1 /*
   2  * Copyright (c) 2002, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc_interface/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "interpreter/interpreterRuntime.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/methodCounters.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/threadCritical.hpp"
  44 #include "utilities/exceptions.hpp"
  45 #ifdef TARGET_OS_ARCH_linux_x86
  46 # include "orderAccess_linux_x86.inline.hpp"
  47 #endif
  48 #ifdef TARGET_OS_ARCH_linux_sparc
  49 # include "orderAccess_linux_sparc.inline.hpp"
  50 #endif
  51 #ifdef TARGET_OS_ARCH_linux_zero
  52 # include "orderAccess_linux_zero.inline.hpp"
  53 #endif
  54 #ifdef TARGET_OS_ARCH_solaris_x86
  55 # include "orderAccess_solaris_x86.inline.hpp"
  56 #endif
  57 #ifdef TARGET_OS_ARCH_solaris_sparc
  58 # include "orderAccess_solaris_sparc.inline.hpp"
  59 #endif
  60 #ifdef TARGET_OS_ARCH_windows_x86
  61 # include "orderAccess_windows_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_OS_ARCH_linux_arm
  64 # include "orderAccess_linux_arm.inline.hpp"
  65 #endif
  66 #ifdef TARGET_OS_ARCH_linux_ppc
  67 # include "orderAccess_linux_ppc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_OS_ARCH_bsd_x86
  70 # include "orderAccess_bsd_x86.inline.hpp"
  71 #endif
  72 #ifdef TARGET_OS_ARCH_bsd_zero
  73 # include "orderAccess_bsd_zero.inline.hpp"
  74 #endif
  75 
  76 
  77 // no precompiled headers
  78 #ifdef CC_INTERP
  79 
  80 /*
  81  * USELABELS - If using GCC, then use labels for the opcode dispatching
  82  * rather -then a switch statement. This improves performance because it
  83  * gives us the oportunity to have the instructions that calculate the
  84  * next opcode to jump to be intermixed with the rest of the instructions
  85  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  86  */
  87 #undef USELABELS
  88 #ifdef __GNUC__
  89 /*
  90    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  91    don't use the computed goto approach.
  92 */
  93 #ifndef ASSERT
  94 #define USELABELS
  95 #endif
  96 #endif
  97 
  98 #undef CASE
  99 #ifdef USELABELS
 100 #define CASE(opcode) opc ## opcode
 101 #define DEFAULT opc_default
 102 #else
 103 #define CASE(opcode) case Bytecodes:: opcode
 104 #define DEFAULT default
 105 #endif
 106 
 107 /*
 108  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
 109  * opcode before going back to the top of the while loop, rather then having
 110  * the top of the while loop handle it. This provides a better opportunity
 111  * for instruction scheduling. Some compilers just do this prefetch
 112  * automatically. Some actually end up with worse performance if you
 113  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
 114  */
 115 #undef PREFETCH_OPCCODE
 116 #define PREFETCH_OPCCODE
 117 
 118 /*
 119   Interpreter safepoint: it is expected that the interpreter will have no live
 120   handles of its own creation live at an interpreter safepoint. Therefore we
 121   run a HandleMarkCleaner and trash all handles allocated in the call chain
 122   since the JavaCalls::call_helper invocation that initiated the chain.
 123   There really shouldn't be any handles remaining to trash but this is cheap
 124   in relation to a safepoint.
 125 */
 126 #define SAFEPOINT                                                                 \
 127     if ( SafepointSynchronize::is_synchronizing()) {                              \
 128         {                                                                         \
 129           /* zap freed handles rather than GC'ing them */                         \
 130           HandleMarkCleaner __hmc(THREAD);                                        \
 131         }                                                                         \
 132         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 133     }
 134 
 135 /*
 136  * VM_JAVA_ERROR - Macro for throwing a java exception from
 137  * the interpreter loop. Should really be a CALL_VM but there
 138  * is no entry point to do the transition to vm so we just
 139  * do it by hand here.
 140  */
 141 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 142     DECACHE_STATE();                                                              \
 143     SET_LAST_JAVA_FRAME();                                                        \
 144     {                                                                             \
 145        ThreadInVMfromJava trans(THREAD);                                          \
 146        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 147     }                                                                             \
 148     RESET_LAST_JAVA_FRAME();                                                      \
 149     CACHE_STATE();
 150 
 151 // Normal throw of a java error
 152 #define VM_JAVA_ERROR(name, msg)                                                  \
 153     VM_JAVA_ERROR_NO_JUMP(name, msg)                                              \
 154     goto handle_exception;
 155 
 156 #ifdef PRODUCT
 157 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 158 #else
 159 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 160 {                                                                                                    \
 161     BytecodeCounter::_counter_value++;                                                               \
 162     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 163     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 164     if (TraceBytecodes) {                                                                            \
 165       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 166                                    topOfStack[Interpreter::expr_index_at(1)],   \
 167                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 168                                    handle_exception);                      \
 169     }                                                                      \
 170 }
 171 #endif
 172 
 173 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 174 #ifdef VM_JVMTI
 175 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 176    incremented. JvmtiExport::at_single_stepping_point() may cause a
 177    breakpoint opcode to get inserted at the current PC to allow the
 178    debugger to coalesce single-step events.
 179 
 180    As a result if we call at_single_stepping_point() we refetch opcode
 181    to get the current opcode. This will override any other prefetching
 182    that might have occurred.
 183 */
 184 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 185 {                                                                                \
 186       if (_jvmti_interp_events) {                                                \
 187         if (JvmtiExport::should_post_single_step()) {                            \
 188           DECACHE_STATE();                                                       \
 189           SET_LAST_JAVA_FRAME();                                                 \
 190           ThreadInVMfromJava trans(THREAD);                                      \
 191           JvmtiExport::at_single_stepping_point(THREAD,                          \
 192                                           istate->method(),                      \
 193                                           pc);                                   \
 194           RESET_LAST_JAVA_FRAME();                                               \
 195           CACHE_STATE();                                                         \
 196           if (THREAD->pop_frame_pending() &&                                     \
 197               !THREAD->pop_frame_in_process()) {                                 \
 198             goto handle_Pop_Frame;                                               \
 199           }                                                                      \
 200           opcode = *pc;                                                          \
 201         }                                                                        \
 202       }                                                                          \
 203 }
 204 #else
 205 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 206 #endif
 207 
 208 /*
 209  * CONTINUE - Macro for executing the next opcode.
 210  */
 211 #undef CONTINUE
 212 #ifdef USELABELS
 213 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 214 // initialization (which is is the initialization of the table pointer...)
 215 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 216 #define CONTINUE {                              \
 217         opcode = *pc;                           \
 218         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 219         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 220         DISPATCH(opcode);                       \
 221     }
 222 #else
 223 #ifdef PREFETCH_OPCCODE
 224 #define CONTINUE {                              \
 225         opcode = *pc;                           \
 226         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 227         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 228         continue;                               \
 229     }
 230 #else
 231 #define CONTINUE {                              \
 232         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 233         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 234         continue;                               \
 235     }
 236 #endif
 237 #endif
 238 
 239 
 240 #define UPDATE_PC(opsize) {pc += opsize; }
 241 /*
 242  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 243  */
 244 #undef UPDATE_PC_AND_TOS
 245 #define UPDATE_PC_AND_TOS(opsize, stack) \
 246     {pc += opsize; MORE_STACK(stack); }
 247 
 248 /*
 249  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 250  * and executing the next opcode. It's somewhat similar to the combination
 251  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 252  */
 253 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 254 #ifdef USELABELS
 255 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 256         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 257         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 258         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 259         DISPATCH(opcode);                                       \
 260     }
 261 
 262 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 263         pc += opsize; opcode = *pc;                             \
 264         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 265         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 266         DISPATCH(opcode);                                       \
 267     }
 268 #else
 269 #ifdef PREFETCH_OPCCODE
 270 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 271         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 272         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 273         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 274         goto do_continue;                                       \
 275     }
 276 
 277 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 278         pc += opsize; opcode = *pc;                             \
 279         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 280         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 281         goto do_continue;                                       \
 282     }
 283 #else
 284 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 285         pc += opsize; MORE_STACK(stack);                \
 286         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 287         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 288         goto do_continue;                               \
 289     }
 290 
 291 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 292         pc += opsize;                                   \
 293         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 294         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 295         goto do_continue;                               \
 296     }
 297 #endif /* PREFETCH_OPCCODE */
 298 #endif /* USELABELS */
 299 
 300 // About to call a new method, update the save the adjusted pc and return to frame manager
 301 #define UPDATE_PC_AND_RETURN(opsize)  \
 302    DECACHE_TOS();                     \
 303    istate->set_bcp(pc+opsize);        \
 304    return;
 305 
 306 
 307 #define METHOD istate->method()
 308 #define GET_METHOD_COUNTERS(res)    \
 309   res = METHOD->method_counters();  \
 310   if (res == NULL) {                \
 311     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 312   }
 313 
 314 #define OSR_REQUEST(res, branch_pc) \
 315             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 316 /*
 317  * For those opcodes that need to have a GC point on a backwards branch
 318  */
 319 
 320 // Backedge counting is kind of strange. The asm interpreter will increment
 321 // the backedge counter as a separate counter but it does it's comparisons
 322 // to the sum (scaled) of invocation counter and backedge count to make
 323 // a decision. Seems kind of odd to sum them together like that
 324 
 325 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 326 
 327 
 328 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 329     if ((skip) <= 0) {                                                                              \
 330       MethodCounters* mcs;                                                                          \
 331       GET_METHOD_COUNTERS(mcs);                                                                     \
 332       if (UseLoopCounter) {                                                                         \
 333         bool do_OSR = UseOnStackReplacement;                                                        \
 334         mcs->backedge_counter()->increment();                                                       \
 335         if (do_OSR) do_OSR = mcs->backedge_counter()->reached_InvocationLimit();                    \
 336         if (do_OSR) {                                                                               \
 337           nmethod*  osr_nmethod;                                                                    \
 338           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 339           if (osr_nmethod != NULL && osr_nmethod->osr_entry_bci() != InvalidOSREntryBci) {          \
 340             intptr_t* buf = SharedRuntime::OSR_migration_begin(THREAD);                             \
 341             istate->set_msg(do_osr);                                                                \
 342             istate->set_osr_buf((address)buf);                                                      \
 343             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 344             return;                                                                                 \
 345           }                                                                                         \
 346         }                                                                                           \
 347       }  /* UseCompiler ... */                                                                      \
 348       mcs->invocation_counter()->increment();                                                       \
 349       SAFEPOINT;                                                                                    \
 350     }
 351 
 352 /*
 353  * For those opcodes that need to have a GC point on a backwards branch
 354  */
 355 
 356 /*
 357  * Macros for caching and flushing the interpreter state. Some local
 358  * variables need to be flushed out to the frame before we do certain
 359  * things (like pushing frames or becomming gc safe) and some need to
 360  * be recached later (like after popping a frame). We could use one
 361  * macro to cache or decache everything, but this would be less then
 362  * optimal because we don't always need to cache or decache everything
 363  * because some things we know are already cached or decached.
 364  */
 365 #undef DECACHE_TOS
 366 #undef CACHE_TOS
 367 #undef CACHE_PREV_TOS
 368 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 369 
 370 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 371 
 372 #undef DECACHE_PC
 373 #undef CACHE_PC
 374 #define DECACHE_PC()    istate->set_bcp(pc);
 375 #define CACHE_PC()      pc = istate->bcp();
 376 #define CACHE_CP()      cp = istate->constants();
 377 #define CACHE_LOCALS()  locals = istate->locals();
 378 #undef CACHE_FRAME
 379 #define CACHE_FRAME()
 380 
 381 /*
 382  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 383  * passed is a null ref.
 384  * On some architectures/platforms it should be possible to do this implicitly
 385  */
 386 #undef CHECK_NULL
 387 #define CHECK_NULL(obj_)                                                 \
 388     if ((obj_) == NULL) {                                                \
 389         VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), "");  \
 390     }                                                                    \
 391     VERIFY_OOP(obj_)
 392 
 393 #define VMdoubleConstZero() 0.0
 394 #define VMdoubleConstOne() 1.0
 395 #define VMlongConstZero() (max_jlong-max_jlong)
 396 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 397 
 398 /*
 399  * Alignment
 400  */
 401 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 402 
 403 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 404 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 405 
 406 // Reload interpreter state after calling the VM or a possible GC
 407 #define CACHE_STATE()   \
 408         CACHE_TOS();    \
 409         CACHE_PC();     \
 410         CACHE_CP();     \
 411         CACHE_LOCALS();
 412 
 413 // Call the VM don't check for pending exceptions
 414 #define CALL_VM_NOCHECK(func)                                     \
 415           DECACHE_STATE();                                        \
 416           SET_LAST_JAVA_FRAME();                                  \
 417           func;                                                   \
 418           RESET_LAST_JAVA_FRAME();                                \
 419           CACHE_STATE();                                          \
 420           if (THREAD->pop_frame_pending() &&                      \
 421               !THREAD->pop_frame_in_process()) {                  \
 422             goto handle_Pop_Frame;                                \
 423           }
 424 
 425 // Call the VM and check for pending exceptions
 426 #define CALL_VM(func, label) {                                    \
 427           CALL_VM_NOCHECK(func);                                  \
 428           if (THREAD->has_pending_exception()) goto label;        \
 429         }
 430 
 431 /*
 432  * BytecodeInterpreter::run(interpreterState istate)
 433  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 434  *
 435  * The real deal. This is where byte codes actually get interpreted.
 436  * Basically it's a big while loop that iterates until we return from
 437  * the method passed in.
 438  *
 439  * The runWithChecks is used if JVMTI is enabled.
 440  *
 441  */
 442 #if defined(VM_JVMTI)
 443 void
 444 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 445 #else
 446 void
 447 BytecodeInterpreter::run(interpreterState istate) {
 448 #endif
 449 
 450   // In order to simplify some tests based on switches set at runtime
 451   // we invoke the interpreter a single time after switches are enabled
 452   // and set simpler to to test variables rather than method calls or complex
 453   // boolean expressions.
 454 
 455   static int initialized = 0;
 456   static int checkit = 0;
 457   static intptr_t* c_addr = NULL;
 458   static intptr_t  c_value;
 459 
 460   if (checkit && *c_addr != c_value) {
 461     os::breakpoint();
 462   }
 463 #ifdef VM_JVMTI
 464   static bool _jvmti_interp_events = 0;
 465 #endif
 466 
 467   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 468 
 469 #ifdef ASSERT
 470   if (istate->_msg != initialize) {
 471     // We have a problem here if we are running with a pre-hsx24 JDK (for example during bootstrap)
 472     // because in that case, EnableInvokeDynamic is true by default but will be later switched off
 473     // if java_lang_invoke_MethodHandle::compute_offsets() detects that the JDK only has the classes
 474     // for the old JSR292 implementation.
 475     // This leads to a situation where 'istate->_stack_limit' always accounts for
 476     // methodOopDesc::extra_stack_entries() because it is computed in
 477     // CppInterpreterGenerator::generate_compute_interpreter_state() which was generated while
 478     // EnableInvokeDynamic was still true. On the other hand, istate->_method->max_stack() doesn't
 479     // account for extra_stack_entries() anymore because at the time when it is called
 480     // EnableInvokeDynamic was already set to false.
 481     // So we have a second version of the assertion which handles the case where EnableInvokeDynamic was
 482     // switched off because of the wrong classes.
 483     if (EnableInvokeDynamic || FLAG_IS_CMDLINE(EnableInvokeDynamic)) {
 484       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 485     } else {
 486       const int extra_stack_entries = Method::extra_stack_entries_for_jsr292;
 487       assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + extra_stack_entries
 488                                                                                                + 1), "bad stack limit");
 489     }
 490 #ifndef SHARK
 491     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 492 #endif // !SHARK
 493   }
 494   // Verify linkages.
 495   interpreterState l = istate;
 496   do {
 497     assert(l == l->_self_link, "bad link");
 498     l = l->_prev_link;
 499   } while (l != NULL);
 500   // Screwups with stack management usually cause us to overwrite istate
 501   // save a copy so we can verify it.
 502   interpreterState orig = istate;
 503 #endif
 504 
 505   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 506   register address          pc = istate->bcp();
 507   register jubyte opcode;
 508   register intptr_t*        locals = istate->locals();
 509   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 510 #ifdef LOTS_OF_REGS
 511   register JavaThread*      THREAD = istate->thread();
 512 #else
 513 #undef THREAD
 514 #define THREAD istate->thread()
 515 #endif
 516 
 517 #ifdef USELABELS
 518   const static void* const opclabels_data[256] = {
 519 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 520 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 521 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 522 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 523 
 524 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 525 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 526 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 527 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 528 
 529 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 530 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 531 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 532 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 533 
 534 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 535 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 536 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 537 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 538 
 539 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 540 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 541 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 542 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 543 
 544 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 545 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 546 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 547 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 548 
 549 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 550 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 551 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 552 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 553 
 554 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 555 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 556 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 557 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 558 
 559 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 560 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 561 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 562 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 563 
 564 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 565 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 566 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 567 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 568 
 569 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 570 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 571 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 572 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 573 
 574 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 575 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 576 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 577 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 578 
 579 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 580 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 581 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 582 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 583 
 584 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 585 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 586 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 588 
 589 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 590 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,  &&opc_return_register_finalizer,
 591 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,      &&opc_default,
 592 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 593 
 594 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 595 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 596 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 597 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 598   };
 599   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 600 #endif /* USELABELS */
 601 
 602 #ifdef ASSERT
 603   // this will trigger a VERIFY_OOP on entry
 604   if (istate->msg() != initialize && ! METHOD->is_static()) {
 605     oop rcvr = LOCALS_OBJECT(0);
 606     VERIFY_OOP(rcvr);
 607   }
 608 #endif
 609 // #define HACK
 610 #ifdef HACK
 611   bool interesting = false;
 612 #endif // HACK
 613 
 614   /* QQQ this should be a stack method so we don't know actual direction */
 615   guarantee(istate->msg() == initialize ||
 616          topOfStack >= istate->stack_limit() &&
 617          topOfStack < istate->stack_base(),
 618          "Stack top out of range");
 619 
 620   switch (istate->msg()) {
 621     case initialize: {
 622       if (initialized++) ShouldNotReachHere(); // Only one initialize call
 623       _compiling = (UseCompiler || CountCompiledCalls);
 624 #ifdef VM_JVMTI
 625       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 626 #endif
 627       return;
 628     }
 629     break;
 630     case method_entry: {
 631       THREAD->set_do_not_unlock();
 632       // count invocations
 633       assert(initialized, "Interpreter not initialized");
 634       if (_compiling) {
 635         MethodCounters* mcs;
 636         GET_METHOD_COUNTERS(mcs);
 637         if (ProfileInterpreter) {
 638           METHOD->increment_interpreter_invocation_count(THREAD);
 639         }
 640         mcs->invocation_counter()->increment();
 641         if (mcs->invocation_counter()->reached_InvocationLimit()) {
 642             CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 643 
 644             // We no longer retry on a counter overflow
 645 
 646             // istate->set_msg(retry_method);
 647             // THREAD->clr_do_not_unlock();
 648             // return;
 649         }
 650         SAFEPOINT;
 651       }
 652 
 653       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 654         // initialize
 655         os::breakpoint();
 656       }
 657 
 658 #ifdef HACK
 659       {
 660         ResourceMark rm;
 661         char *method_name = istate->method()->name_and_sig_as_C_string();
 662         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 663           tty->print_cr("entering: depth %d bci: %d",
 664                          (istate->_stack_base - istate->_stack),
 665                          istate->_bcp - istate->_method->code_base());
 666           interesting = true;
 667         }
 668       }
 669 #endif // HACK
 670 
 671 
 672       // lock method if synchronized
 673       if (METHOD->is_synchronized()) {
 674         // oop rcvr = locals[0].j.r;
 675         oop rcvr;
 676         if (METHOD->is_static()) {
 677           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 678         } else {
 679           rcvr = LOCALS_OBJECT(0);
 680           VERIFY_OOP(rcvr);
 681         }
 682         // The initial monitor is ours for the taking
 683         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 684         BasicObjectLock* mon = &istate->monitor_base()[-1];
 685         mon->set_obj(rcvr);
 686         bool success = false;
 687         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 688         markOop mark = rcvr->mark();
 689         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 690         // Implies UseBiasedLocking.
 691         if (mark->has_bias_pattern()) {
 692           uintptr_t thread_ident;
 693           uintptr_t anticipated_bias_locking_value;
 694           thread_ident = (uintptr_t)istate->thread();
 695           anticipated_bias_locking_value =
 696             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 697             ~((uintptr_t) markOopDesc::age_mask_in_place);
 698 
 699           if (anticipated_bias_locking_value == 0) {
 700             // Already biased towards this thread, nothing to do.
 701             if (PrintBiasedLockingStatistics) {
 702               (* BiasedLocking::biased_lock_entry_count_addr())++;
 703             }
 704             success = true;
 705           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 706             // Try to revoke bias.
 707             markOop header = rcvr->klass()->prototype_header();
 708             if (hash != markOopDesc::no_hash) {
 709               header = header->copy_set_hash(hash);
 710             }
 711             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 712               if (PrintBiasedLockingStatistics)
 713                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 714             }
 715           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 716             // Try to rebias.
 717             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 718             if (hash != markOopDesc::no_hash) {
 719               new_header = new_header->copy_set_hash(hash);
 720             }
 721             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 722               if (PrintBiasedLockingStatistics) {
 723                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 724               }
 725             } else {
 726               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 727             }
 728             success = true;
 729           } else {
 730             // Try to bias towards thread in case object is anonymously biased.
 731             markOop header = (markOop) ((uintptr_t) mark &
 732                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 733                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 734             if (hash != markOopDesc::no_hash) {
 735               header = header->copy_set_hash(hash);
 736             }
 737             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 738             // Debugging hint.
 739             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 740             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 741               if (PrintBiasedLockingStatistics) {
 742                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 743               }
 744             } else {
 745               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 746             }
 747             success = true;
 748           }
 749         }
 750 
 751         // Traditional lightweight locking.
 752         if (!success) {
 753           markOop displaced = rcvr->mark()->set_unlocked();
 754           mon->lock()->set_displaced_header(displaced);
 755           bool call_vm = UseHeavyMonitors;
 756           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 757             // Is it simple recursive case?
 758             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 759               mon->lock()->set_displaced_header(NULL);
 760             } else {
 761               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 762             }
 763           }
 764         }
 765       }
 766       THREAD->clr_do_not_unlock();
 767 
 768       // Notify jvmti
 769 #ifdef VM_JVMTI
 770       if (_jvmti_interp_events) {
 771         // Whenever JVMTI puts a thread in interp_only_mode, method
 772         // entry/exit events are sent for that thread to track stack depth.
 773         if (THREAD->is_interp_only_mode()) {
 774           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 775                   handle_exception);
 776         }
 777       }
 778 #endif /* VM_JVMTI */
 779 
 780       goto run;
 781     }
 782 
 783     case popping_frame: {
 784       // returned from a java call to pop the frame, restart the call
 785       // clear the message so we don't confuse ourselves later
 786       ShouldNotReachHere();  // we don't return this.
 787       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 788       istate->set_msg(no_request);
 789       THREAD->clr_pop_frame_in_process();
 790       goto run;
 791     }
 792 
 793     case method_resume: {
 794       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 795         // resume
 796         os::breakpoint();
 797       }
 798 #ifdef HACK
 799       {
 800         ResourceMark rm;
 801         char *method_name = istate->method()->name_and_sig_as_C_string();
 802         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 803           tty->print_cr("resume: depth %d bci: %d",
 804                          (istate->_stack_base - istate->_stack) ,
 805                          istate->_bcp - istate->_method->code_base());
 806           interesting = true;
 807         }
 808       }
 809 #endif // HACK
 810       // returned from a java call, continue executing.
 811       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 812         goto handle_Pop_Frame;
 813       }
 814 
 815       if (THREAD->has_pending_exception()) goto handle_exception;
 816       // Update the pc by the saved amount of the invoke bytecode size
 817       UPDATE_PC(istate->bcp_advance());
 818       goto run;
 819     }
 820 
 821     case deopt_resume2: {
 822       // Returned from an opcode that will reexecute. Deopt was
 823       // a result of a PopFrame request.
 824       //
 825       goto run;
 826     }
 827 
 828     case deopt_resume: {
 829       // Returned from an opcode that has completed. The stack has
 830       // the result all we need to do is skip across the bytecode
 831       // and continue (assuming there is no exception pending)
 832       //
 833       // compute continuation length
 834       //
 835       // Note: it is possible to deopt at a return_register_finalizer opcode
 836       // because this requires entering the vm to do the registering. While the
 837       // opcode is complete we can't advance because there are no more opcodes
 838       // much like trying to deopt at a poll return. In that has we simply
 839       // get out of here
 840       //
 841       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 842         // this will do the right thing even if an exception is pending.
 843         goto handle_return;
 844       }
 845       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 846       if (THREAD->has_pending_exception()) goto handle_exception;
 847       goto run;
 848     }
 849     case got_monitors: {
 850       // continue locking now that we have a monitor to use
 851       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 852       oop lockee = STACK_OBJECT(-1);
 853       VERIFY_OOP(lockee);
 854       // derefing's lockee ought to provoke implicit null check
 855       // find a free monitor
 856       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 857       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 858       entry->set_obj(lockee);
 859       bool success = false;
 860       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 861 
 862       markOop mark = lockee->mark();
 863       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 864       // implies UseBiasedLocking
 865       if (mark->has_bias_pattern()) {
 866         uintptr_t thread_ident;
 867         uintptr_t anticipated_bias_locking_value;
 868         thread_ident = (uintptr_t)istate->thread();
 869         anticipated_bias_locking_value =
 870           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 871           ~((uintptr_t) markOopDesc::age_mask_in_place);
 872 
 873         if  (anticipated_bias_locking_value == 0) {
 874           // already biased towards this thread, nothing to do
 875           if (PrintBiasedLockingStatistics) {
 876             (* BiasedLocking::biased_lock_entry_count_addr())++;
 877           }
 878           success = true;
 879         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 880           // try revoke bias
 881           markOop header = lockee->klass()->prototype_header();
 882           if (hash != markOopDesc::no_hash) {
 883             header = header->copy_set_hash(hash);
 884           }
 885           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 886             if (PrintBiasedLockingStatistics) {
 887               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 888             }
 889           }
 890         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 891           // try rebias
 892           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 893           if (hash != markOopDesc::no_hash) {
 894                 new_header = new_header->copy_set_hash(hash);
 895           }
 896           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 897             if (PrintBiasedLockingStatistics) {
 898               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 899             }
 900           } else {
 901             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 902           }
 903           success = true;
 904         } else {
 905           // try to bias towards thread in case object is anonymously biased
 906           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 907                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 908           if (hash != markOopDesc::no_hash) {
 909             header = header->copy_set_hash(hash);
 910           }
 911           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 912           // debugging hint
 913           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 914           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 915             if (PrintBiasedLockingStatistics) {
 916               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 917             }
 918           } else {
 919             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 920           }
 921           success = true;
 922         }
 923       }
 924 
 925       // traditional lightweight locking
 926       if (!success) {
 927         markOop displaced = lockee->mark()->set_unlocked();
 928         entry->lock()->set_displaced_header(displaced);
 929         bool call_vm = UseHeavyMonitors;
 930         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 931           // Is it simple recursive case?
 932           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 933             entry->lock()->set_displaced_header(NULL);
 934           } else {
 935             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 936           }
 937         }
 938       }
 939       UPDATE_PC_AND_TOS(1, -1);
 940       goto run;
 941     }
 942     default: {
 943       fatal("Unexpected message from frame manager");
 944     }
 945   }
 946 
 947 run:
 948 
 949   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 950   DEBUGGER_SINGLE_STEP_NOTIFY();
 951 #ifdef PREFETCH_OPCCODE
 952   opcode = *pc;  /* prefetch first opcode */
 953 #endif
 954 
 955 #ifndef USELABELS
 956   while (1)
 957 #endif
 958   {
 959 #ifndef PREFETCH_OPCCODE
 960       opcode = *pc;
 961 #endif
 962       // Seems like this happens twice per opcode. At worst this is only
 963       // need at entry to the loop.
 964       // DEBUGGER_SINGLE_STEP_NOTIFY();
 965       /* Using this labels avoids double breakpoints when quickening and
 966        * when returing from transition frames.
 967        */
 968   opcode_switch:
 969       assert(istate == orig, "Corrupted istate");
 970       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 971       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 972       assert(topOfStack < istate->stack_base(), "Stack underrun");
 973 
 974 #ifdef USELABELS
 975       DISPATCH(opcode);
 976 #else
 977       switch (opcode)
 978 #endif
 979       {
 980       CASE(_nop):
 981           UPDATE_PC_AND_CONTINUE(1);
 982 
 983           /* Push miscellaneous constants onto the stack. */
 984 
 985       CASE(_aconst_null):
 986           SET_STACK_OBJECT(NULL, 0);
 987           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 988 
 989 #undef  OPC_CONST_n
 990 #define OPC_CONST_n(opcode, const_type, value)                          \
 991       CASE(opcode):                                                     \
 992           SET_STACK_ ## const_type(value, 0);                           \
 993           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 994 
 995           OPC_CONST_n(_iconst_m1,   INT,       -1);
 996           OPC_CONST_n(_iconst_0,    INT,        0);
 997           OPC_CONST_n(_iconst_1,    INT,        1);
 998           OPC_CONST_n(_iconst_2,    INT,        2);
 999           OPC_CONST_n(_iconst_3,    INT,        3);
1000           OPC_CONST_n(_iconst_4,    INT,        4);
1001           OPC_CONST_n(_iconst_5,    INT,        5);
1002           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1003           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1004           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1005 
1006 #undef  OPC_CONST2_n
1007 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1008       CASE(_##opcname):                                                 \
1009       {                                                                 \
1010           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1011           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1012       }
1013          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1014          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1015          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1016          OPC_CONST2_n(lconst_1, One,  long, LONG);
1017 
1018          /* Load constant from constant pool: */
1019 
1020           /* Push a 1-byte signed integer value onto the stack. */
1021       CASE(_bipush):
1022           SET_STACK_INT((jbyte)(pc[1]), 0);
1023           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1024 
1025           /* Push a 2-byte signed integer constant onto the stack. */
1026       CASE(_sipush):
1027           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1028           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1029 
1030           /* load from local variable */
1031 
1032       CASE(_aload):
1033           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1034           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1035           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1036 
1037       CASE(_iload):
1038       CASE(_fload):
1039           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1040           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1041 
1042       CASE(_lload):
1043           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1044           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1045 
1046       CASE(_dload):
1047           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1048           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1049 
1050 #undef  OPC_LOAD_n
1051 #define OPC_LOAD_n(num)                                                 \
1052       CASE(_aload_##num):                                               \
1053           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1054           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1055           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1056                                                                         \
1057       CASE(_iload_##num):                                               \
1058       CASE(_fload_##num):                                               \
1059           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1060           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1061                                                                         \
1062       CASE(_lload_##num):                                               \
1063           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1064           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1065       CASE(_dload_##num):                                               \
1066           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1067           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1068 
1069           OPC_LOAD_n(0);
1070           OPC_LOAD_n(1);
1071           OPC_LOAD_n(2);
1072           OPC_LOAD_n(3);
1073 
1074           /* store to a local variable */
1075 
1076       CASE(_astore):
1077           astore(topOfStack, -1, locals, pc[1]);
1078           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1079 
1080       CASE(_istore):
1081       CASE(_fstore):
1082           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1083           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1084 
1085       CASE(_lstore):
1086           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1087           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1088 
1089       CASE(_dstore):
1090           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1091           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1092 
1093       CASE(_wide): {
1094           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1095 
1096           opcode = pc[1];
1097           switch(opcode) {
1098               case Bytecodes::_aload:
1099                   VERIFY_OOP(LOCALS_OBJECT(reg));
1100                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1101                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1102 
1103               case Bytecodes::_iload:
1104               case Bytecodes::_fload:
1105                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1106                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1107 
1108               case Bytecodes::_lload:
1109                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1110                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1111 
1112               case Bytecodes::_dload:
1113                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1114                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1115 
1116               case Bytecodes::_astore:
1117                   astore(topOfStack, -1, locals, reg);
1118                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1119 
1120               case Bytecodes::_istore:
1121               case Bytecodes::_fstore:
1122                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1123                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1124 
1125               case Bytecodes::_lstore:
1126                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1127                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1128 
1129               case Bytecodes::_dstore:
1130                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1131                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1132 
1133               case Bytecodes::_iinc: {
1134                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1135                   // Be nice to see what this generates.... QQQ
1136                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1137                   UPDATE_PC_AND_CONTINUE(6);
1138               }
1139               case Bytecodes::_ret:
1140                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1141                   UPDATE_PC_AND_CONTINUE(0);
1142               default:
1143                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1144           }
1145       }
1146 
1147 
1148 #undef  OPC_STORE_n
1149 #define OPC_STORE_n(num)                                                \
1150       CASE(_astore_##num):                                              \
1151           astore(topOfStack, -1, locals, num);                          \
1152           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1153       CASE(_istore_##num):                                              \
1154       CASE(_fstore_##num):                                              \
1155           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1156           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1157 
1158           OPC_STORE_n(0);
1159           OPC_STORE_n(1);
1160           OPC_STORE_n(2);
1161           OPC_STORE_n(3);
1162 
1163 #undef  OPC_DSTORE_n
1164 #define OPC_DSTORE_n(num)                                               \
1165       CASE(_dstore_##num):                                              \
1166           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1167           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1168       CASE(_lstore_##num):                                              \
1169           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1170           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1171 
1172           OPC_DSTORE_n(0);
1173           OPC_DSTORE_n(1);
1174           OPC_DSTORE_n(2);
1175           OPC_DSTORE_n(3);
1176 
1177           /* stack pop, dup, and insert opcodes */
1178 
1179 
1180       CASE(_pop):                /* Discard the top item on the stack */
1181           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1182 
1183 
1184       CASE(_pop2):               /* Discard the top 2 items on the stack */
1185           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1186 
1187 
1188       CASE(_dup):               /* Duplicate the top item on the stack */
1189           dup(topOfStack);
1190           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1191 
1192       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1193           dup2(topOfStack);
1194           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1195 
1196       CASE(_dup_x1):    /* insert top word two down */
1197           dup_x1(topOfStack);
1198           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1199 
1200       CASE(_dup_x2):    /* insert top word three down  */
1201           dup_x2(topOfStack);
1202           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1203 
1204       CASE(_dup2_x1):   /* insert top 2 slots three down */
1205           dup2_x1(topOfStack);
1206           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1207 
1208       CASE(_dup2_x2):   /* insert top 2 slots four down */
1209           dup2_x2(topOfStack);
1210           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1211 
1212       CASE(_swap): {        /* swap top two elements on the stack */
1213           swap(topOfStack);
1214           UPDATE_PC_AND_CONTINUE(1);
1215       }
1216 
1217           /* Perform various binary integer operations */
1218 
1219 #undef  OPC_INT_BINARY
1220 #define OPC_INT_BINARY(opcname, opname, test)                           \
1221       CASE(_i##opcname):                                                \
1222           if (test && (STACK_INT(-1) == 0)) {                           \
1223               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1224                             "/ by zero");                               \
1225           }                                                             \
1226           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1227                                       STACK_INT(-1)),                   \
1228                                       -2);                              \
1229           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1230       CASE(_l##opcname):                                                \
1231       {                                                                 \
1232           if (test) {                                                   \
1233             jlong l1 = STACK_LONG(-1);                                  \
1234             if (VMlongEqz(l1)) {                                        \
1235               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1236                             "/ by long zero");                          \
1237             }                                                           \
1238           }                                                             \
1239           /* First long at (-1,-2) next long at (-3,-4) */              \
1240           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1241                                         STACK_LONG(-1)),                \
1242                                         -3);                            \
1243           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1244       }
1245 
1246       OPC_INT_BINARY(add, Add, 0);
1247       OPC_INT_BINARY(sub, Sub, 0);
1248       OPC_INT_BINARY(mul, Mul, 0);
1249       OPC_INT_BINARY(and, And, 0);
1250       OPC_INT_BINARY(or,  Or,  0);
1251       OPC_INT_BINARY(xor, Xor, 0);
1252       OPC_INT_BINARY(div, Div, 1);
1253       OPC_INT_BINARY(rem, Rem, 1);
1254 
1255 
1256       /* Perform various binary floating number operations */
1257       /* On some machine/platforms/compilers div zero check can be implicit */
1258 
1259 #undef  OPC_FLOAT_BINARY
1260 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1261       CASE(_d##opcname): {                                                 \
1262           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1263                                             STACK_DOUBLE(-1)),             \
1264                                             -3);                           \
1265           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1266       }                                                                    \
1267       CASE(_f##opcname):                                                   \
1268           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1269                                           STACK_FLOAT(-1)),                \
1270                                           -2);                             \
1271           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1272 
1273 
1274      OPC_FLOAT_BINARY(add, Add);
1275      OPC_FLOAT_BINARY(sub, Sub);
1276      OPC_FLOAT_BINARY(mul, Mul);
1277      OPC_FLOAT_BINARY(div, Div);
1278      OPC_FLOAT_BINARY(rem, Rem);
1279 
1280       /* Shift operations
1281        * Shift left int and long: ishl, lshl
1282        * Logical shift right int and long w/zero extension: iushr, lushr
1283        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1284        */
1285 
1286 #undef  OPC_SHIFT_BINARY
1287 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1288       CASE(_i##opcname):                                                \
1289          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1290                                      STACK_INT(-1)),                    \
1291                                      -2);                               \
1292          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1293       CASE(_l##opcname):                                                \
1294       {                                                                 \
1295          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1296                                        STACK_INT(-1)),                  \
1297                                        -2);                             \
1298          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1299       }
1300 
1301       OPC_SHIFT_BINARY(shl, Shl);
1302       OPC_SHIFT_BINARY(shr, Shr);
1303       OPC_SHIFT_BINARY(ushr, Ushr);
1304 
1305      /* Increment local variable by constant */
1306       CASE(_iinc):
1307       {
1308           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1309           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1310           UPDATE_PC_AND_CONTINUE(3);
1311       }
1312 
1313      /* negate the value on the top of the stack */
1314 
1315       CASE(_ineg):
1316          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1317          UPDATE_PC_AND_CONTINUE(1);
1318 
1319       CASE(_fneg):
1320          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1321          UPDATE_PC_AND_CONTINUE(1);
1322 
1323       CASE(_lneg):
1324       {
1325          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1326          UPDATE_PC_AND_CONTINUE(1);
1327       }
1328 
1329       CASE(_dneg):
1330       {
1331          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1332          UPDATE_PC_AND_CONTINUE(1);
1333       }
1334 
1335       /* Conversion operations */
1336 
1337       CASE(_i2f):       /* convert top of stack int to float */
1338          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1339          UPDATE_PC_AND_CONTINUE(1);
1340 
1341       CASE(_i2l):       /* convert top of stack int to long */
1342       {
1343           // this is ugly QQQ
1344           jlong r = VMint2Long(STACK_INT(-1));
1345           MORE_STACK(-1); // Pop
1346           SET_STACK_LONG(r, 1);
1347 
1348           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1349       }
1350 
1351       CASE(_i2d):       /* convert top of stack int to double */
1352       {
1353           // this is ugly QQQ (why cast to jlong?? )
1354           jdouble r = (jlong)STACK_INT(-1);
1355           MORE_STACK(-1); // Pop
1356           SET_STACK_DOUBLE(r, 1);
1357 
1358           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1359       }
1360 
1361       CASE(_l2i):       /* convert top of stack long to int */
1362       {
1363           jint r = VMlong2Int(STACK_LONG(-1));
1364           MORE_STACK(-2); // Pop
1365           SET_STACK_INT(r, 0);
1366           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1367       }
1368 
1369       CASE(_l2f):   /* convert top of stack long to float */
1370       {
1371           jlong r = STACK_LONG(-1);
1372           MORE_STACK(-2); // Pop
1373           SET_STACK_FLOAT(VMlong2Float(r), 0);
1374           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1375       }
1376 
1377       CASE(_l2d):       /* convert top of stack long to double */
1378       {
1379           jlong r = STACK_LONG(-1);
1380           MORE_STACK(-2); // Pop
1381           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1382           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1383       }
1384 
1385       CASE(_f2i):  /* Convert top of stack float to int */
1386           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1387           UPDATE_PC_AND_CONTINUE(1);
1388 
1389       CASE(_f2l):  /* convert top of stack float to long */
1390       {
1391           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1392           MORE_STACK(-1); // POP
1393           SET_STACK_LONG(r, 1);
1394           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1395       }
1396 
1397       CASE(_f2d):  /* convert top of stack float to double */
1398       {
1399           jfloat f;
1400           jdouble r;
1401           f = STACK_FLOAT(-1);
1402           r = (jdouble) f;
1403           MORE_STACK(-1); // POP
1404           SET_STACK_DOUBLE(r, 1);
1405           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1406       }
1407 
1408       CASE(_d2i): /* convert top of stack double to int */
1409       {
1410           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1411           MORE_STACK(-2);
1412           SET_STACK_INT(r1, 0);
1413           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1414       }
1415 
1416       CASE(_d2f): /* convert top of stack double to float */
1417       {
1418           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1419           MORE_STACK(-2);
1420           SET_STACK_FLOAT(r1, 0);
1421           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1422       }
1423 
1424       CASE(_d2l): /* convert top of stack double to long */
1425       {
1426           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1427           MORE_STACK(-2);
1428           SET_STACK_LONG(r1, 1);
1429           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1430       }
1431 
1432       CASE(_i2b):
1433           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1434           UPDATE_PC_AND_CONTINUE(1);
1435 
1436       CASE(_i2c):
1437           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1438           UPDATE_PC_AND_CONTINUE(1);
1439 
1440       CASE(_i2s):
1441           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1442           UPDATE_PC_AND_CONTINUE(1);
1443 
1444       /* comparison operators */
1445 
1446 
1447 #define COMPARISON_OP(name, comparison)                                      \
1448       CASE(_if_icmp##name): {                                                \
1449           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1450                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1451           address branch_pc = pc;                                            \
1452           UPDATE_PC_AND_TOS(skip, -2);                                       \
1453           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1454           CONTINUE;                                                          \
1455       }                                                                      \
1456       CASE(_if##name): {                                                     \
1457           int skip = (STACK_INT(-1) comparison 0)                            \
1458                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1459           address branch_pc = pc;                                            \
1460           UPDATE_PC_AND_TOS(skip, -1);                                       \
1461           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1462           CONTINUE;                                                          \
1463       }
1464 
1465 #define COMPARISON_OP2(name, comparison)                                     \
1466       COMPARISON_OP(name, comparison)                                        \
1467       CASE(_if_acmp##name): {                                                \
1468           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1469                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1470           address branch_pc = pc;                                            \
1471           UPDATE_PC_AND_TOS(skip, -2);                                       \
1472           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1473           CONTINUE;                                                          \
1474       }
1475 
1476 #define NULL_COMPARISON_NOT_OP(name)                                         \
1477       CASE(_if##name): {                                                     \
1478           int skip = (!(STACK_OBJECT(-1) == NULL))                           \
1479                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1480           address branch_pc = pc;                                            \
1481           UPDATE_PC_AND_TOS(skip, -1);                                       \
1482           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1483           CONTINUE;                                                          \
1484       }
1485 
1486 #define NULL_COMPARISON_OP(name)                                             \
1487       CASE(_if##name): {                                                     \
1488           int skip = ((STACK_OBJECT(-1) == NULL))                            \
1489                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1490           address branch_pc = pc;                                            \
1491           UPDATE_PC_AND_TOS(skip, -1);                                       \
1492           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1493           CONTINUE;                                                          \
1494       }
1495       COMPARISON_OP(lt, <);
1496       COMPARISON_OP(gt, >);
1497       COMPARISON_OP(le, <=);
1498       COMPARISON_OP(ge, >=);
1499       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1500       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1501       NULL_COMPARISON_OP(null);
1502       NULL_COMPARISON_NOT_OP(nonnull);
1503 
1504       /* Goto pc at specified offset in switch table. */
1505 
1506       CASE(_tableswitch): {
1507           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1508           int32_t  key  = STACK_INT(-1);
1509           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1510           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1511           int32_t  skip;
1512           key -= low;
1513           skip = ((uint32_t) key > (uint32_t)(high - low))
1514                       ? Bytes::get_Java_u4((address)&lpc[0])
1515                       : Bytes::get_Java_u4((address)&lpc[key + 3]);
1516           // Does this really need a full backedge check (osr?)
1517           address branch_pc = pc;
1518           UPDATE_PC_AND_TOS(skip, -1);
1519           DO_BACKEDGE_CHECKS(skip, branch_pc);
1520           CONTINUE;
1521       }
1522 
1523       /* Goto pc whose table entry matches specified key */
1524 
1525       CASE(_lookupswitch): {
1526           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1527           int32_t  key  = STACK_INT(-1);
1528           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1529           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1530           while (--npairs >= 0) {
1531               lpc += 2;
1532               if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1533                   skip = Bytes::get_Java_u4((address)&lpc[1]);
1534                   break;
1535               }
1536           }
1537           address branch_pc = pc;
1538           UPDATE_PC_AND_TOS(skip, -1);
1539           DO_BACKEDGE_CHECKS(skip, branch_pc);
1540           CONTINUE;
1541       }
1542 
1543       CASE(_fcmpl):
1544       CASE(_fcmpg):
1545       {
1546           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1547                                         STACK_FLOAT(-1),
1548                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1549                         -2);
1550           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1551       }
1552 
1553       CASE(_dcmpl):
1554       CASE(_dcmpg):
1555       {
1556           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1557                                   STACK_DOUBLE(-1),
1558                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1559           MORE_STACK(-4); // Pop
1560           SET_STACK_INT(r, 0);
1561           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1562       }
1563 
1564       CASE(_lcmp):
1565       {
1566           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1567           MORE_STACK(-4);
1568           SET_STACK_INT(r, 0);
1569           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1570       }
1571 
1572 
1573       /* Return from a method */
1574 
1575       CASE(_areturn):
1576       CASE(_ireturn):
1577       CASE(_freturn):
1578       {
1579           // Allow a safepoint before returning to frame manager.
1580           SAFEPOINT;
1581 
1582           goto handle_return;
1583       }
1584 
1585       CASE(_lreturn):
1586       CASE(_dreturn):
1587       {
1588           // Allow a safepoint before returning to frame manager.
1589           SAFEPOINT;
1590           goto handle_return;
1591       }
1592 
1593       CASE(_return_register_finalizer): {
1594 
1595           oop rcvr = LOCALS_OBJECT(0);
1596           VERIFY_OOP(rcvr);
1597           if (rcvr->klass()->has_finalizer()) {
1598             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1599           }
1600           goto handle_return;
1601       }
1602       CASE(_return): {
1603 
1604           // Allow a safepoint before returning to frame manager.
1605           SAFEPOINT;
1606           goto handle_return;
1607       }
1608 
1609       /* Array access byte-codes */
1610 
1611       /* Every array access byte-code starts out like this */
1612 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1613 #define ARRAY_INTRO(arrayOff)                                                  \
1614       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1615       jint     index  = STACK_INT(arrayOff + 1);                               \
1616       char message[jintAsStringSize];                                          \
1617       CHECK_NULL(arrObj);                                                      \
1618       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1619           sprintf(message, "%d", index);                                       \
1620           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1621                         message);                                              \
1622       }
1623 
1624       /* 32-bit loads. These handle conversion from < 32-bit types */
1625 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1626       {                                                                               \
1627           ARRAY_INTRO(-2);                                                            \
1628           extra;                                                                      \
1629           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1630                            -2);                                                       \
1631           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1632       }
1633 
1634       /* 64-bit loads */
1635 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1636       {                                                                                    \
1637           ARRAY_INTRO(-2);                                                                 \
1638           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1639           extra;                                                                           \
1640           UPDATE_PC_AND_CONTINUE(1);                                            \
1641       }
1642 
1643       CASE(_iaload):
1644           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1645       CASE(_faload):
1646           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1647       CASE(_aaload): {
1648           ARRAY_INTRO(-2);
1649           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1650           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1651       }
1652       CASE(_baload):
1653           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1654       CASE(_caload):
1655           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1656       CASE(_saload):
1657           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1658       CASE(_laload):
1659           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1660       CASE(_daload):
1661           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1662 
1663       /* 32-bit stores. These handle conversion to < 32-bit types */
1664 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1665       {                                                                              \
1666           ARRAY_INTRO(-3);                                                           \
1667           extra;                                                                     \
1668           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1669           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1670       }
1671 
1672       /* 64-bit stores */
1673 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1674       {                                                                              \
1675           ARRAY_INTRO(-4);                                                           \
1676           extra;                                                                     \
1677           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1678           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1679       }
1680 
1681       CASE(_iastore):
1682           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1683       CASE(_fastore):
1684           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1685       /*
1686        * This one looks different because of the assignability check
1687        */
1688       CASE(_aastore): {
1689           oop rhsObject = STACK_OBJECT(-1);
1690           VERIFY_OOP(rhsObject);
1691           ARRAY_INTRO( -3);
1692           // arrObj, index are set
1693           if (rhsObject != NULL) {
1694             /* Check assignability of rhsObject into arrObj */
1695             Klass* rhsKlassOop = rhsObject->klass(); // EBX (subclass)
1696             Klass* elemKlassOop = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1697             //
1698             // Check for compatibilty. This check must not GC!!
1699             // Seems way more expensive now that we must dispatch
1700             //
1701             if (rhsKlassOop != elemKlassOop && !rhsKlassOop->is_subtype_of(elemKlassOop)) { // ebx->is...
1702               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1703             }
1704           }
1705           ((objArrayOopDesc *) arrObj)->obj_at_put(index, rhsObject);
1706           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1707       }
1708       CASE(_bastore):
1709           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1710       CASE(_castore):
1711           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1712       CASE(_sastore):
1713           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1714       CASE(_lastore):
1715           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1716       CASE(_dastore):
1717           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1718 
1719       CASE(_arraylength):
1720       {
1721           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1722           CHECK_NULL(ary);
1723           SET_STACK_INT(ary->length(), -1);
1724           UPDATE_PC_AND_CONTINUE(1);
1725       }
1726 
1727       /* monitorenter and monitorexit for locking/unlocking an object */
1728 
1729       CASE(_monitorenter): {
1730         oop lockee = STACK_OBJECT(-1);
1731         // derefing's lockee ought to provoke implicit null check
1732         CHECK_NULL(lockee);
1733         // find a free monitor or one already allocated for this object
1734         // if we find a matching object then we need a new monitor
1735         // since this is recursive enter
1736         BasicObjectLock* limit = istate->monitor_base();
1737         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1738         BasicObjectLock* entry = NULL;
1739         while (most_recent != limit ) {
1740           if (most_recent->obj() == NULL) entry = most_recent;
1741           else if (most_recent->obj() == lockee) break;
1742           most_recent++;
1743         }
1744         if (entry != NULL) {
1745           entry->set_obj(lockee);
1746           int success = false;
1747           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1748 
1749           markOop mark = lockee->mark();
1750           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1751           // implies UseBiasedLocking
1752           if (mark->has_bias_pattern()) {
1753             uintptr_t thread_ident;
1754             uintptr_t anticipated_bias_locking_value;
1755             thread_ident = (uintptr_t)istate->thread();
1756             anticipated_bias_locking_value =
1757               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1758               ~((uintptr_t) markOopDesc::age_mask_in_place);
1759 
1760             if  (anticipated_bias_locking_value == 0) {
1761               // already biased towards this thread, nothing to do
1762               if (PrintBiasedLockingStatistics) {
1763                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1764               }
1765               success = true;
1766             }
1767             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1768               // try revoke bias
1769               markOop header = lockee->klass()->prototype_header();
1770               if (hash != markOopDesc::no_hash) {
1771                 header = header->copy_set_hash(hash);
1772               }
1773               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1774                 if (PrintBiasedLockingStatistics)
1775                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1776               }
1777             }
1778             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1779               // try rebias
1780               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1781               if (hash != markOopDesc::no_hash) {
1782                 new_header = new_header->copy_set_hash(hash);
1783               }
1784               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1785                 if (PrintBiasedLockingStatistics)
1786                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1787               }
1788               else {
1789                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1790               }
1791               success = true;
1792             }
1793             else {
1794               // try to bias towards thread in case object is anonymously biased
1795               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1796                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1797                                                               epoch_mask_in_place));
1798               if (hash != markOopDesc::no_hash) {
1799                 header = header->copy_set_hash(hash);
1800               }
1801               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1802               // debugging hint
1803               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1804               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1805                 if (PrintBiasedLockingStatistics)
1806                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1807               }
1808               else {
1809                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1810               }
1811               success = true;
1812             }
1813           }
1814 
1815           // traditional lightweight locking
1816           if (!success) {
1817             markOop displaced = lockee->mark()->set_unlocked();
1818             entry->lock()->set_displaced_header(displaced);
1819             bool call_vm = UseHeavyMonitors;
1820             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1821               // Is it simple recursive case?
1822               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1823                 entry->lock()->set_displaced_header(NULL);
1824               } else {
1825                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1826               }
1827             }
1828           }
1829           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1830         } else {
1831           istate->set_msg(more_monitors);
1832           UPDATE_PC_AND_RETURN(0); // Re-execute
1833         }
1834       }
1835 
1836       CASE(_monitorexit): {
1837         oop lockee = STACK_OBJECT(-1);
1838         CHECK_NULL(lockee);
1839         // derefing's lockee ought to provoke implicit null check
1840         // find our monitor slot
1841         BasicObjectLock* limit = istate->monitor_base();
1842         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1843         while (most_recent != limit ) {
1844           if ((most_recent)->obj() == lockee) {
1845             BasicLock* lock = most_recent->lock();
1846             markOop header = lock->displaced_header();
1847             most_recent->set_obj(NULL);
1848             if (!lockee->mark()->has_bias_pattern()) {
1849               bool call_vm = UseHeavyMonitors;
1850               // If it isn't recursive we either must swap old header or call the runtime
1851               if (header != NULL || call_vm) {
1852                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1853                   // restore object for the slow case
1854                   most_recent->set_obj(lockee);
1855                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1856                 }
1857               }
1858             }
1859             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1860           }
1861           most_recent++;
1862         }
1863         // Need to throw illegal monitor state exception
1864         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1865         ShouldNotReachHere();
1866       }
1867 
1868       /* All of the non-quick opcodes. */
1869 
1870       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1871        *  constant pool index in the instruction.
1872        */
1873       CASE(_getfield):
1874       CASE(_getstatic):
1875         {
1876           u2 index;
1877           ConstantPoolCacheEntry* cache;
1878           index = Bytes::get_native_u2(pc+1);
1879 
1880           // QQQ Need to make this as inlined as possible. Probably need to
1881           // split all the bytecode cases out so c++ compiler has a chance
1882           // for constant prop to fold everything possible away.
1883 
1884           cache = cp->entry_at(index);
1885           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1886             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1887                     handle_exception);
1888             cache = cp->entry_at(index);
1889           }
1890 
1891 #ifdef VM_JVMTI
1892           if (_jvmti_interp_events) {
1893             int *count_addr;
1894             oop obj;
1895             // Check to see if a field modification watch has been set
1896             // before we take the time to call into the VM.
1897             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1898             if ( *count_addr > 0 ) {
1899               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1900                 obj = (oop)NULL;
1901               } else {
1902                 obj = (oop) STACK_OBJECT(-1);
1903                 VERIFY_OOP(obj);
1904               }
1905               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1906                                           obj,
1907                                           cache),
1908                                           handle_exception);
1909             }
1910           }
1911 #endif /* VM_JVMTI */
1912 
1913           oop obj;
1914           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1915             Klass* k = cache->f1_as_klass();
1916             obj = k->java_mirror();
1917             MORE_STACK(1);  // Assume single slot push
1918           } else {
1919             obj = (oop) STACK_OBJECT(-1);
1920             CHECK_NULL(obj);
1921           }
1922 
1923           //
1924           // Now store the result on the stack
1925           //
1926           TosState tos_type = cache->flag_state();
1927           int field_offset = cache->f2_as_index();
1928           if (cache->is_volatile()) {
1929             if (tos_type == atos) {
1930               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1931               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1932             } else if (tos_type == itos) {
1933               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1934             } else if (tos_type == ltos) {
1935               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1936               MORE_STACK(1);
1937             } else if (tos_type == btos) {
1938               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1939             } else if (tos_type == ctos) {
1940               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1941             } else if (tos_type == stos) {
1942               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1943             } else if (tos_type == ftos) {
1944               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1945             } else {
1946               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1947               MORE_STACK(1);
1948             }
1949           } else {
1950             if (tos_type == atos) {
1951               VERIFY_OOP(obj->obj_field(field_offset));
1952               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
1953             } else if (tos_type == itos) {
1954               SET_STACK_INT(obj->int_field(field_offset), -1);
1955             } else if (tos_type == ltos) {
1956               SET_STACK_LONG(obj->long_field(field_offset), 0);
1957               MORE_STACK(1);
1958             } else if (tos_type == btos) {
1959               SET_STACK_INT(obj->byte_field(field_offset), -1);
1960             } else if (tos_type == ctos) {
1961               SET_STACK_INT(obj->char_field(field_offset), -1);
1962             } else if (tos_type == stos) {
1963               SET_STACK_INT(obj->short_field(field_offset), -1);
1964             } else if (tos_type == ftos) {
1965               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1966             } else {
1967               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1968               MORE_STACK(1);
1969             }
1970           }
1971 
1972           UPDATE_PC_AND_CONTINUE(3);
1973          }
1974 
1975       CASE(_putfield):
1976       CASE(_putstatic):
1977         {
1978           u2 index = Bytes::get_native_u2(pc+1);
1979           ConstantPoolCacheEntry* cache = cp->entry_at(index);
1980           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1981             CALL_VM(InterpreterRuntime::resolve_get_put(THREAD, (Bytecodes::Code)opcode),
1982                     handle_exception);
1983             cache = cp->entry_at(index);
1984           }
1985 
1986 #ifdef VM_JVMTI
1987           if (_jvmti_interp_events) {
1988             int *count_addr;
1989             oop obj;
1990             // Check to see if a field modification watch has been set
1991             // before we take the time to call into the VM.
1992             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
1993             if ( *count_addr > 0 ) {
1994               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1995                 obj = (oop)NULL;
1996               }
1997               else {
1998                 if (cache->is_long() || cache->is_double()) {
1999                   obj = (oop) STACK_OBJECT(-3);
2000                 } else {
2001                   obj = (oop) STACK_OBJECT(-2);
2002                 }
2003                 VERIFY_OOP(obj);
2004               }
2005 
2006               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2007                                           obj,
2008                                           cache,
2009                                           (jvalue *)STACK_SLOT(-1)),
2010                                           handle_exception);
2011             }
2012           }
2013 #endif /* VM_JVMTI */
2014 
2015           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2016           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2017 
2018           oop obj;
2019           int count;
2020           TosState tos_type = cache->flag_state();
2021 
2022           count = -1;
2023           if (tos_type == ltos || tos_type == dtos) {
2024             --count;
2025           }
2026           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2027             Klass* k = cache->f1_as_klass();
2028             obj = k->java_mirror();
2029           } else {
2030             --count;
2031             obj = (oop) STACK_OBJECT(count);
2032             CHECK_NULL(obj);
2033           }
2034 
2035           //
2036           // Now store the result
2037           //
2038           int field_offset = cache->f2_as_index();
2039           if (cache->is_volatile()) {
2040             if (tos_type == itos) {
2041               obj->release_int_field_put(field_offset, STACK_INT(-1));
2042             } else if (tos_type == atos) {
2043               VERIFY_OOP(STACK_OBJECT(-1));
2044               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2045             } else if (tos_type == btos) {
2046               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2047             } else if (tos_type == ltos) {
2048               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2049             } else if (tos_type == ctos) {
2050               obj->release_char_field_put(field_offset, STACK_INT(-1));
2051             } else if (tos_type == stos) {
2052               obj->release_short_field_put(field_offset, STACK_INT(-1));
2053             } else if (tos_type == ftos) {
2054               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2055             } else {
2056               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2057             }
2058             OrderAccess::storeload();
2059           } else {
2060             if (tos_type == itos) {
2061               obj->int_field_put(field_offset, STACK_INT(-1));
2062             } else if (tos_type == atos) {
2063               VERIFY_OOP(STACK_OBJECT(-1));
2064               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2065             } else if (tos_type == btos) {
2066               obj->byte_field_put(field_offset, STACK_INT(-1));
2067             } else if (tos_type == ltos) {
2068               obj->long_field_put(field_offset, STACK_LONG(-1));
2069             } else if (tos_type == ctos) {
2070               obj->char_field_put(field_offset, STACK_INT(-1));
2071             } else if (tos_type == stos) {
2072               obj->short_field_put(field_offset, STACK_INT(-1));
2073             } else if (tos_type == ftos) {
2074               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2075             } else {
2076               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2077             }
2078           }
2079 
2080           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2081         }
2082 
2083       CASE(_new): {
2084         u2 index = Bytes::get_Java_u2(pc+1);
2085         ConstantPool* constants = istate->method()->constants();
2086         if (!constants->tag_at(index).is_unresolved_klass()) {
2087           // Make sure klass is initialized and doesn't have a finalizer
2088           Klass* entry = constants->slot_at(index).get_klass();
2089           assert(entry->is_klass(), "Should be resolved klass");
2090           Klass* k_entry = (Klass*) entry;
2091           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2092           InstanceKlass* ik = (InstanceKlass*) k_entry;
2093           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2094             size_t obj_size = ik->size_helper();
2095             oop result = NULL;
2096             // If the TLAB isn't pre-zeroed then we'll have to do it
2097             bool need_zero = !ZeroTLAB;
2098             if (UseTLAB) {
2099               result = (oop) THREAD->tlab().allocate(obj_size);
2100             }
2101             if (result == NULL) {
2102               need_zero = true;
2103               // Try allocate in shared eden
2104         retry:
2105               HeapWord* compare_to = *Universe::heap()->top_addr();
2106               HeapWord* new_top = compare_to + obj_size;
2107               if (new_top <= *Universe::heap()->end_addr()) {
2108                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2109                   goto retry;
2110                 }
2111                 result = (oop) compare_to;
2112               }
2113             }
2114             if (result != NULL) {
2115               // Initialize object (if nonzero size and need) and then the header
2116               if (need_zero ) {
2117                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2118                 obj_size -= sizeof(oopDesc) / oopSize;
2119                 if (obj_size > 0 ) {
2120                   memset(to_zero, 0, obj_size * HeapWordSize);
2121                 }
2122               }
2123               if (UseBiasedLocking) {
2124                 result->set_mark(ik->prototype_header());
2125               } else {
2126                 result->set_mark(markOopDesc::prototype());
2127               }
2128               result->set_klass_gap(0);
2129               result->set_klass(k_entry);
2130               SET_STACK_OBJECT(result, 0);
2131               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2132             }
2133           }
2134         }
2135         // Slow case allocation
2136         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2137                 handle_exception);
2138         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2139         THREAD->set_vm_result(NULL);
2140         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2141       }
2142       CASE(_anewarray): {
2143         u2 index = Bytes::get_Java_u2(pc+1);
2144         jint size = STACK_INT(-1);
2145         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2146                 handle_exception);
2147         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2148         THREAD->set_vm_result(NULL);
2149         UPDATE_PC_AND_CONTINUE(3);
2150       }
2151       CASE(_multianewarray): {
2152         jint dims = *(pc+3);
2153         jint size = STACK_INT(-1);
2154         // stack grows down, dimensions are up!
2155         jint *dimarray =
2156                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2157                                       Interpreter::stackElementWords-1];
2158         //adjust pointer to start of stack element
2159         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2160                 handle_exception);
2161         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2162         THREAD->set_vm_result(NULL);
2163         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2164       }
2165       CASE(_checkcast):
2166           if (STACK_OBJECT(-1) != NULL) {
2167             VERIFY_OOP(STACK_OBJECT(-1));
2168             u2 index = Bytes::get_Java_u2(pc+1);
2169             if (ProfileInterpreter) {
2170               // needs Profile_checkcast QQQ
2171               ShouldNotReachHere();
2172             }
2173             // Constant pool may have actual klass or unresolved klass. If it is
2174             // unresolved we must resolve it
2175             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2176               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2177             }
2178             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2179             Klass* objKlassOop = STACK_OBJECT(-1)->klass(); //ebx
2180             //
2181             // Check for compatibilty. This check must not GC!!
2182             // Seems way more expensive now that we must dispatch
2183             //
2184             if (objKlassOop != klassOf &&
2185                 !objKlassOop->is_subtype_of(klassOf)) {
2186               ResourceMark rm(THREAD);
2187               const char* objName = objKlassOop->external_name();
2188               const char* klassName = klassOf->external_name();
2189               char* message = SharedRuntime::generate_class_cast_message(
2190                 objName, klassName);
2191               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2192             }
2193           } else {
2194             if (UncommonNullCast) {
2195 //              istate->method()->set_null_cast_seen();
2196 // [RGV] Not sure what to do here!
2197 
2198             }
2199           }
2200           UPDATE_PC_AND_CONTINUE(3);
2201 
2202       CASE(_instanceof):
2203           if (STACK_OBJECT(-1) == NULL) {
2204             SET_STACK_INT(0, -1);
2205           } else {
2206             VERIFY_OOP(STACK_OBJECT(-1));
2207             u2 index = Bytes::get_Java_u2(pc+1);
2208             // Constant pool may have actual klass or unresolved klass. If it is
2209             // unresolved we must resolve it
2210             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2211               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2212             }
2213             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2214             Klass* objKlassOop = STACK_OBJECT(-1)->klass();
2215             //
2216             // Check for compatibilty. This check must not GC!!
2217             // Seems way more expensive now that we must dispatch
2218             //
2219             if ( objKlassOop == klassOf || objKlassOop->is_subtype_of(klassOf)) {
2220               SET_STACK_INT(1, -1);
2221             } else {
2222               SET_STACK_INT(0, -1);
2223             }
2224           }
2225           UPDATE_PC_AND_CONTINUE(3);
2226 
2227       CASE(_ldc_w):
2228       CASE(_ldc):
2229         {
2230           u2 index;
2231           bool wide = false;
2232           int incr = 2; // frequent case
2233           if (opcode == Bytecodes::_ldc) {
2234             index = pc[1];
2235           } else {
2236             index = Bytes::get_Java_u2(pc+1);
2237             incr = 3;
2238             wide = true;
2239           }
2240 
2241           ConstantPool* constants = METHOD->constants();
2242           switch (constants->tag_at(index).value()) {
2243           case JVM_CONSTANT_Integer:
2244             SET_STACK_INT(constants->int_at(index), 0);
2245             break;
2246 
2247           case JVM_CONSTANT_Float:
2248             SET_STACK_FLOAT(constants->float_at(index), 0);
2249             break;
2250 
2251           case JVM_CONSTANT_String:
2252             {
2253               oop result = constants->resolved_references()->obj_at(index);
2254               if (result == NULL) {
2255                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2256                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2257                 THREAD->set_vm_result(NULL);
2258               } else {
2259                 VERIFY_OOP(result);
2260                 SET_STACK_OBJECT(result, 0);
2261               }
2262             break;
2263             }
2264 
2265           case JVM_CONSTANT_Class:
2266             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2267             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2268             break;
2269 
2270           case JVM_CONSTANT_UnresolvedClass:
2271           case JVM_CONSTANT_UnresolvedClassInError:
2272             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2273             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2274             THREAD->set_vm_result(NULL);
2275             break;
2276 
2277           default:  ShouldNotReachHere();
2278           }
2279           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2280         }
2281 
2282       CASE(_ldc2_w):
2283         {
2284           u2 index = Bytes::get_Java_u2(pc+1);
2285 
2286           ConstantPool* constants = METHOD->constants();
2287           switch (constants->tag_at(index).value()) {
2288 
2289           case JVM_CONSTANT_Long:
2290              SET_STACK_LONG(constants->long_at(index), 1);
2291             break;
2292 
2293           case JVM_CONSTANT_Double:
2294              SET_STACK_DOUBLE(constants->double_at(index), 1);
2295             break;
2296           default:  ShouldNotReachHere();
2297           }
2298           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2299         }
2300 
2301       CASE(_fast_aldc_w):
2302       CASE(_fast_aldc): {
2303         u2 index;
2304         int incr;
2305         if (opcode == Bytecodes::_fast_aldc) {
2306           index = pc[1];
2307           incr = 2;
2308         } else {
2309           index = Bytes::get_native_u2(pc+1);
2310           incr = 3;
2311         }
2312 
2313         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2314         // This kind of CP cache entry does not need to match the flags byte, because
2315         // there is a 1-1 relation between bytecode type and CP entry type.
2316         ConstantPool* constants = METHOD->constants();
2317         oop result = constants->resolved_references()->obj_at(index);
2318         if (result == NULL) {
2319           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2320                   handle_exception);
2321           result = THREAD->vm_result();
2322         }
2323 
2324         VERIFY_OOP(result);
2325         SET_STACK_OBJECT(result, 0);
2326         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2327       }
2328 
2329       CASE(_invokedynamic): {
2330 
2331         if (!EnableInvokeDynamic) {
2332           // We should not encounter this bytecode if !EnableInvokeDynamic.
2333           // The verifier will stop it.  However, if we get past the verifier,
2334           // this will stop the thread in a reasonable way, without crashing the JVM.
2335           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeError(THREAD),
2336                   handle_exception);
2337           ShouldNotReachHere();
2338         }
2339 
2340         u4 index = Bytes::get_native_u4(pc+1);
2341         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2342 
2343         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2344         // This kind of CP cache entry does not need to match the flags byte, because
2345         // there is a 1-1 relation between bytecode type and CP entry type.
2346         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2347           CALL_VM(InterpreterRuntime::resolve_invokedynamic(THREAD),
2348                   handle_exception);
2349           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2350         }
2351 
2352         Method* method = cache->f1_as_method();
2353         if (VerifyOops) method->verify();
2354 
2355         if (cache->has_appendix()) {
2356           ConstantPool* constants = METHOD->constants();
2357           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2358           MORE_STACK(1);
2359         }
2360 
2361         istate->set_msg(call_method);
2362         istate->set_callee(method);
2363         istate->set_callee_entry_point(method->from_interpreted_entry());
2364         istate->set_bcp_advance(5);
2365 
2366         UPDATE_PC_AND_RETURN(0); // I'll be back...
2367       }
2368 
2369       CASE(_invokehandle): {
2370 
2371         if (!EnableInvokeDynamic) {
2372           ShouldNotReachHere();
2373         }
2374 
2375         u2 index = Bytes::get_native_u2(pc+1);
2376         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2377 
2378         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2379           CALL_VM(InterpreterRuntime::resolve_invokehandle(THREAD),
2380                   handle_exception);
2381           cache = cp->entry_at(index);
2382         }
2383 
2384         Method* method = cache->f1_as_method();
2385         if (VerifyOops) method->verify();
2386 
2387         if (cache->has_appendix()) {
2388           ConstantPool* constants = METHOD->constants();
2389           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2390           MORE_STACK(1);
2391         }
2392 
2393         istate->set_msg(call_method);
2394         istate->set_callee(method);
2395         istate->set_callee_entry_point(method->from_interpreted_entry());
2396         istate->set_bcp_advance(3);
2397 
2398         UPDATE_PC_AND_RETURN(0); // I'll be back...
2399       }
2400 
2401       CASE(_invokeinterface): {
2402         u2 index = Bytes::get_native_u2(pc+1);
2403 
2404         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2405         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2406 
2407         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2408         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2409           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2410                   handle_exception);
2411           cache = cp->entry_at(index);
2412         }
2413 
2414         istate->set_msg(call_method);
2415 
2416         // Special case of invokeinterface called for virtual method of
2417         // java.lang.Object.  See cpCacheOop.cpp for details.
2418         // This code isn't produced by javac, but could be produced by
2419         // another compliant java compiler.
2420         if (cache->is_forced_virtual()) {
2421           Method* callee;
2422           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2423           if (cache->is_vfinal()) {
2424             callee = cache->f2_as_vfinal_method();
2425           } else {
2426             // get receiver
2427             int parms = cache->parameter_size();
2428             // Same comments as invokevirtual apply here
2429             VERIFY_OOP(STACK_OBJECT(-parms));
2430             InstanceKlass* rcvrKlass = (InstanceKlass*)
2431                                  STACK_OBJECT(-parms)->klass();
2432             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2433           }
2434           istate->set_callee(callee);
2435           istate->set_callee_entry_point(callee->from_interpreted_entry());
2436 #ifdef VM_JVMTI
2437           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2438             istate->set_callee_entry_point(callee->interpreter_entry());
2439           }
2440 #endif /* VM_JVMTI */
2441           istate->set_bcp_advance(5);
2442           UPDATE_PC_AND_RETURN(0); // I'll be back...
2443         }
2444 
2445         // this could definitely be cleaned up QQQ
2446         Method* callee;
2447         Klass* iclass = cache->f1_as_klass();
2448         // InstanceKlass* interface = (InstanceKlass*) iclass;
2449         // get receiver
2450         int parms = cache->parameter_size();
2451         oop rcvr = STACK_OBJECT(-parms);
2452         CHECK_NULL(rcvr);
2453         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2454         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2455         int i;
2456         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2457           if (ki->interface_klass() == iclass) break;
2458         }
2459         // If the interface isn't found, this class doesn't implement this
2460         // interface.  The link resolver checks this but only for the first
2461         // time this interface is called.
2462         if (i == int2->itable_length()) {
2463           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2464         }
2465         int mindex = cache->f2_as_index();
2466         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2467         callee = im[mindex].method();
2468         if (callee == NULL) {
2469           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "");
2470         }
2471 
2472         istate->set_callee(callee);
2473         istate->set_callee_entry_point(callee->from_interpreted_entry());
2474 #ifdef VM_JVMTI
2475         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2476           istate->set_callee_entry_point(callee->interpreter_entry());
2477         }
2478 #endif /* VM_JVMTI */
2479         istate->set_bcp_advance(5);
2480         UPDATE_PC_AND_RETURN(0); // I'll be back...
2481       }
2482 
2483       CASE(_invokevirtual):
2484       CASE(_invokespecial):
2485       CASE(_invokestatic): {
2486         u2 index = Bytes::get_native_u2(pc+1);
2487 
2488         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2489         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2490         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2491 
2492         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2493           CALL_VM(InterpreterRuntime::resolve_invoke(THREAD, (Bytecodes::Code)opcode),
2494                   handle_exception);
2495           cache = cp->entry_at(index);
2496         }
2497 
2498         istate->set_msg(call_method);
2499         {
2500           Method* callee;
2501           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2502             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2503             if (cache->is_vfinal()) callee = cache->f2_as_vfinal_method();
2504             else {
2505               // get receiver
2506               int parms = cache->parameter_size();
2507               // this works but needs a resourcemark and seems to create a vtable on every call:
2508               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2509               //
2510               // this fails with an assert
2511               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2512               // but this works
2513               VERIFY_OOP(STACK_OBJECT(-parms));
2514               InstanceKlass* rcvrKlass = (InstanceKlass*) STACK_OBJECT(-parms)->klass();
2515               /*
2516                 Executing this code in java.lang.String:
2517                     public String(char value[]) {
2518                           this.count = value.length;
2519                           this.value = (char[])value.clone();
2520                      }
2521 
2522                  a find on rcvr->klass() reports:
2523                  {type array char}{type array class}
2524                   - klass: {other class}
2525 
2526                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2527                   because rcvr->klass()->oop_is_instance() == 0
2528                   However it seems to have a vtable in the right location. Huh?
2529 
2530               */
2531               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2532             }
2533           } else {
2534             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2535               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2536             }
2537             callee = cache->f1_as_method();
2538           }
2539 
2540           istate->set_callee(callee);
2541           istate->set_callee_entry_point(callee->from_interpreted_entry());
2542 #ifdef VM_JVMTI
2543           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2544             istate->set_callee_entry_point(callee->interpreter_entry());
2545           }
2546 #endif /* VM_JVMTI */
2547           istate->set_bcp_advance(3);
2548           UPDATE_PC_AND_RETURN(0); // I'll be back...
2549         }
2550       }
2551 
2552       /* Allocate memory for a new java object. */
2553 
2554       CASE(_newarray): {
2555         BasicType atype = (BasicType) *(pc+1);
2556         jint size = STACK_INT(-1);
2557         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2558                 handle_exception);
2559         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2560         THREAD->set_vm_result(NULL);
2561 
2562         UPDATE_PC_AND_CONTINUE(2);
2563       }
2564 
2565       /* Throw an exception. */
2566 
2567       CASE(_athrow): {
2568           oop except_oop = STACK_OBJECT(-1);
2569           CHECK_NULL(except_oop);
2570           // set pending_exception so we use common code
2571           THREAD->set_pending_exception(except_oop, NULL, 0);
2572           goto handle_exception;
2573       }
2574 
2575       /* goto and jsr. They are exactly the same except jsr pushes
2576        * the address of the next instruction first.
2577        */
2578 
2579       CASE(_jsr): {
2580           /* push bytecode index on stack */
2581           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2582           MORE_STACK(1);
2583           /* FALL THROUGH */
2584       }
2585 
2586       CASE(_goto):
2587       {
2588           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2589           address branch_pc = pc;
2590           UPDATE_PC(offset);
2591           DO_BACKEDGE_CHECKS(offset, branch_pc);
2592           CONTINUE;
2593       }
2594 
2595       CASE(_jsr_w): {
2596           /* push return address on the stack */
2597           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2598           MORE_STACK(1);
2599           /* FALL THROUGH */
2600       }
2601 
2602       CASE(_goto_w):
2603       {
2604           int32_t offset = Bytes::get_Java_u4(pc + 1);
2605           address branch_pc = pc;
2606           UPDATE_PC(offset);
2607           DO_BACKEDGE_CHECKS(offset, branch_pc);
2608           CONTINUE;
2609       }
2610 
2611       /* return from a jsr or jsr_w */
2612 
2613       CASE(_ret): {
2614           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2615           UPDATE_PC_AND_CONTINUE(0);
2616       }
2617 
2618       /* debugger breakpoint */
2619 
2620       CASE(_breakpoint): {
2621           Bytecodes::Code original_bytecode;
2622           DECACHE_STATE();
2623           SET_LAST_JAVA_FRAME();
2624           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2625                               METHOD, pc);
2626           RESET_LAST_JAVA_FRAME();
2627           CACHE_STATE();
2628           if (THREAD->has_pending_exception()) goto handle_exception;
2629             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2630                                                     handle_exception);
2631 
2632           opcode = (jubyte)original_bytecode;
2633           goto opcode_switch;
2634       }
2635 
2636       DEFAULT:
2637           fatal(err_msg("Unimplemented opcode %d = %s", opcode,
2638                         Bytecodes::name((Bytecodes::Code)opcode)));
2639           goto finish;
2640 
2641       } /* switch(opc) */
2642 
2643 
2644 #ifdef USELABELS
2645     check_for_exception:
2646 #endif
2647     {
2648       if (!THREAD->has_pending_exception()) {
2649         CONTINUE;
2650       }
2651       /* We will be gcsafe soon, so flush our state. */
2652       DECACHE_PC();
2653       goto handle_exception;
2654     }
2655   do_continue: ;
2656 
2657   } /* while (1) interpreter loop */
2658 
2659 
2660   // An exception exists in the thread state see whether this activation can handle it
2661   handle_exception: {
2662 
2663     HandleMarkCleaner __hmc(THREAD);
2664     Handle except_oop(THREAD, THREAD->pending_exception());
2665     // Prevent any subsequent HandleMarkCleaner in the VM
2666     // from freeing the except_oop handle.
2667     HandleMark __hm(THREAD);
2668 
2669     THREAD->clear_pending_exception();
2670     assert(except_oop(), "No exception to process");
2671     intptr_t continuation_bci;
2672     // expression stack is emptied
2673     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2674     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2675             handle_exception);
2676 
2677     except_oop = THREAD->vm_result();
2678     THREAD->set_vm_result(NULL);
2679     if (continuation_bci >= 0) {
2680       // Place exception on top of stack
2681       SET_STACK_OBJECT(except_oop(), 0);
2682       MORE_STACK(1);
2683       pc = METHOD->code_base() + continuation_bci;
2684       if (TraceExceptions) {
2685         ttyLocker ttyl;
2686         ResourceMark rm;
2687         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2688         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2689         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2690                       pc - (intptr_t)METHOD->code_base(),
2691                       continuation_bci, THREAD);
2692       }
2693       // for AbortVMOnException flag
2694       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2695       goto run;
2696     }
2697     if (TraceExceptions) {
2698       ttyLocker ttyl;
2699       ResourceMark rm;
2700       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), except_oop());
2701       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2702       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2703                     pc  - (intptr_t) METHOD->code_base(),
2704                     THREAD);
2705     }
2706     // for AbortVMOnException flag
2707     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2708     // No handler in this activation, unwind and try again
2709     THREAD->set_pending_exception(except_oop(), NULL, 0);
2710     goto handle_return;
2711   }  /* handle_exception: */
2712 
2713 
2714 
2715   // Return from an interpreter invocation with the result of the interpretation
2716   // on the top of the Java Stack (or a pending exception)
2717 
2718 handle_Pop_Frame:
2719 
2720   // We don't really do anything special here except we must be aware
2721   // that we can get here without ever locking the method (if sync).
2722   // Also we skip the notification of the exit.
2723 
2724   istate->set_msg(popping_frame);
2725   // Clear pending so while the pop is in process
2726   // we don't start another one if a call_vm is done.
2727   THREAD->clr_pop_frame_pending();
2728   // Let interpreter (only) see the we're in the process of popping a frame
2729   THREAD->set_pop_frame_in_process();
2730 
2731 handle_return:
2732   {
2733     DECACHE_STATE();
2734 
2735     bool suppress_error = istate->msg() == popping_frame;
2736     bool suppress_exit_event = THREAD->has_pending_exception() || suppress_error;
2737     Handle original_exception(THREAD, THREAD->pending_exception());
2738     Handle illegal_state_oop(THREAD, NULL);
2739 
2740     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2741     // in any following VM entries from freeing our live handles, but illegal_state_oop
2742     // isn't really allocated yet and so doesn't become live until later and
2743     // in unpredicatable places. Instead we must protect the places where we enter the
2744     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2745     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2746     // unfortunately isn't possible.
2747 
2748     THREAD->clear_pending_exception();
2749 
2750     //
2751     // As far as we are concerned we have returned. If we have a pending exception
2752     // that will be returned as this invocation's result. However if we get any
2753     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2754     // will be our final result (i.e. monitor exception trumps a pending exception).
2755     //
2756 
2757     // If we never locked the method (or really passed the point where we would have),
2758     // there is no need to unlock it (or look for other monitors), since that
2759     // could not have happened.
2760 
2761     if (THREAD->do_not_unlock()) {
2762 
2763       // Never locked, reset the flag now because obviously any caller must
2764       // have passed their point of locking for us to have gotten here.
2765 
2766       THREAD->clr_do_not_unlock();
2767     } else {
2768       // At this point we consider that we have returned. We now check that the
2769       // locks were properly block structured. If we find that they were not
2770       // used properly we will return with an illegal monitor exception.
2771       // The exception is checked by the caller not the callee since this
2772       // checking is considered to be part of the invocation and therefore
2773       // in the callers scope (JVM spec 8.13).
2774       //
2775       // Another weird thing to watch for is if the method was locked
2776       // recursively and then not exited properly. This means we must
2777       // examine all the entries in reverse time(and stack) order and
2778       // unlock as we find them. If we find the method monitor before
2779       // we are at the initial entry then we should throw an exception.
2780       // It is not clear the template based interpreter does this
2781       // correctly
2782 
2783       BasicObjectLock* base = istate->monitor_base();
2784       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2785       bool method_unlock_needed = METHOD->is_synchronized();
2786       // We know the initial monitor was used for the method don't check that
2787       // slot in the loop
2788       if (method_unlock_needed) base--;
2789 
2790       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2791       while (end < base) {
2792         oop lockee = end->obj();
2793         if (lockee != NULL) {
2794           BasicLock* lock = end->lock();
2795           markOop header = lock->displaced_header();
2796           end->set_obj(NULL);
2797 
2798           if (!lockee->mark()->has_bias_pattern()) {
2799             // If it isn't recursive we either must swap old header or call the runtime
2800             if (header != NULL) {
2801               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2802                 // restore object for the slow case
2803                 end->set_obj(lockee);
2804                 {
2805                   // Prevent any HandleMarkCleaner from freeing our live handles
2806                   HandleMark __hm(THREAD);
2807                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2808                 }
2809               }
2810             }
2811           }
2812           // One error is plenty
2813           if (illegal_state_oop() == NULL && !suppress_error) {
2814             {
2815               // Prevent any HandleMarkCleaner from freeing our live handles
2816               HandleMark __hm(THREAD);
2817               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2818             }
2819             assert(THREAD->has_pending_exception(), "Lost our exception!");
2820             illegal_state_oop = THREAD->pending_exception();
2821             THREAD->clear_pending_exception();
2822           }
2823         }
2824         end++;
2825       }
2826       // Unlock the method if needed
2827       if (method_unlock_needed) {
2828         if (base->obj() == NULL) {
2829           // The method is already unlocked this is not good.
2830           if (illegal_state_oop() == NULL && !suppress_error) {
2831             {
2832               // Prevent any HandleMarkCleaner from freeing our live handles
2833               HandleMark __hm(THREAD);
2834               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2835             }
2836             assert(THREAD->has_pending_exception(), "Lost our exception!");
2837             illegal_state_oop = THREAD->pending_exception();
2838             THREAD->clear_pending_exception();
2839           }
2840         } else {
2841           //
2842           // The initial monitor is always used for the method
2843           // However if that slot is no longer the oop for the method it was unlocked
2844           // and reused by something that wasn't unlocked!
2845           //
2846           // deopt can come in with rcvr dead because c2 knows
2847           // its value is preserved in the monitor. So we can't use locals[0] at all
2848           // and must use first monitor slot.
2849           //
2850           oop rcvr = base->obj();
2851           if (rcvr == NULL) {
2852             if (!suppress_error) {
2853               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
2854               illegal_state_oop = THREAD->pending_exception();
2855               THREAD->clear_pending_exception();
2856             }
2857           } else if (UseHeavyMonitors) {
2858             {
2859               // Prevent any HandleMarkCleaner from freeing our live handles.
2860               HandleMark __hm(THREAD);
2861               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2862             }
2863             if (THREAD->has_pending_exception()) {
2864               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2865               THREAD->clear_pending_exception();
2866             }
2867           } else {
2868             BasicLock* lock = base->lock();
2869             markOop header = lock->displaced_header();
2870             base->set_obj(NULL);
2871 
2872             if (!rcvr->mark()->has_bias_pattern()) {
2873               base->set_obj(NULL);
2874               // If it isn't recursive we either must swap old header or call the runtime
2875               if (header != NULL) {
2876                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
2877                   // restore object for the slow case
2878                   base->set_obj(rcvr);
2879                   {
2880                     // Prevent any HandleMarkCleaner from freeing our live handles
2881                     HandleMark __hm(THREAD);
2882                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
2883                   }
2884                   if (THREAD->has_pending_exception()) {
2885                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
2886                     THREAD->clear_pending_exception();
2887                   }
2888                 }
2889               }
2890             }
2891           }
2892         }
2893       }
2894     }
2895     // Clear the do_not_unlock flag now.
2896     THREAD->clr_do_not_unlock();
2897 
2898     //
2899     // Notify jvmti/jvmdi
2900     //
2901     // NOTE: we do not notify a method_exit if we have a pending exception,
2902     // including an exception we generate for unlocking checks.  In the former
2903     // case, JVMDI has already been notified by our call for the exception handler
2904     // and in both cases as far as JVMDI is concerned we have already returned.
2905     // If we notify it again JVMDI will be all confused about how many frames
2906     // are still on the stack (4340444).
2907     //
2908     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
2909     // method_exit events whenever we leave an activation unless it was done
2910     // for popframe. This is nothing like jvmdi. However we are passing the
2911     // tests at the moment (apparently because they are jvmdi based) so rather
2912     // than change this code and possibly fail tests we will leave it alone
2913     // (with this note) in anticipation of changing the vm and the tests
2914     // simultaneously.
2915 
2916 
2917     //
2918     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
2919 
2920 
2921 
2922 #ifdef VM_JVMTI
2923       if (_jvmti_interp_events) {
2924         // Whenever JVMTI puts a thread in interp_only_mode, method
2925         // entry/exit events are sent for that thread to track stack depth.
2926         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
2927           {
2928             // Prevent any HandleMarkCleaner from freeing our live handles
2929             HandleMark __hm(THREAD);
2930             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
2931           }
2932         }
2933       }
2934 #endif /* VM_JVMTI */
2935 
2936     //
2937     // See if we are returning any exception
2938     // A pending exception that was pending prior to a possible popping frame
2939     // overrides the popping frame.
2940     //
2941     assert(!suppress_error || suppress_error && illegal_state_oop() == NULL, "Error was not suppressed");
2942     if (illegal_state_oop() != NULL || original_exception() != NULL) {
2943       // inform the frame manager we have no result
2944       istate->set_msg(throwing_exception);
2945       if (illegal_state_oop() != NULL)
2946         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
2947       else
2948         THREAD->set_pending_exception(original_exception(), NULL, 0);
2949       istate->set_return_kind((Bytecodes::Code)opcode);
2950       UPDATE_PC_AND_RETURN(0);
2951     }
2952 
2953     if (istate->msg() == popping_frame) {
2954       // Make it simpler on the assembly code and set the message for the frame pop.
2955       // returns
2956       if (istate->prev() == NULL) {
2957         // We must be returning to a deoptimized frame (because popframe only happens between
2958         // two interpreted frames). We need to save the current arguments in C heap so that
2959         // the deoptimized frame when it restarts can copy the arguments to its expression
2960         // stack and re-execute the call. We also have to notify deoptimization that this
2961         // has occurred and to pick the preserved args copy them to the deoptimized frame's
2962         // java expression stack. Yuck.
2963         //
2964         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
2965                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
2966         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
2967       }
2968       THREAD->clr_pop_frame_in_process();
2969     }
2970 
2971     // Normal return
2972     // Advance the pc and return to frame manager
2973     istate->set_msg(return_from_method);
2974     istate->set_return_kind((Bytecodes::Code)opcode);
2975     UPDATE_PC_AND_RETURN(1);
2976   } /* handle_return: */
2977 
2978 // This is really a fatal error return
2979 
2980 finish:
2981   DECACHE_TOS();
2982   DECACHE_PC();
2983 
2984   return;
2985 }
2986 
2987 /*
2988  * All the code following this point is only produced once and is not present
2989  * in the JVMTI version of the interpreter
2990 */
2991 
2992 #ifndef VM_JVMTI
2993 
2994 // This constructor should only be used to contruct the object to signal
2995 // interpreter initialization. All other instances should be created by
2996 // the frame manager.
2997 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
2998   if (msg != initialize) ShouldNotReachHere();
2999   _msg = msg;
3000   _self_link = this;
3001   _prev_link = NULL;
3002 }
3003 
3004 // Inline static functions for Java Stack and Local manipulation
3005 
3006 // The implementations are platform dependent. We have to worry about alignment
3007 // issues on some machines which can change on the same platform depending on
3008 // whether it is an LP64 machine also.
3009 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3010   return (address) tos[Interpreter::expr_index_at(-offset)];
3011 }
3012 
3013 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3014   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3015 }
3016 
3017 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3018   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3019 }
3020 
3021 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3022   return (oop)tos [Interpreter::expr_index_at(-offset)];
3023 }
3024 
3025 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3026   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3027 }
3028 
3029 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3030   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3031 }
3032 
3033 // only used for value types
3034 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3035                                                         int offset) {
3036   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3037 }
3038 
3039 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3040                                                        int offset) {
3041   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3042 }
3043 
3044 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3045                                                          int offset) {
3046   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3047 }
3048 
3049 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3050                                                           int offset) {
3051   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3052 }
3053 
3054 // needs to be platform dep for the 32 bit platforms.
3055 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3056                                                           int offset) {
3057   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3058 }
3059 
3060 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3061                                               address addr, int offset) {
3062   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3063                         ((VMJavaVal64*)addr)->d);
3064 }
3065 
3066 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3067                                                         int offset) {
3068   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3069   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3070 }
3071 
3072 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3073                                             address addr, int offset) {
3074   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3075   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3076                         ((VMJavaVal64*)addr)->l;
3077 }
3078 
3079 // Locals
3080 
3081 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3082   return (address)locals[Interpreter::local_index_at(-offset)];
3083 }
3084 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3085   return (jint)locals[Interpreter::local_index_at(-offset)];
3086 }
3087 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3088   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3089 }
3090 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3091   return (oop)locals[Interpreter::local_index_at(-offset)];
3092 }
3093 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3094   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3095 }
3096 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3097   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3098 }
3099 
3100 // Returns the address of locals value.
3101 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3102   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3103 }
3104 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3105   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3106 }
3107 
3108 // Used for local value or returnAddress
3109 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3110                                    address value, int offset) {
3111   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3112 }
3113 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3114                                    jint value, int offset) {
3115   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3116 }
3117 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3118                                    jfloat value, int offset) {
3119   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3120 }
3121 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3122                                    oop value, int offset) {
3123   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3124 }
3125 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3126                                    jdouble value, int offset) {
3127   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3128 }
3129 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3130                                    jlong value, int offset) {
3131   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3132 }
3133 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3134                                    address addr, int offset) {
3135   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3136 }
3137 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3138                                    address addr, int offset) {
3139   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3140 }
3141 
3142 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3143                           intptr_t* locals, int locals_offset) {
3144   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3145   locals[Interpreter::local_index_at(-locals_offset)] = value;
3146 }
3147 
3148 
3149 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3150                                    int to_offset) {
3151   tos[Interpreter::expr_index_at(-to_offset)] =
3152                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3153 }
3154 
3155 void BytecodeInterpreter::dup(intptr_t *tos) {
3156   copy_stack_slot(tos, -1, 0);
3157 }
3158 void BytecodeInterpreter::dup2(intptr_t *tos) {
3159   copy_stack_slot(tos, -2, 0);
3160   copy_stack_slot(tos, -1, 1);
3161 }
3162 
3163 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3164   /* insert top word two down */
3165   copy_stack_slot(tos, -1, 0);
3166   copy_stack_slot(tos, -2, -1);
3167   copy_stack_slot(tos, 0, -2);
3168 }
3169 
3170 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3171   /* insert top word three down  */
3172   copy_stack_slot(tos, -1, 0);
3173   copy_stack_slot(tos, -2, -1);
3174   copy_stack_slot(tos, -3, -2);
3175   copy_stack_slot(tos, 0, -3);
3176 }
3177 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3178   /* insert top 2 slots three down */
3179   copy_stack_slot(tos, -1, 1);
3180   copy_stack_slot(tos, -2, 0);
3181   copy_stack_slot(tos, -3, -1);
3182   copy_stack_slot(tos, 1, -2);
3183   copy_stack_slot(tos, 0, -3);
3184 }
3185 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3186   /* insert top 2 slots four down */
3187   copy_stack_slot(tos, -1, 1);
3188   copy_stack_slot(tos, -2, 0);
3189   copy_stack_slot(tos, -3, -1);
3190   copy_stack_slot(tos, -4, -2);
3191   copy_stack_slot(tos, 1, -3);
3192   copy_stack_slot(tos, 0, -4);
3193 }
3194 
3195 
3196 void BytecodeInterpreter::swap(intptr_t *tos) {
3197   // swap top two elements
3198   intptr_t val = tos[Interpreter::expr_index_at(1)];
3199   // Copy -2 entry to -1
3200   copy_stack_slot(tos, -2, -1);
3201   // Store saved -1 entry into -2
3202   tos[Interpreter::expr_index_at(2)] = val;
3203 }
3204 // --------------------------------------------------------------------------------
3205 // Non-product code
3206 #ifndef PRODUCT
3207 
3208 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3209   switch (msg) {
3210      case BytecodeInterpreter::no_request:  return("no_request");
3211      case BytecodeInterpreter::initialize:  return("initialize");
3212      // status message to C++ interpreter
3213      case BytecodeInterpreter::method_entry:  return("method_entry");
3214      case BytecodeInterpreter::method_resume:  return("method_resume");
3215      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3216      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3217      // requests to frame manager from C++ interpreter
3218      case BytecodeInterpreter::call_method:  return("call_method");
3219      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3220      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3221      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3222      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3223      case BytecodeInterpreter::do_osr:  return("do_osr");
3224      // deopt
3225      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3226      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3227      default: return("BAD MSG");
3228   }
3229 }
3230 void
3231 BytecodeInterpreter::print() {
3232   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3233   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3234   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3235   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3236   {
3237     ResourceMark rm;
3238     char *method_name = _method->name_and_sig_as_C_string();
3239     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3240   }
3241   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3242   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3243   tty->print_cr("msg: %s", C_msg(this->_msg));
3244   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3245   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3246   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3247   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3248   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3249   tty->print_cr("result_return_kind 0x%x ", (int) this->_result._return_kind);
3250   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3251   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) this->_oop_temp);
3252   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3253   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3254   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3255 #ifdef SPARC
3256   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3257   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3258   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3259   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3260 #endif
3261 #if !defined(ZERO)
3262   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3263 #endif // !ZERO
3264   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3265 }
3266 
3267 extern "C" {
3268   void PI(uintptr_t arg) {
3269     ((BytecodeInterpreter*)arg)->print();
3270   }
3271 }
3272 #endif // PRODUCT
3273 
3274 #endif // JVMTI
3275 #endif // CC_INTERP