1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.marlin;
  27 
  28 import static com.sun.marlin.OffHeapArray.SIZE_INT;
  29 import jdk.internal.misc.Unsafe;
  30 
  31 public final class DRenderer implements DMarlinRenderer, MarlinConst {
  32 
  33     static final boolean DISABLE_RENDER = false;
  34 
  35     private static final int ALL_BUT_LSB = 0xFFFFFFFE;
  36     private static final int ERR_STEP_MAX = 0x7FFFFFFF; // = 2^31 - 1
  37 
  38     private static final double POWER_2_TO_32 = 0x1.0p32d;
  39 
  40     // use double to make tosubpix methods faster (no int to double conversion)
  41     static final double SUBPIXEL_SCALE_X = SUBPIXEL_POSITIONS_X;
  42     static final double SUBPIXEL_SCALE_Y = SUBPIXEL_POSITIONS_Y;
  43     static final int SUBPIXEL_MASK_X = SUBPIXEL_POSITIONS_X - 1;
  44     static final int SUBPIXEL_MASK_Y = SUBPIXEL_POSITIONS_Y - 1;
  45 
  46     // common to all types of input path segments.
  47     // OFFSET as bytes
  48     // only integer values:
  49     public static final long OFF_CURX_OR  = 0;
  50     public static final long OFF_ERROR    = OFF_CURX_OR  + SIZE_INT;
  51     public static final long OFF_BUMP_X   = OFF_ERROR    + SIZE_INT;
  52     public static final long OFF_BUMP_ERR = OFF_BUMP_X   + SIZE_INT;
  53     public static final long OFF_NEXT     = OFF_BUMP_ERR + SIZE_INT;
  54     public static final long OFF_YMAX     = OFF_NEXT     + SIZE_INT;
  55 
  56     // size of one edge in bytes
  57     public static final int SIZEOF_EDGE_BYTES = (int)(OFF_YMAX + SIZE_INT);
  58 
  59     // curve break into lines
  60     // cubic error in subpixels to decrement step
  61     private static final double CUB_DEC_ERR_SUBPIX
  62         = MarlinProperties.getCubicDecD2() * (NORM_SUBPIXELS / 8.0d); // 1 pixel
  63     // cubic error in subpixels to increment step
  64     private static final double CUB_INC_ERR_SUBPIX
  65         = MarlinProperties.getCubicIncD1() * (NORM_SUBPIXELS / 8.0d); // 0.4 pixel
  66 
  67     // TestNonAARasterization (JDK-8170879): cubics
  68     // bad paths (59294/100000 == 59,29%, 94335 bad pixels (avg = 1,59), 3966 warnings (avg = 0,07)
  69 
  70     // cubic bind length to decrement step
  71     public static final double CUB_DEC_BND
  72         = 8.0d * CUB_DEC_ERR_SUBPIX;
  73     // cubic bind length to increment step
  74     public static final double CUB_INC_BND
  75         = 8.0d * CUB_INC_ERR_SUBPIX;
  76 
  77     // cubic countlg
  78     public static final int CUB_COUNT_LG = 2;
  79     // cubic count = 2^countlg
  80     private static final int CUB_COUNT = 1 << CUB_COUNT_LG;
  81     // cubic count^2 = 4^countlg
  82     private static final int CUB_COUNT_2 = 1 << (2 * CUB_COUNT_LG);
  83     // cubic count^3 = 8^countlg
  84     private static final int CUB_COUNT_3 = 1 << (3 * CUB_COUNT_LG);
  85     // cubic dt = 1 / count
  86     private static final double CUB_INV_COUNT = 1.0d / CUB_COUNT;
  87     // cubic dt^2 = 1 / count^2 = 1 / 4^countlg
  88     private static final double CUB_INV_COUNT_2 = 1.0d / CUB_COUNT_2;
  89     // cubic dt^3 = 1 / count^3 = 1 / 8^countlg
  90     private static final double CUB_INV_COUNT_3 = 1.0d / CUB_COUNT_3;
  91 
  92     // quad break into lines
  93     // quadratic error in subpixels
  94     private static final double QUAD_DEC_ERR_SUBPIX
  95         = MarlinProperties.getQuadDecD2() * (NORM_SUBPIXELS / 8.0d); // 0.5 pixel
  96 
  97     // TestNonAARasterization (JDK-8170879): quads
  98     // bad paths (62916/100000 == 62,92%, 103818 bad pixels (avg = 1,65), 6514 warnings (avg = 0,10)
  99 
 100     // quadratic bind length to decrement step
 101     public static final double QUAD_DEC_BND
 102         = 8.0d * QUAD_DEC_ERR_SUBPIX;
 103 
 104 //////////////////////////////////////////////////////////////////////////////
 105 //  SCAN LINE
 106 //////////////////////////////////////////////////////////////////////////////
 107     // crossings ie subpixel edge x coordinates
 108     private int[] crossings;
 109     // auxiliary storage for crossings (merge sort)
 110     private int[] aux_crossings;
 111 
 112     // indices into the segment pointer lists. They indicate the "active"
 113     // sublist in the segment lists (the portion of the list that contains
 114     // all the segments that cross the next scan line).
 115     private int edgeCount;
 116     private int[] edgePtrs;
 117     // auxiliary storage for edge pointers (merge sort)
 118     private int[] aux_edgePtrs;
 119 
 120     // max used for both edgePtrs and crossings (stats only)
 121     private int activeEdgeMaxUsed;
 122 
 123     // crossings ref (dirty)
 124     private final IntArrayCache.Reference crossings_ref;
 125     // edgePtrs ref (dirty)
 126     private final IntArrayCache.Reference edgePtrs_ref;
 127     // merge sort initial arrays (large enough to satisfy most usages) (1024)
 128     // aux_crossings ref (dirty)
 129     private final IntArrayCache.Reference aux_crossings_ref;
 130     // aux_edgePtrs ref (dirty)
 131     private final IntArrayCache.Reference aux_edgePtrs_ref;
 132 
 133 //////////////////////////////////////////////////////////////////////////////
 134 //  EDGE LIST
 135 //////////////////////////////////////////////////////////////////////////////
 136     private int edgeMinY = Integer.MAX_VALUE;
 137     private int edgeMaxY = Integer.MIN_VALUE;
 138     private double edgeMinX = Double.POSITIVE_INFINITY;
 139     private double edgeMaxX = Double.NEGATIVE_INFINITY;
 140 
 141     // edges [ints] stored in off-heap memory
 142     private final OffHeapArray edges;
 143 
 144     private int[] edgeBuckets;
 145     private int[] edgeBucketCounts; // 2*newedges + (1 if pruning needed)
 146     // used range for edgeBuckets / edgeBucketCounts
 147     private int buckets_minY;
 148     private int buckets_maxY;
 149 
 150     // edgeBuckets ref (clean)
 151     private final IntArrayCache.Reference edgeBuckets_ref;
 152     // edgeBucketCounts ref (clean)
 153     private final IntArrayCache.Reference edgeBucketCounts_ref;
 154 
 155     boolean useRLE = false;
 156 
 157     // Flattens using adaptive forward differencing. This only carries out
 158     // one iteration of the AFD loop. All it does is update AFD variables (i.e.
 159     // X0, Y0, D*[X|Y], COUNT; not variables used for computing scanline crossings).
 160     private void quadBreakIntoLinesAndAdd(double x0, double y0,
 161                                           final DCurve c,
 162                                           final double x2, final double y2)
 163     {
 164         int count = 1; // dt = 1 / count
 165 
 166         // maximum(ddX|Y) = norm(dbx, dby) * dt^2 (= 1)
 167         double maxDD = Math.abs(c.dbx) + Math.abs(c.dby);
 168 
 169         final double _DEC_BND = QUAD_DEC_BND;
 170 
 171         while (maxDD >= _DEC_BND) {
 172             // divide step by half:
 173             maxDD /= 4.0d; // error divided by 2^2 = 4
 174 
 175             count <<= 1;
 176             if (DO_STATS) {
 177                 rdrCtx.stats.stat_rdr_quadBreak_dec.add(count);
 178             }
 179         }
 180 
 181         int nL = 0; // line count
 182         if (count > 1) {
 183             final double icount = 1.0d / count; // dt
 184             final double icount2 = icount * icount; // dt^2
 185 
 186             final double ddx = c.dbx * icount2;
 187             final double ddy = c.dby * icount2;
 188             double dx = c.bx * icount2 + c.cx * icount;
 189             double dy = c.by * icount2 + c.cy * icount;
 190 
 191             double x1, y1;
 192 
 193             while (--count > 0) {
 194                 x1 = x0 + dx;
 195                 dx += ddx;
 196                 y1 = y0 + dy;
 197                 dy += ddy;
 198 
 199                 addLine(x0, y0, x1, y1);
 200 
 201                 if (DO_STATS) { nL++; }
 202                 x0 = x1;
 203                 y0 = y1;
 204             }
 205         }
 206         addLine(x0, y0, x2, y2);
 207 
 208         if (DO_STATS) {
 209             rdrCtx.stats.stat_rdr_quadBreak.add(nL + 1);
 210         }
 211     }
 212 
 213     // x0, y0 and x3,y3 are the endpoints of the curve. We could compute these
 214     // using c.xat(0),c.yat(0) and c.xat(1),c.yat(1), but this might introduce
 215     // numerical errors, and our callers already have the exact values.
 216     // Another alternative would be to pass all the control points, and call
 217     // c.set here, but then too many numbers are passed around.
 218     private void curveBreakIntoLinesAndAdd(double x0, double y0,
 219                                            final DCurve c,
 220                                            final double x3, final double y3)
 221     {
 222         int count           = CUB_COUNT;
 223         final double icount  = CUB_INV_COUNT;   // dt
 224         final double icount2 = CUB_INV_COUNT_2; // dt^2
 225         final double icount3 = CUB_INV_COUNT_3; // dt^3
 226 
 227         // the dx and dy refer to forward differencing variables, not the last
 228         // coefficients of the "points" polynomial
 229         double dddx, dddy, ddx, ddy, dx, dy;
 230         dddx = 2.0d * c.dax * icount3;
 231         dddy = 2.0d * c.day * icount3;
 232         ddx = dddx + c.dbx * icount2;
 233         ddy = dddy + c.dby * icount2;
 234         dx = c.ax * icount3 + c.bx * icount2 + c.cx * icount;
 235         dy = c.ay * icount3 + c.by * icount2 + c.cy * icount;
 236 
 237         // we use x0, y0 to walk the line
 238         double x1 = x0, y1 = y0;
 239         int nL = 0; // line count
 240 
 241         final double _DEC_BND = CUB_DEC_BND;
 242         final double _INC_BND = CUB_INC_BND;
 243 
 244         while (count > 0) {
 245             // divide step by half:
 246             while (Math.abs(ddx) + Math.abs(ddy) >= _DEC_BND) {
 247                 dddx /= 8.0d;
 248                 dddy /= 8.0d;
 249                 ddx = ddx / 4.0d - dddx;
 250                 ddy = ddy / 4.0d - dddy;
 251                 dx = (dx - ddx) / 2.0d;
 252                 dy = (dy - ddy) / 2.0d;
 253 
 254                 count <<= 1;
 255                 if (DO_STATS) {
 256                     rdrCtx.stats.stat_rdr_curveBreak_dec.add(count);
 257                 }
 258             }
 259 
 260             // double step:
 261             // can only do this on even "count" values, because we must divide count by 2
 262             while (count % 2 == 0
 263                    && Math.abs(dx) + Math.abs(dy) <= _INC_BND)
 264             {
 265                 dx = 2.0d * dx + ddx;
 266                 dy = 2.0d * dy + ddy;
 267                 ddx = 4.0d * (ddx + dddx);
 268                 ddy = 4.0d * (ddy + dddy);
 269                 dddx *= 8.0d;
 270                 dddy *= 8.0d;
 271 
 272                 count >>= 1;
 273                 if (DO_STATS) {
 274                     rdrCtx.stats.stat_rdr_curveBreak_inc.add(count);
 275                 }
 276             }
 277             if (--count > 0) {
 278                 x1 += dx;
 279                 dx += ddx;
 280                 ddx += dddx;
 281                 y1 += dy;
 282                 dy += ddy;
 283                 ddy += dddy;
 284             } else {
 285                 x1 = x3;
 286                 y1 = y3;
 287             }
 288 
 289             addLine(x0, y0, x1, y1);
 290 
 291             if (DO_STATS) { nL++; }
 292             x0 = x1;
 293             y0 = y1;
 294         }
 295         if (DO_STATS) {
 296             rdrCtx.stats.stat_rdr_curveBreak.add(nL);
 297         }
 298     }
 299 
 300     private void addLine(double x1, double y1, double x2, double y2) {
 301         if (DO_MONITORS) {
 302             rdrCtx.stats.mon_rdr_addLine.start();
 303         }
 304         if (DO_STATS) {
 305             rdrCtx.stats.stat_rdr_addLine.add(1);
 306         }
 307         int or = 1; // orientation of the line. 1 if y increases, 0 otherwise.
 308         if (y2 < y1) {
 309             or = 0;
 310             double tmp = y2;
 311             y2 = y1;
 312             y1 = tmp;
 313             tmp = x2;
 314             x2 = x1;
 315             x1 = tmp;
 316         }
 317 
 318         // convert subpixel coordinates [double] into pixel positions [int]
 319 
 320         // The index of the pixel that holds the next HPC is at ceil(trueY - 0.5)
 321         // Since y1 and y2 are biased by -0.5 in tosubpixy(), this is simply
 322         // ceil(y1) or ceil(y2)
 323         // upper integer (inclusive)
 324         final int firstCrossing = FloatMath.max(FloatMath.ceil_int(y1), boundsMinY);
 325 
 326         // note: use boundsMaxY (last Y exclusive) to compute correct coverage
 327         // upper integer (exclusive)
 328         final int lastCrossing  = FloatMath.min(FloatMath.ceil_int(y2), boundsMaxY);
 329 
 330         /* skip horizontal lines in pixel space and clip edges
 331            out of y range [boundsMinY; boundsMaxY] */
 332         if (firstCrossing >= lastCrossing) {
 333             if (DO_MONITORS) {
 334                 rdrCtx.stats.mon_rdr_addLine.stop();
 335             }
 336             if (DO_STATS) {
 337                 rdrCtx.stats.stat_rdr_addLine_skip.add(1);
 338             }
 339             return;
 340         }
 341 
 342         // edge min/max X/Y are in subpixel space (half-open interval):
 343         // note: Use integer crossings to ensure consistent range within
 344         // edgeBuckets / edgeBucketCounts arrays in case of NaN values (int = 0)
 345         if (firstCrossing < edgeMinY) {
 346             edgeMinY = firstCrossing;
 347         }
 348         if (lastCrossing > edgeMaxY) {
 349             edgeMaxY = lastCrossing;
 350         }
 351 
 352         final double slope = (x1 - x2) / (y1 - y2);
 353 
 354         if (slope >= 0.0d) { // <==> x1 < x2
 355             if (x1 < edgeMinX) {
 356                 edgeMinX = x1;
 357             }
 358             if (x2 > edgeMaxX) {
 359                 edgeMaxX = x2;
 360             }
 361         } else {
 362             if (x2 < edgeMinX) {
 363                 edgeMinX = x2;
 364             }
 365             if (x1 > edgeMaxX) {
 366                 edgeMaxX = x1;
 367             }
 368         }
 369 
 370         // local variables for performance:
 371         final int _SIZEOF_EDGE_BYTES = SIZEOF_EDGE_BYTES;
 372 
 373         final OffHeapArray _edges = edges;
 374 
 375         // get free pointer (ie length in bytes)
 376         final int edgePtr = _edges.used;
 377 
 378         // use substraction to avoid integer overflow:
 379         if (_edges.length - edgePtr < _SIZEOF_EDGE_BYTES) {
 380             // suppose _edges.length > _SIZEOF_EDGE_BYTES
 381             // so doubling size is enough to add needed bytes
 382             // note: throw IOOB if neededSize > 2Gb:
 383             final long edgeNewSize = ArrayCacheConst.getNewLargeSize(
 384                                         _edges.length,
 385                                         edgePtr + _SIZEOF_EDGE_BYTES);
 386 
 387             if (DO_STATS) {
 388                 rdrCtx.stats.stat_rdr_edges_resizes.add(edgeNewSize);
 389             }
 390             _edges.resize(edgeNewSize);
 391         }
 392 
 393 
 394         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 395         final long SIZE_INT = 4L;
 396         long addr   = _edges.address + edgePtr;
 397 
 398         // The x value must be bumped up to its position at the next HPC we will evaluate.
 399         // "firstcrossing" is the (sub)pixel number where the next crossing occurs
 400         // thus, the actual coordinate of the next HPC is "firstcrossing + 0.5"
 401         // so the Y distance we cover is "firstcrossing + 0.5 - trueY".
 402         // Note that since y1 (and y2) are already biased by -0.5 in tosubpixy(), we have
 403         // y1 = trueY - 0.5
 404         // trueY = y1 + 0.5
 405         // firstcrossing + 0.5 - trueY = firstcrossing + 0.5 - (y1 + 0.5)
 406         //                             = firstcrossing - y1
 407         // The x coordinate at that HPC is then:
 408         // x1_intercept = x1 + (firstcrossing - y1) * slope
 409         // The next VPC is then given by:
 410         // VPC index = ceil(x1_intercept - 0.5), or alternately
 411         // VPC index = floor(x1_intercept - 0.5 + 1 - epsilon)
 412         // epsilon is hard to pin down in floating point, but easy in fixed point, so if
 413         // we convert to fixed point then these operations get easier:
 414         // long x1_fixed = x1_intercept * 2^32;  (fixed point 32.32 format)
 415         // curx = next VPC = fixed_floor(x1_fixed - 2^31 + 2^32 - 1)
 416         //                 = fixed_floor(x1_fixed + 2^31 - 1)
 417         //                 = fixed_floor(x1_fixed + 0x7FFFFFFF)
 418         // and error       = fixed_fract(x1_fixed + 0x7FFFFFFF)
 419         final double x1_intercept = x1 + (firstCrossing - y1) * slope;
 420 
 421         // inlined scalb(x1_intercept, 32):
 422         final long x1_fixed_biased = ((long) (POWER_2_TO_32 * x1_intercept))
 423                                      + 0x7FFFFFFFL;
 424         // curx:
 425         // last bit corresponds to the orientation
 426         _unsafe.putInt(addr, (((int) (x1_fixed_biased >> 31L)) & ALL_BUT_LSB) | or);
 427         addr += SIZE_INT;
 428         _unsafe.putInt(addr,  ((int)  x1_fixed_biased) >>> 1);
 429         addr += SIZE_INT;
 430 
 431         // inlined scalb(slope, 32):
 432         final long slope_fixed = (long) (POWER_2_TO_32 * slope);
 433 
 434         // last bit set to 0 to keep orientation:
 435         _unsafe.putInt(addr, (((int) (slope_fixed >> 31L)) & ALL_BUT_LSB));
 436         addr += SIZE_INT;
 437         _unsafe.putInt(addr,  ((int)  slope_fixed) >>> 1);
 438         addr += SIZE_INT;
 439 
 440         final int[] _edgeBuckets      = edgeBuckets;
 441         final int[] _edgeBucketCounts = edgeBucketCounts;
 442 
 443         final int _boundsMinY = boundsMinY;
 444 
 445         // each bucket is a linked list. this method adds ptr to the
 446         // start of the "bucket"th linked list.
 447         final int bucketIdx = firstCrossing - _boundsMinY;
 448 
 449         // pointer from bucket
 450         _unsafe.putInt(addr, _edgeBuckets[bucketIdx]);
 451         addr += SIZE_INT;
 452         // y max (exclusive)
 453         _unsafe.putInt(addr,  lastCrossing);
 454 
 455         // Update buckets:
 456         // directly the edge struct "pointer"
 457         _edgeBuckets[bucketIdx]       = edgePtr;
 458         _edgeBucketCounts[bucketIdx] += 2; // 1 << 1
 459         // last bit means edge end
 460         _edgeBucketCounts[lastCrossing - _boundsMinY] |= 0x1;
 461 
 462         // update free pointer (ie length in bytes)
 463         _edges.used += _SIZEOF_EDGE_BYTES;
 464 
 465         if (DO_MONITORS) {
 466             rdrCtx.stats.mon_rdr_addLine.stop();
 467         }
 468     }
 469 
 470 // END EDGE LIST
 471 //////////////////////////////////////////////////////////////////////////////
 472 
 473     // Bounds of the drawing region, at subpixel precision.
 474     private int boundsMinX, boundsMinY, boundsMaxX, boundsMaxY;
 475 
 476     // Current winding rule
 477     private int windingRule;
 478 
 479     // Current drawing position, i.e., final point of last segment
 480     private double x0, y0;
 481 
 482     // Position of most recent 'moveTo' command
 483     private double sx0, sy0;
 484 
 485     // per-thread renderer context
 486     final DRendererContext rdrCtx;
 487     // dirty curve
 488     private final DCurve curve;
 489 
 490     // clean alpha array (zero filled)
 491     private int[] alphaLine;
 492 
 493     // alphaLine ref (clean)
 494     private final IntArrayCache.Reference alphaLine_ref;
 495 
 496     private boolean enableBlkFlags = false;
 497     private boolean prevUseBlkFlags = false;
 498 
 499     /* block flags (0|1) */
 500     private int[] blkFlags;
 501 
 502     // blkFlags ref (clean)
 503     private final IntArrayCache.Reference blkFlags_ref;
 504 
 505     DRenderer(final DRendererContext rdrCtx) {
 506         this.rdrCtx = rdrCtx;
 507         this.curve = rdrCtx.curve;
 508 
 509         this.edges = rdrCtx.rdrMem.edges;
 510 
 511         edgeBuckets_ref      = rdrCtx.rdrMem.edgeBuckets_ref;
 512         edgeBucketCounts_ref = rdrCtx.rdrMem.edgeBucketCounts_ref;
 513 
 514         edgeBuckets      = edgeBuckets_ref.initial;
 515         edgeBucketCounts = edgeBucketCounts_ref.initial;
 516 
 517         alphaLine_ref = rdrCtx.rdrMem.alphaLine_ref;
 518         alphaLine     = alphaLine_ref.initial;
 519 
 520         crossings_ref     = rdrCtx.rdrMem.crossings_ref;
 521         aux_crossings_ref = rdrCtx.rdrMem.aux_crossings_ref;
 522         edgePtrs_ref      = rdrCtx.rdrMem.edgePtrs_ref;
 523         aux_edgePtrs_ref  = rdrCtx.rdrMem.aux_edgePtrs_ref;
 524 
 525         crossings     = crossings_ref.initial;
 526         aux_crossings = aux_crossings_ref.initial;
 527         edgePtrs      = edgePtrs_ref.initial;
 528         aux_edgePtrs  = aux_edgePtrs_ref.initial;
 529 
 530         blkFlags_ref = rdrCtx.rdrMem.blkFlags_ref;
 531         blkFlags     = blkFlags_ref.initial;
 532     }
 533 
 534     public DRenderer init(final int pix_boundsX, final int pix_boundsY,
 535                   final int pix_boundsWidth, final int pix_boundsHeight,
 536                   final int windingRule)
 537     {
 538         this.windingRule = windingRule;
 539 
 540         // bounds as half-open intervals: minX <= x < maxX and minY <= y < maxY
 541         this.boundsMinX =  pix_boundsX << SUBPIXEL_LG_POSITIONS_X;
 542         this.boundsMaxX =
 543             (pix_boundsX + pix_boundsWidth) << SUBPIXEL_LG_POSITIONS_X;
 544         this.boundsMinY =  pix_boundsY << SUBPIXEL_LG_POSITIONS_Y;
 545         this.boundsMaxY =
 546             (pix_boundsY + pix_boundsHeight) << SUBPIXEL_LG_POSITIONS_Y;
 547 
 548         if (DO_LOG_BOUNDS) {
 549             MarlinUtils.logInfo("boundsXY = [" + boundsMinX + " ... "
 550                                 + boundsMaxX + "[ [" + boundsMinY + " ... "
 551                                 + boundsMaxY + "[");
 552         }
 553 
 554         // see addLine: ceil(boundsMaxY) => boundsMaxY + 1
 555         // +1 for edgeBucketCounts
 556         final int edgeBucketsLength = (boundsMaxY - boundsMinY) + 1;
 557 
 558         if (edgeBucketsLength > INITIAL_BUCKET_ARRAY) {
 559             if (DO_STATS) {
 560                 rdrCtx.stats.stat_array_renderer_edgeBuckets
 561                     .add(edgeBucketsLength);
 562                 rdrCtx.stats.stat_array_renderer_edgeBucketCounts
 563                     .add(edgeBucketsLength);
 564             }
 565             edgeBuckets = edgeBuckets_ref.getArray(edgeBucketsLength);
 566             edgeBucketCounts = edgeBucketCounts_ref.getArray(edgeBucketsLength);
 567         }
 568 
 569         edgeMinY = Integer.MAX_VALUE;
 570         edgeMaxY = Integer.MIN_VALUE;
 571         edgeMinX = Double.POSITIVE_INFINITY;
 572         edgeMaxX = Double.NEGATIVE_INFINITY;
 573 
 574         // reset used mark:
 575         edgeCount = 0;
 576         activeEdgeMaxUsed = 0;
 577         edges.used = 0;
 578 
 579         // reset bbox:
 580         bboxX0 = 0;
 581         bboxX1 = 0;
 582 
 583         return this; // fluent API
 584     }
 585 
 586     /**
 587      * Disposes this renderer and recycle it clean up before reusing this instance
 588      */
 589     public void dispose() {
 590         if (DO_STATS) {
 591             rdrCtx.stats.stat_rdr_activeEdges.add(activeEdgeMaxUsed);
 592             rdrCtx.stats.stat_rdr_edges.add(edges.used);
 593             rdrCtx.stats.stat_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 594             rdrCtx.stats.hist_rdr_edges_count.add(edges.used / SIZEOF_EDGE_BYTES);
 595             rdrCtx.stats.totalOffHeap += edges.length;
 596         }
 597         // Return arrays:
 598         crossings = crossings_ref.putArray(crossings);
 599         aux_crossings = aux_crossings_ref.putArray(aux_crossings);
 600 
 601         edgePtrs = edgePtrs_ref.putArray(edgePtrs);
 602         aux_edgePtrs = aux_edgePtrs_ref.putArray(aux_edgePtrs);
 603 
 604         alphaLine = alphaLine_ref.putArray(alphaLine, 0, 0); // already zero filled
 605         blkFlags  = blkFlags_ref.putArray(blkFlags, 0, 0); // already zero filled
 606 
 607         if (edgeMinY != Integer.MAX_VALUE) {
 608             // if context is maked as DIRTY:
 609             if (rdrCtx.dirty) {
 610                 // may happen if an exception if thrown in the pipeline processing:
 611                 // clear completely buckets arrays:
 612                 buckets_minY = 0;
 613                 buckets_maxY = boundsMaxY - boundsMinY;
 614             }
 615             // clear only used part
 616             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, buckets_minY,
 617                                                                 buckets_maxY);
 618             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts,
 619                                                              buckets_minY,
 620                                                              buckets_maxY + 1);
 621         } else {
 622             // unused arrays
 623             edgeBuckets = edgeBuckets_ref.putArray(edgeBuckets, 0, 0);
 624             edgeBucketCounts = edgeBucketCounts_ref.putArray(edgeBucketCounts, 0, 0);
 625         }
 626 
 627         // At last: resize back off-heap edges to initial size
 628         if (edges.length != INITIAL_EDGES_CAPACITY) {
 629             // note: may throw OOME:
 630             edges.resize(INITIAL_EDGES_CAPACITY);
 631         }
 632         if (DO_CLEAN_DIRTY) {
 633             // Force zero-fill dirty arrays:
 634             edges.fill(BYTE_0);
 635         }
 636         if (DO_MONITORS) {
 637             rdrCtx.stats.mon_rdr_endRendering.stop();
 638         }
 639     }
 640 
 641     private static double tosubpixx(final double pix_x) {
 642         return SUBPIXEL_SCALE_X * pix_x;
 643     }
 644 
 645     private static double tosubpixy(final double pix_y) {
 646         // shift y by -0.5 for fast ceil(y - 0.5):
 647         return SUBPIXEL_SCALE_Y * pix_y - 0.5d;
 648     }
 649 
 650     @Override
 651     public void moveTo(double pix_x0, double pix_y0) {
 652         closePath();
 653         final double sx = tosubpixx(pix_x0);
 654         final double sy = tosubpixy(pix_y0);
 655         this.sx0 = sx;
 656         this.sy0 = sy;
 657         this.x0 = sx;
 658         this.y0 = sy;
 659     }
 660 
 661     @Override
 662     public void lineTo(double pix_x1, double pix_y1) {
 663         final double x1 = tosubpixx(pix_x1);
 664         final double y1 = tosubpixy(pix_y1);
 665         addLine(x0, y0, x1, y1);
 666         x0 = x1;
 667         y0 = y1;
 668     }
 669 
 670     @Override
 671     public void curveTo(double x1, double y1,
 672             double x2, double y2,
 673             double x3, double y3)
 674     {
 675         final double xe = tosubpixx(x3);
 676         final double ye = tosubpixy(y3);
 677         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1),
 678                           tosubpixx(x2), tosubpixy(y2), xe, ye);
 679         curveBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 680         x0 = xe;
 681         y0 = ye;
 682     }
 683 
 684     @Override
 685     public void quadTo(double x1, double y1, double x2, double y2) {
 686         final double xe = tosubpixx(x2);
 687         final double ye = tosubpixy(y2);
 688         curve.set(x0, y0, tosubpixx(x1), tosubpixy(y1), xe, ye);
 689         quadBreakIntoLinesAndAdd(x0, y0, curve, xe, ye);
 690         x0 = xe;
 691         y0 = ye;
 692     }
 693 
 694     @Override
 695     public void closePath() {
 696         addLine(x0, y0, sx0, sy0);
 697         x0 = sx0;
 698         y0 = sy0;
 699     }
 700 
 701     @Override
 702     public void pathDone() {
 703         closePath();
 704 
 705         // call endRendering() to determine the boundaries:
 706         endRendering();
 707     }
 708 
 709     private void _endRendering(final int ymin, final int ymax,
 710                                final MarlinAlphaConsumer ac)
 711     {
 712         if (DISABLE_RENDER) {
 713             return;
 714         }
 715 
 716         // Get X bounds as true pixel boundaries to compute correct pixel coverage:
 717         final int bboxx0 = bbox_spminX;
 718         final int bboxx1 = bbox_spmaxX;
 719 
 720         final boolean windingRuleEvenOdd = (windingRule == WIND_EVEN_ODD);
 721 
 722         // Useful when processing tile line by tile line
 723         final int[] _alpha = alphaLine;
 724 
 725         // local vars (performance):
 726         final OffHeapArray _edges = edges;
 727         final int[] _edgeBuckets = edgeBuckets;
 728         final int[] _edgeBucketCounts = edgeBucketCounts;
 729 
 730         int[] _crossings = this.crossings;
 731         int[] _edgePtrs  = this.edgePtrs;
 732 
 733         // merge sort auxiliary storage:
 734         int[] _aux_crossings = this.aux_crossings;
 735         int[] _aux_edgePtrs  = this.aux_edgePtrs;
 736 
 737         // copy constants:
 738         final long _OFF_ERROR    = OFF_ERROR;
 739         final long _OFF_BUMP_X   = OFF_BUMP_X;
 740         final long _OFF_BUMP_ERR = OFF_BUMP_ERR;
 741 
 742         final long _OFF_NEXT     = OFF_NEXT;
 743         final long _OFF_YMAX     = OFF_YMAX;
 744 
 745         final int _ALL_BUT_LSB   = ALL_BUT_LSB;
 746         final int _ERR_STEP_MAX  = ERR_STEP_MAX;
 747 
 748         // unsafe I/O:
 749         final Unsafe _unsafe = OffHeapArray.UNSAFE;
 750         final long    addr0  = _edges.address;
 751         long addr;
 752         final int _SUBPIXEL_LG_POSITIONS_X = SUBPIXEL_LG_POSITIONS_X;
 753         final int _SUBPIXEL_LG_POSITIONS_Y = SUBPIXEL_LG_POSITIONS_Y;
 754         final int _SUBPIXEL_MASK_X = SUBPIXEL_MASK_X;
 755         final int _SUBPIXEL_MASK_Y = SUBPIXEL_MASK_Y;
 756         final int _SUBPIXEL_POSITIONS_X = SUBPIXEL_POSITIONS_X;
 757 
 758         final int _MIN_VALUE = Integer.MIN_VALUE;
 759         final int _MAX_VALUE = Integer.MAX_VALUE;
 760 
 761         // Now we iterate through the scanlines. We must tell emitRow the coord
 762         // of the first non-transparent pixel, so we must keep accumulators for
 763         // the first and last pixels of the section of the current pixel row
 764         // that we will emit.
 765         // We also need to accumulate pix_bbox, but the iterator does it
 766         // for us. We will just get the values from it once this loop is done
 767         int minX = _MAX_VALUE;
 768         int maxX = _MIN_VALUE;
 769 
 770         int y = ymin;
 771         int bucket = y - boundsMinY;
 772 
 773         int numCrossings = this.edgeCount;
 774         int edgePtrsLen = _edgePtrs.length;
 775         int crossingsLen = _crossings.length;
 776         int _arrayMaxUsed = activeEdgeMaxUsed;
 777         int ptrLen = 0, newCount, ptrEnd;
 778 
 779         int bucketcount, i, j, ecur;
 780         int cross, lastCross;
 781         int x0, x1, tmp, sum, prev, curx, curxo, crorientation, err;
 782         int pix_x, pix_xmaxm1, pix_xmax;
 783 
 784         int low, high, mid, prevNumCrossings;
 785         boolean useBinarySearch;
 786 
 787         final int[] _blkFlags = blkFlags;
 788         final int _BLK_SIZE_LG = BLOCK_SIZE_LG;
 789         final int _BLK_SIZE = BLOCK_SIZE;
 790 
 791         final boolean _enableBlkFlagsHeuristics = ENABLE_BLOCK_FLAGS_HEURISTICS && this.enableBlkFlags;
 792 
 793         // Use block flags if large pixel span and few crossings:
 794         // ie mean(distance between crossings) is high
 795         boolean useBlkFlags = this.prevUseBlkFlags;
 796 
 797         final int stroking = rdrCtx.stroking;
 798 
 799         int lastY = -1; // last emited row
 800 
 801 
 802         // Iteration on scanlines
 803         for (; y < ymax; y++, bucket++) {
 804             // --- from former ScanLineIterator.next()
 805             bucketcount = _edgeBucketCounts[bucket];
 806 
 807             // marker on previously sorted edges:
 808             prevNumCrossings = numCrossings;
 809 
 810             // bucketCount indicates new edge / edge end:
 811             if (bucketcount != 0) {
 812                 if (DO_STATS) {
 813                     rdrCtx.stats.stat_rdr_activeEdges_updates.add(numCrossings);
 814                 }
 815 
 816                 // last bit set to 1 means that edges ends
 817                 if ((bucketcount & 0x1) != 0) {
 818                     // eviction in active edge list
 819                     // cache edges[] address + offset
 820                     addr = addr0 + _OFF_YMAX;
 821 
 822                     for (i = 0, newCount = 0; i < numCrossings; i++) {
 823                         // get the pointer to the edge
 824                         ecur = _edgePtrs[i];
 825                         // random access so use unsafe:
 826                         if (_unsafe.getInt(addr + ecur) > y) {
 827                             _edgePtrs[newCount++] = ecur;
 828                         }
 829                     }
 830                     // update marker on sorted edges minus removed edges:
 831                     prevNumCrossings = numCrossings = newCount;
 832                 }
 833 
 834                 ptrLen = bucketcount >> 1; // number of new edge
 835 
 836                 if (ptrLen != 0) {
 837                     if (DO_STATS) {
 838                         rdrCtx.stats.stat_rdr_activeEdges_adds.add(ptrLen);
 839                         if (ptrLen > 10) {
 840                             rdrCtx.stats.stat_rdr_activeEdges_adds_high.add(ptrLen);
 841                         }
 842                     }
 843                     ptrEnd = numCrossings + ptrLen;
 844 
 845                     if (edgePtrsLen < ptrEnd) {
 846                         if (DO_STATS) {
 847                             rdrCtx.stats.stat_array_renderer_edgePtrs.add(ptrEnd);
 848                         }
 849                         this.edgePtrs = _edgePtrs
 850                             = edgePtrs_ref.widenArray(_edgePtrs, numCrossings,
 851                                                       ptrEnd);
 852 
 853                         edgePtrsLen = _edgePtrs.length;
 854                         // Get larger auxiliary storage:
 855                         aux_edgePtrs_ref.putArray(_aux_edgePtrs);
 856 
 857                         // use ArrayCache.getNewSize() to use the same growing
 858                         // factor than widenArray():
 859                         if (DO_STATS) {
 860                             rdrCtx.stats.stat_array_renderer_aux_edgePtrs.add(ptrEnd);
 861                         }
 862                         this.aux_edgePtrs = _aux_edgePtrs
 863                             = aux_edgePtrs_ref.getArray(
 864                                 ArrayCacheConst.getNewSize(numCrossings, ptrEnd)
 865                             );
 866                     }
 867 
 868                     // cache edges[] address + offset
 869                     addr = addr0 + _OFF_NEXT;
 870 
 871                     // add new edges to active edge list:
 872                     for (ecur = _edgeBuckets[bucket];
 873                          numCrossings < ptrEnd; numCrossings++)
 874                     {
 875                         // store the pointer to the edge
 876                         _edgePtrs[numCrossings] = ecur;
 877                         // random access so use unsafe:
 878                         ecur = _unsafe.getInt(addr + ecur);
 879                     }
 880 
 881                     if (crossingsLen < numCrossings) {
 882                         // Get larger array:
 883                         crossings_ref.putArray(_crossings);
 884 
 885                         if (DO_STATS) {
 886                             rdrCtx.stats.stat_array_renderer_crossings
 887                                 .add(numCrossings);
 888                         }
 889                         this.crossings = _crossings
 890                             = crossings_ref.getArray(numCrossings);
 891 
 892                         // Get larger auxiliary storage:
 893                         aux_crossings_ref.putArray(_aux_crossings);
 894 
 895                         if (DO_STATS) {
 896                             rdrCtx.stats.stat_array_renderer_aux_crossings
 897                                 .add(numCrossings);
 898                         }
 899                         this.aux_crossings = _aux_crossings
 900                             = aux_crossings_ref.getArray(numCrossings);
 901 
 902                         crossingsLen = _crossings.length;
 903                     }
 904                     if (DO_STATS) {
 905                         // update max used mark
 906                         if (numCrossings > _arrayMaxUsed) {
 907                             _arrayMaxUsed = numCrossings;
 908                         }
 909                     }
 910                 } // ptrLen != 0
 911             } // bucketCount != 0
 912 
 913 
 914             if (numCrossings != 0) {
 915                 /*
 916                  * thresholds to switch to optimized merge sort
 917                  * for newly added edges + final merge pass.
 918                  */
 919                 if ((ptrLen < 10) || (numCrossings < 40)) {
 920                     if (DO_STATS) {
 921                         rdrCtx.stats.hist_rdr_crossings.add(numCrossings);
 922                         rdrCtx.stats.hist_rdr_crossings_adds.add(ptrLen);
 923                     }
 924 
 925                     /*
 926                      * threshold to use binary insertion sort instead of
 927                      * straight insertion sort (to reduce minimize comparisons).
 928                      */
 929                     useBinarySearch = (numCrossings >= 20);
 930 
 931                     // if small enough:
 932                     lastCross = _MIN_VALUE;
 933 
 934                     for (i = 0; i < numCrossings; i++) {
 935                         // get the pointer to the edge
 936                         ecur = _edgePtrs[i];
 937 
 938                         /* convert subpixel coordinates into pixel
 939                             positions for coming scanline */
 940                         /* note: it is faster to always update edges even
 941                            if it is removed from AEL for coming or last scanline */
 942 
 943                         // random access so use unsafe:
 944                         addr = addr0 + ecur; // ecur + OFF_F_CURX
 945 
 946                         // get current crossing:
 947                         curx = _unsafe.getInt(addr);
 948 
 949                         // update crossing with orientation at last bit:
 950                         cross = curx;
 951 
 952                         // Increment x using DDA (fixed point):
 953                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
 954 
 955                         // Increment error:
 956                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
 957                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
 958 
 959                         // Manual carry handling:
 960                         // keep sign and carry bit only and ignore last bit (preserve orientation):
 961                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
 962                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
 963 
 964                         if (DO_STATS) {
 965                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
 966                         }
 967 
 968                         // insertion sort of crossings:
 969                         if (cross < lastCross) {
 970                             if (DO_STATS) {
 971                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
 972                             }
 973 
 974                             /* use binary search for newly added edges
 975                                in crossings if arrays are large enough */
 976                             if (useBinarySearch && (i >= prevNumCrossings)) {
 977                                 if (DO_STATS) {
 978                                     rdrCtx.stats.stat_rdr_crossings_bsearch.add(i);
 979                                 }
 980                                 low = 0;
 981                                 high = i - 1;
 982 
 983                                 do {
 984                                     // note: use signed shift (not >>>) for performance
 985                                     // as indices are small enough to exceed Integer.MAX_VALUE
 986                                     mid = (low + high) >> 1;
 987 
 988                                     if (_crossings[mid] < cross) {
 989                                         low = mid + 1;
 990                                     } else {
 991                                         high = mid - 1;
 992                                     }
 993                                 } while (low <= high);
 994 
 995                                 for (j = i - 1; j >= low; j--) {
 996                                     _crossings[j + 1] = _crossings[j];
 997                                     _edgePtrs [j + 1] = _edgePtrs[j];
 998                                 }
 999                                 _crossings[low] = cross;
1000                                 _edgePtrs [low] = ecur;
1001 
1002                             } else {
1003                                 j = i - 1;
1004                                 _crossings[i] = _crossings[j];
1005                                 _edgePtrs[i] = _edgePtrs[j];
1006 
1007                                 while ((--j >= 0) && (_crossings[j] > cross)) {
1008                                     _crossings[j + 1] = _crossings[j];
1009                                     _edgePtrs [j + 1] = _edgePtrs[j];
1010                                 }
1011                                 _crossings[j + 1] = cross;
1012                                 _edgePtrs [j + 1] = ecur;
1013                             }
1014 
1015                         } else {
1016                             _crossings[i] = lastCross = cross;
1017                         }
1018                     }
1019                 } else {
1020                     if (DO_STATS) {
1021                         rdrCtx.stats.stat_rdr_crossings_msorts.add(numCrossings);
1022                         rdrCtx.stats.hist_rdr_crossings_ratio
1023                             .add((1000 * ptrLen) / numCrossings);
1024                         rdrCtx.stats.hist_rdr_crossings_msorts.add(numCrossings);
1025                         rdrCtx.stats.hist_rdr_crossings_msorts_adds.add(ptrLen);
1026                     }
1027 
1028                     // Copy sorted data in auxiliary arrays
1029                     // and perform insertion sort on almost sorted data
1030                     // (ie i < prevNumCrossings):
1031 
1032                     lastCross = _MIN_VALUE;
1033 
1034                     for (i = 0; i < numCrossings; i++) {
1035                         // get the pointer to the edge
1036                         ecur = _edgePtrs[i];
1037 
1038                         /* convert subpixel coordinates into pixel
1039                             positions for coming scanline */
1040                         /* note: it is faster to always update edges even
1041                            if it is removed from AEL for coming or last scanline */
1042 
1043                         // random access so use unsafe:
1044                         addr = addr0 + ecur; // ecur + OFF_F_CURX
1045 
1046                         // get current crossing:
1047                         curx = _unsafe.getInt(addr);
1048 
1049                         // update crossing with orientation at last bit:
1050                         cross = curx;
1051 
1052                         // Increment x using DDA (fixed point):
1053                         curx += _unsafe.getInt(addr + _OFF_BUMP_X);
1054 
1055                         // Increment error:
1056                         err  =  _unsafe.getInt(addr + _OFF_ERROR)
1057                               + _unsafe.getInt(addr + _OFF_BUMP_ERR);
1058 
1059                         // Manual carry handling:
1060                         // keep sign and carry bit only and ignore last bit (preserve orientation):
1061                         _unsafe.putInt(addr,               curx - ((err >> 30) & _ALL_BUT_LSB));
1062                         _unsafe.putInt(addr + _OFF_ERROR, (err & _ERR_STEP_MAX));
1063 
1064                         if (DO_STATS) {
1065                             rdrCtx.stats.stat_rdr_crossings_updates.add(numCrossings);
1066                         }
1067 
1068                         if (i >= prevNumCrossings) {
1069                             // simply store crossing as edgePtrs is in-place:
1070                             // will be copied and sorted efficiently by mergesort later:
1071                             _crossings[i]     = cross;
1072 
1073                         } else if (cross < lastCross) {
1074                             if (DO_STATS) {
1075                                 rdrCtx.stats.stat_rdr_crossings_sorts.add(i);
1076                             }
1077 
1078                             // (straight) insertion sort of crossings:
1079                             j = i - 1;
1080                             _aux_crossings[i] = _aux_crossings[j];
1081                             _aux_edgePtrs[i] = _aux_edgePtrs[j];
1082 
1083                             while ((--j >= 0) && (_aux_crossings[j] > cross)) {
1084                                 _aux_crossings[j + 1] = _aux_crossings[j];
1085                                 _aux_edgePtrs [j + 1] = _aux_edgePtrs[j];
1086                             }
1087                             _aux_crossings[j + 1] = cross;
1088                             _aux_edgePtrs [j + 1] = ecur;
1089 
1090                         } else {
1091                             // auxiliary storage:
1092                             _aux_crossings[i] = lastCross = cross;
1093                             _aux_edgePtrs [i] = ecur;
1094                         }
1095                     }
1096 
1097                     // use Mergesort using auxiliary arrays (sort only right part)
1098                     MergeSort.mergeSortNoCopy(_crossings,     _edgePtrs,
1099                                               _aux_crossings, _aux_edgePtrs,
1100                                               numCrossings,   prevNumCrossings);
1101                 }
1102 
1103                 // reset ptrLen
1104                 ptrLen = 0;
1105                 // --- from former ScanLineIterator.next()
1106 
1107 
1108                 /* note: bboxx0 and bboxx1 must be pixel boundaries
1109                    to have correct coverage computation */
1110 
1111                 // right shift on crossings to get the x-coordinate:
1112                 curxo = _crossings[0];
1113                 x0    = curxo >> 1;
1114                 if (x0 < minX) {
1115                     minX = x0; // subpixel coordinate
1116                 }
1117 
1118                 x1 = _crossings[numCrossings - 1] >> 1;
1119                 if (x1 > maxX) {
1120                     maxX = x1; // subpixel coordinate
1121                 }
1122 
1123 
1124                 // compute pixel coverages
1125                 prev = curx = x0;
1126                 // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1127                 // last bit contains orientation (0 or 1)
1128                 crorientation = ((curxo & 0x1) << 1) - 1;
1129 
1130                 if (windingRuleEvenOdd) {
1131                     sum = crorientation;
1132 
1133                     // Even Odd winding rule: take care of mask ie sum(orientations)
1134                     for (i = 1; i < numCrossings; i++) {
1135                         curxo = _crossings[i];
1136                         curx  =  curxo >> 1;
1137                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1138                         // last bit contains orientation (0 or 1)
1139                         crorientation = ((curxo & 0x1) << 1) - 1;
1140 
1141                         if ((sum & 0x1) != 0) {
1142                             // TODO: perform line clipping on left-right sides
1143                             // to avoid such bound checks:
1144                             x0 = (prev > bboxx0) ? prev : bboxx0;
1145 
1146                             if (curx < bboxx1) {
1147                                 x1 = curx;
1148                             } else {
1149                                 x1 = bboxx1;
1150                                 // skip right side (fast exit loop):
1151                                 i = numCrossings;
1152                             }
1153 
1154                             if (x0 < x1) {
1155                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1156                                 x1 -= bboxx0; // in the alpha array.
1157 
1158                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1159                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1160 
1161                                 if (pix_x == pix_xmaxm1) {
1162                                     // Start and end in same pixel
1163                                     tmp = (x1 - x0); // number of subpixels
1164                                     _alpha[pix_x    ] += tmp;
1165                                     _alpha[pix_x + 1] -= tmp;
1166 
1167                                     if (useBlkFlags) {
1168                                         // flag used blocks:
1169                                         // note: block processing handles extra pixel:
1170                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1171                                     }
1172                                 } else {
1173                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1174                                     _alpha[pix_x    ]
1175                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1176                                     _alpha[pix_x + 1]
1177                                         += tmp;
1178 
1179                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1180 
1181                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1182                                     _alpha[pix_xmax    ]
1183                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1184                                     _alpha[pix_xmax + 1]
1185                                         -= tmp;
1186 
1187                                     if (useBlkFlags) {
1188                                         // flag used blocks:
1189                                         // note: block processing handles extra pixel:
1190                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1191                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1192                                     }
1193                                 }
1194                             }
1195                         }
1196 
1197                         sum += crorientation;
1198                         prev = curx;
1199                     }
1200                 } else {
1201                     // Non-zero winding rule: optimize that case (default)
1202                     // and avoid processing intermediate crossings
1203                     for (i = 1, sum = 0;; i++) {
1204                         sum += crorientation;
1205 
1206                         if (sum != 0) {
1207                             // prev = min(curx)
1208                             if (prev > curx) {
1209                                 prev = curx;
1210                             }
1211                         } else {
1212                             // TODO: perform line clipping on left-right sides
1213                             // to avoid such bound checks:
1214                             x0 = (prev > bboxx0) ? prev : bboxx0;
1215 
1216                             if (curx < bboxx1) {
1217                                 x1 = curx;
1218                             } else {
1219                                 x1 = bboxx1;
1220                                 // skip right side (fast exit loop):
1221                                 i = numCrossings;
1222                             }
1223 
1224                             if (x0 < x1) {
1225                                 x0 -= bboxx0; // turn x0, x1 from coords to indices
1226                                 x1 -= bboxx0; // in the alpha array.
1227 
1228                                 pix_x      =  x0      >> _SUBPIXEL_LG_POSITIONS_X;
1229                                 pix_xmaxm1 = (x1 - 1) >> _SUBPIXEL_LG_POSITIONS_X;
1230 
1231                                 if (pix_x == pix_xmaxm1) {
1232                                     // Start and end in same pixel
1233                                     tmp = (x1 - x0); // number of subpixels
1234                                     _alpha[pix_x    ] += tmp;
1235                                     _alpha[pix_x + 1] -= tmp;
1236 
1237                                     if (useBlkFlags) {
1238                                         // flag used blocks:
1239                                         // note: block processing handles extra pixel:
1240                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1241                                     }
1242                                 } else {
1243                                     tmp = (x0 & _SUBPIXEL_MASK_X);
1244                                     _alpha[pix_x    ]
1245                                         += (_SUBPIXEL_POSITIONS_X - tmp);
1246                                     _alpha[pix_x + 1]
1247                                         += tmp;
1248 
1249                                     pix_xmax = x1 >> _SUBPIXEL_LG_POSITIONS_X;
1250 
1251                                     tmp = (x1 & _SUBPIXEL_MASK_X);
1252                                     _alpha[pix_xmax    ]
1253                                         -= (_SUBPIXEL_POSITIONS_X - tmp);
1254                                     _alpha[pix_xmax + 1]
1255                                         -= tmp;
1256 
1257                                     if (useBlkFlags) {
1258                                         // flag used blocks:
1259                                         // note: block processing handles extra pixel:
1260                                         _blkFlags[pix_x    >> _BLK_SIZE_LG] = 1;
1261                                         _blkFlags[pix_xmax >> _BLK_SIZE_LG] = 1;
1262                                     }
1263                                 }
1264                             }
1265                             prev = _MAX_VALUE;
1266                         }
1267 
1268                         if (i == numCrossings) {
1269                             break;
1270                         }
1271 
1272                         curxo = _crossings[i];
1273                         curx  =  curxo >> 1;
1274                         // to turn {0, 1} into {-1, 1}, multiply by 2 and subtract 1.
1275                         // last bit contains orientation (0 or 1)
1276                         crorientation = ((curxo & 0x1) << 1) - 1;
1277                     }
1278                 }
1279             } // numCrossings > 0
1280 
1281             // even if this last row had no crossings, alpha will be zeroed
1282             // from the last emitRow call. But this doesn't matter because
1283             // maxX < minX, so no row will be emitted to the AlphaConsumer.
1284             if ((y & _SUBPIXEL_MASK_Y) == _SUBPIXEL_MASK_Y) {
1285                 lastY = y >> _SUBPIXEL_LG_POSITIONS_Y;
1286 
1287                 // convert subpixel to pixel coordinate within boundaries:
1288                 minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1289                 maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1290 
1291                 if (maxX >= minX) {
1292                     // note: alpha array will be zeroed by copyAARow()
1293                     // +1 because alpha [pix_minX; pix_maxX[
1294                     // fix range [x0; x1[
1295                     // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1296                     // inclusive: alpha[bboxx1] ignored, alpha[bboxx1+1] == 0
1297                     // (normally so never cleared below)
1298                     copyAARow(_alpha, lastY, minX, maxX + 1, useBlkFlags, ac);
1299 
1300                     // speculative for next pixel row (scanline coherence):
1301                     if (_enableBlkFlagsHeuristics) {
1302                         // Use block flags if large pixel span and few crossings:
1303                         // ie mean(distance between crossings) is larger than
1304                         // 1 block size;
1305 
1306                         // fast check width:
1307                         maxX -= minX;
1308 
1309                         // if stroking: numCrossings /= 2
1310                         // => shift numCrossings by 1
1311                         // condition = (width / (numCrossings - 1)) > blockSize
1312                         useBlkFlags = (maxX > _BLK_SIZE) && (maxX >
1313                             (((numCrossings >> stroking) - 1) << _BLK_SIZE_LG));
1314 
1315                         if (DO_STATS) {
1316                             tmp = FloatMath.max(1,
1317                                     ((numCrossings >> stroking) - 1));
1318                             rdrCtx.stats.hist_tile_generator_encoding_dist
1319                                 .add(maxX / tmp);
1320                         }
1321                     }
1322                 } else {
1323                     ac.clearAlphas(lastY);
1324                 }
1325                 minX = _MAX_VALUE;
1326                 maxX = _MIN_VALUE;
1327             }
1328         } // scan line iterator
1329 
1330         // Emit final row
1331         y--;
1332         y >>= _SUBPIXEL_LG_POSITIONS_Y;
1333 
1334         // convert subpixel to pixel coordinate within boundaries:
1335         minX = FloatMath.max(minX, bboxx0) >> _SUBPIXEL_LG_POSITIONS_X;
1336         maxX = FloatMath.min(maxX, bboxx1) >> _SUBPIXEL_LG_POSITIONS_X;
1337 
1338         if (maxX >= minX) {
1339             // note: alpha array will be zeroed by copyAARow()
1340             // +1 because alpha [pix_minX; pix_maxX[
1341             // fix range [x0; x1[
1342             // note: if x1=bboxx1, then alpha is written up to bboxx1+1
1343             // inclusive: alpha[bboxx1] ignored then cleared and
1344             // alpha[bboxx1+1] == 0 (normally so never cleared after)
1345             copyAARow(_alpha, y, minX, maxX + 1, useBlkFlags, ac);
1346         } else if (y != lastY) {
1347             ac.clearAlphas(y);
1348         }
1349 
1350         // update member:
1351         edgeCount = numCrossings;
1352         prevUseBlkFlags = useBlkFlags;
1353 
1354         if (DO_STATS) {
1355             // update max used mark
1356             activeEdgeMaxUsed = _arrayMaxUsed;
1357         }
1358     }
1359 
1360     void endRendering() {
1361         if (DO_MONITORS) {
1362             rdrCtx.stats.mon_rdr_endRendering.start();
1363         }
1364         if (edgeMinY == Integer.MAX_VALUE) {
1365             return; // undefined edges bounds
1366         }
1367 
1368         // bounds as half-open intervals
1369         final int spminX = FloatMath.max(FloatMath.ceil_int(edgeMinX - 0.5d), boundsMinX);
1370         final int spmaxX = FloatMath.min(FloatMath.ceil_int(edgeMaxX - 0.5d), boundsMaxX);
1371 
1372         // edge Min/Max Y are already rounded to subpixels within bounds:
1373         final int spminY = edgeMinY;
1374         final int spmaxY = edgeMaxY;
1375 
1376         buckets_minY = spminY - boundsMinY;
1377         buckets_maxY = spmaxY - boundsMinY;
1378 
1379         if (DO_LOG_BOUNDS) {
1380             MarlinUtils.logInfo("edgesXY = [" + edgeMinX + " ... " + edgeMaxX
1381                                 + "[ [" + edgeMinY + " ... " + edgeMaxY + "[");
1382             MarlinUtils.logInfo("spXY    = [" + spminX + " ... " + spmaxX
1383                                 + "[ [" + spminY + " ... " + spmaxY + "[");
1384         }
1385 
1386         // test clipping for shapes out of bounds
1387         if ((spminX >= spmaxX) || (spminY >= spmaxY)) {
1388             return;
1389         }
1390 
1391         // half open intervals
1392         // inclusive:
1393         final int pminX =  spminX                    >> SUBPIXEL_LG_POSITIONS_X;
1394         // exclusive:
1395         final int pmaxX = (spmaxX + SUBPIXEL_MASK_X) >> SUBPIXEL_LG_POSITIONS_X;
1396         // inclusive:
1397         final int pminY =  spminY                    >> SUBPIXEL_LG_POSITIONS_Y;
1398         // exclusive:
1399         final int pmaxY = (spmaxY + SUBPIXEL_MASK_Y) >> SUBPIXEL_LG_POSITIONS_Y;
1400 
1401         // store BBox to answer ptg.getBBox():
1402         initConsumer(pminX, pminY, pmaxX, pmaxY);
1403 
1404         // Heuristics for using block flags:
1405         if (ENABLE_BLOCK_FLAGS) {
1406             enableBlkFlags = this.useRLE;
1407             prevUseBlkFlags = enableBlkFlags && !ENABLE_BLOCK_FLAGS_HEURISTICS;
1408 
1409             if (enableBlkFlags) {
1410                 // ensure blockFlags array is large enough:
1411                 // note: +2 to ensure enough space left at end
1412                 final int blkLen = ((pmaxX - pminX) >> BLOCK_SIZE_LG) + 2;
1413                 if (blkLen > INITIAL_ARRAY) {
1414                     blkFlags = blkFlags_ref.getArray(blkLen);
1415                 }
1416             }
1417         }
1418 
1419         // memorize the rendering bounding box:
1420         /* note: bbox_spminX and bbox_spmaxX must be pixel boundaries
1421            to have correct coverage computation */
1422         // inclusive:
1423         bbox_spminX = pminX << SUBPIXEL_LG_POSITIONS_X;
1424         // exclusive:
1425         bbox_spmaxX = pmaxX << SUBPIXEL_LG_POSITIONS_X;
1426         // inclusive:
1427         bbox_spminY = spminY;
1428         // exclusive:
1429         bbox_spmaxY = spmaxY;
1430 
1431         if (DO_LOG_BOUNDS) {
1432             MarlinUtils.logInfo("pXY       = [" + pminX + " ... " + pmaxX
1433                                 + "[ [" + pminY + " ... " + pmaxY + "[");
1434             MarlinUtils.logInfo("bbox_spXY = [" + bbox_spminX + " ... "
1435                                 + bbox_spmaxX + "[ [" + bbox_spminY + " ... "
1436                                 + bbox_spmaxY + "[");
1437         }
1438 
1439         // Prepare alpha line:
1440         // add 2 to better deal with the last pixel in a pixel row.
1441         final int width = (pmaxX - pminX) + 2;
1442 
1443         // Useful when processing tile line by tile line
1444         if (width > INITIAL_AA_ARRAY) {
1445             if (DO_STATS) {
1446                 rdrCtx.stats.stat_array_renderer_alphaline.add(width);
1447             }
1448             alphaLine = alphaLine_ref.getArray(width);
1449         }
1450     }
1451 
1452     void initConsumer(int minx, int miny, int maxx, int maxy)
1453     {
1454         // assert maxy >= miny && maxx >= minx;
1455         bboxX0 = minx;
1456         bboxX1 = maxx;
1457         bboxY0 = miny;
1458         bboxY1 = maxy;
1459 
1460         final int width = (maxx - minx);
1461 
1462         if (FORCE_NO_RLE) {
1463             useRLE = false;
1464         } else if (FORCE_RLE) {
1465             useRLE = true;
1466         } else {
1467             // heuristics: use both bbox area and complexity
1468             // ie number of primitives:
1469 
1470             // fast check min width:
1471             if (width <= RLE_MIN_WIDTH) {
1472                 useRLE = false;
1473             } else {
1474                 useRLE = true;
1475             }
1476         }
1477     }
1478 
1479     private int bbox_spminX, bbox_spmaxX, bbox_spminY, bbox_spmaxY;
1480 
1481     public void produceAlphas(final MarlinAlphaConsumer ac) {
1482         ac.setMaxAlpha(MAX_AA_ALPHA);
1483 
1484         if (enableBlkFlags && !ac.supportBlockFlags()) {
1485             // consumer does not support block flag optimization:
1486             enableBlkFlags = false;
1487             prevUseBlkFlags = false;
1488         }
1489 
1490         if (DO_MONITORS) {
1491             rdrCtx.stats.mon_rdr_endRendering_Y.start();
1492         }
1493 
1494         // Process all scan lines:
1495         _endRendering(bbox_spminY, bbox_spmaxY, ac);
1496 
1497         if (DO_MONITORS) {
1498             rdrCtx.stats.mon_rdr_endRendering_Y.stop();
1499         }
1500     }
1501 
1502     void copyAARow(final int[] alphaRow,
1503                    final int pix_y, final int pix_from, final int pix_to,
1504                    final boolean useBlockFlags,
1505                    final MarlinAlphaConsumer ac)
1506     {
1507         if (DO_MONITORS) {
1508             rdrCtx.stats.mon_rdr_copyAARow.start();
1509         }
1510         if (DO_STATS) {
1511             rdrCtx.stats.stat_cache_rowAA.add(pix_to - pix_from);
1512         }
1513 
1514         if (useBlockFlags) {
1515             if (DO_STATS) {
1516                 rdrCtx.stats.hist_tile_generator_encoding.add(1);
1517             }
1518             ac.setAndClearRelativeAlphas(blkFlags, alphaRow, pix_y, pix_from, pix_to);
1519         } else {
1520             if (DO_STATS) {
1521                 rdrCtx.stats.hist_tile_generator_encoding.add(0);
1522             }
1523             ac.setAndClearRelativeAlphas(alphaRow, pix_y, pix_from, pix_to);
1524         }
1525         if (DO_MONITORS) {
1526             rdrCtx.stats.mon_rdr_copyAARow.stop();
1527         }
1528     }
1529 
1530     // output pixel bounding box:
1531     int bboxX0, bboxX1, bboxY0, bboxY1;
1532 
1533     @Override
1534     public int getOutpixMinX() {
1535         return bboxX0;
1536     }
1537 
1538     @Override
1539     public int getOutpixMaxX() {
1540         return bboxX1;
1541     }
1542 
1543     @Override
1544     public int getOutpixMinY() {
1545         return bboxY0;
1546     }
1547 
1548     @Override
1549     public int getOutpixMaxY() {
1550         return bboxY1;
1551     }
1552 }