/* * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.marlin; import com.sun.javafx.geom.PathConsumer2D; public final class PathSimplifier implements PathConsumer2D { // distance threshold in pixels (device) private static final float PIX_THRESHOLD = MarlinProperties.getPathSimplifierPixelTolerance(); // squared tolerance in pixels private static final float SQUARE_TOLERANCE = PIX_THRESHOLD * PIX_THRESHOLD; // members: private PathConsumer2D delegate; // current reference point private float cx, cy; // flag indicating if the given point was skipped private boolean skipped; // last skipped point private float sx, sy; PathSimplifier() { } public PathSimplifier init(final PathConsumer2D delegate) { this.delegate = delegate; skipped = false; return this; // fluent API } private void finishPath() { if (skipped) { _lineTo(sx, sy); } } @Override public void pathDone() { finishPath(); delegate.pathDone(); } @Override public void closePath() { finishPath(); delegate.closePath(); } @Override public void moveTo(final float xe, final float ye) { finishPath(); delegate.moveTo(xe, ye); cx = xe; cy = ye; } @Override public void lineTo(final float xe, final float ye) { // Test if segment is too small: float dx = (xe - cx); float dy = (ye - cy); if ((dx * dx + dy * dy) <= SQUARE_TOLERANCE) { skipped = true; sx = xe; sy = ye; return; } _lineTo(xe, ye); } private void _lineTo(final float xe, final float ye) { delegate.lineTo(xe, ye); cx = xe; cy = ye; skipped = false; } @Override public void quadTo(final float x1, final float y1, final float xe, final float ye) { // Test if curve is too small: float dx = (xe - cx); float dy = (ye - cy); if ((dx * dx + dy * dy) <= SQUARE_TOLERANCE) { // check control points P1: dx = (x1 - cx); dy = (y1 - cy); if ((dx * dx + dy * dy) <= SQUARE_TOLERANCE) { skipped = true; sx = xe; sy = ye; return; } } delegate.quadTo(x1, y1, xe, ye); cx = xe; cy = ye; skipped = false; } @Override public void curveTo(final float x1, final float y1, final float x2, final float y2, final float xe, final float ye) { // Test if curve is too small: float dx = (xe - cx); float dy = (ye - cy); if ((dx * dx + dy * dy) <= SQUARE_TOLERANCE) { // check control points P1: dx = (x1 - cx); dy = (y1 - cy); if ((dx * dx + dy * dy) <= SQUARE_TOLERANCE) { // check control points P2: dx = (x2 - cx); dy = (y2 - cy); if ((dx * dx + dy * dy) <= SQUARE_TOLERANCE) { skipped = true; sx = xe; sy = ye; return; } } } delegate.curveTo(x1, y1, x2, y2, xe, ye); cx = xe; cy = ye; skipped = false; } }