1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedKlassPointers) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_klass_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   assert(count*width == 8 && width <= 4, "sanity");
 682   int bit_width = width * 8;
 683   jlong val = con;
 684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 685   for (int i = 0; i < count - 1; i++) {
 686     val |= (val << bit_width);
 687   }
 688   jdouble dval = *((jdouble*) &val);  // coerce to double type
 689   return dval;
 690 }
 691 
 692 static inline jdouble replicate_immF(float con) {
 693   // Replicate float con 2 times and pack into vector.
 694   int val = *((int*)&con);
 695   jlong lval = val;
 696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 698   return dval;
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 704   int op = (f30 << 30) |
 705            (f29 << 29) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f20 << 20) |
 709            (f19 << 19) |
 710            (f0  <<  0);
 711   cbuf.insts()->emit_int32(op);
 712 }
 713 
 714 // Standard Sparc opcode form2 field breakdown
 715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 716   f0 >>= 10;           // Drop 10 bits
 717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 718   int op = (f30 << 30) |
 719            (f25 << 25) |
 720            (f22 << 22) |
 721            (f0  <<  0);
 722   cbuf.insts()->emit_int32(op);
 723 }
 724 
 725 // Standard Sparc opcode form3 field breakdown
 726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 727   int op = (f30 << 30) |
 728            (f25 << 25) |
 729            (f19 << 19) |
 730            (f14 << 14) |
 731            (f5  <<  5) |
 732            (f0  <<  0);
 733   cbuf.insts()->emit_int32(op);
 734 }
 735 
 736 // Standard Sparc opcode form3 field breakdown
 737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 738   simm13 &= (1<<13)-1; // Mask to 13 bits
 739   int op = (f30 << 30) |
 740            (f25 << 25) |
 741            (f19 << 19) |
 742            (f14 << 14) |
 743            (1   << 13) | // bit to indicate immediate-mode
 744            (simm13<<0);
 745   cbuf.insts()->emit_int32(op);
 746 }
 747 
 748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 749   simm10 &= (1<<10)-1; // Mask to 10 bits
 750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 751 }
 752 
 753 #ifdef ASSERT
 754 // Helper function for VerifyOops in emit_form3_mem_reg
 755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 756   warning("VerifyOops encountered unexpected instruction:");
 757   n->dump(2);
 758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 759 }
 760 #endif
 761 
 762 
 763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 765 
 766 #ifdef ASSERT
 767   // The following code implements the +VerifyOops feature.
 768   // It verifies oop values which are loaded into or stored out of
 769   // the current method activation.  +VerifyOops complements techniques
 770   // like ScavengeALot, because it eagerly inspects oops in transit,
 771   // as they enter or leave the stack, as opposed to ScavengeALot,
 772   // which inspects oops "at rest", in the stack or heap, at safepoints.
 773   // For this reason, +VerifyOops can sometimes detect bugs very close
 774   // to their point of creation.  It can also serve as a cross-check
 775   // on the validity of oop maps, when used toegether with ScavengeALot.
 776 
 777   // It would be good to verify oops at other points, especially
 778   // when an oop is used as a base pointer for a load or store.
 779   // This is presently difficult, because it is hard to know when
 780   // a base address is biased or not.  (If we had such information,
 781   // it would be easy and useful to make a two-argument version of
 782   // verify_oop which unbiases the base, and performs verification.)
 783 
 784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 785   bool is_verified_oop_base  = false;
 786   bool is_verified_oop_load  = false;
 787   bool is_verified_oop_store = false;
 788   int tmp_enc = -1;
 789   if (VerifyOops && src1_enc != R_SP_enc) {
 790     // classify the op, mainly for an assert check
 791     int st_op = 0, ld_op = 0;
 792     switch (primary) {
 793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 797     case Assembler::std_op3:  st_op = Op_StoreL; break;
 798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 800 
 801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 812 
 813     default: ShouldNotReachHere();
 814     }
 815     if (tertiary == REGP_OP) {
 816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 818       else                          ShouldNotReachHere();
 819       if (st_op) {
 820         // a store
 821         // inputs are (0:control, 1:memory, 2:address, 3:value)
 822         Node* n2 = n->in(3);
 823         if (n2 != NULL) {
 824           const Type* t = n2->bottom_type();
 825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 826         }
 827       } else {
 828         // a load
 829         const Type* t = n->bottom_type();
 830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 831       }
 832     }
 833 
 834     if (ld_op) {
 835       // a Load
 836       // inputs are (0:control, 1:memory, 2:address)
 837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 852           !(n->rule() == loadUB_rule)) {
 853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 854       }
 855     } else if (st_op) {
 856       // a Store
 857       // inputs are (0:control, 1:memory, 2:address, 3:value)
 858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 866       }
 867     }
 868 
 869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 870       Node* addr = n->in(2);
 871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 873         if (atype != NULL) {
 874           intptr_t offset = get_offset_from_base(n, atype, disp32);
 875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 876           if (offset != offset_2) {
 877             get_offset_from_base(n, atype, disp32);
 878             get_offset_from_base_2(n, atype, disp32);
 879           }
 880           assert(offset == offset_2, "different offsets");
 881           if (offset == disp32) {
 882             // we now know that src1 is a true oop pointer
 883             is_verified_oop_base = true;
 884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 885               if( primary == Assembler::ldd_op3 ) {
 886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 887               } else {
 888                 tmp_enc = dst_enc;
 889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 890                 assert(src1_enc != dst_enc, "");
 891               }
 892             }
 893           }
 894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 895                        || offset == oopDesc::mark_offset_in_bytes())) {
 896                       // loading the mark should not be allowed either, but
 897                       // we don't check this since it conflicts with InlineObjectHash
 898                       // usage of LoadINode to get the mark. We could keep the
 899                       // check if we create a new LoadMarkNode
 900             // but do not verify the object before its header is initialized
 901             ShouldNotReachHere();
 902           }
 903         }
 904       }
 905     }
 906   }
 907 #endif
 908 
 909   uint instr;
 910   instr = (Assembler::ldst_op << 30)
 911         | (dst_enc        << 25)
 912         | (primary        << 19)
 913         | (src1_enc       << 14);
 914 
 915   uint index = src2_enc;
 916   int disp = disp32;
 917 
 918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 919     disp += STACK_BIAS;
 920 
 921   // We should have a compiler bailout here rather than a guarantee.
 922   // Better yet would be some mechanism to handle variable-size matches correctly.
 923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 924 
 925   if( disp == 0 ) {
 926     // use reg-reg form
 927     // bit 13 is already zero
 928     instr |= index;
 929   } else {
 930     // use reg-imm form
 931     instr |= 0x00002000;          // set bit 13 to one
 932     instr |= disp & 0x1FFF;
 933   }
 934 
 935   cbuf.insts()->emit_int32(instr);
 936 
 937 #ifdef ASSERT
 938   {
 939     MacroAssembler _masm(&cbuf);
 940     if (is_verified_oop_base) {
 941       __ verify_oop(reg_to_register_object(src1_enc));
 942     }
 943     if (is_verified_oop_store) {
 944       __ verify_oop(reg_to_register_object(dst_enc));
 945     }
 946     if (tmp_enc != -1) {
 947       __ mov(O7, reg_to_register_object(tmp_enc));
 948     }
 949     if (is_verified_oop_load) {
 950       __ verify_oop(reg_to_register_object(dst_enc));
 951     }
 952   }
 953 #endif
 954 }
 955 
 956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 957   // The method which records debug information at every safepoint
 958   // expects the call to be the first instruction in the snippet as
 959   // it creates a PcDesc structure which tracks the offset of a call
 960   // from the start of the codeBlob. This offset is computed as
 961   // code_end() - code_begin() of the code which has been emitted
 962   // so far.
 963   // In this particular case we have skirted around the problem by
 964   // putting the "mov" instruction in the delay slot but the problem
 965   // may bite us again at some other point and a cleaner/generic
 966   // solution using relocations would be needed.
 967   MacroAssembler _masm(&cbuf);
 968   __ set_inst_mark();
 969 
 970   // We flush the current window just so that there is a valid stack copy
 971   // the fact that the current window becomes active again instantly is
 972   // not a problem there is nothing live in it.
 973 
 974 #ifdef ASSERT
 975   int startpos = __ offset();
 976 #endif /* ASSERT */
 977 
 978   __ call((address)entry_point, rtype);
 979 
 980   if (preserve_g2)   __ delayed()->mov(G2, L7);
 981   else __ delayed()->nop();
 982 
 983   if (preserve_g2)   __ mov(L7, G2);
 984 
 985 #ifdef ASSERT
 986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 987 #ifdef _LP64
 988     // Trash argument dump slots.
 989     __ set(0xb0b8ac0db0b8ac0d, G1);
 990     __ mov(G1, G5);
 991     __ stx(G1, SP, STACK_BIAS + 0x80);
 992     __ stx(G1, SP, STACK_BIAS + 0x88);
 993     __ stx(G1, SP, STACK_BIAS + 0x90);
 994     __ stx(G1, SP, STACK_BIAS + 0x98);
 995     __ stx(G1, SP, STACK_BIAS + 0xA0);
 996     __ stx(G1, SP, STACK_BIAS + 0xA8);
 997 #else // _LP64
 998     // this is also a native call, so smash the first 7 stack locations,
 999     // and the various registers
1000 
1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1002     // while [SP+0x44..0x58] are the argument dump slots.
1003     __ set((intptr_t)0xbaadf00d, G1);
1004     __ mov(G1, G5);
1005     __ sllx(G1, 32, G1);
1006     __ or3(G1, G5, G1);
1007     __ mov(G1, G5);
1008     __ stx(G1, SP, 0x40);
1009     __ stx(G1, SP, 0x48);
1010     __ stx(G1, SP, 0x50);
1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1012 #endif // _LP64
1013   }
1014 #endif /*ASSERT*/
1015 }
1016 
1017 //=============================================================================
1018 // REQUIRED FUNCTIONALITY for encoding
1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
1021 
1022 
1023 //=============================================================================
1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1025 
1026 int Compile::ConstantTable::calculate_table_base_offset() const {
1027   if (UseRDPCForConstantTableBase) {
1028     // The table base offset might be less but then it fits into
1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1030     return Assembler::min_simm13();
1031   } else {
1032     int offset = -(size() / 2);
1033     if (!Assembler::is_simm13(offset)) {
1034       offset = Assembler::min_simm13();
1035     }
1036     return offset;
1037   }
1038 }
1039 
1040 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1041   Compile* C = ra_->C;
1042   Compile::ConstantTable& constant_table = C->constant_table();
1043   MacroAssembler _masm(&cbuf);
1044 
1045   Register r = as_Register(ra_->get_encode(this));
1046   CodeSection* consts_section = __ code()->consts();
1047   int consts_size = consts_section->align_at_start(consts_section->size());
1048   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1049 
1050   if (UseRDPCForConstantTableBase) {
1051     // For the following RDPC logic to work correctly the consts
1052     // section must be allocated right before the insts section.  This
1053     // assert checks for that.  The layout and the SECT_* constants
1054     // are defined in src/share/vm/asm/codeBuffer.hpp.
1055     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1056     int insts_offset = __ offset();
1057 
1058     // Layout:
1059     //
1060     // |----------- consts section ------------|----------- insts section -----------...
1061     // |------ constant table -----|- padding -|------------------x----
1062     //                                                            \ current PC (RDPC instruction)
1063     // |<------------- consts_size ----------->|<- insts_offset ->|
1064     //                                                            \ table base
1065     // The table base offset is later added to the load displacement
1066     // so it has to be negative.
1067     int table_base_offset = -(consts_size + insts_offset);
1068     int disp;
1069 
1070     // If the displacement from the current PC to the constant table
1071     // base fits into simm13 we set the constant table base to the
1072     // current PC.
1073     if (Assembler::is_simm13(table_base_offset)) {
1074       constant_table.set_table_base_offset(table_base_offset);
1075       disp = 0;
1076     } else {
1077       // Otherwise we set the constant table base offset to the
1078       // maximum negative displacement of load instructions to keep
1079       // the disp as small as possible:
1080       //
1081       // |<------------- consts_size ----------->|<- insts_offset ->|
1082       // |<--------- min_simm13 --------->|<-------- disp --------->|
1083       //                                  \ table base
1084       table_base_offset = Assembler::min_simm13();
1085       constant_table.set_table_base_offset(table_base_offset);
1086       disp = (consts_size + insts_offset) + table_base_offset;
1087     }
1088 
1089     __ rdpc(r);
1090 
1091     if (disp != 0) {
1092       assert(r != O7, "need temporary");
1093       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1094     }
1095   }
1096   else {
1097     // Materialize the constant table base.
1098     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1099     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1100     AddressLiteral base(baseaddr, rspec);
1101     __ set(base, r);
1102   }
1103 }
1104 
1105 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1106   if (UseRDPCForConstantTableBase) {
1107     // This is really the worst case but generally it's only 1 instruction.
1108     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1109   } else {
1110     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1111   }
1112 }
1113 
1114 #ifndef PRODUCT
1115 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1116   char reg[128];
1117   ra_->dump_register(this, reg);
1118   if (UseRDPCForConstantTableBase) {
1119     st->print("RDPC   %s\t! constant table base", reg);
1120   } else {
1121     st->print("SET    &constanttable,%s\t! constant table base", reg);
1122   }
1123 }
1124 #endif
1125 
1126 
1127 //=============================================================================
1128 
1129 #ifndef PRODUCT
1130 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1131   Compile* C = ra_->C;
1132 
1133   for (int i = 0; i < OptoPrologueNops; i++) {
1134     st->print_cr("NOP"); st->print("\t");
1135   }
1136 
1137   if( VerifyThread ) {
1138     st->print_cr("Verify_Thread"); st->print("\t");
1139   }
1140 
1141   size_t framesize = C->frame_slots() << LogBytesPerInt;
1142 
1143   // Calls to C2R adapters often do not accept exceptional returns.
1144   // We require that their callers must bang for them.  But be careful, because
1145   // some VM calls (such as call site linkage) can use several kilobytes of
1146   // stack.  But the stack safety zone should account for that.
1147   // See bugs 4446381, 4468289, 4497237.
1148   if (C->need_stack_bang(framesize)) {
1149     st->print_cr("! stack bang"); st->print("\t");
1150   }
1151 
1152   if (Assembler::is_simm13(-framesize)) {
1153     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1154   } else {
1155     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1156     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1157     st->print   ("SAVE   R_SP,R_G3,R_SP");
1158   }
1159 
1160 }
1161 #endif
1162 
1163 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1164   Compile* C = ra_->C;
1165   MacroAssembler _masm(&cbuf);
1166 
1167   for (int i = 0; i < OptoPrologueNops; i++) {
1168     __ nop();
1169   }
1170 
1171   __ verify_thread();
1172 
1173   size_t framesize = C->frame_slots() << LogBytesPerInt;
1174   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1175   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1176 
1177   // Calls to C2R adapters often do not accept exceptional returns.
1178   // We require that their callers must bang for them.  But be careful, because
1179   // some VM calls (such as call site linkage) can use several kilobytes of
1180   // stack.  But the stack safety zone should account for that.
1181   // See bugs 4446381, 4468289, 4497237.
1182   if (C->need_stack_bang(framesize)) {
1183     __ generate_stack_overflow_check(framesize);
1184   }
1185 
1186   if (Assembler::is_simm13(-framesize)) {
1187     __ save(SP, -framesize, SP);
1188   } else {
1189     __ sethi(-framesize & ~0x3ff, G3);
1190     __ add(G3, -framesize & 0x3ff, G3);
1191     __ save(SP, G3, SP);
1192   }
1193   C->set_frame_complete( __ offset() );
1194 
1195   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1196     // NOTE: We set the table base offset here because users might be
1197     // emitted before MachConstantBaseNode.
1198     Compile::ConstantTable& constant_table = C->constant_table();
1199     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1200   }
1201 }
1202 
1203 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1204   return MachNode::size(ra_);
1205 }
1206 
1207 int MachPrologNode::reloc() const {
1208   return 10; // a large enough number
1209 }
1210 
1211 //=============================================================================
1212 #ifndef PRODUCT
1213 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1214   Compile* C = ra_->C;
1215 
1216   if( do_polling() && ra_->C->is_method_compilation() ) {
1217     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1218 #ifdef _LP64
1219     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1220 #else
1221     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1222 #endif
1223   }
1224 
1225   if( do_polling() )
1226     st->print("RET\n\t");
1227 
1228   st->print("RESTORE");
1229 }
1230 #endif
1231 
1232 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1233   MacroAssembler _masm(&cbuf);
1234   Compile* C = ra_->C;
1235 
1236   __ verify_thread();
1237 
1238   // If this does safepoint polling, then do it here
1239   if( do_polling() && ra_->C->is_method_compilation() ) {
1240     AddressLiteral polling_page(os::get_polling_page());
1241     __ sethi(polling_page, L0);
1242     __ relocate(relocInfo::poll_return_type);
1243     __ ld_ptr( L0, 0, G0 );
1244   }
1245 
1246   // If this is a return, then stuff the restore in the delay slot
1247   if( do_polling() ) {
1248     __ ret();
1249     __ delayed()->restore();
1250   } else {
1251     __ restore();
1252   }
1253 }
1254 
1255 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1256   return MachNode::size(ra_);
1257 }
1258 
1259 int MachEpilogNode::reloc() const {
1260   return 16; // a large enough number
1261 }
1262 
1263 const Pipeline * MachEpilogNode::pipeline() const {
1264   return MachNode::pipeline_class();
1265 }
1266 
1267 int MachEpilogNode::safepoint_offset() const {
1268   assert( do_polling(), "no return for this epilog node");
1269   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1270 }
1271 
1272 //=============================================================================
1273 
1274 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1275 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1276 static enum RC rc_class( OptoReg::Name reg ) {
1277   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1278   if (OptoReg::is_stack(reg)) return rc_stack;
1279   VMReg r = OptoReg::as_VMReg(reg);
1280   if (r->is_Register()) return rc_int;
1281   assert(r->is_FloatRegister(), "must be");
1282   return rc_float;
1283 }
1284 
1285 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1286   if( cbuf ) {
1287     // Better yet would be some mechanism to handle variable-size matches correctly
1288     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1289       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1290     } else {
1291       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1292     }
1293   }
1294 #ifndef PRODUCT
1295   else if( !do_size ) {
1296     if( size != 0 ) st->print("\n\t");
1297     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1298     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1299   }
1300 #endif
1301   return size+4;
1302 }
1303 
1304 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1305   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1306 #ifndef PRODUCT
1307   else if( !do_size ) {
1308     if( size != 0 ) st->print("\n\t");
1309     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1310   }
1311 #endif
1312   return size+4;
1313 }
1314 
1315 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1316                                         PhaseRegAlloc *ra_,
1317                                         bool do_size,
1318                                         outputStream* st ) const {
1319   // Get registers to move
1320   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1321   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1322   OptoReg::Name dst_second = ra_->get_reg_second(this );
1323   OptoReg::Name dst_first = ra_->get_reg_first(this );
1324 
1325   enum RC src_second_rc = rc_class(src_second);
1326   enum RC src_first_rc = rc_class(src_first);
1327   enum RC dst_second_rc = rc_class(dst_second);
1328   enum RC dst_first_rc = rc_class(dst_first);
1329 
1330   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1331 
1332   // Generate spill code!
1333   int size = 0;
1334 
1335   if( src_first == dst_first && src_second == dst_second )
1336     return size;            // Self copy, no move
1337 
1338   // --------------------------------------
1339   // Check for mem-mem move.  Load into unused float registers and fall into
1340   // the float-store case.
1341   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1342     int offset = ra_->reg2offset(src_first);
1343     // Further check for aligned-adjacent pair, so we can use a double load
1344     if( (src_first&1)==0 && src_first+1 == src_second ) {
1345       src_second    = OptoReg::Name(R_F31_num);
1346       src_second_rc = rc_float;
1347       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1348     } else {
1349       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1350     }
1351     src_first    = OptoReg::Name(R_F30_num);
1352     src_first_rc = rc_float;
1353   }
1354 
1355   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1356     int offset = ra_->reg2offset(src_second);
1357     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1358     src_second    = OptoReg::Name(R_F31_num);
1359     src_second_rc = rc_float;
1360   }
1361 
1362   // --------------------------------------
1363   // Check for float->int copy; requires a trip through memory
1364   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1365     int offset = frame::register_save_words*wordSize;
1366     if (cbuf) {
1367       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1368       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1369       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1370       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1371     }
1372 #ifndef PRODUCT
1373     else if (!do_size) {
1374       if (size != 0) st->print("\n\t");
1375       st->print(  "SUB    R_SP,16,R_SP\n");
1376       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1377       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1378       st->print("\tADD    R_SP,16,R_SP\n");
1379     }
1380 #endif
1381     size += 16;
1382   }
1383 
1384   // Check for float->int copy on T4
1385   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1386     // Further check for aligned-adjacent pair, so we can use a double move
1387     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1388       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1389     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1390   }
1391   // Check for int->float copy on T4
1392   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1393     // Further check for aligned-adjacent pair, so we can use a double move
1394     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1395       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1396     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1397   }
1398 
1399   // --------------------------------------
1400   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1401   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1402   // hardware does the flop for me.  Doubles are always aligned, so no problem
1403   // there.  Misaligned sources only come from native-long-returns (handled
1404   // special below).
1405 #ifndef _LP64
1406   if( src_first_rc == rc_int &&     // source is already big-endian
1407       src_second_rc != rc_bad &&    // 64-bit move
1408       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1409     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1410     // Do the big-endian flop.
1411     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1412     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1413   }
1414 #endif
1415 
1416   // --------------------------------------
1417   // Check for integer reg-reg copy
1418   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1419 #ifndef _LP64
1420     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1421       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1422       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1423       //       operand contains the least significant word of the 64-bit value and vice versa.
1424       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1425       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1426       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1427       if( cbuf ) {
1428         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1429         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1430         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1431 #ifndef PRODUCT
1432       } else if( !do_size ) {
1433         if( size != 0 ) st->print("\n\t");
1434         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1435         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1436         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1437 #endif
1438       }
1439       return size+12;
1440     }
1441     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1442       // returning a long value in I0/I1
1443       // a SpillCopy must be able to target a return instruction's reg_class
1444       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1445       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1446       //       operand contains the least significant word of the 64-bit value and vice versa.
1447       OptoReg::Name tdest = dst_first;
1448 
1449       if (src_first == dst_first) {
1450         tdest = OptoReg::Name(R_O7_num);
1451         size += 4;
1452       }
1453 
1454       if( cbuf ) {
1455         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1456         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1457         // ShrL_reg_imm6
1458         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1459         // ShrR_reg_imm6  src, 0, dst
1460         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1461         if (tdest != dst_first) {
1462           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1463         }
1464       }
1465 #ifndef PRODUCT
1466       else if( !do_size ) {
1467         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1468         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1469         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1470         if (tdest != dst_first) {
1471           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1472         }
1473       }
1474 #endif // PRODUCT
1475       return size+8;
1476     }
1477 #endif // !_LP64
1478     // Else normal reg-reg copy
1479     assert( src_second != dst_first, "smashed second before evacuating it" );
1480     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1481     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1482     // This moves an aligned adjacent pair.
1483     // See if we are done.
1484     if( src_first+1 == src_second && dst_first+1 == dst_second )
1485       return size;
1486   }
1487 
1488   // Check for integer store
1489   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1490     int offset = ra_->reg2offset(dst_first);
1491     // Further check for aligned-adjacent pair, so we can use a double store
1492     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1493       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1494     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1495   }
1496 
1497   // Check for integer load
1498   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1499     int offset = ra_->reg2offset(src_first);
1500     // Further check for aligned-adjacent pair, so we can use a double load
1501     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1502       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1503     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1504   }
1505 
1506   // Check for float reg-reg copy
1507   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1508     // Further check for aligned-adjacent pair, so we can use a double move
1509     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1510       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1511     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1512   }
1513 
1514   // Check for float store
1515   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1516     int offset = ra_->reg2offset(dst_first);
1517     // Further check for aligned-adjacent pair, so we can use a double store
1518     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1519       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1520     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1521   }
1522 
1523   // Check for float load
1524   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1525     int offset = ra_->reg2offset(src_first);
1526     // Further check for aligned-adjacent pair, so we can use a double load
1527     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1528       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1529     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1530   }
1531 
1532   // --------------------------------------------------------------------
1533   // Check for hi bits still needing moving.  Only happens for misaligned
1534   // arguments to native calls.
1535   if( src_second == dst_second )
1536     return size;               // Self copy; no move
1537   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1538 
1539 #ifndef _LP64
1540   // In the LP64 build, all registers can be moved as aligned/adjacent
1541   // pairs, so there's never any need to move the high bits separately.
1542   // The 32-bit builds have to deal with the 32-bit ABI which can force
1543   // all sorts of silly alignment problems.
1544 
1545   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1546   // 32-bits of a 64-bit register, but are needed in low bits of another
1547   // register (else it's a hi-bits-to-hi-bits copy which should have
1548   // happened already as part of a 64-bit move)
1549   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1550     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1551     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1552     // Shift src_second down to dst_second's low bits.
1553     if( cbuf ) {
1554       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1555 #ifndef PRODUCT
1556     } else if( !do_size ) {
1557       if( size != 0 ) st->print("\n\t");
1558       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1559 #endif
1560     }
1561     return size+4;
1562   }
1563 
1564   // Check for high word integer store.  Must down-shift the hi bits
1565   // into a temp register, then fall into the case of storing int bits.
1566   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1567     // Shift src_second down to dst_second's low bits.
1568     if( cbuf ) {
1569       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1570 #ifndef PRODUCT
1571     } else if( !do_size ) {
1572       if( size != 0 ) st->print("\n\t");
1573       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1574 #endif
1575     }
1576     size+=4;
1577     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1578   }
1579 
1580   // Check for high word integer load
1581   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1582     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1583 
1584   // Check for high word integer store
1585   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1586     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1587 
1588   // Check for high word float store
1589   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1590     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1591 
1592 #endif // !_LP64
1593 
1594   Unimplemented();
1595 }
1596 
1597 #ifndef PRODUCT
1598 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1599   implementation( NULL, ra_, false, st );
1600 }
1601 #endif
1602 
1603 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1604   implementation( &cbuf, ra_, false, NULL );
1605 }
1606 
1607 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1608   return implementation( NULL, ra_, true, NULL );
1609 }
1610 
1611 //=============================================================================
1612 #ifndef PRODUCT
1613 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1614   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1615 }
1616 #endif
1617 
1618 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1619   MacroAssembler _masm(&cbuf);
1620   for(int i = 0; i < _count; i += 1) {
1621     __ nop();
1622   }
1623 }
1624 
1625 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1626   return 4 * _count;
1627 }
1628 
1629 
1630 //=============================================================================
1631 #ifndef PRODUCT
1632 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1633   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1634   int reg = ra_->get_reg_first(this);
1635   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1636 }
1637 #endif
1638 
1639 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1640   MacroAssembler _masm(&cbuf);
1641   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1642   int reg = ra_->get_encode(this);
1643 
1644   if (Assembler::is_simm13(offset)) {
1645      __ add(SP, offset, reg_to_register_object(reg));
1646   } else {
1647      __ set(offset, O7);
1648      __ add(SP, O7, reg_to_register_object(reg));
1649   }
1650 }
1651 
1652 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1653   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1654   assert(ra_ == ra_->C->regalloc(), "sanity");
1655   return ra_->C->scratch_emit_size(this);
1656 }
1657 
1658 //=============================================================================
1659 #ifndef PRODUCT
1660 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1661   st->print_cr("\nUEP:");
1662 #ifdef    _LP64
1663   if (UseCompressedKlassPointers) {
1664     assert(Universe::heap() != NULL, "java heap should be initialized");
1665     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1666     st->print_cr("\tSLL    R_G5,3,R_G5");
1667     if (Universe::narrow_klass_base() != NULL)
1668       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1669   } else {
1670     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1671   }
1672   st->print_cr("\tCMP    R_G5,R_G3" );
1673   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1674 #else  // _LP64
1675   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1676   st->print_cr("\tCMP    R_G5,R_G3" );
1677   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1678 #endif // _LP64
1679 }
1680 #endif
1681 
1682 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1683   MacroAssembler _masm(&cbuf);
1684   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1685   Register temp_reg   = G3;
1686   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1687 
1688   // Load klass from receiver
1689   __ load_klass(O0, temp_reg);
1690   // Compare against expected klass
1691   __ cmp(temp_reg, G5_ic_reg);
1692   // Branch to miss code, checks xcc or icc depending
1693   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1694 }
1695 
1696 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1697   return MachNode::size(ra_);
1698 }
1699 
1700 
1701 //=============================================================================
1702 
1703 uint size_exception_handler() {
1704   if (TraceJumps) {
1705     return (400); // just a guess
1706   }
1707   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1708 }
1709 
1710 uint size_deopt_handler() {
1711   if (TraceJumps) {
1712     return (400); // just a guess
1713   }
1714   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1715 }
1716 
1717 // Emit exception handler code.
1718 int emit_exception_handler(CodeBuffer& cbuf) {
1719   Register temp_reg = G3;
1720   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1721   MacroAssembler _masm(&cbuf);
1722 
1723   address base =
1724   __ start_a_stub(size_exception_handler());
1725   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1726 
1727   int offset = __ offset();
1728 
1729   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1730   __ delayed()->nop();
1731 
1732   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1733 
1734   __ end_a_stub();
1735 
1736   return offset;
1737 }
1738 
1739 int emit_deopt_handler(CodeBuffer& cbuf) {
1740   // Can't use any of the current frame's registers as we may have deopted
1741   // at a poll and everything (including G3) can be live.
1742   Register temp_reg = L0;
1743   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1744   MacroAssembler _masm(&cbuf);
1745 
1746   address base =
1747   __ start_a_stub(size_deopt_handler());
1748   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1749 
1750   int offset = __ offset();
1751   __ save_frame(0);
1752   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1753   __ delayed()->restore();
1754 
1755   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1756 
1757   __ end_a_stub();
1758   return offset;
1759 
1760 }
1761 
1762 // Given a register encoding, produce a Integer Register object
1763 static Register reg_to_register_object(int register_encoding) {
1764   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1765   return as_Register(register_encoding);
1766 }
1767 
1768 // Given a register encoding, produce a single-precision Float Register object
1769 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1770   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1771   return as_SingleFloatRegister(register_encoding);
1772 }
1773 
1774 // Given a register encoding, produce a double-precision Float Register object
1775 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1776   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1777   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1778   return as_DoubleFloatRegister(register_encoding);
1779 }
1780 
1781 const bool Matcher::match_rule_supported(int opcode) {
1782   if (!has_match_rule(opcode))
1783     return false;
1784 
1785   switch (opcode) {
1786   case Op_CountLeadingZerosI:
1787   case Op_CountLeadingZerosL:
1788   case Op_CountTrailingZerosI:
1789   case Op_CountTrailingZerosL:
1790   case Op_PopCountI:
1791   case Op_PopCountL:
1792     if (!UsePopCountInstruction)
1793       return false;
1794   case Op_CompareAndSwapL:
1795 #ifdef _LP64
1796   case Op_CompareAndSwapP:
1797 #endif
1798     if (!VM_Version::supports_cx8())
1799       return false;
1800     break;
1801   }
1802 
1803   return true;  // Per default match rules are supported.
1804 }
1805 
1806 int Matcher::regnum_to_fpu_offset(int regnum) {
1807   return regnum - 32; // The FP registers are in the second chunk
1808 }
1809 
1810 #ifdef ASSERT
1811 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1812 #endif
1813 
1814 // Vector width in bytes
1815 const int Matcher::vector_width_in_bytes(BasicType bt) {
1816   assert(MaxVectorSize == 8, "");
1817   return 8;
1818 }
1819 
1820 // Vector ideal reg
1821 const int Matcher::vector_ideal_reg(int size) {
1822   assert(MaxVectorSize == 8, "");
1823   return Op_RegD;
1824 }
1825 
1826 const int Matcher::vector_shift_count_ideal_reg(int size) {
1827   fatal("vector shift is not supported");
1828   return Node::NotAMachineReg;
1829 }
1830 
1831 // Limits on vector size (number of elements) loaded into vector.
1832 const int Matcher::max_vector_size(const BasicType bt) {
1833   assert(is_java_primitive(bt), "only primitive type vectors");
1834   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1835 }
1836 
1837 const int Matcher::min_vector_size(const BasicType bt) {
1838   return max_vector_size(bt); // Same as max.
1839 }
1840 
1841 // SPARC doesn't support misaligned vectors store/load.
1842 const bool Matcher::misaligned_vectors_ok() {
1843   return false;
1844 }
1845 
1846 // USII supports fxtof through the whole range of number, USIII doesn't
1847 const bool Matcher::convL2FSupported(void) {
1848   return VM_Version::has_fast_fxtof();
1849 }
1850 
1851 // Is this branch offset short enough that a short branch can be used?
1852 //
1853 // NOTE: If the platform does not provide any short branch variants, then
1854 //       this method should return false for offset 0.
1855 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1856   // The passed offset is relative to address of the branch.
1857   // Don't need to adjust the offset.
1858   return UseCBCond && Assembler::is_simm12(offset);
1859 }
1860 
1861 const bool Matcher::isSimpleConstant64(jlong value) {
1862   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1863   // Depends on optimizations in MacroAssembler::setx.
1864   int hi = (int)(value >> 32);
1865   int lo = (int)(value & ~0);
1866   return (hi == 0) || (hi == -1) || (lo == 0);
1867 }
1868 
1869 // No scaling for the parameter the ClearArray node.
1870 const bool Matcher::init_array_count_is_in_bytes = true;
1871 
1872 // Threshold size for cleararray.
1873 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1874 
1875 // No additional cost for CMOVL.
1876 const int Matcher::long_cmove_cost() { return 0; }
1877 
1878 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1879 const int Matcher::float_cmove_cost() {
1880   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1881 }
1882 
1883 // Should the Matcher clone shifts on addressing modes, expecting them to
1884 // be subsumed into complex addressing expressions or compute them into
1885 // registers?  True for Intel but false for most RISCs
1886 const bool Matcher::clone_shift_expressions = false;
1887 
1888 // Do we need to mask the count passed to shift instructions or does
1889 // the cpu only look at the lower 5/6 bits anyway?
1890 const bool Matcher::need_masked_shift_count = false;
1891 
1892 bool Matcher::narrow_oop_use_complex_address() {
1893   NOT_LP64(ShouldNotCallThis());
1894   assert(UseCompressedOops, "only for compressed oops code");
1895   return false;
1896 }
1897 
1898 bool Matcher::narrow_klass_use_complex_address() {
1899   NOT_LP64(ShouldNotCallThis());
1900   assert(UseCompressedKlassPointers, "only for compressed klass code");
1901   return false;
1902 }
1903 
1904 // Is it better to copy float constants, or load them directly from memory?
1905 // Intel can load a float constant from a direct address, requiring no
1906 // extra registers.  Most RISCs will have to materialize an address into a
1907 // register first, so they would do better to copy the constant from stack.
1908 const bool Matcher::rematerialize_float_constants = false;
1909 
1910 // If CPU can load and store mis-aligned doubles directly then no fixup is
1911 // needed.  Else we split the double into 2 integer pieces and move it
1912 // piece-by-piece.  Only happens when passing doubles into C code as the
1913 // Java calling convention forces doubles to be aligned.
1914 #ifdef _LP64
1915 const bool Matcher::misaligned_doubles_ok = true;
1916 #else
1917 const bool Matcher::misaligned_doubles_ok = false;
1918 #endif
1919 
1920 // No-op on SPARC.
1921 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1922 }
1923 
1924 // Advertise here if the CPU requires explicit rounding operations
1925 // to implement the UseStrictFP mode.
1926 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1927 
1928 // Are floats conerted to double when stored to stack during deoptimization?
1929 // Sparc does not handle callee-save floats.
1930 bool Matcher::float_in_double() { return false; }
1931 
1932 // Do ints take an entire long register or just half?
1933 // Note that we if-def off of _LP64.
1934 // The relevant question is how the int is callee-saved.  In _LP64
1935 // the whole long is written but de-opt'ing will have to extract
1936 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
1937 #ifdef _LP64
1938 const bool Matcher::int_in_long = true;
1939 #else
1940 const bool Matcher::int_in_long = false;
1941 #endif
1942 
1943 // Return whether or not this register is ever used as an argument.  This
1944 // function is used on startup to build the trampoline stubs in generateOptoStub.
1945 // Registers not mentioned will be killed by the VM call in the trampoline, and
1946 // arguments in those registers not be available to the callee.
1947 bool Matcher::can_be_java_arg( int reg ) {
1948   // Standard sparc 6 args in registers
1949   if( reg == R_I0_num ||
1950       reg == R_I1_num ||
1951       reg == R_I2_num ||
1952       reg == R_I3_num ||
1953       reg == R_I4_num ||
1954       reg == R_I5_num ) return true;
1955 #ifdef _LP64
1956   // 64-bit builds can pass 64-bit pointers and longs in
1957   // the high I registers
1958   if( reg == R_I0H_num ||
1959       reg == R_I1H_num ||
1960       reg == R_I2H_num ||
1961       reg == R_I3H_num ||
1962       reg == R_I4H_num ||
1963       reg == R_I5H_num ) return true;
1964 
1965   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
1966     return true;
1967   }
1968 
1969 #else
1970   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
1971   // Longs cannot be passed in O regs, because O regs become I regs
1972   // after a 'save' and I regs get their high bits chopped off on
1973   // interrupt.
1974   if( reg == R_G1H_num || reg == R_G1_num ) return true;
1975   if( reg == R_G4H_num || reg == R_G4_num ) return true;
1976 #endif
1977   // A few float args in registers
1978   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
1979 
1980   return false;
1981 }
1982 
1983 bool Matcher::is_spillable_arg( int reg ) {
1984   return can_be_java_arg(reg);
1985 }
1986 
1987 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
1988   // Use hardware SDIVX instruction when it is
1989   // faster than a code which use multiply.
1990   return VM_Version::has_fast_idiv();
1991 }
1992 
1993 // Register for DIVI projection of divmodI
1994 RegMask Matcher::divI_proj_mask() {
1995   ShouldNotReachHere();
1996   return RegMask();
1997 }
1998 
1999 // Register for MODI projection of divmodI
2000 RegMask Matcher::modI_proj_mask() {
2001   ShouldNotReachHere();
2002   return RegMask();
2003 }
2004 
2005 // Register for DIVL projection of divmodL
2006 RegMask Matcher::divL_proj_mask() {
2007   ShouldNotReachHere();
2008   return RegMask();
2009 }
2010 
2011 // Register for MODL projection of divmodL
2012 RegMask Matcher::modL_proj_mask() {
2013   ShouldNotReachHere();
2014   return RegMask();
2015 }
2016 
2017 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2018   return L7_REGP_mask();
2019 }
2020 
2021 %}
2022 
2023 
2024 // The intptr_t operand types, defined by textual substitution.
2025 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2026 #ifdef _LP64
2027 #define immX      immL
2028 #define immX13    immL13
2029 #define immX13m7  immL13m7
2030 #define iRegX     iRegL
2031 #define g1RegX    g1RegL
2032 #else
2033 #define immX      immI
2034 #define immX13    immI13
2035 #define immX13m7  immI13m7
2036 #define iRegX     iRegI
2037 #define g1RegX    g1RegI
2038 #endif
2039 
2040 //----------ENCODING BLOCK-----------------------------------------------------
2041 // This block specifies the encoding classes used by the compiler to output
2042 // byte streams.  Encoding classes are parameterized macros used by
2043 // Machine Instruction Nodes in order to generate the bit encoding of the
2044 // instruction.  Operands specify their base encoding interface with the
2045 // interface keyword.  There are currently supported four interfaces,
2046 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2047 // operand to generate a function which returns its register number when
2048 // queried.   CONST_INTER causes an operand to generate a function which
2049 // returns the value of the constant when queried.  MEMORY_INTER causes an
2050 // operand to generate four functions which return the Base Register, the
2051 // Index Register, the Scale Value, and the Offset Value of the operand when
2052 // queried.  COND_INTER causes an operand to generate six functions which
2053 // return the encoding code (ie - encoding bits for the instruction)
2054 // associated with each basic boolean condition for a conditional instruction.
2055 //
2056 // Instructions specify two basic values for encoding.  Again, a function
2057 // is available to check if the constant displacement is an oop. They use the
2058 // ins_encode keyword to specify their encoding classes (which must be
2059 // a sequence of enc_class names, and their parameters, specified in
2060 // the encoding block), and they use the
2061 // opcode keyword to specify, in order, their primary, secondary, and
2062 // tertiary opcode.  Only the opcode sections which a particular instruction
2063 // needs for encoding need to be specified.
2064 encode %{
2065   enc_class enc_untested %{
2066 #ifdef ASSERT
2067     MacroAssembler _masm(&cbuf);
2068     __ untested("encoding");
2069 #endif
2070   %}
2071 
2072   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2073     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2074                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2075   %}
2076 
2077   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2078     emit_form3_mem_reg(cbuf, this, $primary, -1,
2079                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2080   %}
2081 
2082   enc_class form3_mem_prefetch_read( memory mem ) %{
2083     emit_form3_mem_reg(cbuf, this, $primary, -1,
2084                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2085   %}
2086 
2087   enc_class form3_mem_prefetch_write( memory mem ) %{
2088     emit_form3_mem_reg(cbuf, this, $primary, -1,
2089                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2090   %}
2091 
2092   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2093     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2094     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2095     guarantee($mem$$index == R_G0_enc, "double index?");
2096     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2097     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2098     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2099     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2100   %}
2101 
2102   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2103     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2104     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2105     guarantee($mem$$index == R_G0_enc, "double index?");
2106     // Load long with 2 instructions
2107     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2108     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2109   %}
2110 
2111   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2112   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2113     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2114     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2115   %}
2116 
2117   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2118     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2119     if( $rs2$$reg != $rd$$reg )
2120       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2121   %}
2122 
2123   // Target lo half of long
2124   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2125     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2126     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2127       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2128   %}
2129 
2130   // Source lo half of long
2131   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2132     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2133     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2134       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2135   %}
2136 
2137   // Target hi half of long
2138   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2139     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2140   %}
2141 
2142   // Source lo half of long, and leave it sign extended.
2143   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2144     // Sign extend low half
2145     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2146   %}
2147 
2148   // Source hi half of long, and leave it sign extended.
2149   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2150     // Shift high half to low half
2151     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2152   %}
2153 
2154   // Source hi half of long
2155   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2156     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2157     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2158       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2159   %}
2160 
2161   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2162     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2163   %}
2164 
2165   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2166     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2167     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2168   %}
2169 
2170   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2171     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2172     // clear if nothing else is happening
2173     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2174     // blt,a,pn done
2175     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2176     // mov dst,-1 in delay slot
2177     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2178   %}
2179 
2180   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2181     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2182   %}
2183 
2184   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2185     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2186   %}
2187 
2188   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2189     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2190   %}
2191 
2192   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2193     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2194   %}
2195 
2196   enc_class move_return_pc_to_o1() %{
2197     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2198   %}
2199 
2200 #ifdef _LP64
2201   /* %%% merge with enc_to_bool */
2202   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2203     MacroAssembler _masm(&cbuf);
2204 
2205     Register   src_reg = reg_to_register_object($src$$reg);
2206     Register   dst_reg = reg_to_register_object($dst$$reg);
2207     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2208   %}
2209 #endif
2210 
2211   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2212     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2213     MacroAssembler _masm(&cbuf);
2214 
2215     Register   p_reg = reg_to_register_object($p$$reg);
2216     Register   q_reg = reg_to_register_object($q$$reg);
2217     Register   y_reg = reg_to_register_object($y$$reg);
2218     Register tmp_reg = reg_to_register_object($tmp$$reg);
2219 
2220     __ subcc( p_reg, q_reg,   p_reg );
2221     __ add  ( p_reg, y_reg, tmp_reg );
2222     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2223   %}
2224 
2225   enc_class form_d2i_helper(regD src, regF dst) %{
2226     // fcmp %fcc0,$src,$src
2227     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2228     // branch %fcc0 not-nan, predict taken
2229     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2230     // fdtoi $src,$dst
2231     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2232     // fitos $dst,$dst (if nan)
2233     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2234     // clear $dst (if nan)
2235     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2236     // carry on here...
2237   %}
2238 
2239   enc_class form_d2l_helper(regD src, regD dst) %{
2240     // fcmp %fcc0,$src,$src  check for NAN
2241     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2242     // branch %fcc0 not-nan, predict taken
2243     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2244     // fdtox $src,$dst   convert in delay slot
2245     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2246     // fxtod $dst,$dst  (if nan)
2247     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2248     // clear $dst (if nan)
2249     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2250     // carry on here...
2251   %}
2252 
2253   enc_class form_f2i_helper(regF src, regF dst) %{
2254     // fcmps %fcc0,$src,$src
2255     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2256     // branch %fcc0 not-nan, predict taken
2257     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2258     // fstoi $src,$dst
2259     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2260     // fitos $dst,$dst (if nan)
2261     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2262     // clear $dst (if nan)
2263     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2264     // carry on here...
2265   %}
2266 
2267   enc_class form_f2l_helper(regF src, regD dst) %{
2268     // fcmps %fcc0,$src,$src
2269     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2270     // branch %fcc0 not-nan, predict taken
2271     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2272     // fstox $src,$dst
2273     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2274     // fxtod $dst,$dst (if nan)
2275     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2276     // clear $dst (if nan)
2277     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2278     // carry on here...
2279   %}
2280 
2281   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2282   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2283   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2284   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2285 
2286   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2287 
2288   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2289   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2290 
2291   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2292     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2293   %}
2294 
2295   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2296     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2297   %}
2298 
2299   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2300     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2301   %}
2302 
2303   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2304     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2305   %}
2306 
2307   enc_class form3_convI2F(regF rs2, regF rd) %{
2308     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2309   %}
2310 
2311   // Encloding class for traceable jumps
2312   enc_class form_jmpl(g3RegP dest) %{
2313     emit_jmpl(cbuf, $dest$$reg);
2314   %}
2315 
2316   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2317     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2318   %}
2319 
2320   enc_class form2_nop() %{
2321     emit_nop(cbuf);
2322   %}
2323 
2324   enc_class form2_illtrap() %{
2325     emit_illtrap(cbuf);
2326   %}
2327 
2328 
2329   // Compare longs and convert into -1, 0, 1.
2330   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2331     // CMP $src1,$src2
2332     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2333     // blt,a,pn done
2334     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2335     // mov dst,-1 in delay slot
2336     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2337     // bgt,a,pn done
2338     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2339     // mov dst,1 in delay slot
2340     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2341     // CLR    $dst
2342     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2343   %}
2344 
2345   enc_class enc_PartialSubtypeCheck() %{
2346     MacroAssembler _masm(&cbuf);
2347     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2348     __ delayed()->nop();
2349   %}
2350 
2351   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2352     MacroAssembler _masm(&cbuf);
2353     Label* L = $labl$$label;
2354     Assembler::Predict predict_taken =
2355       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2356 
2357     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2358     __ delayed()->nop();
2359   %}
2360 
2361   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2362     MacroAssembler _masm(&cbuf);
2363     Label* L = $labl$$label;
2364     Assembler::Predict predict_taken =
2365       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2366 
2367     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2368     __ delayed()->nop();
2369   %}
2370 
2371   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2372     int op = (Assembler::arith_op << 30) |
2373              ($dst$$reg << 25) |
2374              (Assembler::movcc_op3 << 19) |
2375              (1 << 18) |                    // cc2 bit for 'icc'
2376              ($cmp$$cmpcode << 14) |
2377              (0 << 13) |                    // select register move
2378              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2379              ($src$$reg << 0);
2380     cbuf.insts()->emit_int32(op);
2381   %}
2382 
2383   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2384     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2385     int op = (Assembler::arith_op << 30) |
2386              ($dst$$reg << 25) |
2387              (Assembler::movcc_op3 << 19) |
2388              (1 << 18) |                    // cc2 bit for 'icc'
2389              ($cmp$$cmpcode << 14) |
2390              (1 << 13) |                    // select immediate move
2391              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2392              (simm11 << 0);
2393     cbuf.insts()->emit_int32(op);
2394   %}
2395 
2396   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2397     int op = (Assembler::arith_op << 30) |
2398              ($dst$$reg << 25) |
2399              (Assembler::movcc_op3 << 19) |
2400              (0 << 18) |                    // cc2 bit for 'fccX'
2401              ($cmp$$cmpcode << 14) |
2402              (0 << 13) |                    // select register move
2403              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2404              ($src$$reg << 0);
2405     cbuf.insts()->emit_int32(op);
2406   %}
2407 
2408   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2409     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2410     int op = (Assembler::arith_op << 30) |
2411              ($dst$$reg << 25) |
2412              (Assembler::movcc_op3 << 19) |
2413              (0 << 18) |                    // cc2 bit for 'fccX'
2414              ($cmp$$cmpcode << 14) |
2415              (1 << 13) |                    // select immediate move
2416              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2417              (simm11 << 0);
2418     cbuf.insts()->emit_int32(op);
2419   %}
2420 
2421   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2422     int op = (Assembler::arith_op << 30) |
2423              ($dst$$reg << 25) |
2424              (Assembler::fpop2_op3 << 19) |
2425              (0 << 18) |
2426              ($cmp$$cmpcode << 14) |
2427              (1 << 13) |                    // select register move
2428              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2429              ($primary << 5) |              // select single, double or quad
2430              ($src$$reg << 0);
2431     cbuf.insts()->emit_int32(op);
2432   %}
2433 
2434   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2435     int op = (Assembler::arith_op << 30) |
2436              ($dst$$reg << 25) |
2437              (Assembler::fpop2_op3 << 19) |
2438              (0 << 18) |
2439              ($cmp$$cmpcode << 14) |
2440              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2441              ($primary << 5) |              // select single, double or quad
2442              ($src$$reg << 0);
2443     cbuf.insts()->emit_int32(op);
2444   %}
2445 
2446   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2447   // the condition comes from opcode-field instead of an argument.
2448   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2449     int op = (Assembler::arith_op << 30) |
2450              ($dst$$reg << 25) |
2451              (Assembler::movcc_op3 << 19) |
2452              (1 << 18) |                    // cc2 bit for 'icc'
2453              ($primary << 14) |
2454              (0 << 13) |                    // select register move
2455              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2456              ($src$$reg << 0);
2457     cbuf.insts()->emit_int32(op);
2458   %}
2459 
2460   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2461     int op = (Assembler::arith_op << 30) |
2462              ($dst$$reg << 25) |
2463              (Assembler::movcc_op3 << 19) |
2464              (6 << 16) |                    // cc2 bit for 'xcc'
2465              ($primary << 14) |
2466              (0 << 13) |                    // select register move
2467              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2468              ($src$$reg << 0);
2469     cbuf.insts()->emit_int32(op);
2470   %}
2471 
2472   enc_class Set13( immI13 src, iRegI rd ) %{
2473     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2474   %}
2475 
2476   enc_class SetHi22( immI src, iRegI rd ) %{
2477     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2478   %}
2479 
2480   enc_class Set32( immI src, iRegI rd ) %{
2481     MacroAssembler _masm(&cbuf);
2482     __ set($src$$constant, reg_to_register_object($rd$$reg));
2483   %}
2484 
2485   enc_class call_epilog %{
2486     if( VerifyStackAtCalls ) {
2487       MacroAssembler _masm(&cbuf);
2488       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2489       Register temp_reg = G3;
2490       __ add(SP, framesize, temp_reg);
2491       __ cmp(temp_reg, FP);
2492       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2493     }
2494   %}
2495 
2496   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2497   // to G1 so the register allocator will not have to deal with the misaligned register
2498   // pair.
2499   enc_class adjust_long_from_native_call %{
2500 #ifndef _LP64
2501     if (returns_long()) {
2502       //    sllx  O0,32,O0
2503       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2504       //    srl   O1,0,O1
2505       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2506       //    or    O0,O1,G1
2507       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2508     }
2509 #endif
2510   %}
2511 
2512   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2513     // CALL directly to the runtime
2514     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2515     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2516                     /*preserve_g2=*/true);
2517   %}
2518 
2519   enc_class preserve_SP %{
2520     MacroAssembler _masm(&cbuf);
2521     __ mov(SP, L7_mh_SP_save);
2522   %}
2523 
2524   enc_class restore_SP %{
2525     MacroAssembler _masm(&cbuf);
2526     __ mov(L7_mh_SP_save, SP);
2527   %}
2528 
2529   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2530     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2531     // who we intended to call.
2532     if (!_method) {
2533       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2534     } else if (_optimized_virtual) {
2535       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2536     } else {
2537       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2538     }
2539     if (_method) {  // Emit stub for static call.
2540       CompiledStaticCall::emit_to_interp_stub(cbuf);
2541     }
2542   %}
2543 
2544   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2545     MacroAssembler _masm(&cbuf);
2546     __ set_inst_mark();
2547     int vtable_index = this->_vtable_index;
2548     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2549     if (vtable_index < 0) {
2550       // must be invalid_vtable_index, not nonvirtual_vtable_index
2551       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2552       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2553       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2554       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2555       __ ic_call((address)$meth$$method);
2556     } else {
2557       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2558       // Just go thru the vtable
2559       // get receiver klass (receiver already checked for non-null)
2560       // If we end up going thru a c2i adapter interpreter expects method in G5
2561       int off = __ offset();
2562       __ load_klass(O0, G3_scratch);
2563       int klass_load_size;
2564       if (UseCompressedKlassPointers) {
2565         assert(Universe::heap() != NULL, "java heap should be initialized");
2566         if (Universe::narrow_klass_base() == NULL)
2567           klass_load_size = 2*BytesPerInstWord;
2568         else
2569           klass_load_size = 3*BytesPerInstWord;
2570       } else {
2571         klass_load_size = 1*BytesPerInstWord;
2572       }
2573       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2574       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2575       if (Assembler::is_simm13(v_off)) {
2576         __ ld_ptr(G3, v_off, G5_method);
2577       } else {
2578         // Generate 2 instructions
2579         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2580         __ or3(G5_method, v_off & 0x3ff, G5_method);
2581         // ld_ptr, set_hi, set
2582         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2583                "Unexpected instruction size(s)");
2584         __ ld_ptr(G3, G5_method, G5_method);
2585       }
2586       // NOTE: for vtable dispatches, the vtable entry will never be null.
2587       // However it may very well end up in handle_wrong_method if the
2588       // method is abstract for the particular class.
2589       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2590       // jump to target (either compiled code or c2iadapter)
2591       __ jmpl(G3_scratch, G0, O7);
2592       __ delayed()->nop();
2593     }
2594   %}
2595 
2596   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2597     MacroAssembler _masm(&cbuf);
2598 
2599     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2600     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2601                               // we might be calling a C2I adapter which needs it.
2602 
2603     assert(temp_reg != G5_ic_reg, "conflicting registers");
2604     // Load nmethod
2605     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2606 
2607     // CALL to compiled java, indirect the contents of G3
2608     __ set_inst_mark();
2609     __ callr(temp_reg, G0);
2610     __ delayed()->nop();
2611   %}
2612 
2613 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2614     MacroAssembler _masm(&cbuf);
2615     Register Rdividend = reg_to_register_object($src1$$reg);
2616     Register Rdivisor = reg_to_register_object($src2$$reg);
2617     Register Rresult = reg_to_register_object($dst$$reg);
2618 
2619     __ sra(Rdivisor, 0, Rdivisor);
2620     __ sra(Rdividend, 0, Rdividend);
2621     __ sdivx(Rdividend, Rdivisor, Rresult);
2622 %}
2623 
2624 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2625     MacroAssembler _masm(&cbuf);
2626 
2627     Register Rdividend = reg_to_register_object($src1$$reg);
2628     int divisor = $imm$$constant;
2629     Register Rresult = reg_to_register_object($dst$$reg);
2630 
2631     __ sra(Rdividend, 0, Rdividend);
2632     __ sdivx(Rdividend, divisor, Rresult);
2633 %}
2634 
2635 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2636     MacroAssembler _masm(&cbuf);
2637     Register Rsrc1 = reg_to_register_object($src1$$reg);
2638     Register Rsrc2 = reg_to_register_object($src2$$reg);
2639     Register Rdst  = reg_to_register_object($dst$$reg);
2640 
2641     __ sra( Rsrc1, 0, Rsrc1 );
2642     __ sra( Rsrc2, 0, Rsrc2 );
2643     __ mulx( Rsrc1, Rsrc2, Rdst );
2644     __ srlx( Rdst, 32, Rdst );
2645 %}
2646 
2647 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2648     MacroAssembler _masm(&cbuf);
2649     Register Rdividend = reg_to_register_object($src1$$reg);
2650     Register Rdivisor = reg_to_register_object($src2$$reg);
2651     Register Rresult = reg_to_register_object($dst$$reg);
2652     Register Rscratch = reg_to_register_object($scratch$$reg);
2653 
2654     assert(Rdividend != Rscratch, "");
2655     assert(Rdivisor  != Rscratch, "");
2656 
2657     __ sra(Rdividend, 0, Rdividend);
2658     __ sra(Rdivisor, 0, Rdivisor);
2659     __ sdivx(Rdividend, Rdivisor, Rscratch);
2660     __ mulx(Rscratch, Rdivisor, Rscratch);
2661     __ sub(Rdividend, Rscratch, Rresult);
2662 %}
2663 
2664 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2665     MacroAssembler _masm(&cbuf);
2666 
2667     Register Rdividend = reg_to_register_object($src1$$reg);
2668     int divisor = $imm$$constant;
2669     Register Rresult = reg_to_register_object($dst$$reg);
2670     Register Rscratch = reg_to_register_object($scratch$$reg);
2671 
2672     assert(Rdividend != Rscratch, "");
2673 
2674     __ sra(Rdividend, 0, Rdividend);
2675     __ sdivx(Rdividend, divisor, Rscratch);
2676     __ mulx(Rscratch, divisor, Rscratch);
2677     __ sub(Rdividend, Rscratch, Rresult);
2678 %}
2679 
2680 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2681     MacroAssembler _masm(&cbuf);
2682 
2683     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2684     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2685 
2686     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2687 %}
2688 
2689 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2690     MacroAssembler _masm(&cbuf);
2691 
2692     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2693     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2694 
2695     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2696 %}
2697 
2698 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2699     MacroAssembler _masm(&cbuf);
2700 
2701     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2702     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2703 
2704     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2705 %}
2706 
2707 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2708     MacroAssembler _masm(&cbuf);
2709 
2710     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2711     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2712 
2713     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2714 %}
2715 
2716 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2717     MacroAssembler _masm(&cbuf);
2718 
2719     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2720     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2721 
2722     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2723 %}
2724 
2725 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2726     MacroAssembler _masm(&cbuf);
2727 
2728     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2729     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2730 
2731     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2732 %}
2733 
2734 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2735     MacroAssembler _masm(&cbuf);
2736 
2737     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2738     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2739 
2740     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2741 %}
2742 
2743 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2744     MacroAssembler _masm(&cbuf);
2745 
2746     Register Roop  = reg_to_register_object($oop$$reg);
2747     Register Rbox  = reg_to_register_object($box$$reg);
2748     Register Rscratch = reg_to_register_object($scratch$$reg);
2749     Register Rmark =    reg_to_register_object($scratch2$$reg);
2750 
2751     assert(Roop  != Rscratch, "");
2752     assert(Roop  != Rmark, "");
2753     assert(Rbox  != Rscratch, "");
2754     assert(Rbox  != Rmark, "");
2755 
2756     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2757 %}
2758 
2759 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2760     MacroAssembler _masm(&cbuf);
2761 
2762     Register Roop  = reg_to_register_object($oop$$reg);
2763     Register Rbox  = reg_to_register_object($box$$reg);
2764     Register Rscratch = reg_to_register_object($scratch$$reg);
2765     Register Rmark =    reg_to_register_object($scratch2$$reg);
2766 
2767     assert(Roop  != Rscratch, "");
2768     assert(Roop  != Rmark, "");
2769     assert(Rbox  != Rscratch, "");
2770     assert(Rbox  != Rmark, "");
2771 
2772     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2773   %}
2774 
2775   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2776     MacroAssembler _masm(&cbuf);
2777     Register Rmem = reg_to_register_object($mem$$reg);
2778     Register Rold = reg_to_register_object($old$$reg);
2779     Register Rnew = reg_to_register_object($new$$reg);
2780 
2781     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2782     __ cmp( Rold, Rnew );
2783   %}
2784 
2785   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2786     Register Rmem = reg_to_register_object($mem$$reg);
2787     Register Rold = reg_to_register_object($old$$reg);
2788     Register Rnew = reg_to_register_object($new$$reg);
2789 
2790     MacroAssembler _masm(&cbuf);
2791     __ mov(Rnew, O7);
2792     __ casx(Rmem, Rold, O7);
2793     __ cmp( Rold, O7 );
2794   %}
2795 
2796   // raw int cas, used for compareAndSwap
2797   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2798     Register Rmem = reg_to_register_object($mem$$reg);
2799     Register Rold = reg_to_register_object($old$$reg);
2800     Register Rnew = reg_to_register_object($new$$reg);
2801 
2802     MacroAssembler _masm(&cbuf);
2803     __ mov(Rnew, O7);
2804     __ cas(Rmem, Rold, O7);
2805     __ cmp( Rold, O7 );
2806   %}
2807 
2808   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2809     Register Rres = reg_to_register_object($res$$reg);
2810 
2811     MacroAssembler _masm(&cbuf);
2812     __ mov(1, Rres);
2813     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2814   %}
2815 
2816   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2817     Register Rres = reg_to_register_object($res$$reg);
2818 
2819     MacroAssembler _masm(&cbuf);
2820     __ mov(1, Rres);
2821     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2822   %}
2823 
2824   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2825     MacroAssembler _masm(&cbuf);
2826     Register Rdst = reg_to_register_object($dst$$reg);
2827     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2828                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2829     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2830                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2831 
2832     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2833     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2834   %}
2835 
2836 
2837   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2838     Label Ldone, Lloop;
2839     MacroAssembler _masm(&cbuf);
2840 
2841     Register   str1_reg = reg_to_register_object($str1$$reg);
2842     Register   str2_reg = reg_to_register_object($str2$$reg);
2843     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2844     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2845     Register result_reg = reg_to_register_object($result$$reg);
2846 
2847     assert(result_reg != str1_reg &&
2848            result_reg != str2_reg &&
2849            result_reg != cnt1_reg &&
2850            result_reg != cnt2_reg ,
2851            "need different registers");
2852 
2853     // Compute the minimum of the string lengths(str1_reg) and the
2854     // difference of the string lengths (stack)
2855 
2856     // See if the lengths are different, and calculate min in str1_reg.
2857     // Stash diff in O7 in case we need it for a tie-breaker.
2858     Label Lskip;
2859     __ subcc(cnt1_reg, cnt2_reg, O7);
2860     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2861     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2862     // cnt2 is shorter, so use its count:
2863     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2864     __ bind(Lskip);
2865 
2866     // reallocate cnt1_reg, cnt2_reg, result_reg
2867     // Note:  limit_reg holds the string length pre-scaled by 2
2868     Register limit_reg =   cnt1_reg;
2869     Register  chr2_reg =   cnt2_reg;
2870     Register  chr1_reg = result_reg;
2871     // str{12} are the base pointers
2872 
2873     // Is the minimum length zero?
2874     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2875     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2876     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2877 
2878     // Load first characters
2879     __ lduh(str1_reg, 0, chr1_reg);
2880     __ lduh(str2_reg, 0, chr2_reg);
2881 
2882     // Compare first characters
2883     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2884     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2885     assert(chr1_reg == result_reg, "result must be pre-placed");
2886     __ delayed()->nop();
2887 
2888     {
2889       // Check after comparing first character to see if strings are equivalent
2890       Label LSkip2;
2891       // Check if the strings start at same location
2892       __ cmp(str1_reg, str2_reg);
2893       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2894       __ delayed()->nop();
2895 
2896       // Check if the length difference is zero (in O7)
2897       __ cmp(G0, O7);
2898       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2899       __ delayed()->mov(G0, result_reg);  // result is zero
2900 
2901       // Strings might not be equal
2902       __ bind(LSkip2);
2903     }
2904 
2905     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2906     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2907     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2908 
2909     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2910     __ add(str1_reg, limit_reg, str1_reg);
2911     __ add(str2_reg, limit_reg, str2_reg);
2912     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2913 
2914     // Compare the rest of the characters
2915     __ lduh(str1_reg, limit_reg, chr1_reg);
2916     __ bind(Lloop);
2917     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2918     __ lduh(str2_reg, limit_reg, chr2_reg);
2919     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2920     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2921     assert(chr1_reg == result_reg, "result must be pre-placed");
2922     __ delayed()->inccc(limit_reg, sizeof(jchar));
2923     // annul LDUH if branch is not taken to prevent access past end of string
2924     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2925     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2926 
2927     // If strings are equal up to min length, return the length difference.
2928     __ mov(O7, result_reg);
2929 
2930     // Otherwise, return the difference between the first mismatched chars.
2931     __ bind(Ldone);
2932   %}
2933 
2934 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
2935     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
2936     MacroAssembler _masm(&cbuf);
2937 
2938     Register   str1_reg = reg_to_register_object($str1$$reg);
2939     Register   str2_reg = reg_to_register_object($str2$$reg);
2940     Register    cnt_reg = reg_to_register_object($cnt$$reg);
2941     Register   tmp1_reg = O7;
2942     Register result_reg = reg_to_register_object($result$$reg);
2943 
2944     assert(result_reg != str1_reg &&
2945            result_reg != str2_reg &&
2946            result_reg !=  cnt_reg &&
2947            result_reg != tmp1_reg ,
2948            "need different registers");
2949 
2950     __ cmp(str1_reg, str2_reg); //same char[] ?
2951     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
2952     __ delayed()->add(G0, 1, result_reg);
2953 
2954     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
2955     __ delayed()->add(G0, 1, result_reg); // count == 0
2956 
2957     //rename registers
2958     Register limit_reg =    cnt_reg;
2959     Register  chr1_reg = result_reg;
2960     Register  chr2_reg =   tmp1_reg;
2961 
2962     //check for alignment and position the pointers to the ends
2963     __ or3(str1_reg, str2_reg, chr1_reg);
2964     __ andcc(chr1_reg, 0x3, chr1_reg);
2965     // notZero means at least one not 4-byte aligned.
2966     // We could optimize the case when both arrays are not aligned
2967     // but it is not frequent case and it requires additional checks.
2968     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
2969     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
2970 
2971     // Compare char[] arrays aligned to 4 bytes.
2972     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
2973                           chr1_reg, chr2_reg, Ldone);
2974     __ ba(Ldone);
2975     __ delayed()->add(G0, 1, result_reg);
2976 
2977     // char by char compare
2978     __ bind(Lchar);
2979     __ add(str1_reg, limit_reg, str1_reg);
2980     __ add(str2_reg, limit_reg, str2_reg);
2981     __ neg(limit_reg); //negate count
2982 
2983     __ lduh(str1_reg, limit_reg, chr1_reg);
2984     // Lchar_loop
2985     __ bind(Lchar_loop);
2986     __ lduh(str2_reg, limit_reg, chr2_reg);
2987     __ cmp(chr1_reg, chr2_reg);
2988     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
2989     __ delayed()->mov(G0, result_reg); //not equal
2990     __ inccc(limit_reg, sizeof(jchar));
2991     // annul LDUH if branch is not taken to prevent access past end of string
2992     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
2993     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2994 
2995     __ add(G0, 1, result_reg);  //equal
2996 
2997     __ bind(Ldone);
2998   %}
2999 
3000 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3001     Label Lvector, Ldone, Lloop;
3002     MacroAssembler _masm(&cbuf);
3003 
3004     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3005     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3006     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3007     Register   tmp2_reg = O7;
3008     Register result_reg = reg_to_register_object($result$$reg);
3009 
3010     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3011     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3012 
3013     // return true if the same array
3014     __ cmp(ary1_reg, ary2_reg);
3015     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3016     __ delayed()->add(G0, 1, result_reg); // equal
3017 
3018     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3019     __ delayed()->mov(G0, result_reg);    // not equal
3020 
3021     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3022     __ delayed()->mov(G0, result_reg);    // not equal
3023 
3024     //load the lengths of arrays
3025     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3026     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3027 
3028     // return false if the two arrays are not equal length
3029     __ cmp(tmp1_reg, tmp2_reg);
3030     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3031     __ delayed()->mov(G0, result_reg);     // not equal
3032 
3033     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3034     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3035 
3036     // load array addresses
3037     __ add(ary1_reg, base_offset, ary1_reg);
3038     __ add(ary2_reg, base_offset, ary2_reg);
3039 
3040     // renaming registers
3041     Register chr1_reg  =  result_reg; // for characters in ary1
3042     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3043     Register limit_reg =  tmp1_reg;   // length
3044 
3045     // set byte count
3046     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3047 
3048     // Compare char[] arrays aligned to 4 bytes.
3049     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3050                           chr1_reg, chr2_reg, Ldone);
3051     __ add(G0, 1, result_reg); // equals
3052 
3053     __ bind(Ldone);
3054   %}
3055 
3056   enc_class enc_rethrow() %{
3057     cbuf.set_insts_mark();
3058     Register temp_reg = G3;
3059     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3060     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3061     MacroAssembler _masm(&cbuf);
3062 #ifdef ASSERT
3063     __ save_frame(0);
3064     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3065     __ sethi(last_rethrow_addrlit, L1);
3066     Address addr(L1, last_rethrow_addrlit.low10());
3067     __ rdpc(L2);
3068     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3069     __ st_ptr(L2, addr);
3070     __ restore();
3071 #endif
3072     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3073     __ delayed()->nop();
3074   %}
3075 
3076   enc_class emit_mem_nop() %{
3077     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3078     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3079   %}
3080 
3081   enc_class emit_fadd_nop() %{
3082     // Generates the instruction FMOVS f31,f31
3083     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3084   %}
3085 
3086   enc_class emit_br_nop() %{
3087     // Generates the instruction BPN,PN .
3088     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3089   %}
3090 
3091   enc_class enc_membar_acquire %{
3092     MacroAssembler _masm(&cbuf);
3093     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3094   %}
3095 
3096   enc_class enc_membar_release %{
3097     MacroAssembler _masm(&cbuf);
3098     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3099   %}
3100 
3101   enc_class enc_membar_volatile %{
3102     MacroAssembler _masm(&cbuf);
3103     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3104   %}
3105 
3106 %}
3107 
3108 //----------FRAME--------------------------------------------------------------
3109 // Definition of frame structure and management information.
3110 //
3111 //  S T A C K   L A Y O U T    Allocators stack-slot number
3112 //                             |   (to get allocators register number
3113 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3114 //  r   CALLER     |        |
3115 //  o     |        +--------+      pad to even-align allocators stack-slot
3116 //  w     V        |  pad0  |        numbers; owned by CALLER
3117 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3118 //  h     ^        |   in   |  5
3119 //        |        |  args  |  4   Holes in incoming args owned by SELF
3120 //  |     |        |        |  3
3121 //  |     |        +--------+
3122 //  V     |        | old out|      Empty on Intel, window on Sparc
3123 //        |    old |preserve|      Must be even aligned.
3124 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3125 //        |        |   in   |  3   area for Intel ret address
3126 //     Owned by    |preserve|      Empty on Sparc.
3127 //       SELF      +--------+
3128 //        |        |  pad2  |  2   pad to align old SP
3129 //        |        +--------+  1
3130 //        |        | locks  |  0
3131 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3132 //        |        |  pad1  | 11   pad to align new SP
3133 //        |        +--------+
3134 //        |        |        | 10
3135 //        |        | spills |  9   spills
3136 //        V        |        |  8   (pad0 slot for callee)
3137 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3138 //        ^        |  out   |  7
3139 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3140 //     Owned by    +--------+
3141 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3142 //        |    new |preserve|      Must be even-aligned.
3143 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3144 //        |        |        |
3145 //
3146 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3147 //         known from SELF's arguments and the Java calling convention.
3148 //         Region 6-7 is determined per call site.
3149 // Note 2: If the calling convention leaves holes in the incoming argument
3150 //         area, those holes are owned by SELF.  Holes in the outgoing area
3151 //         are owned by the CALLEE.  Holes should not be nessecary in the
3152 //         incoming area, as the Java calling convention is completely under
3153 //         the control of the AD file.  Doubles can be sorted and packed to
3154 //         avoid holes.  Holes in the outgoing arguments may be nessecary for
3155 //         varargs C calling conventions.
3156 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3157 //         even aligned with pad0 as needed.
3158 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3159 //         region 6-11 is even aligned; it may be padded out more so that
3160 //         the region from SP to FP meets the minimum stack alignment.
3161 
3162 frame %{
3163   // What direction does stack grow in (assumed to be same for native & Java)
3164   stack_direction(TOWARDS_LOW);
3165 
3166   // These two registers define part of the calling convention
3167   // between compiled code and the interpreter.
3168   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3169   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3170 
3171   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3172   cisc_spilling_operand_name(indOffset);
3173 
3174   // Number of stack slots consumed by a Monitor enter
3175 #ifdef _LP64
3176   sync_stack_slots(2);
3177 #else
3178   sync_stack_slots(1);
3179 #endif
3180 
3181   // Compiled code's Frame Pointer
3182   frame_pointer(R_SP);
3183 
3184   // Stack alignment requirement
3185   stack_alignment(StackAlignmentInBytes);
3186   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3187   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3188 
3189   // Number of stack slots between incoming argument block and the start of
3190   // a new frame.  The PROLOG must add this many slots to the stack.  The
3191   // EPILOG must remove this many slots.
3192   in_preserve_stack_slots(0);
3193 
3194   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3195   // for calls to C.  Supports the var-args backing area for register parms.
3196   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3197 #ifdef _LP64
3198   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3199   varargs_C_out_slots_killed(12);
3200 #else
3201   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3202   varargs_C_out_slots_killed( 7);
3203 #endif
3204 
3205   // The after-PROLOG location of the return address.  Location of
3206   // return address specifies a type (REG or STACK) and a number
3207   // representing the register number (i.e. - use a register name) or
3208   // stack slot.
3209   return_addr(REG R_I7);          // Ret Addr is in register I7
3210 
3211   // Body of function which returns an OptoRegs array locating
3212   // arguments either in registers or in stack slots for calling
3213   // java
3214   calling_convention %{
3215     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3216 
3217   %}
3218 
3219   // Body of function which returns an OptoRegs array locating
3220   // arguments either in registers or in stack slots for callin
3221   // C.
3222   c_calling_convention %{
3223     // This is obviously always outgoing
3224     (void) SharedRuntime::c_calling_convention(sig_bt, regs, length);
3225   %}
3226 
3227   // Location of native (C/C++) and interpreter return values.  This is specified to
3228   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3229   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3230   // to and from the register pairs is done by the appropriate call and epilog
3231   // opcodes.  This simplifies the register allocator.
3232   c_return_value %{
3233     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3234 #ifdef     _LP64
3235     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3236     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3237     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3238     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3239 #else  // !_LP64
3240     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3241     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3242     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3243     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3244 #endif
3245     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3246                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3247   %}
3248 
3249   // Location of compiled Java return values.  Same as C
3250   return_value %{
3251     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3252 #ifdef     _LP64
3253     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3254     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3255     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3256     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3257 #else  // !_LP64
3258     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3259     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3260     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3261     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3262 #endif
3263     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3264                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3265   %}
3266 
3267 %}
3268 
3269 
3270 //----------ATTRIBUTES---------------------------------------------------------
3271 //----------Operand Attributes-------------------------------------------------
3272 op_attrib op_cost(1);          // Required cost attribute
3273 
3274 //----------Instruction Attributes---------------------------------------------
3275 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3276 ins_attrib ins_size(32);           // Required size attribute (in bits)
3277 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3278 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3279                                    // non-matching short branch variant of some
3280                                                             // long branch?
3281 
3282 //----------OPERANDS-----------------------------------------------------------
3283 // Operand definitions must precede instruction definitions for correct parsing
3284 // in the ADLC because operands constitute user defined types which are used in
3285 // instruction definitions.
3286 
3287 //----------Simple Operands----------------------------------------------------
3288 // Immediate Operands
3289 // Integer Immediate: 32-bit
3290 operand immI() %{
3291   match(ConI);
3292 
3293   op_cost(0);
3294   // formats are generated automatically for constants and base registers
3295   format %{ %}
3296   interface(CONST_INTER);
3297 %}
3298 
3299 // Integer Immediate: 8-bit
3300 operand immI8() %{
3301   predicate(Assembler::is_simm8(n->get_int()));
3302   match(ConI);
3303   op_cost(0);
3304   format %{ %}
3305   interface(CONST_INTER);
3306 %}
3307 
3308 // Integer Immediate: 13-bit
3309 operand immI13() %{
3310   predicate(Assembler::is_simm13(n->get_int()));
3311   match(ConI);
3312   op_cost(0);
3313 
3314   format %{ %}
3315   interface(CONST_INTER);
3316 %}
3317 
3318 // Integer Immediate: 13-bit minus 7
3319 operand immI13m7() %{
3320   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3321   match(ConI);
3322   op_cost(0);
3323 
3324   format %{ %}
3325   interface(CONST_INTER);
3326 %}
3327 
3328 // Integer Immediate: 16-bit
3329 operand immI16() %{
3330   predicate(Assembler::is_simm16(n->get_int()));
3331   match(ConI);
3332   op_cost(0);
3333   format %{ %}
3334   interface(CONST_INTER);
3335 %}
3336 
3337 // Unsigned (positive) Integer Immediate: 13-bit
3338 operand immU13() %{
3339   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3340   match(ConI);
3341   op_cost(0);
3342 
3343   format %{ %}
3344   interface(CONST_INTER);
3345 %}
3346 
3347 // Integer Immediate: 6-bit
3348 operand immU6() %{
3349   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3350   match(ConI);
3351   op_cost(0);
3352   format %{ %}
3353   interface(CONST_INTER);
3354 %}
3355 
3356 // Integer Immediate: 11-bit
3357 operand immI11() %{
3358   predicate(Assembler::is_simm11(n->get_int()));
3359   match(ConI);
3360   op_cost(0);
3361   format %{ %}
3362   interface(CONST_INTER);
3363 %}
3364 
3365 // Integer Immediate: 5-bit
3366 operand immI5() %{
3367   predicate(Assembler::is_simm5(n->get_int()));
3368   match(ConI);
3369   op_cost(0);
3370   format %{ %}
3371   interface(CONST_INTER);
3372 %}
3373 
3374 // Integer Immediate: 0-bit
3375 operand immI0() %{
3376   predicate(n->get_int() == 0);
3377   match(ConI);
3378   op_cost(0);
3379 
3380   format %{ %}
3381   interface(CONST_INTER);
3382 %}
3383 
3384 // Integer Immediate: the value 10
3385 operand immI10() %{
3386   predicate(n->get_int() == 10);
3387   match(ConI);
3388   op_cost(0);
3389 
3390   format %{ %}
3391   interface(CONST_INTER);
3392 %}
3393 
3394 // Integer Immediate: the values 0-31
3395 operand immU5() %{
3396   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3397   match(ConI);
3398   op_cost(0);
3399 
3400   format %{ %}
3401   interface(CONST_INTER);
3402 %}
3403 
3404 // Integer Immediate: the values 1-31
3405 operand immI_1_31() %{
3406   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3407   match(ConI);
3408   op_cost(0);
3409 
3410   format %{ %}
3411   interface(CONST_INTER);
3412 %}
3413 
3414 // Integer Immediate: the values 32-63
3415 operand immI_32_63() %{
3416   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3417   match(ConI);
3418   op_cost(0);
3419 
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Immediates for special shifts (sign extend)
3425 
3426 // Integer Immediate: the value 16
3427 operand immI_16() %{
3428   predicate(n->get_int() == 16);
3429   match(ConI);
3430   op_cost(0);
3431 
3432   format %{ %}
3433   interface(CONST_INTER);
3434 %}
3435 
3436 // Integer Immediate: the value 24
3437 operand immI_24() %{
3438   predicate(n->get_int() == 24);
3439   match(ConI);
3440   op_cost(0);
3441 
3442   format %{ %}
3443   interface(CONST_INTER);
3444 %}
3445 
3446 // Integer Immediate: the value 255
3447 operand immI_255() %{
3448   predicate( n->get_int() == 255 );
3449   match(ConI);
3450   op_cost(0);
3451 
3452   format %{ %}
3453   interface(CONST_INTER);
3454 %}
3455 
3456 // Integer Immediate: the value 65535
3457 operand immI_65535() %{
3458   predicate(n->get_int() == 65535);
3459   match(ConI);
3460   op_cost(0);
3461 
3462   format %{ %}
3463   interface(CONST_INTER);
3464 %}
3465 
3466 // Long Immediate: the value FF
3467 operand immL_FF() %{
3468   predicate( n->get_long() == 0xFFL );
3469   match(ConL);
3470   op_cost(0);
3471 
3472   format %{ %}
3473   interface(CONST_INTER);
3474 %}
3475 
3476 // Long Immediate: the value FFFF
3477 operand immL_FFFF() %{
3478   predicate( n->get_long() == 0xFFFFL );
3479   match(ConL);
3480   op_cost(0);
3481 
3482   format %{ %}
3483   interface(CONST_INTER);
3484 %}
3485 
3486 // Pointer Immediate: 32 or 64-bit
3487 operand immP() %{
3488   match(ConP);
3489 
3490   op_cost(5);
3491   // formats are generated automatically for constants and base registers
3492   format %{ %}
3493   interface(CONST_INTER);
3494 %}
3495 
3496 #ifdef _LP64
3497 // Pointer Immediate: 64-bit
3498 operand immP_set() %{
3499   predicate(!VM_Version::is_niagara_plus());
3500   match(ConP);
3501 
3502   op_cost(5);
3503   // formats are generated automatically for constants and base registers
3504   format %{ %}
3505   interface(CONST_INTER);
3506 %}
3507 
3508 // Pointer Immediate: 64-bit
3509 // From Niagara2 processors on a load should be better than materializing.
3510 operand immP_load() %{
3511   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3512   match(ConP);
3513 
3514   op_cost(5);
3515   // formats are generated automatically for constants and base registers
3516   format %{ %}
3517   interface(CONST_INTER);
3518 %}
3519 
3520 // Pointer Immediate: 64-bit
3521 operand immP_no_oop_cheap() %{
3522   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3523   match(ConP);
3524 
3525   op_cost(5);
3526   // formats are generated automatically for constants and base registers
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 #endif
3531 
3532 operand immP13() %{
3533   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3534   match(ConP);
3535   op_cost(0);
3536 
3537   format %{ %}
3538   interface(CONST_INTER);
3539 %}
3540 
3541 operand immP0() %{
3542   predicate(n->get_ptr() == 0);
3543   match(ConP);
3544   op_cost(0);
3545 
3546   format %{ %}
3547   interface(CONST_INTER);
3548 %}
3549 
3550 operand immP_poll() %{
3551   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3552   match(ConP);
3553 
3554   // formats are generated automatically for constants and base registers
3555   format %{ %}
3556   interface(CONST_INTER);
3557 %}
3558 
3559 // Pointer Immediate
3560 operand immN()
3561 %{
3562   match(ConN);
3563 
3564   op_cost(10);
3565   format %{ %}
3566   interface(CONST_INTER);
3567 %}
3568 
3569 operand immNKlass()
3570 %{
3571   match(ConNKlass);
3572 
3573   op_cost(10);
3574   format %{ %}
3575   interface(CONST_INTER);
3576 %}
3577 
3578 // NULL Pointer Immediate
3579 operand immN0()
3580 %{
3581   predicate(n->get_narrowcon() == 0);
3582   match(ConN);
3583 
3584   op_cost(0);
3585   format %{ %}
3586   interface(CONST_INTER);
3587 %}
3588 
3589 operand immL() %{
3590   match(ConL);
3591   op_cost(40);
3592   // formats are generated automatically for constants and base registers
3593   format %{ %}
3594   interface(CONST_INTER);
3595 %}
3596 
3597 operand immL0() %{
3598   predicate(n->get_long() == 0L);
3599   match(ConL);
3600   op_cost(0);
3601   // formats are generated automatically for constants and base registers
3602   format %{ %}
3603   interface(CONST_INTER);
3604 %}
3605 
3606 // Integer Immediate: 5-bit
3607 operand immL5() %{
3608   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3609   match(ConL);
3610   op_cost(0);
3611   format %{ %}
3612   interface(CONST_INTER);
3613 %}
3614 
3615 // Long Immediate: 13-bit
3616 operand immL13() %{
3617   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3618   match(ConL);
3619   op_cost(0);
3620 
3621   format %{ %}
3622   interface(CONST_INTER);
3623 %}
3624 
3625 // Long Immediate: 13-bit minus 7
3626 operand immL13m7() %{
3627   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3628   match(ConL);
3629   op_cost(0);
3630 
3631   format %{ %}
3632   interface(CONST_INTER);
3633 %}
3634 
3635 // Long Immediate: low 32-bit mask
3636 operand immL_32bits() %{
3637   predicate(n->get_long() == 0xFFFFFFFFL);
3638   match(ConL);
3639   op_cost(0);
3640 
3641   format %{ %}
3642   interface(CONST_INTER);
3643 %}
3644 
3645 // Long Immediate: cheap (materialize in <= 3 instructions)
3646 operand immL_cheap() %{
3647   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3648   match(ConL);
3649   op_cost(0);
3650 
3651   format %{ %}
3652   interface(CONST_INTER);
3653 %}
3654 
3655 // Long Immediate: expensive (materialize in > 3 instructions)
3656 operand immL_expensive() %{
3657   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3658   match(ConL);
3659   op_cost(0);
3660 
3661   format %{ %}
3662   interface(CONST_INTER);
3663 %}
3664 
3665 // Double Immediate
3666 operand immD() %{
3667   match(ConD);
3668 
3669   op_cost(40);
3670   format %{ %}
3671   interface(CONST_INTER);
3672 %}
3673 
3674 operand immD0() %{
3675 #ifdef _LP64
3676   // on 64-bit architectures this comparision is faster
3677   predicate(jlong_cast(n->getd()) == 0);
3678 #else
3679   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3680 #endif
3681   match(ConD);
3682 
3683   op_cost(0);
3684   format %{ %}
3685   interface(CONST_INTER);
3686 %}
3687 
3688 // Float Immediate
3689 operand immF() %{
3690   match(ConF);
3691 
3692   op_cost(20);
3693   format %{ %}
3694   interface(CONST_INTER);
3695 %}
3696 
3697 // Float Immediate: 0
3698 operand immF0() %{
3699   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3700   match(ConF);
3701 
3702   op_cost(0);
3703   format %{ %}
3704   interface(CONST_INTER);
3705 %}
3706 
3707 // Integer Register Operands
3708 // Integer Register
3709 operand iRegI() %{
3710   constraint(ALLOC_IN_RC(int_reg));
3711   match(RegI);
3712 
3713   match(notemp_iRegI);
3714   match(g1RegI);
3715   match(o0RegI);
3716   match(iRegIsafe);
3717 
3718   format %{ %}
3719   interface(REG_INTER);
3720 %}
3721 
3722 operand notemp_iRegI() %{
3723   constraint(ALLOC_IN_RC(notemp_int_reg));
3724   match(RegI);
3725 
3726   match(o0RegI);
3727 
3728   format %{ %}
3729   interface(REG_INTER);
3730 %}
3731 
3732 operand o0RegI() %{
3733   constraint(ALLOC_IN_RC(o0_regI));
3734   match(iRegI);
3735 
3736   format %{ %}
3737   interface(REG_INTER);
3738 %}
3739 
3740 // Pointer Register
3741 operand iRegP() %{
3742   constraint(ALLOC_IN_RC(ptr_reg));
3743   match(RegP);
3744 
3745   match(lock_ptr_RegP);
3746   match(g1RegP);
3747   match(g2RegP);
3748   match(g3RegP);
3749   match(g4RegP);
3750   match(i0RegP);
3751   match(o0RegP);
3752   match(o1RegP);
3753   match(l7RegP);
3754 
3755   format %{ %}
3756   interface(REG_INTER);
3757 %}
3758 
3759 operand sp_ptr_RegP() %{
3760   constraint(ALLOC_IN_RC(sp_ptr_reg));
3761   match(RegP);
3762   match(iRegP);
3763 
3764   format %{ %}
3765   interface(REG_INTER);
3766 %}
3767 
3768 operand lock_ptr_RegP() %{
3769   constraint(ALLOC_IN_RC(lock_ptr_reg));
3770   match(RegP);
3771   match(i0RegP);
3772   match(o0RegP);
3773   match(o1RegP);
3774   match(l7RegP);
3775 
3776   format %{ %}
3777   interface(REG_INTER);
3778 %}
3779 
3780 operand g1RegP() %{
3781   constraint(ALLOC_IN_RC(g1_regP));
3782   match(iRegP);
3783 
3784   format %{ %}
3785   interface(REG_INTER);
3786 %}
3787 
3788 operand g2RegP() %{
3789   constraint(ALLOC_IN_RC(g2_regP));
3790   match(iRegP);
3791 
3792   format %{ %}
3793   interface(REG_INTER);
3794 %}
3795 
3796 operand g3RegP() %{
3797   constraint(ALLOC_IN_RC(g3_regP));
3798   match(iRegP);
3799 
3800   format %{ %}
3801   interface(REG_INTER);
3802 %}
3803 
3804 operand g1RegI() %{
3805   constraint(ALLOC_IN_RC(g1_regI));
3806   match(iRegI);
3807 
3808   format %{ %}
3809   interface(REG_INTER);
3810 %}
3811 
3812 operand g3RegI() %{
3813   constraint(ALLOC_IN_RC(g3_regI));
3814   match(iRegI);
3815 
3816   format %{ %}
3817   interface(REG_INTER);
3818 %}
3819 
3820 operand g4RegI() %{
3821   constraint(ALLOC_IN_RC(g4_regI));
3822   match(iRegI);
3823 
3824   format %{ %}
3825   interface(REG_INTER);
3826 %}
3827 
3828 operand g4RegP() %{
3829   constraint(ALLOC_IN_RC(g4_regP));
3830   match(iRegP);
3831 
3832   format %{ %}
3833   interface(REG_INTER);
3834 %}
3835 
3836 operand i0RegP() %{
3837   constraint(ALLOC_IN_RC(i0_regP));
3838   match(iRegP);
3839 
3840   format %{ %}
3841   interface(REG_INTER);
3842 %}
3843 
3844 operand o0RegP() %{
3845   constraint(ALLOC_IN_RC(o0_regP));
3846   match(iRegP);
3847 
3848   format %{ %}
3849   interface(REG_INTER);
3850 %}
3851 
3852 operand o1RegP() %{
3853   constraint(ALLOC_IN_RC(o1_regP));
3854   match(iRegP);
3855 
3856   format %{ %}
3857   interface(REG_INTER);
3858 %}
3859 
3860 operand o2RegP() %{
3861   constraint(ALLOC_IN_RC(o2_regP));
3862   match(iRegP);
3863 
3864   format %{ %}
3865   interface(REG_INTER);
3866 %}
3867 
3868 operand o7RegP() %{
3869   constraint(ALLOC_IN_RC(o7_regP));
3870   match(iRegP);
3871 
3872   format %{ %}
3873   interface(REG_INTER);
3874 %}
3875 
3876 operand l7RegP() %{
3877   constraint(ALLOC_IN_RC(l7_regP));
3878   match(iRegP);
3879 
3880   format %{ %}
3881   interface(REG_INTER);
3882 %}
3883 
3884 operand o7RegI() %{
3885   constraint(ALLOC_IN_RC(o7_regI));
3886   match(iRegI);
3887 
3888   format %{ %}
3889   interface(REG_INTER);
3890 %}
3891 
3892 operand iRegN() %{
3893   constraint(ALLOC_IN_RC(int_reg));
3894   match(RegN);
3895 
3896   format %{ %}
3897   interface(REG_INTER);
3898 %}
3899 
3900 // Long Register
3901 operand iRegL() %{
3902   constraint(ALLOC_IN_RC(long_reg));
3903   match(RegL);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand o2RegL() %{
3910   constraint(ALLOC_IN_RC(o2_regL));
3911   match(iRegL);
3912 
3913   format %{ %}
3914   interface(REG_INTER);
3915 %}
3916 
3917 operand o7RegL() %{
3918   constraint(ALLOC_IN_RC(o7_regL));
3919   match(iRegL);
3920 
3921   format %{ %}
3922   interface(REG_INTER);
3923 %}
3924 
3925 operand g1RegL() %{
3926   constraint(ALLOC_IN_RC(g1_regL));
3927   match(iRegL);
3928 
3929   format %{ %}
3930   interface(REG_INTER);
3931 %}
3932 
3933 operand g3RegL() %{
3934   constraint(ALLOC_IN_RC(g3_regL));
3935   match(iRegL);
3936 
3937   format %{ %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 // Int Register safe
3942 // This is 64bit safe
3943 operand iRegIsafe() %{
3944   constraint(ALLOC_IN_RC(long_reg));
3945 
3946   match(iRegI);
3947 
3948   format %{ %}
3949   interface(REG_INTER);
3950 %}
3951 
3952 // Condition Code Flag Register
3953 operand flagsReg() %{
3954   constraint(ALLOC_IN_RC(int_flags));
3955   match(RegFlags);
3956 
3957   format %{ "ccr" %} // both ICC and XCC
3958   interface(REG_INTER);
3959 %}
3960 
3961 // Condition Code Register, unsigned comparisons.
3962 operand flagsRegU() %{
3963   constraint(ALLOC_IN_RC(int_flags));
3964   match(RegFlags);
3965 
3966   format %{ "icc_U" %}
3967   interface(REG_INTER);
3968 %}
3969 
3970 // Condition Code Register, pointer comparisons.
3971 operand flagsRegP() %{
3972   constraint(ALLOC_IN_RC(int_flags));
3973   match(RegFlags);
3974 
3975 #ifdef _LP64
3976   format %{ "xcc_P" %}
3977 #else
3978   format %{ "icc_P" %}
3979 #endif
3980   interface(REG_INTER);
3981 %}
3982 
3983 // Condition Code Register, long comparisons.
3984 operand flagsRegL() %{
3985   constraint(ALLOC_IN_RC(int_flags));
3986   match(RegFlags);
3987 
3988   format %{ "xcc_L" %}
3989   interface(REG_INTER);
3990 %}
3991 
3992 // Condition Code Register, floating comparisons, unordered same as "less".
3993 operand flagsRegF() %{
3994   constraint(ALLOC_IN_RC(float_flags));
3995   match(RegFlags);
3996   match(flagsRegF0);
3997 
3998   format %{ %}
3999   interface(REG_INTER);
4000 %}
4001 
4002 operand flagsRegF0() %{
4003   constraint(ALLOC_IN_RC(float_flag0));
4004   match(RegFlags);
4005 
4006   format %{ %}
4007   interface(REG_INTER);
4008 %}
4009 
4010 
4011 // Condition Code Flag Register used by long compare
4012 operand flagsReg_long_LTGE() %{
4013   constraint(ALLOC_IN_RC(int_flags));
4014   match(RegFlags);
4015   format %{ "icc_LTGE" %}
4016   interface(REG_INTER);
4017 %}
4018 operand flagsReg_long_EQNE() %{
4019   constraint(ALLOC_IN_RC(int_flags));
4020   match(RegFlags);
4021   format %{ "icc_EQNE" %}
4022   interface(REG_INTER);
4023 %}
4024 operand flagsReg_long_LEGT() %{
4025   constraint(ALLOC_IN_RC(int_flags));
4026   match(RegFlags);
4027   format %{ "icc_LEGT" %}
4028   interface(REG_INTER);
4029 %}
4030 
4031 
4032 operand regD() %{
4033   constraint(ALLOC_IN_RC(dflt_reg));
4034   match(RegD);
4035 
4036   match(regD_low);
4037 
4038   format %{ %}
4039   interface(REG_INTER);
4040 %}
4041 
4042 operand regF() %{
4043   constraint(ALLOC_IN_RC(sflt_reg));
4044   match(RegF);
4045 
4046   format %{ %}
4047   interface(REG_INTER);
4048 %}
4049 
4050 operand regD_low() %{
4051   constraint(ALLOC_IN_RC(dflt_low_reg));
4052   match(regD);
4053 
4054   format %{ %}
4055   interface(REG_INTER);
4056 %}
4057 
4058 // Special Registers
4059 
4060 // Method Register
4061 operand inline_cache_regP(iRegP reg) %{
4062   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4063   match(reg);
4064   format %{ %}
4065   interface(REG_INTER);
4066 %}
4067 
4068 operand interpreter_method_oop_regP(iRegP reg) %{
4069   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4070   match(reg);
4071   format %{ %}
4072   interface(REG_INTER);
4073 %}
4074 
4075 
4076 //----------Complex Operands---------------------------------------------------
4077 // Indirect Memory Reference
4078 operand indirect(sp_ptr_RegP reg) %{
4079   constraint(ALLOC_IN_RC(sp_ptr_reg));
4080   match(reg);
4081 
4082   op_cost(100);
4083   format %{ "[$reg]" %}
4084   interface(MEMORY_INTER) %{
4085     base($reg);
4086     index(0x0);
4087     scale(0x0);
4088     disp(0x0);
4089   %}
4090 %}
4091 
4092 // Indirect with simm13 Offset
4093 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4094   constraint(ALLOC_IN_RC(sp_ptr_reg));
4095   match(AddP reg offset);
4096 
4097   op_cost(100);
4098   format %{ "[$reg + $offset]" %}
4099   interface(MEMORY_INTER) %{
4100     base($reg);
4101     index(0x0);
4102     scale(0x0);
4103     disp($offset);
4104   %}
4105 %}
4106 
4107 // Indirect with simm13 Offset minus 7
4108 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4109   constraint(ALLOC_IN_RC(sp_ptr_reg));
4110   match(AddP reg offset);
4111 
4112   op_cost(100);
4113   format %{ "[$reg + $offset]" %}
4114   interface(MEMORY_INTER) %{
4115     base($reg);
4116     index(0x0);
4117     scale(0x0);
4118     disp($offset);
4119   %}
4120 %}
4121 
4122 // Note:  Intel has a swapped version also, like this:
4123 //operand indOffsetX(iRegI reg, immP offset) %{
4124 //  constraint(ALLOC_IN_RC(int_reg));
4125 //  match(AddP offset reg);
4126 //
4127 //  op_cost(100);
4128 //  format %{ "[$reg + $offset]" %}
4129 //  interface(MEMORY_INTER) %{
4130 //    base($reg);
4131 //    index(0x0);
4132 //    scale(0x0);
4133 //    disp($offset);
4134 //  %}
4135 //%}
4136 //// However, it doesn't make sense for SPARC, since
4137 // we have no particularly good way to embed oops in
4138 // single instructions.
4139 
4140 // Indirect with Register Index
4141 operand indIndex(iRegP addr, iRegX index) %{
4142   constraint(ALLOC_IN_RC(ptr_reg));
4143   match(AddP addr index);
4144 
4145   op_cost(100);
4146   format %{ "[$addr + $index]" %}
4147   interface(MEMORY_INTER) %{
4148     base($addr);
4149     index($index);
4150     scale(0x0);
4151     disp(0x0);
4152   %}
4153 %}
4154 
4155 //----------Special Memory Operands--------------------------------------------
4156 // Stack Slot Operand - This operand is used for loading and storing temporary
4157 //                      values on the stack where a match requires a value to
4158 //                      flow through memory.
4159 operand stackSlotI(sRegI reg) %{
4160   constraint(ALLOC_IN_RC(stack_slots));
4161   op_cost(100);
4162   //match(RegI);
4163   format %{ "[$reg]" %}
4164   interface(MEMORY_INTER) %{
4165     base(0xE);   // R_SP
4166     index(0x0);
4167     scale(0x0);
4168     disp($reg);  // Stack Offset
4169   %}
4170 %}
4171 
4172 operand stackSlotP(sRegP reg) %{
4173   constraint(ALLOC_IN_RC(stack_slots));
4174   op_cost(100);
4175   //match(RegP);
4176   format %{ "[$reg]" %}
4177   interface(MEMORY_INTER) %{
4178     base(0xE);   // R_SP
4179     index(0x0);
4180     scale(0x0);
4181     disp($reg);  // Stack Offset
4182   %}
4183 %}
4184 
4185 operand stackSlotF(sRegF reg) %{
4186   constraint(ALLOC_IN_RC(stack_slots));
4187   op_cost(100);
4188   //match(RegF);
4189   format %{ "[$reg]" %}
4190   interface(MEMORY_INTER) %{
4191     base(0xE);   // R_SP
4192     index(0x0);
4193     scale(0x0);
4194     disp($reg);  // Stack Offset
4195   %}
4196 %}
4197 operand stackSlotD(sRegD reg) %{
4198   constraint(ALLOC_IN_RC(stack_slots));
4199   op_cost(100);
4200   //match(RegD);
4201   format %{ "[$reg]" %}
4202   interface(MEMORY_INTER) %{
4203     base(0xE);   // R_SP
4204     index(0x0);
4205     scale(0x0);
4206     disp($reg);  // Stack Offset
4207   %}
4208 %}
4209 operand stackSlotL(sRegL reg) %{
4210   constraint(ALLOC_IN_RC(stack_slots));
4211   op_cost(100);
4212   //match(RegL);
4213   format %{ "[$reg]" %}
4214   interface(MEMORY_INTER) %{
4215     base(0xE);   // R_SP
4216     index(0x0);
4217     scale(0x0);
4218     disp($reg);  // Stack Offset
4219   %}
4220 %}
4221 
4222 // Operands for expressing Control Flow
4223 // NOTE:  Label is a predefined operand which should not be redefined in
4224 //        the AD file.  It is generically handled within the ADLC.
4225 
4226 //----------Conditional Branch Operands----------------------------------------
4227 // Comparison Op  - This is the operation of the comparison, and is limited to
4228 //                  the following set of codes:
4229 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4230 //
4231 // Other attributes of the comparison, such as unsignedness, are specified
4232 // by the comparison instruction that sets a condition code flags register.
4233 // That result is represented by a flags operand whose subtype is appropriate
4234 // to the unsignedness (etc.) of the comparison.
4235 //
4236 // Later, the instruction which matches both the Comparison Op (a Bool) and
4237 // the flags (produced by the Cmp) specifies the coding of the comparison op
4238 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4239 
4240 operand cmpOp() %{
4241   match(Bool);
4242 
4243   format %{ "" %}
4244   interface(COND_INTER) %{
4245     equal(0x1);
4246     not_equal(0x9);
4247     less(0x3);
4248     greater_equal(0xB);
4249     less_equal(0x2);
4250     greater(0xA);
4251   %}
4252 %}
4253 
4254 // Comparison Op, unsigned
4255 operand cmpOpU() %{
4256   match(Bool);
4257 
4258   format %{ "u" %}
4259   interface(COND_INTER) %{
4260     equal(0x1);
4261     not_equal(0x9);
4262     less(0x5);
4263     greater_equal(0xD);
4264     less_equal(0x4);
4265     greater(0xC);
4266   %}
4267 %}
4268 
4269 // Comparison Op, pointer (same as unsigned)
4270 operand cmpOpP() %{
4271   match(Bool);
4272 
4273   format %{ "p" %}
4274   interface(COND_INTER) %{
4275     equal(0x1);
4276     not_equal(0x9);
4277     less(0x5);
4278     greater_equal(0xD);
4279     less_equal(0x4);
4280     greater(0xC);
4281   %}
4282 %}
4283 
4284 // Comparison Op, branch-register encoding
4285 operand cmpOp_reg() %{
4286   match(Bool);
4287 
4288   format %{ "" %}
4289   interface(COND_INTER) %{
4290     equal        (0x1);
4291     not_equal    (0x5);
4292     less         (0x3);
4293     greater_equal(0x7);
4294     less_equal   (0x2);
4295     greater      (0x6);
4296   %}
4297 %}
4298 
4299 // Comparison Code, floating, unordered same as less
4300 operand cmpOpF() %{
4301   match(Bool);
4302 
4303   format %{ "fl" %}
4304   interface(COND_INTER) %{
4305     equal(0x9);
4306     not_equal(0x1);
4307     less(0x3);
4308     greater_equal(0xB);
4309     less_equal(0xE);
4310     greater(0x6);
4311   %}
4312 %}
4313 
4314 // Used by long compare
4315 operand cmpOp_commute() %{
4316   match(Bool);
4317 
4318   format %{ "" %}
4319   interface(COND_INTER) %{
4320     equal(0x1);
4321     not_equal(0x9);
4322     less(0xA);
4323     greater_equal(0x2);
4324     less_equal(0xB);
4325     greater(0x3);
4326   %}
4327 %}
4328 
4329 //----------OPERAND CLASSES----------------------------------------------------
4330 // Operand Classes are groups of operands that are used to simplify
4331 // instruction definitions by not requiring the AD writer to specify separate
4332 // instructions for every form of operand when the instruction accepts
4333 // multiple operand types with the same basic encoding and format.  The classic
4334 // case of this is memory operands.
4335 opclass memory( indirect, indOffset13, indIndex );
4336 opclass indIndexMemory( indIndex );
4337 
4338 //----------PIPELINE-----------------------------------------------------------
4339 pipeline %{
4340 
4341 //----------ATTRIBUTES---------------------------------------------------------
4342 attributes %{
4343   fixed_size_instructions;           // Fixed size instructions
4344   branch_has_delay_slot;             // Branch has delay slot following
4345   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4346   instruction_unit_size = 4;         // An instruction is 4 bytes long
4347   instruction_fetch_unit_size = 16;  // The processor fetches one line
4348   instruction_fetch_units = 1;       // of 16 bytes
4349 
4350   // List of nop instructions
4351   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4352 %}
4353 
4354 //----------RESOURCES----------------------------------------------------------
4355 // Resources are the functional units available to the machine
4356 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4357 
4358 //----------PIPELINE DESCRIPTION-----------------------------------------------
4359 // Pipeline Description specifies the stages in the machine's pipeline
4360 
4361 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4362 
4363 //----------PIPELINE CLASSES---------------------------------------------------
4364 // Pipeline Classes describe the stages in which input and output are
4365 // referenced by the hardware pipeline.
4366 
4367 // Integer ALU reg-reg operation
4368 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4369     single_instruction;
4370     dst   : E(write);
4371     src1  : R(read);
4372     src2  : R(read);
4373     IALU  : R;
4374 %}
4375 
4376 // Integer ALU reg-reg long operation
4377 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4378     instruction_count(2);
4379     dst   : E(write);
4380     src1  : R(read);
4381     src2  : R(read);
4382     IALU  : R;
4383     IALU  : R;
4384 %}
4385 
4386 // Integer ALU reg-reg long dependent operation
4387 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4388     instruction_count(1); multiple_bundles;
4389     dst   : E(write);
4390     src1  : R(read);
4391     src2  : R(read);
4392     cr    : E(write);
4393     IALU  : R(2);
4394 %}
4395 
4396 // Integer ALU reg-imm operaion
4397 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4398     single_instruction;
4399     dst   : E(write);
4400     src1  : R(read);
4401     IALU  : R;
4402 %}
4403 
4404 // Integer ALU reg-reg operation with condition code
4405 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4406     single_instruction;
4407     dst   : E(write);
4408     cr    : E(write);
4409     src1  : R(read);
4410     src2  : R(read);
4411     IALU  : R;
4412 %}
4413 
4414 // Integer ALU reg-imm operation with condition code
4415 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4416     single_instruction;
4417     dst   : E(write);
4418     cr    : E(write);
4419     src1  : R(read);
4420     IALU  : R;
4421 %}
4422 
4423 // Integer ALU zero-reg operation
4424 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4425     single_instruction;
4426     dst   : E(write);
4427     src2  : R(read);
4428     IALU  : R;
4429 %}
4430 
4431 // Integer ALU zero-reg operation with condition code only
4432 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4433     single_instruction;
4434     cr    : E(write);
4435     src   : R(read);
4436     IALU  : R;
4437 %}
4438 
4439 // Integer ALU reg-reg operation with condition code only
4440 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4441     single_instruction;
4442     cr    : E(write);
4443     src1  : R(read);
4444     src2  : R(read);
4445     IALU  : R;
4446 %}
4447 
4448 // Integer ALU reg-imm operation with condition code only
4449 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4450     single_instruction;
4451     cr    : E(write);
4452     src1  : R(read);
4453     IALU  : R;
4454 %}
4455 
4456 // Integer ALU reg-reg-zero operation with condition code only
4457 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4458     single_instruction;
4459     cr    : E(write);
4460     src1  : R(read);
4461     src2  : R(read);
4462     IALU  : R;
4463 %}
4464 
4465 // Integer ALU reg-imm-zero operation with condition code only
4466 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4467     single_instruction;
4468     cr    : E(write);
4469     src1  : R(read);
4470     IALU  : R;
4471 %}
4472 
4473 // Integer ALU reg-reg operation with condition code, src1 modified
4474 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4475     single_instruction;
4476     cr    : E(write);
4477     src1  : E(write);
4478     src1  : R(read);
4479     src2  : R(read);
4480     IALU  : R;
4481 %}
4482 
4483 // Integer ALU reg-imm operation with condition code, src1 modified
4484 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4485     single_instruction;
4486     cr    : E(write);
4487     src1  : E(write);
4488     src1  : R(read);
4489     IALU  : R;
4490 %}
4491 
4492 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4493     multiple_bundles;
4494     dst   : E(write)+4;
4495     cr    : E(write);
4496     src1  : R(read);
4497     src2  : R(read);
4498     IALU  : R(3);
4499     BR    : R(2);
4500 %}
4501 
4502 // Integer ALU operation
4503 pipe_class ialu_none(iRegI dst) %{
4504     single_instruction;
4505     dst   : E(write);
4506     IALU  : R;
4507 %}
4508 
4509 // Integer ALU reg operation
4510 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4511     single_instruction; may_have_no_code;
4512     dst   : E(write);
4513     src   : R(read);
4514     IALU  : R;
4515 %}
4516 
4517 // Integer ALU reg conditional operation
4518 // This instruction has a 1 cycle stall, and cannot execute
4519 // in the same cycle as the instruction setting the condition
4520 // code. We kludge this by pretending to read the condition code
4521 // 1 cycle earlier, and by marking the functional units as busy
4522 // for 2 cycles with the result available 1 cycle later than
4523 // is really the case.
4524 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4525     single_instruction;
4526     op2_out : C(write);
4527     op1     : R(read);
4528     cr      : R(read);       // This is really E, with a 1 cycle stall
4529     BR      : R(2);
4530     MS      : R(2);
4531 %}
4532 
4533 #ifdef _LP64
4534 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4535     instruction_count(1); multiple_bundles;
4536     dst     : C(write)+1;
4537     src     : R(read)+1;
4538     IALU    : R(1);
4539     BR      : E(2);
4540     MS      : E(2);
4541 %}
4542 #endif
4543 
4544 // Integer ALU reg operation
4545 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4546     single_instruction; may_have_no_code;
4547     dst   : E(write);
4548     src   : R(read);
4549     IALU  : R;
4550 %}
4551 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4552     single_instruction; may_have_no_code;
4553     dst   : E(write);
4554     src   : R(read);
4555     IALU  : R;
4556 %}
4557 
4558 // Two integer ALU reg operations
4559 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4560     instruction_count(2);
4561     dst   : E(write);
4562     src   : R(read);
4563     A0    : R;
4564     A1    : R;
4565 %}
4566 
4567 // Two integer ALU reg operations
4568 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4569     instruction_count(2); may_have_no_code;
4570     dst   : E(write);
4571     src   : R(read);
4572     A0    : R;
4573     A1    : R;
4574 %}
4575 
4576 // Integer ALU imm operation
4577 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4578     single_instruction;
4579     dst   : E(write);
4580     IALU  : R;
4581 %}
4582 
4583 // Integer ALU reg-reg with carry operation
4584 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4585     single_instruction;
4586     dst   : E(write);
4587     src1  : R(read);
4588     src2  : R(read);
4589     IALU  : R;
4590 %}
4591 
4592 // Integer ALU cc operation
4593 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4594     single_instruction;
4595     dst   : E(write);
4596     cc    : R(read);
4597     IALU  : R;
4598 %}
4599 
4600 // Integer ALU cc / second IALU operation
4601 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4602     instruction_count(1); multiple_bundles;
4603     dst   : E(write)+1;
4604     src   : R(read);
4605     IALU  : R;
4606 %}
4607 
4608 // Integer ALU cc / second IALU operation
4609 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4610     instruction_count(1); multiple_bundles;
4611     dst   : E(write)+1;
4612     p     : R(read);
4613     q     : R(read);
4614     IALU  : R;
4615 %}
4616 
4617 // Integer ALU hi-lo-reg operation
4618 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4619     instruction_count(1); multiple_bundles;
4620     dst   : E(write)+1;
4621     IALU  : R(2);
4622 %}
4623 
4624 // Float ALU hi-lo-reg operation (with temp)
4625 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4626     instruction_count(1); multiple_bundles;
4627     dst   : E(write)+1;
4628     IALU  : R(2);
4629 %}
4630 
4631 // Long Constant
4632 pipe_class loadConL( iRegL dst, immL src ) %{
4633     instruction_count(2); multiple_bundles;
4634     dst   : E(write)+1;
4635     IALU  : R(2);
4636     IALU  : R(2);
4637 %}
4638 
4639 // Pointer Constant
4640 pipe_class loadConP( iRegP dst, immP src ) %{
4641     instruction_count(0); multiple_bundles;
4642     fixed_latency(6);
4643 %}
4644 
4645 // Polling Address
4646 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4647 #ifdef _LP64
4648     instruction_count(0); multiple_bundles;
4649     fixed_latency(6);
4650 #else
4651     dst   : E(write);
4652     IALU  : R;
4653 #endif
4654 %}
4655 
4656 // Long Constant small
4657 pipe_class loadConLlo( iRegL dst, immL src ) %{
4658     instruction_count(2);
4659     dst   : E(write);
4660     IALU  : R;
4661     IALU  : R;
4662 %}
4663 
4664 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4665 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4666     instruction_count(1); multiple_bundles;
4667     src   : R(read);
4668     dst   : M(write)+1;
4669     IALU  : R;
4670     MS    : E;
4671 %}
4672 
4673 // Integer ALU nop operation
4674 pipe_class ialu_nop() %{
4675     single_instruction;
4676     IALU  : R;
4677 %}
4678 
4679 // Integer ALU nop operation
4680 pipe_class ialu_nop_A0() %{
4681     single_instruction;
4682     A0    : R;
4683 %}
4684 
4685 // Integer ALU nop operation
4686 pipe_class ialu_nop_A1() %{
4687     single_instruction;
4688     A1    : R;
4689 %}
4690 
4691 // Integer Multiply reg-reg operation
4692 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4693     single_instruction;
4694     dst   : E(write);
4695     src1  : R(read);
4696     src2  : R(read);
4697     MS    : R(5);
4698 %}
4699 
4700 // Integer Multiply reg-imm operation
4701 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4702     single_instruction;
4703     dst   : E(write);
4704     src1  : R(read);
4705     MS    : R(5);
4706 %}
4707 
4708 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4709     single_instruction;
4710     dst   : E(write)+4;
4711     src1  : R(read);
4712     src2  : R(read);
4713     MS    : R(6);
4714 %}
4715 
4716 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4717     single_instruction;
4718     dst   : E(write)+4;
4719     src1  : R(read);
4720     MS    : R(6);
4721 %}
4722 
4723 // Integer Divide reg-reg
4724 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4725     instruction_count(1); multiple_bundles;
4726     dst   : E(write);
4727     temp  : E(write);
4728     src1  : R(read);
4729     src2  : R(read);
4730     temp  : R(read);
4731     MS    : R(38);
4732 %}
4733 
4734 // Integer Divide reg-imm
4735 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4736     instruction_count(1); multiple_bundles;
4737     dst   : E(write);
4738     temp  : E(write);
4739     src1  : R(read);
4740     temp  : R(read);
4741     MS    : R(38);
4742 %}
4743 
4744 // Long Divide
4745 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4746     dst  : E(write)+71;
4747     src1 : R(read);
4748     src2 : R(read)+1;
4749     MS   : R(70);
4750 %}
4751 
4752 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4753     dst  : E(write)+71;
4754     src1 : R(read);
4755     MS   : R(70);
4756 %}
4757 
4758 // Floating Point Add Float
4759 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4760     single_instruction;
4761     dst   : X(write);
4762     src1  : E(read);
4763     src2  : E(read);
4764     FA    : R;
4765 %}
4766 
4767 // Floating Point Add Double
4768 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4769     single_instruction;
4770     dst   : X(write);
4771     src1  : E(read);
4772     src2  : E(read);
4773     FA    : R;
4774 %}
4775 
4776 // Floating Point Conditional Move based on integer flags
4777 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4778     single_instruction;
4779     dst   : X(write);
4780     src   : E(read);
4781     cr    : R(read);
4782     FA    : R(2);
4783     BR    : R(2);
4784 %}
4785 
4786 // Floating Point Conditional Move based on integer flags
4787 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4788     single_instruction;
4789     dst   : X(write);
4790     src   : E(read);
4791     cr    : R(read);
4792     FA    : R(2);
4793     BR    : R(2);
4794 %}
4795 
4796 // Floating Point Multiply Float
4797 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4798     single_instruction;
4799     dst   : X(write);
4800     src1  : E(read);
4801     src2  : E(read);
4802     FM    : R;
4803 %}
4804 
4805 // Floating Point Multiply Double
4806 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4807     single_instruction;
4808     dst   : X(write);
4809     src1  : E(read);
4810     src2  : E(read);
4811     FM    : R;
4812 %}
4813 
4814 // Floating Point Divide Float
4815 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4816     single_instruction;
4817     dst   : X(write);
4818     src1  : E(read);
4819     src2  : E(read);
4820     FM    : R;
4821     FDIV  : C(14);
4822 %}
4823 
4824 // Floating Point Divide Double
4825 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4826     single_instruction;
4827     dst   : X(write);
4828     src1  : E(read);
4829     src2  : E(read);
4830     FM    : R;
4831     FDIV  : C(17);
4832 %}
4833 
4834 // Floating Point Move/Negate/Abs Float
4835 pipe_class faddF_reg(regF dst, regF src) %{
4836     single_instruction;
4837     dst   : W(write);
4838     src   : E(read);
4839     FA    : R(1);
4840 %}
4841 
4842 // Floating Point Move/Negate/Abs Double
4843 pipe_class faddD_reg(regD dst, regD src) %{
4844     single_instruction;
4845     dst   : W(write);
4846     src   : E(read);
4847     FA    : R;
4848 %}
4849 
4850 // Floating Point Convert F->D
4851 pipe_class fcvtF2D(regD dst, regF src) %{
4852     single_instruction;
4853     dst   : X(write);
4854     src   : E(read);
4855     FA    : R;
4856 %}
4857 
4858 // Floating Point Convert I->D
4859 pipe_class fcvtI2D(regD dst, regF src) %{
4860     single_instruction;
4861     dst   : X(write);
4862     src   : E(read);
4863     FA    : R;
4864 %}
4865 
4866 // Floating Point Convert LHi->D
4867 pipe_class fcvtLHi2D(regD dst, regD src) %{
4868     single_instruction;
4869     dst   : X(write);
4870     src   : E(read);
4871     FA    : R;
4872 %}
4873 
4874 // Floating Point Convert L->D
4875 pipe_class fcvtL2D(regD dst, regF src) %{
4876     single_instruction;
4877     dst   : X(write);
4878     src   : E(read);
4879     FA    : R;
4880 %}
4881 
4882 // Floating Point Convert L->F
4883 pipe_class fcvtL2F(regD dst, regF src) %{
4884     single_instruction;
4885     dst   : X(write);
4886     src   : E(read);
4887     FA    : R;
4888 %}
4889 
4890 // Floating Point Convert D->F
4891 pipe_class fcvtD2F(regD dst, regF src) %{
4892     single_instruction;
4893     dst   : X(write);
4894     src   : E(read);
4895     FA    : R;
4896 %}
4897 
4898 // Floating Point Convert I->L
4899 pipe_class fcvtI2L(regD dst, regF src) %{
4900     single_instruction;
4901     dst   : X(write);
4902     src   : E(read);
4903     FA    : R;
4904 %}
4905 
4906 // Floating Point Convert D->F
4907 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
4908     instruction_count(1); multiple_bundles;
4909     dst   : X(write)+6;
4910     src   : E(read);
4911     FA    : R;
4912 %}
4913 
4914 // Floating Point Convert D->L
4915 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
4916     instruction_count(1); multiple_bundles;
4917     dst   : X(write)+6;
4918     src   : E(read);
4919     FA    : R;
4920 %}
4921 
4922 // Floating Point Convert F->I
4923 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
4924     instruction_count(1); multiple_bundles;
4925     dst   : X(write)+6;
4926     src   : E(read);
4927     FA    : R;
4928 %}
4929 
4930 // Floating Point Convert F->L
4931 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
4932     instruction_count(1); multiple_bundles;
4933     dst   : X(write)+6;
4934     src   : E(read);
4935     FA    : R;
4936 %}
4937 
4938 // Floating Point Convert I->F
4939 pipe_class fcvtI2F(regF dst, regF src) %{
4940     single_instruction;
4941     dst   : X(write);
4942     src   : E(read);
4943     FA    : R;
4944 %}
4945 
4946 // Floating Point Compare
4947 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
4948     single_instruction;
4949     cr    : X(write);
4950     src1  : E(read);
4951     src2  : E(read);
4952     FA    : R;
4953 %}
4954 
4955 // Floating Point Compare
4956 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
4957     single_instruction;
4958     cr    : X(write);
4959     src1  : E(read);
4960     src2  : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Add Nop
4965 pipe_class fadd_nop() %{
4966     single_instruction;
4967     FA  : R;
4968 %}
4969 
4970 // Integer Store to Memory
4971 pipe_class istore_mem_reg(memory mem, iRegI src) %{
4972     single_instruction;
4973     mem   : R(read);
4974     src   : C(read);
4975     MS    : R;
4976 %}
4977 
4978 // Integer Store to Memory
4979 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
4980     single_instruction;
4981     mem   : R(read);
4982     src   : C(read);
4983     MS    : R;
4984 %}
4985 
4986 // Integer Store Zero to Memory
4987 pipe_class istore_mem_zero(memory mem, immI0 src) %{
4988     single_instruction;
4989     mem   : R(read);
4990     MS    : R;
4991 %}
4992 
4993 // Special Stack Slot Store
4994 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
4995     single_instruction;
4996     stkSlot : R(read);
4997     src     : C(read);
4998     MS      : R;
4999 %}
5000 
5001 // Special Stack Slot Store
5002 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5003     instruction_count(2); multiple_bundles;
5004     stkSlot : R(read);
5005     src     : C(read);
5006     MS      : R(2);
5007 %}
5008 
5009 // Float Store
5010 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5011     single_instruction;
5012     mem : R(read);
5013     src : C(read);
5014     MS  : R;
5015 %}
5016 
5017 // Float Store
5018 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5019     single_instruction;
5020     mem : R(read);
5021     MS  : R;
5022 %}
5023 
5024 // Double Store
5025 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5026     instruction_count(1);
5027     mem : R(read);
5028     src : C(read);
5029     MS  : R;
5030 %}
5031 
5032 // Double Store
5033 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5034     single_instruction;
5035     mem : R(read);
5036     MS  : R;
5037 %}
5038 
5039 // Special Stack Slot Float Store
5040 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5041     single_instruction;
5042     stkSlot : R(read);
5043     src     : C(read);
5044     MS      : R;
5045 %}
5046 
5047 // Special Stack Slot Double Store
5048 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5049     single_instruction;
5050     stkSlot : R(read);
5051     src     : C(read);
5052     MS      : R;
5053 %}
5054 
5055 // Integer Load (when sign bit propagation not needed)
5056 pipe_class iload_mem(iRegI dst, memory mem) %{
5057     single_instruction;
5058     mem : R(read);
5059     dst : C(write);
5060     MS  : R;
5061 %}
5062 
5063 // Integer Load from stack operand
5064 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5065     single_instruction;
5066     mem : R(read);
5067     dst : C(write);
5068     MS  : R;
5069 %}
5070 
5071 // Integer Load (when sign bit propagation or masking is needed)
5072 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5073     single_instruction;
5074     mem : R(read);
5075     dst : M(write);
5076     MS  : R;
5077 %}
5078 
5079 // Float Load
5080 pipe_class floadF_mem(regF dst, memory mem) %{
5081     single_instruction;
5082     mem : R(read);
5083     dst : M(write);
5084     MS  : R;
5085 %}
5086 
5087 // Float Load
5088 pipe_class floadD_mem(regD dst, memory mem) %{
5089     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5090     mem : R(read);
5091     dst : M(write);
5092     MS  : R;
5093 %}
5094 
5095 // Float Load
5096 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5097     single_instruction;
5098     stkSlot : R(read);
5099     dst : M(write);
5100     MS  : R;
5101 %}
5102 
5103 // Float Load
5104 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5105     single_instruction;
5106     stkSlot : R(read);
5107     dst : M(write);
5108     MS  : R;
5109 %}
5110 
5111 // Memory Nop
5112 pipe_class mem_nop() %{
5113     single_instruction;
5114     MS  : R;
5115 %}
5116 
5117 pipe_class sethi(iRegP dst, immI src) %{
5118     single_instruction;
5119     dst  : E(write);
5120     IALU : R;
5121 %}
5122 
5123 pipe_class loadPollP(iRegP poll) %{
5124     single_instruction;
5125     poll : R(read);
5126     MS   : R;
5127 %}
5128 
5129 pipe_class br(Universe br, label labl) %{
5130     single_instruction_with_delay_slot;
5131     BR  : R;
5132 %}
5133 
5134 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5135     single_instruction_with_delay_slot;
5136     cr    : E(read);
5137     BR    : R;
5138 %}
5139 
5140 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5141     single_instruction_with_delay_slot;
5142     op1 : E(read);
5143     BR  : R;
5144     MS  : R;
5145 %}
5146 
5147 // Compare and branch
5148 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5149     instruction_count(2); has_delay_slot;
5150     cr    : E(write);
5151     src1  : R(read);
5152     src2  : R(read);
5153     IALU  : R;
5154     BR    : R;
5155 %}
5156 
5157 // Compare and branch
5158 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5159     instruction_count(2); has_delay_slot;
5160     cr    : E(write);
5161     src1  : R(read);
5162     IALU  : R;
5163     BR    : R;
5164 %}
5165 
5166 // Compare and branch using cbcond
5167 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5168     single_instruction;
5169     src1  : E(read);
5170     src2  : E(read);
5171     IALU  : R;
5172     BR    : R;
5173 %}
5174 
5175 // Compare and branch using cbcond
5176 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5177     single_instruction;
5178     src1  : E(read);
5179     IALU  : R;
5180     BR    : R;
5181 %}
5182 
5183 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5184     single_instruction_with_delay_slot;
5185     cr    : E(read);
5186     BR    : R;
5187 %}
5188 
5189 pipe_class br_nop() %{
5190     single_instruction;
5191     BR  : R;
5192 %}
5193 
5194 pipe_class simple_call(method meth) %{
5195     instruction_count(2); multiple_bundles; force_serialization;
5196     fixed_latency(100);
5197     BR  : R(1);
5198     MS  : R(1);
5199     A0  : R(1);
5200 %}
5201 
5202 pipe_class compiled_call(method meth) %{
5203     instruction_count(1); multiple_bundles; force_serialization;
5204     fixed_latency(100);
5205     MS  : R(1);
5206 %}
5207 
5208 pipe_class call(method meth) %{
5209     instruction_count(0); multiple_bundles; force_serialization;
5210     fixed_latency(100);
5211 %}
5212 
5213 pipe_class tail_call(Universe ignore, label labl) %{
5214     single_instruction; has_delay_slot;
5215     fixed_latency(100);
5216     BR  : R(1);
5217     MS  : R(1);
5218 %}
5219 
5220 pipe_class ret(Universe ignore) %{
5221     single_instruction; has_delay_slot;
5222     BR  : R(1);
5223     MS  : R(1);
5224 %}
5225 
5226 pipe_class ret_poll(g3RegP poll) %{
5227     instruction_count(3); has_delay_slot;
5228     poll : E(read);
5229     MS   : R;
5230 %}
5231 
5232 // The real do-nothing guy
5233 pipe_class empty( ) %{
5234     instruction_count(0);
5235 %}
5236 
5237 pipe_class long_memory_op() %{
5238     instruction_count(0); multiple_bundles; force_serialization;
5239     fixed_latency(25);
5240     MS  : R(1);
5241 %}
5242 
5243 // Check-cast
5244 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5245     array : R(read);
5246     match  : R(read);
5247     IALU   : R(2);
5248     BR     : R(2);
5249     MS     : R;
5250 %}
5251 
5252 // Convert FPU flags into +1,0,-1
5253 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5254     src1  : E(read);
5255     src2  : E(read);
5256     dst   : E(write);
5257     FA    : R;
5258     MS    : R(2);
5259     BR    : R(2);
5260 %}
5261 
5262 // Compare for p < q, and conditionally add y
5263 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5264     p     : E(read);
5265     q     : E(read);
5266     y     : E(read);
5267     IALU  : R(3)
5268 %}
5269 
5270 // Perform a compare, then move conditionally in a branch delay slot.
5271 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5272     src2   : E(read);
5273     srcdst : E(read);
5274     IALU   : R;
5275     BR     : R;
5276 %}
5277 
5278 // Define the class for the Nop node
5279 define %{
5280    MachNop = ialu_nop;
5281 %}
5282 
5283 %}
5284 
5285 //----------INSTRUCTIONS-------------------------------------------------------
5286 
5287 //------------Special Stack Slot instructions - no match rules-----------------
5288 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5289   // No match rule to avoid chain rule match.
5290   effect(DEF dst, USE src);
5291   ins_cost(MEMORY_REF_COST);
5292   size(4);
5293   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5294   opcode(Assembler::ldf_op3);
5295   ins_encode(simple_form3_mem_reg(src, dst));
5296   ins_pipe(floadF_stk);
5297 %}
5298 
5299 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5300   // No match rule to avoid chain rule match.
5301   effect(DEF dst, USE src);
5302   ins_cost(MEMORY_REF_COST);
5303   size(4);
5304   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5305   opcode(Assembler::lddf_op3);
5306   ins_encode(simple_form3_mem_reg(src, dst));
5307   ins_pipe(floadD_stk);
5308 %}
5309 
5310 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5311   // No match rule to avoid chain rule match.
5312   effect(DEF dst, USE src);
5313   ins_cost(MEMORY_REF_COST);
5314   size(4);
5315   format %{ "STF    $src,$dst\t! regF to stkI" %}
5316   opcode(Assembler::stf_op3);
5317   ins_encode(simple_form3_mem_reg(dst, src));
5318   ins_pipe(fstoreF_stk_reg);
5319 %}
5320 
5321 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5322   // No match rule to avoid chain rule match.
5323   effect(DEF dst, USE src);
5324   ins_cost(MEMORY_REF_COST);
5325   size(4);
5326   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5327   opcode(Assembler::stdf_op3);
5328   ins_encode(simple_form3_mem_reg(dst, src));
5329   ins_pipe(fstoreD_stk_reg);
5330 %}
5331 
5332 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5333   effect(DEF dst, USE src);
5334   ins_cost(MEMORY_REF_COST*2);
5335   size(8);
5336   format %{ "STW    $src,$dst.hi\t! long\n\t"
5337             "STW    R_G0,$dst.lo" %}
5338   opcode(Assembler::stw_op3);
5339   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5340   ins_pipe(lstoreI_stk_reg);
5341 %}
5342 
5343 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5344   // No match rule to avoid chain rule match.
5345   effect(DEF dst, USE src);
5346   ins_cost(MEMORY_REF_COST);
5347   size(4);
5348   format %{ "STX    $src,$dst\t! regL to stkD" %}
5349   opcode(Assembler::stx_op3);
5350   ins_encode(simple_form3_mem_reg( dst, src ) );
5351   ins_pipe(istore_stk_reg);
5352 %}
5353 
5354 //---------- Chain stack slots between similar types --------
5355 
5356 // Load integer from stack slot
5357 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5358   match(Set dst src);
5359   ins_cost(MEMORY_REF_COST);
5360 
5361   size(4);
5362   format %{ "LDUW   $src,$dst\t!stk" %}
5363   opcode(Assembler::lduw_op3);
5364   ins_encode(simple_form3_mem_reg( src, dst ) );
5365   ins_pipe(iload_mem);
5366 %}
5367 
5368 // Store integer to stack slot
5369 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5370   match(Set dst src);
5371   ins_cost(MEMORY_REF_COST);
5372 
5373   size(4);
5374   format %{ "STW    $src,$dst\t!stk" %}
5375   opcode(Assembler::stw_op3);
5376   ins_encode(simple_form3_mem_reg( dst, src ) );
5377   ins_pipe(istore_mem_reg);
5378 %}
5379 
5380 // Load long from stack slot
5381 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5382   match(Set dst src);
5383 
5384   ins_cost(MEMORY_REF_COST);
5385   size(4);
5386   format %{ "LDX    $src,$dst\t! long" %}
5387   opcode(Assembler::ldx_op3);
5388   ins_encode(simple_form3_mem_reg( src, dst ) );
5389   ins_pipe(iload_mem);
5390 %}
5391 
5392 // Store long to stack slot
5393 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5394   match(Set dst src);
5395 
5396   ins_cost(MEMORY_REF_COST);
5397   size(4);
5398   format %{ "STX    $src,$dst\t! long" %}
5399   opcode(Assembler::stx_op3);
5400   ins_encode(simple_form3_mem_reg( dst, src ) );
5401   ins_pipe(istore_mem_reg);
5402 %}
5403 
5404 #ifdef _LP64
5405 // Load pointer from stack slot, 64-bit encoding
5406 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5407   match(Set dst src);
5408   ins_cost(MEMORY_REF_COST);
5409   size(4);
5410   format %{ "LDX    $src,$dst\t!ptr" %}
5411   opcode(Assembler::ldx_op3);
5412   ins_encode(simple_form3_mem_reg( src, dst ) );
5413   ins_pipe(iload_mem);
5414 %}
5415 
5416 // Store pointer to stack slot
5417 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5418   match(Set dst src);
5419   ins_cost(MEMORY_REF_COST);
5420   size(4);
5421   format %{ "STX    $src,$dst\t!ptr" %}
5422   opcode(Assembler::stx_op3);
5423   ins_encode(simple_form3_mem_reg( dst, src ) );
5424   ins_pipe(istore_mem_reg);
5425 %}
5426 #else // _LP64
5427 // Load pointer from stack slot, 32-bit encoding
5428 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5429   match(Set dst src);
5430   ins_cost(MEMORY_REF_COST);
5431   format %{ "LDUW   $src,$dst\t!ptr" %}
5432   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5433   ins_encode(simple_form3_mem_reg( src, dst ) );
5434   ins_pipe(iload_mem);
5435 %}
5436 
5437 // Store pointer to stack slot
5438 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5439   match(Set dst src);
5440   ins_cost(MEMORY_REF_COST);
5441   format %{ "STW    $src,$dst\t!ptr" %}
5442   opcode(Assembler::stw_op3, Assembler::ldst_op);
5443   ins_encode(simple_form3_mem_reg( dst, src ) );
5444   ins_pipe(istore_mem_reg);
5445 %}
5446 #endif // _LP64
5447 
5448 //------------Special Nop instructions for bundling - no match rules-----------
5449 // Nop using the A0 functional unit
5450 instruct Nop_A0() %{
5451   ins_cost(0);
5452 
5453   format %{ "NOP    ! Alu Pipeline" %}
5454   opcode(Assembler::or_op3, Assembler::arith_op);
5455   ins_encode( form2_nop() );
5456   ins_pipe(ialu_nop_A0);
5457 %}
5458 
5459 // Nop using the A1 functional unit
5460 instruct Nop_A1( ) %{
5461   ins_cost(0);
5462 
5463   format %{ "NOP    ! Alu Pipeline" %}
5464   opcode(Assembler::or_op3, Assembler::arith_op);
5465   ins_encode( form2_nop() );
5466   ins_pipe(ialu_nop_A1);
5467 %}
5468 
5469 // Nop using the memory functional unit
5470 instruct Nop_MS( ) %{
5471   ins_cost(0);
5472 
5473   format %{ "NOP    ! Memory Pipeline" %}
5474   ins_encode( emit_mem_nop );
5475   ins_pipe(mem_nop);
5476 %}
5477 
5478 // Nop using the floating add functional unit
5479 instruct Nop_FA( ) %{
5480   ins_cost(0);
5481 
5482   format %{ "NOP    ! Floating Add Pipeline" %}
5483   ins_encode( emit_fadd_nop );
5484   ins_pipe(fadd_nop);
5485 %}
5486 
5487 // Nop using the branch functional unit
5488 instruct Nop_BR( ) %{
5489   ins_cost(0);
5490 
5491   format %{ "NOP    ! Branch Pipeline" %}
5492   ins_encode( emit_br_nop );
5493   ins_pipe(br_nop);
5494 %}
5495 
5496 //----------Load/Store/Move Instructions---------------------------------------
5497 //----------Load Instructions--------------------------------------------------
5498 // Load Byte (8bit signed)
5499 instruct loadB(iRegI dst, memory mem) %{
5500   match(Set dst (LoadB mem));
5501   ins_cost(MEMORY_REF_COST);
5502 
5503   size(4);
5504   format %{ "LDSB   $mem,$dst\t! byte" %}
5505   ins_encode %{
5506     __ ldsb($mem$$Address, $dst$$Register);
5507   %}
5508   ins_pipe(iload_mask_mem);
5509 %}
5510 
5511 // Load Byte (8bit signed) into a Long Register
5512 instruct loadB2L(iRegL dst, memory mem) %{
5513   match(Set dst (ConvI2L (LoadB mem)));
5514   ins_cost(MEMORY_REF_COST);
5515 
5516   size(4);
5517   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5518   ins_encode %{
5519     __ ldsb($mem$$Address, $dst$$Register);
5520   %}
5521   ins_pipe(iload_mask_mem);
5522 %}
5523 
5524 // Load Unsigned Byte (8bit UNsigned) into an int reg
5525 instruct loadUB(iRegI dst, memory mem) %{
5526   match(Set dst (LoadUB mem));
5527   ins_cost(MEMORY_REF_COST);
5528 
5529   size(4);
5530   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5531   ins_encode %{
5532     __ ldub($mem$$Address, $dst$$Register);
5533   %}
5534   ins_pipe(iload_mem);
5535 %}
5536 
5537 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5538 instruct loadUB2L(iRegL dst, memory mem) %{
5539   match(Set dst (ConvI2L (LoadUB mem)));
5540   ins_cost(MEMORY_REF_COST);
5541 
5542   size(4);
5543   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5544   ins_encode %{
5545     __ ldub($mem$$Address, $dst$$Register);
5546   %}
5547   ins_pipe(iload_mem);
5548 %}
5549 
5550 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5551 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5552   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5553   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5554 
5555   size(2*4);
5556   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5557             "AND    $dst,$mask,$dst" %}
5558   ins_encode %{
5559     __ ldub($mem$$Address, $dst$$Register);
5560     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5561   %}
5562   ins_pipe(iload_mem);
5563 %}
5564 
5565 // Load Short (16bit signed)
5566 instruct loadS(iRegI dst, memory mem) %{
5567   match(Set dst (LoadS mem));
5568   ins_cost(MEMORY_REF_COST);
5569 
5570   size(4);
5571   format %{ "LDSH   $mem,$dst\t! short" %}
5572   ins_encode %{
5573     __ ldsh($mem$$Address, $dst$$Register);
5574   %}
5575   ins_pipe(iload_mask_mem);
5576 %}
5577 
5578 // Load Short (16 bit signed) to Byte (8 bit signed)
5579 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5580   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5581   ins_cost(MEMORY_REF_COST);
5582 
5583   size(4);
5584 
5585   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5586   ins_encode %{
5587     __ ldsb($mem$$Address, $dst$$Register, 1);
5588   %}
5589   ins_pipe(iload_mask_mem);
5590 %}
5591 
5592 // Load Short (16bit signed) into a Long Register
5593 instruct loadS2L(iRegL dst, memory mem) %{
5594   match(Set dst (ConvI2L (LoadS mem)));
5595   ins_cost(MEMORY_REF_COST);
5596 
5597   size(4);
5598   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5599   ins_encode %{
5600     __ ldsh($mem$$Address, $dst$$Register);
5601   %}
5602   ins_pipe(iload_mask_mem);
5603 %}
5604 
5605 // Load Unsigned Short/Char (16bit UNsigned)
5606 instruct loadUS(iRegI dst, memory mem) %{
5607   match(Set dst (LoadUS mem));
5608   ins_cost(MEMORY_REF_COST);
5609 
5610   size(4);
5611   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5612   ins_encode %{
5613     __ lduh($mem$$Address, $dst$$Register);
5614   %}
5615   ins_pipe(iload_mem);
5616 %}
5617 
5618 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5619 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5620   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5621   ins_cost(MEMORY_REF_COST);
5622 
5623   size(4);
5624   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5625   ins_encode %{
5626     __ ldsb($mem$$Address, $dst$$Register, 1);
5627   %}
5628   ins_pipe(iload_mask_mem);
5629 %}
5630 
5631 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5632 instruct loadUS2L(iRegL dst, memory mem) %{
5633   match(Set dst (ConvI2L (LoadUS mem)));
5634   ins_cost(MEMORY_REF_COST);
5635 
5636   size(4);
5637   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5638   ins_encode %{
5639     __ lduh($mem$$Address, $dst$$Register);
5640   %}
5641   ins_pipe(iload_mem);
5642 %}
5643 
5644 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5645 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5646   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5647   ins_cost(MEMORY_REF_COST);
5648 
5649   size(4);
5650   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5651   ins_encode %{
5652     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5653   %}
5654   ins_pipe(iload_mem);
5655 %}
5656 
5657 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5658 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5659   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5660   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5661 
5662   size(2*4);
5663   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5664             "AND    $dst,$mask,$dst" %}
5665   ins_encode %{
5666     Register Rdst = $dst$$Register;
5667     __ lduh($mem$$Address, Rdst);
5668     __ and3(Rdst, $mask$$constant, Rdst);
5669   %}
5670   ins_pipe(iload_mem);
5671 %}
5672 
5673 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5674 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5675   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5676   effect(TEMP dst, TEMP tmp);
5677   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5678 
5679   size((3+1)*4);  // set may use two instructions.
5680   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5681             "SET    $mask,$tmp\n\t"
5682             "AND    $dst,$tmp,$dst" %}
5683   ins_encode %{
5684     Register Rdst = $dst$$Register;
5685     Register Rtmp = $tmp$$Register;
5686     __ lduh($mem$$Address, Rdst);
5687     __ set($mask$$constant, Rtmp);
5688     __ and3(Rdst, Rtmp, Rdst);
5689   %}
5690   ins_pipe(iload_mem);
5691 %}
5692 
5693 // Load Integer
5694 instruct loadI(iRegI dst, memory mem) %{
5695   match(Set dst (LoadI mem));
5696   ins_cost(MEMORY_REF_COST);
5697 
5698   size(4);
5699   format %{ "LDUW   $mem,$dst\t! int" %}
5700   ins_encode %{
5701     __ lduw($mem$$Address, $dst$$Register);
5702   %}
5703   ins_pipe(iload_mem);
5704 %}
5705 
5706 // Load Integer to Byte (8 bit signed)
5707 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5708   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5709   ins_cost(MEMORY_REF_COST);
5710 
5711   size(4);
5712 
5713   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5714   ins_encode %{
5715     __ ldsb($mem$$Address, $dst$$Register, 3);
5716   %}
5717   ins_pipe(iload_mask_mem);
5718 %}
5719 
5720 // Load Integer to Unsigned Byte (8 bit UNsigned)
5721 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5722   match(Set dst (AndI (LoadI mem) mask));
5723   ins_cost(MEMORY_REF_COST);
5724 
5725   size(4);
5726 
5727   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5728   ins_encode %{
5729     __ ldub($mem$$Address, $dst$$Register, 3);
5730   %}
5731   ins_pipe(iload_mask_mem);
5732 %}
5733 
5734 // Load Integer to Short (16 bit signed)
5735 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5736   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5737   ins_cost(MEMORY_REF_COST);
5738 
5739   size(4);
5740 
5741   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5742   ins_encode %{
5743     __ ldsh($mem$$Address, $dst$$Register, 2);
5744   %}
5745   ins_pipe(iload_mask_mem);
5746 %}
5747 
5748 // Load Integer to Unsigned Short (16 bit UNsigned)
5749 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5750   match(Set dst (AndI (LoadI mem) mask));
5751   ins_cost(MEMORY_REF_COST);
5752 
5753   size(4);
5754 
5755   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5756   ins_encode %{
5757     __ lduh($mem$$Address, $dst$$Register, 2);
5758   %}
5759   ins_pipe(iload_mask_mem);
5760 %}
5761 
5762 // Load Integer into a Long Register
5763 instruct loadI2L(iRegL dst, memory mem) %{
5764   match(Set dst (ConvI2L (LoadI mem)));
5765   ins_cost(MEMORY_REF_COST);
5766 
5767   size(4);
5768   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5769   ins_encode %{
5770     __ ldsw($mem$$Address, $dst$$Register);
5771   %}
5772   ins_pipe(iload_mask_mem);
5773 %}
5774 
5775 // Load Integer with mask 0xFF into a Long Register
5776 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5777   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5778   ins_cost(MEMORY_REF_COST);
5779 
5780   size(4);
5781   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5782   ins_encode %{
5783     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5784   %}
5785   ins_pipe(iload_mem);
5786 %}
5787 
5788 // Load Integer with mask 0xFFFF into a Long Register
5789 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5790   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5791   ins_cost(MEMORY_REF_COST);
5792 
5793   size(4);
5794   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5795   ins_encode %{
5796     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5797   %}
5798   ins_pipe(iload_mem);
5799 %}
5800 
5801 // Load Integer with a 13-bit mask into a Long Register
5802 instruct loadI2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5803   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5804   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5805 
5806   size(2*4);
5807   format %{ "LDUW   $mem,$dst\t! int & 13-bit mask -> long\n\t"
5808             "AND    $dst,$mask,$dst" %}
5809   ins_encode %{
5810     Register Rdst = $dst$$Register;
5811     __ lduw($mem$$Address, Rdst);
5812     __ and3(Rdst, $mask$$constant, Rdst);
5813   %}
5814   ins_pipe(iload_mem);
5815 %}
5816 
5817 // Load Integer with a 32-bit mask into a Long Register
5818 instruct loadI2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5819   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5820   effect(TEMP dst, TEMP tmp);
5821   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5822 
5823   size((3+1)*4);  // set may use two instructions.
5824   format %{ "LDUW   $mem,$dst\t! int & 32-bit mask -> long\n\t"
5825             "SET    $mask,$tmp\n\t"
5826             "AND    $dst,$tmp,$dst" %}
5827   ins_encode %{
5828     Register Rdst = $dst$$Register;
5829     Register Rtmp = $tmp$$Register;
5830     __ lduw($mem$$Address, Rdst);
5831     __ set($mask$$constant, Rtmp);
5832     __ and3(Rdst, Rtmp, Rdst);
5833   %}
5834   ins_pipe(iload_mem);
5835 %}
5836 
5837 // Load Unsigned Integer into a Long Register
5838 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5839   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5840   ins_cost(MEMORY_REF_COST);
5841 
5842   size(4);
5843   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5844   ins_encode %{
5845     __ lduw($mem$$Address, $dst$$Register);
5846   %}
5847   ins_pipe(iload_mem);
5848 %}
5849 
5850 // Load Long - aligned
5851 instruct loadL(iRegL dst, memory mem ) %{
5852   match(Set dst (LoadL mem));
5853   ins_cost(MEMORY_REF_COST);
5854 
5855   size(4);
5856   format %{ "LDX    $mem,$dst\t! long" %}
5857   ins_encode %{
5858     __ ldx($mem$$Address, $dst$$Register);
5859   %}
5860   ins_pipe(iload_mem);
5861 %}
5862 
5863 // Load Long - UNaligned
5864 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5865   match(Set dst (LoadL_unaligned mem));
5866   effect(KILL tmp);
5867   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5868   size(16);
5869   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5870           "\tLDUW   $mem  ,$dst\n"
5871           "\tSLLX   #32, $dst, $dst\n"
5872           "\tOR     $dst, R_O7, $dst" %}
5873   opcode(Assembler::lduw_op3);
5874   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5875   ins_pipe(iload_mem);
5876 %}
5877 
5878 // Load Range
5879 instruct loadRange(iRegI dst, memory mem) %{
5880   match(Set dst (LoadRange mem));
5881   ins_cost(MEMORY_REF_COST);
5882 
5883   size(4);
5884   format %{ "LDUW   $mem,$dst\t! range" %}
5885   opcode(Assembler::lduw_op3);
5886   ins_encode(simple_form3_mem_reg( mem, dst ) );
5887   ins_pipe(iload_mem);
5888 %}
5889 
5890 // Load Integer into %f register (for fitos/fitod)
5891 instruct loadI_freg(regF dst, memory mem) %{
5892   match(Set dst (LoadI mem));
5893   ins_cost(MEMORY_REF_COST);
5894   size(4);
5895 
5896   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5897   opcode(Assembler::ldf_op3);
5898   ins_encode(simple_form3_mem_reg( mem, dst ) );
5899   ins_pipe(floadF_mem);
5900 %}
5901 
5902 // Load Pointer
5903 instruct loadP(iRegP dst, memory mem) %{
5904   match(Set dst (LoadP mem));
5905   ins_cost(MEMORY_REF_COST);
5906   size(4);
5907 
5908 #ifndef _LP64
5909   format %{ "LDUW   $mem,$dst\t! ptr" %}
5910   ins_encode %{
5911     __ lduw($mem$$Address, $dst$$Register);
5912   %}
5913 #else
5914   format %{ "LDX    $mem,$dst\t! ptr" %}
5915   ins_encode %{
5916     __ ldx($mem$$Address, $dst$$Register);
5917   %}
5918 #endif
5919   ins_pipe(iload_mem);
5920 %}
5921 
5922 // Load Compressed Pointer
5923 instruct loadN(iRegN dst, memory mem) %{
5924   match(Set dst (LoadN mem));
5925   ins_cost(MEMORY_REF_COST);
5926   size(4);
5927 
5928   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
5929   ins_encode %{
5930     __ lduw($mem$$Address, $dst$$Register);
5931   %}
5932   ins_pipe(iload_mem);
5933 %}
5934 
5935 // Load Klass Pointer
5936 instruct loadKlass(iRegP dst, memory mem) %{
5937   match(Set dst (LoadKlass mem));
5938   ins_cost(MEMORY_REF_COST);
5939   size(4);
5940 
5941 #ifndef _LP64
5942   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
5943   ins_encode %{
5944     __ lduw($mem$$Address, $dst$$Register);
5945   %}
5946 #else
5947   format %{ "LDX    $mem,$dst\t! klass ptr" %}
5948   ins_encode %{
5949     __ ldx($mem$$Address, $dst$$Register);
5950   %}
5951 #endif
5952   ins_pipe(iload_mem);
5953 %}
5954 
5955 // Load narrow Klass Pointer
5956 instruct loadNKlass(iRegN dst, memory mem) %{
5957   match(Set dst (LoadNKlass mem));
5958   ins_cost(MEMORY_REF_COST);
5959   size(4);
5960 
5961   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
5962   ins_encode %{
5963     __ lduw($mem$$Address, $dst$$Register);
5964   %}
5965   ins_pipe(iload_mem);
5966 %}
5967 
5968 // Load Double
5969 instruct loadD(regD dst, memory mem) %{
5970   match(Set dst (LoadD mem));
5971   ins_cost(MEMORY_REF_COST);
5972 
5973   size(4);
5974   format %{ "LDDF   $mem,$dst" %}
5975   opcode(Assembler::lddf_op3);
5976   ins_encode(simple_form3_mem_reg( mem, dst ) );
5977   ins_pipe(floadD_mem);
5978 %}
5979 
5980 // Load Double - UNaligned
5981 instruct loadD_unaligned(regD_low dst, memory mem ) %{
5982   match(Set dst (LoadD_unaligned mem));
5983   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5984   size(8);
5985   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
5986           "\tLDF    $mem+4,$dst.lo\t!" %}
5987   opcode(Assembler::ldf_op3);
5988   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
5989   ins_pipe(iload_mem);
5990 %}
5991 
5992 // Load Float
5993 instruct loadF(regF dst, memory mem) %{
5994   match(Set dst (LoadF mem));
5995   ins_cost(MEMORY_REF_COST);
5996 
5997   size(4);
5998   format %{ "LDF    $mem,$dst" %}
5999   opcode(Assembler::ldf_op3);
6000   ins_encode(simple_form3_mem_reg( mem, dst ) );
6001   ins_pipe(floadF_mem);
6002 %}
6003 
6004 // Load Constant
6005 instruct loadConI( iRegI dst, immI src ) %{
6006   match(Set dst src);
6007   ins_cost(DEFAULT_COST * 3/2);
6008   format %{ "SET    $src,$dst" %}
6009   ins_encode( Set32(src, dst) );
6010   ins_pipe(ialu_hi_lo_reg);
6011 %}
6012 
6013 instruct loadConI13( iRegI dst, immI13 src ) %{
6014   match(Set dst src);
6015 
6016   size(4);
6017   format %{ "MOV    $src,$dst" %}
6018   ins_encode( Set13( src, dst ) );
6019   ins_pipe(ialu_imm);
6020 %}
6021 
6022 #ifndef _LP64
6023 instruct loadConP(iRegP dst, immP con) %{
6024   match(Set dst con);
6025   ins_cost(DEFAULT_COST * 3/2);
6026   format %{ "SET    $con,$dst\t!ptr" %}
6027   ins_encode %{
6028     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6029       intptr_t val = $con$$constant;
6030     if (constant_reloc == relocInfo::oop_type) {
6031       __ set_oop_constant((jobject) val, $dst$$Register);
6032     } else if (constant_reloc == relocInfo::metadata_type) {
6033       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6034     } else {          // non-oop pointers, e.g. card mark base, heap top
6035       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6036       __ set(val, $dst$$Register);
6037     }
6038   %}
6039   ins_pipe(loadConP);
6040 %}
6041 #else
6042 instruct loadConP_set(iRegP dst, immP_set con) %{
6043   match(Set dst con);
6044   ins_cost(DEFAULT_COST * 3/2);
6045   format %{ "SET    $con,$dst\t! ptr" %}
6046   ins_encode %{
6047     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6048       intptr_t val = $con$$constant;
6049     if (constant_reloc == relocInfo::oop_type) {
6050       __ set_oop_constant((jobject) val, $dst$$Register);
6051     } else if (constant_reloc == relocInfo::metadata_type) {
6052       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6053     } else {          // non-oop pointers, e.g. card mark base, heap top
6054       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6055       __ set(val, $dst$$Register);
6056     }
6057   %}
6058   ins_pipe(loadConP);
6059 %}
6060 
6061 instruct loadConP_load(iRegP dst, immP_load con) %{
6062   match(Set dst con);
6063   ins_cost(MEMORY_REF_COST);
6064   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6065   ins_encode %{
6066     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6067     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6068   %}
6069   ins_pipe(loadConP);
6070 %}
6071 
6072 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6073   match(Set dst con);
6074   ins_cost(DEFAULT_COST * 3/2);
6075   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6076   ins_encode %{
6077     __ set($con$$constant, $dst$$Register);
6078   %}
6079   ins_pipe(loadConP);
6080 %}
6081 #endif // _LP64
6082 
6083 instruct loadConP0(iRegP dst, immP0 src) %{
6084   match(Set dst src);
6085 
6086   size(4);
6087   format %{ "CLR    $dst\t!ptr" %}
6088   ins_encode %{
6089     __ clr($dst$$Register);
6090   %}
6091   ins_pipe(ialu_imm);
6092 %}
6093 
6094 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6095   match(Set dst src);
6096   ins_cost(DEFAULT_COST);
6097   format %{ "SET    $src,$dst\t!ptr" %}
6098   ins_encode %{
6099     AddressLiteral polling_page(os::get_polling_page());
6100     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6101   %}
6102   ins_pipe(loadConP_poll);
6103 %}
6104 
6105 instruct loadConN0(iRegN dst, immN0 src) %{
6106   match(Set dst src);
6107 
6108   size(4);
6109   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6110   ins_encode %{
6111     __ clr($dst$$Register);
6112   %}
6113   ins_pipe(ialu_imm);
6114 %}
6115 
6116 instruct loadConN(iRegN dst, immN src) %{
6117   match(Set dst src);
6118   ins_cost(DEFAULT_COST * 3/2);
6119   format %{ "SET    $src,$dst\t! compressed ptr" %}
6120   ins_encode %{
6121     Register dst = $dst$$Register;
6122     __ set_narrow_oop((jobject)$src$$constant, dst);
6123   %}
6124   ins_pipe(ialu_hi_lo_reg);
6125 %}
6126 
6127 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6128   match(Set dst src);
6129   ins_cost(DEFAULT_COST * 3/2);
6130   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6131   ins_encode %{
6132     Register dst = $dst$$Register;
6133     __ set_narrow_klass((Klass*)$src$$constant, dst);
6134   %}
6135   ins_pipe(ialu_hi_lo_reg);
6136 %}
6137 
6138 // Materialize long value (predicated by immL_cheap).
6139 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6140   match(Set dst con);
6141   effect(KILL tmp);
6142   ins_cost(DEFAULT_COST * 3);
6143   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6144   ins_encode %{
6145     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6146   %}
6147   ins_pipe(loadConL);
6148 %}
6149 
6150 // Load long value from constant table (predicated by immL_expensive).
6151 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6152   match(Set dst con);
6153   ins_cost(MEMORY_REF_COST);
6154   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6155   ins_encode %{
6156       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6157     __ ldx($constanttablebase, con_offset, $dst$$Register);
6158   %}
6159   ins_pipe(loadConL);
6160 %}
6161 
6162 instruct loadConL0( iRegL dst, immL0 src ) %{
6163   match(Set dst src);
6164   ins_cost(DEFAULT_COST);
6165   size(4);
6166   format %{ "CLR    $dst\t! long" %}
6167   ins_encode( Set13( src, dst ) );
6168   ins_pipe(ialu_imm);
6169 %}
6170 
6171 instruct loadConL13( iRegL dst, immL13 src ) %{
6172   match(Set dst src);
6173   ins_cost(DEFAULT_COST * 2);
6174 
6175   size(4);
6176   format %{ "MOV    $src,$dst\t! long" %}
6177   ins_encode( Set13( src, dst ) );
6178   ins_pipe(ialu_imm);
6179 %}
6180 
6181 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6182   match(Set dst con);
6183   effect(KILL tmp);
6184   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6185   ins_encode %{
6186       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6187     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6188   %}
6189   ins_pipe(loadConFD);
6190 %}
6191 
6192 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6193   match(Set dst con);
6194   effect(KILL tmp);
6195   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6196   ins_encode %{
6197     // XXX This is a quick fix for 6833573.
6198     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6199     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6200     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6201   %}
6202   ins_pipe(loadConFD);
6203 %}
6204 
6205 // Prefetch instructions.
6206 // Must be safe to execute with invalid address (cannot fault).
6207 
6208 instruct prefetchr( memory mem ) %{
6209   match( PrefetchRead mem );
6210   ins_cost(MEMORY_REF_COST);
6211   size(4);
6212 
6213   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6214   opcode(Assembler::prefetch_op3);
6215   ins_encode( form3_mem_prefetch_read( mem ) );
6216   ins_pipe(iload_mem);
6217 %}
6218 
6219 instruct prefetchw( memory mem ) %{
6220   match( PrefetchWrite mem );
6221   ins_cost(MEMORY_REF_COST);
6222   size(4);
6223 
6224   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6225   opcode(Assembler::prefetch_op3);
6226   ins_encode( form3_mem_prefetch_write( mem ) );
6227   ins_pipe(iload_mem);
6228 %}
6229 
6230 // Prefetch instructions for allocation.
6231 
6232 instruct prefetchAlloc( memory mem ) %{
6233   predicate(AllocatePrefetchInstr == 0);
6234   match( PrefetchAllocation mem );
6235   ins_cost(MEMORY_REF_COST);
6236   size(4);
6237 
6238   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6239   opcode(Assembler::prefetch_op3);
6240   ins_encode( form3_mem_prefetch_write( mem ) );
6241   ins_pipe(iload_mem);
6242 %}
6243 
6244 // Use BIS instruction to prefetch for allocation.
6245 // Could fault, need space at the end of TLAB.
6246 instruct prefetchAlloc_bis( iRegP dst ) %{
6247   predicate(AllocatePrefetchInstr == 1);
6248   match( PrefetchAllocation dst );
6249   ins_cost(MEMORY_REF_COST);
6250   size(4);
6251 
6252   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6253   ins_encode %{
6254     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6255   %}
6256   ins_pipe(istore_mem_reg);
6257 %}
6258 
6259 // Next code is used for finding next cache line address to prefetch.
6260 #ifndef _LP64
6261 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6262   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6263   ins_cost(DEFAULT_COST);
6264   size(4);
6265 
6266   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6267   ins_encode %{
6268     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6269   %}
6270   ins_pipe(ialu_reg_imm);
6271 %}
6272 #else
6273 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6274   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6275   ins_cost(DEFAULT_COST);
6276   size(4);
6277 
6278   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6279   ins_encode %{
6280     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6281   %}
6282   ins_pipe(ialu_reg_imm);
6283 %}
6284 #endif
6285 
6286 //----------Store Instructions-------------------------------------------------
6287 // Store Byte
6288 instruct storeB(memory mem, iRegI src) %{
6289   match(Set mem (StoreB mem src));
6290   ins_cost(MEMORY_REF_COST);
6291 
6292   size(4);
6293   format %{ "STB    $src,$mem\t! byte" %}
6294   opcode(Assembler::stb_op3);
6295   ins_encode(simple_form3_mem_reg( mem, src ) );
6296   ins_pipe(istore_mem_reg);
6297 %}
6298 
6299 instruct storeB0(memory mem, immI0 src) %{
6300   match(Set mem (StoreB mem src));
6301   ins_cost(MEMORY_REF_COST);
6302 
6303   size(4);
6304   format %{ "STB    $src,$mem\t! byte" %}
6305   opcode(Assembler::stb_op3);
6306   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6307   ins_pipe(istore_mem_zero);
6308 %}
6309 
6310 instruct storeCM0(memory mem, immI0 src) %{
6311   match(Set mem (StoreCM mem src));
6312   ins_cost(MEMORY_REF_COST);
6313 
6314   size(4);
6315   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6316   opcode(Assembler::stb_op3);
6317   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6318   ins_pipe(istore_mem_zero);
6319 %}
6320 
6321 // Store Char/Short
6322 instruct storeC(memory mem, iRegI src) %{
6323   match(Set mem (StoreC mem src));
6324   ins_cost(MEMORY_REF_COST);
6325 
6326   size(4);
6327   format %{ "STH    $src,$mem\t! short" %}
6328   opcode(Assembler::sth_op3);
6329   ins_encode(simple_form3_mem_reg( mem, src ) );
6330   ins_pipe(istore_mem_reg);
6331 %}
6332 
6333 instruct storeC0(memory mem, immI0 src) %{
6334   match(Set mem (StoreC mem src));
6335   ins_cost(MEMORY_REF_COST);
6336 
6337   size(4);
6338   format %{ "STH    $src,$mem\t! short" %}
6339   opcode(Assembler::sth_op3);
6340   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6341   ins_pipe(istore_mem_zero);
6342 %}
6343 
6344 // Store Integer
6345 instruct storeI(memory mem, iRegI src) %{
6346   match(Set mem (StoreI mem src));
6347   ins_cost(MEMORY_REF_COST);
6348 
6349   size(4);
6350   format %{ "STW    $src,$mem" %}
6351   opcode(Assembler::stw_op3);
6352   ins_encode(simple_form3_mem_reg( mem, src ) );
6353   ins_pipe(istore_mem_reg);
6354 %}
6355 
6356 // Store Long
6357 instruct storeL(memory mem, iRegL src) %{
6358   match(Set mem (StoreL mem src));
6359   ins_cost(MEMORY_REF_COST);
6360   size(4);
6361   format %{ "STX    $src,$mem\t! long" %}
6362   opcode(Assembler::stx_op3);
6363   ins_encode(simple_form3_mem_reg( mem, src ) );
6364   ins_pipe(istore_mem_reg);
6365 %}
6366 
6367 instruct storeI0(memory mem, immI0 src) %{
6368   match(Set mem (StoreI mem src));
6369   ins_cost(MEMORY_REF_COST);
6370 
6371   size(4);
6372   format %{ "STW    $src,$mem" %}
6373   opcode(Assembler::stw_op3);
6374   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6375   ins_pipe(istore_mem_zero);
6376 %}
6377 
6378 instruct storeL0(memory mem, immL0 src) %{
6379   match(Set mem (StoreL mem src));
6380   ins_cost(MEMORY_REF_COST);
6381 
6382   size(4);
6383   format %{ "STX    $src,$mem" %}
6384   opcode(Assembler::stx_op3);
6385   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6386   ins_pipe(istore_mem_zero);
6387 %}
6388 
6389 // Store Integer from float register (used after fstoi)
6390 instruct storeI_Freg(memory mem, regF src) %{
6391   match(Set mem (StoreI mem src));
6392   ins_cost(MEMORY_REF_COST);
6393 
6394   size(4);
6395   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6396   opcode(Assembler::stf_op3);
6397   ins_encode(simple_form3_mem_reg( mem, src ) );
6398   ins_pipe(fstoreF_mem_reg);
6399 %}
6400 
6401 // Store Pointer
6402 instruct storeP(memory dst, sp_ptr_RegP src) %{
6403   match(Set dst (StoreP dst src));
6404   ins_cost(MEMORY_REF_COST);
6405   size(4);
6406 
6407 #ifndef _LP64
6408   format %{ "STW    $src,$dst\t! ptr" %}
6409   opcode(Assembler::stw_op3, 0, REGP_OP);
6410 #else
6411   format %{ "STX    $src,$dst\t! ptr" %}
6412   opcode(Assembler::stx_op3, 0, REGP_OP);
6413 #endif
6414   ins_encode( form3_mem_reg( dst, src ) );
6415   ins_pipe(istore_mem_spORreg);
6416 %}
6417 
6418 instruct storeP0(memory dst, immP0 src) %{
6419   match(Set dst (StoreP dst src));
6420   ins_cost(MEMORY_REF_COST);
6421   size(4);
6422 
6423 #ifndef _LP64
6424   format %{ "STW    $src,$dst\t! ptr" %}
6425   opcode(Assembler::stw_op3, 0, REGP_OP);
6426 #else
6427   format %{ "STX    $src,$dst\t! ptr" %}
6428   opcode(Assembler::stx_op3, 0, REGP_OP);
6429 #endif
6430   ins_encode( form3_mem_reg( dst, R_G0 ) );
6431   ins_pipe(istore_mem_zero);
6432 %}
6433 
6434 // Store Compressed Pointer
6435 instruct storeN(memory dst, iRegN src) %{
6436    match(Set dst (StoreN dst src));
6437    ins_cost(MEMORY_REF_COST);
6438    size(4);
6439 
6440    format %{ "STW    $src,$dst\t! compressed ptr" %}
6441    ins_encode %{
6442      Register base = as_Register($dst$$base);
6443      Register index = as_Register($dst$$index);
6444      Register src = $src$$Register;
6445      if (index != G0) {
6446        __ stw(src, base, index);
6447      } else {
6448        __ stw(src, base, $dst$$disp);
6449      }
6450    %}
6451    ins_pipe(istore_mem_spORreg);
6452 %}
6453 
6454 instruct storeNKlass(memory dst, iRegN src) %{
6455    match(Set dst (StoreNKlass dst src));
6456    ins_cost(MEMORY_REF_COST);
6457    size(4);
6458 
6459    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6460    ins_encode %{
6461      Register base = as_Register($dst$$base);
6462      Register index = as_Register($dst$$index);
6463      Register src = $src$$Register;
6464      if (index != G0) {
6465        __ stw(src, base, index);
6466      } else {
6467        __ stw(src, base, $dst$$disp);
6468      }
6469    %}
6470    ins_pipe(istore_mem_spORreg);
6471 %}
6472 
6473 instruct storeN0(memory dst, immN0 src) %{
6474    match(Set dst (StoreN dst src));
6475    ins_cost(MEMORY_REF_COST);
6476    size(4);
6477 
6478    format %{ "STW    $src,$dst\t! compressed ptr" %}
6479    ins_encode %{
6480      Register base = as_Register($dst$$base);
6481      Register index = as_Register($dst$$index);
6482      if (index != G0) {
6483        __ stw(0, base, index);
6484      } else {
6485        __ stw(0, base, $dst$$disp);
6486      }
6487    %}
6488    ins_pipe(istore_mem_zero);
6489 %}
6490 
6491 // Store Double
6492 instruct storeD( memory mem, regD src) %{
6493   match(Set mem (StoreD mem src));
6494   ins_cost(MEMORY_REF_COST);
6495 
6496   size(4);
6497   format %{ "STDF   $src,$mem" %}
6498   opcode(Assembler::stdf_op3);
6499   ins_encode(simple_form3_mem_reg( mem, src ) );
6500   ins_pipe(fstoreD_mem_reg);
6501 %}
6502 
6503 instruct storeD0( memory mem, immD0 src) %{
6504   match(Set mem (StoreD mem src));
6505   ins_cost(MEMORY_REF_COST);
6506 
6507   size(4);
6508   format %{ "STX    $src,$mem" %}
6509   opcode(Assembler::stx_op3);
6510   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6511   ins_pipe(fstoreD_mem_zero);
6512 %}
6513 
6514 // Store Float
6515 instruct storeF( memory mem, regF src) %{
6516   match(Set mem (StoreF mem src));
6517   ins_cost(MEMORY_REF_COST);
6518 
6519   size(4);
6520   format %{ "STF    $src,$mem" %}
6521   opcode(Assembler::stf_op3);
6522   ins_encode(simple_form3_mem_reg( mem, src ) );
6523   ins_pipe(fstoreF_mem_reg);
6524 %}
6525 
6526 instruct storeF0( memory mem, immF0 src) %{
6527   match(Set mem (StoreF mem src));
6528   ins_cost(MEMORY_REF_COST);
6529 
6530   size(4);
6531   format %{ "STW    $src,$mem\t! storeF0" %}
6532   opcode(Assembler::stw_op3);
6533   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6534   ins_pipe(fstoreF_mem_zero);
6535 %}
6536 
6537 // Convert oop pointer into compressed form
6538 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6539   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6540   match(Set dst (EncodeP src));
6541   format %{ "encode_heap_oop $src, $dst" %}
6542   ins_encode %{
6543     __ encode_heap_oop($src$$Register, $dst$$Register);
6544   %}
6545   ins_pipe(ialu_reg);
6546 %}
6547 
6548 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6549   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6550   match(Set dst (EncodeP src));
6551   format %{ "encode_heap_oop_not_null $src, $dst" %}
6552   ins_encode %{
6553     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6554   %}
6555   ins_pipe(ialu_reg);
6556 %}
6557 
6558 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6559   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6560             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6561   match(Set dst (DecodeN src));
6562   format %{ "decode_heap_oop $src, $dst" %}
6563   ins_encode %{
6564     __ decode_heap_oop($src$$Register, $dst$$Register);
6565   %}
6566   ins_pipe(ialu_reg);
6567 %}
6568 
6569 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6570   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6571             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6572   match(Set dst (DecodeN src));
6573   format %{ "decode_heap_oop_not_null $src, $dst" %}
6574   ins_encode %{
6575     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6576   %}
6577   ins_pipe(ialu_reg);
6578 %}
6579 
6580 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6581   match(Set dst (EncodePKlass src));
6582   format %{ "encode_klass_not_null $src, $dst" %}
6583   ins_encode %{
6584     __ encode_klass_not_null($src$$Register, $dst$$Register);
6585   %}
6586   ins_pipe(ialu_reg);
6587 %}
6588 
6589 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6590   match(Set dst (DecodeNKlass src));
6591   format %{ "decode_klass_not_null $src, $dst" %}
6592   ins_encode %{
6593     __ decode_klass_not_null($src$$Register, $dst$$Register);
6594   %}
6595   ins_pipe(ialu_reg);
6596 %}
6597 
6598 //----------MemBar Instructions-----------------------------------------------
6599 // Memory barrier flavors
6600 
6601 instruct membar_acquire() %{
6602   match(MemBarAcquire);
6603   ins_cost(4*MEMORY_REF_COST);
6604 
6605   size(0);
6606   format %{ "MEMBAR-acquire" %}
6607   ins_encode( enc_membar_acquire );
6608   ins_pipe(long_memory_op);
6609 %}
6610 
6611 instruct membar_acquire_lock() %{
6612   match(MemBarAcquireLock);
6613   ins_cost(0);
6614 
6615   size(0);
6616   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6617   ins_encode( );
6618   ins_pipe(empty);
6619 %}
6620 
6621 instruct membar_release() %{
6622   match(MemBarRelease);
6623   ins_cost(4*MEMORY_REF_COST);
6624 
6625   size(0);
6626   format %{ "MEMBAR-release" %}
6627   ins_encode( enc_membar_release );
6628   ins_pipe(long_memory_op);
6629 %}
6630 
6631 instruct membar_release_lock() %{
6632   match(MemBarReleaseLock);
6633   ins_cost(0);
6634 
6635   size(0);
6636   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6637   ins_encode( );
6638   ins_pipe(empty);
6639 %}
6640 
6641 instruct membar_volatile() %{
6642   match(MemBarVolatile);
6643   ins_cost(4*MEMORY_REF_COST);
6644 
6645   size(4);
6646   format %{ "MEMBAR-volatile" %}
6647   ins_encode( enc_membar_volatile );
6648   ins_pipe(long_memory_op);
6649 %}
6650 
6651 instruct unnecessary_membar_volatile() %{
6652   match(MemBarVolatile);
6653   predicate(Matcher::post_store_load_barrier(n));
6654   ins_cost(0);
6655 
6656   size(0);
6657   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6658   ins_encode( );
6659   ins_pipe(empty);
6660 %}
6661 
6662 instruct membar_storestore() %{
6663   match(MemBarStoreStore);
6664   ins_cost(0);
6665 
6666   size(0);
6667   format %{ "!MEMBAR-storestore (empty encoding)" %}
6668   ins_encode( );
6669   ins_pipe(empty);
6670 %}
6671 
6672 //----------Register Move Instructions-----------------------------------------
6673 instruct roundDouble_nop(regD dst) %{
6674   match(Set dst (RoundDouble dst));
6675   ins_cost(0);
6676   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6677   ins_encode( );
6678   ins_pipe(empty);
6679 %}
6680 
6681 
6682 instruct roundFloat_nop(regF dst) %{
6683   match(Set dst (RoundFloat dst));
6684   ins_cost(0);
6685   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6686   ins_encode( );
6687   ins_pipe(empty);
6688 %}
6689 
6690 
6691 // Cast Index to Pointer for unsafe natives
6692 instruct castX2P(iRegX src, iRegP dst) %{
6693   match(Set dst (CastX2P src));
6694 
6695   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6696   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6697   ins_pipe(ialu_reg);
6698 %}
6699 
6700 // Cast Pointer to Index for unsafe natives
6701 instruct castP2X(iRegP src, iRegX dst) %{
6702   match(Set dst (CastP2X src));
6703 
6704   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6705   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6706   ins_pipe(ialu_reg);
6707 %}
6708 
6709 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6710   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6711   match(Set stkSlot src);   // chain rule
6712   ins_cost(MEMORY_REF_COST);
6713   format %{ "STDF   $src,$stkSlot\t!stk" %}
6714   opcode(Assembler::stdf_op3);
6715   ins_encode(simple_form3_mem_reg(stkSlot, src));
6716   ins_pipe(fstoreD_stk_reg);
6717 %}
6718 
6719 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6720   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6721   match(Set dst stkSlot);   // chain rule
6722   ins_cost(MEMORY_REF_COST);
6723   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6724   opcode(Assembler::lddf_op3);
6725   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6726   ins_pipe(floadD_stk);
6727 %}
6728 
6729 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6730   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6731   match(Set stkSlot src);   // chain rule
6732   ins_cost(MEMORY_REF_COST);
6733   format %{ "STF   $src,$stkSlot\t!stk" %}
6734   opcode(Assembler::stf_op3);
6735   ins_encode(simple_form3_mem_reg(stkSlot, src));
6736   ins_pipe(fstoreF_stk_reg);
6737 %}
6738 
6739 //----------Conditional Move---------------------------------------------------
6740 // Conditional move
6741 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6742   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6743   ins_cost(150);
6744   format %{ "MOV$cmp $pcc,$src,$dst" %}
6745   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6746   ins_pipe(ialu_reg);
6747 %}
6748 
6749 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6750   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6751   ins_cost(140);
6752   format %{ "MOV$cmp $pcc,$src,$dst" %}
6753   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6754   ins_pipe(ialu_imm);
6755 %}
6756 
6757 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6758   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6759   ins_cost(150);
6760   size(4);
6761   format %{ "MOV$cmp  $icc,$src,$dst" %}
6762   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6763   ins_pipe(ialu_reg);
6764 %}
6765 
6766 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6767   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6768   ins_cost(140);
6769   size(4);
6770   format %{ "MOV$cmp  $icc,$src,$dst" %}
6771   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6772   ins_pipe(ialu_imm);
6773 %}
6774 
6775 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6776   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6777   ins_cost(150);
6778   size(4);
6779   format %{ "MOV$cmp  $icc,$src,$dst" %}
6780   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6781   ins_pipe(ialu_reg);
6782 %}
6783 
6784 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6785   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6786   ins_cost(140);
6787   size(4);
6788   format %{ "MOV$cmp  $icc,$src,$dst" %}
6789   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6790   ins_pipe(ialu_imm);
6791 %}
6792 
6793 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6794   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6795   ins_cost(150);
6796   size(4);
6797   format %{ "MOV$cmp $fcc,$src,$dst" %}
6798   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6799   ins_pipe(ialu_reg);
6800 %}
6801 
6802 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6803   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6804   ins_cost(140);
6805   size(4);
6806   format %{ "MOV$cmp $fcc,$src,$dst" %}
6807   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6808   ins_pipe(ialu_imm);
6809 %}
6810 
6811 // Conditional move for RegN. Only cmov(reg,reg).
6812 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6813   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6814   ins_cost(150);
6815   format %{ "MOV$cmp $pcc,$src,$dst" %}
6816   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6817   ins_pipe(ialu_reg);
6818 %}
6819 
6820 // This instruction also works with CmpN so we don't need cmovNN_reg.
6821 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6822   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6823   ins_cost(150);
6824   size(4);
6825   format %{ "MOV$cmp  $icc,$src,$dst" %}
6826   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6827   ins_pipe(ialu_reg);
6828 %}
6829 
6830 // This instruction also works with CmpN so we don't need cmovNN_reg.
6831 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6832   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6833   ins_cost(150);
6834   size(4);
6835   format %{ "MOV$cmp  $icc,$src,$dst" %}
6836   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6837   ins_pipe(ialu_reg);
6838 %}
6839 
6840 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6841   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6842   ins_cost(150);
6843   size(4);
6844   format %{ "MOV$cmp $fcc,$src,$dst" %}
6845   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6846   ins_pipe(ialu_reg);
6847 %}
6848 
6849 // Conditional move
6850 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6851   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6852   ins_cost(150);
6853   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6854   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6855   ins_pipe(ialu_reg);
6856 %}
6857 
6858 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6859   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6860   ins_cost(140);
6861   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6862   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6863   ins_pipe(ialu_imm);
6864 %}
6865 
6866 // This instruction also works with CmpN so we don't need cmovPN_reg.
6867 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6868   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6869   ins_cost(150);
6870 
6871   size(4);
6872   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6873   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6874   ins_pipe(ialu_reg);
6875 %}
6876 
6877 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6878   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6879   ins_cost(150);
6880 
6881   size(4);
6882   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6883   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6884   ins_pipe(ialu_reg);
6885 %}
6886 
6887 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6888   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6889   ins_cost(140);
6890 
6891   size(4);
6892   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6893   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6894   ins_pipe(ialu_imm);
6895 %}
6896 
6897 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6898   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6899   ins_cost(140);
6900 
6901   size(4);
6902   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6903   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6904   ins_pipe(ialu_imm);
6905 %}
6906 
6907 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6908   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6909   ins_cost(150);
6910   size(4);
6911   format %{ "MOV$cmp $fcc,$src,$dst" %}
6912   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6913   ins_pipe(ialu_imm);
6914 %}
6915 
6916 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6917   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6918   ins_cost(140);
6919   size(4);
6920   format %{ "MOV$cmp $fcc,$src,$dst" %}
6921   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6922   ins_pipe(ialu_imm);
6923 %}
6924 
6925 // Conditional move
6926 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6927   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6928   ins_cost(150);
6929   opcode(0x101);
6930   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6931   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6932   ins_pipe(int_conditional_float_move);
6933 %}
6934 
6935 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6936   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6937   ins_cost(150);
6938 
6939   size(4);
6940   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6941   opcode(0x101);
6942   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6943   ins_pipe(int_conditional_float_move);
6944 %}
6945 
6946 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6947   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6948   ins_cost(150);
6949 
6950   size(4);
6951   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6952   opcode(0x101);
6953   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6954   ins_pipe(int_conditional_float_move);
6955 %}
6956 
6957 // Conditional move,
6958 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
6959   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
6960   ins_cost(150);
6961   size(4);
6962   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
6963   opcode(0x1);
6964   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
6965   ins_pipe(int_conditional_double_move);
6966 %}
6967 
6968 // Conditional move
6969 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
6970   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
6971   ins_cost(150);
6972   size(4);
6973   opcode(0x102);
6974   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6975   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6976   ins_pipe(int_conditional_double_move);
6977 %}
6978 
6979 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
6980   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6981   ins_cost(150);
6982 
6983   size(4);
6984   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6985   opcode(0x102);
6986   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6987   ins_pipe(int_conditional_double_move);
6988 %}
6989 
6990 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
6991   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
6992   ins_cost(150);
6993 
6994   size(4);
6995   format %{ "FMOVD$cmp $icc,$src,$dst" %}
6996   opcode(0x102);
6997   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6998   ins_pipe(int_conditional_double_move);
6999 %}
7000 
7001 // Conditional move,
7002 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7003   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7004   ins_cost(150);
7005   size(4);
7006   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7007   opcode(0x2);
7008   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7009   ins_pipe(int_conditional_double_move);
7010 %}
7011 
7012 // Conditional move
7013 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7014   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7015   ins_cost(150);
7016   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7017   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7018   ins_pipe(ialu_reg);
7019 %}
7020 
7021 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7022   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7023   ins_cost(140);
7024   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7025   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7026   ins_pipe(ialu_imm);
7027 %}
7028 
7029 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7030   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7031   ins_cost(150);
7032 
7033   size(4);
7034   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7035   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7036   ins_pipe(ialu_reg);
7037 %}
7038 
7039 
7040 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7041   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7042   ins_cost(150);
7043 
7044   size(4);
7045   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7046   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7047   ins_pipe(ialu_reg);
7048 %}
7049 
7050 
7051 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7052   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7053   ins_cost(150);
7054 
7055   size(4);
7056   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7057   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7058   ins_pipe(ialu_reg);
7059 %}
7060 
7061 
7062 
7063 //----------OS and Locking Instructions----------------------------------------
7064 
7065 // This name is KNOWN by the ADLC and cannot be changed.
7066 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7067 // for this guy.
7068 instruct tlsLoadP(g2RegP dst) %{
7069   match(Set dst (ThreadLocal));
7070 
7071   size(0);
7072   ins_cost(0);
7073   format %{ "# TLS is in G2" %}
7074   ins_encode( /*empty encoding*/ );
7075   ins_pipe(ialu_none);
7076 %}
7077 
7078 instruct checkCastPP( iRegP dst ) %{
7079   match(Set dst (CheckCastPP dst));
7080 
7081   size(0);
7082   format %{ "# checkcastPP of $dst" %}
7083   ins_encode( /*empty encoding*/ );
7084   ins_pipe(empty);
7085 %}
7086 
7087 
7088 instruct castPP( iRegP dst ) %{
7089   match(Set dst (CastPP dst));
7090   format %{ "# castPP of $dst" %}
7091   ins_encode( /*empty encoding*/ );
7092   ins_pipe(empty);
7093 %}
7094 
7095 instruct castII( iRegI dst ) %{
7096   match(Set dst (CastII dst));
7097   format %{ "# castII of $dst" %}
7098   ins_encode( /*empty encoding*/ );
7099   ins_cost(0);
7100   ins_pipe(empty);
7101 %}
7102 
7103 //----------Arithmetic Instructions--------------------------------------------
7104 // Addition Instructions
7105 // Register Addition
7106 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7107   match(Set dst (AddI src1 src2));
7108 
7109   size(4);
7110   format %{ "ADD    $src1,$src2,$dst" %}
7111   ins_encode %{
7112     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7113   %}
7114   ins_pipe(ialu_reg_reg);
7115 %}
7116 
7117 // Immediate Addition
7118 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7119   match(Set dst (AddI src1 src2));
7120 
7121   size(4);
7122   format %{ "ADD    $src1,$src2,$dst" %}
7123   opcode(Assembler::add_op3, Assembler::arith_op);
7124   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7125   ins_pipe(ialu_reg_imm);
7126 %}
7127 
7128 // Pointer Register Addition
7129 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7130   match(Set dst (AddP src1 src2));
7131 
7132   size(4);
7133   format %{ "ADD    $src1,$src2,$dst" %}
7134   opcode(Assembler::add_op3, Assembler::arith_op);
7135   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7136   ins_pipe(ialu_reg_reg);
7137 %}
7138 
7139 // Pointer Immediate Addition
7140 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7141   match(Set dst (AddP src1 src2));
7142 
7143   size(4);
7144   format %{ "ADD    $src1,$src2,$dst" %}
7145   opcode(Assembler::add_op3, Assembler::arith_op);
7146   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7147   ins_pipe(ialu_reg_imm);
7148 %}
7149 
7150 // Long Addition
7151 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7152   match(Set dst (AddL src1 src2));
7153 
7154   size(4);
7155   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7156   opcode(Assembler::add_op3, Assembler::arith_op);
7157   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7158   ins_pipe(ialu_reg_reg);
7159 %}
7160 
7161 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7162   match(Set dst (AddL src1 con));
7163 
7164   size(4);
7165   format %{ "ADD    $src1,$con,$dst" %}
7166   opcode(Assembler::add_op3, Assembler::arith_op);
7167   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7168   ins_pipe(ialu_reg_imm);
7169 %}
7170 
7171 //----------Conditional_store--------------------------------------------------
7172 // Conditional-store of the updated heap-top.
7173 // Used during allocation of the shared heap.
7174 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7175 
7176 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7177 instruct loadPLocked(iRegP dst, memory mem) %{
7178   match(Set dst (LoadPLocked mem));
7179   ins_cost(MEMORY_REF_COST);
7180 
7181 #ifndef _LP64
7182   size(4);
7183   format %{ "LDUW   $mem,$dst\t! ptr" %}
7184   opcode(Assembler::lduw_op3, 0, REGP_OP);
7185 #else
7186   format %{ "LDX    $mem,$dst\t! ptr" %}
7187   opcode(Assembler::ldx_op3, 0, REGP_OP);
7188 #endif
7189   ins_encode( form3_mem_reg( mem, dst ) );
7190   ins_pipe(iload_mem);
7191 %}
7192 
7193 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7194   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7195   effect( KILL newval );
7196   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7197             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7198   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7199   ins_pipe( long_memory_op );
7200 %}
7201 
7202 // Conditional-store of an int value.
7203 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7204   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7205   effect( KILL newval );
7206   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7207             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7208   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7209   ins_pipe( long_memory_op );
7210 %}
7211 
7212 // Conditional-store of a long value.
7213 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7214   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7215   effect( KILL newval );
7216   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7217             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7218   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7219   ins_pipe( long_memory_op );
7220 %}
7221 
7222 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7223 
7224 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7225   predicate(VM_Version::supports_cx8());
7226   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7227   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7228   format %{
7229             "MOV    $newval,O7\n\t"
7230             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7231             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7232             "MOV    1,$res\n\t"
7233             "MOVne  xcc,R_G0,$res"
7234   %}
7235   ins_encode( enc_casx(mem_ptr, oldval, newval),
7236               enc_lflags_ne_to_boolean(res) );
7237   ins_pipe( long_memory_op );
7238 %}
7239 
7240 
7241 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7242   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7243   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7244   format %{
7245             "MOV    $newval,O7\n\t"
7246             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7247             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7248             "MOV    1,$res\n\t"
7249             "MOVne  icc,R_G0,$res"
7250   %}
7251   ins_encode( enc_casi(mem_ptr, oldval, newval),
7252               enc_iflags_ne_to_boolean(res) );
7253   ins_pipe( long_memory_op );
7254 %}
7255 
7256 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7257 #ifdef _LP64
7258   predicate(VM_Version::supports_cx8());
7259 #endif
7260   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7261   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7262   format %{
7263             "MOV    $newval,O7\n\t"
7264             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7265             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7266             "MOV    1,$res\n\t"
7267             "MOVne  xcc,R_G0,$res"
7268   %}
7269 #ifdef _LP64
7270   ins_encode( enc_casx(mem_ptr, oldval, newval),
7271               enc_lflags_ne_to_boolean(res) );
7272 #else
7273   ins_encode( enc_casi(mem_ptr, oldval, newval),
7274               enc_iflags_ne_to_boolean(res) );
7275 #endif
7276   ins_pipe( long_memory_op );
7277 %}
7278 
7279 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7280   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7281   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7282   format %{
7283             "MOV    $newval,O7\n\t"
7284             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7285             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7286             "MOV    1,$res\n\t"
7287             "MOVne  icc,R_G0,$res"
7288   %}
7289   ins_encode( enc_casi(mem_ptr, oldval, newval),
7290               enc_iflags_ne_to_boolean(res) );
7291   ins_pipe( long_memory_op );
7292 %}
7293 
7294 instruct xchgI( memory mem, iRegI newval) %{
7295   match(Set newval (GetAndSetI mem newval));
7296   format %{ "SWAP  [$mem],$newval" %}
7297   size(4);
7298   ins_encode %{
7299     __ swap($mem$$Address, $newval$$Register);
7300   %}
7301   ins_pipe( long_memory_op );
7302 %}
7303 
7304 #ifndef _LP64
7305 instruct xchgP( memory mem, iRegP newval) %{
7306   match(Set newval (GetAndSetP mem newval));
7307   format %{ "SWAP  [$mem],$newval" %}
7308   size(4);
7309   ins_encode %{
7310     __ swap($mem$$Address, $newval$$Register);
7311   %}
7312   ins_pipe( long_memory_op );
7313 %}
7314 #endif
7315 
7316 instruct xchgN( memory mem, iRegN newval) %{
7317   match(Set newval (GetAndSetN mem newval));
7318   format %{ "SWAP  [$mem],$newval" %}
7319   size(4);
7320   ins_encode %{
7321     __ swap($mem$$Address, $newval$$Register);
7322   %}
7323   ins_pipe( long_memory_op );
7324 %}
7325 
7326 //---------------------
7327 // Subtraction Instructions
7328 // Register Subtraction
7329 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7330   match(Set dst (SubI src1 src2));
7331 
7332   size(4);
7333   format %{ "SUB    $src1,$src2,$dst" %}
7334   opcode(Assembler::sub_op3, Assembler::arith_op);
7335   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7336   ins_pipe(ialu_reg_reg);
7337 %}
7338 
7339 // Immediate Subtraction
7340 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7341   match(Set dst (SubI src1 src2));
7342 
7343   size(4);
7344   format %{ "SUB    $src1,$src2,$dst" %}
7345   opcode(Assembler::sub_op3, Assembler::arith_op);
7346   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7347   ins_pipe(ialu_reg_imm);
7348 %}
7349 
7350 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7351   match(Set dst (SubI zero src2));
7352 
7353   size(4);
7354   format %{ "NEG    $src2,$dst" %}
7355   opcode(Assembler::sub_op3, Assembler::arith_op);
7356   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7357   ins_pipe(ialu_zero_reg);
7358 %}
7359 
7360 // Long subtraction
7361 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7362   match(Set dst (SubL src1 src2));
7363 
7364   size(4);
7365   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7366   opcode(Assembler::sub_op3, Assembler::arith_op);
7367   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7368   ins_pipe(ialu_reg_reg);
7369 %}
7370 
7371 // Immediate Subtraction
7372 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7373   match(Set dst (SubL src1 con));
7374 
7375   size(4);
7376   format %{ "SUB    $src1,$con,$dst\t! long" %}
7377   opcode(Assembler::sub_op3, Assembler::arith_op);
7378   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7379   ins_pipe(ialu_reg_imm);
7380 %}
7381 
7382 // Long negation
7383 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7384   match(Set dst (SubL zero src2));
7385 
7386   size(4);
7387   format %{ "NEG    $src2,$dst\t! long" %}
7388   opcode(Assembler::sub_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7390   ins_pipe(ialu_zero_reg);
7391 %}
7392 
7393 // Multiplication Instructions
7394 // Integer Multiplication
7395 // Register Multiplication
7396 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7397   match(Set dst (MulI src1 src2));
7398 
7399   size(4);
7400   format %{ "MULX   $src1,$src2,$dst" %}
7401   opcode(Assembler::mulx_op3, Assembler::arith_op);
7402   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7403   ins_pipe(imul_reg_reg);
7404 %}
7405 
7406 // Immediate Multiplication
7407 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7408   match(Set dst (MulI src1 src2));
7409 
7410   size(4);
7411   format %{ "MULX   $src1,$src2,$dst" %}
7412   opcode(Assembler::mulx_op3, Assembler::arith_op);
7413   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7414   ins_pipe(imul_reg_imm);
7415 %}
7416 
7417 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7418   match(Set dst (MulL src1 src2));
7419   ins_cost(DEFAULT_COST * 5);
7420   size(4);
7421   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7422   opcode(Assembler::mulx_op3, Assembler::arith_op);
7423   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7424   ins_pipe(mulL_reg_reg);
7425 %}
7426 
7427 // Immediate Multiplication
7428 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7429   match(Set dst (MulL src1 src2));
7430   ins_cost(DEFAULT_COST * 5);
7431   size(4);
7432   format %{ "MULX   $src1,$src2,$dst" %}
7433   opcode(Assembler::mulx_op3, Assembler::arith_op);
7434   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7435   ins_pipe(mulL_reg_imm);
7436 %}
7437 
7438 // Integer Division
7439 // Register Division
7440 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7441   match(Set dst (DivI src1 src2));
7442   ins_cost((2+71)*DEFAULT_COST);
7443 
7444   format %{ "SRA     $src2,0,$src2\n\t"
7445             "SRA     $src1,0,$src1\n\t"
7446             "SDIVX   $src1,$src2,$dst" %}
7447   ins_encode( idiv_reg( src1, src2, dst ) );
7448   ins_pipe(sdiv_reg_reg);
7449 %}
7450 
7451 // Immediate Division
7452 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7453   match(Set dst (DivI src1 src2));
7454   ins_cost((2+71)*DEFAULT_COST);
7455 
7456   format %{ "SRA     $src1,0,$src1\n\t"
7457             "SDIVX   $src1,$src2,$dst" %}
7458   ins_encode( idiv_imm( src1, src2, dst ) );
7459   ins_pipe(sdiv_reg_imm);
7460 %}
7461 
7462 //----------Div-By-10-Expansion------------------------------------------------
7463 // Extract hi bits of a 32x32->64 bit multiply.
7464 // Expand rule only, not matched
7465 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7466   effect( DEF dst, USE src1, USE src2 );
7467   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7468             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7469   ins_encode( enc_mul_hi(dst,src1,src2));
7470   ins_pipe(sdiv_reg_reg);
7471 %}
7472 
7473 // Magic constant, reciprocal of 10
7474 instruct loadConI_x66666667(iRegIsafe dst) %{
7475   effect( DEF dst );
7476 
7477   size(8);
7478   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7479   ins_encode( Set32(0x66666667, dst) );
7480   ins_pipe(ialu_hi_lo_reg);
7481 %}
7482 
7483 // Register Shift Right Arithmetic Long by 32-63
7484 instruct sra_31( iRegI dst, iRegI src ) %{
7485   effect( DEF dst, USE src );
7486   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7487   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7488   ins_pipe(ialu_reg_reg);
7489 %}
7490 
7491 // Arithmetic Shift Right by 8-bit immediate
7492 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7493   effect( DEF dst, USE src );
7494   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7495   opcode(Assembler::sra_op3, Assembler::arith_op);
7496   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7497   ins_pipe(ialu_reg_imm);
7498 %}
7499 
7500 // Integer DIV with 10
7501 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7502   match(Set dst (DivI src div));
7503   ins_cost((6+6)*DEFAULT_COST);
7504   expand %{
7505     iRegIsafe tmp1;               // Killed temps;
7506     iRegIsafe tmp2;               // Killed temps;
7507     iRegI tmp3;                   // Killed temps;
7508     iRegI tmp4;                   // Killed temps;
7509     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7510     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7511     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7512     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7513     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7514   %}
7515 %}
7516 
7517 // Register Long Division
7518 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7519   match(Set dst (DivL src1 src2));
7520   ins_cost(DEFAULT_COST*71);
7521   size(4);
7522   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7523   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7524   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7525   ins_pipe(divL_reg_reg);
7526 %}
7527 
7528 // Register Long Division
7529 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7530   match(Set dst (DivL src1 src2));
7531   ins_cost(DEFAULT_COST*71);
7532   size(4);
7533   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7534   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7535   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7536   ins_pipe(divL_reg_imm);
7537 %}
7538 
7539 // Integer Remainder
7540 // Register Remainder
7541 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7542   match(Set dst (ModI src1 src2));
7543   effect( KILL ccr, KILL temp);
7544 
7545   format %{ "SREM   $src1,$src2,$dst" %}
7546   ins_encode( irem_reg(src1, src2, dst, temp) );
7547   ins_pipe(sdiv_reg_reg);
7548 %}
7549 
7550 // Immediate Remainder
7551 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7552   match(Set dst (ModI src1 src2));
7553   effect( KILL ccr, KILL temp);
7554 
7555   format %{ "SREM   $src1,$src2,$dst" %}
7556   ins_encode( irem_imm(src1, src2, dst, temp) );
7557   ins_pipe(sdiv_reg_imm);
7558 %}
7559 
7560 // Register Long Remainder
7561 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7562   effect(DEF dst, USE src1, USE src2);
7563   size(4);
7564   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7565   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7566   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7567   ins_pipe(divL_reg_reg);
7568 %}
7569 
7570 // Register Long Division
7571 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7572   effect(DEF dst, USE src1, USE src2);
7573   size(4);
7574   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7575   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7576   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7577   ins_pipe(divL_reg_imm);
7578 %}
7579 
7580 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7581   effect(DEF dst, USE src1, USE src2);
7582   size(4);
7583   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7584   opcode(Assembler::mulx_op3, Assembler::arith_op);
7585   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7586   ins_pipe(mulL_reg_reg);
7587 %}
7588 
7589 // Immediate Multiplication
7590 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7591   effect(DEF dst, USE src1, USE src2);
7592   size(4);
7593   format %{ "MULX   $src1,$src2,$dst" %}
7594   opcode(Assembler::mulx_op3, Assembler::arith_op);
7595   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7596   ins_pipe(mulL_reg_imm);
7597 %}
7598 
7599 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7600   effect(DEF dst, USE src1, USE src2);
7601   size(4);
7602   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7603   opcode(Assembler::sub_op3, Assembler::arith_op);
7604   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7605   ins_pipe(ialu_reg_reg);
7606 %}
7607 
7608 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7609   effect(DEF dst, USE src1, USE src2);
7610   size(4);
7611   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7612   opcode(Assembler::sub_op3, Assembler::arith_op);
7613   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7614   ins_pipe(ialu_reg_reg);
7615 %}
7616 
7617 // Register Long Remainder
7618 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7619   match(Set dst (ModL src1 src2));
7620   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7621   expand %{
7622     iRegL tmp1;
7623     iRegL tmp2;
7624     divL_reg_reg_1(tmp1, src1, src2);
7625     mulL_reg_reg_1(tmp2, tmp1, src2);
7626     subL_reg_reg_1(dst,  src1, tmp2);
7627   %}
7628 %}
7629 
7630 // Register Long Remainder
7631 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7632   match(Set dst (ModL src1 src2));
7633   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7634   expand %{
7635     iRegL tmp1;
7636     iRegL tmp2;
7637     divL_reg_imm13_1(tmp1, src1, src2);
7638     mulL_reg_imm13_1(tmp2, tmp1, src2);
7639     subL_reg_reg_2  (dst,  src1, tmp2);
7640   %}
7641 %}
7642 
7643 // Integer Shift Instructions
7644 // Register Shift Left
7645 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7646   match(Set dst (LShiftI src1 src2));
7647 
7648   size(4);
7649   format %{ "SLL    $src1,$src2,$dst" %}
7650   opcode(Assembler::sll_op3, Assembler::arith_op);
7651   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7652   ins_pipe(ialu_reg_reg);
7653 %}
7654 
7655 // Register Shift Left Immediate
7656 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7657   match(Set dst (LShiftI src1 src2));
7658 
7659   size(4);
7660   format %{ "SLL    $src1,$src2,$dst" %}
7661   opcode(Assembler::sll_op3, Assembler::arith_op);
7662   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7663   ins_pipe(ialu_reg_imm);
7664 %}
7665 
7666 // Register Shift Left
7667 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7668   match(Set dst (LShiftL src1 src2));
7669 
7670   size(4);
7671   format %{ "SLLX   $src1,$src2,$dst" %}
7672   opcode(Assembler::sllx_op3, Assembler::arith_op);
7673   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7674   ins_pipe(ialu_reg_reg);
7675 %}
7676 
7677 // Register Shift Left Immediate
7678 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7679   match(Set dst (LShiftL src1 src2));
7680 
7681   size(4);
7682   format %{ "SLLX   $src1,$src2,$dst" %}
7683   opcode(Assembler::sllx_op3, Assembler::arith_op);
7684   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7685   ins_pipe(ialu_reg_imm);
7686 %}
7687 
7688 // Register Arithmetic Shift Right
7689 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7690   match(Set dst (RShiftI src1 src2));
7691   size(4);
7692   format %{ "SRA    $src1,$src2,$dst" %}
7693   opcode(Assembler::sra_op3, Assembler::arith_op);
7694   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7695   ins_pipe(ialu_reg_reg);
7696 %}
7697 
7698 // Register Arithmetic Shift Right Immediate
7699 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7700   match(Set dst (RShiftI src1 src2));
7701 
7702   size(4);
7703   format %{ "SRA    $src1,$src2,$dst" %}
7704   opcode(Assembler::sra_op3, Assembler::arith_op);
7705   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7706   ins_pipe(ialu_reg_imm);
7707 %}
7708 
7709 // Register Shift Right Arithmatic Long
7710 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7711   match(Set dst (RShiftL src1 src2));
7712 
7713   size(4);
7714   format %{ "SRAX   $src1,$src2,$dst" %}
7715   opcode(Assembler::srax_op3, Assembler::arith_op);
7716   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7717   ins_pipe(ialu_reg_reg);
7718 %}
7719 
7720 // Register Shift Left Immediate
7721 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7722   match(Set dst (RShiftL src1 src2));
7723 
7724   size(4);
7725   format %{ "SRAX   $src1,$src2,$dst" %}
7726   opcode(Assembler::srax_op3, Assembler::arith_op);
7727   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7728   ins_pipe(ialu_reg_imm);
7729 %}
7730 
7731 // Register Shift Right
7732 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7733   match(Set dst (URShiftI src1 src2));
7734 
7735   size(4);
7736   format %{ "SRL    $src1,$src2,$dst" %}
7737   opcode(Assembler::srl_op3, Assembler::arith_op);
7738   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7739   ins_pipe(ialu_reg_reg);
7740 %}
7741 
7742 // Register Shift Right Immediate
7743 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7744   match(Set dst (URShiftI src1 src2));
7745 
7746   size(4);
7747   format %{ "SRL    $src1,$src2,$dst" %}
7748   opcode(Assembler::srl_op3, Assembler::arith_op);
7749   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7750   ins_pipe(ialu_reg_imm);
7751 %}
7752 
7753 // Register Shift Right
7754 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7755   match(Set dst (URShiftL src1 src2));
7756 
7757   size(4);
7758   format %{ "SRLX   $src1,$src2,$dst" %}
7759   opcode(Assembler::srlx_op3, Assembler::arith_op);
7760   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7761   ins_pipe(ialu_reg_reg);
7762 %}
7763 
7764 // Register Shift Right Immediate
7765 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7766   match(Set dst (URShiftL src1 src2));
7767 
7768   size(4);
7769   format %{ "SRLX   $src1,$src2,$dst" %}
7770   opcode(Assembler::srlx_op3, Assembler::arith_op);
7771   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7772   ins_pipe(ialu_reg_imm);
7773 %}
7774 
7775 // Register Shift Right Immediate with a CastP2X
7776 #ifdef _LP64
7777 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7778   match(Set dst (URShiftL (CastP2X src1) src2));
7779   size(4);
7780   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7781   opcode(Assembler::srlx_op3, Assembler::arith_op);
7782   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7783   ins_pipe(ialu_reg_imm);
7784 %}
7785 #else
7786 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7787   match(Set dst (URShiftI (CastP2X src1) src2));
7788   size(4);
7789   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7790   opcode(Assembler::srl_op3, Assembler::arith_op);
7791   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7792   ins_pipe(ialu_reg_imm);
7793 %}
7794 #endif
7795 
7796 
7797 //----------Floating Point Arithmetic Instructions-----------------------------
7798 
7799 //  Add float single precision
7800 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7801   match(Set dst (AddF src1 src2));
7802 
7803   size(4);
7804   format %{ "FADDS  $src1,$src2,$dst" %}
7805   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7806   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7807   ins_pipe(faddF_reg_reg);
7808 %}
7809 
7810 //  Add float double precision
7811 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7812   match(Set dst (AddD src1 src2));
7813 
7814   size(4);
7815   format %{ "FADDD  $src1,$src2,$dst" %}
7816   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7817   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7818   ins_pipe(faddD_reg_reg);
7819 %}
7820 
7821 //  Sub float single precision
7822 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7823   match(Set dst (SubF src1 src2));
7824 
7825   size(4);
7826   format %{ "FSUBS  $src1,$src2,$dst" %}
7827   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7828   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7829   ins_pipe(faddF_reg_reg);
7830 %}
7831 
7832 //  Sub float double precision
7833 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7834   match(Set dst (SubD src1 src2));
7835 
7836   size(4);
7837   format %{ "FSUBD  $src1,$src2,$dst" %}
7838   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7839   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7840   ins_pipe(faddD_reg_reg);
7841 %}
7842 
7843 //  Mul float single precision
7844 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7845   match(Set dst (MulF src1 src2));
7846 
7847   size(4);
7848   format %{ "FMULS  $src1,$src2,$dst" %}
7849   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7850   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7851   ins_pipe(fmulF_reg_reg);
7852 %}
7853 
7854 //  Mul float double precision
7855 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7856   match(Set dst (MulD src1 src2));
7857 
7858   size(4);
7859   format %{ "FMULD  $src1,$src2,$dst" %}
7860   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7861   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7862   ins_pipe(fmulD_reg_reg);
7863 %}
7864 
7865 //  Div float single precision
7866 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7867   match(Set dst (DivF src1 src2));
7868 
7869   size(4);
7870   format %{ "FDIVS  $src1,$src2,$dst" %}
7871   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7872   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7873   ins_pipe(fdivF_reg_reg);
7874 %}
7875 
7876 //  Div float double precision
7877 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7878   match(Set dst (DivD src1 src2));
7879 
7880   size(4);
7881   format %{ "FDIVD  $src1,$src2,$dst" %}
7882   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7883   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7884   ins_pipe(fdivD_reg_reg);
7885 %}
7886 
7887 //  Absolute float double precision
7888 instruct absD_reg(regD dst, regD src) %{
7889   match(Set dst (AbsD src));
7890 
7891   format %{ "FABSd  $src,$dst" %}
7892   ins_encode(fabsd(dst, src));
7893   ins_pipe(faddD_reg);
7894 %}
7895 
7896 //  Absolute float single precision
7897 instruct absF_reg(regF dst, regF src) %{
7898   match(Set dst (AbsF src));
7899 
7900   format %{ "FABSs  $src,$dst" %}
7901   ins_encode(fabss(dst, src));
7902   ins_pipe(faddF_reg);
7903 %}
7904 
7905 instruct negF_reg(regF dst, regF src) %{
7906   match(Set dst (NegF src));
7907 
7908   size(4);
7909   format %{ "FNEGs  $src,$dst" %}
7910   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7911   ins_encode(form3_opf_rs2F_rdF(src, dst));
7912   ins_pipe(faddF_reg);
7913 %}
7914 
7915 instruct negD_reg(regD dst, regD src) %{
7916   match(Set dst (NegD src));
7917 
7918   format %{ "FNEGd  $src,$dst" %}
7919   ins_encode(fnegd(dst, src));
7920   ins_pipe(faddD_reg);
7921 %}
7922 
7923 //  Sqrt float double precision
7924 instruct sqrtF_reg_reg(regF dst, regF src) %{
7925   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7926 
7927   size(4);
7928   format %{ "FSQRTS $src,$dst" %}
7929   ins_encode(fsqrts(dst, src));
7930   ins_pipe(fdivF_reg_reg);
7931 %}
7932 
7933 //  Sqrt float double precision
7934 instruct sqrtD_reg_reg(regD dst, regD src) %{
7935   match(Set dst (SqrtD src));
7936 
7937   size(4);
7938   format %{ "FSQRTD $src,$dst" %}
7939   ins_encode(fsqrtd(dst, src));
7940   ins_pipe(fdivD_reg_reg);
7941 %}
7942 
7943 //----------Logical Instructions-----------------------------------------------
7944 // And Instructions
7945 // Register And
7946 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7947   match(Set dst (AndI src1 src2));
7948 
7949   size(4);
7950   format %{ "AND    $src1,$src2,$dst" %}
7951   opcode(Assembler::and_op3, Assembler::arith_op);
7952   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7953   ins_pipe(ialu_reg_reg);
7954 %}
7955 
7956 // Immediate And
7957 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7958   match(Set dst (AndI src1 src2));
7959 
7960   size(4);
7961   format %{ "AND    $src1,$src2,$dst" %}
7962   opcode(Assembler::and_op3, Assembler::arith_op);
7963   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7964   ins_pipe(ialu_reg_imm);
7965 %}
7966 
7967 // Register And Long
7968 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7969   match(Set dst (AndL src1 src2));
7970 
7971   ins_cost(DEFAULT_COST);
7972   size(4);
7973   format %{ "AND    $src1,$src2,$dst\t! long" %}
7974   opcode(Assembler::and_op3, Assembler::arith_op);
7975   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7976   ins_pipe(ialu_reg_reg);
7977 %}
7978 
7979 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7980   match(Set dst (AndL src1 con));
7981 
7982   ins_cost(DEFAULT_COST);
7983   size(4);
7984   format %{ "AND    $src1,$con,$dst\t! long" %}
7985   opcode(Assembler::and_op3, Assembler::arith_op);
7986   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7987   ins_pipe(ialu_reg_imm);
7988 %}
7989 
7990 // Or Instructions
7991 // Register Or
7992 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7993   match(Set dst (OrI src1 src2));
7994 
7995   size(4);
7996   format %{ "OR     $src1,$src2,$dst" %}
7997   opcode(Assembler::or_op3, Assembler::arith_op);
7998   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7999   ins_pipe(ialu_reg_reg);
8000 %}
8001 
8002 // Immediate Or
8003 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8004   match(Set dst (OrI src1 src2));
8005 
8006   size(4);
8007   format %{ "OR     $src1,$src2,$dst" %}
8008   opcode(Assembler::or_op3, Assembler::arith_op);
8009   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8010   ins_pipe(ialu_reg_imm);
8011 %}
8012 
8013 // Register Or Long
8014 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8015   match(Set dst (OrL src1 src2));
8016 
8017   ins_cost(DEFAULT_COST);
8018   size(4);
8019   format %{ "OR     $src1,$src2,$dst\t! long" %}
8020   opcode(Assembler::or_op3, Assembler::arith_op);
8021   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8022   ins_pipe(ialu_reg_reg);
8023 %}
8024 
8025 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8026   match(Set dst (OrL src1 con));
8027   ins_cost(DEFAULT_COST*2);
8028 
8029   ins_cost(DEFAULT_COST);
8030   size(4);
8031   format %{ "OR     $src1,$con,$dst\t! long" %}
8032   opcode(Assembler::or_op3, Assembler::arith_op);
8033   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8034   ins_pipe(ialu_reg_imm);
8035 %}
8036 
8037 #ifndef _LP64
8038 
8039 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8040 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8041   match(Set dst (OrI src1 (CastP2X src2)));
8042 
8043   size(4);
8044   format %{ "OR     $src1,$src2,$dst" %}
8045   opcode(Assembler::or_op3, Assembler::arith_op);
8046   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8047   ins_pipe(ialu_reg_reg);
8048 %}
8049 
8050 #else
8051 
8052 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8053   match(Set dst (OrL src1 (CastP2X src2)));
8054 
8055   ins_cost(DEFAULT_COST);
8056   size(4);
8057   format %{ "OR     $src1,$src2,$dst\t! long" %}
8058   opcode(Assembler::or_op3, Assembler::arith_op);
8059   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8060   ins_pipe(ialu_reg_reg);
8061 %}
8062 
8063 #endif
8064 
8065 // Xor Instructions
8066 // Register Xor
8067 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8068   match(Set dst (XorI src1 src2));
8069 
8070   size(4);
8071   format %{ "XOR    $src1,$src2,$dst" %}
8072   opcode(Assembler::xor_op3, Assembler::arith_op);
8073   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8074   ins_pipe(ialu_reg_reg);
8075 %}
8076 
8077 // Immediate Xor
8078 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8079   match(Set dst (XorI src1 src2));
8080 
8081   size(4);
8082   format %{ "XOR    $src1,$src2,$dst" %}
8083   opcode(Assembler::xor_op3, Assembler::arith_op);
8084   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8085   ins_pipe(ialu_reg_imm);
8086 %}
8087 
8088 // Register Xor Long
8089 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8090   match(Set dst (XorL src1 src2));
8091 
8092   ins_cost(DEFAULT_COST);
8093   size(4);
8094   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8095   opcode(Assembler::xor_op3, Assembler::arith_op);
8096   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8097   ins_pipe(ialu_reg_reg);
8098 %}
8099 
8100 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8101   match(Set dst (XorL src1 con));
8102 
8103   ins_cost(DEFAULT_COST);
8104   size(4);
8105   format %{ "XOR    $src1,$con,$dst\t! long" %}
8106   opcode(Assembler::xor_op3, Assembler::arith_op);
8107   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8108   ins_pipe(ialu_reg_imm);
8109 %}
8110 
8111 //----------Convert to Boolean-------------------------------------------------
8112 // Nice hack for 32-bit tests but doesn't work for
8113 // 64-bit pointers.
8114 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8115   match(Set dst (Conv2B src));
8116   effect( KILL ccr );
8117   ins_cost(DEFAULT_COST*2);
8118   format %{ "CMP    R_G0,$src\n\t"
8119             "ADDX   R_G0,0,$dst" %}
8120   ins_encode( enc_to_bool( src, dst ) );
8121   ins_pipe(ialu_reg_ialu);
8122 %}
8123 
8124 #ifndef _LP64
8125 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8126   match(Set dst (Conv2B src));
8127   effect( KILL ccr );
8128   ins_cost(DEFAULT_COST*2);
8129   format %{ "CMP    R_G0,$src\n\t"
8130             "ADDX   R_G0,0,$dst" %}
8131   ins_encode( enc_to_bool( src, dst ) );
8132   ins_pipe(ialu_reg_ialu);
8133 %}
8134 #else
8135 instruct convP2B( iRegI dst, iRegP src ) %{
8136   match(Set dst (Conv2B src));
8137   ins_cost(DEFAULT_COST*2);
8138   format %{ "MOV    $src,$dst\n\t"
8139             "MOVRNZ $src,1,$dst" %}
8140   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8141   ins_pipe(ialu_clr_and_mover);
8142 %}
8143 #endif
8144 
8145 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8146   match(Set dst (CmpLTMask src zero));
8147   effect(KILL ccr);
8148   size(4);
8149   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8150   ins_encode %{
8151     __ sra($src$$Register, 31, $dst$$Register);
8152   %}
8153   ins_pipe(ialu_reg_imm);
8154 %}
8155 
8156 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8157   match(Set dst (CmpLTMask p q));
8158   effect( KILL ccr );
8159   ins_cost(DEFAULT_COST*4);
8160   format %{ "CMP    $p,$q\n\t"
8161             "MOV    #0,$dst\n\t"
8162             "BLT,a  .+8\n\t"
8163             "MOV    #-1,$dst" %}
8164   ins_encode( enc_ltmask(p,q,dst) );
8165   ins_pipe(ialu_reg_reg_ialu);
8166 %}
8167 
8168 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8169   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8170   effect(KILL ccr, TEMP tmp);
8171   ins_cost(DEFAULT_COST*3);
8172 
8173   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8174             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8175             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8176   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8177   ins_pipe(cadd_cmpltmask);
8178 %}
8179 
8180 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8181   match(Set p (AndI (CmpLTMask p q) y));
8182   effect(KILL ccr);
8183   ins_cost(DEFAULT_COST*3);
8184 
8185   format %{ "CMP  $p,$q\n\t"
8186             "MOV  $y,$p\n\t"
8187             "MOVge G0,$p" %}
8188   ins_encode %{
8189     __ cmp($p$$Register, $q$$Register);
8190     __ mov($y$$Register, $p$$Register);
8191     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8192   %}
8193   ins_pipe(ialu_reg_reg_ialu);
8194 %}
8195 
8196 //-----------------------------------------------------------------
8197 // Direct raw moves between float and general registers using VIS3.
8198 
8199 //  ins_pipe(faddF_reg);
8200 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8201   predicate(UseVIS >= 3);
8202   match(Set dst (MoveF2I src));
8203 
8204   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8205   ins_encode %{
8206     __ movstouw($src$$FloatRegister, $dst$$Register);
8207   %}
8208   ins_pipe(ialu_reg_reg);
8209 %}
8210 
8211 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8212   predicate(UseVIS >= 3);
8213   match(Set dst (MoveI2F src));
8214 
8215   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8216   ins_encode %{
8217     __ movwtos($src$$Register, $dst$$FloatRegister);
8218   %}
8219   ins_pipe(ialu_reg_reg);
8220 %}
8221 
8222 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8223   predicate(UseVIS >= 3);
8224   match(Set dst (MoveD2L src));
8225 
8226   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8227   ins_encode %{
8228     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8229   %}
8230   ins_pipe(ialu_reg_reg);
8231 %}
8232 
8233 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8234   predicate(UseVIS >= 3);
8235   match(Set dst (MoveL2D src));
8236 
8237   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8238   ins_encode %{
8239     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8240   %}
8241   ins_pipe(ialu_reg_reg);
8242 %}
8243 
8244 
8245 // Raw moves between float and general registers using stack.
8246 
8247 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8248   match(Set dst (MoveF2I src));
8249   effect(DEF dst, USE src);
8250   ins_cost(MEMORY_REF_COST);
8251 
8252   size(4);
8253   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8254   opcode(Assembler::lduw_op3);
8255   ins_encode(simple_form3_mem_reg( src, dst ) );
8256   ins_pipe(iload_mem);
8257 %}
8258 
8259 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8260   match(Set dst (MoveI2F src));
8261   effect(DEF dst, USE src);
8262   ins_cost(MEMORY_REF_COST);
8263 
8264   size(4);
8265   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8266   opcode(Assembler::ldf_op3);
8267   ins_encode(simple_form3_mem_reg(src, dst));
8268   ins_pipe(floadF_stk);
8269 %}
8270 
8271 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8272   match(Set dst (MoveD2L src));
8273   effect(DEF dst, USE src);
8274   ins_cost(MEMORY_REF_COST);
8275 
8276   size(4);
8277   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8278   opcode(Assembler::ldx_op3);
8279   ins_encode(simple_form3_mem_reg( src, dst ) );
8280   ins_pipe(iload_mem);
8281 %}
8282 
8283 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8284   match(Set dst (MoveL2D src));
8285   effect(DEF dst, USE src);
8286   ins_cost(MEMORY_REF_COST);
8287 
8288   size(4);
8289   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8290   opcode(Assembler::lddf_op3);
8291   ins_encode(simple_form3_mem_reg(src, dst));
8292   ins_pipe(floadD_stk);
8293 %}
8294 
8295 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8296   match(Set dst (MoveF2I src));
8297   effect(DEF dst, USE src);
8298   ins_cost(MEMORY_REF_COST);
8299 
8300   size(4);
8301   format %{ "STF   $src,$dst\t! MoveF2I" %}
8302   opcode(Assembler::stf_op3);
8303   ins_encode(simple_form3_mem_reg(dst, src));
8304   ins_pipe(fstoreF_stk_reg);
8305 %}
8306 
8307 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8308   match(Set dst (MoveI2F src));
8309   effect(DEF dst, USE src);
8310   ins_cost(MEMORY_REF_COST);
8311 
8312   size(4);
8313   format %{ "STW    $src,$dst\t! MoveI2F" %}
8314   opcode(Assembler::stw_op3);
8315   ins_encode(simple_form3_mem_reg( dst, src ) );
8316   ins_pipe(istore_mem_reg);
8317 %}
8318 
8319 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8320   match(Set dst (MoveD2L src));
8321   effect(DEF dst, USE src);
8322   ins_cost(MEMORY_REF_COST);
8323 
8324   size(4);
8325   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8326   opcode(Assembler::stdf_op3);
8327   ins_encode(simple_form3_mem_reg(dst, src));
8328   ins_pipe(fstoreD_stk_reg);
8329 %}
8330 
8331 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8332   match(Set dst (MoveL2D src));
8333   effect(DEF dst, USE src);
8334   ins_cost(MEMORY_REF_COST);
8335 
8336   size(4);
8337   format %{ "STX    $src,$dst\t! MoveL2D" %}
8338   opcode(Assembler::stx_op3);
8339   ins_encode(simple_form3_mem_reg( dst, src ) );
8340   ins_pipe(istore_mem_reg);
8341 %}
8342 
8343 
8344 //----------Arithmetic Conversion Instructions---------------------------------
8345 // The conversions operations are all Alpha sorted.  Please keep it that way!
8346 
8347 instruct convD2F_reg(regF dst, regD src) %{
8348   match(Set dst (ConvD2F src));
8349   size(4);
8350   format %{ "FDTOS  $src,$dst" %}
8351   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8352   ins_encode(form3_opf_rs2D_rdF(src, dst));
8353   ins_pipe(fcvtD2F);
8354 %}
8355 
8356 
8357 // Convert a double to an int in a float register.
8358 // If the double is a NAN, stuff a zero in instead.
8359 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8360   effect(DEF dst, USE src, KILL fcc0);
8361   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8362             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8363             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8364             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8365             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8366       "skip:" %}
8367   ins_encode(form_d2i_helper(src,dst));
8368   ins_pipe(fcvtD2I);
8369 %}
8370 
8371 instruct convD2I_stk(stackSlotI dst, regD src) %{
8372   match(Set dst (ConvD2I src));
8373   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8374   expand %{
8375     regF tmp;
8376     convD2I_helper(tmp, src);
8377     regF_to_stkI(dst, tmp);
8378   %}
8379 %}
8380 
8381 instruct convD2I_reg(iRegI dst, regD src) %{
8382   predicate(UseVIS >= 3);
8383   match(Set dst (ConvD2I src));
8384   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8385   expand %{
8386     regF tmp;
8387     convD2I_helper(tmp, src);
8388     MoveF2I_reg_reg(dst, tmp);
8389   %}
8390 %}
8391 
8392 
8393 // Convert a double to a long in a double register.
8394 // If the double is a NAN, stuff a zero in instead.
8395 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8396   effect(DEF dst, USE src, KILL fcc0);
8397   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8398             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8399             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8400             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8401             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8402       "skip:" %}
8403   ins_encode(form_d2l_helper(src,dst));
8404   ins_pipe(fcvtD2L);
8405 %}
8406 
8407 instruct convD2L_stk(stackSlotL dst, regD src) %{
8408   match(Set dst (ConvD2L src));
8409   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8410   expand %{
8411     regD tmp;
8412     convD2L_helper(tmp, src);
8413     regD_to_stkL(dst, tmp);
8414   %}
8415 %}
8416 
8417 instruct convD2L_reg(iRegL dst, regD src) %{
8418   predicate(UseVIS >= 3);
8419   match(Set dst (ConvD2L src));
8420   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8421   expand %{
8422     regD tmp;
8423     convD2L_helper(tmp, src);
8424     MoveD2L_reg_reg(dst, tmp);
8425   %}
8426 %}
8427 
8428 
8429 instruct convF2D_reg(regD dst, regF src) %{
8430   match(Set dst (ConvF2D src));
8431   format %{ "FSTOD  $src,$dst" %}
8432   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8433   ins_encode(form3_opf_rs2F_rdD(src, dst));
8434   ins_pipe(fcvtF2D);
8435 %}
8436 
8437 
8438 // Convert a float to an int in a float register.
8439 // If the float is a NAN, stuff a zero in instead.
8440 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8441   effect(DEF dst, USE src, KILL fcc0);
8442   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8443             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8444             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8445             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8446             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8447       "skip:" %}
8448   ins_encode(form_f2i_helper(src,dst));
8449   ins_pipe(fcvtF2I);
8450 %}
8451 
8452 instruct convF2I_stk(stackSlotI dst, regF src) %{
8453   match(Set dst (ConvF2I src));
8454   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8455   expand %{
8456     regF tmp;
8457     convF2I_helper(tmp, src);
8458     regF_to_stkI(dst, tmp);
8459   %}
8460 %}
8461 
8462 instruct convF2I_reg(iRegI dst, regF src) %{
8463   predicate(UseVIS >= 3);
8464   match(Set dst (ConvF2I src));
8465   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8466   expand %{
8467     regF tmp;
8468     convF2I_helper(tmp, src);
8469     MoveF2I_reg_reg(dst, tmp);
8470   %}
8471 %}
8472 
8473 
8474 // Convert a float to a long in a float register.
8475 // If the float is a NAN, stuff a zero in instead.
8476 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8477   effect(DEF dst, USE src, KILL fcc0);
8478   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8479             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8480             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8481             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8482             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8483       "skip:" %}
8484   ins_encode(form_f2l_helper(src,dst));
8485   ins_pipe(fcvtF2L);
8486 %}
8487 
8488 instruct convF2L_stk(stackSlotL dst, regF src) %{
8489   match(Set dst (ConvF2L src));
8490   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8491   expand %{
8492     regD tmp;
8493     convF2L_helper(tmp, src);
8494     regD_to_stkL(dst, tmp);
8495   %}
8496 %}
8497 
8498 instruct convF2L_reg(iRegL dst, regF src) %{
8499   predicate(UseVIS >= 3);
8500   match(Set dst (ConvF2L src));
8501   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8502   expand %{
8503     regD tmp;
8504     convF2L_helper(tmp, src);
8505     MoveD2L_reg_reg(dst, tmp);
8506   %}
8507 %}
8508 
8509 
8510 instruct convI2D_helper(regD dst, regF tmp) %{
8511   effect(USE tmp, DEF dst);
8512   format %{ "FITOD  $tmp,$dst" %}
8513   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8514   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8515   ins_pipe(fcvtI2D);
8516 %}
8517 
8518 instruct convI2D_stk(stackSlotI src, regD dst) %{
8519   match(Set dst (ConvI2D src));
8520   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8521   expand %{
8522     regF tmp;
8523     stkI_to_regF(tmp, src);
8524     convI2D_helper(dst, tmp);
8525   %}
8526 %}
8527 
8528 instruct convI2D_reg(regD_low dst, iRegI src) %{
8529   predicate(UseVIS >= 3);
8530   match(Set dst (ConvI2D src));
8531   expand %{
8532     regF tmp;
8533     MoveI2F_reg_reg(tmp, src);
8534     convI2D_helper(dst, tmp);
8535   %}
8536 %}
8537 
8538 instruct convI2D_mem(regD_low dst, memory mem) %{
8539   match(Set dst (ConvI2D (LoadI mem)));
8540   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8541   size(8);
8542   format %{ "LDF    $mem,$dst\n\t"
8543             "FITOD  $dst,$dst" %}
8544   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8545   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8546   ins_pipe(floadF_mem);
8547 %}
8548 
8549 
8550 instruct convI2F_helper(regF dst, regF tmp) %{
8551   effect(DEF dst, USE tmp);
8552   format %{ "FITOS  $tmp,$dst" %}
8553   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8554   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8555   ins_pipe(fcvtI2F);
8556 %}
8557 
8558 instruct convI2F_stk(regF dst, stackSlotI src) %{
8559   match(Set dst (ConvI2F src));
8560   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8561   expand %{
8562     regF tmp;
8563     stkI_to_regF(tmp,src);
8564     convI2F_helper(dst, tmp);
8565   %}
8566 %}
8567 
8568 instruct convI2F_reg(regF dst, iRegI src) %{
8569   predicate(UseVIS >= 3);
8570   match(Set dst (ConvI2F src));
8571   ins_cost(DEFAULT_COST);
8572   expand %{
8573     regF tmp;
8574     MoveI2F_reg_reg(tmp, src);
8575     convI2F_helper(dst, tmp);
8576   %}
8577 %}
8578 
8579 instruct convI2F_mem( regF dst, memory mem ) %{
8580   match(Set dst (ConvI2F (LoadI mem)));
8581   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8582   size(8);
8583   format %{ "LDF    $mem,$dst\n\t"
8584             "FITOS  $dst,$dst" %}
8585   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8586   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8587   ins_pipe(floadF_mem);
8588 %}
8589 
8590 
8591 instruct convI2L_reg(iRegL dst, iRegI src) %{
8592   match(Set dst (ConvI2L src));
8593   size(4);
8594   format %{ "SRA    $src,0,$dst\t! int->long" %}
8595   opcode(Assembler::sra_op3, Assembler::arith_op);
8596   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8597   ins_pipe(ialu_reg_reg);
8598 %}
8599 
8600 // Zero-extend convert int to long
8601 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8602   match(Set dst (AndL (ConvI2L src) mask) );
8603   size(4);
8604   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8605   opcode(Assembler::srl_op3, Assembler::arith_op);
8606   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8607   ins_pipe(ialu_reg_reg);
8608 %}
8609 
8610 // Zero-extend long
8611 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8612   match(Set dst (AndL src mask) );
8613   size(4);
8614   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8615   opcode(Assembler::srl_op3, Assembler::arith_op);
8616   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8617   ins_pipe(ialu_reg_reg);
8618 %}
8619 
8620 
8621 //-----------
8622 // Long to Double conversion using V8 opcodes.
8623 // Still useful because cheetah traps and becomes
8624 // amazingly slow for some common numbers.
8625 
8626 // Magic constant, 0x43300000
8627 instruct loadConI_x43300000(iRegI dst) %{
8628   effect(DEF dst);
8629   size(4);
8630   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8631   ins_encode(SetHi22(0x43300000, dst));
8632   ins_pipe(ialu_none);
8633 %}
8634 
8635 // Magic constant, 0x41f00000
8636 instruct loadConI_x41f00000(iRegI dst) %{
8637   effect(DEF dst);
8638   size(4);
8639   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8640   ins_encode(SetHi22(0x41f00000, dst));
8641   ins_pipe(ialu_none);
8642 %}
8643 
8644 // Construct a double from two float halves
8645 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8646   effect(DEF dst, USE src1, USE src2);
8647   size(8);
8648   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8649             "FMOVS  $src2.lo,$dst.lo" %}
8650   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8651   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8652   ins_pipe(faddD_reg_reg);
8653 %}
8654 
8655 // Convert integer in high half of a double register (in the lower half of
8656 // the double register file) to double
8657 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8658   effect(DEF dst, USE src);
8659   size(4);
8660   format %{ "FITOD  $src,$dst" %}
8661   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8662   ins_encode(form3_opf_rs2D_rdD(src, dst));
8663   ins_pipe(fcvtLHi2D);
8664 %}
8665 
8666 // Add float double precision
8667 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8668   effect(DEF dst, USE src1, USE src2);
8669   size(4);
8670   format %{ "FADDD  $src1,$src2,$dst" %}
8671   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8672   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8673   ins_pipe(faddD_reg_reg);
8674 %}
8675 
8676 // Sub float double precision
8677 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8678   effect(DEF dst, USE src1, USE src2);
8679   size(4);
8680   format %{ "FSUBD  $src1,$src2,$dst" %}
8681   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8682   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8683   ins_pipe(faddD_reg_reg);
8684 %}
8685 
8686 // Mul float double precision
8687 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8688   effect(DEF dst, USE src1, USE src2);
8689   size(4);
8690   format %{ "FMULD  $src1,$src2,$dst" %}
8691   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8692   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8693   ins_pipe(fmulD_reg_reg);
8694 %}
8695 
8696 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8697   match(Set dst (ConvL2D src));
8698   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8699 
8700   expand %{
8701     regD_low   tmpsrc;
8702     iRegI      ix43300000;
8703     iRegI      ix41f00000;
8704     stackSlotL lx43300000;
8705     stackSlotL lx41f00000;
8706     regD_low   dx43300000;
8707     regD       dx41f00000;
8708     regD       tmp1;
8709     regD_low   tmp2;
8710     regD       tmp3;
8711     regD       tmp4;
8712 
8713     stkL_to_regD(tmpsrc, src);
8714 
8715     loadConI_x43300000(ix43300000);
8716     loadConI_x41f00000(ix41f00000);
8717     regI_to_stkLHi(lx43300000, ix43300000);
8718     regI_to_stkLHi(lx41f00000, ix41f00000);
8719     stkL_to_regD(dx43300000, lx43300000);
8720     stkL_to_regD(dx41f00000, lx41f00000);
8721 
8722     convI2D_regDHi_regD(tmp1, tmpsrc);
8723     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8724     subD_regD_regD(tmp3, tmp2, dx43300000);
8725     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8726     addD_regD_regD(dst, tmp3, tmp4);
8727   %}
8728 %}
8729 
8730 // Long to Double conversion using fast fxtof
8731 instruct convL2D_helper(regD dst, regD tmp) %{
8732   effect(DEF dst, USE tmp);
8733   size(4);
8734   format %{ "FXTOD  $tmp,$dst" %}
8735   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8736   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8737   ins_pipe(fcvtL2D);
8738 %}
8739 
8740 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8741   predicate(VM_Version::has_fast_fxtof());
8742   match(Set dst (ConvL2D src));
8743   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8744   expand %{
8745     regD tmp;
8746     stkL_to_regD(tmp, src);
8747     convL2D_helper(dst, tmp);
8748   %}
8749 %}
8750 
8751 instruct convL2D_reg(regD dst, iRegL src) %{
8752   predicate(UseVIS >= 3);
8753   match(Set dst (ConvL2D src));
8754   expand %{
8755     regD tmp;
8756     MoveL2D_reg_reg(tmp, src);
8757     convL2D_helper(dst, tmp);
8758   %}
8759 %}
8760 
8761 // Long to Float conversion using fast fxtof
8762 instruct convL2F_helper(regF dst, regD tmp) %{
8763   effect(DEF dst, USE tmp);
8764   size(4);
8765   format %{ "FXTOS  $tmp,$dst" %}
8766   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8767   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8768   ins_pipe(fcvtL2F);
8769 %}
8770 
8771 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8772   match(Set dst (ConvL2F src));
8773   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8774   expand %{
8775     regD tmp;
8776     stkL_to_regD(tmp, src);
8777     convL2F_helper(dst, tmp);
8778   %}
8779 %}
8780 
8781 instruct convL2F_reg(regF dst, iRegL src) %{
8782   predicate(UseVIS >= 3);
8783   match(Set dst (ConvL2F src));
8784   ins_cost(DEFAULT_COST);
8785   expand %{
8786     regD tmp;
8787     MoveL2D_reg_reg(tmp, src);
8788     convL2F_helper(dst, tmp);
8789   %}
8790 %}
8791 
8792 //-----------
8793 
8794 instruct convL2I_reg(iRegI dst, iRegL src) %{
8795   match(Set dst (ConvL2I src));
8796 #ifndef _LP64
8797   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8798   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8799   ins_pipe(ialu_move_reg_I_to_L);
8800 #else
8801   size(4);
8802   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8803   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8804   ins_pipe(ialu_reg);
8805 #endif
8806 %}
8807 
8808 // Register Shift Right Immediate
8809 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8810   match(Set dst (ConvL2I (RShiftL src cnt)));
8811 
8812   size(4);
8813   format %{ "SRAX   $src,$cnt,$dst" %}
8814   opcode(Assembler::srax_op3, Assembler::arith_op);
8815   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8816   ins_pipe(ialu_reg_imm);
8817 %}
8818 
8819 //----------Control Flow Instructions------------------------------------------
8820 // Compare Instructions
8821 // Compare Integers
8822 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8823   match(Set icc (CmpI op1 op2));
8824   effect( DEF icc, USE op1, USE op2 );
8825 
8826   size(4);
8827   format %{ "CMP    $op1,$op2" %}
8828   opcode(Assembler::subcc_op3, Assembler::arith_op);
8829   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8830   ins_pipe(ialu_cconly_reg_reg);
8831 %}
8832 
8833 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8834   match(Set icc (CmpU op1 op2));
8835 
8836   size(4);
8837   format %{ "CMP    $op1,$op2\t! unsigned" %}
8838   opcode(Assembler::subcc_op3, Assembler::arith_op);
8839   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8840   ins_pipe(ialu_cconly_reg_reg);
8841 %}
8842 
8843 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8844   match(Set icc (CmpI op1 op2));
8845   effect( DEF icc, USE op1 );
8846 
8847   size(4);
8848   format %{ "CMP    $op1,$op2" %}
8849   opcode(Assembler::subcc_op3, Assembler::arith_op);
8850   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8851   ins_pipe(ialu_cconly_reg_imm);
8852 %}
8853 
8854 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8855   match(Set icc (CmpI (AndI op1 op2) zero));
8856 
8857   size(4);
8858   format %{ "BTST   $op2,$op1" %}
8859   opcode(Assembler::andcc_op3, Assembler::arith_op);
8860   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8861   ins_pipe(ialu_cconly_reg_reg_zero);
8862 %}
8863 
8864 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8865   match(Set icc (CmpI (AndI op1 op2) zero));
8866 
8867   size(4);
8868   format %{ "BTST   $op2,$op1" %}
8869   opcode(Assembler::andcc_op3, Assembler::arith_op);
8870   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8871   ins_pipe(ialu_cconly_reg_imm_zero);
8872 %}
8873 
8874 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8875   match(Set xcc (CmpL op1 op2));
8876   effect( DEF xcc, USE op1, USE op2 );
8877 
8878   size(4);
8879   format %{ "CMP    $op1,$op2\t\t! long" %}
8880   opcode(Assembler::subcc_op3, Assembler::arith_op);
8881   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8882   ins_pipe(ialu_cconly_reg_reg);
8883 %}
8884 
8885 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8886   match(Set xcc (CmpL op1 con));
8887   effect( DEF xcc, USE op1, USE con );
8888 
8889   size(4);
8890   format %{ "CMP    $op1,$con\t\t! long" %}
8891   opcode(Assembler::subcc_op3, Assembler::arith_op);
8892   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8893   ins_pipe(ialu_cconly_reg_reg);
8894 %}
8895 
8896 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8897   match(Set xcc (CmpL (AndL op1 op2) zero));
8898   effect( DEF xcc, USE op1, USE op2 );
8899 
8900   size(4);
8901   format %{ "BTST   $op1,$op2\t\t! long" %}
8902   opcode(Assembler::andcc_op3, Assembler::arith_op);
8903   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8904   ins_pipe(ialu_cconly_reg_reg);
8905 %}
8906 
8907 // useful for checking the alignment of a pointer:
8908 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8909   match(Set xcc (CmpL (AndL op1 con) zero));
8910   effect( DEF xcc, USE op1, USE con );
8911 
8912   size(4);
8913   format %{ "BTST   $op1,$con\t\t! long" %}
8914   opcode(Assembler::andcc_op3, Assembler::arith_op);
8915   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8916   ins_pipe(ialu_cconly_reg_reg);
8917 %}
8918 
8919 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU13 op2 ) %{
8920   match(Set icc (CmpU op1 op2));
8921 
8922   size(4);
8923   format %{ "CMP    $op1,$op2\t! unsigned" %}
8924   opcode(Assembler::subcc_op3, Assembler::arith_op);
8925   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8926   ins_pipe(ialu_cconly_reg_imm);
8927 %}
8928 
8929 // Compare Pointers
8930 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8931   match(Set pcc (CmpP op1 op2));
8932 
8933   size(4);
8934   format %{ "CMP    $op1,$op2\t! ptr" %}
8935   opcode(Assembler::subcc_op3, Assembler::arith_op);
8936   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8937   ins_pipe(ialu_cconly_reg_reg);
8938 %}
8939 
8940 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
8941   match(Set pcc (CmpP op1 op2));
8942 
8943   size(4);
8944   format %{ "CMP    $op1,$op2\t! ptr" %}
8945   opcode(Assembler::subcc_op3, Assembler::arith_op);
8946   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8947   ins_pipe(ialu_cconly_reg_imm);
8948 %}
8949 
8950 // Compare Narrow oops
8951 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
8952   match(Set icc (CmpN op1 op2));
8953 
8954   size(4);
8955   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8956   opcode(Assembler::subcc_op3, Assembler::arith_op);
8957   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8958   ins_pipe(ialu_cconly_reg_reg);
8959 %}
8960 
8961 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
8962   match(Set icc (CmpN op1 op2));
8963 
8964   size(4);
8965   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
8966   opcode(Assembler::subcc_op3, Assembler::arith_op);
8967   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8968   ins_pipe(ialu_cconly_reg_imm);
8969 %}
8970 
8971 //----------Max and Min--------------------------------------------------------
8972 // Min Instructions
8973 // Conditional move for min
8974 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
8975   effect( USE_DEF op2, USE op1, USE icc );
8976 
8977   size(4);
8978   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
8979   opcode(Assembler::less);
8980   ins_encode( enc_cmov_reg_minmax(op2,op1) );
8981   ins_pipe(ialu_reg_flags);
8982 %}
8983 
8984 // Min Register with Register.
8985 instruct minI_eReg(iRegI op1, iRegI op2) %{
8986   match(Set op2 (MinI op1 op2));
8987   ins_cost(DEFAULT_COST*2);
8988   expand %{
8989     flagsReg icc;
8990     compI_iReg(icc,op1,op2);
8991     cmovI_reg_lt(op2,op1,icc);
8992   %}
8993 %}
8994 
8995 // Max Instructions
8996 // Conditional move for max
8997 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
8998   effect( USE_DEF op2, USE op1, USE icc );
8999   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9000   opcode(Assembler::greater);
9001   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9002   ins_pipe(ialu_reg_flags);
9003 %}
9004 
9005 // Max Register with Register
9006 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9007   match(Set op2 (MaxI op1 op2));
9008   ins_cost(DEFAULT_COST*2);
9009   expand %{
9010     flagsReg icc;
9011     compI_iReg(icc,op1,op2);
9012     cmovI_reg_gt(op2,op1,icc);
9013   %}
9014 %}
9015 
9016 
9017 //----------Float Compares----------------------------------------------------
9018 // Compare floating, generate condition code
9019 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9020   match(Set fcc (CmpF src1 src2));
9021 
9022   size(4);
9023   format %{ "FCMPs  $fcc,$src1,$src2" %}
9024   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9025   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9026   ins_pipe(faddF_fcc_reg_reg_zero);
9027 %}
9028 
9029 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9030   match(Set fcc (CmpD src1 src2));
9031 
9032   size(4);
9033   format %{ "FCMPd  $fcc,$src1,$src2" %}
9034   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9035   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9036   ins_pipe(faddD_fcc_reg_reg_zero);
9037 %}
9038 
9039 
9040 // Compare floating, generate -1,0,1
9041 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9042   match(Set dst (CmpF3 src1 src2));
9043   effect(KILL fcc0);
9044   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9045   format %{ "fcmpl  $dst,$src1,$src2" %}
9046   // Primary = float
9047   opcode( true );
9048   ins_encode( floating_cmp( dst, src1, src2 ) );
9049   ins_pipe( floating_cmp );
9050 %}
9051 
9052 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9053   match(Set dst (CmpD3 src1 src2));
9054   effect(KILL fcc0);
9055   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9056   format %{ "dcmpl  $dst,$src1,$src2" %}
9057   // Primary = double (not float)
9058   opcode( false );
9059   ins_encode( floating_cmp( dst, src1, src2 ) );
9060   ins_pipe( floating_cmp );
9061 %}
9062 
9063 //----------Branches---------------------------------------------------------
9064 // Jump
9065 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9066 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9067   match(Jump switch_val);
9068   effect(TEMP table);
9069 
9070   ins_cost(350);
9071 
9072   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9073              "LD     [O7 + $switch_val], O7\n\t"
9074              "JUMP   O7" %}
9075   ins_encode %{
9076     // Calculate table address into a register.
9077     Register table_reg;
9078     Register label_reg = O7;
9079     // If we are calculating the size of this instruction don't trust
9080     // zero offsets because they might change when
9081     // MachConstantBaseNode decides to optimize the constant table
9082     // base.
9083     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9084       table_reg = $constanttablebase;
9085     } else {
9086       table_reg = O7;
9087       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9088       __ add($constanttablebase, con_offset, table_reg);
9089     }
9090 
9091     // Jump to base address + switch value
9092     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9093     __ jmp(label_reg, G0);
9094     __ delayed()->nop();
9095   %}
9096   ins_pipe(ialu_reg_reg);
9097 %}
9098 
9099 // Direct Branch.  Use V8 version with longer range.
9100 instruct branch(label labl) %{
9101   match(Goto);
9102   effect(USE labl);
9103 
9104   size(8);
9105   ins_cost(BRANCH_COST);
9106   format %{ "BA     $labl" %}
9107   ins_encode %{
9108     Label* L = $labl$$label;
9109     __ ba(*L);
9110     __ delayed()->nop();
9111   %}
9112   ins_pipe(br);
9113 %}
9114 
9115 // Direct Branch, short with no delay slot
9116 instruct branch_short(label labl) %{
9117   match(Goto);
9118   predicate(UseCBCond);
9119   effect(USE labl);
9120 
9121   size(4);
9122   ins_cost(BRANCH_COST);
9123   format %{ "BA     $labl\t! short branch" %}
9124   ins_encode %{ 
9125     Label* L = $labl$$label;
9126     assert(__ use_cbcond(*L), "back to back cbcond");
9127     __ ba_short(*L);
9128   %}
9129   ins_short_branch(1);
9130   ins_avoid_back_to_back(1);
9131   ins_pipe(cbcond_reg_imm);
9132 %}
9133 
9134 // Conditional Direct Branch
9135 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9136   match(If cmp icc);
9137   effect(USE labl);
9138 
9139   size(8);
9140   ins_cost(BRANCH_COST);
9141   format %{ "BP$cmp   $icc,$labl" %}
9142   // Prim = bits 24-22, Secnd = bits 31-30
9143   ins_encode( enc_bp( labl, cmp, icc ) );
9144   ins_pipe(br_cc);
9145 %}
9146 
9147 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9148   match(If cmp icc);
9149   effect(USE labl);
9150 
9151   ins_cost(BRANCH_COST);
9152   format %{ "BP$cmp  $icc,$labl" %}
9153   // Prim = bits 24-22, Secnd = bits 31-30
9154   ins_encode( enc_bp( labl, cmp, icc ) );
9155   ins_pipe(br_cc);
9156 %}
9157 
9158 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9159   match(If cmp pcc);
9160   effect(USE labl);
9161 
9162   size(8);
9163   ins_cost(BRANCH_COST);
9164   format %{ "BP$cmp  $pcc,$labl" %}
9165   ins_encode %{
9166     Label* L = $labl$$label;
9167     Assembler::Predict predict_taken =
9168       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9169 
9170     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9171     __ delayed()->nop();
9172   %}
9173   ins_pipe(br_cc);
9174 %}
9175 
9176 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9177   match(If cmp fcc);
9178   effect(USE labl);
9179 
9180   size(8);
9181   ins_cost(BRANCH_COST);
9182   format %{ "FBP$cmp $fcc,$labl" %}
9183   ins_encode %{
9184     Label* L = $labl$$label;
9185     Assembler::Predict predict_taken =
9186       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9187 
9188     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9189     __ delayed()->nop();
9190   %}
9191   ins_pipe(br_fcc);
9192 %}
9193 
9194 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9195   match(CountedLoopEnd cmp icc);
9196   effect(USE labl);
9197 
9198   size(8);
9199   ins_cost(BRANCH_COST);
9200   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9201   // Prim = bits 24-22, Secnd = bits 31-30
9202   ins_encode( enc_bp( labl, cmp, icc ) );
9203   ins_pipe(br_cc);
9204 %}
9205 
9206 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9207   match(CountedLoopEnd cmp icc);
9208   effect(USE labl);
9209 
9210   size(8);
9211   ins_cost(BRANCH_COST);
9212   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9213   // Prim = bits 24-22, Secnd = bits 31-30
9214   ins_encode( enc_bp( labl, cmp, icc ) );
9215   ins_pipe(br_cc);
9216 %}
9217 
9218 // Compare and branch instructions
9219 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9220   match(If cmp (CmpI op1 op2));
9221   effect(USE labl, KILL icc);
9222 
9223   size(12);
9224   ins_cost(BRANCH_COST);
9225   format %{ "CMP    $op1,$op2\t! int\n\t"
9226             "BP$cmp   $labl" %}
9227   ins_encode %{
9228     Label* L = $labl$$label;
9229     Assembler::Predict predict_taken =
9230       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9231     __ cmp($op1$$Register, $op2$$Register);
9232     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9233     __ delayed()->nop();
9234   %}
9235   ins_pipe(cmp_br_reg_reg);
9236 %}
9237 
9238 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9239   match(If cmp (CmpI op1 op2));
9240   effect(USE labl, KILL icc);
9241 
9242   size(12);
9243   ins_cost(BRANCH_COST);
9244   format %{ "CMP    $op1,$op2\t! int\n\t"
9245             "BP$cmp   $labl" %}
9246   ins_encode %{
9247     Label* L = $labl$$label;
9248     Assembler::Predict predict_taken =
9249       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9250     __ cmp($op1$$Register, $op2$$constant);
9251     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9252     __ delayed()->nop();
9253   %}
9254   ins_pipe(cmp_br_reg_imm);
9255 %}
9256 
9257 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9258   match(If cmp (CmpU op1 op2));
9259   effect(USE labl, KILL icc);
9260 
9261   size(12);
9262   ins_cost(BRANCH_COST);
9263   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9264             "BP$cmp  $labl" %}
9265   ins_encode %{
9266     Label* L = $labl$$label;
9267     Assembler::Predict predict_taken =
9268       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9269     __ cmp($op1$$Register, $op2$$Register);
9270     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9271     __ delayed()->nop();
9272   %}
9273   ins_pipe(cmp_br_reg_reg);
9274 %}
9275 
9276 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9277   match(If cmp (CmpU op1 op2));
9278   effect(USE labl, KILL icc);
9279 
9280   size(12);
9281   ins_cost(BRANCH_COST);
9282   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9283             "BP$cmp  $labl" %}
9284   ins_encode %{
9285     Label* L = $labl$$label;
9286     Assembler::Predict predict_taken =
9287       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9288     __ cmp($op1$$Register, $op2$$constant);
9289     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9290     __ delayed()->nop();
9291   %}
9292   ins_pipe(cmp_br_reg_imm);
9293 %}
9294 
9295 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9296   match(If cmp (CmpL op1 op2));
9297   effect(USE labl, KILL xcc);
9298 
9299   size(12);
9300   ins_cost(BRANCH_COST);
9301   format %{ "CMP    $op1,$op2\t! long\n\t"
9302             "BP$cmp   $labl" %}
9303   ins_encode %{
9304     Label* L = $labl$$label;
9305     Assembler::Predict predict_taken =
9306       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9307     __ cmp($op1$$Register, $op2$$Register);
9308     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9309     __ delayed()->nop();
9310   %}
9311   ins_pipe(cmp_br_reg_reg);
9312 %}
9313 
9314 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9315   match(If cmp (CmpL op1 op2));
9316   effect(USE labl, KILL xcc);
9317 
9318   size(12);
9319   ins_cost(BRANCH_COST);
9320   format %{ "CMP    $op1,$op2\t! long\n\t"
9321             "BP$cmp   $labl" %}
9322   ins_encode %{
9323     Label* L = $labl$$label;
9324     Assembler::Predict predict_taken =
9325       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9326     __ cmp($op1$$Register, $op2$$constant);
9327     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9328     __ delayed()->nop();
9329   %}
9330   ins_pipe(cmp_br_reg_imm);
9331 %}
9332 
9333 // Compare Pointers and branch
9334 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9335   match(If cmp (CmpP op1 op2));
9336   effect(USE labl, KILL pcc);
9337 
9338   size(12);
9339   ins_cost(BRANCH_COST);
9340   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9341             "B$cmp   $labl" %}
9342   ins_encode %{
9343     Label* L = $labl$$label;
9344     Assembler::Predict predict_taken =
9345       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9346     __ cmp($op1$$Register, $op2$$Register);
9347     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9348     __ delayed()->nop();
9349   %}
9350   ins_pipe(cmp_br_reg_reg);
9351 %}
9352 
9353 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9354   match(If cmp (CmpP op1 null));
9355   effect(USE labl, KILL pcc);
9356 
9357   size(12);
9358   ins_cost(BRANCH_COST);
9359   format %{ "CMP    $op1,0\t! ptr\n\t"
9360             "B$cmp   $labl" %}
9361   ins_encode %{
9362     Label* L = $labl$$label;
9363     Assembler::Predict predict_taken =
9364       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9365     __ cmp($op1$$Register, G0);
9366     // bpr() is not used here since it has shorter distance.
9367     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9368     __ delayed()->nop();
9369   %}
9370   ins_pipe(cmp_br_reg_reg);
9371 %}
9372 
9373 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9374   match(If cmp (CmpN op1 op2));
9375   effect(USE labl, KILL icc);
9376 
9377   size(12);
9378   ins_cost(BRANCH_COST);
9379   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9380             "BP$cmp   $labl" %}
9381   ins_encode %{
9382     Label* L = $labl$$label;
9383     Assembler::Predict predict_taken =
9384       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9385     __ cmp($op1$$Register, $op2$$Register);
9386     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9387     __ delayed()->nop();
9388   %}
9389   ins_pipe(cmp_br_reg_reg);
9390 %}
9391 
9392 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9393   match(If cmp (CmpN op1 null));
9394   effect(USE labl, KILL icc);
9395 
9396   size(12);
9397   ins_cost(BRANCH_COST);
9398   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9399             "BP$cmp   $labl" %}
9400   ins_encode %{
9401     Label* L = $labl$$label;
9402     Assembler::Predict predict_taken =
9403       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9404     __ cmp($op1$$Register, G0);
9405     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9406     __ delayed()->nop();
9407   %}
9408   ins_pipe(cmp_br_reg_reg);
9409 %}
9410 
9411 // Loop back branch
9412 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9413   match(CountedLoopEnd cmp (CmpI op1 op2));
9414   effect(USE labl, KILL icc);
9415 
9416   size(12);
9417   ins_cost(BRANCH_COST);
9418   format %{ "CMP    $op1,$op2\t! int\n\t"
9419             "BP$cmp   $labl\t! Loop end" %}
9420   ins_encode %{
9421     Label* L = $labl$$label;
9422     Assembler::Predict predict_taken =
9423       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9424     __ cmp($op1$$Register, $op2$$Register);
9425     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9426     __ delayed()->nop();
9427   %}
9428   ins_pipe(cmp_br_reg_reg);
9429 %}
9430 
9431 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9432   match(CountedLoopEnd cmp (CmpI op1 op2));
9433   effect(USE labl, KILL icc);
9434 
9435   size(12);
9436   ins_cost(BRANCH_COST);
9437   format %{ "CMP    $op1,$op2\t! int\n\t"
9438             "BP$cmp   $labl\t! Loop end" %}
9439   ins_encode %{
9440     Label* L = $labl$$label;
9441     Assembler::Predict predict_taken =
9442       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9443     __ cmp($op1$$Register, $op2$$constant);
9444     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9445     __ delayed()->nop();
9446   %}
9447   ins_pipe(cmp_br_reg_imm);
9448 %}
9449 
9450 // Short compare and branch instructions
9451 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9452   match(If cmp (CmpI op1 op2));
9453   predicate(UseCBCond);
9454   effect(USE labl, KILL icc);
9455 
9456   size(4);
9457   ins_cost(BRANCH_COST);
9458   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9459   ins_encode %{
9460     Label* L = $labl$$label;
9461     assert(__ use_cbcond(*L), "back to back cbcond");
9462     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9463   %}
9464   ins_short_branch(1);
9465   ins_avoid_back_to_back(1);
9466   ins_pipe(cbcond_reg_reg);
9467 %}
9468 
9469 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9470   match(If cmp (CmpI op1 op2));
9471   predicate(UseCBCond);
9472   effect(USE labl, KILL icc);
9473 
9474   size(4);
9475   ins_cost(BRANCH_COST);
9476   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9477   ins_encode %{
9478     Label* L = $labl$$label;
9479     assert(__ use_cbcond(*L), "back to back cbcond");
9480     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9481   %}
9482   ins_short_branch(1);
9483   ins_avoid_back_to_back(1);
9484   ins_pipe(cbcond_reg_imm);
9485 %}
9486 
9487 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9488   match(If cmp (CmpU op1 op2));
9489   predicate(UseCBCond);
9490   effect(USE labl, KILL icc);
9491 
9492   size(4);
9493   ins_cost(BRANCH_COST);
9494   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9495   ins_encode %{
9496     Label* L = $labl$$label;
9497     assert(__ use_cbcond(*L), "back to back cbcond");
9498     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9499   %}
9500   ins_short_branch(1);
9501   ins_avoid_back_to_back(1);
9502   ins_pipe(cbcond_reg_reg);
9503 %}
9504 
9505 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9506   match(If cmp (CmpU op1 op2));
9507   predicate(UseCBCond);
9508   effect(USE labl, KILL icc);
9509 
9510   size(4);
9511   ins_cost(BRANCH_COST);
9512   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9513   ins_encode %{
9514     Label* L = $labl$$label;
9515     assert(__ use_cbcond(*L), "back to back cbcond");
9516     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9517   %}
9518   ins_short_branch(1);
9519   ins_avoid_back_to_back(1);
9520   ins_pipe(cbcond_reg_imm);
9521 %}
9522 
9523 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9524   match(If cmp (CmpL op1 op2));
9525   predicate(UseCBCond);
9526   effect(USE labl, KILL xcc);
9527 
9528   size(4);
9529   ins_cost(BRANCH_COST);
9530   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9531   ins_encode %{
9532     Label* L = $labl$$label;
9533     assert(__ use_cbcond(*L), "back to back cbcond");
9534     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9535   %}
9536   ins_short_branch(1);
9537   ins_avoid_back_to_back(1);
9538   ins_pipe(cbcond_reg_reg);
9539 %}
9540 
9541 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9542   match(If cmp (CmpL op1 op2));
9543   predicate(UseCBCond);
9544   effect(USE labl, KILL xcc);
9545 
9546   size(4);
9547   ins_cost(BRANCH_COST);
9548   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9549   ins_encode %{
9550     Label* L = $labl$$label;
9551     assert(__ use_cbcond(*L), "back to back cbcond");
9552     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9553   %}
9554   ins_short_branch(1);
9555   ins_avoid_back_to_back(1);
9556   ins_pipe(cbcond_reg_imm);
9557 %}
9558 
9559 // Compare Pointers and branch
9560 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9561   match(If cmp (CmpP op1 op2));
9562   predicate(UseCBCond);
9563   effect(USE labl, KILL pcc);
9564 
9565   size(4);
9566   ins_cost(BRANCH_COST);
9567 #ifdef _LP64
9568   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9569 #else
9570   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9571 #endif
9572   ins_encode %{
9573     Label* L = $labl$$label;
9574     assert(__ use_cbcond(*L), "back to back cbcond");
9575     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9576   %}
9577   ins_short_branch(1);
9578   ins_avoid_back_to_back(1);
9579   ins_pipe(cbcond_reg_reg);
9580 %}
9581 
9582 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9583   match(If cmp (CmpP op1 null));
9584   predicate(UseCBCond);
9585   effect(USE labl, KILL pcc);
9586 
9587   size(4);
9588   ins_cost(BRANCH_COST);
9589 #ifdef _LP64
9590   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9591 #else
9592   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9593 #endif
9594   ins_encode %{
9595     Label* L = $labl$$label;
9596     assert(__ use_cbcond(*L), "back to back cbcond");
9597     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9598   %}
9599   ins_short_branch(1);
9600   ins_avoid_back_to_back(1);
9601   ins_pipe(cbcond_reg_reg);
9602 %}
9603 
9604 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9605   match(If cmp (CmpN op1 op2));
9606   predicate(UseCBCond);
9607   effect(USE labl, KILL icc);
9608 
9609   size(4);
9610   ins_cost(BRANCH_COST);
9611   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9612   ins_encode %{
9613     Label* L = $labl$$label;
9614     assert(__ use_cbcond(*L), "back to back cbcond");
9615     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9616   %}
9617   ins_short_branch(1);
9618   ins_avoid_back_to_back(1);
9619   ins_pipe(cbcond_reg_reg);
9620 %}
9621 
9622 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9623   match(If cmp (CmpN op1 null));
9624   predicate(UseCBCond);
9625   effect(USE labl, KILL icc);
9626 
9627   size(4);
9628   ins_cost(BRANCH_COST);
9629   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9630   ins_encode %{
9631     Label* L = $labl$$label;
9632     assert(__ use_cbcond(*L), "back to back cbcond");
9633     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9634   %}
9635   ins_short_branch(1);
9636   ins_avoid_back_to_back(1);
9637   ins_pipe(cbcond_reg_reg);
9638 %}
9639 
9640 // Loop back branch
9641 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9642   match(CountedLoopEnd cmp (CmpI op1 op2));
9643   predicate(UseCBCond);
9644   effect(USE labl, KILL icc);
9645 
9646   size(4);
9647   ins_cost(BRANCH_COST);
9648   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9649   ins_encode %{
9650     Label* L = $labl$$label;
9651     assert(__ use_cbcond(*L), "back to back cbcond");
9652     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9653   %}
9654   ins_short_branch(1);
9655   ins_avoid_back_to_back(1);
9656   ins_pipe(cbcond_reg_reg);
9657 %}
9658 
9659 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9660   match(CountedLoopEnd cmp (CmpI op1 op2));
9661   predicate(UseCBCond);
9662   effect(USE labl, KILL icc);
9663 
9664   size(4);
9665   ins_cost(BRANCH_COST);
9666   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9667   ins_encode %{
9668     Label* L = $labl$$label;
9669     assert(__ use_cbcond(*L), "back to back cbcond");
9670     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9671   %}
9672   ins_short_branch(1);
9673   ins_avoid_back_to_back(1);
9674   ins_pipe(cbcond_reg_imm);
9675 %}
9676 
9677 // Branch-on-register tests all 64 bits.  We assume that values
9678 // in 64-bit registers always remains zero or sign extended
9679 // unless our code munges the high bits.  Interrupts can chop
9680 // the high order bits to zero or sign at any time.
9681 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9682   match(If cmp (CmpI op1 zero));
9683   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9684   effect(USE labl);
9685 
9686   size(8);
9687   ins_cost(BRANCH_COST);
9688   format %{ "BR$cmp   $op1,$labl" %}
9689   ins_encode( enc_bpr( labl, cmp, op1 ) );
9690   ins_pipe(br_reg);
9691 %}
9692 
9693 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9694   match(If cmp (CmpP op1 null));
9695   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9696   effect(USE labl);
9697 
9698   size(8);
9699   ins_cost(BRANCH_COST);
9700   format %{ "BR$cmp   $op1,$labl" %}
9701   ins_encode( enc_bpr( labl, cmp, op1 ) );
9702   ins_pipe(br_reg);
9703 %}
9704 
9705 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9706   match(If cmp (CmpL op1 zero));
9707   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9708   effect(USE labl);
9709 
9710   size(8);
9711   ins_cost(BRANCH_COST);
9712   format %{ "BR$cmp   $op1,$labl" %}
9713   ins_encode( enc_bpr( labl, cmp, op1 ) );
9714   ins_pipe(br_reg);
9715 %}
9716 
9717 
9718 // ============================================================================
9719 // Long Compare
9720 //
9721 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9722 // is tricky.  The flavor of compare used depends on whether we are testing
9723 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9724 // The GE test is the negated LT test.  The LE test can be had by commuting
9725 // the operands (yielding a GE test) and then negating; negate again for the
9726 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9727 // NE test is negated from that.
9728 
9729 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9730 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9731 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9732 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9733 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9734 // foo match ends up with the wrong leaf.  One fix is to not match both
9735 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9736 // both forms beat the trinary form of long-compare and both are very useful
9737 // on Intel which has so few registers.
9738 
9739 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9740   match(If cmp xcc);
9741   effect(USE labl);
9742 
9743   size(8);
9744   ins_cost(BRANCH_COST);
9745   format %{ "BP$cmp   $xcc,$labl" %}
9746   ins_encode %{
9747     Label* L = $labl$$label;
9748     Assembler::Predict predict_taken =
9749       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9750 
9751     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9752     __ delayed()->nop();
9753   %}
9754   ins_pipe(br_cc);
9755 %}
9756 
9757 // Manifest a CmpL3 result in an integer register.  Very painful.
9758 // This is the test to avoid.
9759 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9760   match(Set dst (CmpL3 src1 src2) );
9761   effect( KILL ccr );
9762   ins_cost(6*DEFAULT_COST);
9763   size(24);
9764   format %{ "CMP    $src1,$src2\t\t! long\n"
9765           "\tBLT,a,pn done\n"
9766           "\tMOV    -1,$dst\t! delay slot\n"
9767           "\tBGT,a,pn done\n"
9768           "\tMOV    1,$dst\t! delay slot\n"
9769           "\tCLR    $dst\n"
9770     "done:"     %}
9771   ins_encode( cmpl_flag(src1,src2,dst) );
9772   ins_pipe(cmpL_reg);
9773 %}
9774 
9775 // Conditional move
9776 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9777   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9778   ins_cost(150);
9779   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9780   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9781   ins_pipe(ialu_reg);
9782 %}
9783 
9784 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9785   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9786   ins_cost(140);
9787   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9788   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9789   ins_pipe(ialu_imm);
9790 %}
9791 
9792 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9793   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9794   ins_cost(150);
9795   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9796   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9797   ins_pipe(ialu_reg);
9798 %}
9799 
9800 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9801   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9802   ins_cost(140);
9803   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9804   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9805   ins_pipe(ialu_imm);
9806 %}
9807 
9808 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9809   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9810   ins_cost(150);
9811   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9812   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9813   ins_pipe(ialu_reg);
9814 %}
9815 
9816 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9817   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9818   ins_cost(150);
9819   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9820   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9821   ins_pipe(ialu_reg);
9822 %}
9823 
9824 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9825   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9826   ins_cost(140);
9827   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9828   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9829   ins_pipe(ialu_imm);
9830 %}
9831 
9832 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9833   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9834   ins_cost(150);
9835   opcode(0x101);
9836   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9837   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9838   ins_pipe(int_conditional_float_move);
9839 %}
9840 
9841 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9842   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9843   ins_cost(150);
9844   opcode(0x102);
9845   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9846   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9847   ins_pipe(int_conditional_float_move);
9848 %}
9849 
9850 // ============================================================================
9851 // Safepoint Instruction
9852 instruct safePoint_poll(iRegP poll) %{
9853   match(SafePoint poll);
9854   effect(USE poll);
9855 
9856   size(4);
9857 #ifdef _LP64
9858   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9859 #else
9860   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9861 #endif
9862   ins_encode %{
9863     __ relocate(relocInfo::poll_type);
9864     __ ld_ptr($poll$$Register, 0, G0);
9865   %}
9866   ins_pipe(loadPollP);
9867 %}
9868 
9869 // ============================================================================
9870 // Call Instructions
9871 // Call Java Static Instruction
9872 instruct CallStaticJavaDirect( method meth ) %{
9873   match(CallStaticJava);
9874   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9875   effect(USE meth);
9876 
9877   size(8);
9878   ins_cost(CALL_COST);
9879   format %{ "CALL,static  ; NOP ==> " %}
9880   ins_encode( Java_Static_Call( meth ), call_epilog );
9881   ins_pipe(simple_call);
9882 %}
9883 
9884 // Call Java Static Instruction (method handle version)
9885 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9886   match(CallStaticJava);
9887   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9888   effect(USE meth, KILL l7_mh_SP_save);
9889 
9890   size(16);
9891   ins_cost(CALL_COST);
9892   format %{ "CALL,static/MethodHandle" %}
9893   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
9894   ins_pipe(simple_call);
9895 %}
9896 
9897 // Call Java Dynamic Instruction
9898 instruct CallDynamicJavaDirect( method meth ) %{
9899   match(CallDynamicJava);
9900   effect(USE meth);
9901 
9902   ins_cost(CALL_COST);
9903   format %{ "SET    (empty),R_G5\n\t"
9904             "CALL,dynamic  ; NOP ==> " %}
9905   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
9906   ins_pipe(call);
9907 %}
9908 
9909 // Call Runtime Instruction
9910 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
9911   match(CallRuntime);
9912   effect(USE meth, KILL l7);
9913   ins_cost(CALL_COST);
9914   format %{ "CALL,runtime" %}
9915   ins_encode( Java_To_Runtime( meth ),
9916               call_epilog, adjust_long_from_native_call );
9917   ins_pipe(simple_call);
9918 %}
9919 
9920 // Call runtime without safepoint - same as CallRuntime
9921 instruct CallLeafDirect(method meth, l7RegP l7) %{
9922   match(CallLeaf);
9923   effect(USE meth, KILL l7);
9924   ins_cost(CALL_COST);
9925   format %{ "CALL,runtime leaf" %}
9926   ins_encode( Java_To_Runtime( meth ),
9927               call_epilog,
9928               adjust_long_from_native_call );
9929   ins_pipe(simple_call);
9930 %}
9931 
9932 // Call runtime without safepoint - same as CallLeaf
9933 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
9934   match(CallLeafNoFP);
9935   effect(USE meth, KILL l7);
9936   ins_cost(CALL_COST);
9937   format %{ "CALL,runtime leaf nofp" %}
9938   ins_encode( Java_To_Runtime( meth ),
9939               call_epilog,
9940               adjust_long_from_native_call );
9941   ins_pipe(simple_call);
9942 %}
9943 
9944 // Tail Call; Jump from runtime stub to Java code.
9945 // Also known as an 'interprocedural jump'.
9946 // Target of jump will eventually return to caller.
9947 // TailJump below removes the return address.
9948 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
9949   match(TailCall jump_target method_oop );
9950 
9951   ins_cost(CALL_COST);
9952   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
9953   ins_encode(form_jmpl(jump_target));
9954   ins_pipe(tail_call);
9955 %}
9956 
9957 
9958 // Return Instruction
9959 instruct Ret() %{
9960   match(Return);
9961 
9962   // The epilogue node did the ret already.
9963   size(0);
9964   format %{ "! return" %}
9965   ins_encode();
9966   ins_pipe(empty);
9967 %}
9968 
9969 
9970 // Tail Jump; remove the return address; jump to target.
9971 // TailCall above leaves the return address around.
9972 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
9973 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
9974 // "restore" before this instruction (in Epilogue), we need to materialize it
9975 // in %i0.
9976 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
9977   match( TailJump jump_target ex_oop );
9978   ins_cost(CALL_COST);
9979   format %{ "! discard R_O7\n\t"
9980             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
9981   ins_encode(form_jmpl_set_exception_pc(jump_target));
9982   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
9983   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
9984   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
9985   ins_pipe(tail_call);
9986 %}
9987 
9988 // Create exception oop: created by stack-crawling runtime code.
9989 // Created exception is now available to this handler, and is setup
9990 // just prior to jumping to this handler.  No code emitted.
9991 instruct CreateException( o0RegP ex_oop )
9992 %{
9993   match(Set ex_oop (CreateEx));
9994   ins_cost(0);
9995 
9996   size(0);
9997   // use the following format syntax
9998   format %{ "! exception oop is in R_O0; no code emitted" %}
9999   ins_encode();
10000   ins_pipe(empty);
10001 %}
10002 
10003 
10004 // Rethrow exception:
10005 // The exception oop will come in the first argument position.
10006 // Then JUMP (not call) to the rethrow stub code.
10007 instruct RethrowException()
10008 %{
10009   match(Rethrow);
10010   ins_cost(CALL_COST);
10011 
10012   // use the following format syntax
10013   format %{ "Jmp    rethrow_stub" %}
10014   ins_encode(enc_rethrow);
10015   ins_pipe(tail_call);
10016 %}
10017 
10018 
10019 // Die now
10020 instruct ShouldNotReachHere( )
10021 %{
10022   match(Halt);
10023   ins_cost(CALL_COST);
10024 
10025   size(4);
10026   // Use the following format syntax
10027   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10028   ins_encode( form2_illtrap() );
10029   ins_pipe(tail_call);
10030 %}
10031 
10032 // ============================================================================
10033 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10034 // array for an instance of the superklass.  Set a hidden internal cache on a
10035 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10036 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10037 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10038   match(Set index (PartialSubtypeCheck sub super));
10039   effect( KILL pcc, KILL o7 );
10040   ins_cost(DEFAULT_COST*10);
10041   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10042   ins_encode( enc_PartialSubtypeCheck() );
10043   ins_pipe(partial_subtype_check_pipe);
10044 %}
10045 
10046 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10047   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10048   effect( KILL idx, KILL o7 );
10049   ins_cost(DEFAULT_COST*10);
10050   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10051   ins_encode( enc_PartialSubtypeCheck() );
10052   ins_pipe(partial_subtype_check_pipe);
10053 %}
10054 
10055 
10056 // ============================================================================
10057 // inlined locking and unlocking
10058 
10059 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10060   match(Set pcc (FastLock object box));
10061 
10062   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10063   ins_cost(100);
10064 
10065   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10066   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10067   ins_pipe(long_memory_op);
10068 %}
10069 
10070 
10071 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10072   match(Set pcc (FastUnlock object box));
10073   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10074   ins_cost(100);
10075 
10076   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10077   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10078   ins_pipe(long_memory_op);
10079 %}
10080 
10081 // The encodings are generic.
10082 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10083   predicate(!use_block_zeroing(n->in(2)) );
10084   match(Set dummy (ClearArray cnt base));
10085   effect(TEMP temp, KILL ccr);
10086   ins_cost(300);
10087   format %{ "MOV    $cnt,$temp\n"
10088     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10089     "        BRge   loop\t\t! Clearing loop\n"
10090     "        STX    G0,[$base+$temp]\t! delay slot" %}
10091 
10092   ins_encode %{
10093     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10094     Register nof_bytes_arg    = $cnt$$Register;
10095     Register nof_bytes_tmp    = $temp$$Register;
10096     Register base_pointer_arg = $base$$Register;
10097 
10098     Label loop;
10099     __ mov(nof_bytes_arg, nof_bytes_tmp);
10100 
10101     // Loop and clear, walking backwards through the array.
10102     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10103     __ bind(loop);
10104     __ deccc(nof_bytes_tmp, 8);
10105     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10106     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10107     // %%%% this mini-loop must not cross a cache boundary!
10108   %}
10109   ins_pipe(long_memory_op);
10110 %}
10111 
10112 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10113   predicate(use_block_zeroing(n->in(2)));
10114   match(Set dummy (ClearArray cnt base));
10115   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10116   ins_cost(300);
10117   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10118 
10119   ins_encode %{
10120 
10121     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10122     Register to    = $base$$Register;
10123     Register count = $cnt$$Register;
10124 
10125     Label Ldone;
10126     __ nop(); // Separate short branches
10127     // Use BIS for zeroing (temp is not used).
10128     __ bis_zeroing(to, count, G0, Ldone);
10129     __ bind(Ldone);
10130 
10131   %}
10132   ins_pipe(long_memory_op);
10133 %}
10134 
10135 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10136   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10137   match(Set dummy (ClearArray cnt base));
10138   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10139   ins_cost(300);
10140   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10141 
10142   ins_encode %{
10143 
10144     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10145     Register to    = $base$$Register;
10146     Register count = $cnt$$Register;
10147     Register temp  = $tmp$$Register;
10148 
10149     Label Ldone;
10150     __ nop(); // Separate short branches
10151     // Use BIS for zeroing
10152     __ bis_zeroing(to, count, temp, Ldone);
10153     __ bind(Ldone);
10154 
10155   %}
10156   ins_pipe(long_memory_op);
10157 %}
10158 
10159 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10160                         o7RegI tmp, flagsReg ccr) %{
10161   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10162   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10163   ins_cost(300);
10164   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10165   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10166   ins_pipe(long_memory_op);
10167 %}
10168 
10169 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10170                        o7RegI tmp, flagsReg ccr) %{
10171   match(Set result (StrEquals (Binary str1 str2) cnt));
10172   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10173   ins_cost(300);
10174   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10175   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10176   ins_pipe(long_memory_op);
10177 %}
10178 
10179 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10180                       o7RegI tmp2, flagsReg ccr) %{
10181   match(Set result (AryEq ary1 ary2));
10182   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10183   ins_cost(300);
10184   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10185   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10186   ins_pipe(long_memory_op);
10187 %}
10188 
10189 
10190 //---------- Zeros Count Instructions ------------------------------------------
10191 
10192 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10193   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10194   match(Set dst (CountLeadingZerosI src));
10195   effect(TEMP dst, TEMP tmp, KILL cr);
10196 
10197   // x |= (x >> 1);
10198   // x |= (x >> 2);
10199   // x |= (x >> 4);
10200   // x |= (x >> 8);
10201   // x |= (x >> 16);
10202   // return (WORDBITS - popc(x));
10203   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10204             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10205             "OR      $dst,$tmp,$dst\n\t"
10206             "SRL     $dst,2,$tmp\n\t"
10207             "OR      $dst,$tmp,$dst\n\t"
10208             "SRL     $dst,4,$tmp\n\t"
10209             "OR      $dst,$tmp,$dst\n\t"
10210             "SRL     $dst,8,$tmp\n\t"
10211             "OR      $dst,$tmp,$dst\n\t"
10212             "SRL     $dst,16,$tmp\n\t"
10213             "OR      $dst,$tmp,$dst\n\t"
10214             "POPC    $dst,$dst\n\t"
10215             "MOV     32,$tmp\n\t"
10216             "SUB     $tmp,$dst,$dst" %}
10217   ins_encode %{
10218     Register Rdst = $dst$$Register;
10219     Register Rsrc = $src$$Register;
10220     Register Rtmp = $tmp$$Register;
10221     __ srl(Rsrc, 1,    Rtmp);
10222     __ srl(Rsrc, 0,    Rdst);
10223     __ or3(Rdst, Rtmp, Rdst);
10224     __ srl(Rdst, 2,    Rtmp);
10225     __ or3(Rdst, Rtmp, Rdst);
10226     __ srl(Rdst, 4,    Rtmp);
10227     __ or3(Rdst, Rtmp, Rdst);
10228     __ srl(Rdst, 8,    Rtmp);
10229     __ or3(Rdst, Rtmp, Rdst);
10230     __ srl(Rdst, 16,   Rtmp);
10231     __ or3(Rdst, Rtmp, Rdst);
10232     __ popc(Rdst, Rdst);
10233     __ mov(BitsPerInt, Rtmp);
10234     __ sub(Rtmp, Rdst, Rdst);
10235   %}
10236   ins_pipe(ialu_reg);
10237 %}
10238 
10239 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10240   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10241   match(Set dst (CountLeadingZerosL src));
10242   effect(TEMP dst, TEMP tmp, KILL cr);
10243 
10244   // x |= (x >> 1);
10245   // x |= (x >> 2);
10246   // x |= (x >> 4);
10247   // x |= (x >> 8);
10248   // x |= (x >> 16);
10249   // x |= (x >> 32);
10250   // return (WORDBITS - popc(x));
10251   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10252             "OR      $src,$tmp,$dst\n\t"
10253             "SRLX    $dst,2,$tmp\n\t"
10254             "OR      $dst,$tmp,$dst\n\t"
10255             "SRLX    $dst,4,$tmp\n\t"
10256             "OR      $dst,$tmp,$dst\n\t"
10257             "SRLX    $dst,8,$tmp\n\t"
10258             "OR      $dst,$tmp,$dst\n\t"
10259             "SRLX    $dst,16,$tmp\n\t"
10260             "OR      $dst,$tmp,$dst\n\t"
10261             "SRLX    $dst,32,$tmp\n\t"
10262             "OR      $dst,$tmp,$dst\n\t"
10263             "POPC    $dst,$dst\n\t"
10264             "MOV     64,$tmp\n\t"
10265             "SUB     $tmp,$dst,$dst" %}
10266   ins_encode %{
10267     Register Rdst = $dst$$Register;
10268     Register Rsrc = $src$$Register;
10269     Register Rtmp = $tmp$$Register;
10270     __ srlx(Rsrc, 1,    Rtmp);
10271     __ or3( Rsrc, Rtmp, Rdst);
10272     __ srlx(Rdst, 2,    Rtmp);
10273     __ or3( Rdst, Rtmp, Rdst);
10274     __ srlx(Rdst, 4,    Rtmp);
10275     __ or3( Rdst, Rtmp, Rdst);
10276     __ srlx(Rdst, 8,    Rtmp);
10277     __ or3( Rdst, Rtmp, Rdst);
10278     __ srlx(Rdst, 16,   Rtmp);
10279     __ or3( Rdst, Rtmp, Rdst);
10280     __ srlx(Rdst, 32,   Rtmp);
10281     __ or3( Rdst, Rtmp, Rdst);
10282     __ popc(Rdst, Rdst);
10283     __ mov(BitsPerLong, Rtmp);
10284     __ sub(Rtmp, Rdst, Rdst);
10285   %}
10286   ins_pipe(ialu_reg);
10287 %}
10288 
10289 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10290   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10291   match(Set dst (CountTrailingZerosI src));
10292   effect(TEMP dst, KILL cr);
10293 
10294   // return popc(~x & (x - 1));
10295   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10296             "ANDN    $dst,$src,$dst\n\t"
10297             "SRL     $dst,R_G0,$dst\n\t"
10298             "POPC    $dst,$dst" %}
10299   ins_encode %{
10300     Register Rdst = $dst$$Register;
10301     Register Rsrc = $src$$Register;
10302     __ sub(Rsrc, 1, Rdst);
10303     __ andn(Rdst, Rsrc, Rdst);
10304     __ srl(Rdst, G0, Rdst);
10305     __ popc(Rdst, Rdst);
10306   %}
10307   ins_pipe(ialu_reg);
10308 %}
10309 
10310 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10311   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10312   match(Set dst (CountTrailingZerosL src));
10313   effect(TEMP dst, KILL cr);
10314 
10315   // return popc(~x & (x - 1));
10316   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10317             "ANDN    $dst,$src,$dst\n\t"
10318             "POPC    $dst,$dst" %}
10319   ins_encode %{
10320     Register Rdst = $dst$$Register;
10321     Register Rsrc = $src$$Register;
10322     __ sub(Rsrc, 1, Rdst);
10323     __ andn(Rdst, Rsrc, Rdst);
10324     __ popc(Rdst, Rdst);
10325   %}
10326   ins_pipe(ialu_reg);
10327 %}
10328 
10329 
10330 //---------- Population Count Instructions -------------------------------------
10331 
10332 instruct popCountI(iRegIsafe dst, iRegI src) %{
10333   predicate(UsePopCountInstruction);
10334   match(Set dst (PopCountI src));
10335 
10336   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10337             "POPC   $dst, $dst" %}
10338   ins_encode %{
10339     __ srl($src$$Register, G0, $dst$$Register);
10340     __ popc($dst$$Register, $dst$$Register);
10341   %}
10342   ins_pipe(ialu_reg);
10343 %}
10344 
10345 // Note: Long.bitCount(long) returns an int.
10346 instruct popCountL(iRegIsafe dst, iRegL src) %{
10347   predicate(UsePopCountInstruction);
10348   match(Set dst (PopCountL src));
10349 
10350   format %{ "POPC   $src, $dst" %}
10351   ins_encode %{
10352     __ popc($src$$Register, $dst$$Register);
10353   %}
10354   ins_pipe(ialu_reg);
10355 %}
10356 
10357 
10358 // ============================================================================
10359 //------------Bytes reverse--------------------------------------------------
10360 
10361 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10362   match(Set dst (ReverseBytesI src));
10363 
10364   // Op cost is artificially doubled to make sure that load or store
10365   // instructions are preferred over this one which requires a spill
10366   // onto a stack slot.
10367   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10368   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10369 
10370   ins_encode %{
10371     __ set($src$$disp + STACK_BIAS, O7);
10372     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10373   %}
10374   ins_pipe( iload_mem );
10375 %}
10376 
10377 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10378   match(Set dst (ReverseBytesL src));
10379 
10380   // Op cost is artificially doubled to make sure that load or store
10381   // instructions are preferred over this one which requires a spill
10382   // onto a stack slot.
10383   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10384   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10385 
10386   ins_encode %{
10387     __ set($src$$disp + STACK_BIAS, O7);
10388     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10389   %}
10390   ins_pipe( iload_mem );
10391 %}
10392 
10393 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10394   match(Set dst (ReverseBytesUS src));
10395 
10396   // Op cost is artificially doubled to make sure that load or store
10397   // instructions are preferred over this one which requires a spill
10398   // onto a stack slot.
10399   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10400   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10401 
10402   ins_encode %{
10403     // the value was spilled as an int so bias the load
10404     __ set($src$$disp + STACK_BIAS + 2, O7);
10405     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10406   %}
10407   ins_pipe( iload_mem );
10408 %}
10409 
10410 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10411   match(Set dst (ReverseBytesS src));
10412 
10413   // Op cost is artificially doubled to make sure that load or store
10414   // instructions are preferred over this one which requires a spill
10415   // onto a stack slot.
10416   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10417   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10418 
10419   ins_encode %{
10420     // the value was spilled as an int so bias the load
10421     __ set($src$$disp + STACK_BIAS + 2, O7);
10422     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10423   %}
10424   ins_pipe( iload_mem );
10425 %}
10426 
10427 // Load Integer reversed byte order
10428 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10429   match(Set dst (ReverseBytesI (LoadI src)));
10430 
10431   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10432   size(4);
10433   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10434 
10435   ins_encode %{
10436     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10437   %}
10438   ins_pipe(iload_mem);
10439 %}
10440 
10441 // Load Long - aligned and reversed
10442 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10443   match(Set dst (ReverseBytesL (LoadL src)));
10444 
10445   ins_cost(MEMORY_REF_COST);
10446   size(4);
10447   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10448 
10449   ins_encode %{
10450     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10451   %}
10452   ins_pipe(iload_mem);
10453 %}
10454 
10455 // Load unsigned short / char reversed byte order
10456 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10457   match(Set dst (ReverseBytesUS (LoadUS src)));
10458 
10459   ins_cost(MEMORY_REF_COST);
10460   size(4);
10461   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10462 
10463   ins_encode %{
10464     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10465   %}
10466   ins_pipe(iload_mem);
10467 %}
10468 
10469 // Load short reversed byte order
10470 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10471   match(Set dst (ReverseBytesS (LoadS src)));
10472 
10473   ins_cost(MEMORY_REF_COST);
10474   size(4);
10475   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10476 
10477   ins_encode %{
10478     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10479   %}
10480   ins_pipe(iload_mem);
10481 %}
10482 
10483 // Store Integer reversed byte order
10484 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10485   match(Set dst (StoreI dst (ReverseBytesI src)));
10486 
10487   ins_cost(MEMORY_REF_COST);
10488   size(4);
10489   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10490 
10491   ins_encode %{
10492     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10493   %}
10494   ins_pipe(istore_mem_reg);
10495 %}
10496 
10497 // Store Long reversed byte order
10498 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10499   match(Set dst (StoreL dst (ReverseBytesL src)));
10500 
10501   ins_cost(MEMORY_REF_COST);
10502   size(4);
10503   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10504 
10505   ins_encode %{
10506     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10507   %}
10508   ins_pipe(istore_mem_reg);
10509 %}
10510 
10511 // Store unsighed short/char reversed byte order
10512 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10513   match(Set dst (StoreC dst (ReverseBytesUS src)));
10514 
10515   ins_cost(MEMORY_REF_COST);
10516   size(4);
10517   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10518 
10519   ins_encode %{
10520     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10521   %}
10522   ins_pipe(istore_mem_reg);
10523 %}
10524 
10525 // Store short reversed byte order
10526 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10527   match(Set dst (StoreC dst (ReverseBytesS src)));
10528 
10529   ins_cost(MEMORY_REF_COST);
10530   size(4);
10531   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10532 
10533   ins_encode %{
10534     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10535   %}
10536   ins_pipe(istore_mem_reg);
10537 %}
10538 
10539 // ====================VECTOR INSTRUCTIONS=====================================
10540 
10541 // Load Aligned Packed values into a Double Register
10542 instruct loadV8(regD dst, memory mem) %{
10543   predicate(n->as_LoadVector()->memory_size() == 8);
10544   match(Set dst (LoadVector mem));
10545   ins_cost(MEMORY_REF_COST);
10546   size(4);
10547   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10548   ins_encode %{
10549     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10550   %}
10551   ins_pipe(floadD_mem);
10552 %}
10553 
10554 // Store Vector in Double register to memory
10555 instruct storeV8(memory mem, regD src) %{
10556   predicate(n->as_StoreVector()->memory_size() == 8);
10557   match(Set mem (StoreVector mem src));
10558   ins_cost(MEMORY_REF_COST);
10559   size(4);
10560   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10561   ins_encode %{
10562     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10563   %}
10564   ins_pipe(fstoreD_mem_reg);
10565 %}
10566 
10567 // Store Zero into vector in memory
10568 instruct storeV8B_zero(memory mem, immI0 zero) %{
10569   predicate(n->as_StoreVector()->memory_size() == 8);
10570   match(Set mem (StoreVector mem (ReplicateB zero)));
10571   ins_cost(MEMORY_REF_COST);
10572   size(4);
10573   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10574   ins_encode %{
10575     __ stx(G0, $mem$$Address);
10576   %}
10577   ins_pipe(fstoreD_mem_zero);
10578 %}
10579 
10580 instruct storeV4S_zero(memory mem, immI0 zero) %{
10581   predicate(n->as_StoreVector()->memory_size() == 8);
10582   match(Set mem (StoreVector mem (ReplicateS zero)));
10583   ins_cost(MEMORY_REF_COST);
10584   size(4);
10585   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10586   ins_encode %{
10587     __ stx(G0, $mem$$Address);
10588   %}
10589   ins_pipe(fstoreD_mem_zero);
10590 %}
10591 
10592 instruct storeV2I_zero(memory mem, immI0 zero) %{
10593   predicate(n->as_StoreVector()->memory_size() == 8);
10594   match(Set mem (StoreVector mem (ReplicateI zero)));
10595   ins_cost(MEMORY_REF_COST);
10596   size(4);
10597   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10598   ins_encode %{
10599     __ stx(G0, $mem$$Address);
10600   %}
10601   ins_pipe(fstoreD_mem_zero);
10602 %}
10603 
10604 instruct storeV2F_zero(memory mem, immF0 zero) %{
10605   predicate(n->as_StoreVector()->memory_size() == 8);
10606   match(Set mem (StoreVector mem (ReplicateF zero)));
10607   ins_cost(MEMORY_REF_COST);
10608   size(4);
10609   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10610   ins_encode %{
10611     __ stx(G0, $mem$$Address);
10612   %}
10613   ins_pipe(fstoreD_mem_zero);
10614 %}
10615 
10616 // Replicate scalar to packed byte values into Double register
10617 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10618   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10619   match(Set dst (ReplicateB src));
10620   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10621   format %{ "SLLX  $src,56,$tmp\n\t"
10622             "SRLX  $tmp, 8,$tmp2\n\t"
10623             "OR    $tmp,$tmp2,$tmp\n\t"
10624             "SRLX  $tmp,16,$tmp2\n\t"
10625             "OR    $tmp,$tmp2,$tmp\n\t"
10626             "SRLX  $tmp,32,$tmp2\n\t"
10627             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10628             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10629   ins_encode %{
10630     Register Rsrc = $src$$Register;
10631     Register Rtmp = $tmp$$Register;
10632     Register Rtmp2 = $tmp2$$Register;
10633     __ sllx(Rsrc,    56, Rtmp);
10634     __ srlx(Rtmp,     8, Rtmp2);
10635     __ or3 (Rtmp, Rtmp2, Rtmp);
10636     __ srlx(Rtmp,    16, Rtmp2);
10637     __ or3 (Rtmp, Rtmp2, Rtmp);
10638     __ srlx(Rtmp,    32, Rtmp2);
10639     __ or3 (Rtmp, Rtmp2, Rtmp);
10640     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10641   %}
10642   ins_pipe(ialu_reg);
10643 %}
10644 
10645 // Replicate scalar to packed byte values into Double stack
10646 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10647   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10648   match(Set dst (ReplicateB src));
10649   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10650   format %{ "SLLX  $src,56,$tmp\n\t"
10651             "SRLX  $tmp, 8,$tmp2\n\t"
10652             "OR    $tmp,$tmp2,$tmp\n\t"
10653             "SRLX  $tmp,16,$tmp2\n\t"
10654             "OR    $tmp,$tmp2,$tmp\n\t"
10655             "SRLX  $tmp,32,$tmp2\n\t"
10656             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10657             "STX   $tmp,$dst\t! regL to stkD" %}
10658   ins_encode %{
10659     Register Rsrc = $src$$Register;
10660     Register Rtmp = $tmp$$Register;
10661     Register Rtmp2 = $tmp2$$Register;
10662     __ sllx(Rsrc,    56, Rtmp);
10663     __ srlx(Rtmp,     8, Rtmp2);
10664     __ or3 (Rtmp, Rtmp2, Rtmp);
10665     __ srlx(Rtmp,    16, Rtmp2);
10666     __ or3 (Rtmp, Rtmp2, Rtmp);
10667     __ srlx(Rtmp,    32, Rtmp2);
10668     __ or3 (Rtmp, Rtmp2, Rtmp);
10669     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10670     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10671   %}
10672   ins_pipe(ialu_reg);
10673 %}
10674 
10675 // Replicate scalar constant to packed byte values in Double register
10676 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10677   predicate(n->as_Vector()->length() == 8);
10678   match(Set dst (ReplicateB con));
10679   effect(KILL tmp);
10680   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10681   ins_encode %{
10682     // XXX This is a quick fix for 6833573.
10683     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10684     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10685     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10686   %}
10687   ins_pipe(loadConFD);
10688 %}
10689 
10690 // Replicate scalar to packed char/short values into Double register
10691 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10692   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10693   match(Set dst (ReplicateS src));
10694   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10695   format %{ "SLLX  $src,48,$tmp\n\t"
10696             "SRLX  $tmp,16,$tmp2\n\t"
10697             "OR    $tmp,$tmp2,$tmp\n\t"
10698             "SRLX  $tmp,32,$tmp2\n\t"
10699             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10700             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10701   ins_encode %{
10702     Register Rsrc = $src$$Register;
10703     Register Rtmp = $tmp$$Register;
10704     Register Rtmp2 = $tmp2$$Register;
10705     __ sllx(Rsrc,    48, Rtmp);
10706     __ srlx(Rtmp,    16, Rtmp2);
10707     __ or3 (Rtmp, Rtmp2, Rtmp);
10708     __ srlx(Rtmp,    32, Rtmp2);
10709     __ or3 (Rtmp, Rtmp2, Rtmp);
10710     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10711   %}
10712   ins_pipe(ialu_reg);
10713 %}
10714 
10715 // Replicate scalar to packed char/short values into Double stack
10716 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10717   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10718   match(Set dst (ReplicateS src));
10719   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10720   format %{ "SLLX  $src,48,$tmp\n\t"
10721             "SRLX  $tmp,16,$tmp2\n\t"
10722             "OR    $tmp,$tmp2,$tmp\n\t"
10723             "SRLX  $tmp,32,$tmp2\n\t"
10724             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10725             "STX   $tmp,$dst\t! regL to stkD" %}
10726   ins_encode %{
10727     Register Rsrc = $src$$Register;
10728     Register Rtmp = $tmp$$Register;
10729     Register Rtmp2 = $tmp2$$Register;
10730     __ sllx(Rsrc,    48, Rtmp);
10731     __ srlx(Rtmp,    16, Rtmp2);
10732     __ or3 (Rtmp, Rtmp2, Rtmp);
10733     __ srlx(Rtmp,    32, Rtmp2);
10734     __ or3 (Rtmp, Rtmp2, Rtmp);
10735     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10736     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10737   %}
10738   ins_pipe(ialu_reg);
10739 %}
10740 
10741 // Replicate scalar constant to packed char/short values in Double register
10742 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10743   predicate(n->as_Vector()->length() == 4);
10744   match(Set dst (ReplicateS con));
10745   effect(KILL tmp);
10746   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10747   ins_encode %{
10748     // XXX This is a quick fix for 6833573.
10749     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10750     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10751     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10752   %}
10753   ins_pipe(loadConFD);
10754 %}
10755 
10756 // Replicate scalar to packed int values into Double register
10757 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10758   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10759   match(Set dst (ReplicateI src));
10760   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10761   format %{ "SLLX  $src,32,$tmp\n\t"
10762             "SRLX  $tmp,32,$tmp2\n\t"
10763             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10764             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10765   ins_encode %{
10766     Register Rsrc = $src$$Register;
10767     Register Rtmp = $tmp$$Register;
10768     Register Rtmp2 = $tmp2$$Register;
10769     __ sllx(Rsrc,    32, Rtmp);
10770     __ srlx(Rtmp,    32, Rtmp2);
10771     __ or3 (Rtmp, Rtmp2, Rtmp);
10772     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10773   %}
10774   ins_pipe(ialu_reg);
10775 %}
10776 
10777 // Replicate scalar to packed int values into Double stack
10778 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10779   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10780   match(Set dst (ReplicateI src));
10781   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10782   format %{ "SLLX  $src,32,$tmp\n\t"
10783             "SRLX  $tmp,32,$tmp2\n\t"
10784             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10785             "STX   $tmp,$dst\t! regL to stkD" %}
10786   ins_encode %{
10787     Register Rsrc = $src$$Register;
10788     Register Rtmp = $tmp$$Register;
10789     Register Rtmp2 = $tmp2$$Register;
10790     __ sllx(Rsrc,    32, Rtmp);
10791     __ srlx(Rtmp,    32, Rtmp2);
10792     __ or3 (Rtmp, Rtmp2, Rtmp);
10793     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10794     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10795   %}
10796   ins_pipe(ialu_reg);
10797 %}
10798 
10799 // Replicate scalar zero constant to packed int values in Double register
10800 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10801   predicate(n->as_Vector()->length() == 2);
10802   match(Set dst (ReplicateI con));
10803   effect(KILL tmp);
10804   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10805   ins_encode %{
10806     // XXX This is a quick fix for 6833573.
10807     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10808     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10809     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10810   %}
10811   ins_pipe(loadConFD);
10812 %}
10813 
10814 // Replicate scalar to packed float values into Double stack
10815 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10816   predicate(n->as_Vector()->length() == 2);
10817   match(Set dst (ReplicateF src));
10818   ins_cost(MEMORY_REF_COST*2);
10819   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10820             "STF    $src,$dst.lo" %}
10821   opcode(Assembler::stf_op3);
10822   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10823   ins_pipe(fstoreF_stk_reg);
10824 %}
10825 
10826 // Replicate scalar zero constant to packed float values in Double register
10827 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10828   predicate(n->as_Vector()->length() == 2);
10829   match(Set dst (ReplicateF con));
10830   effect(KILL tmp);
10831   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10832   ins_encode %{
10833     // XXX This is a quick fix for 6833573.
10834     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10835     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10836     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10837   %}
10838   ins_pipe(loadConFD);
10839 %}
10840 
10841 //----------PEEPHOLE RULES-----------------------------------------------------
10842 // These must follow all instruction definitions as they use the names
10843 // defined in the instructions definitions.
10844 //
10845 // peepmatch ( root_instr_name [preceding_instruction]* );
10846 //
10847 // peepconstraint %{
10848 // (instruction_number.operand_name relational_op instruction_number.operand_name
10849 //  [, ...] );
10850 // // instruction numbers are zero-based using left to right order in peepmatch
10851 //
10852 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10853 // // provide an instruction_number.operand_name for each operand that appears
10854 // // in the replacement instruction's match rule
10855 //
10856 // ---------VM FLAGS---------------------------------------------------------
10857 //
10858 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10859 //
10860 // Each peephole rule is given an identifying number starting with zero and
10861 // increasing by one in the order seen by the parser.  An individual peephole
10862 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10863 // on the command-line.
10864 //
10865 // ---------CURRENT LIMITATIONS----------------------------------------------
10866 //
10867 // Only match adjacent instructions in same basic block
10868 // Only equality constraints
10869 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10870 // Only one replacement instruction
10871 //
10872 // ---------EXAMPLE----------------------------------------------------------
10873 //
10874 // // pertinent parts of existing instructions in architecture description
10875 // instruct movI(eRegI dst, eRegI src) %{
10876 //   match(Set dst (CopyI src));
10877 // %}
10878 //
10879 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10880 //   match(Set dst (AddI dst src));
10881 //   effect(KILL cr);
10882 // %}
10883 //
10884 // // Change (inc mov) to lea
10885 // peephole %{
10886 //   // increment preceeded by register-register move
10887 //   peepmatch ( incI_eReg movI );
10888 //   // require that the destination register of the increment
10889 //   // match the destination register of the move
10890 //   peepconstraint ( 0.dst == 1.dst );
10891 //   // construct a replacement instruction that sets
10892 //   // the destination to ( move's source register + one )
10893 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
10894 // %}
10895 //
10896 
10897 // // Change load of spilled value to only a spill
10898 // instruct storeI(memory mem, eRegI src) %{
10899 //   match(Set mem (StoreI mem src));
10900 // %}
10901 //
10902 // instruct loadI(eRegI dst, memory mem) %{
10903 //   match(Set dst (LoadI mem));
10904 // %}
10905 //
10906 // peephole %{
10907 //   peepmatch ( loadI storeI );
10908 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
10909 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
10910 // %}
10911 
10912 //----------SMARTSPILL RULES---------------------------------------------------
10913 // These must follow all instruction definitions as they use the names
10914 // defined in the instructions definitions.
10915 //
10916 // SPARC will probably not have any of these rules due to RISC instruction set.
10917 
10918 //----------PIPELINE-----------------------------------------------------------
10919 // Rules which define the behavior of the target architectures pipeline.