1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc_implementation/shared/ageTable.hpp"
  29 #include "gc_implementation/shared/markSweep.inline.hpp"
  30 #include "gc_interface/collectedHeap.inline.hpp"
  31 #include "memory/barrierSet.inline.hpp"
  32 #include "memory/cardTableModRefBS.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/generation.hpp"
  35 #include "memory/specialized_oop_closures.hpp"
  36 #include "oops/arrayKlass.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/klass.hpp"
  39 #include "oops/markOop.inline.hpp"
  40 #include "oops/oop.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/os.hpp"
  43 #include "utilities/macros.hpp"
  44 #ifdef TARGET_ARCH_x86
  45 # include "bytes_x86.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_sparc
  48 # include "bytes_sparc.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_zero
  51 # include "bytes_zero.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_arm
  54 # include "bytes_arm.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_ppc
  57 # include "bytes_ppc.hpp"
  58 #endif
  59 
  60 // Implementation of all inlined member functions defined in oop.hpp
  61 // We need a separate file to avoid circular references
  62 
  63 inline void oopDesc::release_set_mark(markOop m) {
  64   OrderAccess::release_store_ptr(&_mark, m);
  65 }
  66 
  67 inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  68   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  69 }
  70 
  71 inline Klass* oopDesc::klass() const {
  72   if (UseCompressedKlassPointers) {
  73     return decode_klass_not_null(_metadata._compressed_klass);
  74   } else {
  75     return _metadata._klass;
  76   }
  77 }
  78 
  79 inline Klass* oopDesc::klass_or_null() const volatile {
  80   // can be NULL in CMS
  81   if (UseCompressedKlassPointers) {
  82     return decode_klass(_metadata._compressed_klass);
  83   } else {
  84     return _metadata._klass;
  85   }
  86 }
  87 
  88 inline int oopDesc::klass_gap_offset_in_bytes() {
  89   assert(UseCompressedKlassPointers, "only applicable to compressed klass pointers");
  90   return oopDesc::klass_offset_in_bytes() + sizeof(narrowOop);
  91 }
  92 
  93 inline Klass** oopDesc::klass_addr() {
  94   // Only used internally and with CMS and will not work with
  95   // UseCompressedOops
  96   assert(!UseCompressedKlassPointers, "only supported with uncompressed klass pointers");
  97   return (Klass**) &_metadata._klass;
  98 }
  99 
 100 inline narrowOop* oopDesc::compressed_klass_addr() {
 101   assert(UseCompressedKlassPointers, "only called by compressed klass pointers");
 102   return (narrowOop*) &_metadata._compressed_klass;
 103 }
 104 
 105 inline void oopDesc::set_klass(Klass* k) {
 106   // since klasses are promoted no store check is needed
 107   assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
 108   assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
 109   if (UseCompressedKlassPointers) {
 110     *compressed_klass_addr() = encode_klass_not_null(k);
 111   } else {
 112     *klass_addr() = k;
 113   }
 114 }
 115 
 116 inline int oopDesc::klass_gap() const {
 117   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 118 }
 119 
 120 inline void oopDesc::set_klass_gap(int v) {
 121   if (UseCompressedKlassPointers) {
 122     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 123   }
 124 }
 125 
 126 inline void oopDesc::set_klass_to_list_ptr(oop k) {
 127   // This is only to be used during GC, for from-space objects, so no
 128   // barrier is needed.
 129   if (UseCompressedKlassPointers) {
 130     _metadata._compressed_klass = encode_heap_oop(k);  // may be null (parnew overflow handling)
 131   } else {
 132     _metadata._klass = (Klass*)(address)k;
 133   }
 134 }
 135 
 136 inline oop oopDesc::list_ptr_from_klass() {
 137   // This is only to be used during GC, for from-space objects.
 138   if (UseCompressedKlassPointers) {
 139     return decode_heap_oop(_metadata._compressed_klass);
 140   } else {
 141     // Special case for GC
 142     return (oop)(address)_metadata._klass;
 143   }
 144 }
 145 
 146 inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
 147 
 148 inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
 149 
 150 inline bool oopDesc::is_instance()           const { return klass()->oop_is_instance(); }
 151 inline bool oopDesc::is_instanceMirror()     const { return klass()->oop_is_instanceMirror(); }
 152 inline bool oopDesc::is_instanceRef()        const { return klass()->oop_is_instanceRef(); }
 153 inline bool oopDesc::is_array()              const { return klass()->oop_is_array(); }
 154 inline bool oopDesc::is_objArray()           const { return klass()->oop_is_objArray(); }
 155 inline bool oopDesc::is_typeArray()          const { return klass()->oop_is_typeArray(); }
 156 
 157 inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
 158 
 159 template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
 160 inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 161 inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
 162 inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
 163 inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
 164 inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
 165 inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
 166 inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
 167 inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
 168 inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
 169 inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
 170 
 171 
 172 // Functions for getting and setting oops within instance objects.
 173 // If the oops are compressed, the type passed to these overloaded functions
 174 // is narrowOop.  All functions are overloaded so they can be called by
 175 // template functions without conditionals (the compiler instantiates via
 176 // the right type and inlines the appopriate code).
 177 
 178 inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
 179 inline bool oopDesc::is_null(Klass* obj)  { return obj == NULL; }
 180 inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
 181 
 182 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 183 // offset from the heap base.  Saving the check for null can save instructions
 184 // in inner GC loops so these are separated.
 185 
 186 inline bool check_obj_alignment(oop obj) {
 187   return (intptr_t)obj % MinObjAlignmentInBytes == 0;
 188 }
 189 inline bool check_klass_alignment(Klass* obj) {
 190   return (intptr_t)obj % KlassAlignmentInBytes == 0;
 191 }
 192 
 193 inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 194   assert(!is_null(v), "oop value can never be zero");
 195   assert(check_obj_alignment(v), "Address not aligned");
 196   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 197   address base = Universe::narrow_oop_base();
 198   int    shift = Universe::narrow_oop_shift();
 199   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 200   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 201   uint64_t result = pd >> shift;
 202   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 203   assert(decode_heap_oop(result) == v, "reversibility");
 204   return (narrowOop)result;
 205 }
 206 
 207 inline narrowOop oopDesc::encode_heap_oop(oop v) {
 208   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 209 }
 210 
 211 inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 212   assert(!is_null(v), "narrow oop value can never be zero");
 213   address base = Universe::narrow_oop_base();
 214   int    shift = Universe::narrow_oop_shift();
 215   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 216   assert(check_obj_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result));
 217   return result;
 218 }
 219 
 220 inline oop oopDesc::decode_heap_oop(narrowOop v) {
 221   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 222 }
 223 
 224 inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
 225 inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
 226 
 227 // Encoding and decoding for klass field.  It is copied code, but someday
 228 // might not be the same as oop.
 229 
 230 inline narrowOop oopDesc::encode_klass_not_null(Klass* v) {
 231   assert(!is_null(v), "klass value can never be zero");
 232   assert(check_klass_alignment(v), "Address not aligned");
 233   address base = Universe::narrow_klass_base();
 234   int    shift = Universe::narrow_klass_shift();
 235   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 236   assert(KlassEncodingMetaspaceMax > pd, "change encoding max if new encoding");
 237   uint64_t result = pd >> shift;
 238   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow klass pointer overflow");
 239   assert(decode_klass(result) == v, "reversibility");
 240   return (narrowOop)result;
 241 }
 242 
 243 inline narrowOop oopDesc::encode_klass(Klass* v) {
 244   return (is_null(v)) ? (narrowOop)0 : encode_klass_not_null(v);
 245 }
 246 
 247 inline Klass* oopDesc::decode_klass_not_null(narrowOop v) {
 248   assert(!is_null(v), "narrow oop value can never be zero");
 249   address base = Universe::narrow_klass_base();
 250   int    shift = Universe::narrow_klass_shift();
 251   Klass* result = (Klass*)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 252   assert(check_klass_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result));
 253   return result;
 254 }
 255 
 256 inline Klass* oopDesc::decode_klass(narrowOop v) {
 257   return is_null(v) ? (Klass*)NULL : decode_klass_not_null(v);
 258 }
 259 
 260 // Load an oop out of the Java heap as is without decoding.
 261 // Called by GC to check for null before decoding.
 262 inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
 263 inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
 264 
 265 // Load and decode an oop out of the Java heap into a wide oop.
 266 inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
 267 inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 268   return decode_heap_oop_not_null(*p);
 269 }
 270 
 271 // Load and decode an oop out of the heap accepting null
 272 inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
 273 inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 274   return decode_heap_oop(*p);
 275 }
 276 
 277 // Store already encoded heap oop into the heap.
 278 inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
 279 inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
 280 
 281 // Encode and store a heap oop.
 282 inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 283   *p = encode_heap_oop_not_null(v);
 284 }
 285 inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 286 
 287 // Encode and store a heap oop allowing for null.
 288 inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 289   *p = encode_heap_oop(v);
 290 }
 291 inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 292 
 293 // Store heap oop as is for volatile fields.
 294 inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 295   OrderAccess::release_store_ptr(p, v);
 296 }
 297 inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
 298                                             narrowOop v) {
 299   OrderAccess::release_store(p, v);
 300 }
 301 
 302 inline void oopDesc::release_encode_store_heap_oop_not_null(
 303                                                 volatile narrowOop* p, oop v) {
 304   // heap oop is not pointer sized.
 305   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 306 }
 307 
 308 inline void oopDesc::release_encode_store_heap_oop_not_null(
 309                                                       volatile oop* p, oop v) {
 310   OrderAccess::release_store_ptr(p, v);
 311 }
 312 
 313 inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
 314                                                            oop v) {
 315   OrderAccess::release_store_ptr(p, v);
 316 }
 317 inline void oopDesc::release_encode_store_heap_oop(
 318                                                 volatile narrowOop* p, oop v) {
 319   OrderAccess::release_store(p, encode_heap_oop(v));
 320 }
 321 
 322 
 323 // These functions are only used to exchange oop fields in instances,
 324 // not headers.
 325 inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 326   if (UseCompressedOops) {
 327     // encode exchange value from oop to T
 328     narrowOop val = encode_heap_oop(exchange_value);
 329     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 330     // decode old from T to oop
 331     return decode_heap_oop(old);
 332   } else {
 333     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 334   }
 335 }
 336 
 337 // In order to put or get a field out of an instance, must first check
 338 // if the field has been compressed and uncompress it.
 339 inline oop oopDesc::obj_field(int offset) const {
 340   return UseCompressedOops ?
 341     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 342     load_decode_heap_oop(obj_field_addr<oop>(offset));
 343 }
 344 inline volatile oop oopDesc::obj_field_volatile(int offset) const {
 345   volatile oop value = obj_field(offset);
 346   OrderAccess::acquire();
 347   return value;
 348 }
 349 inline void oopDesc::obj_field_put(int offset, oop value) {
 350   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 351                       oop_store(obj_field_addr<oop>(offset),       value);
 352 }
 353 
 354 inline Metadata* oopDesc::metadata_field(int offset) const {
 355   return *metadata_field_addr(offset);
 356 }
 357 
 358 inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
 359   *metadata_field_addr(offset) = value;
 360 }
 361 
 362 inline void oopDesc::obj_field_put_raw(int offset, oop value) {
 363   UseCompressedOops ?
 364     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 365     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 366 }
 367 inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
 368   OrderAccess::release();
 369   obj_field_put(offset, value);
 370   OrderAccess::fence();
 371 }
 372 
 373 inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
 374 inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
 375 
 376 inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
 377 inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
 378 
 379 inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
 380 inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
 381 
 382 inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
 383 inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
 384 
 385 inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
 386 inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
 387 
 388 inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
 389 inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
 390 
 391 inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
 392 inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
 393 
 394 inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
 395 inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
 396 
 397 inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 398 inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 399 
 400 inline oop oopDesc::obj_field_acquire(int offset) const {
 401   return UseCompressedOops ?
 402              decode_heap_oop((narrowOop)
 403                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 404            : decode_heap_oop((oop)
 405                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 406 }
 407 inline void oopDesc::release_obj_field_put(int offset, oop value) {
 408   UseCompressedOops ?
 409     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 410     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 411 }
 412 
 413 inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 414 inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
 415 
 416 inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 417 inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
 418 
 419 inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
 420 inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
 421 
 422 inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
 423 inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
 424 
 425 inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 426 inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
 427 
 428 inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
 429 inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
 430 
 431 inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
 432 inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
 433 
 434 inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
 435 inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
 436 
 437 inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 438 inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 439 
 440 inline int oopDesc::size_given_klass(Klass* klass)  {
 441   int lh = klass->layout_helper();
 442   int s;
 443 
 444   // lh is now a value computed at class initialization that may hint
 445   // at the size.  For instances, this is positive and equal to the
 446   // size.  For arrays, this is negative and provides log2 of the
 447   // array element size.  For other oops, it is zero and thus requires
 448   // a virtual call.
 449   //
 450   // We go to all this trouble because the size computation is at the
 451   // heart of phase 2 of mark-compaction, and called for every object,
 452   // alive or dead.  So the speed here is equal in importance to the
 453   // speed of allocation.
 454 
 455   if (lh > Klass::_lh_neutral_value) {
 456     if (!Klass::layout_helper_needs_slow_path(lh)) {
 457       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 458     } else {
 459       s = klass->oop_size(this);
 460     }
 461   } else if (lh <= Klass::_lh_neutral_value) {
 462     // The most common case is instances; fall through if so.
 463     if (lh < Klass::_lh_neutral_value) {
 464       // Second most common case is arrays.  We have to fetch the
 465       // length of the array, shift (multiply) it appropriately,
 466       // up to wordSize, add the header, and align to object size.
 467       size_t size_in_bytes;
 468 #ifdef _M_IA64
 469       // The Windows Itanium Aug 2002 SDK hoists this load above
 470       // the check for s < 0.  An oop at the end of the heap will
 471       // cause an access violation if this load is performed on a non
 472       // array oop.  Making the reference volatile prohibits this.
 473       // (%%% please explain by what magic the length is actually fetched!)
 474       volatile int *array_length;
 475       array_length = (volatile int *)( (intptr_t)this +
 476                           arrayOopDesc::length_offset_in_bytes() );
 477       assert(array_length > 0, "Integer arithmetic problem somewhere");
 478       // Put into size_t to avoid overflow.
 479       size_in_bytes = (size_t) array_length;
 480       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 481 #else
 482       size_t array_length = (size_t) ((arrayOop)this)->length();
 483       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 484 #endif
 485       size_in_bytes += Klass::layout_helper_header_size(lh);
 486 
 487       // This code could be simplified, but by keeping array_header_in_bytes
 488       // in units of bytes and doing it this way we can round up just once,
 489       // skipping the intermediate round to HeapWordSize.  Cast the result
 490       // of round_to to size_t to guarantee unsigned division == right shift.
 491       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 492         HeapWordSize);
 493 
 494       // UseParNewGC, UseParallelGC and UseG1GC can change the length field
 495       // of an "old copy" of an object array in the young gen so it indicates
 496       // the grey portion of an already copied array. This will cause the first
 497       // disjunct below to fail if the two comparands are computed across such
 498       // a concurrent change.
 499       // UseParNewGC also runs with promotion labs (which look like int
 500       // filler arrays) which are subject to changing their declared size
 501       // when finally retiring a PLAB; this also can cause the first disjunct
 502       // to fail for another worker thread that is concurrently walking the block
 503       // offset table. Both these invariant failures are benign for their
 504       // current uses; we relax the assertion checking to cover these two cases below:
 505       //     is_objArray() && is_forwarded()   // covers first scenario above
 506       //  || is_typeArray()                    // covers second scenario above
 507       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 508       // technique, we will need to suitably modify the assertion.
 509       assert((s == klass->oop_size(this)) ||
 510              (Universe::heap()->is_gc_active() &&
 511               ((is_typeArray() && UseParNewGC) ||
 512                (is_objArray()  && is_forwarded() && (UseParNewGC || UseParallelGC || UseG1GC)))),
 513              "wrong array object size");
 514     } else {
 515       // Must be zero, so bite the bullet and take the virtual call.
 516       s = klass->oop_size(this);
 517     }
 518   }
 519 
 520   assert(s % MinObjAlignment == 0, "alignment check");
 521   assert(s > 0, "Bad size calculated");
 522   return s;
 523 }
 524 
 525 
 526 inline int oopDesc::size()  {
 527   return size_given_klass(klass());
 528 }
 529 
 530 inline void update_barrier_set(void* p, oop v) {
 531   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
 532   oopDesc::bs()->write_ref_field(p, v);
 533 }
 534 
 535 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
 536   oopDesc::bs()->write_ref_field_pre(p, v);
 537 }
 538 
 539 template <class T> inline void oop_store(T* p, oop v) {
 540   if (always_do_update_barrier) {
 541     oop_store((volatile T*)p, v);
 542   } else {
 543     update_barrier_set_pre(p, v);
 544     oopDesc::encode_store_heap_oop(p, v);
 545     update_barrier_set((void*)p, v);  // cast away type
 546   }
 547 }
 548 
 549 template <class T> inline void oop_store(volatile T* p, oop v) {
 550   update_barrier_set_pre((T*)p, v);   // cast away volatile
 551   // Used by release_obj_field_put, so use release_store_ptr.
 552   oopDesc::release_encode_store_heap_oop(p, v);
 553   update_barrier_set((void*)p, v);    // cast away type
 554 }
 555 
 556 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
 557 // (without having to remember the function name this calls).
 558 inline void oop_store_raw(HeapWord* addr, oop value) {
 559   if (UseCompressedOops) {
 560     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
 561   } else {
 562     oopDesc::encode_store_heap_oop((oop*)addr, value);
 563   }
 564 }
 565 
 566 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 567                                                 volatile HeapWord *dest,
 568                                                 oop compare_value,
 569                                                 bool prebarrier) {
 570   if (UseCompressedOops) {
 571     if (prebarrier) {
 572       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 573     }
 574     // encode exchange and compare value from oop to T
 575     narrowOop val = encode_heap_oop(exchange_value);
 576     narrowOop cmp = encode_heap_oop(compare_value);
 577 
 578     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 579     // decode old from T to oop
 580     return decode_heap_oop(old);
 581   } else {
 582     if (prebarrier) {
 583       update_barrier_set_pre((oop*)dest, exchange_value);
 584     }
 585     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 586   }
 587 }
 588 
 589 // Used only for markSweep, scavenging
 590 inline bool oopDesc::is_gc_marked() const {
 591   return mark()->is_marked();
 592 }
 593 
 594 inline bool oopDesc::is_locked() const {
 595   return mark()->is_locked();
 596 }
 597 
 598 inline bool oopDesc::is_unlocked() const {
 599   return mark()->is_unlocked();
 600 }
 601 
 602 inline bool oopDesc::has_bias_pattern() const {
 603   return mark()->has_bias_pattern();
 604 }
 605 
 606 
 607 // used only for asserts
 608 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
 609   oop obj = (oop) this;
 610   if (!check_obj_alignment(obj)) return false;
 611   if (!Universe::heap()->is_in_reserved(obj)) return false;
 612   // obj is aligned and accessible in heap
 613   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 614 
 615   // Header verification: the mark is typically non-NULL. If we're
 616   // at a safepoint, it must not be null.
 617   // Outside of a safepoint, the header could be changing (for example,
 618   // another thread could be inflating a lock on this object).
 619   if (ignore_mark_word) {
 620     return true;
 621   }
 622   if (mark() != NULL) {
 623     return true;
 624   }
 625   return !SafepointSynchronize::is_at_safepoint();
 626 }
 627 
 628 
 629 // used only for asserts
 630 inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 631   return this == NULL ? true : is_oop(ignore_mark_word);
 632 }
 633 
 634 #ifndef PRODUCT
 635 // used only for asserts
 636 inline bool oopDesc::is_unlocked_oop() const {
 637   if (!Universe::heap()->is_in_reserved(this)) return false;
 638   return mark()->is_unlocked();
 639 }
 640 #endif // PRODUCT
 641 
 642 inline void oopDesc::follow_contents(void) {
 643   assert (is_gc_marked(), "should be marked");
 644   klass()->oop_follow_contents(this);
 645 }
 646 
 647 // Used by scavengers
 648 
 649 inline bool oopDesc::is_forwarded() const {
 650   // The extra heap check is needed since the obj might be locked, in which case the
 651   // mark would point to a stack location and have the sentinel bit cleared
 652   return mark()->is_marked();
 653 }
 654 
 655 // Used by scavengers
 656 inline void oopDesc::forward_to(oop p) {
 657   assert(check_obj_alignment(p),
 658          "forwarding to something not aligned");
 659   assert(Universe::heap()->is_in_reserved(p),
 660          "forwarding to something not in heap");
 661   markOop m = markOopDesc::encode_pointer_as_mark(p);
 662   assert(m->decode_pointer() == p, "encoding must be reversable");
 663   set_mark(m);
 664 }
 665 
 666 // Used by parallel scavengers
 667 inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
 668   assert(check_obj_alignment(p),
 669          "forwarding to something not aligned");
 670   assert(Universe::heap()->is_in_reserved(p),
 671          "forwarding to something not in heap");
 672   markOop m = markOopDesc::encode_pointer_as_mark(p);
 673   assert(m->decode_pointer() == p, "encoding must be reversable");
 674   return cas_set_mark(m, compare) == compare;
 675 }
 676 
 677 // Note that the forwardee is not the same thing as the displaced_mark.
 678 // The forwardee is used when copying during scavenge and mark-sweep.
 679 // It does need to clear the low two locking- and GC-related bits.
 680 inline oop oopDesc::forwardee() const {
 681   return (oop) mark()->decode_pointer();
 682 }
 683 
 684 inline bool oopDesc::has_displaced_mark() const {
 685   return mark()->has_displaced_mark_helper();
 686 }
 687 
 688 inline markOop oopDesc::displaced_mark() const {
 689   return mark()->displaced_mark_helper();
 690 }
 691 
 692 inline void oopDesc::set_displaced_mark(markOop m) {
 693   mark()->set_displaced_mark_helper(m);
 694 }
 695 
 696 // The following method needs to be MT safe.
 697 inline uint oopDesc::age() const {
 698   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 699   if (has_displaced_mark()) {
 700     return displaced_mark()->age();
 701   } else {
 702     return mark()->age();
 703   }
 704 }
 705 
 706 inline void oopDesc::incr_age() {
 707   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 708   if (has_displaced_mark()) {
 709     set_displaced_mark(displaced_mark()->incr_age());
 710   } else {
 711     set_mark(mark()->incr_age());
 712   }
 713 }
 714 
 715 
 716 inline intptr_t oopDesc::identity_hash() {
 717   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 718   // Note: The mark must be read into local variable to avoid concurrent updates.
 719   markOop mrk = mark();
 720   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 721     return mrk->hash();
 722   } else if (mrk->is_marked()) {
 723     return mrk->hash();
 724   } else {
 725     return slow_identity_hash();
 726   }
 727 }
 728 
 729 inline int oopDesc::adjust_pointers() {
 730   debug_only(int check_size = size());
 731   int s = klass()->oop_adjust_pointers(this);
 732   assert(s == check_size, "should be the same");
 733   return s;
 734 }
 735 
 736 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                        \
 737                                                                            \
 738 inline int oopDesc::oop_iterate(OopClosureType* blk) {                     \
 739   SpecializationStats::record_call();                                      \
 740   return klass()->oop_oop_iterate##nv_suffix(this, blk);               \
 741 }                                                                          \
 742                                                                            \
 743 inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {       \
 744   SpecializationStats::record_call();                                      \
 745   return klass()->oop_oop_iterate##nv_suffix##_m(this, blk, mr);       \
 746 }
 747 
 748 
 749 inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 750   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 751   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 752   NoHeaderExtendedOopClosure cl(blk);
 753   return oop_iterate(&cl);
 754 }
 755 
 756 inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 757   NoHeaderExtendedOopClosure cl(blk);
 758   return oop_iterate(&cl, mr);
 759 }
 760 
 761 ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_DEFN)
 762 ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_DEFN)
 763 
 764 #if INCLUDE_ALL_GCS
 765 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)              \
 766                                                                            \
 767 inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) {           \
 768   SpecializationStats::record_call();                                      \
 769   return klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);     \
 770 }
 771 
 772 ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_BACKWARDS_DEFN)
 773 ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_BACKWARDS_DEFN)
 774 #endif // INCLUDE_ALL_GCS
 775 
 776 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP