a bug where the number of processors are
 229 // determined by looking at the /proc file system.  In a chroot environment,
 230 // the system call returns 1.  This causes the VM to act as if it is
 231 // a single processor and elide locking (see is_MP() call).
 232 static bool unsafe_chroot_detected = false;
 233 static const char *unstable_chroot_error = "/proc file system not found.\n"
 234                      "Java may be unstable running multithreaded in a chroot "
 235                      "environment on Linux when /proc filesystem is not mounted.";
 236 
 237 void os::Linux::initialize_system_info() {
 238   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 239   if (processor_count() == 1) {
 240     pid_t pid = os::Linux::gettid();
 241     char fname[32];
 242     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 243     FILE *fp = fopen(fname, "r");
 244     if (fp == NULL) {
 245       unsafe_chroot_detected = true;
 246     } else {
 247       fclose(fp);
 248     }
 249   }
 250   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 251   assert(processor_count() > 0, "linux error");
 252 }
 253 
 254 void os::init_system_properties_values() {
 255   // The next steps are taken in the product version:
 256   //
 257   // Obtain the JAVA_HOME value from the location of libjvm.so.
 258   // This library should be located at:
 259   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 260   //
 261   // If "/jre/lib/" appears at the right place in the path, then we
 262   // assume libjvm.so is installed in a JDK and we use this path.
 263   //
 264   // Otherwise exit with message: "Could not create the Java virtual machine."
 265   //
 266   // The following extra steps are taken in the debugging version:
 267   //
 268   // If "/jre/lib/" does NOT appear at the right place in the path
 269   // instead of exit check for $JAVA_HOME environment variable.
 270   //
 271   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 272   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 273   // it looks like libjvm.so is installed there
 274   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 275   //
 276   // Otherwise exit.
 277   //
 278   // Important note: if the location of libjvm.so changes this
 279   // code needs to be changed accordingly.
 280 
 281   // See ld(1):
 282   //      The linker uses the following search paths to locate required
 283   //      shared libraries:
 284   //        1: ...
 285   //        ...
 286   //        7: The default directories, normally /lib and /usr/lib.
 287 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 288   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 289 #else
 290   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 291 #endif
 292 
 293 // Base path of extensions installed on the system.
 294 #define SYS_EXT_DIR     "/usr/java/packages"
 295 #define EXTENSIONS_DIR  "/lib/ext"
 296 
 297   // Buffer that fits several sprintfs.
 298   // Note that the space for the colon and the trailing null are provided
 299   // by the nulls included by the sizeof operator.
 300   const size_t bufsize =
 301     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 302          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 303   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 304 
 305   // sysclasspath, java_home, dll_dir
 306   {
 307     char *pslash;
 308     os::jvm_path(buf, bufsize);
 309 
 310     // Found the full path to libjvm.so.
 311     // Now cut the path to <java_home>/jre if we can.
 312     pslash = strrchr(buf, '/');
 313     if (pslash != NULL) {
 314       *pslash = '\0';            // Get rid of /libjvm.so.
 315     }
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 319     }
 320     Arguments::set_dll_dir(buf);
 321 
 322     if (pslash != NULL) {
 323       pslash = strrchr(buf, '/');
 324       if (pslash != NULL) {
 325         *pslash = '\0';        // Get rid of /lib.
 326       }
 327     }
 328     Arguments::set_java_home(buf);
 329     set_boot_path('/', ':');
 330   }
 331 
 332   // Where to look for native libraries.
 333   //
 334   // Note: Due to a legacy implementation, most of the library path
 335   // is set in the launcher. This was to accomodate linking restrictions
 336   // on legacy Linux implementations (which are no longer supported).
 337   // Eventually, all the library path setting will be done here.
 338   //
 339   // However, to prevent the proliferation of improperly built native
 340   // libraries, the new path component /usr/java/packages is added here.
 341   // Eventually, all the library path setting will be done here.
 342   {
 343     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 344     // should always exist (until the legacy problem cited above is
 345     // addressed).
 346     const char *v = ::getenv("LD_LIBRARY_PATH");
 347     const char *v_colon = ":";
 348     if (v == NULL) { v = ""; v_colon = ""; }
 349     // That's +1 for the colon and +1 for the trailing '\0'.
 350     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 351                                                      strlen(v) + 1 +
 352                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 353                                                      mtInternal);
 354     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 355     Arguments::set_library_path(ld_library_path);
 356     FREE_C_HEAP_ARRAY(char, ld_library_path);
 357   }
 358 
 359   // Extensions directories.
 360   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 361   Arguments::set_ext_dirs(buf);
 362 
 363   FREE_C_HEAP_ARRAY(char, buf);
 364 
 365 #undef DEFAULT_LIBPATH
 366 #undef SYS_EXT_DIR
 367 #undef EXTENSIONS_DIR
 368 }
 369 
 370 ////////////////////////////////////////////////////////////////////////////////
 371 // breakpoint support
 372 
 373 void os::breakpoint() {
 374   BREAKPOINT;
 375 }
 376 
 377 extern "C" void breakpoint() {
 378   // use debugger to set breakpoint here
 379 }
 380 
 381 ////////////////////////////////////////////////////////////////////////////////
 382 // signal support
 383 
 384 debug_only(static bool signal_sets_initialized = false);
 385 static sigset_t unblocked_sigs, vm_sigs;
 386 
 387 bool os::Linux::is_sig_ignored(int sig) {
 388   struct sigaction oact;
 389   sigaction(sig, (struct sigaction*)NULL, &oact);
 390   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 391                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 392   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 393     return true;
 394   } else {
 395     return false;
 396   }
 397 }
 398 
 399 void os::Linux::signal_sets_init() {
 400   // Should also have an assertion stating we are still single-threaded.
 401   assert(!signal_sets_initialized, "Already initialized");
 402   // Fill in signals that are necessarily unblocked for all threads in
 403   // the VM. Currently, we unblock the following signals:
 404   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 405   //                         by -Xrs (=ReduceSignalUsage));
 406   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 407   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 408   // the dispositions or masks wrt these signals.
 409   // Programs embedding the VM that want to use the above signals for their
 410   // own purposes must, at this time, use the "-Xrs" option to prevent
 411   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 412   // (See bug 4345157, and other related bugs).
 413   // In reality, though, unblocking these signals is really a nop, since
 414   // these signals are not blocked by default.
 415   sigemptyset(&unblocked_sigs);
 416   sigaddset(&unblocked_sigs, SIGILL);
 417   sigaddset(&unblocked_sigs, SIGSEGV);
 418   sigaddset(&unblocked_sigs, SIGBUS);
 419   sigaddset(&unblocked_sigs, SIGFPE);
 420 #if defined(PPC64)
 421   sigaddset(&unblocked_sigs, SIGTRAP);
 422 #endif
 423   sigaddset(&unblocked_sigs, SR_signum);
 424 
 425   if (!ReduceSignalUsage) {
 426     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 427       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 428     }
 429     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 430       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 431     }
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 434     }
 435   }
 436   // Fill in signals that are blocked by all but the VM thread.
 437   sigemptyset(&vm_sigs);
 438   if (!ReduceSignalUsage) {
 439     sigaddset(&vm_sigs, BREAK_SIGNAL);
 440   }
 441   debug_only(signal_sets_initialized = true);
 442 
 443 }
 444 
 445 // These are signals that are unblocked while a thread is running Java.
 446 // (For some reason, they get blocked by default.)
 447 sigset_t* os::Linux::unblocked_signals() {
 448   assert(signal_sets_initialized, "Not initialized");
 449   return &unblocked_sigs;
 450 }
 451 
 452 // These are the signals that are blocked while a (non-VM) thread is
 453 // running Java. Only the VM thread handles these signals.
 454 sigset_t* os::Linux::vm_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &vm_sigs;
 457 }
 458 
 459 void os::Linux::hotspot_sigmask(Thread* thread) {
 460 
 461   //Save caller's signal mask before setting VM signal mask
 462   sigset_t caller_sigmask;
 463   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 464 
 465   OSThread* osthread = thread->osthread();
 466   osthread->set_caller_sigmask(caller_sigmask);
 467 
 468   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 469 
 470   if (!ReduceSignalUsage) {
 471     if (thread->is_VM_thread()) {
 472       // Only the VM thread handles BREAK_SIGNAL ...
 473       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 474     } else {
 475       // ... all other threads block BREAK_SIGNAL
 476       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 477     }
 478   }
 479 }
 480 
 481 //////////////////////////////////////////////////////////////////////////////
 482 // detecting pthread library
 483 
 484 void os::Linux::libpthread_init() {
 485   // Save glibc and pthread version strings.
 486 #if !defined(_CS_GNU_LIBC_VERSION) || \
 487     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 488   #error "glibc too old (< 2.3.2)"
 489 #endif
 490 
 491   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 492   assert(n > 0, "cannot retrieve glibc version");
 493   char *str = (char *)malloc(n, mtInternal);
 494   confstr(_CS_GNU_LIBC_VERSION, str, n);
 495   os::Linux::set_glibc_version(str);
 496 
 497   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 498   assert(n > 0, "cannot retrieve pthread version");
 499   str = (char *)malloc(n, mtInternal);
 500   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 501   os::Linux::set_libpthread_version(str);
 502 }
 503 
 504 /////////////////////////////////////////////////////////////////////////////
 505 // thread stack expansion
 506 
 507 // os::Linux::manually_expand_stack() takes care of expanding the thread
 508 // stack. Note that this is normally not needed: pthread stacks allocate
 509 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 510 // committed. Therefore it is not necessary to expand the stack manually.
 511 //
 512 // Manually expanding the stack was historically needed on LinuxThreads
 513 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 514 // it is kept to deal with very rare corner cases:
 515 //
 516 // For one, user may run the VM on an own implementation of threads
 517 // whose stacks are - like the old LinuxThreads - implemented using
 518 // mmap(MAP_GROWSDOWN).
 519 //
 520 // Also, this coding may be needed if the VM is running on the primordial
 521 // thread. Normally we avoid running on the primordial thread; however,
 522 // user may still invoke the VM on the primordial thread.
 523 //
 524 // The following historical comment describes the details about running
 525 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 526 
 527 
 528 // Force Linux kernel to expand current thread stack. If "bottom" is close
 529 // to the stack guard, caller should block all signals.
 530 //
 531 // MAP_GROWSDOWN:
 532 //   A special mmap() flag that is used to implement thread stacks. It tells
 533 //   kernel that the memory region should extend downwards when needed. This
 534 //   allows early versions of LinuxThreads to only mmap the first few pages
 535 //   when creating a new thread. Linux kernel will automatically expand thread
 536 //   stack as needed (on page faults).
 537 //
 538 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 539 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 540 //   region, it's hard to tell if the fault is due to a legitimate stack
 541 //   access or because of reading/writing non-exist memory (e.g. buffer
 542 //   overrun). As a rule, if the fault happens below current stack pointer,
 543 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 544 //   application (see Linux kernel fault.c).
 545 //
 546 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 547 //   stack overflow detection.
 548 //
 549 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 550 //   not use MAP_GROWSDOWN.
 551 //
 552 // To get around the problem and allow stack banging on Linux, we need to
 553 // manually expand thread stack after receiving the SIGSEGV.
 554 //
 555 // There are two ways to expand thread stack to address "bottom", we used
 556 // both of them in JVM before 1.5:
 557 //   1. adjust stack pointer first so that it is below "bottom", and then
 558 //      touch "bottom"
 559 //   2. mmap() the page in question
 560 //
 561 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 562 // if current sp is already near the lower end of page 101, and we need to
 563 // call mmap() to map page 100, it is possible that part of the mmap() frame
 564 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 565 // That will destroy the mmap() frame and cause VM to crash.
 566 //
 567 // The following code works by adjusting sp first, then accessing the "bottom"
 568 // page to force a page fault. Linux kernel will then automatically expand the
 569 // stack mapping.
 570 //
 571 // _expand_stack_to() assumes its frame size is less than page size, which
 572 // should always be true if the function is not inlined.
 573 
 574 static void NOINLINE _expand_stack_to(address bottom) {
 575   address sp;
 576   size_t size;
 577   volatile char *p;
 578 
 579   // Adjust bottom to point to the largest address within the same page, it
 580   // gives us a one-page buffer if alloca() allocates slightly more memory.
 581   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 582   bottom += os::Linux::page_size() - 1;
 583 
 584   // sp might be slightly above current stack pointer; if that's the case, we
 585   // will alloca() a little more space than necessary, which is OK. Don't use
 586   // os::current_stack_pointer(), as its result can be slightly below current
 587   // stack pointer, causing us to not alloca enough to reach "bottom".
 588   sp = (address)&sp;
 589 
 590   if (sp > bottom) {
 591     size = sp - bottom;
 592     p = (volatile char *)alloca(size);
 593     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 594     p[0] = '\0';
 595   }
 596 }
 597 
 598 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 599   assert(t!=NULL, "just checking");
 600   assert(t->osthread()->expanding_stack(), "expand should be set");
 601   assert(t->stack_base() != NULL, "stack_base was not initialized");
 602 
 603   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 604     sigset_t mask_all, old_sigset;
 605     sigfillset(&mask_all);
 606     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 607     _expand_stack_to(addr);
 608     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 609     return true;
 610   }
 611   return false;
 612 }
 613 
 614 //////////////////////////////////////////////////////////////////////////////
 615 // create new thread
 616 
 617 // Thread start routine for all newly created threads
 618 static void *thread_native_entry(Thread *thread) {
 619   // Try to randomize the cache line index of hot stack frames.
 620   // This helps when threads of the same stack traces evict each other's
 621   // cache lines. The threads can be either from the same JVM instance, or
 622   // from different JVM instances. The benefit is especially true for
 623   // processors with hyperthreading technology.
 624   static int counter = 0;
 625   int pid = os::current_process_id();
 626   alloca(((pid ^ counter++) & 7) * 128);
 627 
 628   thread->initialize_thread_current();
 629 
 630   OSThread* osthread = thread->osthread();
 631   Monitor* sync = osthread->startThread_lock();
 632 
 633   osthread->set_thread_id(os::current_thread_id());
 634 
 635   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 636     os::current_thread_id(), (uintx) pthread_self());
 637 
 638   if (UseNUMA) {
 639     int lgrp_id = os::numa_get_group_id();
 640     if (lgrp_id != -1) {
 641       thread->set_lgrp_id(lgrp_id);
 642     }
 643   }
 644   // initialize signal mask for this thread
 645   os::Linux::hotspot_sigmask(thread);
 646 
 647   // initialize floating point control register
 648   os::Linux::init_thread_fpu_state();
 649 
 650   // handshaking with parent thread
 651   {
 652     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 653 
 654     // notify parent thread
 655     osthread->set_state(INITIALIZED);
 656     sync->notify_all();
 657 
 658     // wait until os::start_thread()
 659     while (osthread->get_state() == INITIALIZED) {
 660       sync->wait(Mutex::_no_safepoint_check_flag);
 661     }
 662   }
 663 
 664   // call one more level start routine
 665   thread->run();
 666 
 667   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 668     os::current_thread_id(), (uintx) pthread_self());
 669 
 670   // If a thread has not deleted itself ("delete this") as part of its
 671   // termination sequence, we have to ensure thread-local-storage is
 672   // cleared before we actually terminate. No threads should ever be
 673   // deleted asynchronously with respect to their termination.
 674   if (Thread::current_or_null_safe() != NULL) {
 675     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 676     thread->clear_thread_current();
 677   }
 678 
 679   return 0;
 680 }
 681 
 682 bool os::create_thread(Thread* thread, ThreadType thr_type,
 683                        size_t req_stack_size) {
 684   assert(thread->osthread() == NULL, "caller responsible");
 685 
 686   // Allocate the OSThread object
 687   OSThread* osthread = new OSThread(NULL, NULL);
 688   if (osthread == NULL) {
 689     return false;
 690   }
 691 
 692   // set the correct thread state
 693   osthread->set_thread_type(thr_type);
 694 
 695   // Initial state is ALLOCATED but not INITIALIZED
 696   osthread->set_state(ALLOCATED);
 697 
 698   thread->set_osthread(osthread);
 699 
 700   // init thread attributes
 701   pthread_attr_t attr;
 702   pthread_attr_init(&attr);
 703   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 704 
 705   // Calculate stack size if it's not specified by caller.
 706   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 707   // In the Linux NPTL pthread implementation the guard size mechanism
 708   // is not implemented properly. The posix standard requires adding
 709   // the size of the guard pages to the stack size, instead Linux
 710   // takes the space out of 'stacksize'. Thus we adapt the requested
 711   // stack_size by the size of the guard pages to mimick proper
 712   // behaviour. However, be careful not to end up with a size
 713   // of zero due to overflow. Don't add the guard page in that case.
 714   size_t guard_size = os::Linux::default_guard_size(thr_type);
 715   if (stack_size <= SIZE_MAX - guard_size) {
 716     stack_size += guard_size;
 717   }
 718   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 719 
 720   int status = pthread_attr_setstacksize(&attr, stack_size);
 721   assert_status(status == 0, status, "pthread_attr_setstacksize");
 722 
 723   // Configure glibc guard page.
 724   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 725 
 726   ThreadState state;
 727 
 728   {
 729     pthread_t tid;
 730     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 731 
 732     char buf[64];
 733     if (ret == 0) {
 734       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 735         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 736     } else {
 737       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 738         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 739     }
 740 
 741     pthread_attr_destroy(&attr);
 742 
 743     if (ret != 0) {
 744       // Need to clean up stuff we've allocated so far
 745       thread->set_osthread(NULL);
 746       delete osthread;
 747       return false;
 748     }
 749 
 750     // Store pthread info into the OSThread
 751     osthread->set_pthread_id(tid);
 752 
 753     // Wait until child thread is either initialized or aborted
 754     {
 755       Monitor* sync_with_child = osthread->startThread_lock();
 756       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 757       while ((state = osthread->get_state()) == ALLOCATED) {
 758         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 759       }
 760     }
 761   }
 762 
 763   // Aborted due to thread limit being reached
 764   if (state == ZOMBIE) {
 765     thread->set_osthread(NULL);
 766     delete osthread;
 767     return false;
 768   }
 769 
 770   // The thread is returned suspended (in state INITIALIZED),
 771   // and is started higher up in the call chain
 772   assert(state == INITIALIZED, "race condition");
 773   return true;
 774 }
 775 
 776 /////////////////////////////////////////////////////////////////////////////
 777 // attach existing thread
 778 
 779 // bootstrap the main thread
 780 bool os::create_main_thread(JavaThread* thread) {
 781   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 782   return create_attached_thread(thread);
 783 }
 784 
 785 bool os::create_attached_thread(JavaThread* thread) {
 786 #ifdef ASSERT
 787   thread->verify_not_published();
 788 #endif
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792 
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // Store pthread info into the OSThread
 798   osthread->set_thread_id(os::Linux::gettid());
 799   osthread->set_pthread_id(::pthread_self());
 800 
 801   // initialize floating point control register
 802   os::Linux::init_thread_fpu_state();
 803 
 804   // Initial thread state is RUNNABLE
 805   osthread->set_state(RUNNABLE);
 806 
 807   thread->set_osthread(osthread);
 808 
 809   if (UseNUMA) {
 810     int lgrp_id = os::numa_get_group_id();
 811     if (lgrp_id != -1) {
 812       thread->set_lgrp_id(lgrp_id);
 813     }
 814   }
 815 
 816   if (os::is_primordial_thread()) {
 817     // If current thread is primordial thread, its stack is mapped on demand,
 818     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 819     // the entire stack region to avoid SEGV in stack banging.
 820     // It is also useful to get around the heap-stack-gap problem on SuSE
 821     // kernel (see 4821821 for details). We first expand stack to the top
 822     // of yellow zone, then enable stack yellow zone (order is significant,
 823     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 824     // is no gap between the last two virtual memory regions.
 825 
 826     JavaThread *jt = (JavaThread *)thread;
 827     address addr = jt->stack_reserved_zone_base();
 828     assert(addr != NULL, "initialization problem?");
 829     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 830 
 831     osthread->set_expanding_stack();
 832     os::Linux::manually_expand_stack(jt, addr);
 833     osthread->clear_expanding_stack();
 834   }
 835 
 836   // initialize signal mask for this thread
 837   // and save the caller's signal mask
 838   os::Linux::hotspot_sigmask(thread);
 839 
 840   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 841     os::current_thread_id(), (uintx) pthread_self());
 842 
 843   return true;
 844 }
 845 
 846 void os::pd_start_thread(Thread* thread) {
 847   OSThread * osthread = thread->osthread();
 848   assert(osthread->get_state() != INITIALIZED, "just checking");
 849   Monitor* sync_with_child = osthread->startThread_lock();
 850   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 851   sync_with_child->notify();
 852 }
 853 
 854 // Free Linux resources related to the OSThread
 855 void os::free_thread(OSThread* osthread) {
 856   assert(osthread != NULL, "osthread not set");
 857 
 858   // We are told to free resources of the argument thread,
 859   // but we can only really operate on the current thread.
 860   assert(Thread::current()->osthread() == osthread,
 861          "os::free_thread but not current thread");
 862 
 863 #ifdef ASSERT
 864   sigset_t current;
 865   sigemptyset(&current);
 866   pthread_sigmask(SIG_SETMASK, NULL, &current);
 867   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 868 #endif
 869 
 870   // Restore caller's signal mask
 871   sigset_t sigmask = osthread->caller_sigmask();
 872   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 873 
 874   delete osthread;
 875 }
 876 
 877 //////////////////////////////////////////////////////////////////////////////
 878 // primordial thread
 879 
 880 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 881 bool os::is_primordial_thread(void) {
 882   char dummy;
 883   // If called before init complete, thread stack bottom will be null.
 884   // Can be called if fatal error occurs before initialization.
 885   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 886   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 887          os::Linux::initial_thread_stack_size()   != 0,
 888          "os::init did not locate primordial thread's stack region");
 889   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 890       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 891                         os::Linux::initial_thread_stack_size()) {
 892     return true;
 893   } else {
 894     return false;
 895   }
 896 }
 897 
 898 // Find the virtual memory area that contains addr
 899 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 900   FILE *fp = fopen("/proc/self/maps", "r");
 901   if (fp) {
 902     address low, high;
 903     while (!feof(fp)) {
 904       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 905         if (low <= addr && addr < high) {
 906           if (vma_low)  *vma_low  = low;
 907           if (vma_high) *vma_high = high;
 908           fclose(fp);
 909           return true;
 910         }
 911       }
 912       for (;;) {
 913         int ch = fgetc(fp);
 914         if (ch == EOF || ch == (int)'\n') break;
 915       }
 916     }
 917     fclose(fp);
 918   }
 919   return false;
 920 }
 921 
 922 // Locate primordial thread stack. This special handling of primordial thread stack
 923 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 924 // bogus value for the primordial process thread. While the launcher has created
 925 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 926 // JNI invocation API from a primordial thread.
 927 void os::Linux::capture_initial_stack(size_t max_size) {
 928 
 929   // max_size is either 0 (which means accept OS default for thread stacks) or
 930   // a user-specified value known to be at least the minimum needed. If we
 931   // are actually on the primordial thread we can make it appear that we have a
 932   // smaller max_size stack by inserting the guard pages at that location. But we
 933   // cannot do anything to emulate a larger stack than what has been provided by
 934   // the OS or threading library. In fact if we try to use a stack greater than
 935   // what is set by rlimit then we will crash the hosting process.
 936 
 937   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 938   // If this is "unlimited" then it will be a huge value.
 939   struct rlimit rlim;
 940   getrlimit(RLIMIT_STACK, &rlim);
 941   size_t stack_size = rlim.rlim_cur;
 942 
 943   // 6308388: a bug in ld.so will relocate its own .data section to the
 944   //   lower end of primordial stack; reduce ulimit -s value a little bit
 945   //   so we won't install guard page on ld.so's data section.
 946   //   But ensure we don't underflow the stack size - allow 1 page spare
 947   if (stack_size >= (size_t)(3 * page_size()))
 948     stack_size -= 2 * page_size();
 949 
 950   // Try to figure out where the stack base (top) is. This is harder.
 951   //
 952   // When an application is started, glibc saves the initial stack pointer in
 953   // a global variable "__libc_stack_end", which is then used by system
 954   // libraries. __libc_stack_end should be pretty close to stack top. The
 955   // variable is available since the very early days. However, because it is
 956   // a private interface, it could disappear in the future.
 957   //
 958   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 959   // to __libc_stack_end, it is very close to stack top, but isn't the real
 960   // stack top. Note that /proc may not exist if VM is running as a chroot
 961   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 962   // /proc/<pid>/stat could change in the future (though unlikely).
 963   //
 964   // We try __libc_stack_end first. If that doesn't work, look for
 965   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 966   // as a hint, which should work well in most cases.
 967 
 968   uintptr_t stack_start;
 969 
 970   // try __libc_stack_end first
 971   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 972   if (p && *p) {
 973     stack_start = *p;
 974   } else {
 975     // see if we can get the start_stack field from /proc/self/stat
 976     FILE *fp;
 977     int pid;
 978     char state;
 979     int ppid;
 980     int pgrp;
 981     int session;
 982     int nr;
 983     int tpgrp;
 984     unsigned long flags;
 985     unsigned long minflt;
 986     unsigned long cminflt;
 987     unsigned long majflt;
 988     unsigned long cmajflt;
 989     unsigned long utime;
 990     unsigned long stime;
 991     long cutime;
 992     long cstime;
 993     long prio;
 994     long nice;
 995     long junk;
 996     long it_real;
 997     uintptr_t start;
 998     uintptr_t vsize;
 999     intptr_t rss;
1000     uintptr_t rsslim;
1001     uintptr_t scodes;
1002     uintptr_t ecode;
1003     int i;
1004 
1005     // Figure what the primordial thread stack base is. Code is inspired
1006     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1007     // followed by command name surrounded by parentheses, state, etc.
1008     char stat[2048];
1009     int statlen;
1010 
1011     fp = fopen("/proc/self/stat", "r");
1012     if (fp) {
1013       statlen = fread(stat, 1, 2047, fp);
1014       stat[statlen] = '\0';
1015       fclose(fp);
1016 
1017       // Skip pid and the command string. Note that we could be dealing with
1018       // weird command names, e.g. user could decide to rename java launcher
1019       // to "java 1.4.2 :)", then the stat file would look like
1020       //                1234 (java 1.4.2 :)) R ... ...
1021       // We don't really need to know the command string, just find the last
1022       // occurrence of ")" and then start parsing from there. See bug 4726580.
1023       char * s = strrchr(stat, ')');
1024 
1025       i = 0;
1026       if (s) {
1027         // Skip blank chars
1028         do { s++; } while (s && isspace(*s));
1029 
1030 #define _UFM UINTX_FORMAT
1031 #define _DFM INTX_FORMAT
1032 
1033         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1034         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1035         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1036                    &state,          // 3  %c
1037                    &ppid,           // 4  %d
1038                    &pgrp,           // 5  %d
1039                    &session,        // 6  %d
1040                    &nr,             // 7  %d
1041                    &tpgrp,          // 8  %d
1042                    &flags,          // 9  %lu
1043                    &minflt,         // 10 %lu
1044                    &cminflt,        // 11 %lu
1045                    &majflt,         // 12 %lu
1046                    &cmajflt,        // 13 %lu
1047                    &utime,          // 14 %lu
1048                    &stime,          // 15 %lu
1049                    &cutime,         // 16 %ld
1050                    &cstime,         // 17 %ld
1051                    &prio,           // 18 %ld
1052                    &nice,           // 19 %ld
1053                    &junk,           // 20 %ld
1054                    &it_real,        // 21 %ld
1055                    &start,          // 22 UINTX_FORMAT
1056                    &vsize,          // 23 UINTX_FORMAT
1057                    &rss,            // 24 INTX_FORMAT
1058                    &rsslim,         // 25 UINTX_FORMAT
1059                    &scodes,         // 26 UINTX_FORMAT
1060                    &ecode,          // 27 UINTX_FORMAT
1061                    &stack_start);   // 28 UINTX_FORMAT
1062       }
1063 
1064 #undef _UFM
1065 #undef _DFM
1066 
1067       if (i != 28 - 2) {
1068         assert(false, "Bad conversion from /proc/self/stat");
1069         // product mode - assume we are the primordial thread, good luck in the
1070         // embedded case.
1071         warning("Can't detect primordial thread stack location - bad conversion");
1072         stack_start = (uintptr_t) &rlim;
1073       }
1074     } else {
1075       // For some reason we can't open /proc/self/stat (for example, running on
1076       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1077       // most cases, so don't abort:
1078       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1079       stack_start = (uintptr_t) &rlim;
1080     }
1081   }
1082 
1083   // Now we have a pointer (stack_start) very close to the stack top, the
1084   // next thing to do is to figure out the exact location of stack top. We
1085   // can find out the virtual memory area that contains stack_start by
1086   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1087   // and its upper limit is the real stack top. (again, this would fail if
1088   // running inside chroot, because /proc may not exist.)
1089 
1090   uintptr_t stack_top;
1091   address low, high;
1092   if (find_vma((address)stack_start, &low, &high)) {
1093     // success, "high" is the true stack top. (ignore "low", because initial
1094     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1095     stack_top = (uintptr_t)high;
1096   } else {
1097     // failed, likely because /proc/self/maps does not exist
1098     warning("Can't detect primordial thread stack location - find_vma failed");
1099     // best effort: stack_start is normally within a few pages below the real
1100     // stack top, use it as stack top, and reduce stack size so we won't put
1101     // guard page outside stack.
1102     stack_top = stack_start;
1103     stack_size -= 16 * page_size();
1104   }
1105 
1106   // stack_top could be partially down the page so align it
1107   stack_top = align_up(stack_top, page_size());
1108 
1109   // Allowed stack value is minimum of max_size and what we derived from rlimit
1110   if (max_size > 0) {
1111     _initial_thread_stack_size = MIN2(max_size, stack_size);
1112   } else {
1113     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1114     // clamp it at 8MB as we do on Solaris
1115     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1116   }
1117   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1118   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1119 
1120   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1121 
1122   if (log_is_enabled(Info, os, thread)) {
1123     // See if we seem to be on primordial process thread
1124     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1125                       uintptr_t(&rlim) < stack_top;
1126 
1127     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1128                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1129                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1130                          stack_top, intptr_t(_initial_thread_stack_bottom));
1131   }
1132 }
1133 
1134 ////////////////////////////////////////////////////////////////////////////////
1135 // time support
1136 
1137 // Time since start-up in seconds to a fine granularity.
1138 // Used by VMSelfDestructTimer and the MemProfiler.
1139 double os::elapsedTime() {
1140 
1141   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1142 }
1143 
1144 jlong os::elapsed_counter() {
1145   return javaTimeNanos() - initial_time_count;
1146 }
1147 
1148 jlong os::elapsed_frequency() {
1149   return NANOSECS_PER_SEC; // nanosecond resolution
1150 }
1151 
1152 bool os::supports_vtime() { return true; }
1153 bool os::enable_vtime()   { return false; }
1154 bool os::vtime_enabled()  { return false; }
1155 
1156 double os::elapsedVTime() {
1157   struct rusage usage;
1158   int retval = getrusage(RUSAGE_THREAD, &usage);
1159   if (retval == 0) {
1160     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1161   } else {
1162     // better than nothing, but not much
1163     return elapsedTime();
1164   }
1165 }
1166 
1167 jlong os::javaTimeMillis() {
1168   timeval time;
1169   int status = gettimeofday(&time, NULL);
1170   assert(status != -1, "linux error");
1171   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1172 }
1173 
1174 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1175   timeval time;
1176   int status = gettimeofday(&time, NULL);
1177   assert(status != -1, "linux error");
1178   seconds = jlong(time.tv_sec);
1179   nanos = jlong(time.tv_usec) * 1000;
1180 }
1181 
1182 
1183 #ifndef CLOCK_MONOTONIC
1184   #define CLOCK_MONOTONIC (1)
1185 #endif
1186 
1187 void os::Linux::clock_init() {
1188   // we do dlopen's in this particular order due to bug in linux
1189   // dynamical loader (see 6348968) leading to crash on exit
1190   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1191   if (handle == NULL) {
1192     handle = dlopen("librt.so", RTLD_LAZY);
1193   }
1194 
1195   if (handle) {
1196     int (*clock_getres_func)(clockid_t, struct timespec*) =
1197            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1198     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1199            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1200     if (clock_getres_func && clock_gettime_func) {
1201       // See if monotonic clock is supported by the kernel. Note that some
1202       // early implementations simply return kernel jiffies (updated every
1203       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1204       // for nano time (though the monotonic property is still nice to have).
1205       // It's fixed in newer kernels, however clock_getres() still returns
1206       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1207       // resolution for now. Hopefully as people move to new kernels, this
1208       // won't be a problem.
1209       struct timespec res;
1210       struct timespec tp;
1211       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1212           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1213         // yes, monotonic clock is supported
1214         _clock_gettime = clock_gettime_func;
1215         return;
1216       } else {
1217         // close librt if there is no monotonic clock
1218         dlclose(handle);
1219       }
1220     }
1221   }
1222   warning("No monotonic clock was available - timed services may " \
1223           "be adversely affected if the time-of-day clock changes");
1224 }
1225 
1226 #ifndef SYS_clock_getres
1227   #if defined(X86) || defined(PPC64) || defined(S390)
1228     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1229     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1230   #else
1231     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1232     #define sys_clock_getres(x,y)  -1
1233   #endif
1234 #else
1235   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1236 #endif
1237 
1238 void os::Linux::fast_thread_clock_init() {
1239   if (!UseLinuxPosixThreadCPUClocks) {
1240     return;
1241   }
1242   clockid_t clockid;
1243   struct timespec tp;
1244   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1245       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1246 
1247   // Switch to using fast clocks for thread cpu time if
1248   // the sys_clock_getres() returns 0 error code.
1249   // Note, that some kernels may support the current thread
1250   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1251   // returned by the pthread_getcpuclockid().
1252   // If the fast Posix clocks are supported then the sys_clock_getres()
1253   // must return at least tp.tv_sec == 0 which means a resolution
1254   // better than 1 sec. This is extra check for reliability.
1255 
1256   if (pthread_getcpuclockid_func &&
1257       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1258       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1259     _supports_fast_thread_cpu_time = true;
1260     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1261   }
1262 }
1263 
1264 jlong os::javaTimeNanos() {
1265   if (os::supports_monotonic_clock()) {
1266     struct timespec tp;
1267     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1268     assert(status == 0, "gettime error");
1269     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1270     return result;
1271   } else {
1272     timeval time;
1273     int status = gettimeofday(&time, NULL);
1274     assert(status != -1, "linux error");
1275     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1276     return 1000 * usecs;
1277   }
1278 }
1279 
1280 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1281   if (os::supports_monotonic_clock()) {
1282     info_ptr->max_value = ALL_64_BITS;
1283 
1284     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1285     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1286     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1287   } else {
1288     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1289     info_ptr->max_value = ALL_64_BITS;
1290 
1291     // gettimeofday is a real time clock so it skips
1292     info_ptr->may_skip_backward = true;
1293     info_ptr->may_skip_forward = true;
1294   }
1295 
1296   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1297 }
1298 
1299 // Return the real, user, and system times in seconds from an
1300 // arbitrary fixed point in the past.
1301 bool os::getTimesSecs(double* process_real_time,
1302                       double* process_user_time,
1303                       double* process_system_time) {
1304   struct tms ticks;
1305   clock_t real_ticks = times(&ticks);
1306 
1307   if (real_ticks == (clock_t) (-1)) {
1308     return false;
1309   } else {
1310     double ticks_per_second = (double) clock_tics_per_sec;
1311     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1312     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1313     *process_real_time = ((double) real_ticks) / ticks_per_second;
1314 
1315     return true;
1316   }
1317 }
1318 
1319 
1320 char * os::local_time_string(char *buf, size_t buflen) {
1321   struct tm t;
1322   time_t long_time;
1323   time(&long_time);
1324   localtime_r(&long_time, &t);
1325   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1326                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1327                t.tm_hour, t.tm_min, t.tm_sec);
1328   return buf;
1329 }
1330 
1331 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1332   return localtime_r(clock, res);
1333 }
1334 
1335 ////////////////////////////////////////////////////////////////////////////////
1336 // runtime exit support
1337 
1338 // Note: os::shutdown() might be called very early during initialization, or
1339 // called from signal handler. Before adding something to os::shutdown(), make
1340 // sure it is async-safe and can handle partially initialized VM.
1341 void os::shutdown() {
1342 
1343   // allow PerfMemory to attempt cleanup of any persistent resources
1344   perfMemory_exit();
1345 
1346   // needs to remove object in file system
1347   AttachListener::abort();
1348 
1349   // flush buffered output, finish log files
1350   ostream_abort();
1351 
1352   // Check for abort hook
1353   abort_hook_t abort_hook = Arguments::abort_hook();
1354   if (abort_hook != NULL) {
1355     abort_hook();
1356   }
1357 
1358 }
1359 
1360 // Note: os::abort() might be called very early during initialization, or
1361 // called from signal handler. Before adding something to os::abort(), make
1362 // sure it is async-safe and can handle partially initialized VM.
1363 void os::abort(bool dump_core, void* siginfo, const void* context) {
1364   os::shutdown();
1365   if (dump_core) {
1366 #ifndef PRODUCT
1367     fdStream out(defaultStream::output_fd());
1368     out.print_raw("Current thread is ");
1369     char buf[16];
1370     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1371     out.print_raw_cr(buf);
1372     out.print_raw_cr("Dumping core ...");
1373 #endif
1374     ::abort(); // dump core
1375   }
1376 
1377   ::exit(1);
1378 }
1379 
1380 // Die immediately, no exit hook, no abort hook, no cleanup.
1381 void os::die() {
1382   ::abort();
1383 }
1384 
1385 
1386 // This method is a copy of JDK's sysGetLastErrorString
1387 // from src/solaris/hpi/src/system_md.c
1388 
1389 size_t os::lasterror(char *buf, size_t len) {
1390   if (errno == 0)  return 0;
1391 
1392   const char *s = os::strerror(errno);
1393   size_t n = ::strlen(s);
1394   if (n >= len) {
1395     n = len - 1;
1396   }
1397   ::strncpy(buf, s, n);
1398   buf[n] = '\0';
1399   return n;
1400 }
1401 
1402 // thread_id is kernel thread id (similar to Solaris LWP id)
1403 intx os::current_thread_id() { return os::Linux::gettid(); }
1404 int os::current_process_id() {
1405   return ::getpid();
1406 }
1407 
1408 // DLL functions
1409 
1410 const char* os::dll_file_extension() { return ".so"; }
1411 
1412 // This must be hard coded because it's the system's temporary
1413 // directory not the java application's temp directory, ala java.io.tmpdir.
1414 const char* os::get_temp_directory() { return "/tmp"; }
1415 
1416 static bool file_exists(const char* filename) {
1417   struct stat statbuf;
1418   if (filename == NULL || strlen(filename) == 0) {
1419     return false;
1420   }
1421   return os::stat(filename, &statbuf) == 0;
1422 }
1423 
1424 // check if addr is inside libjvm.so
1425 bool os::address_is_in_vm(address addr) {
1426   static address libjvm_base_addr;
1427   Dl_info dlinfo;
1428 
1429   if (libjvm_base_addr == NULL) {
1430     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1431       libjvm_base_addr = (address)dlinfo.dli_fbase;
1432     }
1433     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1434   }
1435 
1436   if (dladdr((void *)addr, &dlinfo) != 0) {
1437     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1438   }
1439 
1440   return false;
1441 }
1442 
1443 bool os::dll_address_to_function_name(address addr, char *buf,
1444                                       int buflen, int *offset,
1445                                       bool demangle) {
1446   // buf is not optional, but offset is optional
1447   assert(buf != NULL, "sanity check");
1448 
1449   Dl_info dlinfo;
1450 
1451   if (dladdr((void*)addr, &dlinfo) != 0) {
1452     // see if we have a matching symbol
1453     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1454       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1455         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1456       }
1457       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1458       return true;
1459     }
1460     // no matching symbol so try for just file info
1461     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1462       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1463                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1464         return true;
1465       }
1466     }
1467   }
1468 
1469   buf[0] = '\0';
1470   if (offset != NULL) *offset = -1;
1471   return false;
1472 }
1473 
1474 struct _address_to_library_name {
1475   address addr;          // input : memory address
1476   size_t  buflen;        //         size of fname
1477   char*   fname;         // output: library name
1478   address base;          //         library base addr
1479 };
1480 
1481 static int address_to_library_name_callback(struct dl_phdr_info *info,
1482                                             size_t size, void *data) {
1483   int i;
1484   bool found = false;
1485   address libbase = NULL;
1486   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1487 
1488   // iterate through all loadable segments
1489   for (i = 0; i < info->dlpi_phnum; i++) {
1490     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1491     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1492       // base address of a library is the lowest address of its loaded
1493       // segments.
1494       if (libbase == NULL || libbase > segbase) {
1495         libbase = segbase;
1496       }
1497       // see if 'addr' is within current segment
1498       if (segbase <= d->addr &&
1499           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1500         found = true;
1501       }
1502     }
1503   }
1504 
1505   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1506   // so dll_address_to_library_name() can fall through to use dladdr() which
1507   // can figure out executable name from argv[0].
1508   if (found && info->dlpi_name && info->dlpi_name[0]) {
1509     d->base = libbase;
1510     if (d->fname) {
1511       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1512     }
1513     return 1;
1514   }
1515   return 0;
1516 }
1517 
1518 bool os::dll_address_to_library_name(address addr, char* buf,
1519                                      int buflen, int* offset) {
1520   // buf is not optional, but offset is optional
1521   assert(buf != NULL, "sanity check");
1522 
1523   Dl_info dlinfo;
1524   struct _address_to_library_name data;
1525 
1526   // There is a bug in old glibc dladdr() implementation that it could resolve
1527   // to wrong library name if the .so file has a base address != NULL. Here
1528   // we iterate through the program headers of all loaded libraries to find
1529   // out which library 'addr' really belongs to. This workaround can be
1530   // removed once the minimum requirement for glibc is moved to 2.3.x.
1531   data.addr = addr;
1532   data.fname = buf;
1533   data.buflen = buflen;
1534   data.base = NULL;
1535   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1536 
1537   if (rslt) {
1538     // buf already contains library name
1539     if (offset) *offset = addr - data.base;
1540     return true;
1541   }
1542   if (dladdr((void*)addr, &dlinfo) != 0) {
1543     if (dlinfo.dli_fname != NULL) {
1544       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1545     }
1546     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1547       *offset = addr - (address)dlinfo.dli_fbase;
1548     }
1549     return true;
1550   }
1551 
1552   buf[0] = '\0';
1553   if (offset) *offset = -1;
1554   return false;
1555 }
1556 
1557 // Loads .dll/.so and
1558 // in case of error it checks if .dll/.so was built for the
1559 // same architecture as Hotspot is running on
1560 
1561 
1562 // Remember the stack's state. The Linux dynamic linker will change
1563 // the stack to 'executable' at most once, so we must safepoint only once.
1564 bool os::Linux::_stack_is_executable = false;
1565 
1566 // VM operation that loads a library.  This is necessary if stack protection
1567 // of the Java stacks can be lost during loading the library.  If we
1568 // do not stop the Java threads, they can stack overflow before the stacks
1569 // are protected again.
1570 class VM_LinuxDllLoad: public VM_Operation {
1571  private:
1572   const char *_filename;
1573   char *_ebuf;
1574   int _ebuflen;
1575   void *_lib;
1576  public:
1577   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1578     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1579   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1580   void doit() {
1581     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1582     os::Linux::_stack_is_executable = true;
1583   }
1584   void* loaded_library() { return _lib; }
1585 };
1586 
1587 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1588   void * result = NULL;
1589   bool load_attempted = false;
1590 
1591   // Check whether the library to load might change execution rights
1592   // of the stack. If they are changed, the protection of the stack
1593   // guard pages will be lost. We need a safepoint to fix this.
1594   //
1595   // See Linux man page execstack(8) for more info.
1596   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1597     if (!ElfFile::specifies_noexecstack(filename)) {
1598       if (!is_init_completed()) {
1599         os::Linux::_stack_is_executable = true;
1600         // This is OK - No Java threads have been created yet, and hence no
1601         // stack guard pages to fix.
1602         //
1603         // This should happen only when you are building JDK7 using a very
1604         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1605         //
1606         // Dynamic loader will make all stacks executable after
1607         // this function returns, and will not do that again.
1608         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1609       } else {
1610         warning("You have loaded library %s which might have disabled stack guard. "
1611                 "The VM will try to fix the stack guard now.\n"
1612                 "It's highly recommended that you fix the library with "
1613                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1614                 filename);
1615 
1616         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1617         JavaThread *jt = JavaThread::current();
1618         if (jt->thread_state() != _thread_in_native) {
1619           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1620           // that requires ExecStack. Cannot enter safe point. Let's give up.
1621           warning("Unable to fix stack guard. Giving up.");
1622         } else {
1623           if (!LoadExecStackDllInVMThread) {
1624             // This is for the case where the DLL has an static
1625             // constructor function that executes JNI code. We cannot
1626             // load such DLLs in the VMThread.
1627             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1628           }
1629 
1630           ThreadInVMfromNative tiv(jt);
1631           debug_only(VMNativeEntryWrapper vew;)
1632 
1633           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1634           VMThread::execute(&op);
1635           if (LoadExecStackDllInVMThread) {
1636             result = op.loaded_library();
1637           }
1638           load_attempted = true;
1639         }
1640       }
1641     }
1642   }
1643 
1644   if (!load_attempted) {
1645     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1646   }
1647 
1648   if (result != NULL) {
1649     // Successful loading
1650     return result;
1651   }
1652 
1653   Elf32_Ehdr elf_head;
1654   int diag_msg_max_length=ebuflen-strlen(ebuf);
1655   char* diag_msg_buf=ebuf+strlen(ebuf);
1656 
1657   if (diag_msg_max_length==0) {
1658     // No more space in ebuf for additional diagnostics message
1659     return NULL;
1660   }
1661 
1662 
1663   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1664 
1665   if (file_descriptor < 0) {
1666     // Can't open library, report dlerror() message
1667     return NULL;
1668   }
1669 
1670   bool failed_to_read_elf_head=
1671     (sizeof(elf_head)!=
1672      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1673 
1674   ::close(file_descriptor);
1675   if (failed_to_read_elf_head) {
1676     // file i/o error - report dlerror() msg
1677     return NULL;
1678   }
1679 
1680   typedef struct {
1681     Elf32_Half    code;         // Actual value as defined in elf.h
1682     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1683     unsigned char elf_class;    // 32 or 64 bit
1684     unsigned char endianess;    // MSB or LSB
1685     char*         name;         // String representation
1686   } arch_t;
1687 
1688 #ifndef EM_486
1689   #define EM_486          6               /* Intel 80486 */
1690 #endif
1691 #ifndef EM_AARCH64
1692   #define EM_AARCH64    183               /* ARM AARCH64 */
1693 #endif
1694 
1695   static const arch_t arch_array[]={
1696     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1697     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1698     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1699     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1700     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1701     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1702     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1703     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1704 #if defined(VM_LITTLE_ENDIAN)
1705     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1706     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1707 #else
1708     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1709     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1710 #endif
1711     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1712     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1713     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1714     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1715     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1716     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1717     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1718     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1719   };
1720 
1721 #if  (defined IA32)
1722   static  Elf32_Half running_arch_code=EM_386;
1723 #elif   (defined AMD64)
1724   static  Elf32_Half running_arch_code=EM_X86_64;
1725 #elif  (defined IA64)
1726   static  Elf32_Half running_arch_code=EM_IA_64;
1727 #elif  (defined __sparc) && (defined _LP64)
1728   static  Elf32_Half running_arch_code=EM_SPARCV9;
1729 #elif  (defined __sparc) && (!defined _LP64)
1730   static  Elf32_Half running_arch_code=EM_SPARC;
1731 #elif  (defined __powerpc64__)
1732   static  Elf32_Half running_arch_code=EM_PPC64;
1733 #elif  (defined __powerpc__)
1734   static  Elf32_Half running_arch_code=EM_PPC;
1735 #elif  (defined AARCH64)
1736   static  Elf32_Half running_arch_code=EM_AARCH64;
1737 #elif  (defined ARM)
1738   static  Elf32_Half running_arch_code=EM_ARM;
1739 #elif  (defined S390)
1740   static  Elf32_Half running_arch_code=EM_S390;
1741 #elif  (defined ALPHA)
1742   static  Elf32_Half running_arch_code=EM_ALPHA;
1743 #elif  (defined MIPSEL)
1744   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1745 #elif  (defined PARISC)
1746   static  Elf32_Half running_arch_code=EM_PARISC;
1747 #elif  (defined MIPS)
1748   static  Elf32_Half running_arch_code=EM_MIPS;
1749 #elif  (defined M68K)
1750   static  Elf32_Half running_arch_code=EM_68K;
1751 #elif  (defined SH)
1752   static  Elf32_Half running_arch_code=EM_SH;
1753 #else
1754     #error Method os::dll_load requires that one of following is defined:\
1755         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1756 #endif
1757 
1758   // Identify compatability class for VM's architecture and library's architecture
1759   // Obtain string descriptions for architectures
1760 
1761   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1762   int running_arch_index=-1;
1763 
1764   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1765     if (running_arch_code == arch_array[i].code) {
1766       running_arch_index    = i;
1767     }
1768     if (lib_arch.code == arch_array[i].code) {
1769       lib_arch.compat_class = arch_array[i].compat_class;
1770       lib_arch.name         = arch_array[i].name;
1771     }
1772   }
1773 
1774   assert(running_arch_index != -1,
1775          "Didn't find running architecture code (running_arch_code) in arch_array");
1776   if (running_arch_index == -1) {
1777     // Even though running architecture detection failed
1778     // we may still continue with reporting dlerror() message
1779     return NULL;
1780   }
1781 
1782   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1783     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1784     return NULL;
1785   }
1786 
1787 #ifndef S390
1788   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1789     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1790     return NULL;
1791   }
1792 #endif // !S390
1793 
1794   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1795     if (lib_arch.name!=NULL) {
1796       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1797                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1798                  lib_arch.name, arch_array[running_arch_index].name);
1799     } else {
1800       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1801                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1802                  lib_arch.code,
1803                  arch_array[running_arch_index].name);
1804     }
1805   }
1806 
1807   return NULL;
1808 }
1809 
1810 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1811                                 int ebuflen) {
1812   void * result = ::dlopen(filename, RTLD_LAZY);
1813   if (result == NULL) {
1814     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1815     ebuf[ebuflen-1] = '\0';
1816   }
1817   return result;
1818 }
1819 
1820 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1821                                        int ebuflen) {
1822   void * result = NULL;
1823   if (LoadExecStackDllInVMThread) {
1824     result = dlopen_helper(filename, ebuf, ebuflen);
1825   }
1826 
1827   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1828   // library that requires an executable stack, or which does not have this
1829   // stack attribute set, dlopen changes the stack attribute to executable. The
1830   // read protection of the guard pages gets lost.
1831   //
1832   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1833   // may have been queued at the same time.
1834 
1835   if (!_stack_is_executable) {
1836     JavaThread *jt = Threads::first();
1837 
1838     while (jt) {
1839       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1840           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1841         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1842           warning("Attempt to reguard stack yellow zone failed.");
1843         }
1844       }
1845       jt = jt->next();
1846     }
1847   }
1848 
1849   return result;
1850 }
1851 
1852 void* os::dll_lookup(void* handle, const char* name) {
1853   void* res = dlsym(handle, name);
1854   return res;
1855 }
1856 
1857 void* os::get_default_process_handle() {
1858   return (void*)::dlopen(NULL, RTLD_LAZY);
1859 }
1860 
1861 static bool _print_ascii_file(const char* filename, outputStream* st) {
1862   int fd = ::open(filename, O_RDONLY);
1863   if (fd == -1) {
1864     return false;
1865   }
1866 
1867   char buf[33];
1868   int bytes;
1869   buf[32] = '\0';
1870   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1871     st->print_raw(buf, bytes);
1872   }
1873 
1874   ::close(fd);
1875 
1876   return true;
1877 }
1878 
1879 void os::print_dll_info(outputStream *st) {
1880   st->print_cr("Dynamic libraries:");
1881 
1882   char fname[32];
1883   pid_t pid = os::Linux::gettid();
1884 
1885   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1886 
1887   if (!_print_ascii_file(fname, st)) {
1888     st->print("Can not get library information for pid = %d\n", pid);
1889   }
1890 }
1891 
1892 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1893   FILE *procmapsFile = NULL;
1894 
1895   // Open the procfs maps file for the current process
1896   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1897     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1898     char line[PATH_MAX + 100];
1899 
1900     // Read line by line from 'file'
1901     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1902       u8 base, top, offset, inode;
1903       char permissions[5];
1904       char device[6];
1905       char name[PATH_MAX + 1];
1906 
1907       // Parse fields from line
1908       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1909              &base, &top, permissions, &offset, device, &inode, name);
1910 
1911       // Filter by device id '00:00' so that we only get file system mapped files.
1912       if (strcmp(device, "00:00") != 0) {
1913 
1914         // Call callback with the fields of interest
1915         if(callback(name, (address)base, (address)top, param)) {
1916           // Oops abort, callback aborted
1917           fclose(procmapsFile);
1918           return 1;
1919         }
1920       }
1921     }
1922     fclose(procmapsFile);
1923   }
1924   return 0;
1925 }
1926 
1927 void os::print_os_info_brief(outputStream* st) {
1928   os::Linux::print_distro_info(st);
1929 
1930   os::Posix::print_uname_info(st);
1931 
1932   os::Linux::print_libversion_info(st);
1933 
1934 }
1935 
1936 void os::print_os_info(outputStream* st) {
1937   st->print("OS:");
1938 
1939   os::Linux::print_distro_info(st);
1940 
1941   os::Posix::print_uname_info(st);
1942 
1943   // Print warning if unsafe chroot environment detected
1944   if (unsafe_chroot_detected) {
1945     st->print("WARNING!! ");
1946     st->print_cr("%s", unstable_chroot_error);
1947   }
1948 
1949   os::Linux::print_libversion_info(st);
1950 
1951   os::Posix::print_rlimit_info(st);
1952 
1953   os::Posix::print_load_average(st);
1954 
1955   os::Linux::print_full_memory_info(st);
1956 }
1957 
1958 // Try to identify popular distros.
1959 // Most Linux distributions have a /etc/XXX-release file, which contains
1960 // the OS version string. Newer Linux distributions have a /etc/lsb-release
1961 // file that also contains the OS version string. Some have more than one
1962 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
1963 // /etc/redhat-release.), so the order is important.
1964 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
1965 // their own specific XXX-release file as well as a redhat-release file.
1966 // Because of this the XXX-release file needs to be searched for before the
1967 // redhat-release file.
1968 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
1969 // search for redhat-release / SuSE-release needs to be before lsb-release.
1970 // Since the lsb-release file is the new standard it needs to be searched
1971 // before the older style release files.
1972 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
1973 // next to last resort.  The os-release file is a new standard that contains
1974 // distribution information and the system-release file seems to be an old
1975 // standard that has been replaced by the lsb-release and os-release files.
1976 // Searching for the debian_version file is the last resort.  It contains
1977 // an informative string like "6.0.6" or "wheezy/sid". Because of this
1978 // "Debian " is printed before the contents of the debian_version file.
1979 
1980 const char* distro_files[] = {
1981   "/etc/oracle-release",
1982   "/etc/mandriva-release",
1983   "/etc/mandrake-release",
1984   "/etc/sun-release",
1985   "/etc/redhat-release",
1986   "/etc/SuSE-release",
1987   "/etc/lsb-release",
1988   "/etc/turbolinux-release",
1989   "/etc/gentoo-release",
1990   "/etc/ltib-release",
1991   "/etc/angstrom-version",
1992   "/etc/system-release",
1993   "/etc/os-release",
1994   NULL };
1995 
1996 void os::Linux::print_distro_info(outputStream* st) {
1997   for (int i = 0;; i++) {
1998     const char* file = distro_files[i];
1999     if (file == NULL) {
2000       break;  // done
2001     }
2002     // If file prints, we found it.
2003     if (_print_ascii_file(file, st)) {
2004       return;
2005     }
2006   }
2007 
2008   if (file_exists("/etc/debian_version")) {
2009     st->print("Debian ");
2010     _print_ascii_file("/etc/debian_version", st);
2011   } else {
2012     st->print("Linux");
2013   }
2014   st->cr();
2015 }
2016 
2017 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2018   char buf[256];
2019   while (fgets(buf, sizeof(buf), fp)) {
2020     // Edit out extra stuff in expected format
2021     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2022       char* ptr = strstr(buf, "\"");  // the name is in quotes
2023       if (ptr != NULL) {
2024         ptr++; // go beyond first quote
2025         char* nl = strchr(ptr, '\"');
2026         if (nl != NULL) *nl = '\0';
2027         strncpy(distro, ptr, length);
2028       } else {
2029         ptr = strstr(buf, "=");
2030         ptr++; // go beyond equals then
2031         char* nl = strchr(ptr, '\n');
2032         if (nl != NULL) *nl = '\0';
2033         strncpy(distro, ptr, length);
2034       }
2035       return;
2036     } else if (get_first_line) {
2037       char* nl = strchr(buf, '\n');
2038       if (nl != NULL) *nl = '\0';
2039       strncpy(distro, buf, length);
2040       return;
2041     }
2042   }
2043   // print last line and close
2044   char* nl = strchr(buf, '\n');
2045   if (nl != NULL) *nl = '\0';
2046   strncpy(distro, buf, length);
2047 }
2048 
2049 static void parse_os_info(char* distro, size_t length, const char* file) {
2050   FILE* fp = fopen(file, "r");
2051   if (fp != NULL) {
2052     // if suse format, print out first line
2053     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2054     parse_os_info_helper(fp, distro, length, get_first_line);
2055     fclose(fp);
2056   }
2057 }
2058 
2059 void os::get_summary_os_info(char* buf, size_t buflen) {
2060   for (int i = 0;; i++) {
2061     const char* file = distro_files[i];
2062     if (file == NULL) {
2063       break; // ran out of distro_files
2064     }
2065     if (file_exists(file)) {
2066       parse_os_info(buf, buflen, file);
2067       return;
2068     }
2069   }
2070   // special case for debian
2071   if (file_exists("/etc/debian_version")) {
2072     strncpy(buf, "Debian ", buflen);
2073     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2074   } else {
2075     strncpy(buf, "Linux", buflen);
2076   }
2077 }
2078 
2079 void os::Linux::print_libversion_info(outputStream* st) {
2080   // libc, pthread
2081   st->print("libc:");
2082   st->print("%s ", os::Linux::glibc_version());
2083   st->print("%s ", os::Linux::libpthread_version());
2084   st->cr();
2085 }
2086 
2087 void os::Linux::print_full_memory_info(outputStream* st) {
2088   st->print("\n/proc/meminfo:\n");
2089   _print_ascii_file("/proc/meminfo", st);
2090   st->cr();
2091 }
2092 
2093 void os::print_memory_info(outputStream* st) {
2094 
2095   st->print("Memory:");
2096   st->print(" %dk page", os::vm_page_size()>>10);
2097 
2098   // values in struct sysinfo are "unsigned long"
2099   struct sysinfo si;
2100   sysinfo(&si);
2101 
2102   st->print(", physical " UINT64_FORMAT "k",
2103             os::physical_memory() >> 10);
2104   st->print("(" UINT64_FORMAT "k free)",
2105             os::available_memory() >> 10);
2106   st->print(", swap " UINT64_FORMAT "k",
2107             ((jlong)si.totalswap * si.mem_unit) >> 10);
2108   st->print("(" UINT64_FORMAT "k free)",
2109             ((jlong)si.freeswap * si.mem_unit) >> 10);
2110   st->cr();
2111 }
2112 
2113 // Print the first "model name" line and the first "flags" line
2114 // that we find and nothing more. We assume "model name" comes
2115 // before "flags" so if we find a second "model name", then the
2116 // "flags" field is considered missing.
2117 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2118 #if defined(IA32) || defined(AMD64)
2119   // Other platforms have less repetitive cpuinfo files
2120   FILE *fp = fopen("/proc/cpuinfo", "r");
2121   if (fp) {
2122     while (!feof(fp)) {
2123       if (fgets(buf, buflen, fp)) {
2124         // Assume model name comes before flags
2125         bool model_name_printed = false;
2126         if (strstr(buf, "model name") != NULL) {
2127           if (!model_name_printed) {
2128             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2129             st->print_raw(buf);
2130             model_name_printed = true;
2131           } else {
2132             // model name printed but not flags?  Odd, just return
2133             fclose(fp);
2134             return true;
2135           }
2136         }
2137         // print the flags line too
2138         if (strstr(buf, "flags") != NULL) {
2139           st->print_raw(buf);
2140           fclose(fp);
2141           return true;
2142         }
2143       }
2144     }
2145     fclose(fp);
2146   }
2147 #endif // x86 platforms
2148   return false;
2149 }
2150 
2151 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2152   // Only print the model name if the platform provides this as a summary
2153   if (!print_model_name_and_flags(st, buf, buflen)) {
2154     st->print("\n/proc/cpuinfo:\n");
2155     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2156       st->print_cr("  <Not Available>");
2157     }
2158   }
2159 }
2160 
2161 #if defined(AMD64) || defined(IA32) || defined(X32)
2162 const char* search_string = "model name";
2163 #elif defined(M68K)
2164 const char* search_string = "CPU";
2165 #elif defined(PPC64)
2166 const char* search_string = "cpu";
2167 #elif defined(S390)
2168 const char* search_string = "processor";
2169 #elif defined(SPARC)
2170 const char* search_string = "cpu";
2171 #else
2172 const char* search_string = "Processor";
2173 #endif
2174 
2175 // Parses the cpuinfo file for string representing the model name.
2176 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2177   FILE* fp = fopen("/proc/cpuinfo", "r");
2178   if (fp != NULL) {
2179     while (!feof(fp)) {
2180       char buf[256];
2181       if (fgets(buf, sizeof(buf), fp)) {
2182         char* start = strstr(buf, search_string);
2183         if (start != NULL) {
2184           char *ptr = start + strlen(search_string);
2185           char *end = buf + strlen(buf);
2186           while (ptr != end) {
2187              // skip whitespace and colon for the rest of the name.
2188              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2189                break;
2190              }
2191              ptr++;
2192           }
2193           if (ptr != end) {
2194             // reasonable string, get rid of newline and keep the rest
2195             char* nl = strchr(buf, '\n');
2196             if (nl != NULL) *nl = '\0';
2197             strncpy(cpuinfo, ptr, length);
2198             fclose(fp);
2199             return;
2200           }
2201         }
2202       }
2203     }
2204     fclose(fp);
2205   }
2206   // cpuinfo not found or parsing failed, just print generic string.  The entire
2207   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2208 #if   defined(AARCH64)
2209   strncpy(cpuinfo, "AArch64", length);
2210 #elif defined(AMD64)
2211   strncpy(cpuinfo, "x86_64", length);
2212 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2213   strncpy(cpuinfo, "ARM", length);
2214 #elif defined(IA32)
2215   strncpy(cpuinfo, "x86_32", length);
2216 #elif defined(IA64)
2217   strncpy(cpuinfo, "IA64", length);
2218 #elif defined(PPC)
2219   strncpy(cpuinfo, "PPC64", length);
2220 #elif defined(S390)
2221   strncpy(cpuinfo, "S390", length);
2222 #elif defined(SPARC)
2223   strncpy(cpuinfo, "sparcv9", length);
2224 #elif defined(ZERO_LIBARCH)
2225   strncpy(cpuinfo, ZERO_LIBARCH, length);
2226 #else
2227   strncpy(cpuinfo, "unknown", length);
2228 #endif
2229 }
2230 
2231 static void print_signal_handler(outputStream* st, int sig,
2232                                  char* buf, size_t buflen);
2233 
2234 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2235   st->print_cr("Signal Handlers:");
2236   print_signal_handler(st, SIGSEGV, buf, buflen);
2237   print_signal_handler(st, SIGBUS , buf, buflen);
2238   print_signal_handler(st, SIGFPE , buf, buflen);
2239   print_signal_handler(st, SIGPIPE, buf, buflen);
2240   print_signal_handler(st, SIGXFSZ, buf, buflen);
2241   print_signal_handler(st, SIGILL , buf, buflen);
2242   print_signal_handler(st, SR_signum, buf, buflen);
2243   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2244   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2245   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2246   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2247 #if defined(PPC64)
2248   print_signal_handler(st, SIGTRAP, buf, buflen);
2249 #endif
2250 }
2251 
2252 static char saved_jvm_path[MAXPATHLEN] = {0};
2253 
2254 // Find the full path to the current module, libjvm.so
2255 void os::jvm_path(char *buf, jint buflen) {
2256   // Error checking.
2257   if (buflen < MAXPATHLEN) {
2258     assert(false, "must use a large-enough buffer");
2259     buf[0] = '\0';
2260     return;
2261   }
2262   // Lazy resolve the path to current module.
2263   if (saved_jvm_path[0] != 0) {
2264     strcpy(buf, saved_jvm_path);
2265     return;
2266   }
2267 
2268   char dli_fname[MAXPATHLEN];
2269   bool ret = dll_address_to_library_name(
2270                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2271                                          dli_fname, sizeof(dli_fname), NULL);
2272   assert(ret, "cannot locate libjvm");
2273   char *rp = NULL;
2274   if (ret && dli_fname[0] != '\0') {
2275     rp = os::Posix::realpath(dli_fname, buf, buflen);
2276   }
2277   if (rp == NULL) {
2278     return;
2279   }
2280 
2281   if (Arguments::sun_java_launcher_is_altjvm()) {
2282     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2283     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2284     // If "/jre/lib/" appears at the right place in the string, then
2285     // assume we are installed in a JDK and we're done. Otherwise, check
2286     // for a JAVA_HOME environment variable and fix up the path so it
2287     // looks like libjvm.so is installed there (append a fake suffix
2288     // hotspot/libjvm.so).
2289     const char *p = buf + strlen(buf) - 1;
2290     for (int count = 0; p > buf && count < 5; ++count) {
2291       for (--p; p > buf && *p != '/'; --p)
2292         /* empty */ ;
2293     }
2294 
2295     if (strncmp(p, "/jre/lib/", 9) != 0) {
2296       // Look for JAVA_HOME in the environment.
2297       char* java_home_var = ::getenv("JAVA_HOME");
2298       if (java_home_var != NULL && java_home_var[0] != 0) {
2299         char* jrelib_p;
2300         int len;
2301 
2302         // Check the current module name "libjvm.so".
2303         p = strrchr(buf, '/');
2304         if (p == NULL) {
2305           return;
2306         }
2307         assert(strstr(p, "/libjvm") == p, "invalid library name");
2308 
2309         rp = os::Posix::realpath(java_home_var, buf, buflen);
2310         if (rp == NULL) {
2311           return;
2312         }
2313 
2314         // determine if this is a legacy image or modules image
2315         // modules image doesn't have "jre" subdirectory
2316         len = strlen(buf);
2317         assert(len < buflen, "Ran out of buffer room");
2318         jrelib_p = buf + len;
2319         snprintf(jrelib_p, buflen-len, "/jre/lib");
2320         if (0 != access(buf, F_OK)) {
2321           snprintf(jrelib_p, buflen-len, "/lib");
2322         }
2323 
2324         if (0 == access(buf, F_OK)) {
2325           // Use current module name "libjvm.so"
2326           len = strlen(buf);
2327           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2328         } else {
2329           // Go back to path of .so
2330           rp = os::Posix::realpath(dli_fname, buf, buflen);
2331           if (rp == NULL) {
2332             return;
2333           }
2334         }
2335       }
2336     }
2337   }
2338 
2339   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2340   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2341 }
2342 
2343 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2344   // no prefix required, not even "_"
2345 }
2346 
2347 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2348   // no suffix required
2349 }
2350 
2351 ////////////////////////////////////////////////////////////////////////////////
2352 // sun.misc.Signal support
2353 
2354 static volatile jint sigint_count = 0;
2355 
2356 static void UserHandler(int sig, void *siginfo, void *context) {
2357   // 4511530 - sem_post is serialized and handled by the manager thread. When
2358   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2359   // don't want to flood the manager thread with sem_post requests.
2360   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2361     return;
2362   }
2363 
2364   // Ctrl-C is pressed during error reporting, likely because the error
2365   // handler fails to abort. Let VM die immediately.
2366   if (sig == SIGINT && VMError::is_error_reported()) {
2367     os::die();
2368   }
2369 
2370   os::signal_notify(sig);
2371 }
2372 
2373 void* os::user_handler() {
2374   return CAST_FROM_FN_PTR(void*, UserHandler);
2375 }
2376 
2377 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2378   struct timespec ts;
2379   // Semaphore's are always associated with CLOCK_REALTIME
2380   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2381   // see unpackTime for discussion on overflow checking
2382   if (sec >= MAX_SECS) {
2383     ts.tv_sec += MAX_SECS;
2384     ts.tv_nsec = 0;
2385   } else {
2386     ts.tv_sec += sec;
2387     ts.tv_nsec += nsec;
2388     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2389       ts.tv_nsec -= NANOSECS_PER_SEC;
2390       ++ts.tv_sec; // note: this must be <= max_secs
2391     }
2392   }
2393 
2394   return ts;
2395 }
2396 
2397 extern "C" {
2398   typedef void (*sa_handler_t)(int);
2399   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2400 }
2401 
2402 void* os::signal(int signal_number, void* handler) {
2403   struct sigaction sigAct, oldSigAct;
2404 
2405   sigfillset(&(sigAct.sa_mask));
2406   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2407   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2408 
2409   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2410     // -1 means registration failed
2411     return (void *)-1;
2412   }
2413 
2414   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2415 }
2416 
2417 void os::signal_raise(int signal_number) {
2418   ::raise(signal_number);
2419 }
2420 
2421 // The following code is moved from os.cpp for making this
2422 // code platform specific, which it is by its very nature.
2423 
2424 // Will be modified when max signal is changed to be dynamic
2425 int os::sigexitnum_pd() {
2426   return NSIG;
2427 }
2428 
2429 // a counter for each possible signal value
2430 static volatile jint pending_signals[NSIG+1] = { 0 };
2431 
2432 // Linux(POSIX) specific hand shaking semaphore.
2433 static sem_t sig_sem;
2434 static PosixSemaphore sr_semaphore;
2435 
2436 void os::signal_init_pd() {
2437   // Initialize signal structures
2438   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2439 
2440   // Initialize signal semaphore
2441   ::sem_init(&sig_sem, 0, 0);
2442 }
2443 
2444 void os::signal_notify(int sig) {
2445   Atomic::inc(&pending_signals[sig]);
2446   ::sem_post(&sig_sem);
2447 }
2448 
2449 static int check_pending_signals(bool wait) {
2450   Atomic::store(0, &sigint_count);
2451   for (;;) {
2452     for (int i = 0; i < NSIG + 1; i++) {
2453       jint n = pending_signals[i];
2454       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2455         return i;
2456       }
2457     }
2458     if (!wait) {
2459       return -1;
2460     }
2461     JavaThread *thread = JavaThread::current();
2462     ThreadBlockInVM tbivm(thread);
2463 
2464     bool threadIsSuspended;
2465     do {
2466       thread->set_suspend_equivalent();
2467       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2468       ::sem_wait(&sig_sem);
2469 
2470       // were we externally suspended while we were waiting?
2471       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2472       if (threadIsSuspended) {
2473         // The semaphore has been incremented, but while we were waiting
2474         // another thread suspended us. We don't want to continue running
2475         // while suspended because that would surprise the thread that
2476         // suspended us.
2477         ::sem_post(&sig_sem);
2478 
2479         thread->java_suspend_self();
2480       }
2481     } while (threadIsSuspended);
2482   }
2483 }
2484 
2485 int os::signal_lookup() {
2486   return check_pending_signals(false);
2487 }
2488 
2489 int os::signal_wait() {
2490   return check_pending_signals(true);
2491 }
2492 
2493 ////////////////////////////////////////////////////////////////////////////////
2494 // Virtual Memory
2495 
2496 int os::vm_page_size() {
2497   // Seems redundant as all get out
2498   assert(os::Linux::page_size() != -1, "must call os::init");
2499   return os::Linux::page_size();
2500 }
2501 
2502 // Solaris allocates memory by pages.
2503 int os::vm_allocation_granularity() {
2504   assert(os::Linux::page_size() != -1, "must call os::init");
2505   return os::Linux::page_size();
2506 }
2507 
2508 // Rationale behind this function:
2509 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2510 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2511 //  samples for JITted code. Here we create private executable mapping over the code cache
2512 //  and then we can use standard (well, almost, as mapping can change) way to provide
2513 //  info for the reporting script by storing timestamp and location of symbol
2514 void linux_wrap_code(char* base, size_t size) {
2515   static volatile jint cnt = 0;
2516 
2517   if (!UseOprofile) {
2518     return;
2519   }
2520 
2521   char buf[PATH_MAX+1];
2522   int num = Atomic::add(1, &cnt);
2523 
2524   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2525            os::get_temp_directory(), os::current_process_id(), num);
2526   unlink(buf);
2527 
2528   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2529 
2530   if (fd != -1) {
2531     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2532     if (rv != (off_t)-1) {
2533       if (::write(fd, "", 1) == 1) {
2534         mmap(base, size,
2535              PROT_READ|PROT_WRITE|PROT_EXEC,
2536              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2537       }
2538     }
2539     ::close(fd);
2540     unlink(buf);
2541   }
2542 }
2543 
2544 static bool recoverable_mmap_error(int err) {
2545   // See if the error is one we can let the caller handle. This
2546   // list of errno values comes from JBS-6843484. I can't find a
2547   // Linux man page that documents this specific set of errno
2548   // values so while this list currently matches Solaris, it may
2549   // change as we gain experience with this failure mode.
2550   switch (err) {
2551   case EBADF:
2552   case EINVAL:
2553   case ENOTSUP:
2554     // let the caller deal with these errors
2555     return true;
2556 
2557   default:
2558     // Any remaining errors on this OS can cause our reserved mapping
2559     // to be lost. That can cause confusion where different data
2560     // structures think they have the same memory mapped. The worst
2561     // scenario is if both the VM and a library think they have the
2562     // same memory mapped.
2563     return false;
2564   }
2565 }
2566 
2567 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2568                                     int err) {
2569   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2570           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2571           os::strerror(err), err);
2572 }
2573 
2574 static void warn_fail_commit_memory(char* addr, size_t size,
2575                                     size_t alignment_hint, bool exec,
2576                                     int err) {
2577   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2578           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2579           alignment_hint, exec, os::strerror(err), err);
2580 }
2581 
2582 // NOTE: Linux kernel does not really reserve the pages for us.
2583 //       All it does is to check if there are enough free pages
2584 //       left at the time of mmap(). This could be a potential
2585 //       problem.
2586 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2587   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2588   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2589                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2590   if (res != (uintptr_t) MAP_FAILED) {
2591     if (UseNUMAInterleaving) {
2592       numa_make_global(addr, size);
2593     }
2594     return 0;
2595   }
2596 
2597   int err = errno;  // save errno from mmap() call above
2598 
2599   if (!recoverable_mmap_error(err)) {
2600     warn_fail_commit_memory(addr, size, exec, err);
2601     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2602   }
2603 
2604   return err;
2605 }
2606 
2607 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2608   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2609 }
2610 
2611 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2612                                   const char* mesg) {
2613   assert(mesg != NULL, "mesg must be specified");
2614   int err = os::Linux::commit_memory_impl(addr, size, exec);
2615   if (err != 0) {
2616     // the caller wants all commit errors to exit with the specified mesg:
2617     warn_fail_commit_memory(addr, size, exec, err);
2618     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2619   }
2620 }
2621 
2622 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2623 #ifndef MAP_HUGETLB
2624   #define MAP_HUGETLB 0x40000
2625 #endif
2626 
2627 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2628 #ifndef MADV_HUGEPAGE
2629   #define MADV_HUGEPAGE 14
2630 #endif
2631 
2632 int os::Linux::commit_memory_impl(char* addr, size_t size,
2633                                   size_t alignment_hint, bool exec) {
2634   int err = os::Linux::commit_memory_impl(addr, size, exec);
2635   if (err == 0) {
2636     realign_memory(addr, size, alignment_hint);
2637   }
2638   return err;
2639 }
2640 
2641 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2642                           bool exec) {
2643   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2644 }
2645 
2646 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2647                                   size_t alignment_hint, bool exec,
2648                                   const char* mesg) {
2649   assert(mesg != NULL, "mesg must be specified");
2650   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2651   if (err != 0) {
2652     // the caller wants all commit errors to exit with the specified mesg:
2653     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2654     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2655   }
2656 }
2657 
2658 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2659   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2660     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2661     // be supported or the memory may already be backed by huge pages.
2662     ::madvise(addr, bytes, MADV_HUGEPAGE);
2663   }
2664 }
2665 
2666 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2667   // This method works by doing an mmap over an existing mmaping and effectively discarding
2668   // the existing pages. However it won't work for SHM-based large pages that cannot be
2669   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2670   // small pages on top of the SHM segment. This method always works for small pages, so we
2671   // allow that in any case.
2672   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2673     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2674   }
2675 }
2676 
2677 void os::numa_make_global(char *addr, size_t bytes) {
2678   Linux::numa_interleave_memory(addr, bytes);
2679 }
2680 
2681 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2682 // bind policy to MPOL_PREFERRED for the current thread.
2683 #define USE_MPOL_PREFERRED 0
2684 
2685 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2686   // To make NUMA and large pages more robust when both enabled, we need to ease
2687   // the requirements on where the memory should be allocated. MPOL_BIND is the
2688   // default policy and it will force memory to be allocated on the specified
2689   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2690   // the specified node, but will not force it. Using this policy will prevent
2691   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2692   // free large pages.
2693   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2694   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2695 }
2696 
2697 bool os::numa_topology_changed() { return false; }
2698 
2699 size_t os::numa_get_groups_num() {
2700   // Return just the number of nodes in which it's possible to allocate memory
2701   // (in numa terminology, configured nodes).
2702   return Linux::numa_num_configured_nodes();
2703 }
2704 
2705 int os::numa_get_group_id() {
2706   int cpu_id = Linux::sched_getcpu();
2707   if (cpu_id != -1) {
2708     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2709     if (lgrp_id != -1) {
2710       return lgrp_id;
2711     }
2712   }
2713   return 0;
2714 }
2715 
2716 int os::Linux::get_existing_num_nodes() {
2717   size_t node;
2718   size_t highest_node_number = Linux::numa_max_node();
2719   int num_nodes = 0;
2720 
2721   // Get the total number of nodes in the system including nodes without memory.
2722   for (node = 0; node <= highest_node_number; node++) {
2723     if (isnode_in_existing_nodes(node)) {
2724       num_nodes++;
2725     }
2726   }
2727   return num_nodes;
2728 }
2729 
2730 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2731   size_t highest_node_number = Linux::numa_max_node();
2732   size_t i = 0;
2733 
2734   // Map all node ids in which is possible to allocate memory. Also nodes are
2735   // not always consecutively available, i.e. available from 0 to the highest
2736   // node number.
2737   for (size_t node = 0; node <= highest_node_number; node++) {
2738     if (Linux::isnode_in_configured_nodes(node)) {
2739       ids[i++] = node;
2740     }
2741   }
2742   return i;
2743 }
2744 
2745 bool os::get_page_info(char *start, page_info* info) {
2746   return false;
2747 }
2748 
2749 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2750                      page_info* page_found) {
2751   return end;
2752 }
2753 
2754 
2755 int os::Linux::sched_getcpu_syscall(void) {
2756   unsigned int cpu = 0;
2757   int retval = -1;
2758 
2759 #if defined(IA32)
2760   #ifndef SYS_getcpu
2761     #define SYS_getcpu 318
2762   #endif
2763   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2764 #elif defined(AMD64)
2765 // Unfortunately we have to bring all these macros here from vsyscall.h
2766 // to be able to compile on old linuxes.
2767   #define __NR_vgetcpu 2
2768   #define VSYSCALL_START (-10UL << 20)
2769   #define VSYSCALL_SIZE 1024
2770   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2771   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2772   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2773   retval = vgetcpu(&cpu, NULL, NULL);
2774 #endif
2775 
2776   return (retval == -1) ? retval : cpu;
2777 }
2778 
2779 void os::Linux::sched_getcpu_init() {
2780   // sched_getcpu() should be in libc.
2781   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2782                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2783 
2784   // If it's not, try a direct syscall.
2785   if (sched_getcpu() == -1) {
2786     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2787                                     (void*)&sched_getcpu_syscall));
2788   }
2789 }
2790 
2791 // Something to do with the numa-aware allocator needs these symbols
2792 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2793 extern "C" JNIEXPORT void numa_error(char *where) { }
2794 
2795 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2796 // load symbol from base version instead.
2797 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2798   void *f = dlvsym(handle, name, "libnuma_1.1");
2799   if (f == NULL) {
2800     f = dlsym(handle, name);
2801   }
2802   return f;
2803 }
2804 
2805 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2806 // Return NULL if the symbol is not defined in this particular version.
2807 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2808   return dlvsym(handle, name, "libnuma_1.2");
2809 }
2810 
2811 bool os::Linux::libnuma_init() {
2812   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2813     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2814     if (handle != NULL) {
2815       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2816                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2817       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2818                                        libnuma_dlsym(handle, "numa_max_node")));
2819       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2820                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2821       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2822                                         libnuma_dlsym(handle, "numa_available")));
2823       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2824                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2825       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2826                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2827       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2828                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2829       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2830                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2831       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2832                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2833       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2834                                        libnuma_dlsym(handle, "numa_distance")));
2835 
2836       if (numa_available() != -1) {
2837         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2838         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2839         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2840         // Create an index -> node mapping, since nodes are not always consecutive
2841         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2842         rebuild_nindex_to_node_map();
2843         // Create a cpu -> node mapping
2844         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2845         rebuild_cpu_to_node_map();
2846         return true;
2847       }
2848     }
2849   }
2850   return false;
2851 }
2852 
2853 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2854   // Creating guard page is very expensive. Java thread has HotSpot
2855   // guard pages, only enable glibc guard page for non-Java threads.
2856   // (Remember: compiler thread is a Java thread, too!)
2857   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2858 }
2859 
2860 void os::Linux::rebuild_nindex_to_node_map() {
2861   int highest_node_number = Linux::numa_max_node();
2862 
2863   nindex_to_node()->clear();
2864   for (int node = 0; node <= highest_node_number; node++) {
2865     if (Linux::isnode_in_existing_nodes(node)) {
2866       nindex_to_node()->append(node);
2867     }
2868   }
2869 }
2870 
2871 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2872 // The table is later used in get_node_by_cpu().
2873 void os::Linux::rebuild_cpu_to_node_map() {
2874   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2875                               // in libnuma (possible values are starting from 16,
2876                               // and continuing up with every other power of 2, but less
2877                               // than the maximum number of CPUs supported by kernel), and
2878                               // is a subject to change (in libnuma version 2 the requirements
2879                               // are more reasonable) we'll just hardcode the number they use
2880                               // in the library.
2881   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2882 
2883   size_t cpu_num = processor_count();
2884   size_t cpu_map_size = NCPUS / BitsPerCLong;
2885   size_t cpu_map_valid_size =
2886     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2887 
2888   cpu_to_node()->clear();
2889   cpu_to_node()->at_grow(cpu_num - 1);
2890 
2891   size_t node_num = get_existing_num_nodes();
2892 
2893   int distance = 0;
2894   int closest_distance = INT_MAX;
2895   int closest_node = 0;
2896   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2897   for (size_t i = 0; i < node_num; i++) {
2898     // Check if node is configured (not a memory-less node). If it is not, find
2899     // the closest configured node.
2900     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2901       closest_distance = INT_MAX;
2902       // Check distance from all remaining nodes in the system. Ignore distance
2903       // from itself and from another non-configured node.
2904       for (size_t m = 0; m < node_num; m++) {
2905         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2906           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2907           // If a closest node is found, update. There is always at least one
2908           // configured node in the system so there is always at least one node
2909           // close.
2910           if (distance != 0 && distance < closest_distance) {
2911             closest_distance = distance;
2912             closest_node = nindex_to_node()->at(m);
2913           }
2914         }
2915       }
2916      } else {
2917        // Current node is already a configured node.
2918        closest_node = nindex_to_node()->at(i);
2919      }
2920 
2921     // Get cpus from the original node and map them to the closest node. If node
2922     // is a configured node (not a memory-less node), then original node and
2923     // closest node are the same.
2924     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2925       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2926         if (cpu_map[j] != 0) {
2927           for (size_t k = 0; k < BitsPerCLong; k++) {
2928             if (cpu_map[j] & (1UL << k)) {
2929               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2930             }
2931           }
2932         }
2933       }
2934     }
2935   }
2936   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2937 }
2938 
2939 int os::Linux::get_node_by_cpu(int cpu_id) {
2940   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2941     return cpu_to_node()->at(cpu_id);
2942   }
2943   return -1;
2944 }
2945 
2946 GrowableArray<int>* os::Linux::_cpu_to_node;
2947 GrowableArray<int>* os::Linux::_nindex_to_node;
2948 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2949 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2950 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2951 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2952 os::Linux::numa_available_func_t os::Linux::_numa_available;
2953 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2954 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2955 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2956 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2957 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2958 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2959 unsigned long* os::Linux::_numa_all_nodes;
2960 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2961 struct bitmask* os::Linux::_numa_nodes_ptr;
2962 
2963 bool os::pd_uncommit_memory(char* addr, size_t size) {
2964   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2965                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2966   return res  != (uintptr_t) MAP_FAILED;
2967 }
2968 
2969 static address get_stack_commited_bottom(address bottom, size_t size) {
2970   address nbot = bottom;
2971   address ntop = bottom + size;
2972 
2973   size_t page_sz = os::vm_page_size();
2974   unsigned pages = size / page_sz;
2975 
2976   unsigned char vec[1];
2977   unsigned imin = 1, imax = pages + 1, imid;
2978   int mincore_return_value = 0;
2979 
2980   assert(imin <= imax, "Unexpected page size");
2981 
2982   while (imin < imax) {
2983     imid = (imax + imin) / 2;
2984     nbot = ntop - (imid * page_sz);
2985 
2986     // Use a trick with mincore to check whether the page is mapped or not.
2987     // mincore sets vec to 1 if page resides in memory and to 0 if page
2988     // is swapped output but if page we are asking for is unmapped
2989     // it returns -1,ENOMEM
2990     mincore_return_value = mincore(nbot, page_sz, vec);
2991 
2992     if (mincore_return_value == -1) {
2993       // Page is not mapped go up
2994       // to find first mapped page
2995       if (errno != EAGAIN) {
2996         assert(errno == ENOMEM, "Unexpected mincore errno");
2997         imax = imid;
2998       }
2999     } else {
3000       // Page is mapped go down
3001       // to find first not mapped page
3002       imin = imid + 1;
3003     }
3004   }
3005 
3006   nbot = nbot + page_sz;
3007 
3008   // Adjust stack bottom one page up if last checked page is not mapped
3009   if (mincore_return_value == -1) {
3010     nbot = nbot + page_sz;
3011   }
3012 
3013   return nbot;
3014 }
3015 
3016 
3017 // Linux uses a growable mapping for the stack, and if the mapping for
3018 // the stack guard pages is not removed when we detach a thread the
3019 // stack cannot grow beyond the pages where the stack guard was
3020 // mapped.  If at some point later in the process the stack expands to
3021 // that point, the Linux kernel cannot expand the stack any further
3022 // because the guard pages are in the way, and a segfault occurs.
3023 //
3024 // However, it's essential not to split the stack region by unmapping
3025 // a region (leaving a hole) that's already part of the stack mapping,
3026 // so if the stack mapping has already grown beyond the guard pages at
3027 // the time we create them, we have to truncate the stack mapping.
3028 // So, we need to know the extent of the stack mapping when
3029 // create_stack_guard_pages() is called.
3030 
3031 // We only need this for stacks that are growable: at the time of
3032 // writing thread stacks don't use growable mappings (i.e. those
3033 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3034 // only applies to the main thread.
3035 
3036 // If the (growable) stack mapping already extends beyond the point
3037 // where we're going to put our guard pages, truncate the mapping at
3038 // that point by munmap()ping it.  This ensures that when we later
3039 // munmap() the guard pages we don't leave a hole in the stack
3040 // mapping. This only affects the main/primordial thread
3041 
3042 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3043   if (os::is_primordial_thread()) {
3044     // As we manually grow stack up to bottom inside create_attached_thread(),
3045     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3046     // we don't need to do anything special.
3047     // Check it first, before calling heavy function.
3048     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3049     unsigned char vec[1];
3050 
3051     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3052       // Fallback to slow path on all errors, including EAGAIN
3053       stack_extent = (uintptr_t) get_stack_commited_bottom(
3054                                                            os::Linux::initial_thread_stack_bottom(),
3055                                                            (size_t)addr - stack_extent);
3056     }
3057 
3058     if (stack_extent < (uintptr_t)addr) {
3059       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3060     }
3061   }
3062 
3063   return os::commit_memory(addr, size, !ExecMem);
3064 }
3065 
3066 // If this is a growable mapping, remove the guard pages entirely by
3067 // munmap()ping them.  If not, just call uncommit_memory(). This only
3068 // affects the main/primordial thread, but guard against future OS changes
3069 // It's safe to always unmap guard pages for primordial thread because we
3070 // always place it right after end of the mapped region
3071 
3072 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3073   uintptr_t stack_extent, stack_base;
3074 
3075   if (os::is_primordial_thread()) {
3076     return ::munmap(addr, size) == 0;
3077   }
3078 
3079   return os::uncommit_memory(addr, size);
3080 }
3081 
3082 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3083 // at 'requested_addr'. If there are existing memory mappings at the same
3084 // location, however, they will be overwritten. If 'fixed' is false,
3085 // 'requested_addr' is only treated as a hint, the return value may or
3086 // may not start from the requested address. Unlike Linux mmap(), this
3087 // function returns NULL to indicate failure.
3088 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3089   char * addr;
3090   int flags;
3091 
3092   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3093   if (fixed) {
3094     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3095     flags |= MAP_FIXED;
3096   }
3097 
3098   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3099   // touch an uncommitted page. Otherwise, the read/write might
3100   // succeed if we have enough swap space to back the physical page.
3101   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3102                        flags, -1, 0);
3103 
3104   return addr == MAP_FAILED ? NULL : addr;
3105 }
3106 
3107 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3108 //   (req_addr != NULL) or with a given alignment.
3109 //  - bytes shall be a multiple of alignment.
3110 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3111 //  - alignment sets the alignment at which memory shall be allocated.
3112 //     It must be a multiple of allocation granularity.
3113 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3114 //  req_addr or NULL.
3115 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3116 
3117   size_t extra_size = bytes;
3118   if (req_addr == NULL && alignment > 0) {
3119     extra_size += alignment;
3120   }
3121 
3122   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3123     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3124     -1, 0);
3125   if (start == MAP_FAILED) {
3126     start = NULL;
3127   } else {
3128     if (req_addr != NULL) {
3129       if (start != req_addr) {
3130         ::munmap(start, extra_size);
3131         start = NULL;
3132       }
3133     } else {
3134       char* const start_aligned = align_up(start, alignment);
3135       char* const end_aligned = start_aligned + bytes;
3136       char* const end = start + extra_size;
3137       if (start_aligned > start) {
3138         ::munmap(start, start_aligned - start);
3139       }
3140       if (end_aligned < end) {
3141         ::munmap(end_aligned, end - end_aligned);
3142       }
3143       start = start_aligned;
3144     }
3145   }
3146   return start;
3147 }
3148 
3149 static int anon_munmap(char * addr, size_t size) {
3150   return ::munmap(addr, size) == 0;
3151 }
3152 
3153 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3154                             size_t alignment_hint) {
3155   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3156 }
3157 
3158 bool os::pd_release_memory(char* addr, size_t size) {
3159   return anon_munmap(addr, size);
3160 }
3161 
3162 static bool linux_mprotect(char* addr, size_t size, int prot) {
3163   // Linux wants the mprotect address argument to be page aligned.
3164   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3165 
3166   // According to SUSv3, mprotect() should only be used with mappings
3167   // established by mmap(), and mmap() always maps whole pages. Unaligned
3168   // 'addr' likely indicates problem in the VM (e.g. trying to change
3169   // protection of malloc'ed or statically allocated memory). Check the
3170   // caller if you hit this assert.
3171   assert(addr == bottom, "sanity check");
3172 
3173   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3174   return ::mprotect(bottom, size, prot) == 0;
3175 }
3176 
3177 // Set protections specified
3178 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3179                         bool is_committed) {
3180   unsigned int p = 0;
3181   switch (prot) {
3182   case MEM_PROT_NONE: p = PROT_NONE; break;
3183   case MEM_PROT_READ: p = PROT_READ; break;
3184   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3185   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3186   default:
3187     ShouldNotReachHere();
3188   }
3189   // is_committed is unused.
3190   return linux_mprotect(addr, bytes, p);
3191 }
3192 
3193 bool os::guard_memory(char* addr, size_t size) {
3194   return linux_mprotect(addr, size, PROT_NONE);
3195 }
3196 
3197 bool os::unguard_memory(char* addr, size_t size) {
3198   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3199 }
3200 
3201 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3202                                                     size_t page_size) {
3203   bool result = false;
3204   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3205                  MAP_ANONYMOUS|MAP_PRIVATE,
3206                  -1, 0);
3207   if (p != MAP_FAILED) {
3208     void *aligned_p = align_up(p, page_size);
3209 
3210     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3211 
3212     munmap(p, page_size * 2);
3213   }
3214 
3215   if (warn && !result) {
3216     warning("TransparentHugePages is not supported by the operating system.");
3217   }
3218 
3219   return result;
3220 }
3221 
3222 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3223   bool result = false;
3224   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3225                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3226                  -1, 0);
3227 
3228   if (p != MAP_FAILED) {
3229     // We don't know if this really is a huge page or not.
3230     FILE *fp = fopen("/proc/self/maps", "r");
3231     if (fp) {
3232       while (!feof(fp)) {
3233         char chars[257];
3234         long x = 0;
3235         if (fgets(chars, sizeof(chars), fp)) {
3236           if (sscanf(chars, "%lx-%*x", &x) == 1
3237               && x == (long)p) {
3238             if (strstr (chars, "hugepage")) {
3239               result = true;
3240               break;
3241             }
3242           }
3243         }
3244       }
3245       fclose(fp);
3246     }
3247     munmap(p, page_size);
3248   }
3249 
3250   if (warn && !result) {
3251     warning("HugeTLBFS is not supported by the operating system.");
3252   }
3253 
3254   return result;
3255 }
3256 
3257 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3258 //
3259 // From the coredump_filter documentation:
3260 //
3261 // - (bit 0) anonymous private memory
3262 // - (bit 1) anonymous shared memory
3263 // - (bit 2) file-backed private memory
3264 // - (bit 3) file-backed shared memory
3265 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3266 //           effective only if the bit 2 is cleared)
3267 // - (bit 5) hugetlb private memory
3268 // - (bit 6) hugetlb shared memory
3269 //
3270 static void set_coredump_filter(void) {
3271   FILE *f;
3272   long cdm;
3273 
3274   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3275     return;
3276   }
3277 
3278   if (fscanf(f, "%lx", &cdm) != 1) {
3279     fclose(f);
3280     return;
3281   }
3282 
3283   rewind(f);
3284 
3285   if ((cdm & LARGEPAGES_BIT) == 0) {
3286     cdm |= LARGEPAGES_BIT;
3287     fprintf(f, "%#lx", cdm);
3288   }
3289 
3290   fclose(f);
3291 }
3292 
3293 // Large page support
3294 
3295 static size_t _large_page_size = 0;
3296 
3297 size_t os::Linux::find_large_page_size() {
3298   size_t large_page_size = 0;
3299 
3300   // large_page_size on Linux is used to round up heap size. x86 uses either
3301   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3302   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3303   // page as large as 256M.
3304   //
3305   // Here we try to figure out page size by parsing /proc/meminfo and looking
3306   // for a line with the following format:
3307   //    Hugepagesize:     2048 kB
3308   //
3309   // If we can't determine the value (e.g. /proc is not mounted, or the text
3310   // format has been changed), we'll use the largest page size supported by
3311   // the processor.
3312 
3313 #ifndef ZERO
3314   large_page_size =
3315     AARCH64_ONLY(2 * M)
3316     AMD64_ONLY(2 * M)
3317     ARM32_ONLY(2 * M)
3318     IA32_ONLY(4 * M)
3319     IA64_ONLY(256 * M)
3320     PPC_ONLY(4 * M)
3321     S390_ONLY(1 * M)
3322     SPARC_ONLY(4 * M);
3323 #endif // ZERO
3324 
3325   FILE *fp = fopen("/proc/meminfo", "r");
3326   if (fp) {
3327     while (!feof(fp)) {
3328       int x = 0;
3329       char buf[16];
3330       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3331         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3332           large_page_size = x * K;
3333           break;
3334         }
3335       } else {
3336         // skip to next line
3337         for (;;) {
3338           int ch = fgetc(fp);
3339           if (ch == EOF || ch == (int)'\n') break;
3340         }
3341       }
3342     }
3343     fclose(fp);
3344   }
3345 
3346   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3347     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3348             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3349             proper_unit_for_byte_size(large_page_size));
3350   }
3351 
3352   return large_page_size;
3353 }
3354 
3355 size_t os::Linux::setup_large_page_size() {
3356   _large_page_size = Linux::find_large_page_size();
3357   const size_t default_page_size = (size_t)Linux::page_size();
3358   if (_large_page_size > default_page_size) {
3359     _page_sizes[0] = _large_page_size;
3360     _page_sizes[1] = default_page_size;
3361     _page_sizes[2] = 0;
3362   }
3363 
3364   return _large_page_size;
3365 }
3366 
3367 bool os::Linux::setup_large_page_type(size_t page_size) {
3368   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3369       FLAG_IS_DEFAULT(UseSHM) &&
3370       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3371 
3372     // The type of large pages has not been specified by the user.
3373 
3374     // Try UseHugeTLBFS and then UseSHM.
3375     UseHugeTLBFS = UseSHM = true;
3376 
3377     // Don't try UseTransparentHugePages since there are known
3378     // performance issues with it turned on. This might change in the future.
3379     UseTransparentHugePages = false;
3380   }
3381 
3382   if (UseTransparentHugePages) {
3383     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3384     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3385       UseHugeTLBFS = false;
3386       UseSHM = false;
3387       return true;
3388     }
3389     UseTransparentHugePages = false;
3390   }
3391 
3392   if (UseHugeTLBFS) {
3393     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3394     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3395       UseSHM = false;
3396       return true;
3397     }
3398     UseHugeTLBFS = false;
3399   }
3400 
3401   return UseSHM;
3402 }
3403 
3404 void os::large_page_init() {
3405   if (!UseLargePages &&
3406       !UseTransparentHugePages &&
3407       !UseHugeTLBFS &&
3408       !UseSHM) {
3409     // Not using large pages.
3410     return;
3411   }
3412 
3413   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3414     // The user explicitly turned off large pages.
3415     // Ignore the rest of the large pages flags.
3416     UseTransparentHugePages = false;
3417     UseHugeTLBFS = false;
3418     UseSHM = false;
3419     return;
3420   }
3421 
3422   size_t large_page_size = Linux::setup_large_page_size();
3423   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3424 
3425   set_coredump_filter();
3426 }
3427 
3428 #ifndef SHM_HUGETLB
3429   #define SHM_HUGETLB 04000
3430 #endif
3431 
3432 #define shm_warning_format(format, ...)              \
3433   do {                                               \
3434     if (UseLargePages &&                             \
3435         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3436          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3437          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3438       warning(format, __VA_ARGS__);                  \
3439     }                                                \
3440   } while (0)
3441 
3442 #define shm_warning(str) shm_warning_format("%s", str)
3443 
3444 #define shm_warning_with_errno(str)                \
3445   do {                                             \
3446     int err = errno;                               \
3447     shm_warning_format(str " (error = %d)", err);  \
3448   } while (0)
3449 
3450 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3451   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3452 
3453   if (!is_aligned(alignment, SHMLBA)) {
3454     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3455     return NULL;
3456   }
3457 
3458   // To ensure that we get 'alignment' aligned memory from shmat,
3459   // we pre-reserve aligned virtual memory and then attach to that.
3460 
3461   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3462   if (pre_reserved_addr == NULL) {
3463     // Couldn't pre-reserve aligned memory.
3464     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3465     return NULL;
3466   }
3467 
3468   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3469   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3470 
3471   if ((intptr_t)addr == -1) {
3472     int err = errno;
3473     shm_warning_with_errno("Failed to attach shared memory.");
3474 
3475     assert(err != EACCES, "Unexpected error");
3476     assert(err != EIDRM,  "Unexpected error");
3477     assert(err != EINVAL, "Unexpected error");
3478 
3479     // Since we don't know if the kernel unmapped the pre-reserved memory area
3480     // we can't unmap it, since that would potentially unmap memory that was
3481     // mapped from other threads.
3482     return NULL;
3483   }
3484 
3485   return addr;
3486 }
3487 
3488 static char* shmat_at_address(int shmid, char* req_addr) {
3489   if (!is_aligned(req_addr, SHMLBA)) {
3490     assert(false, "Requested address needs to be SHMLBA aligned");
3491     return NULL;
3492   }
3493 
3494   char* addr = (char*)shmat(shmid, req_addr, 0);
3495 
3496   if ((intptr_t)addr == -1) {
3497     shm_warning_with_errno("Failed to attach shared memory.");
3498     return NULL;
3499   }
3500 
3501   return addr;
3502 }
3503 
3504 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3505   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3506   if (req_addr != NULL) {
3507     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3508     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3509     return shmat_at_address(shmid, req_addr);
3510   }
3511 
3512   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3513   // return large page size aligned memory addresses when req_addr == NULL.
3514   // However, if the alignment is larger than the large page size, we have
3515   // to manually ensure that the memory returned is 'alignment' aligned.
3516   if (alignment > os::large_page_size()) {
3517     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3518     return shmat_with_alignment(shmid, bytes, alignment);
3519   } else {
3520     return shmat_at_address(shmid, NULL);
3521   }
3522 }
3523 
3524 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3525                                             char* req_addr, bool exec) {
3526   // "exec" is passed in but not used.  Creating the shared image for
3527   // the code cache doesn't have an SHM_X executable permission to check.
3528   assert(UseLargePages && UseSHM, "only for SHM large pages");
3529   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3530   assert(is_aligned(req_addr, alignment), "Unaligned address");
3531 
3532   if (!is_aligned(bytes, os::large_page_size())) {
3533     return NULL; // Fallback to small pages.
3534   }
3535 
3536   // Create a large shared memory region to attach to based on size.
3537   // Currently, size is the total size of the heap.
3538   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3539   if (shmid == -1) {
3540     // Possible reasons for shmget failure:
3541     // 1. shmmax is too small for Java heap.
3542     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3543     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3544     // 2. not enough large page memory.
3545     //    > check available large pages: cat /proc/meminfo
3546     //    > increase amount of large pages:
3547     //          echo new_value > /proc/sys/vm/nr_hugepages
3548     //      Note 1: different Linux may use different name for this property,
3549     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3550     //      Note 2: it's possible there's enough physical memory available but
3551     //            they are so fragmented after a long run that they can't
3552     //            coalesce into large pages. Try to reserve large pages when
3553     //            the system is still "fresh".
3554     shm_warning_with_errno("Failed to reserve shared memory.");
3555     return NULL;
3556   }
3557 
3558   // Attach to the region.
3559   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3560 
3561   // Remove shmid. If shmat() is successful, the actual shared memory segment
3562   // will be deleted when it's detached by shmdt() or when the process
3563   // terminates. If shmat() is not successful this will remove the shared
3564   // segment immediately.
3565   shmctl(shmid, IPC_RMID, NULL);
3566 
3567   return addr;
3568 }
3569 
3570 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3571                                         int error) {
3572   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3573 
3574   bool warn_on_failure = UseLargePages &&
3575       (!FLAG_IS_DEFAULT(UseLargePages) ||
3576        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3577        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3578 
3579   if (warn_on_failure) {
3580     char msg[128];
3581     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3582                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3583     warning("%s", msg);
3584   }
3585 }
3586 
3587 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3588                                                         char* req_addr,
3589                                                         bool exec) {
3590   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3591   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3592   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3593 
3594   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3595   char* addr = (char*)::mmap(req_addr, bytes, prot,
3596                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3597                              -1, 0);
3598 
3599   if (addr == MAP_FAILED) {
3600     warn_on_large_pages_failure(req_addr, bytes, errno);
3601     return NULL;
3602   }
3603 
3604   assert(is_aligned(addr, os::large_page_size()), "Must be");
3605 
3606   return addr;
3607 }
3608 
3609 // Reserve memory using mmap(MAP_HUGETLB).
3610 //  - bytes shall be a multiple of alignment.
3611 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3612 //  - alignment sets the alignment at which memory shall be allocated.
3613 //     It must be a multiple of allocation granularity.
3614 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3615 //  req_addr or NULL.
3616 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3617                                                          size_t alignment,
3618                                                          char* req_addr,
3619                                                          bool exec) {
3620   size_t large_page_size = os::large_page_size();
3621   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3622 
3623   assert(is_aligned(req_addr, alignment), "Must be");
3624   assert(is_aligned(bytes, alignment), "Must be");
3625 
3626   // First reserve - but not commit - the address range in small pages.
3627   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3628 
3629   if (start == NULL) {
3630     return NULL;
3631   }
3632 
3633   assert(is_aligned(start, alignment), "Must be");
3634 
3635   char* end = start + bytes;
3636 
3637   // Find the regions of the allocated chunk that can be promoted to large pages.
3638   char* lp_start = align_up(start, large_page_size);
3639   char* lp_end   = align_down(end, large_page_size);
3640 
3641   size_t lp_bytes = lp_end - lp_start;
3642 
3643   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3644 
3645   if (lp_bytes == 0) {
3646     // The mapped region doesn't even span the start and the end of a large page.
3647     // Fall back to allocate a non-special area.
3648     ::munmap(start, end - start);
3649     return NULL;
3650   }
3651 
3652   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3653 
3654   void* result;
3655 
3656   // Commit small-paged leading area.
3657   if (start != lp_start) {
3658     result = ::mmap(start, lp_start - start, prot,
3659                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3660                     -1, 0);
3661     if (result == MAP_FAILED) {
3662       ::munmap(lp_start, end - lp_start);
3663       return NULL;
3664     }
3665   }
3666 
3667   // Commit large-paged area.
3668   result = ::mmap(lp_start, lp_bytes, prot,
3669                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3670                   -1, 0);
3671   if (result == MAP_FAILED) {
3672     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3673     // If the mmap above fails, the large pages region will be unmapped and we
3674     // have regions before and after with small pages. Release these regions.
3675     //
3676     // |  mapped  |  unmapped  |  mapped  |
3677     // ^          ^            ^          ^
3678     // start      lp_start     lp_end     end
3679     //
3680     ::munmap(start, lp_start - start);
3681     ::munmap(lp_end, end - lp_end);
3682     return NULL;
3683   }
3684 
3685   // Commit small-paged trailing area.
3686   if (lp_end != end) {
3687     result = ::mmap(lp_end, end - lp_end, prot,
3688                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3689                     -1, 0);
3690     if (result == MAP_FAILED) {
3691       ::munmap(start, lp_end - start);
3692       return NULL;
3693     }
3694   }
3695 
3696   return start;
3697 }
3698 
3699 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3700                                                    size_t alignment,
3701                                                    char* req_addr,
3702                                                    bool exec) {
3703   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3704   assert(is_aligned(req_addr, alignment), "Must be");
3705   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3706   assert(is_power_of_2(os::large_page_size()), "Must be");
3707   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3708 
3709   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3710     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3711   } else {
3712     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3713   }
3714 }
3715 
3716 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3717                                  char* req_addr, bool exec) {
3718   assert(UseLargePages, "only for large pages");
3719 
3720   char* addr;
3721   if (UseSHM) {
3722     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3723   } else {
3724     assert(UseHugeTLBFS, "must be");
3725     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3726   }
3727 
3728   if (addr != NULL) {
3729     if (UseNUMAInterleaving) {
3730       numa_make_global(addr, bytes);
3731     }
3732 
3733     // The memory is committed
3734     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3735   }
3736 
3737   return addr;
3738 }
3739 
3740 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3741   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3742   return shmdt(base) == 0;
3743 }
3744 
3745 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3746   return pd_release_memory(base, bytes);
3747 }
3748 
3749 bool os::release_memory_special(char* base, size_t bytes) {
3750   bool res;
3751   if (MemTracker::tracking_level() > NMT_minimal) {
3752     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3753     res = os::Linux::release_memory_special_impl(base, bytes);
3754     if (res) {
3755       tkr.record((address)base, bytes);
3756     }
3757 
3758   } else {
3759     res = os::Linux::release_memory_special_impl(base, bytes);
3760   }
3761   return res;
3762 }
3763 
3764 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3765   assert(UseLargePages, "only for large pages");
3766   bool res;
3767 
3768   if (UseSHM) {
3769     res = os::Linux::release_memory_special_shm(base, bytes);
3770   } else {
3771     assert(UseHugeTLBFS, "must be");
3772     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3773   }
3774   return res;
3775 }
3776 
3777 size_t os::large_page_size() {
3778   return _large_page_size;
3779 }
3780 
3781 // With SysV SHM the entire memory region must be allocated as shared
3782 // memory.
3783 // HugeTLBFS allows application to commit large page memory on demand.
3784 // However, when committing memory with HugeTLBFS fails, the region
3785 // that was supposed to be committed will lose the old reservation
3786 // and allow other threads to steal that memory region. Because of this
3787 // behavior we can't commit HugeTLBFS memory.
3788 bool os::can_commit_large_page_memory() {
3789   return UseTransparentHugePages;
3790 }
3791 
3792 bool os::can_execute_large_page_memory() {
3793   return UseTransparentHugePages || UseHugeTLBFS;
3794 }
3795 
3796 // Reserve memory at an arbitrary address, only if that area is
3797 // available (and not reserved for something else).
3798 
3799 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3800   const int max_tries = 10;
3801   char* base[max_tries];
3802   size_t size[max_tries];
3803   const size_t gap = 0x000000;
3804 
3805   // Assert only that the size is a multiple of the page size, since
3806   // that's all that mmap requires, and since that's all we really know
3807   // about at this low abstraction level.  If we need higher alignment,
3808   // we can either pass an alignment to this method or verify alignment
3809   // in one of the methods further up the call chain.  See bug 5044738.
3810   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3811 
3812   // Repeatedly allocate blocks until the block is allocated at the
3813   // right spot.
3814 
3815   // Linux mmap allows caller to pass an address as hint; give it a try first,
3816   // if kernel honors the hint then we can return immediately.
3817   char * addr = anon_mmap(requested_addr, bytes, false);
3818   if (addr == requested_addr) {
3819     return requested_addr;
3820   }
3821 
3822   if (addr != NULL) {
3823     // mmap() is successful but it fails to reserve at the requested address
3824     anon_munmap(addr, bytes);
3825   }
3826 
3827   int i;
3828   for (i = 0; i < max_tries; ++i) {
3829     base[i] = reserve_memory(bytes);
3830 
3831     if (base[i] != NULL) {
3832       // Is this the block we wanted?
3833       if (base[i] == requested_addr) {
3834         size[i] = bytes;
3835         break;
3836       }
3837 
3838       // Does this overlap the block we wanted? Give back the overlapped
3839       // parts and try again.
3840 
3841       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3842       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3843         unmap_memory(base[i], top_overlap);
3844         base[i] += top_overlap;
3845         size[i] = bytes - top_overlap;
3846       } else {
3847         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3848         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3849           unmap_memory(requested_addr, bottom_overlap);
3850           size[i] = bytes - bottom_overlap;
3851         } else {
3852           size[i] = bytes;
3853         }
3854       }
3855     }
3856   }
3857 
3858   // Give back the unused reserved pieces.
3859 
3860   for (int j = 0; j < i; ++j) {
3861     if (base[j] != NULL) {
3862       unmap_memory(base[j], size[j]);
3863     }
3864   }
3865 
3866   if (i < max_tries) {
3867     return requested_addr;
3868   } else {
3869     return NULL;
3870   }
3871 }
3872 
3873 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3874   return ::read(fd, buf, nBytes);
3875 }
3876 
3877 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3878   return ::pread(fd, buf, nBytes, offset);
3879 }
3880 
3881 // Short sleep, direct OS call.
3882 //
3883 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3884 // sched_yield(2) will actually give up the CPU:
3885 //
3886 //   * Alone on this pariticular CPU, keeps running.
3887 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3888 //     (pre 2.6.39).
3889 //
3890 // So calling this with 0 is an alternative.
3891 //
3892 void os::naked_short_sleep(jlong ms) {
3893   struct timespec req;
3894 
3895   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3896   req.tv_sec = 0;
3897   if (ms > 0) {
3898     req.tv_nsec = (ms % 1000) * 1000000;
3899   } else {
3900     req.tv_nsec = 1;
3901   }
3902 
3903   nanosleep(&req, NULL);
3904 
3905   return;
3906 }
3907 
3908 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3909 void os::infinite_sleep() {
3910   while (true) {    // sleep forever ...
3911     ::sleep(100);   // ... 100 seconds at a time
3912   }
3913 }
3914 
3915 // Used to convert frequent JVM_Yield() to nops
3916 bool os::dont_yield() {
3917   return DontYieldALot;
3918 }
3919 
3920 void os::naked_yield() {
3921   sched_yield();
3922 }
3923 
3924 ////////////////////////////////////////////////////////////////////////////////
3925 // thread priority support
3926 
3927 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3928 // only supports dynamic priority, static priority must be zero. For real-time
3929 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3930 // However, for large multi-threaded applications, SCHED_RR is not only slower
3931 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3932 // of 5 runs - Sep 2005).
3933 //
3934 // The following code actually changes the niceness of kernel-thread/LWP. It
3935 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3936 // not the entire user process, and user level threads are 1:1 mapped to kernel
3937 // threads. It has always been the case, but could change in the future. For
3938 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3939 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3940 
3941 int os::java_to_os_priority[CriticalPriority + 1] = {
3942   19,              // 0 Entry should never be used
3943 
3944    4,              // 1 MinPriority
3945    3,              // 2
3946    2,              // 3
3947 
3948    1,              // 4
3949    0,              // 5 NormPriority
3950   -1,              // 6
3951 
3952   -2,              // 7
3953   -3,              // 8
3954   -4,              // 9 NearMaxPriority
3955 
3956   -5,              // 10 MaxPriority
3957 
3958   -5               // 11 CriticalPriority
3959 };
3960 
3961 static int prio_init() {
3962   if (ThreadPriorityPolicy == 1) {
3963     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3964     // if effective uid is not root. Perhaps, a more elegant way of doing
3965     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3966     if (geteuid() != 0) {
3967       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3968         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3969       }
3970       ThreadPriorityPolicy = 0;
3971     }
3972   }
3973   if (UseCriticalJavaThreadPriority) {
3974     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3975   }
3976   return 0;
3977 }
3978 
3979 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3980   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3981 
3982   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3983   return (ret == 0) ? OS_OK : OS_ERR;
3984 }
3985 
3986 OSReturn os::get_native_priority(const Thread* const thread,
3987                                  int *priority_ptr) {
3988   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3989     *priority_ptr = java_to_os_priority[NormPriority];
3990     return OS_OK;
3991   }
3992 
3993   errno = 0;
3994   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3995   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3996 }
3997 
3998 // Hint to the underlying OS that a task switch would not be good.
3999 // Void return because it's a hint and can fail.
4000 void os::hint_no_preempt() {}
4001 
4002 ////////////////////////////////////////////////////////////////////////////////
4003 // suspend/resume support
4004 
4005 //  The low-level signal-based suspend/resume support is a remnant from the
4006 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4007 //  within hotspot. Currently used by JFR's OSThreadSampler
4008 //
4009 //  The remaining code is greatly simplified from the more general suspension
4010 //  code that used to be used.
4011 //
4012 //  The protocol is quite simple:
4013 //  - suspend:
4014 //      - sends a signal to the target thread
4015 //      - polls the suspend state of the osthread using a yield loop
4016 //      - target thread signal handler (SR_handler) sets suspend state
4017 //        and blocks in sigsuspend until continued
4018 //  - resume:
4019 //      - sets target osthread state to continue
4020 //      - sends signal to end the sigsuspend loop in the SR_handler
4021 //
4022 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4023 //  but is checked for NULL in SR_handler as a thread termination indicator.
4024 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4025 //
4026 //  Note that resume_clear_context() and suspend_save_context() are needed
4027 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4028 //  which in part is used by:
4029 //    - Forte Analyzer: AsyncGetCallTrace()
4030 //    - StackBanging: get_frame_at_stack_banging_point()
4031 
4032 static void resume_clear_context(OSThread *osthread) {
4033   osthread->set_ucontext(NULL);
4034   osthread->set_siginfo(NULL);
4035 }
4036 
4037 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4038                                  ucontext_t* context) {
4039   osthread->set_ucontext(context);
4040   osthread->set_siginfo(siginfo);
4041 }
4042 
4043 // Handler function invoked when a thread's execution is suspended or
4044 // resumed. We have to be careful that only async-safe functions are
4045 // called here (Note: most pthread functions are not async safe and
4046 // should be avoided.)
4047 //
4048 // Note: sigwait() is a more natural fit than sigsuspend() from an
4049 // interface point of view, but sigwait() prevents the signal hander
4050 // from being run. libpthread would get very confused by not having
4051 // its signal handlers run and prevents sigwait()'s use with the
4052 // mutex granting granting signal.
4053 //
4054 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4055 //
4056 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4057   // Save and restore errno to avoid confusing native code with EINTR
4058   // after sigsuspend.
4059   int old_errno = errno;
4060 
4061   Thread* thread = Thread::current_or_null_safe();
4062   assert(thread != NULL, "Missing current thread in SR_handler");
4063 
4064   // On some systems we have seen signal delivery get "stuck" until the signal
4065   // mask is changed as part of thread termination. Check that the current thread
4066   // has not already terminated (via SR_lock()) - else the following assertion
4067   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4068   // destructor has completed.
4069 
4070   if (thread->SR_lock() == NULL) {
4071     return;
4072   }
4073 
4074   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4075 
4076   OSThread* osthread = thread->osthread();
4077 
4078   os::SuspendResume::State current = osthread->sr.state();
4079   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4080     suspend_save_context(osthread, siginfo, context);
4081 
4082     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4083     os::SuspendResume::State state = osthread->sr.suspended();
4084     if (state == os::SuspendResume::SR_SUSPENDED) {
4085       sigset_t suspend_set;  // signals for sigsuspend()
4086       sigemptyset(&suspend_set);
4087       // get current set of blocked signals and unblock resume signal
4088       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4089       sigdelset(&suspend_set, SR_signum);
4090 
4091       sr_semaphore.signal();
4092       // wait here until we are resumed
4093       while (1) {
4094         sigsuspend(&suspend_set);
4095 
4096         os::SuspendResume::State result = osthread->sr.running();
4097         if (result == os::SuspendResume::SR_RUNNING) {
4098           sr_semaphore.signal();
4099           break;
4100         }
4101       }
4102 
4103     } else if (state == os::SuspendResume::SR_RUNNING) {
4104       // request was cancelled, continue
4105     } else {
4106       ShouldNotReachHere();
4107     }
4108 
4109     resume_clear_context(osthread);
4110   } else if (current == os::SuspendResume::SR_RUNNING) {
4111     // request was cancelled, continue
4112   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4113     // ignore
4114   } else {
4115     // ignore
4116   }
4117 
4118   errno = old_errno;
4119 }
4120 
4121 static int SR_initialize() {
4122   struct sigaction act;
4123   char *s;
4124 
4125   // Get signal number to use for suspend/resume
4126   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4127     int sig = ::strtol(s, 0, 10);
4128     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4129         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4130       SR_signum = sig;
4131     } else {
4132       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4133               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4134     }
4135   }
4136 
4137   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4138          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4139 
4140   sigemptyset(&SR_sigset);
4141   sigaddset(&SR_sigset, SR_signum);
4142 
4143   // Set up signal handler for suspend/resume
4144   act.sa_flags = SA_RESTART|SA_SIGINFO;
4145   act.sa_handler = (void (*)(int)) SR_handler;
4146 
4147   // SR_signum is blocked by default.
4148   // 4528190 - We also need to block pthread restart signal (32 on all
4149   // supported Linux platforms). Note that LinuxThreads need to block
4150   // this signal for all threads to work properly. So we don't have
4151   // to use hard-coded signal number when setting up the mask.
4152   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4153 
4154   if (sigaction(SR_signum, &act, 0) == -1) {
4155     return -1;
4156   }
4157 
4158   // Save signal flag
4159   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4160   return 0;
4161 }
4162 
4163 static int sr_notify(OSThread* osthread) {
4164   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4165   assert_status(status == 0, status, "pthread_kill");
4166   return status;
4167 }
4168 
4169 // "Randomly" selected value for how long we want to spin
4170 // before bailing out on suspending a thread, also how often
4171 // we send a signal to a thread we want to resume
4172 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4173 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4174 
4175 // returns true on success and false on error - really an error is fatal
4176 // but this seems the normal response to library errors
4177 static bool do_suspend(OSThread* osthread) {
4178   assert(osthread->sr.is_running(), "thread should be running");
4179   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4180 
4181   // mark as suspended and send signal
4182   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4183     // failed to switch, state wasn't running?
4184     ShouldNotReachHere();
4185     return false;
4186   }
4187 
4188   if (sr_notify(osthread) != 0) {
4189     ShouldNotReachHere();
4190   }
4191 
4192   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4193   while (true) {
4194     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4195       break;
4196     } else {
4197       // timeout
4198       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4199       if (cancelled == os::SuspendResume::SR_RUNNING) {
4200         return false;
4201       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4202         // make sure that we consume the signal on the semaphore as well
4203         sr_semaphore.wait();
4204         break;
4205       } else {
4206         ShouldNotReachHere();
4207         return false;
4208       }
4209     }
4210   }
4211 
4212   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4213   return true;
4214 }
4215 
4216 static void do_resume(OSThread* osthread) {
4217   assert(osthread->sr.is_suspended(), "thread should be suspended");
4218   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4219 
4220   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4221     // failed to switch to WAKEUP_REQUEST
4222     ShouldNotReachHere();
4223     return;
4224   }
4225 
4226   while (true) {
4227     if (sr_notify(osthread) == 0) {
4228       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4229         if (osthread->sr.is_running()) {
4230           return;
4231         }
4232       }
4233     } else {
4234       ShouldNotReachHere();
4235     }
4236   }
4237 
4238   guarantee(osthread->sr.is_running(), "Must be running!");
4239 }
4240 
4241 ///////////////////////////////////////////////////////////////////////////////////
4242 // signal handling (except suspend/resume)
4243 
4244 // This routine may be used by user applications as a "hook" to catch signals.
4245 // The user-defined signal handler must pass unrecognized signals to this
4246 // routine, and if it returns true (non-zero), then the signal handler must
4247 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4248 // routine will never retun false (zero), but instead will execute a VM panic
4249 // routine kill the process.
4250 //
4251 // If this routine returns false, it is OK to call it again.  This allows
4252 // the user-defined signal handler to perform checks either before or after
4253 // the VM performs its own checks.  Naturally, the user code would be making
4254 // a serious error if it tried to handle an exception (such as a null check
4255 // or breakpoint) that the VM was generating for its own correct operation.
4256 //
4257 // This routine may recognize any of the following kinds of signals:
4258 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4259 // It should be consulted by handlers for any of those signals.
4260 //
4261 // The caller of this routine must pass in the three arguments supplied
4262 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4263 // field of the structure passed to sigaction().  This routine assumes that
4264 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4265 //
4266 // Note that the VM will print warnings if it detects conflicting signal
4267 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4268 //
4269 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4270                                                  siginfo_t* siginfo,
4271                                                  void* ucontext,
4272                                                  int abort_if_unrecognized);
4273 
4274 void signalHandler(int sig, siginfo_t* info, void* uc) {
4275   assert(info != NULL && uc != NULL, "it must be old kernel");
4276   int orig_errno = errno;  // Preserve errno value over signal handler.
4277   JVM_handle_linux_signal(sig, info, uc, true);
4278   errno = orig_errno;
4279 }
4280 
4281 
4282 // This boolean allows users to forward their own non-matching signals
4283 // to JVM_handle_linux_signal, harmlessly.
4284 bool os::Linux::signal_handlers_are_installed = false;
4285 
4286 // For signal-chaining
4287 struct sigaction sigact[NSIG];
4288 uint64_t sigs = 0;
4289 #if (64 < NSIG-1)
4290 #error "Not all signals can be encoded in sigs. Adapt its type!"
4291 #endif
4292 bool os::Linux::libjsig_is_loaded = false;
4293 typedef struct sigaction *(*get_signal_t)(int);
4294 get_signal_t os::Linux::get_signal_action = NULL;
4295 
4296 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4297   struct sigaction *actp = NULL;
4298 
4299   if (libjsig_is_loaded) {
4300     // Retrieve the old signal handler from libjsig
4301     actp = (*get_signal_action)(sig);
4302   }
4303   if (actp == NULL) {
4304     // Retrieve the preinstalled signal handler from jvm
4305     actp = get_preinstalled_handler(sig);
4306   }
4307 
4308   return actp;
4309 }
4310 
4311 static bool call_chained_handler(struct sigaction *actp, int sig,
4312                                  siginfo_t *siginfo, void *context) {
4313   // Call the old signal handler
4314   if (actp->sa_handler == SIG_DFL) {
4315     // It's more reasonable to let jvm treat it as an unexpected exception
4316     // instead of taking the default action.
4317     return false;
4318   } else if (actp->sa_handler != SIG_IGN) {
4319     if ((actp->sa_flags & SA_NODEFER) == 0) {
4320       // automaticlly block the signal
4321       sigaddset(&(actp->sa_mask), sig);
4322     }
4323 
4324     sa_handler_t hand = NULL;
4325     sa_sigaction_t sa = NULL;
4326     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4327     // retrieve the chained handler
4328     if (siginfo_flag_set) {
4329       sa = actp->sa_sigaction;
4330     } else {
4331       hand = actp->sa_handler;
4332     }
4333 
4334     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4335       actp->sa_handler = SIG_DFL;
4336     }
4337 
4338     // try to honor the signal mask
4339     sigset_t oset;
4340     sigemptyset(&oset);
4341     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4342 
4343     // call into the chained handler
4344     if (siginfo_flag_set) {
4345       (*sa)(sig, siginfo, context);
4346     } else {
4347       (*hand)(sig);
4348     }
4349 
4350     // restore the signal mask
4351     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4352   }
4353   // Tell jvm's signal handler the signal is taken care of.
4354   return true;
4355 }
4356 
4357 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4358   bool chained = false;
4359   // signal-chaining
4360   if (UseSignalChaining) {
4361     struct sigaction *actp = get_chained_signal_action(sig);
4362     if (actp != NULL) {
4363       chained = call_chained_handler(actp, sig, siginfo, context);
4364     }
4365   }
4366   return chained;
4367 }
4368 
4369 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4370   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4371     return &sigact[sig];
4372   }
4373   return NULL;
4374 }
4375 
4376 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4377   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4378   sigact[sig] = oldAct;
4379   sigs |= (uint64_t)1 << (sig-1);
4380 }
4381 
4382 // for diagnostic
4383 int sigflags[NSIG];
4384 
4385 int os::Linux::get_our_sigflags(int sig) {
4386   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4387   return sigflags[sig];
4388 }
4389 
4390 void os::Linux::set_our_sigflags(int sig, int flags) {
4391   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4392   if (sig > 0 && sig < NSIG) {
4393     sigflags[sig] = flags;
4394   }
4395 }
4396 
4397 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4398   // Check for overwrite.
4399   struct sigaction oldAct;
4400   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4401 
4402   void* oldhand = oldAct.sa_sigaction
4403                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4404                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4405   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4406       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4407       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4408     if (AllowUserSignalHandlers || !set_installed) {
4409       // Do not overwrite; user takes responsibility to forward to us.
4410       return;
4411     } else if (UseSignalChaining) {
4412       // save the old handler in jvm
4413       save_preinstalled_handler(sig, oldAct);
4414       // libjsig also interposes the sigaction() call below and saves the
4415       // old sigaction on it own.
4416     } else {
4417       fatal("Encountered unexpected pre-existing sigaction handler "
4418             "%#lx for signal %d.", (long)oldhand, sig);
4419     }
4420   }
4421 
4422   struct sigaction sigAct;
4423   sigfillset(&(sigAct.sa_mask));
4424   sigAct.sa_handler = SIG_DFL;
4425   if (!set_installed) {
4426     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4427   } else {
4428     sigAct.sa_sigaction = signalHandler;
4429     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4430   }
4431   // Save flags, which are set by ours
4432   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4433   sigflags[sig] = sigAct.sa_flags;
4434 
4435   int ret = sigaction(sig, &sigAct, &oldAct);
4436   assert(ret == 0, "check");
4437 
4438   void* oldhand2  = oldAct.sa_sigaction
4439                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4440                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4441   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4442 }
4443 
4444 // install signal handlers for signals that HotSpot needs to
4445 // handle in order to support Java-level exception handling.
4446 
4447 void os::Linux::install_signal_handlers() {
4448   if (!signal_handlers_are_installed) {
4449     signal_handlers_are_installed = true;
4450 
4451     // signal-chaining
4452     typedef void (*signal_setting_t)();
4453     signal_setting_t begin_signal_setting = NULL;
4454     signal_setting_t end_signal_setting = NULL;
4455     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4456                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4457     if (begin_signal_setting != NULL) {
4458       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4459                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4460       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4461                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4462       libjsig_is_loaded = true;
4463       assert(UseSignalChaining, "should enable signal-chaining");
4464     }
4465     if (libjsig_is_loaded) {
4466       // Tell libjsig jvm is setting signal handlers
4467       (*begin_signal_setting)();
4468     }
4469 
4470     set_signal_handler(SIGSEGV, true);
4471     set_signal_handler(SIGPIPE, true);
4472     set_signal_handler(SIGBUS, true);
4473     set_signal_handler(SIGILL, true);
4474     set_signal_handler(SIGFPE, true);
4475 #if defined(PPC64)
4476     set_signal_handler(SIGTRAP, true);
4477 #endif
4478     set_signal_handler(SIGXFSZ, true);
4479 
4480     if (libjsig_is_loaded) {
4481       // Tell libjsig jvm finishes setting signal handlers
4482       (*end_signal_setting)();
4483     }
4484 
4485     // We don't activate signal checker if libjsig is in place, we trust ourselves
4486     // and if UserSignalHandler is installed all bets are off.
4487     // Log that signal checking is off only if -verbose:jni is specified.
4488     if (CheckJNICalls) {
4489       if (libjsig_is_loaded) {
4490         if (PrintJNIResolving) {
4491           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4492         }
4493         check_signals = false;
4494       }
4495       if (AllowUserSignalHandlers) {
4496         if (PrintJNIResolving) {
4497           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4498         }
4499         check_signals = false;
4500       }
4501     }
4502   }
4503 }
4504 
4505 // This is the fastest way to get thread cpu time on Linux.
4506 // Returns cpu time (user+sys) for any thread, not only for current.
4507 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4508 // It might work on 2.6.10+ with a special kernel/glibc patch.
4509 // For reference, please, see IEEE Std 1003.1-2004:
4510 //   http://www.unix.org/single_unix_specification
4511 
4512 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4513   struct timespec tp;
4514   int rc = os::Linux::clock_gettime(clockid, &tp);
4515   assert(rc == 0, "clock_gettime is expected to return 0 code");
4516 
4517   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4518 }
4519 
4520 void os::Linux::initialize_os_info() {
4521   assert(_os_version == 0, "OS info already initialized");
4522 
4523   struct utsname _uname;
4524 
4525   uint32_t major;
4526   uint32_t minor;
4527   uint32_t fix;
4528 
4529   int rc;
4530 
4531   // Kernel version is unknown if
4532   // verification below fails.
4533   _os_version = 0x01000000;
4534 
4535   rc = uname(&_uname);
4536   if (rc != -1) {
4537 
4538     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4539     if (rc == 3) {
4540 
4541       if (major < 256 && minor < 256 && fix < 256) {
4542         // Kernel version format is as expected,
4543         // set it overriding unknown state.
4544         _os_version = (major << 16) |
4545                       (minor << 8 ) |
4546                       (fix   << 0 ) ;
4547       }
4548     }
4549   }
4550 }
4551 
4552 uint32_t os::Linux::os_version() {
4553   assert(_os_version != 0, "not initialized");
4554   return _os_version & 0x00FFFFFF;
4555 }
4556 
4557 bool os::Linux::os_version_is_known() {
4558   assert(_os_version != 0, "not initialized");
4559   return _os_version & 0x01000000 ? false : true;
4560 }
4561 
4562 /////
4563 // glibc on Linux platform uses non-documented flag
4564 // to indicate, that some special sort of signal
4565 // trampoline is used.
4566 // We will never set this flag, and we should
4567 // ignore this flag in our diagnostic
4568 #ifdef SIGNIFICANT_SIGNAL_MASK
4569   #undef SIGNIFICANT_SIGNAL_MASK
4570 #endif
4571 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4572 
4573 static const char* get_signal_handler_name(address handler,
4574                                            char* buf, int buflen) {
4575   int offset = 0;
4576   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4577   if (found) {
4578     // skip directory names
4579     const char *p1, *p2;
4580     p1 = buf;
4581     size_t len = strlen(os::file_separator());
4582     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4583     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4584   } else {
4585     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4586   }
4587   return buf;
4588 }
4589 
4590 static void print_signal_handler(outputStream* st, int sig,
4591                                  char* buf, size_t buflen) {
4592   struct sigaction sa;
4593 
4594   sigaction(sig, NULL, &sa);
4595 
4596   // See comment for SIGNIFICANT_SIGNAL_MASK define
4597   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4598 
4599   st->print("%s: ", os::exception_name(sig, buf, buflen));
4600 
4601   address handler = (sa.sa_flags & SA_SIGINFO)
4602     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4603     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4604 
4605   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4606     st->print("SIG_DFL");
4607   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4608     st->print("SIG_IGN");
4609   } else {
4610     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4611   }
4612 
4613   st->print(", sa_mask[0]=");
4614   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4615 
4616   address rh = VMError::get_resetted_sighandler(sig);
4617   // May be, handler was resetted by VMError?
4618   if (rh != NULL) {
4619     handler = rh;
4620     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4621   }
4622 
4623   st->print(", sa_flags=");
4624   os::Posix::print_sa_flags(st, sa.sa_flags);
4625 
4626   // Check: is it our handler?
4627   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4628       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4629     // It is our signal handler
4630     // check for flags, reset system-used one!
4631     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4632       st->print(
4633                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4634                 os::Linux::get_our_sigflags(sig));
4635     }
4636   }
4637   st->cr();
4638 }
4639 
4640 
4641 #define DO_SIGNAL_CHECK(sig)                      \
4642   do {                                            \
4643     if (!sigismember(&check_signal_done, sig)) {  \
4644       os::Linux::check_signal_handler(sig);       \
4645     }                                             \
4646   } while (0)
4647 
4648 // This method is a periodic task to check for misbehaving JNI applications
4649 // under CheckJNI, we can add any periodic checks here
4650 
4651 void os::run_periodic_checks() {
4652   if (check_signals == false) return;
4653 
4654   // SEGV and BUS if overridden could potentially prevent
4655   // generation of hs*.log in the event of a crash, debugging
4656   // such a case can be very challenging, so we absolutely
4657   // check the following for a good measure:
4658   DO_SIGNAL_CHECK(SIGSEGV);
4659   DO_SIGNAL_CHECK(SIGILL);
4660   DO_SIGNAL_CHECK(SIGFPE);
4661   DO_SIGNAL_CHECK(SIGBUS);
4662   DO_SIGNAL_CHECK(SIGPIPE);
4663   DO_SIGNAL_CHECK(SIGXFSZ);
4664 #if defined(PPC64)
4665   DO_SIGNAL_CHECK(SIGTRAP);
4666 #endif
4667 
4668   // ReduceSignalUsage allows the user to override these handlers
4669   // see comments at the very top and jvm_md.h
4670   if (!ReduceSignalUsage) {
4671     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4672     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4673     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4674     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4675   }
4676 
4677   DO_SIGNAL_CHECK(SR_signum);
4678 }
4679 
4680 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4681 
4682 static os_sigaction_t os_sigaction = NULL;
4683 
4684 void os::Linux::check_signal_handler(int sig) {
4685   char buf[O_BUFLEN];
4686   address jvmHandler = NULL;
4687 
4688 
4689   struct sigaction act;
4690   if (os_sigaction == NULL) {
4691     // only trust the default sigaction, in case it has been interposed
4692     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4693     if (os_sigaction == NULL) return;
4694   }
4695 
4696   os_sigaction(sig, (struct sigaction*)NULL, &act);
4697 
4698 
4699   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4700 
4701   address thisHandler = (act.sa_flags & SA_SIGINFO)
4702     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4703     : CAST_FROM_FN_PTR(address, act.sa_handler);
4704 
4705 
4706   switch (sig) {
4707   case SIGSEGV:
4708   case SIGBUS:
4709   case SIGFPE:
4710   case SIGPIPE:
4711   case SIGILL:
4712   case SIGXFSZ:
4713     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4714     break;
4715 
4716   case SHUTDOWN1_SIGNAL:
4717   case SHUTDOWN2_SIGNAL:
4718   case SHUTDOWN3_SIGNAL:
4719   case BREAK_SIGNAL:
4720     jvmHandler = (address)user_handler();
4721     break;
4722 
4723   default:
4724     if (sig == SR_signum) {
4725       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4726     } else {
4727       return;
4728     }
4729     break;
4730   }
4731 
4732   if (thisHandler != jvmHandler) {
4733     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4734     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4735     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4736     // No need to check this sig any longer
4737     sigaddset(&check_signal_done, sig);
4738     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4739     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4740       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4741                     exception_name(sig, buf, O_BUFLEN));
4742     }
4743   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4744     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4745     tty->print("expected:");
4746     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4747     tty->cr();
4748     tty->print("  found:");
4749     os::Posix::print_sa_flags(tty, act.sa_flags);
4750     tty->cr();
4751     // No need to check this sig any longer
4752     sigaddset(&check_signal_done, sig);
4753   }
4754 
4755   // Dump all the signal
4756   if (sigismember(&check_signal_done, sig)) {
4757     print_signal_handlers(tty, buf, O_BUFLEN);
4758   }
4759 }
4760 
4761 extern void report_error(char* file_name, int line_no, char* title,
4762                          char* format, ...);
4763 
4764 // this is called _before_ the most of global arguments have been parsed
4765 void os::init(void) {
4766   char dummy;   // used to get a guess on initial stack address
4767 //  first_hrtime = gethrtime();
4768 
4769   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4770 
4771   init_random(1234567);
4772 
4773   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4774   if (Linux::page_size() == -1) {
4775     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4776           os::strerror(errno));
4777   }
4778   init_page_sizes((size_t) Linux::page_size());
4779 
4780   Linux::initialize_system_info();
4781 
4782   Linux::initialize_os_info();
4783 
4784   // main_thread points to the aboriginal thread
4785   Linux::_main_thread = pthread_self();
4786 
4787   Linux::clock_init();
4788   initial_time_count = javaTimeNanos();
4789 
4790   // retrieve entry point for pthread_setname_np
4791   Linux::_pthread_setname_np =
4792     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4793 
4794   os::Posix::init();
4795 }
4796 
4797 // To install functions for atexit system call
4798 extern "C" {
4799   static void perfMemory_exit_helper() {
4800     perfMemory_exit();
4801   }
4802 }
4803 
4804 // this is called _after_ the global arguments have been parsed
4805 jint os::init_2(void) {
4806 
4807   os::Posix::init_2();
4808 
4809   Linux::fast_thread_clock_init();
4810 
4811   // initialize suspend/resume support - must do this before signal_sets_init()
4812   if (SR_initialize() != 0) {
4813     perror("SR_initialize failed");
4814     return JNI_ERR;
4815   }
4816 
4817   Linux::signal_sets_init();
4818   Linux::install_signal_handlers();
4819 
4820   // Check and sets minimum stack sizes against command line options
4821   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4822     return JNI_ERR;
4823   }
4824   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4825 
4826 #if defined(IA32)
4827   workaround_expand_exec_shield_cs_limit();
4828 #endif
4829 
4830   Linux::libpthread_init();
4831   Linux::sched_getcpu_init();
4832   log_info(os)("HotSpot is running with %s, %s",
4833                Linux::glibc_version(), Linux::libpthread_version());
4834 
4835   if (UseNUMA) {
4836     if (!Linux::libnuma_init()) {
4837       UseNUMA = false;
4838     } else {
4839       if ((Linux::numa_max_node() < 1)) {
4840         // There's only one node(they start from 0), disable NUMA.
4841         UseNUMA = false;
4842       }
4843     }
4844     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4845     // we can make the adaptive lgrp chunk resizing work. If the user specified
4846     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4847     // disable adaptive resizing.
4848     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4849       if (FLAG_IS_DEFAULT(UseNUMA)) {
4850         UseNUMA = false;
4851       } else {
4852         if (FLAG_IS_DEFAULT(UseLargePages) &&
4853             FLAG_IS_DEFAULT(UseSHM) &&
4854             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4855           UseLargePages = false;
4856         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4857           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4858           UseAdaptiveSizePolicy = false;
4859           UseAdaptiveNUMAChunkSizing = false;
4860         }
4861       }
4862     }
4863     if (!UseNUMA && ForceNUMA) {
4864       UseNUMA = true;
4865     }
4866   }
4867 
4868   if (MaxFDLimit) {
4869     // set the number of file descriptors to max. print out error
4870     // if getrlimit/setrlimit fails but continue regardless.
4871     struct rlimit nbr_files;
4872     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4873     if (status != 0) {
4874       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4875     } else {
4876       nbr_files.rlim_cur = nbr_files.rlim_max;
4877       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4878       if (status != 0) {
4879         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4880       }
4881     }
4882   }
4883 
4884   // Initialize lock used to serialize thread creation (see os::create_thread)
4885   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4886 
4887   // at-exit methods are called in the reverse order of their registration.
4888   // atexit functions are called on return from main or as a result of a
4889   // call to exit(3C). There can be only 32 of these functions registered
4890   // and atexit() does not set errno.
4891 
4892   if (PerfAllowAtExitRegistration) {
4893     // only register atexit functions if PerfAllowAtExitRegistration is set.
4894     // atexit functions can be delayed until process exit time, which
4895     // can be problematic for embedded VM situations. Embedded VMs should
4896     // call DestroyJavaVM() to assure that VM resources are released.
4897 
4898     // note: perfMemory_exit_helper atexit function may be removed in
4899     // the future if the appropriate cleanup code can be added to the
4900     // VM_Exit VMOperation's doit method.
4901     if (atexit(perfMemory_exit_helper) != 0) {
4902       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4903     }
4904   }
4905 
4906   // initialize thread priority policy
4907   prio_init();
4908 
4909   return JNI_OK;
4910 }
4911 
4912 // Mark the polling page as unreadable
4913 void os::make_polling_page_unreadable(void) {
4914   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4915     fatal("Could not disable polling page");
4916   }
4917 }
4918 
4919 // Mark the polling page as readable
4920 void os::make_polling_page_readable(void) {
4921   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4922     fatal("Could not enable polling page");
4923   }
4924 }
4925 
4926 // older glibc versions don't have this macro (which expands to
4927 // an optimized bit-counting function) so we have to roll our own
4928 #ifndef CPU_COUNT
4929 
4930 static int _cpu_count(const cpu_set_t* cpus) {
4931   int count = 0;
4932   // only look up to the number of configured processors
4933   for (int i = 0; i < os::processor_count(); i++) {
4934     if (CPU_ISSET(i, cpus)) {
4935       count++;
4936     }
4937   }
4938   return count;
4939 }
4940 
4941 #define CPU_COUNT(cpus) _cpu_count(cpus)
4942 
4943 #endif // CPU_COUNT
4944 
4945 // Get the current number of available processors for this process.
4946 // This value can change at any time during a process's lifetime.
4947 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4948 // If it appears there may be more than 1024 processors then we do a
4949 // dynamic check - see 6515172 for details.
4950 // If anything goes wrong we fallback to returning the number of online
4951 // processors - which can be greater than the number available to the process.
4952 int os::active_processor_count() {
4953   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4954   cpu_set_t* cpus_p = &cpus;
4955   int cpus_size = sizeof(cpu_set_t);
4956 
4957   int configured_cpus = processor_count();  // upper bound on available cpus
4958   int cpu_count = 0;
4959 
4960 // old build platforms may not support dynamic cpu sets
4961 #ifdef CPU_ALLOC
4962 
4963   // To enable easy testing of the dynamic path on different platforms we
4964   // introduce a diagnostic flag: UseCpuAllocPath
4965   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4966     // kernel may use a mask bigger than cpu_set_t
4967     log_trace(os)("active_processor_count: using dynamic path %s"
4968                   "- configured processors: %d",
4969                   UseCpuAllocPath ? "(forced) " : "",
4970                   configured_cpus);
4971     cpus_p = CPU_ALLOC(configured_cpus);
4972     if (cpus_p != NULL) {
4973       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4974       // zero it just to be safe
4975       CPU_ZERO_S(cpus_size, cpus_p);
4976     }
4977     else {
4978        // failed to allocate so fallback to online cpus
4979        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4980        log_trace(os)("active_processor_count: "
4981                      "CPU_ALLOC failed (%s) - using "
4982                      "online processor count: %d",
4983                      os::strerror(errno), online_cpus);
4984        return online_cpus;
4985     }
4986   }
4987   else {
4988     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4989                   configured_cpus);
4990   }
4991 #else // CPU_ALLOC
4992 // these stubs won't be executed
4993 #define CPU_COUNT_S(size, cpus) -1
4994 #define CPU_FREE(cpus)
4995 
4996   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4997                 configured_cpus);
4998 #endif // CPU_ALLOC
4999 
5000   // pid 0 means the current thread - which we have to assume represents the process
5001   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5002     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5003       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5004     }
5005     else {
5006       cpu_count = CPU_COUNT(cpus_p);
5007     }
5008     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5009   }
5010   else {
5011     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5012     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5013             "which may exceed available processors", os::strerror(errno), cpu_count);
5014   }
5015 
5016   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5017     CPU_FREE(cpus_p);
5018   }
5019 
5020   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5021   return cpu_count;
5022 }
5023 
5024 void os::set_native_thread_name(const char *name) {
5025   if (Linux::_pthread_setname_np) {
5026     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5027     snprintf(buf, sizeof(buf), "%s", name);
5028     buf[sizeof(buf) - 1] = '\0';
5029     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5030     // ERANGE should not happen; all other errors should just be ignored.
5031     assert(rc != ERANGE, "pthread_setname_np failed");
5032   }
5033 }
5034 
5035 bool os::distribute_processes(uint length, uint* distribution) {
5036   // Not yet implemented.
5037   return false;
5038 }
5039 
5040 bool os::bind_to_processor(uint processor_id) {
5041   // Not yet implemented.
5042   return false;
5043 }
5044 
5045 ///
5046 
5047 void os::SuspendedThreadTask::internal_do_task() {
5048   if (do_suspend(_thread->osthread())) {
5049     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5050     do_task(context);
5051     do_resume(_thread->osthread());
5052   }
5053 }
5054 
5055 ////////////////////////////////////////////////////////////////////////////////
5056 // debug support
5057 
5058 bool os::find(address addr, outputStream* st) {
5059   Dl_info dlinfo;
5060   memset(&dlinfo, 0, sizeof(dlinfo));
5061   if (dladdr(addr, &dlinfo) != 0) {
5062     st->print(PTR_FORMAT ": ", p2i(addr));
5063     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5064       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5065                 p2i(addr) - p2i(dlinfo.dli_saddr));
5066     } else if (dlinfo.dli_fbase != NULL) {
5067       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5068     } else {
5069       st->print("<absolute address>");
5070     }
5071     if (dlinfo.dli_fname != NULL) {
5072       st->print(" in %s", dlinfo.dli_fname);
5073     }
5074     if (dlinfo.dli_fbase != NULL) {
5075       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5076     }
5077     st->cr();
5078 
5079     if (Verbose) {
5080       // decode some bytes around the PC
5081       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5082       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5083       address       lowest = (address) dlinfo.dli_sname;
5084       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5085       if (begin < lowest)  begin = lowest;
5086       Dl_info dlinfo2;
5087       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5088           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5089         end = (address) dlinfo2.dli_saddr;
5090       }
5091       Disassembler::decode(begin, end, st);
5092     }
5093     return true;
5094   }
5095   return false;
5096 }
5097 
5098 ////////////////////////////////////////////////////////////////////////////////
5099 // misc
5100 
5101 // This does not do anything on Linux. This is basically a hook for being
5102 // able to use structured exception handling (thread-local exception filters)
5103 // on, e.g., Win32.
5104 void
5105 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5106                          JavaCallArguments* args, Thread* thread) {
5107   f(value, method, args, thread);
5108 }
5109 
5110 void os::print_statistics() {
5111 }
5112 
5113 bool os::message_box(const char* title, const char* message) {
5114   int i;
5115   fdStream err(defaultStream::error_fd());
5116   for (i = 0; i < 78; i++) err.print_raw("=");
5117   err.cr();
5118   err.print_raw_cr(title);
5119   for (i = 0; i < 78; i++) err.print_raw("-");
5120   err.cr();
5121   err.print_raw_cr(message);
5122   for (i = 0; i < 78; i++) err.print_raw("=");
5123   err.cr();
5124 
5125   char buf[16];
5126   // Prevent process from exiting upon "read error" without consuming all CPU
5127   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5128 
5129   return buf[0] == 'y' || buf[0] == 'Y';
5130 }
5131 
5132 int os::stat(const char *path, struct stat *sbuf) {
5133   char pathbuf[MAX_PATH];
5134   if (strlen(path) > MAX_PATH - 1) {
5135     errno = ENAMETOOLONG;
5136     return -1;
5137   }
5138   os::native_path(strcpy(pathbuf, path));
5139   return ::stat(pathbuf, sbuf);
5140 }
5141 
5142 // Is a (classpath) directory empty?
5143 bool os::dir_is_empty(const char* path) {
5144   DIR *dir = NULL;
5145   struct dirent *ptr;
5146 
5147   dir = opendir(path);
5148   if (dir == NULL) return true;
5149 
5150   // Scan the directory
5151   bool result = true;
5152   char buf[sizeof(struct dirent) + MAX_PATH];
5153   while (result && (ptr = ::readdir(dir)) != NULL) {
5154     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5155       result = false;
5156     }
5157   }
5158   closedir(dir);
5159   return result;
5160 }
5161 
5162 // This code originates from JDK's sysOpen and open64_w
5163 // from src/solaris/hpi/src/system_md.c
5164 
5165 int os::open(const char *path, int oflag, int mode) {
5166   if (strlen(path) > MAX_PATH - 1) {
5167     errno = ENAMETOOLONG;
5168     return -1;
5169   }
5170 
5171   // All file descriptors that are opened in the Java process and not
5172   // specifically destined for a subprocess should have the close-on-exec
5173   // flag set.  If we don't set it, then careless 3rd party native code
5174   // might fork and exec without closing all appropriate file descriptors
5175   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5176   // turn might:
5177   //
5178   // - cause end-of-file to fail to be detected on some file
5179   //   descriptors, resulting in mysterious hangs, or
5180   //
5181   // - might cause an fopen in the subprocess to fail on a system
5182   //   suffering from bug 1085341.
5183   //
5184   // (Yes, the default setting of the close-on-exec flag is a Unix
5185   // design flaw)
5186   //
5187   // See:
5188   // 1085341: 32-bit stdio routines should support file descriptors >255
5189   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5190   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5191   //
5192   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5193   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5194   // because it saves a system call and removes a small window where the flag
5195   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5196   // and we fall back to using FD_CLOEXEC (see below).
5197 #ifdef O_CLOEXEC
5198   oflag |= O_CLOEXEC;
5199 #endif
5200 
5201   int fd = ::open64(path, oflag, mode);
5202   if (fd == -1) return -1;
5203 
5204   //If the open succeeded, the file might still be a directory
5205   {
5206     struct stat64 buf64;
5207     int ret = ::fstat64(fd, &buf64);
5208     int st_mode = buf64.st_mode;
5209 
5210     if (ret != -1) {
5211       if ((st_mode & S_IFMT) == S_IFDIR) {
5212         errno = EISDIR;
5213         ::close(fd);
5214         return -1;
5215       }
5216     } else {
5217       ::close(fd);
5218       return -1;
5219     }
5220   }
5221 
5222 #ifdef FD_CLOEXEC
5223   // Validate that the use of the O_CLOEXEC flag on open above worked.
5224   // With recent kernels, we will perform this check exactly once.
5225   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5226   if (!O_CLOEXEC_is_known_to_work) {
5227     int flags = ::fcntl(fd, F_GETFD);
5228     if (flags != -1) {
5229       if ((flags & FD_CLOEXEC) != 0)
5230         O_CLOEXEC_is_known_to_work = 1;
5231       else
5232         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5233     }
5234   }
5235 #endif
5236 
5237   return fd;
5238 }
5239 
5240 
5241 // create binary file, rewriting existing file if required
5242 int os::create_binary_file(const char* path, bool rewrite_existing) {
5243   int oflags = O_WRONLY | O_CREAT;
5244   if (!rewrite_existing) {
5245     oflags |= O_EXCL;
5246   }
5247   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5248 }
5249 
5250 // return current position of file pointer
5251 jlong os::current_file_offset(int fd) {
5252   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5253 }
5254 
5255 // move file pointer to the specified offset
5256 jlong os::seek_to_file_offset(int fd, jlong offset) {
5257   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5258 }
5259 
5260 // This code originates from JDK's sysAvailable
5261 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5262 
5263 int os::available(int fd, jlong *bytes) {
5264   jlong cur, end;
5265   int mode;
5266   struct stat64 buf64;
5267 
5268   if (::fstat64(fd, &buf64) >= 0) {
5269     mode = buf64.st_mode;
5270     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5271       int n;
5272       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5273         *bytes = n;
5274         return 1;
5275       }
5276     }
5277   }
5278   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5279     return 0;
5280   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5281     return 0;
5282   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5283     return 0;
5284   }
5285   *bytes = end - cur;
5286   return 1;
5287 }
5288 
5289 // Map a block of memory.
5290 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5291                         char *addr, size_t bytes, bool read_only,
5292                         bool allow_exec) {
5293   int prot;
5294   int flags = MAP_PRIVATE;
5295 
5296   if (read_only) {
5297     prot = PROT_READ;
5298   } else {
5299     prot = PROT_READ | PROT_WRITE;
5300   }
5301 
5302   if (allow_exec) {
5303     prot |= PROT_EXEC;
5304   }
5305 
5306   if (addr != NULL) {
5307     flags |= MAP_FIXED;
5308   }
5309 
5310   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5311                                      fd, file_offset);
5312   if (mapped_address == MAP_FAILED) {
5313     return NULL;
5314   }
5315   return mapped_address;
5316 }
5317 
5318 
5319 // Remap a block of memory.
5320 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5321                           char *addr, size_t bytes, bool read_only,
5322                           bool allow_exec) {
5323   // same as map_memory() on this OS
5324   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5325                         allow_exec);
5326 }
5327 
5328 
5329 // Unmap a block of memory.
5330 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5331   return munmap(addr, bytes) == 0;
5332 }
5333 
5334 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5335 
5336 static clockid_t thread_cpu_clockid(Thread* thread) {
5337   pthread_t tid = thread->osthread()->pthread_id();
5338   clockid_t clockid;
5339 
5340   // Get thread clockid
5341   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5342   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5343   return clockid;
5344 }
5345 
5346 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5347 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5348 // of a thread.
5349 //
5350 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5351 // the fast estimate available on the platform.
5352 
5353 jlong os::current_thread_cpu_time() {
5354   if (os::Linux::supports_fast_thread_cpu_time()) {
5355     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5356   } else {
5357     // return user + sys since the cost is the same
5358     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5359   }
5360 }
5361 
5362 jlong os::thread_cpu_time(Thread* thread) {
5363   // consistent with what current_thread_cpu_time() returns
5364   if (os::Linux::supports_fast_thread_cpu_time()) {
5365     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5366   } else {
5367     return slow_thread_cpu_time(thread, true /* user + sys */);
5368   }
5369 }
5370 
5371 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5372   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5373     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5374   } else {
5375     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5376   }
5377 }
5378 
5379 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5380   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5381     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5382   } else {
5383     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5384   }
5385 }
5386 
5387 //  -1 on error.
5388 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5389   pid_t  tid = thread->osthread()->thread_id();
5390   char *s;
5391   char stat[2048];
5392   int statlen;
5393   char proc_name[64];
5394   int count;
5395   long sys_time, user_time;
5396   char cdummy;
5397   int idummy;
5398   long ldummy;
5399   FILE *fp;
5400 
5401   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5402   fp = fopen(proc_name, "r");
5403   if (fp == NULL) return -1;
5404   statlen = fread(stat, 1, 2047, fp);
5405   stat[statlen] = '\0';
5406   fclose(fp);
5407 
5408   // Skip pid and the command string. Note that we could be dealing with
5409   // weird command names, e.g. user could decide to rename java launcher
5410   // to "java 1.4.2 :)", then the stat file would look like
5411   //                1234 (java 1.4.2 :)) R ... ...
5412   // We don't really need to know the command string, just find the last
5413   // occurrence of ")" and then start parsing from there. See bug 4726580.
5414   s = strrchr(stat, ')');
5415   if (s == NULL) return -1;
5416 
5417   // Skip blank chars
5418   do { s++; } while (s && isspace(*s));
5419 
5420   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5421                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5422                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5423                  &user_time, &sys_time);
5424   if (count != 13) return -1;
5425   if (user_sys_cpu_time) {
5426     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5427   } else {
5428     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5429   }
5430 }
5431 
5432 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5433   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5434   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5435   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5436   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5437 }
5438 
5439 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5440   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5441   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5442   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5443   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5444 }
5445 
5446 bool os::is_thread_cpu_time_supported() {
5447   return true;
5448 }
5449 
5450 // System loadavg support.  Returns -1 if load average cannot be obtained.
5451 // Linux doesn't yet have a (official) notion of processor sets,
5452 // so just return the system wide load average.
5453 int os::loadavg(double loadavg[], int nelem) {
5454   return ::getloadavg(loadavg, nelem);
5455 }
5456 
5457 void os::pause() {
5458   char filename[MAX_PATH];
5459   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5460     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5461   } else {
5462     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5463   }
5464 
5465   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5466   if (fd != -1) {
5467     struct stat buf;
5468     ::close(fd);
5469     while (::stat(filename, &buf) == 0) {
5470       (void)::poll(NULL, 0, 100);
5471     }
5472   } else {
5473     jio_fprintf(stderr,
5474                 "Could not open pause file '%s', continuing immediately.\n", filename);
5475   }
5476 }
5477 
5478 extern char** environ;
5479 
5480 // Run the specified command in a separate process. Return its exit value,
5481 // or -1 on failure (e.g. can't fork a new process).
5482 // Unlike system(), this function can be called from signal handler. It
5483 // doesn't block SIGINT et al.
5484 int os::fork_and_exec(char* cmd) {
5485   const char * argv[4] = {"sh", "-c", cmd, NULL};
5486 
5487   pid_t pid = fork();
5488 
5489   if (pid < 0) {
5490     // fork failed
5491     return -1;
5492 
5493   } else if (pid == 0) {
5494     // child process
5495 
5496     execve("/bin/sh", (char* const*)argv, environ);
5497 
5498     // execve failed
5499     _exit(-1);
5500 
5501   } else  {
5502     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5503     // care about the actual exit code, for now.
5504 
5505     int status;
5506 
5507     // Wait for the child process to exit.  This returns immediately if
5508     // the child has already exited. */
5509     while (waitpid(pid, &status, 0) < 0) {
5510       switch (errno) {
5511       case ECHILD: return 0;
5512       case EINTR: break;
5513       default: return -1;
5514       }
5515     }
5516 
5517     if (WIFEXITED(status)) {
5518       // The child exited normally; get its exit code.
5519       return WEXITSTATUS(status);
5520     } else if (WIFSIGNALED(status)) {
5521       // The child exited because of a signal
5522       // The best value to return is 0x80 + signal number,
5523       // because that is what all Unix shells do, and because
5524       // it allows callers to distinguish between process exit and
5525       // process death by signal.
5526       return 0x80 + WTERMSIG(status);
5527     } else {
5528       // Unknown exit code; pass it through
5529       return status;
5530     }
5531   }
5532 }
5533 
5534 // is_headless_jre()
5535 //
5536 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5537 // in order to report if we are running in a headless jre
5538 //
5539 // Since JDK8 xawt/libmawt.so was moved into the same directory
5540 // as libawt.so, and renamed libawt_xawt.so
5541 //
5542 bool os::is_headless_jre() {
5543   struct stat statbuf;
5544   char buf[MAXPATHLEN];
5545   char libmawtpath[MAXPATHLEN];
5546   const char *xawtstr  = "/xawt/libmawt.so";
5547   const char *new_xawtstr = "/libawt_xawt.so";
5548   char *p;
5549 
5550   // Get path to libjvm.so
5551   os::jvm_path(buf, sizeof(buf));
5552 
5553   // Get rid of libjvm.so
5554   p = strrchr(buf, '/');
5555   if (p == NULL) {
5556     return false;
5557   } else {
5558     *p = '\0';
5559   }
5560 
5561   // Get rid of client or server
5562   p = strrchr(buf, '/');
5563   if (p == NULL) {
5564     return false;
5565   } else {
5566     *p = '\0';
5567   }
5568 
5569   // check xawt/libmawt.so
5570   strcpy(libmawtpath, buf);
5571   strcat(libmawtpath, xawtstr);
5572   if (::stat(libmawtpath, &statbuf) == 0) return false;
5573 
5574   // check libawt_xawt.so
5575   strcpy(libmawtpath, buf);
5576   strcat(libmawtpath, new_xawtstr);
5577   if (::stat(libmawtpath, &statbuf) == 0) return false;
5578 
5579   return true;
5580 }
5581 
5582 // Get the default path to the core file
5583 // Returns the length of the string
5584 int os::get_core_path(char* buffer, size_t bufferSize) {
5585   /*
5586    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5587    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5588    */
5589   const int core_pattern_len = 129;
5590   char core_pattern[core_pattern_len] = {0};
5591 
5592   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5593   if (core_pattern_file == -1) {
5594     return -1;
5595   }
5596 
5597   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5598   ::close(core_pattern_file);
5599   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5600     return -1;
5601   }
5602   if (core_pattern[ret-1] == '\n') {
5603     core_pattern[ret-1] = '\0';
5604   } else {
5605     core_pattern[ret] = '\0';
5606   }
5607 
5608   char *pid_pos = strstr(core_pattern, "%p");
5609   int written;
5610 
5611   if (core_pattern[0] == '/') {
5612     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5613   } else {
5614     char cwd[PATH_MAX];
5615 
5616     const char* p = get_current_directory(cwd, PATH_MAX);
5617     if (p == NULL) {
5618       return -1;
5619     }
5620 
5621     if (core_pattern[0] == '|') {
5622       written = jio_snprintf(buffer, bufferSize,
5623                              "\"%s\" (or dumping to %s/core.%d)",
5624                              &core_pattern[1], p, current_process_id());
5625     } else {
5626       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5627     }
5628   }
5629 
5630   if (written < 0) {
5631     return -1;
5632   }
5633 
5634   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5635     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5636 
5637     if (core_uses_pid_file != -1) {
5638       char core_uses_pid = 0;
5639       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5640       ::close(core_uses_pid_file);
5641 
5642       if (core_uses_pid == '1') {
5643         jio_snprintf(buffer + written, bufferSize - written,
5644                                           ".%d", current_process_id());
5645       }
5646     }
5647   }
5648 
5649   return strlen(buffer);
5650 }
5651 
5652 bool os::start_debugging(char *buf, int buflen) {
5653   int len = (int)strlen(buf);
5654   char *p = &buf[len];
5655 
5656   jio_snprintf(p, buflen-len,
5657                "\n\n"
5658                "Do you want to debug the problem?\n\n"
5659                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5660                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5661                "Otherwise, press RETURN to abort...",
5662                os::current_process_id(), os::current_process_id(),
5663                os::current_thread_id(), os::current_thread_id());
5664 
5665   bool yes = os::message_box("Unexpected Error", buf);
5666 
5667   if (yes) {
5668     // yes, user asked VM to launch debugger
5669     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5670                  os::current_process_id(), os::current_process_id());
5671 
5672     os::fork_and_exec(buf);
5673     yes = false;
5674   }
5675   return yes;
5676 }
5677 
5678 
5679 // Java/Compiler thread:
5680 //
5681 //   Low memory addresses
5682 // P0 +------------------------+
5683 //    |                        |\  Java thread created by VM does not have glibc
5684 //    |    glibc guard page    | - guard page, attached Java thread usually has
5685 //    |                        |/  1 glibc guard page.
5686 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5687 //    |                        |\
5688 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5689 //    |                        |/
5690 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5691 //    |                        |\
5692 //    |      Normal Stack      | -
5693 //    |                        |/
5694 // P2 +------------------------+ Thread::stack_base()
5695 //
5696 // Non-Java thread:
5697 //
5698 //   Low memory addresses
5699 // P0 +------------------------+
5700 //    |                        |\
5701 //    |  glibc guard page      | - usually 1 page
5702 //    |                        |/
5703 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5704 //    |                        |\
5705 //    |      Normal Stack      | -
5706 //    |                        |/
5707 // P2 +------------------------+ Thread::stack_base()
5708 //
5709 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5710 //    returned from pthread_attr_getstack().
5711 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5712 //    of the stack size given in pthread_attr. We work around this for
5713 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5714 //
5715 #ifndef ZERO
5716 static void current_stack_region(address * bottom, size_t * size) {
5717   if (os::is_primordial_thread()) {
5718     // primordial thread needs special handling because pthread_getattr_np()
5719     // may return bogus value.
5720     *bottom = os::Linux::initial_thread_stack_bottom();
5721     *size   = os::Linux::initial_thread_stack_size();
5722   } else {
5723     pthread_attr_t attr;
5724 
5725     int rslt = pthread_getattr_np(pthread_self(), &attr);
5726 
5727     // JVM needs to know exact stack location, abort if it fails
5728     if (rslt != 0) {
5729       if (rslt == ENOMEM) {
5730         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5731       } else {
5732         fatal("pthread_getattr_np failed with error = %d", rslt);
5733       }
5734     }
5735 
5736     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5737       fatal("Cannot locate current stack attributes!");
5738     }
5739 
5740     // Work around NPTL stack guard error.
5741     size_t guard_size = 0;
5742     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5743     if (rslt != 0) {
5744       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5745     }
5746     *bottom += guard_size;
5747     *size   -= guard_size;
5748 
5749     pthread_attr_destroy(&attr);
5750 
5751   }
5752   assert(os::current_stack_pointer() >= *bottom &&
5753          os::current_stack_pointer() < *bottom + *size, "just checking");
5754 }
5755 
5756 address os::current_stack_base() {
5757   address bottom;
5758   size_t size;
5759   current_stack_region(&bottom, &size);
5760   return (bottom + size);
5761 }
5762 
5763 size_t os::current_stack_size() {
5764   // This stack size includes the usable stack and HotSpot guard pages
5765   // (for the threads that have Hotspot guard pages).
5766   address bottom;
5767   size_t size;
5768   current_stack_region(&bottom, &size);
5769   return size;
5770 }
5771 #endif
5772 
5773 static inline struct timespec get_mtime(const char* filename) {
5774   struct stat st;
5775   int ret = os::stat(filename, &st);
5776   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5777   return st.st_mtim;
5778 }
5779 
5780 int os::compare_file_modified_times(const char* file1, const char* file2) {
5781   struct timespec filetime1 = get_mtime(file1);
5782   struct timespec filetime2 = get_mtime(file2);
5783   int diff = filetime1.tv_sec - filetime2.tv_sec;
5784   if (diff == 0) {
5785     return filetime1.tv_nsec - filetime2.tv_nsec;
5786   }
5787   return diff;
5788 }
5789 
5790 /////////////// Unit tests ///////////////
5791 
5792 #ifndef PRODUCT
5793 
5794 #define test_log(...)              \
5795   do {                             \
5796     if (VerboseInternalVMTests) {  \
5797       tty->print_cr(__VA_ARGS__);  \
5798       tty->flush();                \
5799     }                              \
5800   } while (false)
5801 
5802 class TestReserveMemorySpecial : AllStatic {
5803  public:
5804   static void small_page_write(void* addr, size_t size) {
5805     size_t page_size = os::vm_page_size();
5806 
5807     char* end = (char*)addr + size;
5808     for (char* p = (char*)addr; p < end; p += page_size) {
5809       *p = 1;
5810     }
5811   }
5812 
5813   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5814     if (!UseHugeTLBFS) {
5815       return;
5816     }
5817 
5818     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5819 
5820     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5821 
5822     if (addr != NULL) {
5823       small_page_write(addr, size);
5824 
5825       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5826     }
5827   }
5828 
5829   static void test_reserve_memory_special_huge_tlbfs_only() {
5830     if (!UseHugeTLBFS) {
5831       return;
5832     }
5833 
5834     size_t lp = os::large_page_size();
5835 
5836     for (size_t size = lp; size <= lp * 10; size += lp) {
5837       test_reserve_memory_special_huge_tlbfs_only(size);
5838     }
5839   }
5840 
5841   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5842     size_t lp = os::large_page_size();
5843     size_t ag = os::vm_allocation_granularity();
5844 
5845     // sizes to test
5846     const size_t sizes[] = {
5847       lp, lp + ag, lp + lp / 2, lp * 2,
5848       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5849       lp * 10, lp * 10 + lp / 2
5850     };
5851     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5852 
5853     // For each size/alignment combination, we test three scenarios:
5854     // 1) with req_addr == NULL
5855     // 2) with a non-null req_addr at which we expect to successfully allocate
5856     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5857     //    expect the allocation to either fail or to ignore req_addr
5858 
5859     // Pre-allocate two areas; they shall be as large as the largest allocation
5860     //  and aligned to the largest alignment we will be testing.
5861     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5862     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5863       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5864       -1, 0);
5865     assert(mapping1 != MAP_FAILED, "should work");
5866 
5867     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5868       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5869       -1, 0);
5870     assert(mapping2 != MAP_FAILED, "should work");
5871 
5872     // Unmap the first mapping, but leave the second mapping intact: the first
5873     // mapping will serve as a value for a "good" req_addr (case 2). The second
5874     // mapping, still intact, as "bad" req_addr (case 3).
5875     ::munmap(mapping1, mapping_size);
5876 
5877     // Case 1
5878     test_log("%s, req_addr NULL:", __FUNCTION__);
5879     test_log("size            align           result");
5880 
5881     for (int i = 0; i < num_sizes; i++) {
5882       const size_t size = sizes[i];
5883       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5884         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5885         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5886                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5887         if (p != NULL) {
5888           assert(is_aligned(p, alignment), "must be");
5889           small_page_write(p, size);
5890           os::Linux::release_memory_special_huge_tlbfs(p, size);
5891         }
5892       }
5893     }
5894 
5895     // Case 2
5896     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5897     test_log("size            align           req_addr         result");
5898 
5899     for (int i = 0; i < num_sizes; i++) {
5900       const size_t size = sizes[i];
5901       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5902         char* const req_addr = align_up(mapping1, alignment);
5903         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5904         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5905                  size, alignment, p2i(req_addr), p2i(p),
5906                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5907         if (p != NULL) {
5908           assert(p == req_addr, "must be");
5909           small_page_write(p, size);
5910           os::Linux::release_memory_special_huge_tlbfs(p, size);
5911         }
5912       }
5913     }
5914 
5915     // Case 3
5916     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5917     test_log("size            align           req_addr         result");
5918 
5919     for (int i = 0; i < num_sizes; i++) {
5920       const size_t size = sizes[i];
5921       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5922         char* const req_addr = align_up(mapping2, alignment);
5923         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5924         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5925                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
5926         // as the area around req_addr contains already existing mappings, the API should always
5927         // return NULL (as per contract, it cannot return another address)
5928         assert(p == NULL, "must be");
5929       }
5930     }
5931 
5932     ::munmap(mapping2, mapping_size);
5933 
5934   }
5935 
5936   static void test_reserve_memory_special_huge_tlbfs() {
5937     if (!UseHugeTLBFS) {
5938       return;
5939     }
5940 
5941     test_reserve_memory_special_huge_tlbfs_only();
5942     test_reserve_memory_special_huge_tlbfs_mixed();
5943   }
5944 
5945   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
5946     if (!UseSHM) {
5947       return;
5948     }
5949 
5950     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
5951 
5952     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
5953 
5954     if (addr != NULL) {
5955       assert(is_aligned(addr, alignment), "Check");
5956       assert(is_aligned(addr, os::large_page_size()), "Check");
5957 
5958       small_page_write(addr, size);
5959 
5960       os::Linux::release_memory_special_shm(addr, size);
5961     }
5962   }
5963 
5964   static void test_reserve_memory_special_shm() {
5965     size_t lp = os::large_page_size();
5966     size_t ag = os::vm_allocation_granularity();
5967 
5968     for (size_t size = ag; size < lp * 3; size += ag) {
5969       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5970         test_reserve_memory_special_shm(size, alignment);
5971       }
5972     }
5973   }
5974 
5975   static void test() {
5976     test_reserve_memory_special_huge_tlbfs();
5977     test_reserve_memory_special_shm();
5978   }
5979 };
5980 
5981 void TestReserveMemorySpecial_test() {
5982   TestReserveMemorySpecial::test();
5983 }
5984 
5985 #endif