1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc_implementation/shared/ageTable.hpp"
  29 #include "gc_implementation/shared/markSweep.inline.hpp"
  30 #include "gc_interface/collectedHeap.inline.hpp"
  31 #include "memory/barrierSet.inline.hpp"
  32 #include "memory/cardTableModRefBS.hpp"
  33 #include "memory/genCollectedHeap.hpp"
  34 #include "memory/generation.hpp"
  35 #include "memory/specialized_oop_closures.hpp"
  36 #include "oops/arrayKlass.hpp"
  37 #include "oops/arrayOop.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "oops/markOop.inline.hpp"
  40 #include "oops/oop.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/os.hpp"
  43 #include "utilities/macros.hpp"
  44 #ifdef TARGET_ARCH_x86
  45 # include "bytes_x86.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_sparc
  48 # include "bytes_sparc.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_zero
  51 # include "bytes_zero.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_arm
  54 # include "bytes_arm.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_ppc
  57 # include "bytes_ppc.hpp"
  58 #endif
  59 
  60 // Implementation of all inlined member functions defined in oop.hpp
  61 // We need a separate file to avoid circular references
  62 
  63 inline void oopDesc::release_set_mark(markOop m) {
  64   OrderAccess::release_store_ptr(&_mark, m);
  65 }
  66 
  67 inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  68   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  69 }
  70 
  71 inline Klass* oopDesc::klass() const {
  72   if (UseCompressedKlassPointers) {
  73     return Klass::decode_klass_not_null(_metadata._compressed_klass);
  74   } else {
  75     return _metadata._klass;
  76   }
  77 }
  78 
  79 inline Klass* oopDesc::klass_or_null() const volatile {
  80   // can be NULL in CMS
  81   if (UseCompressedKlassPointers) {
  82     return Klass::decode_klass(_metadata._compressed_klass);
  83   } else {
  84     return _metadata._klass;
  85   }
  86 }
  87 
  88 inline int oopDesc::klass_gap_offset_in_bytes() {
  89   assert(UseCompressedKlassPointers, "only applicable to compressed klass pointers");
  90   return oopDesc::klass_offset_in_bytes() + sizeof(narrowKlass);
  91 }
  92 
  93 inline Klass** oopDesc::klass_addr() {
  94   // Only used internally and with CMS and will not work with
  95   // UseCompressedOops
  96   assert(!UseCompressedKlassPointers, "only supported with uncompressed klass pointers");
  97   return (Klass**) &_metadata._klass;
  98 }
  99 
 100 inline narrowKlass* oopDesc::compressed_klass_addr() {
 101   assert(UseCompressedKlassPointers, "only called by compressed klass pointers");
 102   return &_metadata._compressed_klass;
 103 }
 104 
 105 inline void oopDesc::set_klass(Klass* k) {
 106   // since klasses are promoted no store check is needed
 107   assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
 108   assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
 109   if (UseCompressedKlassPointers) {
 110     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
 111   } else {
 112     *klass_addr() = k;
 113   }
 114 }
 115 
 116 inline int oopDesc::klass_gap() const {
 117   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 118 }
 119 
 120 inline void oopDesc::set_klass_gap(int v) {
 121   if (UseCompressedKlassPointers) {
 122     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 123   }
 124 }
 125 
 126 inline void oopDesc::set_klass_to_list_ptr(oop k) {
 127   // This is only to be used during GC, for from-space objects, so no
 128   // barrier is needed.
 129   if (UseCompressedKlassPointers) {
 130     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
 131   } else {
 132     _metadata._klass = (Klass*)(address)k;
 133   }
 134 }
 135 
 136 inline oop oopDesc::list_ptr_from_klass() {
 137   // This is only to be used during GC, for from-space objects.
 138   if (UseCompressedKlassPointers) {
 139     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
 140   } else {
 141     // Special case for GC
 142     return (oop)(address)_metadata._klass;
 143   }
 144 }
 145 
 146 inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
 147 
 148 inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
 149 
 150 inline bool oopDesc::is_instance()           const { return klass()->oop_is_instance(); }
 151 inline bool oopDesc::is_instanceMirror()     const { return klass()->oop_is_instanceMirror(); }
 152 inline bool oopDesc::is_instanceRef()        const { return klass()->oop_is_instanceRef(); }
 153 inline bool oopDesc::is_array()              const { return klass()->oop_is_array(); }
 154 inline bool oopDesc::is_objArray()           const { return klass()->oop_is_objArray(); }
 155 inline bool oopDesc::is_typeArray()          const { return klass()->oop_is_typeArray(); }
 156 
 157 inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
 158 
 159 template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
 160 inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 161 inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
 162 inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
 163 inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
 164 inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
 165 inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
 166 inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
 167 inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
 168 inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
 169 inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
 170 
 171 
 172 // Functions for getting and setting oops within instance objects.
 173 // If the oops are compressed, the type passed to these overloaded functions
 174 // is narrowOop.  All functions are overloaded so they can be called by
 175 // template functions without conditionals (the compiler instantiates via
 176 // the right type and inlines the appopriate code).
 177 
 178 inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
 179 inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
 180 
 181 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 182 // offset from the heap base.  Saving the check for null can save instructions
 183 // in inner GC loops so these are separated.
 184 
 185 inline bool check_obj_alignment(oop obj) {
 186   return (intptr_t)obj % MinObjAlignmentInBytes == 0;
 187 }
 188 
 189 inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 190   assert(!is_null(v), "oop value can never be zero");
 191   assert(check_obj_alignment(v), "Address not aligned");
 192   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 193   address base = Universe::narrow_oop_base();
 194   int    shift = Universe::narrow_oop_shift();
 195   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 196   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 197   uint64_t result = pd >> shift;
 198   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 199   assert(decode_heap_oop(result) == v, "reversibility");
 200   return (narrowOop)result;
 201 }
 202 
 203 inline narrowOop oopDesc::encode_heap_oop(oop v) {
 204   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 205 }
 206 
 207 inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 208   assert(!is_null(v), "narrow oop value can never be zero");
 209   address base = Universe::narrow_oop_base();
 210   int    shift = Universe::narrow_oop_shift();
 211   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 212   assert(check_obj_alignment(result), err_msg("address not aligned: " PTR_FORMAT, (void*) result));
 213   return result;
 214 }
 215 
 216 inline oop oopDesc::decode_heap_oop(narrowOop v) {
 217   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 218 }
 219 
 220 inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
 221 inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
 222 
 223 // Load an oop out of the Java heap as is without decoding.
 224 // Called by GC to check for null before decoding.
 225 inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
 226 inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
 227 
 228 // Load and decode an oop out of the Java heap into a wide oop.
 229 inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
 230 inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 231   return decode_heap_oop_not_null(*p);
 232 }
 233 
 234 // Load and decode an oop out of the heap accepting null
 235 inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
 236 inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 237   return decode_heap_oop(*p);
 238 }
 239 
 240 // Store already encoded heap oop into the heap.
 241 inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
 242 inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
 243 
 244 // Encode and store a heap oop.
 245 inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 246   *p = encode_heap_oop_not_null(v);
 247 }
 248 inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 249 
 250 // Encode and store a heap oop allowing for null.
 251 inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 252   *p = encode_heap_oop(v);
 253 }
 254 inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 255 
 256 // Store heap oop as is for volatile fields.
 257 inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 258   OrderAccess::release_store_ptr(p, v);
 259 }
 260 inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
 261                                             narrowOop v) {
 262   OrderAccess::release_store(p, v);
 263 }
 264 
 265 inline void oopDesc::release_encode_store_heap_oop_not_null(
 266                                                 volatile narrowOop* p, oop v) {
 267   // heap oop is not pointer sized.
 268   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 269 }
 270 
 271 inline void oopDesc::release_encode_store_heap_oop_not_null(
 272                                                       volatile oop* p, oop v) {
 273   OrderAccess::release_store_ptr(p, v);
 274 }
 275 
 276 inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
 277                                                            oop v) {
 278   OrderAccess::release_store_ptr(p, v);
 279 }
 280 inline void oopDesc::release_encode_store_heap_oop(
 281                                                 volatile narrowOop* p, oop v) {
 282   OrderAccess::release_store(p, encode_heap_oop(v));
 283 }
 284 
 285 
 286 // These functions are only used to exchange oop fields in instances,
 287 // not headers.
 288 inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 289   if (UseCompressedOops) {
 290     // encode exchange value from oop to T
 291     narrowOop val = encode_heap_oop(exchange_value);
 292     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 293     // decode old from T to oop
 294     return decode_heap_oop(old);
 295   } else {
 296     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 297   }
 298 }
 299 
 300 // In order to put or get a field out of an instance, must first check
 301 // if the field has been compressed and uncompress it.
 302 inline oop oopDesc::obj_field(int offset) const {
 303   return UseCompressedOops ?
 304     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 305     load_decode_heap_oop(obj_field_addr<oop>(offset));
 306 }
 307 inline volatile oop oopDesc::obj_field_volatile(int offset) const {
 308   volatile oop value = obj_field(offset);
 309   OrderAccess::acquire();
 310   return value;
 311 }
 312 inline void oopDesc::obj_field_put(int offset, oop value) {
 313   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 314                       oop_store(obj_field_addr<oop>(offset),       value);
 315 }
 316 
 317 inline Metadata* oopDesc::metadata_field(int offset) const {
 318   return *metadata_field_addr(offset);
 319 }
 320 
 321 inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
 322   *metadata_field_addr(offset) = value;
 323 }
 324 
 325 inline void oopDesc::obj_field_put_raw(int offset, oop value) {
 326   UseCompressedOops ?
 327     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 328     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 329 }
 330 inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
 331   OrderAccess::release();
 332   obj_field_put(offset, value);
 333   OrderAccess::fence();
 334 }
 335 
 336 inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
 337 inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
 338 
 339 inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
 340 inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
 341 
 342 inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
 343 inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
 344 
 345 inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
 346 inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
 347 
 348 inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
 349 inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
 350 
 351 inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
 352 inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
 353 
 354 inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
 355 inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
 356 
 357 inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
 358 inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
 359 
 360 inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 361 inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 362 
 363 inline oop oopDesc::obj_field_acquire(int offset) const {
 364   return UseCompressedOops ?
 365              decode_heap_oop((narrowOop)
 366                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 367            : decode_heap_oop((oop)
 368                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 369 }
 370 inline void oopDesc::release_obj_field_put(int offset, oop value) {
 371   UseCompressedOops ?
 372     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 373     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 374 }
 375 
 376 inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 377 inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
 378 
 379 inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 380 inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
 381 
 382 inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
 383 inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
 384 
 385 inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
 386 inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
 387 
 388 inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 389 inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
 390 
 391 inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
 392 inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
 393 
 394 inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
 395 inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
 396 
 397 inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
 398 inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
 399 
 400 inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 401 inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 402 
 403 inline int oopDesc::size_given_klass(Klass* klass)  {
 404   int lh = klass->layout_helper();
 405   int s;
 406 
 407   // lh is now a value computed at class initialization that may hint
 408   // at the size.  For instances, this is positive and equal to the
 409   // size.  For arrays, this is negative and provides log2 of the
 410   // array element size.  For other oops, it is zero and thus requires
 411   // a virtual call.
 412   //
 413   // We go to all this trouble because the size computation is at the
 414   // heart of phase 2 of mark-compaction, and called for every object,
 415   // alive or dead.  So the speed here is equal in importance to the
 416   // speed of allocation.
 417 
 418   if (lh > Klass::_lh_neutral_value) {
 419     if (!Klass::layout_helper_needs_slow_path(lh)) {
 420       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 421     } else {
 422       s = klass->oop_size(this);
 423     }
 424   } else if (lh <= Klass::_lh_neutral_value) {
 425     // The most common case is instances; fall through if so.
 426     if (lh < Klass::_lh_neutral_value) {
 427       // Second most common case is arrays.  We have to fetch the
 428       // length of the array, shift (multiply) it appropriately,
 429       // up to wordSize, add the header, and align to object size.
 430       size_t size_in_bytes;
 431 #ifdef _M_IA64
 432       // The Windows Itanium Aug 2002 SDK hoists this load above
 433       // the check for s < 0.  An oop at the end of the heap will
 434       // cause an access violation if this load is performed on a non
 435       // array oop.  Making the reference volatile prohibits this.
 436       // (%%% please explain by what magic the length is actually fetched!)
 437       volatile int *array_length;
 438       array_length = (volatile int *)( (intptr_t)this +
 439                           arrayOopDesc::length_offset_in_bytes() );
 440       assert(array_length > 0, "Integer arithmetic problem somewhere");
 441       // Put into size_t to avoid overflow.
 442       size_in_bytes = (size_t) array_length;
 443       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 444 #else
 445       size_t array_length = (size_t) ((arrayOop)this)->length();
 446       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 447 #endif
 448       size_in_bytes += Klass::layout_helper_header_size(lh);
 449 
 450       // This code could be simplified, but by keeping array_header_in_bytes
 451       // in units of bytes and doing it this way we can round up just once,
 452       // skipping the intermediate round to HeapWordSize.  Cast the result
 453       // of round_to to size_t to guarantee unsigned division == right shift.
 454       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 455         HeapWordSize);
 456 
 457       // UseParNewGC, UseParallelGC and UseG1GC can change the length field
 458       // of an "old copy" of an object array in the young gen so it indicates
 459       // the grey portion of an already copied array. This will cause the first
 460       // disjunct below to fail if the two comparands are computed across such
 461       // a concurrent change.
 462       // UseParNewGC also runs with promotion labs (which look like int
 463       // filler arrays) which are subject to changing their declared size
 464       // when finally retiring a PLAB; this also can cause the first disjunct
 465       // to fail for another worker thread that is concurrently walking the block
 466       // offset table. Both these invariant failures are benign for their
 467       // current uses; we relax the assertion checking to cover these two cases below:
 468       //     is_objArray() && is_forwarded()   // covers first scenario above
 469       //  || is_typeArray()                    // covers second scenario above
 470       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 471       // technique, we will need to suitably modify the assertion.
 472       assert((s == klass->oop_size(this)) ||
 473              (Universe::heap()->is_gc_active() &&
 474               ((is_typeArray() && UseParNewGC) ||
 475                (is_objArray()  && is_forwarded() && (UseParNewGC || UseParallelGC || UseG1GC)))),
 476              "wrong array object size");
 477     } else {
 478       // Must be zero, so bite the bullet and take the virtual call.
 479       s = klass->oop_size(this);
 480     }
 481   }
 482 
 483   assert(s % MinObjAlignment == 0, "alignment check");
 484   assert(s > 0, "Bad size calculated");
 485   return s;
 486 }
 487 
 488 
 489 inline int oopDesc::size()  {
 490   return size_given_klass(klass());
 491 }
 492 
 493 inline void update_barrier_set(void* p, oop v) {
 494   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
 495   oopDesc::bs()->write_ref_field(p, v);
 496 }
 497 
 498 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
 499   oopDesc::bs()->write_ref_field_pre(p, v);
 500 }
 501 
 502 template <class T> inline void oop_store(T* p, oop v) {
 503   if (always_do_update_barrier) {
 504     oop_store((volatile T*)p, v);
 505   } else {
 506     update_barrier_set_pre(p, v);
 507     oopDesc::encode_store_heap_oop(p, v);
 508     update_barrier_set((void*)p, v);  // cast away type
 509   }
 510 }
 511 
 512 template <class T> inline void oop_store(volatile T* p, oop v) {
 513   update_barrier_set_pre((T*)p, v);   // cast away volatile
 514   // Used by release_obj_field_put, so use release_store_ptr.
 515   oopDesc::release_encode_store_heap_oop(p, v);
 516   update_barrier_set((void*)p, v);    // cast away type
 517 }
 518 
 519 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
 520 // (without having to remember the function name this calls).
 521 inline void oop_store_raw(HeapWord* addr, oop value) {
 522   if (UseCompressedOops) {
 523     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
 524   } else {
 525     oopDesc::encode_store_heap_oop((oop*)addr, value);
 526   }
 527 }
 528 
 529 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 530                                                 volatile HeapWord *dest,
 531                                                 oop compare_value,
 532                                                 bool prebarrier) {
 533   if (UseCompressedOops) {
 534     if (prebarrier) {
 535       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 536     }
 537     // encode exchange and compare value from oop to T
 538     narrowOop val = encode_heap_oop(exchange_value);
 539     narrowOop cmp = encode_heap_oop(compare_value);
 540 
 541     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 542     // decode old from T to oop
 543     return decode_heap_oop(old);
 544   } else {
 545     if (prebarrier) {
 546       update_barrier_set_pre((oop*)dest, exchange_value);
 547     }
 548     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 549   }
 550 }
 551 
 552 // Used only for markSweep, scavenging
 553 inline bool oopDesc::is_gc_marked() const {
 554   return mark()->is_marked();
 555 }
 556 
 557 inline bool oopDesc::is_locked() const {
 558   return mark()->is_locked();
 559 }
 560 
 561 inline bool oopDesc::is_unlocked() const {
 562   return mark()->is_unlocked();
 563 }
 564 
 565 inline bool oopDesc::has_bias_pattern() const {
 566   return mark()->has_bias_pattern();
 567 }
 568 
 569 
 570 // used only for asserts
 571 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
 572   oop obj = (oop) this;
 573   if (!check_obj_alignment(obj)) return false;
 574   if (!Universe::heap()->is_in_reserved(obj)) return false;
 575   // obj is aligned and accessible in heap
 576   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 577 
 578   // Header verification: the mark is typically non-NULL. If we're
 579   // at a safepoint, it must not be null.
 580   // Outside of a safepoint, the header could be changing (for example,
 581   // another thread could be inflating a lock on this object).
 582   if (ignore_mark_word) {
 583     return true;
 584   }
 585   if (mark() != NULL) {
 586     return true;
 587   }
 588   return !SafepointSynchronize::is_at_safepoint();
 589 }
 590 
 591 
 592 // used only for asserts
 593 inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 594   return this == NULL ? true : is_oop(ignore_mark_word);
 595 }
 596 
 597 #ifndef PRODUCT
 598 // used only for asserts
 599 inline bool oopDesc::is_unlocked_oop() const {
 600   if (!Universe::heap()->is_in_reserved(this)) return false;
 601   return mark()->is_unlocked();
 602 }
 603 #endif // PRODUCT
 604 
 605 inline void oopDesc::follow_contents(void) {
 606   assert (is_gc_marked(), "should be marked");
 607   klass()->oop_follow_contents(this);
 608 }
 609 
 610 // Used by scavengers
 611 
 612 inline bool oopDesc::is_forwarded() const {
 613   // The extra heap check is needed since the obj might be locked, in which case the
 614   // mark would point to a stack location and have the sentinel bit cleared
 615   return mark()->is_marked();
 616 }
 617 
 618 // Used by scavengers
 619 inline void oopDesc::forward_to(oop p) {
 620   assert(check_obj_alignment(p),
 621          "forwarding to something not aligned");
 622   assert(Universe::heap()->is_in_reserved(p),
 623          "forwarding to something not in heap");
 624   markOop m = markOopDesc::encode_pointer_as_mark(p);
 625   assert(m->decode_pointer() == p, "encoding must be reversable");
 626   set_mark(m);
 627 }
 628 
 629 // Used by parallel scavengers
 630 inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
 631   assert(check_obj_alignment(p),
 632          "forwarding to something not aligned");
 633   assert(Universe::heap()->is_in_reserved(p),
 634          "forwarding to something not in heap");
 635   markOop m = markOopDesc::encode_pointer_as_mark(p);
 636   assert(m->decode_pointer() == p, "encoding must be reversable");
 637   return cas_set_mark(m, compare) == compare;
 638 }
 639 
 640 // Note that the forwardee is not the same thing as the displaced_mark.
 641 // The forwardee is used when copying during scavenge and mark-sweep.
 642 // It does need to clear the low two locking- and GC-related bits.
 643 inline oop oopDesc::forwardee() const {
 644   return (oop) mark()->decode_pointer();
 645 }
 646 
 647 inline bool oopDesc::has_displaced_mark() const {
 648   return mark()->has_displaced_mark_helper();
 649 }
 650 
 651 inline markOop oopDesc::displaced_mark() const {
 652   return mark()->displaced_mark_helper();
 653 }
 654 
 655 inline void oopDesc::set_displaced_mark(markOop m) {
 656   mark()->set_displaced_mark_helper(m);
 657 }
 658 
 659 // The following method needs to be MT safe.
 660 inline uint oopDesc::age() const {
 661   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 662   if (has_displaced_mark()) {
 663     return displaced_mark()->age();
 664   } else {
 665     return mark()->age();
 666   }
 667 }
 668 
 669 inline void oopDesc::incr_age() {
 670   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 671   if (has_displaced_mark()) {
 672     set_displaced_mark(displaced_mark()->incr_age());
 673   } else {
 674     set_mark(mark()->incr_age());
 675   }
 676 }
 677 
 678 
 679 inline intptr_t oopDesc::identity_hash() {
 680   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 681   // Note: The mark must be read into local variable to avoid concurrent updates.
 682   markOop mrk = mark();
 683   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 684     return mrk->hash();
 685   } else if (mrk->is_marked()) {
 686     return mrk->hash();
 687   } else {
 688     return slow_identity_hash();
 689   }
 690 }
 691 
 692 inline int oopDesc::adjust_pointers() {
 693   debug_only(int check_size = size());
 694   int s = klass()->oop_adjust_pointers(this);
 695   assert(s == check_size, "should be the same");
 696   return s;
 697 }
 698 
 699 #define OOP_ITERATE_DEFN(OopClosureType, nv_suffix)                        \
 700                                                                            \
 701 inline int oopDesc::oop_iterate(OopClosureType* blk) {                     \
 702   SpecializationStats::record_call();                                      \
 703   return klass()->oop_oop_iterate##nv_suffix(this, blk);               \
 704 }                                                                          \
 705                                                                            \
 706 inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {       \
 707   SpecializationStats::record_call();                                      \
 708   return klass()->oop_oop_iterate##nv_suffix##_m(this, blk, mr);       \
 709 }
 710 
 711 
 712 inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 713   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 714   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 715   NoHeaderExtendedOopClosure cl(blk);
 716   return oop_iterate(&cl);
 717 }
 718 
 719 inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 720   NoHeaderExtendedOopClosure cl(blk);
 721   return oop_iterate(&cl, mr);
 722 }
 723 
 724 ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_DEFN)
 725 ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_DEFN)
 726 
 727 #if INCLUDE_ALL_GCS
 728 #define OOP_ITERATE_BACKWARDS_DEFN(OopClosureType, nv_suffix)              \
 729                                                                            \
 730 inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) {           \
 731   SpecializationStats::record_call();                                      \
 732   return klass()->oop_oop_iterate_backwards##nv_suffix(this, blk);     \
 733 }
 734 
 735 ALL_OOP_OOP_ITERATE_CLOSURES_1(OOP_ITERATE_BACKWARDS_DEFN)
 736 ALL_OOP_OOP_ITERATE_CLOSURES_2(OOP_ITERATE_BACKWARDS_DEFN)
 737 #endif // INCLUDE_ALL_GCS
 738 
 739 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP