1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 756   // we must set sp to zero to clear frame
 757   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 758   // must clear fp, so that compiled frames are not confused; it is
 759   // possible that we need it only for debugging
 760   if (clear_fp) {
 761     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 762   }
 763 
 764   // Always clear the pc because it could have been set by make_walkable()
 765   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 766   vzeroupper();
 767 }
 768 
 769 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 770                                          Register last_java_fp,
 771                                          address  last_java_pc) {
 772   vzeroupper();
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2588 void MacroAssembler::call_VM_leaf0(address entry_point) {
2589   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2590 }
2591 
2592 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2593   call_VM_leaf_base(entry_point, number_of_arguments);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2597   pass_arg0(this, arg_0);
2598   call_VM_leaf(entry_point, 1);
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2602 
2603   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2604   pass_arg1(this, arg_1);
2605   pass_arg0(this, arg_0);
2606   call_VM_leaf(entry_point, 2);
2607 }
2608 
2609 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2610   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2611   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2612   pass_arg2(this, arg_2);
2613   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2614   pass_arg1(this, arg_1);
2615   pass_arg0(this, arg_0);
2616   call_VM_leaf(entry_point, 3);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2620   pass_arg0(this, arg_0);
2621   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2622 }
2623 
2624 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2625 
2626   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2627   pass_arg1(this, arg_1);
2628   pass_arg0(this, arg_0);
2629   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2630 }
2631 
2632 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2633   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2634   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2635   pass_arg2(this, arg_2);
2636   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2637   pass_arg1(this, arg_1);
2638   pass_arg0(this, arg_0);
2639   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2640 }
2641 
2642 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2643   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2644   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2645   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2646   pass_arg3(this, arg_3);
2647   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2648   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2649   pass_arg2(this, arg_2);
2650   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2651   pass_arg1(this, arg_1);
2652   pass_arg0(this, arg_0);
2653   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2654 }
2655 
2656 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2657   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2658   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2659   verify_oop(oop_result, "broken oop in call_VM_base");
2660 }
2661 
2662 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2663   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2664   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2665 }
2666 
2667 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2668 }
2669 
2670 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2671 }
2672 
2673 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2674   if (reachable(src1)) {
2675     cmpl(as_Address(src1), imm);
2676   } else {
2677     lea(rscratch1, src1);
2678     cmpl(Address(rscratch1, 0), imm);
2679   }
2680 }
2681 
2682 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2683   assert(!src2.is_lval(), "use cmpptr");
2684   if (reachable(src2)) {
2685     cmpl(src1, as_Address(src2));
2686   } else {
2687     lea(rscratch1, src2);
2688     cmpl(src1, Address(rscratch1, 0));
2689   }
2690 }
2691 
2692 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2693   Assembler::cmpl(src1, imm);
2694 }
2695 
2696 void MacroAssembler::cmp32(Register src1, Address src2) {
2697   Assembler::cmpl(src1, src2);
2698 }
2699 
2700 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2701   ucomisd(opr1, opr2);
2702 
2703   Label L;
2704   if (unordered_is_less) {
2705     movl(dst, -1);
2706     jcc(Assembler::parity, L);
2707     jcc(Assembler::below , L);
2708     movl(dst, 0);
2709     jcc(Assembler::equal , L);
2710     increment(dst);
2711   } else { // unordered is greater
2712     movl(dst, 1);
2713     jcc(Assembler::parity, L);
2714     jcc(Assembler::above , L);
2715     movl(dst, 0);
2716     jcc(Assembler::equal , L);
2717     decrementl(dst);
2718   }
2719   bind(L);
2720 }
2721 
2722 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2723   ucomiss(opr1, opr2);
2724 
2725   Label L;
2726   if (unordered_is_less) {
2727     movl(dst, -1);
2728     jcc(Assembler::parity, L);
2729     jcc(Assembler::below , L);
2730     movl(dst, 0);
2731     jcc(Assembler::equal , L);
2732     increment(dst);
2733   } else { // unordered is greater
2734     movl(dst, 1);
2735     jcc(Assembler::parity, L);
2736     jcc(Assembler::above , L);
2737     movl(dst, 0);
2738     jcc(Assembler::equal , L);
2739     decrementl(dst);
2740   }
2741   bind(L);
2742 }
2743 
2744 
2745 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2746   if (reachable(src1)) {
2747     cmpb(as_Address(src1), imm);
2748   } else {
2749     lea(rscratch1, src1);
2750     cmpb(Address(rscratch1, 0), imm);
2751   }
2752 }
2753 
2754 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2755 #ifdef _LP64
2756   if (src2.is_lval()) {
2757     movptr(rscratch1, src2);
2758     Assembler::cmpq(src1, rscratch1);
2759   } else if (reachable(src2)) {
2760     cmpq(src1, as_Address(src2));
2761   } else {
2762     lea(rscratch1, src2);
2763     Assembler::cmpq(src1, Address(rscratch1, 0));
2764   }
2765 #else
2766   if (src2.is_lval()) {
2767     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2768   } else {
2769     cmpl(src1, as_Address(src2));
2770   }
2771 #endif // _LP64
2772 }
2773 
2774 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2775   assert(src2.is_lval(), "not a mem-mem compare");
2776 #ifdef _LP64
2777   // moves src2's literal address
2778   movptr(rscratch1, src2);
2779   Assembler::cmpq(src1, rscratch1);
2780 #else
2781   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2782 #endif // _LP64
2783 }
2784 
2785 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2786   if (reachable(adr)) {
2787     if (os::is_MP())
2788       lock();
2789     cmpxchgptr(reg, as_Address(adr));
2790   } else {
2791     lea(rscratch1, adr);
2792     if (os::is_MP())
2793       lock();
2794     cmpxchgptr(reg, Address(rscratch1, 0));
2795   }
2796 }
2797 
2798 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2799   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2800 }
2801 
2802 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2803   if (reachable(src)) {
2804     Assembler::comisd(dst, as_Address(src));
2805   } else {
2806     lea(rscratch1, src);
2807     Assembler::comisd(dst, Address(rscratch1, 0));
2808   }
2809 }
2810 
2811 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2812   if (reachable(src)) {
2813     Assembler::comiss(dst, as_Address(src));
2814   } else {
2815     lea(rscratch1, src);
2816     Assembler::comiss(dst, Address(rscratch1, 0));
2817   }
2818 }
2819 
2820 
2821 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2822   Condition negated_cond = negate_condition(cond);
2823   Label L;
2824   jcc(negated_cond, L);
2825   pushf(); // Preserve flags
2826   atomic_incl(counter_addr);
2827   popf();
2828   bind(L);
2829 }
2830 
2831 int MacroAssembler::corrected_idivl(Register reg) {
2832   // Full implementation of Java idiv and irem; checks for
2833   // special case as described in JVM spec., p.243 & p.271.
2834   // The function returns the (pc) offset of the idivl
2835   // instruction - may be needed for implicit exceptions.
2836   //
2837   //         normal case                           special case
2838   //
2839   // input : rax,: dividend                         min_int
2840   //         reg: divisor   (may not be rax,/rdx)   -1
2841   //
2842   // output: rax,: quotient  (= rax, idiv reg)       min_int
2843   //         rdx: remainder (= rax, irem reg)       0
2844   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2845   const int min_int = 0x80000000;
2846   Label normal_case, special_case;
2847 
2848   // check for special case
2849   cmpl(rax, min_int);
2850   jcc(Assembler::notEqual, normal_case);
2851   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2852   cmpl(reg, -1);
2853   jcc(Assembler::equal, special_case);
2854 
2855   // handle normal case
2856   bind(normal_case);
2857   cdql();
2858   int idivl_offset = offset();
2859   idivl(reg);
2860 
2861   // normal and special case exit
2862   bind(special_case);
2863 
2864   return idivl_offset;
2865 }
2866 
2867 
2868 
2869 void MacroAssembler::decrementl(Register reg, int value) {
2870   if (value == min_jint) {subl(reg, value) ; return; }
2871   if (value <  0) { incrementl(reg, -value); return; }
2872   if (value == 0) {                        ; return; }
2873   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2874   /* else */      { subl(reg, value)       ; return; }
2875 }
2876 
2877 void MacroAssembler::decrementl(Address dst, int value) {
2878   if (value == min_jint) {subl(dst, value) ; return; }
2879   if (value <  0) { incrementl(dst, -value); return; }
2880   if (value == 0) {                        ; return; }
2881   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2882   /* else */      { subl(dst, value)       ; return; }
2883 }
2884 
2885 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2886   assert (shift_value > 0, "illegal shift value");
2887   Label _is_positive;
2888   testl (reg, reg);
2889   jcc (Assembler::positive, _is_positive);
2890   int offset = (1 << shift_value) - 1 ;
2891 
2892   if (offset == 1) {
2893     incrementl(reg);
2894   } else {
2895     addl(reg, offset);
2896   }
2897 
2898   bind (_is_positive);
2899   sarl(reg, shift_value);
2900 }
2901 
2902 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2903   if (reachable(src)) {
2904     Assembler::divsd(dst, as_Address(src));
2905   } else {
2906     lea(rscratch1, src);
2907     Assembler::divsd(dst, Address(rscratch1, 0));
2908   }
2909 }
2910 
2911 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2912   if (reachable(src)) {
2913     Assembler::divss(dst, as_Address(src));
2914   } else {
2915     lea(rscratch1, src);
2916     Assembler::divss(dst, Address(rscratch1, 0));
2917   }
2918 }
2919 
2920 // !defined(COMPILER2) is because of stupid core builds
2921 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2922 void MacroAssembler::empty_FPU_stack() {
2923   if (VM_Version::supports_mmx()) {
2924     emms();
2925   } else {
2926     for (int i = 8; i-- > 0; ) ffree(i);
2927   }
2928 }
2929 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2930 
2931 
2932 // Defines obj, preserves var_size_in_bytes
2933 void MacroAssembler::eden_allocate(Register obj,
2934                                    Register var_size_in_bytes,
2935                                    int con_size_in_bytes,
2936                                    Register t1,
2937                                    Label& slow_case) {
2938   assert(obj == rax, "obj must be in rax, for cmpxchg");
2939   assert_different_registers(obj, var_size_in_bytes, t1);
2940   if (!Universe::heap()->supports_inline_contig_alloc()) {
2941     jmp(slow_case);
2942   } else {
2943     Register end = t1;
2944     Label retry;
2945     bind(retry);
2946     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2947     movptr(obj, heap_top);
2948     if (var_size_in_bytes == noreg) {
2949       lea(end, Address(obj, con_size_in_bytes));
2950     } else {
2951       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2952     }
2953     // if end < obj then we wrapped around => object too long => slow case
2954     cmpptr(end, obj);
2955     jcc(Assembler::below, slow_case);
2956     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2957     jcc(Assembler::above, slow_case);
2958     // Compare obj with the top addr, and if still equal, store the new top addr in
2959     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2960     // it otherwise. Use lock prefix for atomicity on MPs.
2961     locked_cmpxchgptr(end, heap_top);
2962     jcc(Assembler::notEqual, retry);
2963   }
2964 }
2965 
2966 void MacroAssembler::enter() {
2967   push(rbp);
2968   mov(rbp, rsp);
2969 }
2970 
2971 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2972 void MacroAssembler::fat_nop() {
2973   if (UseAddressNop) {
2974     addr_nop_5();
2975   } else {
2976     emit_int8(0x26); // es:
2977     emit_int8(0x2e); // cs:
2978     emit_int8(0x64); // fs:
2979     emit_int8(0x65); // gs:
2980     emit_int8((unsigned char)0x90);
2981   }
2982 }
2983 
2984 void MacroAssembler::fcmp(Register tmp) {
2985   fcmp(tmp, 1, true, true);
2986 }
2987 
2988 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2989   assert(!pop_right || pop_left, "usage error");
2990   if (VM_Version::supports_cmov()) {
2991     assert(tmp == noreg, "unneeded temp");
2992     if (pop_left) {
2993       fucomip(index);
2994     } else {
2995       fucomi(index);
2996     }
2997     if (pop_right) {
2998       fpop();
2999     }
3000   } else {
3001     assert(tmp != noreg, "need temp");
3002     if (pop_left) {
3003       if (pop_right) {
3004         fcompp();
3005       } else {
3006         fcomp(index);
3007       }
3008     } else {
3009       fcom(index);
3010     }
3011     // convert FPU condition into eflags condition via rax,
3012     save_rax(tmp);
3013     fwait(); fnstsw_ax();
3014     sahf();
3015     restore_rax(tmp);
3016   }
3017   // condition codes set as follows:
3018   //
3019   // CF (corresponds to C0) if x < y
3020   // PF (corresponds to C2) if unordered
3021   // ZF (corresponds to C3) if x = y
3022 }
3023 
3024 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3025   fcmp2int(dst, unordered_is_less, 1, true, true);
3026 }
3027 
3028 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3029   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3030   Label L;
3031   if (unordered_is_less) {
3032     movl(dst, -1);
3033     jcc(Assembler::parity, L);
3034     jcc(Assembler::below , L);
3035     movl(dst, 0);
3036     jcc(Assembler::equal , L);
3037     increment(dst);
3038   } else { // unordered is greater
3039     movl(dst, 1);
3040     jcc(Assembler::parity, L);
3041     jcc(Assembler::above , L);
3042     movl(dst, 0);
3043     jcc(Assembler::equal , L);
3044     decrementl(dst);
3045   }
3046   bind(L);
3047 }
3048 
3049 void MacroAssembler::fld_d(AddressLiteral src) {
3050   fld_d(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fld_s(AddressLiteral src) {
3054   fld_s(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fld_x(AddressLiteral src) {
3058   Assembler::fld_x(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::fldcw(AddressLiteral src) {
3062   Assembler::fldcw(as_Address(src));
3063 }
3064 
3065 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3066   if (reachable(src)) {
3067     Assembler::mulpd(dst, as_Address(src));
3068   } else {
3069     lea(rscratch1, src);
3070     Assembler::mulpd(dst, Address(rscratch1, 0));
3071   }
3072 }
3073 
3074 void MacroAssembler::increase_precision() {
3075   subptr(rsp, BytesPerWord);
3076   fnstcw(Address(rsp, 0));
3077   movl(rax, Address(rsp, 0));
3078   orl(rax, 0x300);
3079   push(rax);
3080   fldcw(Address(rsp, 0));
3081   pop(rax);
3082 }
3083 
3084 void MacroAssembler::restore_precision() {
3085   fldcw(Address(rsp, 0));
3086   addptr(rsp, BytesPerWord);
3087 }
3088 
3089 void MacroAssembler::fpop() {
3090   ffree();
3091   fincstp();
3092 }
3093 
3094 void MacroAssembler::load_float(Address src) {
3095   if (UseSSE >= 1) {
3096     movflt(xmm0, src);
3097   } else {
3098     LP64_ONLY(ShouldNotReachHere());
3099     NOT_LP64(fld_s(src));
3100   }
3101 }
3102 
3103 void MacroAssembler::store_float(Address dst) {
3104   if (UseSSE >= 1) {
3105     movflt(dst, xmm0);
3106   } else {
3107     LP64_ONLY(ShouldNotReachHere());
3108     NOT_LP64(fstp_s(dst));
3109   }
3110 }
3111 
3112 void MacroAssembler::load_double(Address src) {
3113   if (UseSSE >= 2) {
3114     movdbl(xmm0, src);
3115   } else {
3116     LP64_ONLY(ShouldNotReachHere());
3117     NOT_LP64(fld_d(src));
3118   }
3119 }
3120 
3121 void MacroAssembler::store_double(Address dst) {
3122   if (UseSSE >= 2) {
3123     movdbl(dst, xmm0);
3124   } else {
3125     LP64_ONLY(ShouldNotReachHere());
3126     NOT_LP64(fstp_d(dst));
3127   }
3128 }
3129 
3130 void MacroAssembler::fremr(Register tmp) {
3131   save_rax(tmp);
3132   { Label L;
3133     bind(L);
3134     fprem();
3135     fwait(); fnstsw_ax();
3136 #ifdef _LP64
3137     testl(rax, 0x400);
3138     jcc(Assembler::notEqual, L);
3139 #else
3140     sahf();
3141     jcc(Assembler::parity, L);
3142 #endif // _LP64
3143   }
3144   restore_rax(tmp);
3145   // Result is in ST0.
3146   // Note: fxch & fpop to get rid of ST1
3147   // (otherwise FPU stack could overflow eventually)
3148   fxch(1);
3149   fpop();
3150 }
3151 
3152 // dst = c = a * b + c
3153 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3154   Assembler::vfmadd231sd(c, a, b);
3155   if (dst != c) {
3156     movdbl(dst, c);
3157   }
3158 }
3159 
3160 // dst = c = a * b + c
3161 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3162   Assembler::vfmadd231ss(c, a, b);
3163   if (dst != c) {
3164     movflt(dst, c);
3165   }
3166 }
3167 
3168 
3169 
3170 
3171 void MacroAssembler::incrementl(AddressLiteral dst) {
3172   if (reachable(dst)) {
3173     incrementl(as_Address(dst));
3174   } else {
3175     lea(rscratch1, dst);
3176     incrementl(Address(rscratch1, 0));
3177   }
3178 }
3179 
3180 void MacroAssembler::incrementl(ArrayAddress dst) {
3181   incrementl(as_Address(dst));
3182 }
3183 
3184 void MacroAssembler::incrementl(Register reg, int value) {
3185   if (value == min_jint) {addl(reg, value) ; return; }
3186   if (value <  0) { decrementl(reg, -value); return; }
3187   if (value == 0) {                        ; return; }
3188   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3189   /* else */      { addl(reg, value)       ; return; }
3190 }
3191 
3192 void MacroAssembler::incrementl(Address dst, int value) {
3193   if (value == min_jint) {addl(dst, value) ; return; }
3194   if (value <  0) { decrementl(dst, -value); return; }
3195   if (value == 0) {                        ; return; }
3196   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3197   /* else */      { addl(dst, value)       ; return; }
3198 }
3199 
3200 void MacroAssembler::jump(AddressLiteral dst) {
3201   if (reachable(dst)) {
3202     jmp_literal(dst.target(), dst.rspec());
3203   } else {
3204     lea(rscratch1, dst);
3205     jmp(rscratch1);
3206   }
3207 }
3208 
3209 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3210   if (reachable(dst)) {
3211     InstructionMark im(this);
3212     relocate(dst.reloc());
3213     const int short_size = 2;
3214     const int long_size = 6;
3215     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3216     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3217       // 0111 tttn #8-bit disp
3218       emit_int8(0x70 | cc);
3219       emit_int8((offs - short_size) & 0xFF);
3220     } else {
3221       // 0000 1111 1000 tttn #32-bit disp
3222       emit_int8(0x0F);
3223       emit_int8((unsigned char)(0x80 | cc));
3224       emit_int32(offs - long_size);
3225     }
3226   } else {
3227 #ifdef ASSERT
3228     warning("reversing conditional branch");
3229 #endif /* ASSERT */
3230     Label skip;
3231     jccb(reverse[cc], skip);
3232     lea(rscratch1, dst);
3233     Assembler::jmp(rscratch1);
3234     bind(skip);
3235   }
3236 }
3237 
3238 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3239   if (reachable(src)) {
3240     Assembler::ldmxcsr(as_Address(src));
3241   } else {
3242     lea(rscratch1, src);
3243     Assembler::ldmxcsr(Address(rscratch1, 0));
3244   }
3245 }
3246 
3247 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3248   int off;
3249   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3250     off = offset();
3251     movsbl(dst, src); // movsxb
3252   } else {
3253     off = load_unsigned_byte(dst, src);
3254     shll(dst, 24);
3255     sarl(dst, 24);
3256   }
3257   return off;
3258 }
3259 
3260 // Note: load_signed_short used to be called load_signed_word.
3261 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3262 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3263 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3264 int MacroAssembler::load_signed_short(Register dst, Address src) {
3265   int off;
3266   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3267     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3268     // version but this is what 64bit has always done. This seems to imply
3269     // that users are only using 32bits worth.
3270     off = offset();
3271     movswl(dst, src); // movsxw
3272   } else {
3273     off = load_unsigned_short(dst, src);
3274     shll(dst, 16);
3275     sarl(dst, 16);
3276   }
3277   return off;
3278 }
3279 
3280 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3281   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3282   // and "3.9 Partial Register Penalties", p. 22).
3283   int off;
3284   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3285     off = offset();
3286     movzbl(dst, src); // movzxb
3287   } else {
3288     xorl(dst, dst);
3289     off = offset();
3290     movb(dst, src);
3291   }
3292   return off;
3293 }
3294 
3295 // Note: load_unsigned_short used to be called load_unsigned_word.
3296 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3297   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3298   // and "3.9 Partial Register Penalties", p. 22).
3299   int off;
3300   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3301     off = offset();
3302     movzwl(dst, src); // movzxw
3303   } else {
3304     xorl(dst, dst);
3305     off = offset();
3306     movw(dst, src);
3307   }
3308   return off;
3309 }
3310 
3311 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3312   switch (size_in_bytes) {
3313 #ifndef _LP64
3314   case  8:
3315     assert(dst2 != noreg, "second dest register required");
3316     movl(dst,  src);
3317     movl(dst2, src.plus_disp(BytesPerInt));
3318     break;
3319 #else
3320   case  8:  movq(dst, src); break;
3321 #endif
3322   case  4:  movl(dst, src); break;
3323   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3324   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3325   default:  ShouldNotReachHere();
3326   }
3327 }
3328 
3329 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3330   switch (size_in_bytes) {
3331 #ifndef _LP64
3332   case  8:
3333     assert(src2 != noreg, "second source register required");
3334     movl(dst,                        src);
3335     movl(dst.plus_disp(BytesPerInt), src2);
3336     break;
3337 #else
3338   case  8:  movq(dst, src); break;
3339 #endif
3340   case  4:  movl(dst, src); break;
3341   case  2:  movw(dst, src); break;
3342   case  1:  movb(dst, src); break;
3343   default:  ShouldNotReachHere();
3344   }
3345 }
3346 
3347 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3348   if (reachable(dst)) {
3349     movl(as_Address(dst), src);
3350   } else {
3351     lea(rscratch1, dst);
3352     movl(Address(rscratch1, 0), src);
3353   }
3354 }
3355 
3356 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3357   if (reachable(src)) {
3358     movl(dst, as_Address(src));
3359   } else {
3360     lea(rscratch1, src);
3361     movl(dst, Address(rscratch1, 0));
3362   }
3363 }
3364 
3365 // C++ bool manipulation
3366 
3367 void MacroAssembler::movbool(Register dst, Address src) {
3368   if(sizeof(bool) == 1)
3369     movb(dst, src);
3370   else if(sizeof(bool) == 2)
3371     movw(dst, src);
3372   else if(sizeof(bool) == 4)
3373     movl(dst, src);
3374   else
3375     // unsupported
3376     ShouldNotReachHere();
3377 }
3378 
3379 void MacroAssembler::movbool(Address dst, bool boolconst) {
3380   if(sizeof(bool) == 1)
3381     movb(dst, (int) boolconst);
3382   else if(sizeof(bool) == 2)
3383     movw(dst, (int) boolconst);
3384   else if(sizeof(bool) == 4)
3385     movl(dst, (int) boolconst);
3386   else
3387     // unsupported
3388     ShouldNotReachHere();
3389 }
3390 
3391 void MacroAssembler::movbool(Address dst, Register src) {
3392   if(sizeof(bool) == 1)
3393     movb(dst, src);
3394   else if(sizeof(bool) == 2)
3395     movw(dst, src);
3396   else if(sizeof(bool) == 4)
3397     movl(dst, src);
3398   else
3399     // unsupported
3400     ShouldNotReachHere();
3401 }
3402 
3403 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3404   movb(as_Address(dst), src);
3405 }
3406 
3407 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3408   if (reachable(src)) {
3409     movdl(dst, as_Address(src));
3410   } else {
3411     lea(rscratch1, src);
3412     movdl(dst, Address(rscratch1, 0));
3413   }
3414 }
3415 
3416 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3417   if (reachable(src)) {
3418     movq(dst, as_Address(src));
3419   } else {
3420     lea(rscratch1, src);
3421     movq(dst, Address(rscratch1, 0));
3422   }
3423 }
3424 
3425 void MacroAssembler::setvectmask(Register dst, Register src) {
3426   Assembler::movl(dst, 1);
3427   Assembler::shlxl(dst, dst, src);
3428   Assembler::decl(dst);
3429   Assembler::kmovdl(k1, dst);
3430   Assembler::movl(dst, src);
3431 }
3432 
3433 void MacroAssembler::restorevectmask() {
3434   Assembler::knotwl(k1, k0);
3435 }
3436 
3437 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3438   if (reachable(src)) {
3439     if (UseXmmLoadAndClearUpper) {
3440       movsd (dst, as_Address(src));
3441     } else {
3442       movlpd(dst, as_Address(src));
3443     }
3444   } else {
3445     lea(rscratch1, src);
3446     if (UseXmmLoadAndClearUpper) {
3447       movsd (dst, Address(rscratch1, 0));
3448     } else {
3449       movlpd(dst, Address(rscratch1, 0));
3450     }
3451   }
3452 }
3453 
3454 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3455   if (reachable(src)) {
3456     movss(dst, as_Address(src));
3457   } else {
3458     lea(rscratch1, src);
3459     movss(dst, Address(rscratch1, 0));
3460   }
3461 }
3462 
3463 void MacroAssembler::movptr(Register dst, Register src) {
3464   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3465 }
3466 
3467 void MacroAssembler::movptr(Register dst, Address src) {
3468   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3469 }
3470 
3471 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3472 void MacroAssembler::movptr(Register dst, intptr_t src) {
3473   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3474 }
3475 
3476 void MacroAssembler::movptr(Address dst, Register src) {
3477   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3478 }
3479 
3480 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3481   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3482     Assembler::vextractf32x4(dst, src, 0);
3483   } else {
3484     Assembler::movdqu(dst, src);
3485   }
3486 }
3487 
3488 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3489   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3490     Assembler::vinsertf32x4(dst, dst, src, 0);
3491   } else {
3492     Assembler::movdqu(dst, src);
3493   }
3494 }
3495 
3496 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3497   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3498     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3499   } else {
3500     Assembler::movdqu(dst, src);
3501   }
3502 }
3503 
3504 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3505   if (reachable(src)) {
3506     movdqu(dst, as_Address(src));
3507   } else {
3508     lea(scratchReg, src);
3509     movdqu(dst, Address(scratchReg, 0));
3510   }
3511 }
3512 
3513 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3514   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3515     vextractf64x4_low(dst, src);
3516   } else {
3517     Assembler::vmovdqu(dst, src);
3518   }
3519 }
3520 
3521 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3522   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3523     vinsertf64x4_low(dst, src);
3524   } else {
3525     Assembler::vmovdqu(dst, src);
3526   }
3527 }
3528 
3529 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3530   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3531     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3532   }
3533   else {
3534     Assembler::vmovdqu(dst, src);
3535   }
3536 }
3537 
3538 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3539   if (reachable(src)) {
3540     vmovdqu(dst, as_Address(src));
3541   }
3542   else {
3543     lea(rscratch1, src);
3544     vmovdqu(dst, Address(rscratch1, 0));
3545   }
3546 }
3547 
3548 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3549   if (reachable(src)) {
3550     Assembler::movdqa(dst, as_Address(src));
3551   } else {
3552     lea(rscratch1, src);
3553     Assembler::movdqa(dst, Address(rscratch1, 0));
3554   }
3555 }
3556 
3557 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3558   if (reachable(src)) {
3559     Assembler::movsd(dst, as_Address(src));
3560   } else {
3561     lea(rscratch1, src);
3562     Assembler::movsd(dst, Address(rscratch1, 0));
3563   }
3564 }
3565 
3566 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3567   if (reachable(src)) {
3568     Assembler::movss(dst, as_Address(src));
3569   } else {
3570     lea(rscratch1, src);
3571     Assembler::movss(dst, Address(rscratch1, 0));
3572   }
3573 }
3574 
3575 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3576   if (reachable(src)) {
3577     Assembler::mulsd(dst, as_Address(src));
3578   } else {
3579     lea(rscratch1, src);
3580     Assembler::mulsd(dst, Address(rscratch1, 0));
3581   }
3582 }
3583 
3584 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3585   if (reachable(src)) {
3586     Assembler::mulss(dst, as_Address(src));
3587   } else {
3588     lea(rscratch1, src);
3589     Assembler::mulss(dst, Address(rscratch1, 0));
3590   }
3591 }
3592 
3593 void MacroAssembler::null_check(Register reg, int offset) {
3594   if (needs_explicit_null_check(offset)) {
3595     // provoke OS NULL exception if reg = NULL by
3596     // accessing M[reg] w/o changing any (non-CC) registers
3597     // NOTE: cmpl is plenty here to provoke a segv
3598     cmpptr(rax, Address(reg, 0));
3599     // Note: should probably use testl(rax, Address(reg, 0));
3600     //       may be shorter code (however, this version of
3601     //       testl needs to be implemented first)
3602   } else {
3603     // nothing to do, (later) access of M[reg + offset]
3604     // will provoke OS NULL exception if reg = NULL
3605   }
3606 }
3607 
3608 void MacroAssembler::os_breakpoint() {
3609   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3610   // (e.g., MSVC can't call ps() otherwise)
3611   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3612 }
3613 
3614 #ifdef _LP64
3615 #define XSTATE_BV 0x200
3616 #endif
3617 
3618 void MacroAssembler::pop_CPU_state() {
3619   pop_FPU_state();
3620   pop_IU_state();
3621 }
3622 
3623 void MacroAssembler::pop_FPU_state() {
3624 #ifndef _LP64
3625   frstor(Address(rsp, 0));
3626 #else
3627   fxrstor(Address(rsp, 0));
3628 #endif
3629   addptr(rsp, FPUStateSizeInWords * wordSize);
3630 }
3631 
3632 void MacroAssembler::pop_IU_state() {
3633   popa();
3634   LP64_ONLY(addq(rsp, 8));
3635   popf();
3636 }
3637 
3638 // Save Integer and Float state
3639 // Warning: Stack must be 16 byte aligned (64bit)
3640 void MacroAssembler::push_CPU_state() {
3641   push_IU_state();
3642   push_FPU_state();
3643 }
3644 
3645 void MacroAssembler::push_FPU_state() {
3646   subptr(rsp, FPUStateSizeInWords * wordSize);
3647 #ifndef _LP64
3648   fnsave(Address(rsp, 0));
3649   fwait();
3650 #else
3651   fxsave(Address(rsp, 0));
3652 #endif // LP64
3653 }
3654 
3655 void MacroAssembler::push_IU_state() {
3656   // Push flags first because pusha kills them
3657   pushf();
3658   // Make sure rsp stays 16-byte aligned
3659   LP64_ONLY(subq(rsp, 8));
3660   pusha();
3661 }
3662 
3663 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3664   if (!java_thread->is_valid()) {
3665     java_thread = rdi;
3666     get_thread(java_thread);
3667   }
3668   // we must set sp to zero to clear frame
3669   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3670   if (clear_fp) {
3671     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3672   }
3673 
3674   // Always clear the pc because it could have been set by make_walkable()
3675   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3676 
3677   vzeroupper();
3678 }
3679 
3680 void MacroAssembler::restore_rax(Register tmp) {
3681   if (tmp == noreg) pop(rax);
3682   else if (tmp != rax) mov(rax, tmp);
3683 }
3684 
3685 void MacroAssembler::round_to(Register reg, int modulus) {
3686   addptr(reg, modulus - 1);
3687   andptr(reg, -modulus);
3688 }
3689 
3690 void MacroAssembler::save_rax(Register tmp) {
3691   if (tmp == noreg) push(rax);
3692   else if (tmp != rax) mov(tmp, rax);
3693 }
3694 
3695 // Write serialization page so VM thread can do a pseudo remote membar.
3696 // We use the current thread pointer to calculate a thread specific
3697 // offset to write to within the page. This minimizes bus traffic
3698 // due to cache line collision.
3699 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3700   movl(tmp, thread);
3701   shrl(tmp, os::get_serialize_page_shift_count());
3702   andl(tmp, (os::vm_page_size() - sizeof(int)));
3703 
3704   Address index(noreg, tmp, Address::times_1);
3705   ExternalAddress page(os::get_memory_serialize_page());
3706 
3707   // Size of store must match masking code above
3708   movl(as_Address(ArrayAddress(page, index)), tmp);
3709 }
3710 
3711 // Calls to C land
3712 //
3713 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3714 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3715 // has to be reset to 0. This is required to allow proper stack traversal.
3716 void MacroAssembler::set_last_Java_frame(Register java_thread,
3717                                          Register last_java_sp,
3718                                          Register last_java_fp,
3719                                          address  last_java_pc) {
3720   vzeroupper();
3721   // determine java_thread register
3722   if (!java_thread->is_valid()) {
3723     java_thread = rdi;
3724     get_thread(java_thread);
3725   }
3726   // determine last_java_sp register
3727   if (!last_java_sp->is_valid()) {
3728     last_java_sp = rsp;
3729   }
3730 
3731   // last_java_fp is optional
3732 
3733   if (last_java_fp->is_valid()) {
3734     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3735   }
3736 
3737   // last_java_pc is optional
3738 
3739   if (last_java_pc != NULL) {
3740     lea(Address(java_thread,
3741                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3742         InternalAddress(last_java_pc));
3743 
3744   }
3745   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3746 }
3747 
3748 void MacroAssembler::shlptr(Register dst, int imm8) {
3749   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3750 }
3751 
3752 void MacroAssembler::shrptr(Register dst, int imm8) {
3753   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3754 }
3755 
3756 void MacroAssembler::sign_extend_byte(Register reg) {
3757   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3758     movsbl(reg, reg); // movsxb
3759   } else {
3760     shll(reg, 24);
3761     sarl(reg, 24);
3762   }
3763 }
3764 
3765 void MacroAssembler::sign_extend_short(Register reg) {
3766   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3767     movswl(reg, reg); // movsxw
3768   } else {
3769     shll(reg, 16);
3770     sarl(reg, 16);
3771   }
3772 }
3773 
3774 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3775   assert(reachable(src), "Address should be reachable");
3776   testl(dst, as_Address(src));
3777 }
3778 
3779 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3780   int dst_enc = dst->encoding();
3781   int src_enc = src->encoding();
3782   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3783     Assembler::pcmpeqb(dst, src);
3784   } else if ((dst_enc < 16) && (src_enc < 16)) {
3785     Assembler::pcmpeqb(dst, src);
3786   } else if (src_enc < 16) {
3787     subptr(rsp, 64);
3788     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3789     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3790     Assembler::pcmpeqb(xmm0, src);
3791     movdqu(dst, xmm0);
3792     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3793     addptr(rsp, 64);
3794   } else if (dst_enc < 16) {
3795     subptr(rsp, 64);
3796     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3797     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3798     Assembler::pcmpeqb(dst, xmm0);
3799     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3800     addptr(rsp, 64);
3801   } else {
3802     subptr(rsp, 64);
3803     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3804     subptr(rsp, 64);
3805     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3806     movdqu(xmm0, src);
3807     movdqu(xmm1, dst);
3808     Assembler::pcmpeqb(xmm1, xmm0);
3809     movdqu(dst, xmm1);
3810     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3811     addptr(rsp, 64);
3812     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3813     addptr(rsp, 64);
3814   }
3815 }
3816 
3817 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3818   int dst_enc = dst->encoding();
3819   int src_enc = src->encoding();
3820   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3821     Assembler::pcmpeqw(dst, src);
3822   } else if ((dst_enc < 16) && (src_enc < 16)) {
3823     Assembler::pcmpeqw(dst, src);
3824   } else if (src_enc < 16) {
3825     subptr(rsp, 64);
3826     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3827     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3828     Assembler::pcmpeqw(xmm0, src);
3829     movdqu(dst, xmm0);
3830     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3831     addptr(rsp, 64);
3832   } else if (dst_enc < 16) {
3833     subptr(rsp, 64);
3834     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3835     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3836     Assembler::pcmpeqw(dst, xmm0);
3837     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3838     addptr(rsp, 64);
3839   } else {
3840     subptr(rsp, 64);
3841     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3842     subptr(rsp, 64);
3843     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3844     movdqu(xmm0, src);
3845     movdqu(xmm1, dst);
3846     Assembler::pcmpeqw(xmm1, xmm0);
3847     movdqu(dst, xmm1);
3848     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3849     addptr(rsp, 64);
3850     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3851     addptr(rsp, 64);
3852   }
3853 }
3854 
3855 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3856   int dst_enc = dst->encoding();
3857   if (dst_enc < 16) {
3858     Assembler::pcmpestri(dst, src, imm8);
3859   } else {
3860     subptr(rsp, 64);
3861     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3862     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3863     Assembler::pcmpestri(xmm0, src, imm8);
3864     movdqu(dst, xmm0);
3865     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3866     addptr(rsp, 64);
3867   }
3868 }
3869 
3870 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3871   int dst_enc = dst->encoding();
3872   int src_enc = src->encoding();
3873   if ((dst_enc < 16) && (src_enc < 16)) {
3874     Assembler::pcmpestri(dst, src, imm8);
3875   } else if (src_enc < 16) {
3876     subptr(rsp, 64);
3877     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3878     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3879     Assembler::pcmpestri(xmm0, src, imm8);
3880     movdqu(dst, xmm0);
3881     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3882     addptr(rsp, 64);
3883   } else if (dst_enc < 16) {
3884     subptr(rsp, 64);
3885     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3886     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3887     Assembler::pcmpestri(dst, xmm0, imm8);
3888     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3889     addptr(rsp, 64);
3890   } else {
3891     subptr(rsp, 64);
3892     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3893     subptr(rsp, 64);
3894     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3895     movdqu(xmm0, src);
3896     movdqu(xmm1, dst);
3897     Assembler::pcmpestri(xmm1, xmm0, imm8);
3898     movdqu(dst, xmm1);
3899     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3900     addptr(rsp, 64);
3901     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3902     addptr(rsp, 64);
3903   }
3904 }
3905 
3906 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3907   int dst_enc = dst->encoding();
3908   int src_enc = src->encoding();
3909   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3910     Assembler::pmovzxbw(dst, src);
3911   } else if ((dst_enc < 16) && (src_enc < 16)) {
3912     Assembler::pmovzxbw(dst, src);
3913   } else if (src_enc < 16) {
3914     subptr(rsp, 64);
3915     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3916     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3917     Assembler::pmovzxbw(xmm0, src);
3918     movdqu(dst, xmm0);
3919     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3920     addptr(rsp, 64);
3921   } else if (dst_enc < 16) {
3922     subptr(rsp, 64);
3923     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3924     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3925     Assembler::pmovzxbw(dst, xmm0);
3926     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3927     addptr(rsp, 64);
3928   } else {
3929     subptr(rsp, 64);
3930     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3931     subptr(rsp, 64);
3932     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3933     movdqu(xmm0, src);
3934     movdqu(xmm1, dst);
3935     Assembler::pmovzxbw(xmm1, xmm0);
3936     movdqu(dst, xmm1);
3937     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3938     addptr(rsp, 64);
3939     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3940     addptr(rsp, 64);
3941   }
3942 }
3943 
3944 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3945   int dst_enc = dst->encoding();
3946   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3947     Assembler::pmovzxbw(dst, src);
3948   } else if (dst_enc < 16) {
3949     Assembler::pmovzxbw(dst, src);
3950   } else {
3951     subptr(rsp, 64);
3952     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3953     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3954     Assembler::pmovzxbw(xmm0, src);
3955     movdqu(dst, xmm0);
3956     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3957     addptr(rsp, 64);
3958   }
3959 }
3960 
3961 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3962   int src_enc = src->encoding();
3963   if (src_enc < 16) {
3964     Assembler::pmovmskb(dst, src);
3965   } else {
3966     subptr(rsp, 64);
3967     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3968     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3969     Assembler::pmovmskb(dst, xmm0);
3970     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3971     addptr(rsp, 64);
3972   }
3973 }
3974 
3975 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3976   int dst_enc = dst->encoding();
3977   int src_enc = src->encoding();
3978   if ((dst_enc < 16) && (src_enc < 16)) {
3979     Assembler::ptest(dst, src);
3980   } else if (src_enc < 16) {
3981     subptr(rsp, 64);
3982     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3983     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3984     Assembler::ptest(xmm0, src);
3985     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3986     addptr(rsp, 64);
3987   } else if (dst_enc < 16) {
3988     subptr(rsp, 64);
3989     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3990     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3991     Assembler::ptest(dst, xmm0);
3992     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3993     addptr(rsp, 64);
3994   } else {
3995     subptr(rsp, 64);
3996     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3997     subptr(rsp, 64);
3998     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3999     movdqu(xmm0, src);
4000     movdqu(xmm1, dst);
4001     Assembler::ptest(xmm1, xmm0);
4002     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4003     addptr(rsp, 64);
4004     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4005     addptr(rsp, 64);
4006   }
4007 }
4008 
4009 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4010   if (reachable(src)) {
4011     Assembler::sqrtsd(dst, as_Address(src));
4012   } else {
4013     lea(rscratch1, src);
4014     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4015   }
4016 }
4017 
4018 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4019   if (reachable(src)) {
4020     Assembler::sqrtss(dst, as_Address(src));
4021   } else {
4022     lea(rscratch1, src);
4023     Assembler::sqrtss(dst, Address(rscratch1, 0));
4024   }
4025 }
4026 
4027 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4028   if (reachable(src)) {
4029     Assembler::subsd(dst, as_Address(src));
4030   } else {
4031     lea(rscratch1, src);
4032     Assembler::subsd(dst, Address(rscratch1, 0));
4033   }
4034 }
4035 
4036 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4037   if (reachable(src)) {
4038     Assembler::subss(dst, as_Address(src));
4039   } else {
4040     lea(rscratch1, src);
4041     Assembler::subss(dst, Address(rscratch1, 0));
4042   }
4043 }
4044 
4045 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4046   if (reachable(src)) {
4047     Assembler::ucomisd(dst, as_Address(src));
4048   } else {
4049     lea(rscratch1, src);
4050     Assembler::ucomisd(dst, Address(rscratch1, 0));
4051   }
4052 }
4053 
4054 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4055   if (reachable(src)) {
4056     Assembler::ucomiss(dst, as_Address(src));
4057   } else {
4058     lea(rscratch1, src);
4059     Assembler::ucomiss(dst, Address(rscratch1, 0));
4060   }
4061 }
4062 
4063 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4064   // Used in sign-bit flipping with aligned address.
4065   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4066   if (reachable(src)) {
4067     Assembler::xorpd(dst, as_Address(src));
4068   } else {
4069     lea(rscratch1, src);
4070     Assembler::xorpd(dst, Address(rscratch1, 0));
4071   }
4072 }
4073 
4074 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4075   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4076     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4077   }
4078   else {
4079     Assembler::xorpd(dst, src);
4080   }
4081 }
4082 
4083 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4084   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4085     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4086   } else {
4087     Assembler::xorps(dst, src);
4088   }
4089 }
4090 
4091 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4092   // Used in sign-bit flipping with aligned address.
4093   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4094   if (reachable(src)) {
4095     Assembler::xorps(dst, as_Address(src));
4096   } else {
4097     lea(rscratch1, src);
4098     Assembler::xorps(dst, Address(rscratch1, 0));
4099   }
4100 }
4101 
4102 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4103   // Used in sign-bit flipping with aligned address.
4104   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4105   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4106   if (reachable(src)) {
4107     Assembler::pshufb(dst, as_Address(src));
4108   } else {
4109     lea(rscratch1, src);
4110     Assembler::pshufb(dst, Address(rscratch1, 0));
4111   }
4112 }
4113 
4114 // AVX 3-operands instructions
4115 
4116 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4117   if (reachable(src)) {
4118     vaddsd(dst, nds, as_Address(src));
4119   } else {
4120     lea(rscratch1, src);
4121     vaddsd(dst, nds, Address(rscratch1, 0));
4122   }
4123 }
4124 
4125 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4126   if (reachable(src)) {
4127     vaddss(dst, nds, as_Address(src));
4128   } else {
4129     lea(rscratch1, src);
4130     vaddss(dst, nds, Address(rscratch1, 0));
4131   }
4132 }
4133 
4134 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4135   int dst_enc = dst->encoding();
4136   int nds_enc = nds->encoding();
4137   int src_enc = src->encoding();
4138   if ((dst_enc < 16) && (nds_enc < 16)) {
4139     vandps(dst, nds, negate_field, vector_len);
4140   } else if ((src_enc < 16) && (dst_enc < 16)) {
4141     movss(src, nds);
4142     vandps(dst, src, negate_field, vector_len);
4143   } else if (src_enc < 16) {
4144     movss(src, nds);
4145     vandps(src, src, negate_field, vector_len);
4146     movss(dst, src);
4147   } else if (dst_enc < 16) {
4148     movdqu(src, xmm0);
4149     movss(xmm0, nds);
4150     vandps(dst, xmm0, negate_field, vector_len);
4151     movdqu(xmm0, src);
4152   } else if (nds_enc < 16) {
4153     movdqu(src, xmm0);
4154     vandps(xmm0, nds, negate_field, vector_len);
4155     movss(dst, xmm0);
4156     movdqu(xmm0, src);
4157   } else {
4158     movdqu(src, xmm0);
4159     movss(xmm0, nds);
4160     vandps(xmm0, xmm0, negate_field, vector_len);
4161     movss(dst, xmm0);
4162     movdqu(xmm0, src);
4163   }
4164 }
4165 
4166 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4167   int dst_enc = dst->encoding();
4168   int nds_enc = nds->encoding();
4169   int src_enc = src->encoding();
4170   if ((dst_enc < 16) && (nds_enc < 16)) {
4171     vandpd(dst, nds, negate_field, vector_len);
4172   } else if ((src_enc < 16) && (dst_enc < 16)) {
4173     movsd(src, nds);
4174     vandpd(dst, src, negate_field, vector_len);
4175   } else if (src_enc < 16) {
4176     movsd(src, nds);
4177     vandpd(src, src, negate_field, vector_len);
4178     movsd(dst, src);
4179   } else if (dst_enc < 16) {
4180     movdqu(src, xmm0);
4181     movsd(xmm0, nds);
4182     vandpd(dst, xmm0, negate_field, vector_len);
4183     movdqu(xmm0, src);
4184   } else if (nds_enc < 16) {
4185     movdqu(src, xmm0);
4186     vandpd(xmm0, nds, negate_field, vector_len);
4187     movsd(dst, xmm0);
4188     movdqu(xmm0, src);
4189   } else {
4190     movdqu(src, xmm0);
4191     movsd(xmm0, nds);
4192     vandpd(xmm0, xmm0, negate_field, vector_len);
4193     movsd(dst, xmm0);
4194     movdqu(xmm0, src);
4195   }
4196 }
4197 
4198 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4199   int dst_enc = dst->encoding();
4200   int nds_enc = nds->encoding();
4201   int src_enc = src->encoding();
4202   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4203     Assembler::vpaddb(dst, nds, src, vector_len);
4204   } else if ((dst_enc < 16) && (src_enc < 16)) {
4205     Assembler::vpaddb(dst, dst, src, vector_len);
4206   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4207     // use nds as scratch for src
4208     evmovdqul(nds, src, Assembler::AVX_512bit);
4209     Assembler::vpaddb(dst, dst, nds, vector_len);
4210   } else if ((src_enc < 16) && (nds_enc < 16)) {
4211     // use nds as scratch for dst
4212     evmovdqul(nds, dst, Assembler::AVX_512bit);
4213     Assembler::vpaddb(nds, nds, src, vector_len);
4214     evmovdqul(dst, nds, Assembler::AVX_512bit);
4215   } else if (dst_enc < 16) {
4216     // use nds as scatch for xmm0 to hold src
4217     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4218     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4219     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4220     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4221   } else {
4222     // worse case scenario, all regs are in the upper bank
4223     subptr(rsp, 64);
4224     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4225     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4226     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4227     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4228     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4229     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4230     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4231     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4232     addptr(rsp, 64);
4233   }
4234 }
4235 
4236 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4237   int dst_enc = dst->encoding();
4238   int nds_enc = nds->encoding();
4239   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4240     Assembler::vpaddb(dst, nds, src, vector_len);
4241   } else if (dst_enc < 16) {
4242     Assembler::vpaddb(dst, dst, src, vector_len);
4243   } else if (nds_enc < 16) {
4244     // implies dst_enc in upper bank with src as scratch
4245     evmovdqul(nds, dst, Assembler::AVX_512bit);
4246     Assembler::vpaddb(nds, nds, src, vector_len);
4247     evmovdqul(dst, nds, Assembler::AVX_512bit);
4248   } else {
4249     // worse case scenario, all regs in upper bank
4250     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4251     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4252     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4253     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4254   }
4255 }
4256 
4257 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4258   int dst_enc = dst->encoding();
4259   int nds_enc = nds->encoding();
4260   int src_enc = src->encoding();
4261   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4262     Assembler::vpaddw(dst, nds, src, vector_len);
4263   } else if ((dst_enc < 16) && (src_enc < 16)) {
4264     Assembler::vpaddw(dst, dst, src, vector_len);
4265   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4266     // use nds as scratch for src
4267     evmovdqul(nds, src, Assembler::AVX_512bit);
4268     Assembler::vpaddw(dst, dst, nds, vector_len);
4269   } else if ((src_enc < 16) && (nds_enc < 16)) {
4270     // use nds as scratch for dst
4271     evmovdqul(nds, dst, Assembler::AVX_512bit);
4272     Assembler::vpaddw(nds, nds, src, vector_len);
4273     evmovdqul(dst, nds, Assembler::AVX_512bit);
4274   } else if (dst_enc < 16) {
4275     // use nds as scatch for xmm0 to hold src
4276     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4277     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4278     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4279     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4280   } else {
4281     // worse case scenario, all regs are in the upper bank
4282     subptr(rsp, 64);
4283     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4284     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4285     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4286     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4287     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4288     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4289     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4290     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4291     addptr(rsp, 64);
4292   }
4293 }
4294 
4295 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4296   int dst_enc = dst->encoding();
4297   int nds_enc = nds->encoding();
4298   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4299     Assembler::vpaddw(dst, nds, src, vector_len);
4300   } else if (dst_enc < 16) {
4301     Assembler::vpaddw(dst, dst, src, vector_len);
4302   } else if (nds_enc < 16) {
4303     // implies dst_enc in upper bank with src as scratch
4304     evmovdqul(nds, dst, Assembler::AVX_512bit);
4305     Assembler::vpaddw(nds, nds, src, vector_len);
4306     evmovdqul(dst, nds, Assembler::AVX_512bit);
4307   } else {
4308     // worse case scenario, all regs in upper bank
4309     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4310     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4311     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4312     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4313   }
4314 }
4315 
4316 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4317   if (reachable(src)) {
4318     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4319   } else {
4320     lea(rscratch1, src);
4321     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4322   }
4323 }
4324 
4325 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4326   int dst_enc = dst->encoding();
4327   int src_enc = src->encoding();
4328   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4329     Assembler::vpbroadcastw(dst, src);
4330   } else if ((dst_enc < 16) && (src_enc < 16)) {
4331     Assembler::vpbroadcastw(dst, src);
4332   } else if (src_enc < 16) {
4333     subptr(rsp, 64);
4334     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4335     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4336     Assembler::vpbroadcastw(xmm0, src);
4337     movdqu(dst, xmm0);
4338     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4339     addptr(rsp, 64);
4340   } else if (dst_enc < 16) {
4341     subptr(rsp, 64);
4342     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4343     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4344     Assembler::vpbroadcastw(dst, xmm0);
4345     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4346     addptr(rsp, 64);
4347   } else {
4348     subptr(rsp, 64);
4349     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4350     subptr(rsp, 64);
4351     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4352     movdqu(xmm0, src);
4353     movdqu(xmm1, dst);
4354     Assembler::vpbroadcastw(xmm1, xmm0);
4355     movdqu(dst, xmm1);
4356     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4357     addptr(rsp, 64);
4358     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4359     addptr(rsp, 64);
4360   }
4361 }
4362 
4363 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4364   int dst_enc = dst->encoding();
4365   int nds_enc = nds->encoding();
4366   int src_enc = src->encoding();
4367   assert(dst_enc == nds_enc, "");
4368   if ((dst_enc < 16) && (src_enc < 16)) {
4369     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4370   } else if (src_enc < 16) {
4371     subptr(rsp, 64);
4372     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4373     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4374     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4375     movdqu(dst, xmm0);
4376     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4377     addptr(rsp, 64);
4378   } else if (dst_enc < 16) {
4379     subptr(rsp, 64);
4380     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4381     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4382     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4383     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4384     addptr(rsp, 64);
4385   } else {
4386     subptr(rsp, 64);
4387     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4388     subptr(rsp, 64);
4389     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4390     movdqu(xmm0, src);
4391     movdqu(xmm1, dst);
4392     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4393     movdqu(dst, xmm1);
4394     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4395     addptr(rsp, 64);
4396     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4397     addptr(rsp, 64);
4398   }
4399 }
4400 
4401 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4402   int dst_enc = dst->encoding();
4403   int nds_enc = nds->encoding();
4404   int src_enc = src->encoding();
4405   assert(dst_enc == nds_enc, "");
4406   if ((dst_enc < 16) && (src_enc < 16)) {
4407     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4408   } else if (src_enc < 16) {
4409     subptr(rsp, 64);
4410     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4411     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4412     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4413     movdqu(dst, xmm0);
4414     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4415     addptr(rsp, 64);
4416   } else if (dst_enc < 16) {
4417     subptr(rsp, 64);
4418     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4419     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4420     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4421     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4422     addptr(rsp, 64);
4423   } else {
4424     subptr(rsp, 64);
4425     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4426     subptr(rsp, 64);
4427     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4428     movdqu(xmm0, src);
4429     movdqu(xmm1, dst);
4430     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4431     movdqu(dst, xmm1);
4432     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4433     addptr(rsp, 64);
4434     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4435     addptr(rsp, 64);
4436   }
4437 }
4438 
4439 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4440   int dst_enc = dst->encoding();
4441   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4442     Assembler::vpmovzxbw(dst, src, vector_len);
4443   } else if (dst_enc < 16) {
4444     Assembler::vpmovzxbw(dst, src, vector_len);
4445   } else {
4446     subptr(rsp, 64);
4447     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4448     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4449     Assembler::vpmovzxbw(xmm0, src, vector_len);
4450     movdqu(dst, xmm0);
4451     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4452     addptr(rsp, 64);
4453   }
4454 }
4455 
4456 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4457   int src_enc = src->encoding();
4458   if (src_enc < 16) {
4459     Assembler::vpmovmskb(dst, src);
4460   } else {
4461     subptr(rsp, 64);
4462     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4463     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4464     Assembler::vpmovmskb(dst, xmm0);
4465     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4466     addptr(rsp, 64);
4467   }
4468 }
4469 
4470 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4471   int dst_enc = dst->encoding();
4472   int nds_enc = nds->encoding();
4473   int src_enc = src->encoding();
4474   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4475     Assembler::vpmullw(dst, nds, src, vector_len);
4476   } else if ((dst_enc < 16) && (src_enc < 16)) {
4477     Assembler::vpmullw(dst, dst, src, vector_len);
4478   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4479     // use nds as scratch for src
4480     evmovdqul(nds, src, Assembler::AVX_512bit);
4481     Assembler::vpmullw(dst, dst, nds, vector_len);
4482   } else if ((src_enc < 16) && (nds_enc < 16)) {
4483     // use nds as scratch for dst
4484     evmovdqul(nds, dst, Assembler::AVX_512bit);
4485     Assembler::vpmullw(nds, nds, src, vector_len);
4486     evmovdqul(dst, nds, Assembler::AVX_512bit);
4487   } else if (dst_enc < 16) {
4488     // use nds as scatch for xmm0 to hold src
4489     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4490     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4491     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4492     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4493   } else {
4494     // worse case scenario, all regs are in the upper bank
4495     subptr(rsp, 64);
4496     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4497     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4498     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4499     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4500     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4501     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4502     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4503     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4504     addptr(rsp, 64);
4505   }
4506 }
4507 
4508 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4509   int dst_enc = dst->encoding();
4510   int nds_enc = nds->encoding();
4511   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4512     Assembler::vpmullw(dst, nds, src, vector_len);
4513   } else if (dst_enc < 16) {
4514     Assembler::vpmullw(dst, dst, src, vector_len);
4515   } else if (nds_enc < 16) {
4516     // implies dst_enc in upper bank with src as scratch
4517     evmovdqul(nds, dst, Assembler::AVX_512bit);
4518     Assembler::vpmullw(nds, nds, src, vector_len);
4519     evmovdqul(dst, nds, Assembler::AVX_512bit);
4520   } else {
4521     // worse case scenario, all regs in upper bank
4522     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4523     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4524     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4525     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4526   }
4527 }
4528 
4529 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4530   int dst_enc = dst->encoding();
4531   int nds_enc = nds->encoding();
4532   int src_enc = src->encoding();
4533   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4534     Assembler::vpsubb(dst, nds, src, vector_len);
4535   } else if ((dst_enc < 16) && (src_enc < 16)) {
4536     Assembler::vpsubb(dst, dst, src, vector_len);
4537   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4538     // use nds as scratch for src
4539     evmovdqul(nds, src, Assembler::AVX_512bit);
4540     Assembler::vpsubb(dst, dst, nds, vector_len);
4541   } else if ((src_enc < 16) && (nds_enc < 16)) {
4542     // use nds as scratch for dst
4543     evmovdqul(nds, dst, Assembler::AVX_512bit);
4544     Assembler::vpsubb(nds, nds, src, vector_len);
4545     evmovdqul(dst, nds, Assembler::AVX_512bit);
4546   } else if (dst_enc < 16) {
4547     // use nds as scatch for xmm0 to hold src
4548     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4549     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4550     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4551     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4552   } else {
4553     // worse case scenario, all regs are in the upper bank
4554     subptr(rsp, 64);
4555     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4556     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4557     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4558     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4559     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4560     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4561     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4562     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4563     addptr(rsp, 64);
4564   }
4565 }
4566 
4567 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4568   int dst_enc = dst->encoding();
4569   int nds_enc = nds->encoding();
4570   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4571     Assembler::vpsubb(dst, nds, src, vector_len);
4572   } else if (dst_enc < 16) {
4573     Assembler::vpsubb(dst, dst, src, vector_len);
4574   } else if (nds_enc < 16) {
4575     // implies dst_enc in upper bank with src as scratch
4576     evmovdqul(nds, dst, Assembler::AVX_512bit);
4577     Assembler::vpsubb(nds, nds, src, vector_len);
4578     evmovdqul(dst, nds, Assembler::AVX_512bit);
4579   } else {
4580     // worse case scenario, all regs in upper bank
4581     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4582     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4583     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4584     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4585   }
4586 }
4587 
4588 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4589   int dst_enc = dst->encoding();
4590   int nds_enc = nds->encoding();
4591   int src_enc = src->encoding();
4592   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4593     Assembler::vpsubw(dst, nds, src, vector_len);
4594   } else if ((dst_enc < 16) && (src_enc < 16)) {
4595     Assembler::vpsubw(dst, dst, src, vector_len);
4596   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4597     // use nds as scratch for src
4598     evmovdqul(nds, src, Assembler::AVX_512bit);
4599     Assembler::vpsubw(dst, dst, nds, vector_len);
4600   } else if ((src_enc < 16) && (nds_enc < 16)) {
4601     // use nds as scratch for dst
4602     evmovdqul(nds, dst, Assembler::AVX_512bit);
4603     Assembler::vpsubw(nds, nds, src, vector_len);
4604     evmovdqul(dst, nds, Assembler::AVX_512bit);
4605   } else if (dst_enc < 16) {
4606     // use nds as scatch for xmm0 to hold src
4607     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4608     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4609     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4610     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4611   } else {
4612     // worse case scenario, all regs are in the upper bank
4613     subptr(rsp, 64);
4614     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4615     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4616     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4617     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4618     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4619     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4620     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4621     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4622     addptr(rsp, 64);
4623   }
4624 }
4625 
4626 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4627   int dst_enc = dst->encoding();
4628   int nds_enc = nds->encoding();
4629   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4630     Assembler::vpsubw(dst, nds, src, vector_len);
4631   } else if (dst_enc < 16) {
4632     Assembler::vpsubw(dst, dst, src, vector_len);
4633   } else if (nds_enc < 16) {
4634     // implies dst_enc in upper bank with src as scratch
4635     evmovdqul(nds, dst, Assembler::AVX_512bit);
4636     Assembler::vpsubw(nds, nds, src, vector_len);
4637     evmovdqul(dst, nds, Assembler::AVX_512bit);
4638   } else {
4639     // worse case scenario, all regs in upper bank
4640     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4641     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4642     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4643     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4644   }
4645 }
4646 
4647 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4648   int dst_enc = dst->encoding();
4649   int nds_enc = nds->encoding();
4650   int shift_enc = shift->encoding();
4651   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4652     Assembler::vpsraw(dst, nds, shift, vector_len);
4653   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4654     Assembler::vpsraw(dst, dst, shift, vector_len);
4655   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4656     // use nds_enc as scratch with shift
4657     evmovdqul(nds, shift, Assembler::AVX_512bit);
4658     Assembler::vpsraw(dst, dst, nds, vector_len);
4659   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4660     // use nds as scratch with dst
4661     evmovdqul(nds, dst, Assembler::AVX_512bit);
4662     Assembler::vpsraw(nds, nds, shift, vector_len);
4663     evmovdqul(dst, nds, Assembler::AVX_512bit);
4664   } else if (dst_enc < 16) {
4665     // use nds to save a copy of xmm0 and hold shift
4666     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4667     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4668     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4669     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4670   } else if (nds_enc < 16) {
4671     // use nds as dest as temps
4672     evmovdqul(nds, dst, Assembler::AVX_512bit);
4673     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4674     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4675     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4676     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4677     evmovdqul(dst, nds, Assembler::AVX_512bit);
4678   } else {
4679     // worse case scenario, all regs are in the upper bank
4680     subptr(rsp, 64);
4681     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4682     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4683     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4684     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4685     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4686     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4687     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4688     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4689     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4690     addptr(rsp, 64);
4691   }
4692 }
4693 
4694 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4695   int dst_enc = dst->encoding();
4696   int nds_enc = nds->encoding();
4697   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4698     Assembler::vpsraw(dst, nds, shift, vector_len);
4699   } else if (dst_enc < 16) {
4700     Assembler::vpsraw(dst, dst, shift, vector_len);
4701   } else if (nds_enc < 16) {
4702     // use nds as scratch
4703     evmovdqul(nds, dst, Assembler::AVX_512bit);
4704     Assembler::vpsraw(nds, nds, shift, vector_len);
4705     evmovdqul(dst, nds, Assembler::AVX_512bit);
4706   } else {
4707     // use nds as scratch for xmm0
4708     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4709     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4710     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4711     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4712   }
4713 }
4714 
4715 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4716   int dst_enc = dst->encoding();
4717   int nds_enc = nds->encoding();
4718   int shift_enc = shift->encoding();
4719   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4720     Assembler::vpsrlw(dst, nds, shift, vector_len);
4721   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4722     Assembler::vpsrlw(dst, dst, shift, vector_len);
4723   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4724     // use nds_enc as scratch with shift
4725     evmovdqul(nds, shift, Assembler::AVX_512bit);
4726     Assembler::vpsrlw(dst, dst, nds, vector_len);
4727   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4728     // use nds as scratch with dst
4729     evmovdqul(nds, dst, Assembler::AVX_512bit);
4730     Assembler::vpsrlw(nds, nds, shift, vector_len);
4731     evmovdqul(dst, nds, Assembler::AVX_512bit);
4732   } else if (dst_enc < 16) {
4733     // use nds to save a copy of xmm0 and hold shift
4734     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4735     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4736     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4737     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4738   } else if (nds_enc < 16) {
4739     // use nds as dest as temps
4740     evmovdqul(nds, dst, Assembler::AVX_512bit);
4741     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4742     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4743     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4744     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4745     evmovdqul(dst, nds, Assembler::AVX_512bit);
4746   } else {
4747     // worse case scenario, all regs are in the upper bank
4748     subptr(rsp, 64);
4749     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4750     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4751     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4752     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4753     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4754     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4755     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4756     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4757     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4758     addptr(rsp, 64);
4759   }
4760 }
4761 
4762 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4763   int dst_enc = dst->encoding();
4764   int nds_enc = nds->encoding();
4765   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4766     Assembler::vpsrlw(dst, nds, shift, vector_len);
4767   } else if (dst_enc < 16) {
4768     Assembler::vpsrlw(dst, dst, shift, vector_len);
4769   } else if (nds_enc < 16) {
4770     // use nds as scratch
4771     evmovdqul(nds, dst, Assembler::AVX_512bit);
4772     Assembler::vpsrlw(nds, nds, shift, vector_len);
4773     evmovdqul(dst, nds, Assembler::AVX_512bit);
4774   } else {
4775     // use nds as scratch for xmm0
4776     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4777     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4778     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4779     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4780   }
4781 }
4782 
4783 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4784   int dst_enc = dst->encoding();
4785   int nds_enc = nds->encoding();
4786   int shift_enc = shift->encoding();
4787   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4788     Assembler::vpsllw(dst, nds, shift, vector_len);
4789   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4790     Assembler::vpsllw(dst, dst, shift, vector_len);
4791   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4792     // use nds_enc as scratch with shift
4793     evmovdqul(nds, shift, Assembler::AVX_512bit);
4794     Assembler::vpsllw(dst, dst, nds, vector_len);
4795   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4796     // use nds as scratch with dst
4797     evmovdqul(nds, dst, Assembler::AVX_512bit);
4798     Assembler::vpsllw(nds, nds, shift, vector_len);
4799     evmovdqul(dst, nds, Assembler::AVX_512bit);
4800   } else if (dst_enc < 16) {
4801     // use nds to save a copy of xmm0 and hold shift
4802     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4803     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4804     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4805     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4806   } else if (nds_enc < 16) {
4807     // use nds as dest as temps
4808     evmovdqul(nds, dst, Assembler::AVX_512bit);
4809     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4810     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4811     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4812     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4813     evmovdqul(dst, nds, Assembler::AVX_512bit);
4814   } else {
4815     // worse case scenario, all regs are in the upper bank
4816     subptr(rsp, 64);
4817     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4818     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4819     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4820     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4821     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4822     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4823     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4824     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4825     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4826     addptr(rsp, 64);
4827   }
4828 }
4829 
4830 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4831   int dst_enc = dst->encoding();
4832   int nds_enc = nds->encoding();
4833   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4834     Assembler::vpsllw(dst, nds, shift, vector_len);
4835   } else if (dst_enc < 16) {
4836     Assembler::vpsllw(dst, dst, shift, vector_len);
4837   } else if (nds_enc < 16) {
4838     // use nds as scratch
4839     evmovdqul(nds, dst, Assembler::AVX_512bit);
4840     Assembler::vpsllw(nds, nds, shift, vector_len);
4841     evmovdqul(dst, nds, Assembler::AVX_512bit);
4842   } else {
4843     // use nds as scratch for xmm0
4844     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4845     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4846     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4847     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4848   }
4849 }
4850 
4851 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4852   int dst_enc = dst->encoding();
4853   int src_enc = src->encoding();
4854   if ((dst_enc < 16) && (src_enc < 16)) {
4855     Assembler::vptest(dst, src);
4856   } else if (src_enc < 16) {
4857     subptr(rsp, 64);
4858     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4859     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4860     Assembler::vptest(xmm0, src);
4861     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4862     addptr(rsp, 64);
4863   } else if (dst_enc < 16) {
4864     subptr(rsp, 64);
4865     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4866     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4867     Assembler::vptest(dst, xmm0);
4868     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4869     addptr(rsp, 64);
4870   } else {
4871     subptr(rsp, 64);
4872     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4873     subptr(rsp, 64);
4874     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4875     movdqu(xmm0, src);
4876     movdqu(xmm1, dst);
4877     Assembler::vptest(xmm1, xmm0);
4878     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4879     addptr(rsp, 64);
4880     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4881     addptr(rsp, 64);
4882   }
4883 }
4884 
4885 // This instruction exists within macros, ergo we cannot control its input
4886 // when emitted through those patterns.
4887 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4888   if (VM_Version::supports_avx512nobw()) {
4889     int dst_enc = dst->encoding();
4890     int src_enc = src->encoding();
4891     if (dst_enc == src_enc) {
4892       if (dst_enc < 16) {
4893         Assembler::punpcklbw(dst, src);
4894       } else {
4895         subptr(rsp, 64);
4896         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4897         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4898         Assembler::punpcklbw(xmm0, xmm0);
4899         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4900         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4901         addptr(rsp, 64);
4902       }
4903     } else {
4904       if ((src_enc < 16) && (dst_enc < 16)) {
4905         Assembler::punpcklbw(dst, src);
4906       } else if (src_enc < 16) {
4907         subptr(rsp, 64);
4908         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4909         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4910         Assembler::punpcklbw(xmm0, src);
4911         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4912         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4913         addptr(rsp, 64);
4914       } else if (dst_enc < 16) {
4915         subptr(rsp, 64);
4916         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4917         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4918         Assembler::punpcklbw(dst, xmm0);
4919         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4920         addptr(rsp, 64);
4921       } else {
4922         subptr(rsp, 64);
4923         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4924         subptr(rsp, 64);
4925         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4926         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4927         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4928         Assembler::punpcklbw(xmm0, xmm1);
4929         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4930         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4931         addptr(rsp, 64);
4932         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4933         addptr(rsp, 64);
4934       }
4935     }
4936   } else {
4937     Assembler::punpcklbw(dst, src);
4938   }
4939 }
4940 
4941 // This instruction exists within macros, ergo we cannot control its input
4942 // when emitted through those patterns.
4943 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4944   if (VM_Version::supports_avx512nobw()) {
4945     int dst_enc = dst->encoding();
4946     int src_enc = src->encoding();
4947     if (dst_enc == src_enc) {
4948       if (dst_enc < 16) {
4949         Assembler::pshuflw(dst, src, mode);
4950       } else {
4951         subptr(rsp, 64);
4952         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4953         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4954         Assembler::pshuflw(xmm0, xmm0, mode);
4955         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4956         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4957         addptr(rsp, 64);
4958       }
4959     } else {
4960       if ((src_enc < 16) && (dst_enc < 16)) {
4961         Assembler::pshuflw(dst, src, mode);
4962       } else if (src_enc < 16) {
4963         subptr(rsp, 64);
4964         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4965         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4966         Assembler::pshuflw(xmm0, src, mode);
4967         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4968         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4969         addptr(rsp, 64);
4970       } else if (dst_enc < 16) {
4971         subptr(rsp, 64);
4972         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4973         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4974         Assembler::pshuflw(dst, xmm0, mode);
4975         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4976         addptr(rsp, 64);
4977       } else {
4978         subptr(rsp, 64);
4979         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4980         subptr(rsp, 64);
4981         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4982         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4983         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4984         Assembler::pshuflw(xmm0, xmm1, mode);
4985         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4986         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4987         addptr(rsp, 64);
4988         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4989         addptr(rsp, 64);
4990       }
4991     }
4992   } else {
4993     Assembler::pshuflw(dst, src, mode);
4994   }
4995 }
4996 
4997 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4998   if (reachable(src)) {
4999     vandpd(dst, nds, as_Address(src), vector_len);
5000   } else {
5001     lea(rscratch1, src);
5002     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5003   }
5004 }
5005 
5006 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5007   if (reachable(src)) {
5008     vandps(dst, nds, as_Address(src), vector_len);
5009   } else {
5010     lea(rscratch1, src);
5011     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5012   }
5013 }
5014 
5015 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5016   if (reachable(src)) {
5017     vdivsd(dst, nds, as_Address(src));
5018   } else {
5019     lea(rscratch1, src);
5020     vdivsd(dst, nds, Address(rscratch1, 0));
5021   }
5022 }
5023 
5024 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5025   if (reachable(src)) {
5026     vdivss(dst, nds, as_Address(src));
5027   } else {
5028     lea(rscratch1, src);
5029     vdivss(dst, nds, Address(rscratch1, 0));
5030   }
5031 }
5032 
5033 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5034   if (reachable(src)) {
5035     vmulsd(dst, nds, as_Address(src));
5036   } else {
5037     lea(rscratch1, src);
5038     vmulsd(dst, nds, Address(rscratch1, 0));
5039   }
5040 }
5041 
5042 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5043   if (reachable(src)) {
5044     vmulss(dst, nds, as_Address(src));
5045   } else {
5046     lea(rscratch1, src);
5047     vmulss(dst, nds, Address(rscratch1, 0));
5048   }
5049 }
5050 
5051 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5052   if (reachable(src)) {
5053     vsubsd(dst, nds, as_Address(src));
5054   } else {
5055     lea(rscratch1, src);
5056     vsubsd(dst, nds, Address(rscratch1, 0));
5057   }
5058 }
5059 
5060 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5061   if (reachable(src)) {
5062     vsubss(dst, nds, as_Address(src));
5063   } else {
5064     lea(rscratch1, src);
5065     vsubss(dst, nds, Address(rscratch1, 0));
5066   }
5067 }
5068 
5069 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5070   int nds_enc = nds->encoding();
5071   int dst_enc = dst->encoding();
5072   bool dst_upper_bank = (dst_enc > 15);
5073   bool nds_upper_bank = (nds_enc > 15);
5074   if (VM_Version::supports_avx512novl() &&
5075       (nds_upper_bank || dst_upper_bank)) {
5076     if (dst_upper_bank) {
5077       subptr(rsp, 64);
5078       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5079       movflt(xmm0, nds);
5080       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5081       movflt(dst, xmm0);
5082       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5083       addptr(rsp, 64);
5084     } else {
5085       movflt(dst, nds);
5086       vxorps(dst, dst, src, Assembler::AVX_128bit);
5087     }
5088   } else {
5089     vxorps(dst, nds, src, Assembler::AVX_128bit);
5090   }
5091 }
5092 
5093 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5094   int nds_enc = nds->encoding();
5095   int dst_enc = dst->encoding();
5096   bool dst_upper_bank = (dst_enc > 15);
5097   bool nds_upper_bank = (nds_enc > 15);
5098   if (VM_Version::supports_avx512novl() &&
5099       (nds_upper_bank || dst_upper_bank)) {
5100     if (dst_upper_bank) {
5101       subptr(rsp, 64);
5102       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5103       movdbl(xmm0, nds);
5104       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5105       movdbl(dst, xmm0);
5106       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5107       addptr(rsp, 64);
5108     } else {
5109       movdbl(dst, nds);
5110       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5111     }
5112   } else {
5113     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5114   }
5115 }
5116 
5117 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5118   if (reachable(src)) {
5119     vxorpd(dst, nds, as_Address(src), vector_len);
5120   } else {
5121     lea(rscratch1, src);
5122     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5123   }
5124 }
5125 
5126 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5127   if (reachable(src)) {
5128     vxorps(dst, nds, as_Address(src), vector_len);
5129   } else {
5130     lea(rscratch1, src);
5131     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5132   }
5133 }
5134 
5135 
5136 void MacroAssembler::resolve_jobject(Register value,
5137                                      Register thread,
5138                                      Register tmp) {
5139   assert_different_registers(value, thread, tmp);
5140   Label done, not_weak;
5141   testptr(value, value);
5142   jcc(Assembler::zero, done);                // Use NULL as-is.
5143   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5144   jcc(Assembler::zero, not_weak);
5145   // Resolve jweak.
5146   movptr(value, Address(value, -JNIHandles::weak_tag_value));
5147   verify_oop(value);
5148 #if INCLUDE_ALL_GCS
5149   if (UseG1GC) {
5150     g1_write_barrier_pre(noreg /* obj */,
5151                          value /* pre_val */,
5152                          thread /* thread */,
5153                          tmp /* tmp */,
5154                          true /* tosca_live */,
5155                          true /* expand_call */);
5156   }
5157 #endif // INCLUDE_ALL_GCS
5158   jmp(done);
5159   bind(not_weak);
5160   // Resolve (untagged) jobject.
5161   movptr(value, Address(value, 0));
5162   verify_oop(value);
5163   bind(done);
5164 }
5165 
5166 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5167   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5168   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5169   // The inverted mask is sign-extended
5170   andptr(possibly_jweak, inverted_jweak_mask);
5171 }
5172 
5173 //////////////////////////////////////////////////////////////////////////////////
5174 #if INCLUDE_ALL_GCS
5175 
5176 void MacroAssembler::g1_write_barrier_pre(Register obj,
5177                                           Register pre_val,
5178                                           Register thread,
5179                                           Register tmp,
5180                                           bool tosca_live,
5181                                           bool expand_call) {
5182 
5183   // If expand_call is true then we expand the call_VM_leaf macro
5184   // directly to skip generating the check by
5185   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5186 
5187 #ifdef _LP64
5188   assert(thread == r15_thread, "must be");
5189 #endif // _LP64
5190 
5191   Label done;
5192   Label runtime;
5193 
5194   assert(pre_val != noreg, "check this code");
5195 
5196   if (obj != noreg) {
5197     assert_different_registers(obj, pre_val, tmp);
5198     assert(pre_val != rax, "check this code");
5199   }
5200 
5201   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5202                                        SATBMarkQueue::byte_offset_of_active()));
5203   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5204                                        SATBMarkQueue::byte_offset_of_index()));
5205   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5206                                        SATBMarkQueue::byte_offset_of_buf()));
5207 
5208 
5209   // Is marking active?
5210   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5211     cmpl(in_progress, 0);
5212   } else {
5213     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5214     cmpb(in_progress, 0);
5215   }
5216   jcc(Assembler::equal, done);
5217 
5218   // Do we need to load the previous value?
5219   if (obj != noreg) {
5220     load_heap_oop(pre_val, Address(obj, 0));
5221   }
5222 
5223   // Is the previous value null?
5224   cmpptr(pre_val, (int32_t) NULL_WORD);
5225   jcc(Assembler::equal, done);
5226 
5227   // Can we store original value in the thread's buffer?
5228   // Is index == 0?
5229   // (The index field is typed as size_t.)
5230 
5231   movptr(tmp, index);                   // tmp := *index_adr
5232   cmpptr(tmp, 0);                       // tmp == 0?
5233   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5234 
5235   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5236   movptr(index, tmp);                   // *index_adr := tmp
5237   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5238 
5239   // Record the previous value
5240   movptr(Address(tmp, 0), pre_val);
5241   jmp(done);
5242 
5243   bind(runtime);
5244   // save the live input values
5245   if(tosca_live) push(rax);
5246 
5247   if (obj != noreg && obj != rax)
5248     push(obj);
5249 
5250   if (pre_val != rax)
5251     push(pre_val);
5252 
5253   // Calling the runtime using the regular call_VM_leaf mechanism generates
5254   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5255   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5256   //
5257   // If we care generating the pre-barrier without a frame (e.g. in the
5258   // intrinsified Reference.get() routine) then ebp might be pointing to
5259   // the caller frame and so this check will most likely fail at runtime.
5260   //
5261   // Expanding the call directly bypasses the generation of the check.
5262   // So when we do not have have a full interpreter frame on the stack
5263   // expand_call should be passed true.
5264 
5265   NOT_LP64( push(thread); )
5266 
5267   if (expand_call) {
5268     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5269     pass_arg1(this, thread);
5270     pass_arg0(this, pre_val);
5271     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5272   } else {
5273     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5274   }
5275 
5276   NOT_LP64( pop(thread); )
5277 
5278   // save the live input values
5279   if (pre_val != rax)
5280     pop(pre_val);
5281 
5282   if (obj != noreg && obj != rax)
5283     pop(obj);
5284 
5285   if(tosca_live) pop(rax);
5286 
5287   bind(done);
5288 }
5289 
5290 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5291                                            Register new_val,
5292                                            Register thread,
5293                                            Register tmp,
5294                                            Register tmp2) {
5295 #ifdef _LP64
5296   assert(thread == r15_thread, "must be");
5297 #endif // _LP64
5298 
5299   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5300                                        DirtyCardQueue::byte_offset_of_index()));
5301   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5302                                        DirtyCardQueue::byte_offset_of_buf()));
5303 
5304   CardTableModRefBS* ct =
5305     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5306   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5307 
5308   Label done;
5309   Label runtime;
5310 
5311   // Does store cross heap regions?
5312 
5313   movptr(tmp, store_addr);
5314   xorptr(tmp, new_val);
5315   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5316   jcc(Assembler::equal, done);
5317 
5318   // crosses regions, storing NULL?
5319 
5320   cmpptr(new_val, (int32_t) NULL_WORD);
5321   jcc(Assembler::equal, done);
5322 
5323   // storing region crossing non-NULL, is card already dirty?
5324 
5325   const Register card_addr = tmp;
5326   const Register cardtable = tmp2;
5327 
5328   movptr(card_addr, store_addr);
5329   shrptr(card_addr, CardTableModRefBS::card_shift);
5330   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5331   // a valid address and therefore is not properly handled by the relocation code.
5332   movptr(cardtable, (intptr_t)ct->byte_map_base);
5333   addptr(card_addr, cardtable);
5334 
5335   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5336   jcc(Assembler::equal, done);
5337 
5338   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5339   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5340   jcc(Assembler::equal, done);
5341 
5342 
5343   // storing a region crossing, non-NULL oop, card is clean.
5344   // dirty card and log.
5345 
5346   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5347 
5348   cmpl(queue_index, 0);
5349   jcc(Assembler::equal, runtime);
5350   subl(queue_index, wordSize);
5351   movptr(tmp2, buffer);
5352 #ifdef _LP64
5353   movslq(rscratch1, queue_index);
5354   addq(tmp2, rscratch1);
5355   movq(Address(tmp2, 0), card_addr);
5356 #else
5357   addl(tmp2, queue_index);
5358   movl(Address(tmp2, 0), card_addr);
5359 #endif
5360   jmp(done);
5361 
5362   bind(runtime);
5363   // save the live input values
5364   push(store_addr);
5365   push(new_val);
5366 #ifdef _LP64
5367   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5368 #else
5369   push(thread);
5370   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5371   pop(thread);
5372 #endif
5373   pop(new_val);
5374   pop(store_addr);
5375 
5376   bind(done);
5377 }
5378 
5379 #endif // INCLUDE_ALL_GCS
5380 //////////////////////////////////////////////////////////////////////////////////
5381 
5382 
5383 void MacroAssembler::store_check(Register obj, Address dst) {
5384   store_check(obj);
5385 }
5386 
5387 void MacroAssembler::store_check(Register obj) {
5388   // Does a store check for the oop in register obj. The content of
5389   // register obj is destroyed afterwards.
5390   BarrierSet* bs = Universe::heap()->barrier_set();
5391   assert(bs->kind() == BarrierSet::CardTableForRS ||
5392          bs->kind() == BarrierSet::CardTableExtension,
5393          "Wrong barrier set kind");
5394 
5395   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5396   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5397 
5398   shrptr(obj, CardTableModRefBS::card_shift);
5399 
5400   Address card_addr;
5401 
5402   // The calculation for byte_map_base is as follows:
5403   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5404   // So this essentially converts an address to a displacement and it will
5405   // never need to be relocated. On 64bit however the value may be too
5406   // large for a 32bit displacement.
5407   intptr_t disp = (intptr_t) ct->byte_map_base;
5408   if (is_simm32(disp)) {
5409     card_addr = Address(noreg, obj, Address::times_1, disp);
5410   } else {
5411     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5412     // displacement and done in a single instruction given favorable mapping and a
5413     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5414     // entry and that entry is not properly handled by the relocation code.
5415     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5416     Address index(noreg, obj, Address::times_1);
5417     card_addr = as_Address(ArrayAddress(cardtable, index));
5418   }
5419 
5420   int dirty = CardTableModRefBS::dirty_card_val();
5421   if (UseCondCardMark) {
5422     Label L_already_dirty;
5423     if (UseConcMarkSweepGC) {
5424       membar(Assembler::StoreLoad);
5425     }
5426     cmpb(card_addr, dirty);
5427     jcc(Assembler::equal, L_already_dirty);
5428     movb(card_addr, dirty);
5429     bind(L_already_dirty);
5430   } else {
5431     movb(card_addr, dirty);
5432   }
5433 }
5434 
5435 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5436   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5437 }
5438 
5439 // Force generation of a 4 byte immediate value even if it fits into 8bit
5440 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5441   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5442 }
5443 
5444 void MacroAssembler::subptr(Register dst, Register src) {
5445   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5446 }
5447 
5448 // C++ bool manipulation
5449 void MacroAssembler::testbool(Register dst) {
5450   if(sizeof(bool) == 1)
5451     testb(dst, 0xff);
5452   else if(sizeof(bool) == 2) {
5453     // testw implementation needed for two byte bools
5454     ShouldNotReachHere();
5455   } else if(sizeof(bool) == 4)
5456     testl(dst, dst);
5457   else
5458     // unsupported
5459     ShouldNotReachHere();
5460 }
5461 
5462 void MacroAssembler::testptr(Register dst, Register src) {
5463   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5464 }
5465 
5466 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5467 void MacroAssembler::tlab_allocate(Register obj,
5468                                    Register var_size_in_bytes,
5469                                    int con_size_in_bytes,
5470                                    Register t1,
5471                                    Register t2,
5472                                    Label& slow_case) {
5473   assert_different_registers(obj, t1, t2);
5474   assert_different_registers(obj, var_size_in_bytes, t1);
5475   Register end = t2;
5476   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5477 
5478   verify_tlab();
5479 
5480   NOT_LP64(get_thread(thread));
5481 
5482   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5483   if (var_size_in_bytes == noreg) {
5484     lea(end, Address(obj, con_size_in_bytes));
5485   } else {
5486     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5487   }
5488   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5489   jcc(Assembler::above, slow_case);
5490 
5491   // update the tlab top pointer
5492   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5493 
5494   // recover var_size_in_bytes if necessary
5495   if (var_size_in_bytes == end) {
5496     subptr(var_size_in_bytes, obj);
5497   }
5498   verify_tlab();
5499 }
5500 
5501 // Preserves rbx, and rdx.
5502 Register MacroAssembler::tlab_refill(Label& retry,
5503                                      Label& try_eden,
5504                                      Label& slow_case) {
5505   Register top = rax;
5506   Register t1  = rcx; // object size
5507   Register t2  = rsi;
5508   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5509   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5510   Label do_refill, discard_tlab;
5511 
5512   if (!Universe::heap()->supports_inline_contig_alloc()) {
5513     // No allocation in the shared eden.
5514     jmp(slow_case);
5515   }
5516 
5517   NOT_LP64(get_thread(thread_reg));
5518 
5519   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5520   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5521 
5522   // calculate amount of free space
5523   subptr(t1, top);
5524   shrptr(t1, LogHeapWordSize);
5525 
5526   // Retain tlab and allocate object in shared space if
5527   // the amount free in the tlab is too large to discard.
5528   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5529   jcc(Assembler::lessEqual, discard_tlab);
5530 
5531   // Retain
5532   // %%% yuck as movptr...
5533   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5534   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5535   if (TLABStats) {
5536     // increment number of slow_allocations
5537     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5538   }
5539   jmp(try_eden);
5540 
5541   bind(discard_tlab);
5542   if (TLABStats) {
5543     // increment number of refills
5544     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5545     // accumulate wastage -- t1 is amount free in tlab
5546     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5547   }
5548 
5549   // if tlab is currently allocated (top or end != null) then
5550   // fill [top, end + alignment_reserve) with array object
5551   testptr(top, top);
5552   jcc(Assembler::zero, do_refill);
5553 
5554   // set up the mark word
5555   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5556   // set the length to the remaining space
5557   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5558   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5559   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5560   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5561   // set klass to intArrayKlass
5562   // dubious reloc why not an oop reloc?
5563   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5564   // store klass last.  concurrent gcs assumes klass length is valid if
5565   // klass field is not null.
5566   store_klass(top, t1);
5567 
5568   movptr(t1, top);
5569   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5570   incr_allocated_bytes(thread_reg, t1, 0);
5571 
5572   // refill the tlab with an eden allocation
5573   bind(do_refill);
5574   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5575   shlptr(t1, LogHeapWordSize);
5576   // allocate new tlab, address returned in top
5577   eden_allocate(top, t1, 0, t2, slow_case);
5578 
5579   // Check that t1 was preserved in eden_allocate.
5580 #ifdef ASSERT
5581   if (UseTLAB) {
5582     Label ok;
5583     Register tsize = rsi;
5584     assert_different_registers(tsize, thread_reg, t1);
5585     push(tsize);
5586     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5587     shlptr(tsize, LogHeapWordSize);
5588     cmpptr(t1, tsize);
5589     jcc(Assembler::equal, ok);
5590     STOP("assert(t1 != tlab size)");
5591     should_not_reach_here();
5592 
5593     bind(ok);
5594     pop(tsize);
5595   }
5596 #endif
5597   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5598   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5599   addptr(top, t1);
5600   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5601   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5602 
5603   // Currently, if this happens, just set back the actual end to where it was.
5604   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_actual_end_offset())), top);
5605 
5606   if (ZeroTLAB) {
5607     // This is a fast TLAB refill, therefore the GC is not notified of it.
5608     // So compiled code must fill the new TLAB with zeroes.
5609     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5610     zero_memory(top, t1, 0, t2);
5611   }
5612 
5613   verify_tlab();
5614   jmp(retry);
5615 
5616   return thread_reg; // for use by caller
5617 }
5618 
5619 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5620 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5621   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5622   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5623   Label done;
5624 
5625   testptr(length_in_bytes, length_in_bytes);
5626   jcc(Assembler::zero, done);
5627 
5628   // initialize topmost word, divide index by 2, check if odd and test if zero
5629   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5630 #ifdef ASSERT
5631   {
5632     Label L;
5633     testptr(length_in_bytes, BytesPerWord - 1);
5634     jcc(Assembler::zero, L);
5635     stop("length must be a multiple of BytesPerWord");
5636     bind(L);
5637   }
5638 #endif
5639   Register index = length_in_bytes;
5640   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5641   if (UseIncDec) {
5642     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5643   } else {
5644     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5645     shrptr(index, 1);
5646   }
5647 #ifndef _LP64
5648   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5649   {
5650     Label even;
5651     // note: if index was a multiple of 8, then it cannot
5652     //       be 0 now otherwise it must have been 0 before
5653     //       => if it is even, we don't need to check for 0 again
5654     jcc(Assembler::carryClear, even);
5655     // clear topmost word (no jump would be needed if conditional assignment worked here)
5656     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5657     // index could be 0 now, must check again
5658     jcc(Assembler::zero, done);
5659     bind(even);
5660   }
5661 #endif // !_LP64
5662   // initialize remaining object fields: index is a multiple of 2 now
5663   {
5664     Label loop;
5665     bind(loop);
5666     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5667     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5668     decrement(index);
5669     jcc(Assembler::notZero, loop);
5670   }
5671 
5672   bind(done);
5673 }
5674 
5675 void MacroAssembler::incr_allocated_bytes(Register thread,
5676                                           Register var_size_in_bytes,
5677                                           int con_size_in_bytes,
5678                                           Register t1) {
5679   if (!thread->is_valid()) {
5680 #ifdef _LP64
5681     thread = r15_thread;
5682 #else
5683     assert(t1->is_valid(), "need temp reg");
5684     thread = t1;
5685     get_thread(thread);
5686 #endif
5687   }
5688 
5689 #ifdef _LP64
5690   if (var_size_in_bytes->is_valid()) {
5691     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5692   } else {
5693     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5694   }
5695 #else
5696   if (var_size_in_bytes->is_valid()) {
5697     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5698   } else {
5699     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5700   }
5701   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5702 #endif
5703 }
5704 
5705 // Look up the method for a megamorphic invokeinterface call.
5706 // The target method is determined by <intf_klass, itable_index>.
5707 // The receiver klass is in recv_klass.
5708 // On success, the result will be in method_result, and execution falls through.
5709 // On failure, execution transfers to the given label.
5710 void MacroAssembler::lookup_interface_method(Register recv_klass,
5711                                              Register intf_klass,
5712                                              RegisterOrConstant itable_index,
5713                                              Register method_result,
5714                                              Register scan_temp,
5715                                              Label& L_no_such_interface) {
5716   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5717   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5718          "caller must use same register for non-constant itable index as for method");
5719 
5720   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5721   int vtable_base = in_bytes(Klass::vtable_start_offset());
5722   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5723   int scan_step   = itableOffsetEntry::size() * wordSize;
5724   int vte_size    = vtableEntry::size_in_bytes();
5725   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5726   assert(vte_size == wordSize, "else adjust times_vte_scale");
5727 
5728   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5729 
5730   // %%% Could store the aligned, prescaled offset in the klassoop.
5731   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5732 
5733   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5734   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5735   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5736 
5737   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5738   //   if (scan->interface() == intf) {
5739   //     result = (klass + scan->offset() + itable_index);
5740   //   }
5741   // }
5742   Label search, found_method;
5743 
5744   for (int peel = 1; peel >= 0; peel--) {
5745     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5746     cmpptr(intf_klass, method_result);
5747 
5748     if (peel) {
5749       jccb(Assembler::equal, found_method);
5750     } else {
5751       jccb(Assembler::notEqual, search);
5752       // (invert the test to fall through to found_method...)
5753     }
5754 
5755     if (!peel)  break;
5756 
5757     bind(search);
5758 
5759     // Check that the previous entry is non-null.  A null entry means that
5760     // the receiver class doesn't implement the interface, and wasn't the
5761     // same as when the caller was compiled.
5762     testptr(method_result, method_result);
5763     jcc(Assembler::zero, L_no_such_interface);
5764     addptr(scan_temp, scan_step);
5765   }
5766 
5767   bind(found_method);
5768 
5769   // Got a hit.
5770   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5771   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5772 }
5773 
5774 
5775 // virtual method calling
5776 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5777                                            RegisterOrConstant vtable_index,
5778                                            Register method_result) {
5779   const int base = in_bytes(Klass::vtable_start_offset());
5780   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5781   Address vtable_entry_addr(recv_klass,
5782                             vtable_index, Address::times_ptr,
5783                             base + vtableEntry::method_offset_in_bytes());
5784   movptr(method_result, vtable_entry_addr);
5785 }
5786 
5787 
5788 void MacroAssembler::check_klass_subtype(Register sub_klass,
5789                            Register super_klass,
5790                            Register temp_reg,
5791                            Label& L_success) {
5792   Label L_failure;
5793   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5794   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5795   bind(L_failure);
5796 }
5797 
5798 
5799 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5800                                                    Register super_klass,
5801                                                    Register temp_reg,
5802                                                    Label* L_success,
5803                                                    Label* L_failure,
5804                                                    Label* L_slow_path,
5805                                         RegisterOrConstant super_check_offset) {
5806   assert_different_registers(sub_klass, super_klass, temp_reg);
5807   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5808   if (super_check_offset.is_register()) {
5809     assert_different_registers(sub_klass, super_klass,
5810                                super_check_offset.as_register());
5811   } else if (must_load_sco) {
5812     assert(temp_reg != noreg, "supply either a temp or a register offset");
5813   }
5814 
5815   Label L_fallthrough;
5816   int label_nulls = 0;
5817   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5818   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5819   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5820   assert(label_nulls <= 1, "at most one NULL in the batch");
5821 
5822   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5823   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5824   Address super_check_offset_addr(super_klass, sco_offset);
5825 
5826   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5827   // range of a jccb.  If this routine grows larger, reconsider at
5828   // least some of these.
5829 #define local_jcc(assembler_cond, label)                                \
5830   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5831   else                             jcc( assembler_cond, label) /*omit semi*/
5832 
5833   // Hacked jmp, which may only be used just before L_fallthrough.
5834 #define final_jmp(label)                                                \
5835   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5836   else                            jmp(label)                /*omit semi*/
5837 
5838   // If the pointers are equal, we are done (e.g., String[] elements).
5839   // This self-check enables sharing of secondary supertype arrays among
5840   // non-primary types such as array-of-interface.  Otherwise, each such
5841   // type would need its own customized SSA.
5842   // We move this check to the front of the fast path because many
5843   // type checks are in fact trivially successful in this manner,
5844   // so we get a nicely predicted branch right at the start of the check.
5845   cmpptr(sub_klass, super_klass);
5846   local_jcc(Assembler::equal, *L_success);
5847 
5848   // Check the supertype display:
5849   if (must_load_sco) {
5850     // Positive movl does right thing on LP64.
5851     movl(temp_reg, super_check_offset_addr);
5852     super_check_offset = RegisterOrConstant(temp_reg);
5853   }
5854   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5855   cmpptr(super_klass, super_check_addr); // load displayed supertype
5856 
5857   // This check has worked decisively for primary supers.
5858   // Secondary supers are sought in the super_cache ('super_cache_addr').
5859   // (Secondary supers are interfaces and very deeply nested subtypes.)
5860   // This works in the same check above because of a tricky aliasing
5861   // between the super_cache and the primary super display elements.
5862   // (The 'super_check_addr' can address either, as the case requires.)
5863   // Note that the cache is updated below if it does not help us find
5864   // what we need immediately.
5865   // So if it was a primary super, we can just fail immediately.
5866   // Otherwise, it's the slow path for us (no success at this point).
5867 
5868   if (super_check_offset.is_register()) {
5869     local_jcc(Assembler::equal, *L_success);
5870     cmpl(super_check_offset.as_register(), sc_offset);
5871     if (L_failure == &L_fallthrough) {
5872       local_jcc(Assembler::equal, *L_slow_path);
5873     } else {
5874       local_jcc(Assembler::notEqual, *L_failure);
5875       final_jmp(*L_slow_path);
5876     }
5877   } else if (super_check_offset.as_constant() == sc_offset) {
5878     // Need a slow path; fast failure is impossible.
5879     if (L_slow_path == &L_fallthrough) {
5880       local_jcc(Assembler::equal, *L_success);
5881     } else {
5882       local_jcc(Assembler::notEqual, *L_slow_path);
5883       final_jmp(*L_success);
5884     }
5885   } else {
5886     // No slow path; it's a fast decision.
5887     if (L_failure == &L_fallthrough) {
5888       local_jcc(Assembler::equal, *L_success);
5889     } else {
5890       local_jcc(Assembler::notEqual, *L_failure);
5891       final_jmp(*L_success);
5892     }
5893   }
5894 
5895   bind(L_fallthrough);
5896 
5897 #undef local_jcc
5898 #undef final_jmp
5899 }
5900 
5901 
5902 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5903                                                    Register super_klass,
5904                                                    Register temp_reg,
5905                                                    Register temp2_reg,
5906                                                    Label* L_success,
5907                                                    Label* L_failure,
5908                                                    bool set_cond_codes) {
5909   assert_different_registers(sub_klass, super_klass, temp_reg);
5910   if (temp2_reg != noreg)
5911     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5912 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5913 
5914   Label L_fallthrough;
5915   int label_nulls = 0;
5916   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5917   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5918   assert(label_nulls <= 1, "at most one NULL in the batch");
5919 
5920   // a couple of useful fields in sub_klass:
5921   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5922   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5923   Address secondary_supers_addr(sub_klass, ss_offset);
5924   Address super_cache_addr(     sub_klass, sc_offset);
5925 
5926   // Do a linear scan of the secondary super-klass chain.
5927   // This code is rarely used, so simplicity is a virtue here.
5928   // The repne_scan instruction uses fixed registers, which we must spill.
5929   // Don't worry too much about pre-existing connections with the input regs.
5930 
5931   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5932   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5933 
5934   // Get super_klass value into rax (even if it was in rdi or rcx).
5935   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5936   if (super_klass != rax || UseCompressedOops) {
5937     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5938     mov(rax, super_klass);
5939   }
5940   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5941   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5942 
5943 #ifndef PRODUCT
5944   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5945   ExternalAddress pst_counter_addr((address) pst_counter);
5946   NOT_LP64(  incrementl(pst_counter_addr) );
5947   LP64_ONLY( lea(rcx, pst_counter_addr) );
5948   LP64_ONLY( incrementl(Address(rcx, 0)) );
5949 #endif //PRODUCT
5950 
5951   // We will consult the secondary-super array.
5952   movptr(rdi, secondary_supers_addr);
5953   // Load the array length.  (Positive movl does right thing on LP64.)
5954   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5955   // Skip to start of data.
5956   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5957 
5958   // Scan RCX words at [RDI] for an occurrence of RAX.
5959   // Set NZ/Z based on last compare.
5960   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5961   // not change flags (only scas instruction which is repeated sets flags).
5962   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5963 
5964     testptr(rax,rax); // Set Z = 0
5965     repne_scan();
5966 
5967   // Unspill the temp. registers:
5968   if (pushed_rdi)  pop(rdi);
5969   if (pushed_rcx)  pop(rcx);
5970   if (pushed_rax)  pop(rax);
5971 
5972   if (set_cond_codes) {
5973     // Special hack for the AD files:  rdi is guaranteed non-zero.
5974     assert(!pushed_rdi, "rdi must be left non-NULL");
5975     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5976   }
5977 
5978   if (L_failure == &L_fallthrough)
5979         jccb(Assembler::notEqual, *L_failure);
5980   else  jcc(Assembler::notEqual, *L_failure);
5981 
5982   // Success.  Cache the super we found and proceed in triumph.
5983   movptr(super_cache_addr, super_klass);
5984 
5985   if (L_success != &L_fallthrough) {
5986     jmp(*L_success);
5987   }
5988 
5989 #undef IS_A_TEMP
5990 
5991   bind(L_fallthrough);
5992 }
5993 
5994 
5995 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5996   if (VM_Version::supports_cmov()) {
5997     cmovl(cc, dst, src);
5998   } else {
5999     Label L;
6000     jccb(negate_condition(cc), L);
6001     movl(dst, src);
6002     bind(L);
6003   }
6004 }
6005 
6006 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6007   if (VM_Version::supports_cmov()) {
6008     cmovl(cc, dst, src);
6009   } else {
6010     Label L;
6011     jccb(negate_condition(cc), L);
6012     movl(dst, src);
6013     bind(L);
6014   }
6015 }
6016 
6017 void MacroAssembler::verify_oop(Register reg, const char* s) {
6018   if (!VerifyOops) return;
6019 
6020   // Pass register number to verify_oop_subroutine
6021   const char* b = NULL;
6022   {
6023     ResourceMark rm;
6024     stringStream ss;
6025     ss.print("verify_oop: %s: %s", reg->name(), s);
6026     b = code_string(ss.as_string());
6027   }
6028   BLOCK_COMMENT("verify_oop {");
6029 #ifdef _LP64
6030   push(rscratch1);                    // save r10, trashed by movptr()
6031 #endif
6032   push(rax);                          // save rax,
6033   push(reg);                          // pass register argument
6034   ExternalAddress buffer((address) b);
6035   // avoid using pushptr, as it modifies scratch registers
6036   // and our contract is not to modify anything
6037   movptr(rax, buffer.addr());
6038   push(rax);
6039   // call indirectly to solve generation ordering problem
6040   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6041   call(rax);
6042   // Caller pops the arguments (oop, message) and restores rax, r10
6043   BLOCK_COMMENT("} verify_oop");
6044 }
6045 
6046 
6047 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6048                                                       Register tmp,
6049                                                       int offset) {
6050   intptr_t value = *delayed_value_addr;
6051   if (value != 0)
6052     return RegisterOrConstant(value + offset);
6053 
6054   // load indirectly to solve generation ordering problem
6055   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6056 
6057 #ifdef ASSERT
6058   { Label L;
6059     testptr(tmp, tmp);
6060     if (WizardMode) {
6061       const char* buf = NULL;
6062       {
6063         ResourceMark rm;
6064         stringStream ss;
6065         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6066         buf = code_string(ss.as_string());
6067       }
6068       jcc(Assembler::notZero, L);
6069       STOP(buf);
6070     } else {
6071       jccb(Assembler::notZero, L);
6072       hlt();
6073     }
6074     bind(L);
6075   }
6076 #endif
6077 
6078   if (offset != 0)
6079     addptr(tmp, offset);
6080 
6081   return RegisterOrConstant(tmp);
6082 }
6083 
6084 
6085 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6086                                          int extra_slot_offset) {
6087   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6088   int stackElementSize = Interpreter::stackElementSize;
6089   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6090 #ifdef ASSERT
6091   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6092   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6093 #endif
6094   Register             scale_reg    = noreg;
6095   Address::ScaleFactor scale_factor = Address::no_scale;
6096   if (arg_slot.is_constant()) {
6097     offset += arg_slot.as_constant() * stackElementSize;
6098   } else {
6099     scale_reg    = arg_slot.as_register();
6100     scale_factor = Address::times(stackElementSize);
6101   }
6102   offset += wordSize;           // return PC is on stack
6103   return Address(rsp, scale_reg, scale_factor, offset);
6104 }
6105 
6106 
6107 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6108   if (!VerifyOops) return;
6109 
6110   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6111   // Pass register number to verify_oop_subroutine
6112   const char* b = NULL;
6113   {
6114     ResourceMark rm;
6115     stringStream ss;
6116     ss.print("verify_oop_addr: %s", s);
6117     b = code_string(ss.as_string());
6118   }
6119 #ifdef _LP64
6120   push(rscratch1);                    // save r10, trashed by movptr()
6121 #endif
6122   push(rax);                          // save rax,
6123   // addr may contain rsp so we will have to adjust it based on the push
6124   // we just did (and on 64 bit we do two pushes)
6125   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6126   // stores rax into addr which is backwards of what was intended.
6127   if (addr.uses(rsp)) {
6128     lea(rax, addr);
6129     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6130   } else {
6131     pushptr(addr);
6132   }
6133 
6134   ExternalAddress buffer((address) b);
6135   // pass msg argument
6136   // avoid using pushptr, as it modifies scratch registers
6137   // and our contract is not to modify anything
6138   movptr(rax, buffer.addr());
6139   push(rax);
6140 
6141   // call indirectly to solve generation ordering problem
6142   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6143   call(rax);
6144   // Caller pops the arguments (addr, message) and restores rax, r10.
6145 }
6146 
6147 void MacroAssembler::verify_tlab() {
6148 #ifdef ASSERT
6149   if (UseTLAB && VerifyOops) {
6150     Label next, ok;
6151     Register t1 = rsi;
6152     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6153 
6154     push(t1);
6155     NOT_LP64(push(thread_reg));
6156     NOT_LP64(get_thread(thread_reg));
6157 
6158     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6159     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6160     jcc(Assembler::aboveEqual, next);
6161     STOP("assert(top >= start)");
6162     should_not_reach_here();
6163 
6164     bind(next);
6165     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6166     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6167     jcc(Assembler::aboveEqual, ok);
6168     STOP("assert(top <= end)");
6169     should_not_reach_here();
6170 
6171     bind(ok);
6172     NOT_LP64(pop(thread_reg));
6173     pop(t1);
6174   }
6175 #endif
6176 }
6177 
6178 class ControlWord {
6179  public:
6180   int32_t _value;
6181 
6182   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6183   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6184   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6185   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6186   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6187   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6188   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6189   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6190 
6191   void print() const {
6192     // rounding control
6193     const char* rc;
6194     switch (rounding_control()) {
6195       case 0: rc = "round near"; break;
6196       case 1: rc = "round down"; break;
6197       case 2: rc = "round up  "; break;
6198       case 3: rc = "chop      "; break;
6199     };
6200     // precision control
6201     const char* pc;
6202     switch (precision_control()) {
6203       case 0: pc = "24 bits "; break;
6204       case 1: pc = "reserved"; break;
6205       case 2: pc = "53 bits "; break;
6206       case 3: pc = "64 bits "; break;
6207     };
6208     // flags
6209     char f[9];
6210     f[0] = ' ';
6211     f[1] = ' ';
6212     f[2] = (precision   ()) ? 'P' : 'p';
6213     f[3] = (underflow   ()) ? 'U' : 'u';
6214     f[4] = (overflow    ()) ? 'O' : 'o';
6215     f[5] = (zero_divide ()) ? 'Z' : 'z';
6216     f[6] = (denormalized()) ? 'D' : 'd';
6217     f[7] = (invalid     ()) ? 'I' : 'i';
6218     f[8] = '\x0';
6219     // output
6220     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6221   }
6222 
6223 };
6224 
6225 class StatusWord {
6226  public:
6227   int32_t _value;
6228 
6229   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6230   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6231   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6232   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6233   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6234   int  top() const                     { return  (_value >> 11) & 7      ; }
6235   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6236   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6237   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6238   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6239   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6240   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6241   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6242   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6243 
6244   void print() const {
6245     // condition codes
6246     char c[5];
6247     c[0] = (C3()) ? '3' : '-';
6248     c[1] = (C2()) ? '2' : '-';
6249     c[2] = (C1()) ? '1' : '-';
6250     c[3] = (C0()) ? '0' : '-';
6251     c[4] = '\x0';
6252     // flags
6253     char f[9];
6254     f[0] = (error_status()) ? 'E' : '-';
6255     f[1] = (stack_fault ()) ? 'S' : '-';
6256     f[2] = (precision   ()) ? 'P' : '-';
6257     f[3] = (underflow   ()) ? 'U' : '-';
6258     f[4] = (overflow    ()) ? 'O' : '-';
6259     f[5] = (zero_divide ()) ? 'Z' : '-';
6260     f[6] = (denormalized()) ? 'D' : '-';
6261     f[7] = (invalid     ()) ? 'I' : '-';
6262     f[8] = '\x0';
6263     // output
6264     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6265   }
6266 
6267 };
6268 
6269 class TagWord {
6270  public:
6271   int32_t _value;
6272 
6273   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6274 
6275   void print() const {
6276     printf("%04x", _value & 0xFFFF);
6277   }
6278 
6279 };
6280 
6281 class FPU_Register {
6282  public:
6283   int32_t _m0;
6284   int32_t _m1;
6285   int16_t _ex;
6286 
6287   bool is_indefinite() const           {
6288     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6289   }
6290 
6291   void print() const {
6292     char  sign = (_ex < 0) ? '-' : '+';
6293     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6294     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6295   };
6296 
6297 };
6298 
6299 class FPU_State {
6300  public:
6301   enum {
6302     register_size       = 10,
6303     number_of_registers =  8,
6304     register_mask       =  7
6305   };
6306 
6307   ControlWord  _control_word;
6308   StatusWord   _status_word;
6309   TagWord      _tag_word;
6310   int32_t      _error_offset;
6311   int32_t      _error_selector;
6312   int32_t      _data_offset;
6313   int32_t      _data_selector;
6314   int8_t       _register[register_size * number_of_registers];
6315 
6316   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6317   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6318 
6319   const char* tag_as_string(int tag) const {
6320     switch (tag) {
6321       case 0: return "valid";
6322       case 1: return "zero";
6323       case 2: return "special";
6324       case 3: return "empty";
6325     }
6326     ShouldNotReachHere();
6327     return NULL;
6328   }
6329 
6330   void print() const {
6331     // print computation registers
6332     { int t = _status_word.top();
6333       for (int i = 0; i < number_of_registers; i++) {
6334         int j = (i - t) & register_mask;
6335         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6336         st(j)->print();
6337         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6338       }
6339     }
6340     printf("\n");
6341     // print control registers
6342     printf("ctrl = "); _control_word.print(); printf("\n");
6343     printf("stat = "); _status_word .print(); printf("\n");
6344     printf("tags = "); _tag_word    .print(); printf("\n");
6345   }
6346 
6347 };
6348 
6349 class Flag_Register {
6350  public:
6351   int32_t _value;
6352 
6353   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6354   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6355   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6356   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6357   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6358   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6359   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6360 
6361   void print() const {
6362     // flags
6363     char f[8];
6364     f[0] = (overflow       ()) ? 'O' : '-';
6365     f[1] = (direction      ()) ? 'D' : '-';
6366     f[2] = (sign           ()) ? 'S' : '-';
6367     f[3] = (zero           ()) ? 'Z' : '-';
6368     f[4] = (auxiliary_carry()) ? 'A' : '-';
6369     f[5] = (parity         ()) ? 'P' : '-';
6370     f[6] = (carry          ()) ? 'C' : '-';
6371     f[7] = '\x0';
6372     // output
6373     printf("%08x  flags = %s", _value, f);
6374   }
6375 
6376 };
6377 
6378 class IU_Register {
6379  public:
6380   int32_t _value;
6381 
6382   void print() const {
6383     printf("%08x  %11d", _value, _value);
6384   }
6385 
6386 };
6387 
6388 class IU_State {
6389  public:
6390   Flag_Register _eflags;
6391   IU_Register   _rdi;
6392   IU_Register   _rsi;
6393   IU_Register   _rbp;
6394   IU_Register   _rsp;
6395   IU_Register   _rbx;
6396   IU_Register   _rdx;
6397   IU_Register   _rcx;
6398   IU_Register   _rax;
6399 
6400   void print() const {
6401     // computation registers
6402     printf("rax,  = "); _rax.print(); printf("\n");
6403     printf("rbx,  = "); _rbx.print(); printf("\n");
6404     printf("rcx  = "); _rcx.print(); printf("\n");
6405     printf("rdx  = "); _rdx.print(); printf("\n");
6406     printf("rdi  = "); _rdi.print(); printf("\n");
6407     printf("rsi  = "); _rsi.print(); printf("\n");
6408     printf("rbp,  = "); _rbp.print(); printf("\n");
6409     printf("rsp  = "); _rsp.print(); printf("\n");
6410     printf("\n");
6411     // control registers
6412     printf("flgs = "); _eflags.print(); printf("\n");
6413   }
6414 };
6415 
6416 
6417 class CPU_State {
6418  public:
6419   FPU_State _fpu_state;
6420   IU_State  _iu_state;
6421 
6422   void print() const {
6423     printf("--------------------------------------------------\n");
6424     _iu_state .print();
6425     printf("\n");
6426     _fpu_state.print();
6427     printf("--------------------------------------------------\n");
6428   }
6429 
6430 };
6431 
6432 
6433 static void _print_CPU_state(CPU_State* state) {
6434   state->print();
6435 };
6436 
6437 
6438 void MacroAssembler::print_CPU_state() {
6439   push_CPU_state();
6440   push(rsp);                // pass CPU state
6441   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6442   addptr(rsp, wordSize);       // discard argument
6443   pop_CPU_state();
6444 }
6445 
6446 
6447 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6448   static int counter = 0;
6449   FPU_State* fs = &state->_fpu_state;
6450   counter++;
6451   // For leaf calls, only verify that the top few elements remain empty.
6452   // We only need 1 empty at the top for C2 code.
6453   if( stack_depth < 0 ) {
6454     if( fs->tag_for_st(7) != 3 ) {
6455       printf("FPR7 not empty\n");
6456       state->print();
6457       assert(false, "error");
6458       return false;
6459     }
6460     return true;                // All other stack states do not matter
6461   }
6462 
6463   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6464          "bad FPU control word");
6465 
6466   // compute stack depth
6467   int i = 0;
6468   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6469   int d = i;
6470   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6471   // verify findings
6472   if (i != FPU_State::number_of_registers) {
6473     // stack not contiguous
6474     printf("%s: stack not contiguous at ST%d\n", s, i);
6475     state->print();
6476     assert(false, "error");
6477     return false;
6478   }
6479   // check if computed stack depth corresponds to expected stack depth
6480   if (stack_depth < 0) {
6481     // expected stack depth is -stack_depth or less
6482     if (d > -stack_depth) {
6483       // too many elements on the stack
6484       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6485       state->print();
6486       assert(false, "error");
6487       return false;
6488     }
6489   } else {
6490     // expected stack depth is stack_depth
6491     if (d != stack_depth) {
6492       // wrong stack depth
6493       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6494       state->print();
6495       assert(false, "error");
6496       return false;
6497     }
6498   }
6499   // everything is cool
6500   return true;
6501 }
6502 
6503 
6504 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6505   if (!VerifyFPU) return;
6506   push_CPU_state();
6507   push(rsp);                // pass CPU state
6508   ExternalAddress msg((address) s);
6509   // pass message string s
6510   pushptr(msg.addr());
6511   push(stack_depth);        // pass stack depth
6512   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6513   addptr(rsp, 3 * wordSize);   // discard arguments
6514   // check for error
6515   { Label L;
6516     testl(rax, rax);
6517     jcc(Assembler::notZero, L);
6518     int3();                  // break if error condition
6519     bind(L);
6520   }
6521   pop_CPU_state();
6522 }
6523 
6524 void MacroAssembler::restore_cpu_control_state_after_jni() {
6525   // Either restore the MXCSR register after returning from the JNI Call
6526   // or verify that it wasn't changed (with -Xcheck:jni flag).
6527   if (VM_Version::supports_sse()) {
6528     if (RestoreMXCSROnJNICalls) {
6529       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6530     } else if (CheckJNICalls) {
6531       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6532     }
6533   }
6534   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6535   vzeroupper();
6536 
6537 #ifndef _LP64
6538   // Either restore the x87 floating pointer control word after returning
6539   // from the JNI call or verify that it wasn't changed.
6540   if (CheckJNICalls) {
6541     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6542   }
6543 #endif // _LP64
6544 }
6545 
6546 void MacroAssembler::load_mirror(Register mirror, Register method) {
6547   // get mirror
6548   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6549   movptr(mirror, Address(method, Method::const_offset()));
6550   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6551   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6552   movptr(mirror, Address(mirror, mirror_offset));
6553 }
6554 
6555 void MacroAssembler::load_klass(Register dst, Register src) {
6556 #ifdef _LP64
6557   if (UseCompressedClassPointers) {
6558     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6559     decode_klass_not_null(dst);
6560   } else
6561 #endif
6562     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6563 }
6564 
6565 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6566   load_klass(dst, src);
6567   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6568 }
6569 
6570 void MacroAssembler::store_klass(Register dst, Register src) {
6571 #ifdef _LP64
6572   if (UseCompressedClassPointers) {
6573     encode_klass_not_null(src);
6574     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6575   } else
6576 #endif
6577     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6578 }
6579 
6580 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6581 #ifdef _LP64
6582   // FIXME: Must change all places where we try to load the klass.
6583   if (UseCompressedOops) {
6584     movl(dst, src);
6585     decode_heap_oop(dst);
6586   } else
6587 #endif
6588     movptr(dst, src);
6589 }
6590 
6591 // Doesn't do verfication, generates fixed size code
6592 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6593 #ifdef _LP64
6594   if (UseCompressedOops) {
6595     movl(dst, src);
6596     decode_heap_oop_not_null(dst);
6597   } else
6598 #endif
6599     movptr(dst, src);
6600 }
6601 
6602 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6603 #ifdef _LP64
6604   if (UseCompressedOops) {
6605     assert(!dst.uses(src), "not enough registers");
6606     encode_heap_oop(src);
6607     movl(dst, src);
6608   } else
6609 #endif
6610     movptr(dst, src);
6611 }
6612 
6613 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6614   assert_different_registers(src1, tmp);
6615 #ifdef _LP64
6616   if (UseCompressedOops) {
6617     bool did_push = false;
6618     if (tmp == noreg) {
6619       tmp = rax;
6620       push(tmp);
6621       did_push = true;
6622       assert(!src2.uses(rsp), "can't push");
6623     }
6624     load_heap_oop(tmp, src2);
6625     cmpptr(src1, tmp);
6626     if (did_push)  pop(tmp);
6627   } else
6628 #endif
6629     cmpptr(src1, src2);
6630 }
6631 
6632 // Used for storing NULLs.
6633 void MacroAssembler::store_heap_oop_null(Address dst) {
6634 #ifdef _LP64
6635   if (UseCompressedOops) {
6636     movl(dst, (int32_t)NULL_WORD);
6637   } else {
6638     movslq(dst, (int32_t)NULL_WORD);
6639   }
6640 #else
6641   movl(dst, (int32_t)NULL_WORD);
6642 #endif
6643 }
6644 
6645 #ifdef _LP64
6646 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6647   if (UseCompressedClassPointers) {
6648     // Store to klass gap in destination
6649     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6650   }
6651 }
6652 
6653 #ifdef ASSERT
6654 void MacroAssembler::verify_heapbase(const char* msg) {
6655   assert (UseCompressedOops, "should be compressed");
6656   assert (Universe::heap() != NULL, "java heap should be initialized");
6657   if (CheckCompressedOops) {
6658     Label ok;
6659     push(rscratch1); // cmpptr trashes rscratch1
6660     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6661     jcc(Assembler::equal, ok);
6662     STOP(msg);
6663     bind(ok);
6664     pop(rscratch1);
6665   }
6666 }
6667 #endif
6668 
6669 // Algorithm must match oop.inline.hpp encode_heap_oop.
6670 void MacroAssembler::encode_heap_oop(Register r) {
6671 #ifdef ASSERT
6672   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6673 #endif
6674   verify_oop(r, "broken oop in encode_heap_oop");
6675   if (Universe::narrow_oop_base() == NULL) {
6676     if (Universe::narrow_oop_shift() != 0) {
6677       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6678       shrq(r, LogMinObjAlignmentInBytes);
6679     }
6680     return;
6681   }
6682   testq(r, r);
6683   cmovq(Assembler::equal, r, r12_heapbase);
6684   subq(r, r12_heapbase);
6685   shrq(r, LogMinObjAlignmentInBytes);
6686 }
6687 
6688 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6689 #ifdef ASSERT
6690   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6691   if (CheckCompressedOops) {
6692     Label ok;
6693     testq(r, r);
6694     jcc(Assembler::notEqual, ok);
6695     STOP("null oop passed to encode_heap_oop_not_null");
6696     bind(ok);
6697   }
6698 #endif
6699   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6700   if (Universe::narrow_oop_base() != NULL) {
6701     subq(r, r12_heapbase);
6702   }
6703   if (Universe::narrow_oop_shift() != 0) {
6704     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6705     shrq(r, LogMinObjAlignmentInBytes);
6706   }
6707 }
6708 
6709 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6710 #ifdef ASSERT
6711   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6712   if (CheckCompressedOops) {
6713     Label ok;
6714     testq(src, src);
6715     jcc(Assembler::notEqual, ok);
6716     STOP("null oop passed to encode_heap_oop_not_null2");
6717     bind(ok);
6718   }
6719 #endif
6720   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6721   if (dst != src) {
6722     movq(dst, src);
6723   }
6724   if (Universe::narrow_oop_base() != NULL) {
6725     subq(dst, r12_heapbase);
6726   }
6727   if (Universe::narrow_oop_shift() != 0) {
6728     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6729     shrq(dst, LogMinObjAlignmentInBytes);
6730   }
6731 }
6732 
6733 void  MacroAssembler::decode_heap_oop(Register r) {
6734 #ifdef ASSERT
6735   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6736 #endif
6737   if (Universe::narrow_oop_base() == NULL) {
6738     if (Universe::narrow_oop_shift() != 0) {
6739       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6740       shlq(r, LogMinObjAlignmentInBytes);
6741     }
6742   } else {
6743     Label done;
6744     shlq(r, LogMinObjAlignmentInBytes);
6745     jccb(Assembler::equal, done);
6746     addq(r, r12_heapbase);
6747     bind(done);
6748   }
6749   verify_oop(r, "broken oop in decode_heap_oop");
6750 }
6751 
6752 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6753   // Note: it will change flags
6754   assert (UseCompressedOops, "should only be used for compressed headers");
6755   assert (Universe::heap() != NULL, "java heap should be initialized");
6756   // Cannot assert, unverified entry point counts instructions (see .ad file)
6757   // vtableStubs also counts instructions in pd_code_size_limit.
6758   // Also do not verify_oop as this is called by verify_oop.
6759   if (Universe::narrow_oop_shift() != 0) {
6760     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6761     shlq(r, LogMinObjAlignmentInBytes);
6762     if (Universe::narrow_oop_base() != NULL) {
6763       addq(r, r12_heapbase);
6764     }
6765   } else {
6766     assert (Universe::narrow_oop_base() == NULL, "sanity");
6767   }
6768 }
6769 
6770 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6771   // Note: it will change flags
6772   assert (UseCompressedOops, "should only be used for compressed headers");
6773   assert (Universe::heap() != NULL, "java heap should be initialized");
6774   // Cannot assert, unverified entry point counts instructions (see .ad file)
6775   // vtableStubs also counts instructions in pd_code_size_limit.
6776   // Also do not verify_oop as this is called by verify_oop.
6777   if (Universe::narrow_oop_shift() != 0) {
6778     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6779     if (LogMinObjAlignmentInBytes == Address::times_8) {
6780       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6781     } else {
6782       if (dst != src) {
6783         movq(dst, src);
6784       }
6785       shlq(dst, LogMinObjAlignmentInBytes);
6786       if (Universe::narrow_oop_base() != NULL) {
6787         addq(dst, r12_heapbase);
6788       }
6789     }
6790   } else {
6791     assert (Universe::narrow_oop_base() == NULL, "sanity");
6792     if (dst != src) {
6793       movq(dst, src);
6794     }
6795   }
6796 }
6797 
6798 void MacroAssembler::encode_klass_not_null(Register r) {
6799   if (Universe::narrow_klass_base() != NULL) {
6800     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6801     assert(r != r12_heapbase, "Encoding a klass in r12");
6802     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6803     subq(r, r12_heapbase);
6804   }
6805   if (Universe::narrow_klass_shift() != 0) {
6806     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6807     shrq(r, LogKlassAlignmentInBytes);
6808   }
6809   if (Universe::narrow_klass_base() != NULL) {
6810     reinit_heapbase();
6811   }
6812 }
6813 
6814 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6815   if (dst == src) {
6816     encode_klass_not_null(src);
6817   } else {
6818     if (Universe::narrow_klass_base() != NULL) {
6819       mov64(dst, (int64_t)Universe::narrow_klass_base());
6820       negq(dst);
6821       addq(dst, src);
6822     } else {
6823       movptr(dst, src);
6824     }
6825     if (Universe::narrow_klass_shift() != 0) {
6826       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6827       shrq(dst, LogKlassAlignmentInBytes);
6828     }
6829   }
6830 }
6831 
6832 // Function instr_size_for_decode_klass_not_null() counts the instructions
6833 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6834 // when (Universe::heap() != NULL).  Hence, if the instructions they
6835 // generate change, then this method needs to be updated.
6836 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6837   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6838   if (Universe::narrow_klass_base() != NULL) {
6839     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6840     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6841   } else {
6842     // longest load decode klass function, mov64, leaq
6843     return 16;
6844   }
6845 }
6846 
6847 // !!! If the instructions that get generated here change then function
6848 // instr_size_for_decode_klass_not_null() needs to get updated.
6849 void  MacroAssembler::decode_klass_not_null(Register r) {
6850   // Note: it will change flags
6851   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6852   assert(r != r12_heapbase, "Decoding a klass in r12");
6853   // Cannot assert, unverified entry point counts instructions (see .ad file)
6854   // vtableStubs also counts instructions in pd_code_size_limit.
6855   // Also do not verify_oop as this is called by verify_oop.
6856   if (Universe::narrow_klass_shift() != 0) {
6857     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6858     shlq(r, LogKlassAlignmentInBytes);
6859   }
6860   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6861   if (Universe::narrow_klass_base() != NULL) {
6862     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6863     addq(r, r12_heapbase);
6864     reinit_heapbase();
6865   }
6866 }
6867 
6868 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6869   // Note: it will change flags
6870   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6871   if (dst == src) {
6872     decode_klass_not_null(dst);
6873   } else {
6874     // Cannot assert, unverified entry point counts instructions (see .ad file)
6875     // vtableStubs also counts instructions in pd_code_size_limit.
6876     // Also do not verify_oop as this is called by verify_oop.
6877     mov64(dst, (int64_t)Universe::narrow_klass_base());
6878     if (Universe::narrow_klass_shift() != 0) {
6879       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6880       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6881       leaq(dst, Address(dst, src, Address::times_8, 0));
6882     } else {
6883       addq(dst, src);
6884     }
6885   }
6886 }
6887 
6888 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6889   assert (UseCompressedOops, "should only be used for compressed headers");
6890   assert (Universe::heap() != NULL, "java heap should be initialized");
6891   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6892   int oop_index = oop_recorder()->find_index(obj);
6893   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6894   mov_narrow_oop(dst, oop_index, rspec);
6895 }
6896 
6897 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6898   assert (UseCompressedOops, "should only be used for compressed headers");
6899   assert (Universe::heap() != NULL, "java heap should be initialized");
6900   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6901   int oop_index = oop_recorder()->find_index(obj);
6902   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6903   mov_narrow_oop(dst, oop_index, rspec);
6904 }
6905 
6906 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6907   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6908   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6909   int klass_index = oop_recorder()->find_index(k);
6910   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6911   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6912 }
6913 
6914 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6915   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6916   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6917   int klass_index = oop_recorder()->find_index(k);
6918   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6919   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6920 }
6921 
6922 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6923   assert (UseCompressedOops, "should only be used for compressed headers");
6924   assert (Universe::heap() != NULL, "java heap should be initialized");
6925   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6926   int oop_index = oop_recorder()->find_index(obj);
6927   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6928   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6929 }
6930 
6931 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6932   assert (UseCompressedOops, "should only be used for compressed headers");
6933   assert (Universe::heap() != NULL, "java heap should be initialized");
6934   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6935   int oop_index = oop_recorder()->find_index(obj);
6936   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6937   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6938 }
6939 
6940 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6941   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6942   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6943   int klass_index = oop_recorder()->find_index(k);
6944   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6945   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6946 }
6947 
6948 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6949   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6950   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6951   int klass_index = oop_recorder()->find_index(k);
6952   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6953   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6954 }
6955 
6956 void MacroAssembler::reinit_heapbase() {
6957   if (UseCompressedOops || UseCompressedClassPointers) {
6958     if (Universe::heap() != NULL) {
6959       if (Universe::narrow_oop_base() == NULL) {
6960         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6961       } else {
6962         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6963       }
6964     } else {
6965       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6966     }
6967   }
6968 }
6969 
6970 #endif // _LP64
6971 
6972 
6973 // C2 compiled method's prolog code.
6974 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6975 
6976   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6977   // NativeJump::patch_verified_entry will be able to patch out the entry
6978   // code safely. The push to verify stack depth is ok at 5 bytes,
6979   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6980   // stack bang then we must use the 6 byte frame allocation even if
6981   // we have no frame. :-(
6982   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6983 
6984   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6985   // Remove word for return addr
6986   framesize -= wordSize;
6987   stack_bang_size -= wordSize;
6988 
6989   // Calls to C2R adapters often do not accept exceptional returns.
6990   // We require that their callers must bang for them.  But be careful, because
6991   // some VM calls (such as call site linkage) can use several kilobytes of
6992   // stack.  But the stack safety zone should account for that.
6993   // See bugs 4446381, 4468289, 4497237.
6994   if (stack_bang_size > 0) {
6995     generate_stack_overflow_check(stack_bang_size);
6996 
6997     // We always push rbp, so that on return to interpreter rbp, will be
6998     // restored correctly and we can correct the stack.
6999     push(rbp);
7000     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7001     if (PreserveFramePointer) {
7002       mov(rbp, rsp);
7003     }
7004     // Remove word for ebp
7005     framesize -= wordSize;
7006 
7007     // Create frame
7008     if (framesize) {
7009       subptr(rsp, framesize);
7010     }
7011   } else {
7012     // Create frame (force generation of a 4 byte immediate value)
7013     subptr_imm32(rsp, framesize);
7014 
7015     // Save RBP register now.
7016     framesize -= wordSize;
7017     movptr(Address(rsp, framesize), rbp);
7018     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7019     if (PreserveFramePointer) {
7020       movptr(rbp, rsp);
7021       if (framesize > 0) {
7022         addptr(rbp, framesize);
7023       }
7024     }
7025   }
7026 
7027   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7028     framesize -= wordSize;
7029     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7030   }
7031 
7032 #ifndef _LP64
7033   // If method sets FPU control word do it now
7034   if (fp_mode_24b) {
7035     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7036   }
7037   if (UseSSE >= 2 && VerifyFPU) {
7038     verify_FPU(0, "FPU stack must be clean on entry");
7039   }
7040 #endif
7041 
7042 #ifdef ASSERT
7043   if (VerifyStackAtCalls) {
7044     Label L;
7045     push(rax);
7046     mov(rax, rsp);
7047     andptr(rax, StackAlignmentInBytes-1);
7048     cmpptr(rax, StackAlignmentInBytes-wordSize);
7049     pop(rax);
7050     jcc(Assembler::equal, L);
7051     STOP("Stack is not properly aligned!");
7052     bind(L);
7053   }
7054 #endif
7055 
7056 }
7057 
7058 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7059   // cnt - number of qwords (8-byte words).
7060   // base - start address, qword aligned.
7061   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7062   assert(base==rdi, "base register must be edi for rep stos");
7063   assert(tmp==rax,   "tmp register must be eax for rep stos");
7064   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7065   assert(InitArrayShortSize % BytesPerLong == 0,
7066     "InitArrayShortSize should be the multiple of BytesPerLong");
7067 
7068   Label DONE;
7069 
7070   xorptr(tmp, tmp);
7071 
7072   if (!is_large) {
7073     Label LOOP, LONG;
7074     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7075     jccb(Assembler::greater, LONG);
7076 
7077     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7078 
7079     decrement(cnt);
7080     jccb(Assembler::negative, DONE); // Zero length
7081 
7082     // Use individual pointer-sized stores for small counts:
7083     BIND(LOOP);
7084     movptr(Address(base, cnt, Address::times_ptr), tmp);
7085     decrement(cnt);
7086     jccb(Assembler::greaterEqual, LOOP);
7087     jmpb(DONE);
7088 
7089     BIND(LONG);
7090   }
7091 
7092   // Use longer rep-prefixed ops for non-small counts:
7093   if (UseFastStosb) {
7094     shlptr(cnt, 3); // convert to number of bytes
7095     rep_stosb();
7096   } else {
7097     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7098     rep_stos();
7099   }
7100 
7101   BIND(DONE);
7102 }
7103 
7104 #ifdef COMPILER2
7105 
7106 // IndexOf for constant substrings with size >= 8 chars
7107 // which don't need to be loaded through stack.
7108 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7109                                       Register cnt1, Register cnt2,
7110                                       int int_cnt2,  Register result,
7111                                       XMMRegister vec, Register tmp,
7112                                       int ae) {
7113   ShortBranchVerifier sbv(this);
7114   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7115   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7116 
7117   // This method uses the pcmpestri instruction with bound registers
7118   //   inputs:
7119   //     xmm - substring
7120   //     rax - substring length (elements count)
7121   //     mem - scanned string
7122   //     rdx - string length (elements count)
7123   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7124   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7125   //   outputs:
7126   //     rcx - matched index in string
7127   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7128   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7129   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7130   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7131   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7132 
7133   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7134         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7135         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7136 
7137   // Note, inline_string_indexOf() generates checks:
7138   // if (substr.count > string.count) return -1;
7139   // if (substr.count == 0) return 0;
7140   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7141 
7142   // Load substring.
7143   if (ae == StrIntrinsicNode::UL) {
7144     pmovzxbw(vec, Address(str2, 0));
7145   } else {
7146     movdqu(vec, Address(str2, 0));
7147   }
7148   movl(cnt2, int_cnt2);
7149   movptr(result, str1); // string addr
7150 
7151   if (int_cnt2 > stride) {
7152     jmpb(SCAN_TO_SUBSTR);
7153 
7154     // Reload substr for rescan, this code
7155     // is executed only for large substrings (> 8 chars)
7156     bind(RELOAD_SUBSTR);
7157     if (ae == StrIntrinsicNode::UL) {
7158       pmovzxbw(vec, Address(str2, 0));
7159     } else {
7160       movdqu(vec, Address(str2, 0));
7161     }
7162     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7163 
7164     bind(RELOAD_STR);
7165     // We came here after the beginning of the substring was
7166     // matched but the rest of it was not so we need to search
7167     // again. Start from the next element after the previous match.
7168 
7169     // cnt2 is number of substring reminding elements and
7170     // cnt1 is number of string reminding elements when cmp failed.
7171     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7172     subl(cnt1, cnt2);
7173     addl(cnt1, int_cnt2);
7174     movl(cnt2, int_cnt2); // Now restore cnt2
7175 
7176     decrementl(cnt1);     // Shift to next element
7177     cmpl(cnt1, cnt2);
7178     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7179 
7180     addptr(result, (1<<scale1));
7181 
7182   } // (int_cnt2 > 8)
7183 
7184   // Scan string for start of substr in 16-byte vectors
7185   bind(SCAN_TO_SUBSTR);
7186   pcmpestri(vec, Address(result, 0), mode);
7187   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7188   subl(cnt1, stride);
7189   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7190   cmpl(cnt1, cnt2);
7191   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7192   addptr(result, 16);
7193   jmpb(SCAN_TO_SUBSTR);
7194 
7195   // Found a potential substr
7196   bind(FOUND_CANDIDATE);
7197   // Matched whole vector if first element matched (tmp(rcx) == 0).
7198   if (int_cnt2 == stride) {
7199     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7200   } else { // int_cnt2 > 8
7201     jccb(Assembler::overflow, FOUND_SUBSTR);
7202   }
7203   // After pcmpestri tmp(rcx) contains matched element index
7204   // Compute start addr of substr
7205   lea(result, Address(result, tmp, scale1));
7206 
7207   // Make sure string is still long enough
7208   subl(cnt1, tmp);
7209   cmpl(cnt1, cnt2);
7210   if (int_cnt2 == stride) {
7211     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7212   } else { // int_cnt2 > 8
7213     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7214   }
7215   // Left less then substring.
7216 
7217   bind(RET_NOT_FOUND);
7218   movl(result, -1);
7219   jmp(EXIT);
7220 
7221   if (int_cnt2 > stride) {
7222     // This code is optimized for the case when whole substring
7223     // is matched if its head is matched.
7224     bind(MATCH_SUBSTR_HEAD);
7225     pcmpestri(vec, Address(result, 0), mode);
7226     // Reload only string if does not match
7227     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7228 
7229     Label CONT_SCAN_SUBSTR;
7230     // Compare the rest of substring (> 8 chars).
7231     bind(FOUND_SUBSTR);
7232     // First 8 chars are already matched.
7233     negptr(cnt2);
7234     addptr(cnt2, stride);
7235 
7236     bind(SCAN_SUBSTR);
7237     subl(cnt1, stride);
7238     cmpl(cnt2, -stride); // Do not read beyond substring
7239     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7240     // Back-up strings to avoid reading beyond substring:
7241     // cnt1 = cnt1 - cnt2 + 8
7242     addl(cnt1, cnt2); // cnt2 is negative
7243     addl(cnt1, stride);
7244     movl(cnt2, stride); negptr(cnt2);
7245     bind(CONT_SCAN_SUBSTR);
7246     if (int_cnt2 < (int)G) {
7247       int tail_off1 = int_cnt2<<scale1;
7248       int tail_off2 = int_cnt2<<scale2;
7249       if (ae == StrIntrinsicNode::UL) {
7250         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7251       } else {
7252         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7253       }
7254       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7255     } else {
7256       // calculate index in register to avoid integer overflow (int_cnt2*2)
7257       movl(tmp, int_cnt2);
7258       addptr(tmp, cnt2);
7259       if (ae == StrIntrinsicNode::UL) {
7260         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7261       } else {
7262         movdqu(vec, Address(str2, tmp, scale2, 0));
7263       }
7264       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7265     }
7266     // Need to reload strings pointers if not matched whole vector
7267     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7268     addptr(cnt2, stride);
7269     jcc(Assembler::negative, SCAN_SUBSTR);
7270     // Fall through if found full substring
7271 
7272   } // (int_cnt2 > 8)
7273 
7274   bind(RET_FOUND);
7275   // Found result if we matched full small substring.
7276   // Compute substr offset
7277   subptr(result, str1);
7278   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7279     shrl(result, 1); // index
7280   }
7281   bind(EXIT);
7282 
7283 } // string_indexofC8
7284 
7285 // Small strings are loaded through stack if they cross page boundary.
7286 void MacroAssembler::string_indexof(Register str1, Register str2,
7287                                     Register cnt1, Register cnt2,
7288                                     int int_cnt2,  Register result,
7289                                     XMMRegister vec, Register tmp,
7290                                     int ae) {
7291   ShortBranchVerifier sbv(this);
7292   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7293   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7294 
7295   //
7296   // int_cnt2 is length of small (< 8 chars) constant substring
7297   // or (-1) for non constant substring in which case its length
7298   // is in cnt2 register.
7299   //
7300   // Note, inline_string_indexOf() generates checks:
7301   // if (substr.count > string.count) return -1;
7302   // if (substr.count == 0) return 0;
7303   //
7304   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7305   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7306   // This method uses the pcmpestri instruction with bound registers
7307   //   inputs:
7308   //     xmm - substring
7309   //     rax - substring length (elements count)
7310   //     mem - scanned string
7311   //     rdx - string length (elements count)
7312   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7313   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7314   //   outputs:
7315   //     rcx - matched index in string
7316   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7317   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7318   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7319   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7320 
7321   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7322         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7323         FOUND_CANDIDATE;
7324 
7325   { //========================================================
7326     // We don't know where these strings are located
7327     // and we can't read beyond them. Load them through stack.
7328     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7329 
7330     movptr(tmp, rsp); // save old SP
7331 
7332     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7333       if (int_cnt2 == (1>>scale2)) { // One byte
7334         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7335         load_unsigned_byte(result, Address(str2, 0));
7336         movdl(vec, result); // move 32 bits
7337       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7338         // Not enough header space in 32-bit VM: 12+3 = 15.
7339         movl(result, Address(str2, -1));
7340         shrl(result, 8);
7341         movdl(vec, result); // move 32 bits
7342       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7343         load_unsigned_short(result, Address(str2, 0));
7344         movdl(vec, result); // move 32 bits
7345       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7346         movdl(vec, Address(str2, 0)); // move 32 bits
7347       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7348         movq(vec, Address(str2, 0));  // move 64 bits
7349       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7350         // Array header size is 12 bytes in 32-bit VM
7351         // + 6 bytes for 3 chars == 18 bytes,
7352         // enough space to load vec and shift.
7353         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7354         if (ae == StrIntrinsicNode::UL) {
7355           int tail_off = int_cnt2-8;
7356           pmovzxbw(vec, Address(str2, tail_off));
7357           psrldq(vec, -2*tail_off);
7358         }
7359         else {
7360           int tail_off = int_cnt2*(1<<scale2);
7361           movdqu(vec, Address(str2, tail_off-16));
7362           psrldq(vec, 16-tail_off);
7363         }
7364       }
7365     } else { // not constant substring
7366       cmpl(cnt2, stride);
7367       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7368 
7369       // We can read beyond string if srt+16 does not cross page boundary
7370       // since heaps are aligned and mapped by pages.
7371       assert(os::vm_page_size() < (int)G, "default page should be small");
7372       movl(result, str2); // We need only low 32 bits
7373       andl(result, (os::vm_page_size()-1));
7374       cmpl(result, (os::vm_page_size()-16));
7375       jccb(Assembler::belowEqual, CHECK_STR);
7376 
7377       // Move small strings to stack to allow load 16 bytes into vec.
7378       subptr(rsp, 16);
7379       int stk_offset = wordSize-(1<<scale2);
7380       push(cnt2);
7381 
7382       bind(COPY_SUBSTR);
7383       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7384         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7385         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7386       } else if (ae == StrIntrinsicNode::UU) {
7387         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7388         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7389       }
7390       decrement(cnt2);
7391       jccb(Assembler::notZero, COPY_SUBSTR);
7392 
7393       pop(cnt2);
7394       movptr(str2, rsp);  // New substring address
7395     } // non constant
7396 
7397     bind(CHECK_STR);
7398     cmpl(cnt1, stride);
7399     jccb(Assembler::aboveEqual, BIG_STRINGS);
7400 
7401     // Check cross page boundary.
7402     movl(result, str1); // We need only low 32 bits
7403     andl(result, (os::vm_page_size()-1));
7404     cmpl(result, (os::vm_page_size()-16));
7405     jccb(Assembler::belowEqual, BIG_STRINGS);
7406 
7407     subptr(rsp, 16);
7408     int stk_offset = -(1<<scale1);
7409     if (int_cnt2 < 0) { // not constant
7410       push(cnt2);
7411       stk_offset += wordSize;
7412     }
7413     movl(cnt2, cnt1);
7414 
7415     bind(COPY_STR);
7416     if (ae == StrIntrinsicNode::LL) {
7417       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7418       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7419     } else {
7420       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7421       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7422     }
7423     decrement(cnt2);
7424     jccb(Assembler::notZero, COPY_STR);
7425 
7426     if (int_cnt2 < 0) { // not constant
7427       pop(cnt2);
7428     }
7429     movptr(str1, rsp);  // New string address
7430 
7431     bind(BIG_STRINGS);
7432     // Load substring.
7433     if (int_cnt2 < 0) { // -1
7434       if (ae == StrIntrinsicNode::UL) {
7435         pmovzxbw(vec, Address(str2, 0));
7436       } else {
7437         movdqu(vec, Address(str2, 0));
7438       }
7439       push(cnt2);       // substr count
7440       push(str2);       // substr addr
7441       push(str1);       // string addr
7442     } else {
7443       // Small (< 8 chars) constant substrings are loaded already.
7444       movl(cnt2, int_cnt2);
7445     }
7446     push(tmp);  // original SP
7447 
7448   } // Finished loading
7449 
7450   //========================================================
7451   // Start search
7452   //
7453 
7454   movptr(result, str1); // string addr
7455 
7456   if (int_cnt2  < 0) {  // Only for non constant substring
7457     jmpb(SCAN_TO_SUBSTR);
7458 
7459     // SP saved at sp+0
7460     // String saved at sp+1*wordSize
7461     // Substr saved at sp+2*wordSize
7462     // Substr count saved at sp+3*wordSize
7463 
7464     // Reload substr for rescan, this code
7465     // is executed only for large substrings (> 8 chars)
7466     bind(RELOAD_SUBSTR);
7467     movptr(str2, Address(rsp, 2*wordSize));
7468     movl(cnt2, Address(rsp, 3*wordSize));
7469     if (ae == StrIntrinsicNode::UL) {
7470       pmovzxbw(vec, Address(str2, 0));
7471     } else {
7472       movdqu(vec, Address(str2, 0));
7473     }
7474     // We came here after the beginning of the substring was
7475     // matched but the rest of it was not so we need to search
7476     // again. Start from the next element after the previous match.
7477     subptr(str1, result); // Restore counter
7478     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7479       shrl(str1, 1);
7480     }
7481     addl(cnt1, str1);
7482     decrementl(cnt1);   // Shift to next element
7483     cmpl(cnt1, cnt2);
7484     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7485 
7486     addptr(result, (1<<scale1));
7487   } // non constant
7488 
7489   // Scan string for start of substr in 16-byte vectors
7490   bind(SCAN_TO_SUBSTR);
7491   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7492   pcmpestri(vec, Address(result, 0), mode);
7493   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7494   subl(cnt1, stride);
7495   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7496   cmpl(cnt1, cnt2);
7497   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7498   addptr(result, 16);
7499 
7500   bind(ADJUST_STR);
7501   cmpl(cnt1, stride); // Do not read beyond string
7502   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7503   // Back-up string to avoid reading beyond string.
7504   lea(result, Address(result, cnt1, scale1, -16));
7505   movl(cnt1, stride);
7506   jmpb(SCAN_TO_SUBSTR);
7507 
7508   // Found a potential substr
7509   bind(FOUND_CANDIDATE);
7510   // After pcmpestri tmp(rcx) contains matched element index
7511 
7512   // Make sure string is still long enough
7513   subl(cnt1, tmp);
7514   cmpl(cnt1, cnt2);
7515   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7516   // Left less then substring.
7517 
7518   bind(RET_NOT_FOUND);
7519   movl(result, -1);
7520   jmpb(CLEANUP);
7521 
7522   bind(FOUND_SUBSTR);
7523   // Compute start addr of substr
7524   lea(result, Address(result, tmp, scale1));
7525   if (int_cnt2 > 0) { // Constant substring
7526     // Repeat search for small substring (< 8 chars)
7527     // from new point without reloading substring.
7528     // Have to check that we don't read beyond string.
7529     cmpl(tmp, stride-int_cnt2);
7530     jccb(Assembler::greater, ADJUST_STR);
7531     // Fall through if matched whole substring.
7532   } else { // non constant
7533     assert(int_cnt2 == -1, "should be != 0");
7534 
7535     addl(tmp, cnt2);
7536     // Found result if we matched whole substring.
7537     cmpl(tmp, stride);
7538     jccb(Assembler::lessEqual, RET_FOUND);
7539 
7540     // Repeat search for small substring (<= 8 chars)
7541     // from new point 'str1' without reloading substring.
7542     cmpl(cnt2, stride);
7543     // Have to check that we don't read beyond string.
7544     jccb(Assembler::lessEqual, ADJUST_STR);
7545 
7546     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7547     // Compare the rest of substring (> 8 chars).
7548     movptr(str1, result);
7549 
7550     cmpl(tmp, cnt2);
7551     // First 8 chars are already matched.
7552     jccb(Assembler::equal, CHECK_NEXT);
7553 
7554     bind(SCAN_SUBSTR);
7555     pcmpestri(vec, Address(str1, 0), mode);
7556     // Need to reload strings pointers if not matched whole vector
7557     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7558 
7559     bind(CHECK_NEXT);
7560     subl(cnt2, stride);
7561     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7562     addptr(str1, 16);
7563     if (ae == StrIntrinsicNode::UL) {
7564       addptr(str2, 8);
7565     } else {
7566       addptr(str2, 16);
7567     }
7568     subl(cnt1, stride);
7569     cmpl(cnt2, stride); // Do not read beyond substring
7570     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7571     // Back-up strings to avoid reading beyond substring.
7572 
7573     if (ae == StrIntrinsicNode::UL) {
7574       lea(str2, Address(str2, cnt2, scale2, -8));
7575       lea(str1, Address(str1, cnt2, scale1, -16));
7576     } else {
7577       lea(str2, Address(str2, cnt2, scale2, -16));
7578       lea(str1, Address(str1, cnt2, scale1, -16));
7579     }
7580     subl(cnt1, cnt2);
7581     movl(cnt2, stride);
7582     addl(cnt1, stride);
7583     bind(CONT_SCAN_SUBSTR);
7584     if (ae == StrIntrinsicNode::UL) {
7585       pmovzxbw(vec, Address(str2, 0));
7586     } else {
7587       movdqu(vec, Address(str2, 0));
7588     }
7589     jmp(SCAN_SUBSTR);
7590 
7591     bind(RET_FOUND_LONG);
7592     movptr(str1, Address(rsp, wordSize));
7593   } // non constant
7594 
7595   bind(RET_FOUND);
7596   // Compute substr offset
7597   subptr(result, str1);
7598   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7599     shrl(result, 1); // index
7600   }
7601   bind(CLEANUP);
7602   pop(rsp); // restore SP
7603 
7604 } // string_indexof
7605 
7606 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7607                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7608   ShortBranchVerifier sbv(this);
7609   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7610 
7611   int stride = 8;
7612 
7613   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7614         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7615         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7616         FOUND_SEQ_CHAR, DONE_LABEL;
7617 
7618   movptr(result, str1);
7619   if (UseAVX >= 2) {
7620     cmpl(cnt1, stride);
7621     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7622     cmpl(cnt1, 2*stride);
7623     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7624     movdl(vec1, ch);
7625     vpbroadcastw(vec1, vec1);
7626     vpxor(vec2, vec2);
7627     movl(tmp, cnt1);
7628     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7629     andl(cnt1,0x0000000F);  //tail count (in chars)
7630 
7631     bind(SCAN_TO_16_CHAR_LOOP);
7632     vmovdqu(vec3, Address(result, 0));
7633     vpcmpeqw(vec3, vec3, vec1, 1);
7634     vptest(vec2, vec3);
7635     jcc(Assembler::carryClear, FOUND_CHAR);
7636     addptr(result, 32);
7637     subl(tmp, 2*stride);
7638     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7639     jmp(SCAN_TO_8_CHAR);
7640     bind(SCAN_TO_8_CHAR_INIT);
7641     movdl(vec1, ch);
7642     pshuflw(vec1, vec1, 0x00);
7643     pshufd(vec1, vec1, 0);
7644     pxor(vec2, vec2);
7645   }
7646   bind(SCAN_TO_8_CHAR);
7647   cmpl(cnt1, stride);
7648   if (UseAVX >= 2) {
7649     jcc(Assembler::less, SCAN_TO_CHAR);
7650   } else {
7651     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7652     movdl(vec1, ch);
7653     pshuflw(vec1, vec1, 0x00);
7654     pshufd(vec1, vec1, 0);
7655     pxor(vec2, vec2);
7656   }
7657   movl(tmp, cnt1);
7658   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7659   andl(cnt1,0x00000007);  //tail count (in chars)
7660 
7661   bind(SCAN_TO_8_CHAR_LOOP);
7662   movdqu(vec3, Address(result, 0));
7663   pcmpeqw(vec3, vec1);
7664   ptest(vec2, vec3);
7665   jcc(Assembler::carryClear, FOUND_CHAR);
7666   addptr(result, 16);
7667   subl(tmp, stride);
7668   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7669   bind(SCAN_TO_CHAR);
7670   testl(cnt1, cnt1);
7671   jcc(Assembler::zero, RET_NOT_FOUND);
7672   bind(SCAN_TO_CHAR_LOOP);
7673   load_unsigned_short(tmp, Address(result, 0));
7674   cmpl(ch, tmp);
7675   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7676   addptr(result, 2);
7677   subl(cnt1, 1);
7678   jccb(Assembler::zero, RET_NOT_FOUND);
7679   jmp(SCAN_TO_CHAR_LOOP);
7680 
7681   bind(RET_NOT_FOUND);
7682   movl(result, -1);
7683   jmpb(DONE_LABEL);
7684 
7685   bind(FOUND_CHAR);
7686   if (UseAVX >= 2) {
7687     vpmovmskb(tmp, vec3);
7688   } else {
7689     pmovmskb(tmp, vec3);
7690   }
7691   bsfl(ch, tmp);
7692   addl(result, ch);
7693 
7694   bind(FOUND_SEQ_CHAR);
7695   subptr(result, str1);
7696   shrl(result, 1);
7697 
7698   bind(DONE_LABEL);
7699 } // string_indexof_char
7700 
7701 // helper function for string_compare
7702 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7703                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7704                                         Address::ScaleFactor scale2, Register index, int ae) {
7705   if (ae == StrIntrinsicNode::LL) {
7706     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7707     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7708   } else if (ae == StrIntrinsicNode::UU) {
7709     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7710     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7711   } else {
7712     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7713     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7714   }
7715 }
7716 
7717 // Compare strings, used for char[] and byte[].
7718 void MacroAssembler::string_compare(Register str1, Register str2,
7719                                     Register cnt1, Register cnt2, Register result,
7720                                     XMMRegister vec1, int ae) {
7721   ShortBranchVerifier sbv(this);
7722   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7723   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7724   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7725   int stride2x2 = 0x40;
7726   Address::ScaleFactor scale = Address::no_scale;
7727   Address::ScaleFactor scale1 = Address::no_scale;
7728   Address::ScaleFactor scale2 = Address::no_scale;
7729 
7730   if (ae != StrIntrinsicNode::LL) {
7731     stride2x2 = 0x20;
7732   }
7733 
7734   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7735     shrl(cnt2, 1);
7736   }
7737   // Compute the minimum of the string lengths and the
7738   // difference of the string lengths (stack).
7739   // Do the conditional move stuff
7740   movl(result, cnt1);
7741   subl(cnt1, cnt2);
7742   push(cnt1);
7743   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7744 
7745   // Is the minimum length zero?
7746   testl(cnt2, cnt2);
7747   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7748   if (ae == StrIntrinsicNode::LL) {
7749     // Load first bytes
7750     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7751     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7752   } else if (ae == StrIntrinsicNode::UU) {
7753     // Load first characters
7754     load_unsigned_short(result, Address(str1, 0));
7755     load_unsigned_short(cnt1, Address(str2, 0));
7756   } else {
7757     load_unsigned_byte(result, Address(str1, 0));
7758     load_unsigned_short(cnt1, Address(str2, 0));
7759   }
7760   subl(result, cnt1);
7761   jcc(Assembler::notZero,  POP_LABEL);
7762 
7763   if (ae == StrIntrinsicNode::UU) {
7764     // Divide length by 2 to get number of chars
7765     shrl(cnt2, 1);
7766   }
7767   cmpl(cnt2, 1);
7768   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7769 
7770   // Check if the strings start at the same location and setup scale and stride
7771   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7772     cmpptr(str1, str2);
7773     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7774     if (ae == StrIntrinsicNode::LL) {
7775       scale = Address::times_1;
7776       stride = 16;
7777     } else {
7778       scale = Address::times_2;
7779       stride = 8;
7780     }
7781   } else {
7782     scale1 = Address::times_1;
7783     scale2 = Address::times_2;
7784     // scale not used
7785     stride = 8;
7786   }
7787 
7788   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7789     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7790     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7791     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7792     Label COMPARE_TAIL_LONG;
7793     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7794 
7795     int pcmpmask = 0x19;
7796     if (ae == StrIntrinsicNode::LL) {
7797       pcmpmask &= ~0x01;
7798     }
7799 
7800     // Setup to compare 16-chars (32-bytes) vectors,
7801     // start from first character again because it has aligned address.
7802     if (ae == StrIntrinsicNode::LL) {
7803       stride2 = 32;
7804     } else {
7805       stride2 = 16;
7806     }
7807     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7808       adr_stride = stride << scale;
7809     } else {
7810       adr_stride1 = 8;  //stride << scale1;
7811       adr_stride2 = 16; //stride << scale2;
7812     }
7813 
7814     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7815     // rax and rdx are used by pcmpestri as elements counters
7816     movl(result, cnt2);
7817     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7818     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7819 
7820     // fast path : compare first 2 8-char vectors.
7821     bind(COMPARE_16_CHARS);
7822     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7823       movdqu(vec1, Address(str1, 0));
7824     } else {
7825       pmovzxbw(vec1, Address(str1, 0));
7826     }
7827     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7828     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7829 
7830     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7831       movdqu(vec1, Address(str1, adr_stride));
7832       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7833     } else {
7834       pmovzxbw(vec1, Address(str1, adr_stride1));
7835       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7836     }
7837     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7838     addl(cnt1, stride);
7839 
7840     // Compare the characters at index in cnt1
7841     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7842     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7843     subl(result, cnt2);
7844     jmp(POP_LABEL);
7845 
7846     // Setup the registers to start vector comparison loop
7847     bind(COMPARE_WIDE_VECTORS);
7848     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7849       lea(str1, Address(str1, result, scale));
7850       lea(str2, Address(str2, result, scale));
7851     } else {
7852       lea(str1, Address(str1, result, scale1));
7853       lea(str2, Address(str2, result, scale2));
7854     }
7855     subl(result, stride2);
7856     subl(cnt2, stride2);
7857     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7858     negptr(result);
7859 
7860     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7861     bind(COMPARE_WIDE_VECTORS_LOOP);
7862 
7863 #ifdef _LP64
7864     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7865       cmpl(cnt2, stride2x2);
7866       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7867       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7868       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7869 
7870       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7871       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7872         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7873         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7874       } else {
7875         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7876         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7877       }
7878       kortestql(k7, k7);
7879       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7880       addptr(result, stride2x2);  // update since we already compared at this addr
7881       subl(cnt2, stride2x2);      // and sub the size too
7882       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7883 
7884       vpxor(vec1, vec1);
7885       jmpb(COMPARE_WIDE_TAIL);
7886     }//if (VM_Version::supports_avx512vlbw())
7887 #endif // _LP64
7888 
7889 
7890     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7891     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7892       vmovdqu(vec1, Address(str1, result, scale));
7893       vpxor(vec1, Address(str2, result, scale));
7894     } else {
7895       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7896       vpxor(vec1, Address(str2, result, scale2));
7897     }
7898     vptest(vec1, vec1);
7899     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7900     addptr(result, stride2);
7901     subl(cnt2, stride2);
7902     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7903     // clean upper bits of YMM registers
7904     vpxor(vec1, vec1);
7905 
7906     // compare wide vectors tail
7907     bind(COMPARE_WIDE_TAIL);
7908     testptr(result, result);
7909     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7910 
7911     movl(result, stride2);
7912     movl(cnt2, result);
7913     negptr(result);
7914     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7915 
7916     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7917     bind(VECTOR_NOT_EQUAL);
7918     // clean upper bits of YMM registers
7919     vpxor(vec1, vec1);
7920     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7921       lea(str1, Address(str1, result, scale));
7922       lea(str2, Address(str2, result, scale));
7923     } else {
7924       lea(str1, Address(str1, result, scale1));
7925       lea(str2, Address(str2, result, scale2));
7926     }
7927     jmp(COMPARE_16_CHARS);
7928 
7929     // Compare tail chars, length between 1 to 15 chars
7930     bind(COMPARE_TAIL_LONG);
7931     movl(cnt2, result);
7932     cmpl(cnt2, stride);
7933     jcc(Assembler::less, COMPARE_SMALL_STR);
7934 
7935     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7936       movdqu(vec1, Address(str1, 0));
7937     } else {
7938       pmovzxbw(vec1, Address(str1, 0));
7939     }
7940     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7941     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7942     subptr(cnt2, stride);
7943     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7944     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7945       lea(str1, Address(str1, result, scale));
7946       lea(str2, Address(str2, result, scale));
7947     } else {
7948       lea(str1, Address(str1, result, scale1));
7949       lea(str2, Address(str2, result, scale2));
7950     }
7951     negptr(cnt2);
7952     jmpb(WHILE_HEAD_LABEL);
7953 
7954     bind(COMPARE_SMALL_STR);
7955   } else if (UseSSE42Intrinsics) {
7956     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7957     int pcmpmask = 0x19;
7958     // Setup to compare 8-char (16-byte) vectors,
7959     // start from first character again because it has aligned address.
7960     movl(result, cnt2);
7961     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7962     if (ae == StrIntrinsicNode::LL) {
7963       pcmpmask &= ~0x01;
7964     }
7965     jcc(Assembler::zero, COMPARE_TAIL);
7966     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7967       lea(str1, Address(str1, result, scale));
7968       lea(str2, Address(str2, result, scale));
7969     } else {
7970       lea(str1, Address(str1, result, scale1));
7971       lea(str2, Address(str2, result, scale2));
7972     }
7973     negptr(result);
7974 
7975     // pcmpestri
7976     //   inputs:
7977     //     vec1- substring
7978     //     rax - negative string length (elements count)
7979     //     mem - scanned string
7980     //     rdx - string length (elements count)
7981     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7982     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7983     //   outputs:
7984     //     rcx - first mismatched element index
7985     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7986 
7987     bind(COMPARE_WIDE_VECTORS);
7988     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7989       movdqu(vec1, Address(str1, result, scale));
7990       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
7991     } else {
7992       pmovzxbw(vec1, Address(str1, result, scale1));
7993       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
7994     }
7995     // After pcmpestri cnt1(rcx) contains mismatched element index
7996 
7997     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
7998     addptr(result, stride);
7999     subptr(cnt2, stride);
8000     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8001 
8002     // compare wide vectors tail
8003     testptr(result, result);
8004     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8005 
8006     movl(cnt2, stride);
8007     movl(result, stride);
8008     negptr(result);
8009     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8010       movdqu(vec1, Address(str1, result, scale));
8011       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8012     } else {
8013       pmovzxbw(vec1, Address(str1, result, scale1));
8014       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8015     }
8016     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8017 
8018     // Mismatched characters in the vectors
8019     bind(VECTOR_NOT_EQUAL);
8020     addptr(cnt1, result);
8021     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8022     subl(result, cnt2);
8023     jmpb(POP_LABEL);
8024 
8025     bind(COMPARE_TAIL); // limit is zero
8026     movl(cnt2, result);
8027     // Fallthru to tail compare
8028   }
8029   // Shift str2 and str1 to the end of the arrays, negate min
8030   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8031     lea(str1, Address(str1, cnt2, scale));
8032     lea(str2, Address(str2, cnt2, scale));
8033   } else {
8034     lea(str1, Address(str1, cnt2, scale1));
8035     lea(str2, Address(str2, cnt2, scale2));
8036   }
8037   decrementl(cnt2);  // first character was compared already
8038   negptr(cnt2);
8039 
8040   // Compare the rest of the elements
8041   bind(WHILE_HEAD_LABEL);
8042   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8043   subl(result, cnt1);
8044   jccb(Assembler::notZero, POP_LABEL);
8045   increment(cnt2);
8046   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8047 
8048   // Strings are equal up to min length.  Return the length difference.
8049   bind(LENGTH_DIFF_LABEL);
8050   pop(result);
8051   if (ae == StrIntrinsicNode::UU) {
8052     // Divide diff by 2 to get number of chars
8053     sarl(result, 1);
8054   }
8055   jmpb(DONE_LABEL);
8056 
8057 #ifdef _LP64
8058   if (VM_Version::supports_avx512vlbw()) {
8059 
8060     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8061 
8062     kmovql(cnt1, k7);
8063     notq(cnt1);
8064     bsfq(cnt2, cnt1);
8065     if (ae != StrIntrinsicNode::LL) {
8066       // Divide diff by 2 to get number of chars
8067       sarl(cnt2, 1);
8068     }
8069     addq(result, cnt2);
8070     if (ae == StrIntrinsicNode::LL) {
8071       load_unsigned_byte(cnt1, Address(str2, result));
8072       load_unsigned_byte(result, Address(str1, result));
8073     } else if (ae == StrIntrinsicNode::UU) {
8074       load_unsigned_short(cnt1, Address(str2, result, scale));
8075       load_unsigned_short(result, Address(str1, result, scale));
8076     } else {
8077       load_unsigned_short(cnt1, Address(str2, result, scale2));
8078       load_unsigned_byte(result, Address(str1, result, scale1));
8079     }
8080     subl(result, cnt1);
8081     jmpb(POP_LABEL);
8082   }//if (VM_Version::supports_avx512vlbw())
8083 #endif // _LP64
8084 
8085   // Discard the stored length difference
8086   bind(POP_LABEL);
8087   pop(cnt1);
8088 
8089   // That's it
8090   bind(DONE_LABEL);
8091   if(ae == StrIntrinsicNode::UL) {
8092     negl(result);
8093   }
8094 
8095 }
8096 
8097 // Search for Non-ASCII character (Negative byte value) in a byte array,
8098 // return true if it has any and false otherwise.
8099 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8100 //   @HotSpotIntrinsicCandidate
8101 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8102 //     for (int i = off; i < off + len; i++) {
8103 //       if (ba[i] < 0) {
8104 //         return true;
8105 //       }
8106 //     }
8107 //     return false;
8108 //   }
8109 void MacroAssembler::has_negatives(Register ary1, Register len,
8110   Register result, Register tmp1,
8111   XMMRegister vec1, XMMRegister vec2) {
8112   // rsi: byte array
8113   // rcx: len
8114   // rax: result
8115   ShortBranchVerifier sbv(this);
8116   assert_different_registers(ary1, len, result, tmp1);
8117   assert_different_registers(vec1, vec2);
8118   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8119 
8120   // len == 0
8121   testl(len, len);
8122   jcc(Assembler::zero, FALSE_LABEL);
8123 
8124   if ((UseAVX > 2) && // AVX512
8125     VM_Version::supports_avx512vlbw() &&
8126     VM_Version::supports_bmi2()) {
8127 
8128     set_vector_masking();  // opening of the stub context for programming mask registers
8129 
8130     Label test_64_loop, test_tail;
8131     Register tmp3_aliased = len;
8132 
8133     movl(tmp1, len);
8134     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8135 
8136     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8137     andl(len, ~(64 - 1));    // vector count (in chars)
8138     jccb(Assembler::zero, test_tail);
8139 
8140     lea(ary1, Address(ary1, len, Address::times_1));
8141     negptr(len);
8142 
8143     bind(test_64_loop);
8144     // Check whether our 64 elements of size byte contain negatives
8145     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8146     kortestql(k2, k2);
8147     jcc(Assembler::notZero, TRUE_LABEL);
8148 
8149     addptr(len, 64);
8150     jccb(Assembler::notZero, test_64_loop);
8151 
8152 
8153     bind(test_tail);
8154     // bail out when there is nothing to be done
8155     testl(tmp1, -1);
8156     jcc(Assembler::zero, FALSE_LABEL);
8157 
8158     // Save k1
8159     kmovql(k3, k1);
8160 
8161     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8162 #ifdef _LP64
8163     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8164     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8165     notq(tmp3_aliased);
8166     kmovql(k1, tmp3_aliased);
8167 #else
8168     Label k_init;
8169     jmp(k_init);
8170 
8171     // We could not read 64-bits from a general purpose register thus we move
8172     // data required to compose 64 1's to the instruction stream
8173     // We emit 64 byte wide series of elements from 0..63 which later on would
8174     // be used as a compare targets with tail count contained in tmp1 register.
8175     // Result would be a k1 register having tmp1 consecutive number or 1
8176     // counting from least significant bit.
8177     address tmp = pc();
8178     emit_int64(0x0706050403020100);
8179     emit_int64(0x0F0E0D0C0B0A0908);
8180     emit_int64(0x1716151413121110);
8181     emit_int64(0x1F1E1D1C1B1A1918);
8182     emit_int64(0x2726252423222120);
8183     emit_int64(0x2F2E2D2C2B2A2928);
8184     emit_int64(0x3736353433323130);
8185     emit_int64(0x3F3E3D3C3B3A3938);
8186 
8187     bind(k_init);
8188     lea(len, InternalAddress(tmp));
8189     // create mask to test for negative byte inside a vector
8190     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8191     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8192 
8193 #endif
8194     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8195     ktestq(k2, k1);
8196     // Restore k1
8197     kmovql(k1, k3);
8198     jcc(Assembler::notZero, TRUE_LABEL);
8199 
8200     jmp(FALSE_LABEL);
8201 
8202     clear_vector_masking();   // closing of the stub context for programming mask registers
8203   } else {
8204     movl(result, len); // copy
8205 
8206     if (UseAVX == 2 && UseSSE >= 2) {
8207       // With AVX2, use 32-byte vector compare
8208       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8209 
8210       // Compare 32-byte vectors
8211       andl(result, 0x0000001f);  //   tail count (in bytes)
8212       andl(len, 0xffffffe0);   // vector count (in bytes)
8213       jccb(Assembler::zero, COMPARE_TAIL);
8214 
8215       lea(ary1, Address(ary1, len, Address::times_1));
8216       negptr(len);
8217 
8218       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8219       movdl(vec2, tmp1);
8220       vpbroadcastd(vec2, vec2);
8221 
8222       bind(COMPARE_WIDE_VECTORS);
8223       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8224       vptest(vec1, vec2);
8225       jccb(Assembler::notZero, TRUE_LABEL);
8226       addptr(len, 32);
8227       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8228 
8229       testl(result, result);
8230       jccb(Assembler::zero, FALSE_LABEL);
8231 
8232       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8233       vptest(vec1, vec2);
8234       jccb(Assembler::notZero, TRUE_LABEL);
8235       jmpb(FALSE_LABEL);
8236 
8237       bind(COMPARE_TAIL); // len is zero
8238       movl(len, result);
8239       // Fallthru to tail compare
8240     } else if (UseSSE42Intrinsics) {
8241       // With SSE4.2, use double quad vector compare
8242       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8243 
8244       // Compare 16-byte vectors
8245       andl(result, 0x0000000f);  //   tail count (in bytes)
8246       andl(len, 0xfffffff0);   // vector count (in bytes)
8247       jccb(Assembler::zero, COMPARE_TAIL);
8248 
8249       lea(ary1, Address(ary1, len, Address::times_1));
8250       negptr(len);
8251 
8252       movl(tmp1, 0x80808080);
8253       movdl(vec2, tmp1);
8254       pshufd(vec2, vec2, 0);
8255 
8256       bind(COMPARE_WIDE_VECTORS);
8257       movdqu(vec1, Address(ary1, len, Address::times_1));
8258       ptest(vec1, vec2);
8259       jccb(Assembler::notZero, TRUE_LABEL);
8260       addptr(len, 16);
8261       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8262 
8263       testl(result, result);
8264       jccb(Assembler::zero, FALSE_LABEL);
8265 
8266       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8267       ptest(vec1, vec2);
8268       jccb(Assembler::notZero, TRUE_LABEL);
8269       jmpb(FALSE_LABEL);
8270 
8271       bind(COMPARE_TAIL); // len is zero
8272       movl(len, result);
8273       // Fallthru to tail compare
8274     }
8275   }
8276   // Compare 4-byte vectors
8277   andl(len, 0xfffffffc); // vector count (in bytes)
8278   jccb(Assembler::zero, COMPARE_CHAR);
8279 
8280   lea(ary1, Address(ary1, len, Address::times_1));
8281   negptr(len);
8282 
8283   bind(COMPARE_VECTORS);
8284   movl(tmp1, Address(ary1, len, Address::times_1));
8285   andl(tmp1, 0x80808080);
8286   jccb(Assembler::notZero, TRUE_LABEL);
8287   addptr(len, 4);
8288   jcc(Assembler::notZero, COMPARE_VECTORS);
8289 
8290   // Compare trailing char (final 2 bytes), if any
8291   bind(COMPARE_CHAR);
8292   testl(result, 0x2);   // tail  char
8293   jccb(Assembler::zero, COMPARE_BYTE);
8294   load_unsigned_short(tmp1, Address(ary1, 0));
8295   andl(tmp1, 0x00008080);
8296   jccb(Assembler::notZero, TRUE_LABEL);
8297   subptr(result, 2);
8298   lea(ary1, Address(ary1, 2));
8299 
8300   bind(COMPARE_BYTE);
8301   testl(result, 0x1);   // tail  byte
8302   jccb(Assembler::zero, FALSE_LABEL);
8303   load_unsigned_byte(tmp1, Address(ary1, 0));
8304   andl(tmp1, 0x00000080);
8305   jccb(Assembler::notEqual, TRUE_LABEL);
8306   jmpb(FALSE_LABEL);
8307 
8308   bind(TRUE_LABEL);
8309   movl(result, 1);   // return true
8310   jmpb(DONE);
8311 
8312   bind(FALSE_LABEL);
8313   xorl(result, result); // return false
8314 
8315   // That's it
8316   bind(DONE);
8317   if (UseAVX >= 2 && UseSSE >= 2) {
8318     // clean upper bits of YMM registers
8319     vpxor(vec1, vec1);
8320     vpxor(vec2, vec2);
8321   }
8322 }
8323 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8324 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8325                                    Register limit, Register result, Register chr,
8326                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8327   ShortBranchVerifier sbv(this);
8328   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8329 
8330   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8331   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8332 
8333   if (is_array_equ) {
8334     // Check the input args
8335     cmpptr(ary1, ary2);
8336     jcc(Assembler::equal, TRUE_LABEL);
8337 
8338     // Need additional checks for arrays_equals.
8339     testptr(ary1, ary1);
8340     jcc(Assembler::zero, FALSE_LABEL);
8341     testptr(ary2, ary2);
8342     jcc(Assembler::zero, FALSE_LABEL);
8343 
8344     // Check the lengths
8345     movl(limit, Address(ary1, length_offset));
8346     cmpl(limit, Address(ary2, length_offset));
8347     jcc(Assembler::notEqual, FALSE_LABEL);
8348   }
8349 
8350   // count == 0
8351   testl(limit, limit);
8352   jcc(Assembler::zero, TRUE_LABEL);
8353 
8354   if (is_array_equ) {
8355     // Load array address
8356     lea(ary1, Address(ary1, base_offset));
8357     lea(ary2, Address(ary2, base_offset));
8358   }
8359 
8360   if (is_array_equ && is_char) {
8361     // arrays_equals when used for char[].
8362     shll(limit, 1);      // byte count != 0
8363   }
8364   movl(result, limit); // copy
8365 
8366   if (UseAVX >= 2) {
8367     // With AVX2, use 32-byte vector compare
8368     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8369 
8370     // Compare 32-byte vectors
8371     andl(result, 0x0000001f);  //   tail count (in bytes)
8372     andl(limit, 0xffffffe0);   // vector count (in bytes)
8373     jcc(Assembler::zero, COMPARE_TAIL);
8374 
8375     lea(ary1, Address(ary1, limit, Address::times_1));
8376     lea(ary2, Address(ary2, limit, Address::times_1));
8377     negptr(limit);
8378 
8379     bind(COMPARE_WIDE_VECTORS);
8380 
8381 #ifdef _LP64
8382     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8383       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8384 
8385       cmpl(limit, -64);
8386       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8387 
8388       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8389 
8390       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8391       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8392       kortestql(k7, k7);
8393       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8394       addptr(limit, 64);  // update since we already compared at this addr
8395       cmpl(limit, -64);
8396       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8397 
8398       // At this point we may still need to compare -limit+result bytes.
8399       // We could execute the next two instruction and just continue via non-wide path:
8400       //  cmpl(limit, 0);
8401       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8402       // But since we stopped at the points ary{1,2}+limit which are
8403       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8404       // (|limit| <= 32 and result < 32),
8405       // we may just compare the last 64 bytes.
8406       //
8407       addptr(result, -64);   // it is safe, bc we just came from this area
8408       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8409       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8410       kortestql(k7, k7);
8411       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8412 
8413       jmp(TRUE_LABEL);
8414 
8415       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8416 
8417     }//if (VM_Version::supports_avx512vlbw())
8418 #endif //_LP64
8419 
8420     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8421     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8422     vpxor(vec1, vec2);
8423 
8424     vptest(vec1, vec1);
8425     jcc(Assembler::notZero, FALSE_LABEL);
8426     addptr(limit, 32);
8427     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8428 
8429     testl(result, result);
8430     jcc(Assembler::zero, TRUE_LABEL);
8431 
8432     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8433     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8434     vpxor(vec1, vec2);
8435 
8436     vptest(vec1, vec1);
8437     jccb(Assembler::notZero, FALSE_LABEL);
8438     jmpb(TRUE_LABEL);
8439 
8440     bind(COMPARE_TAIL); // limit is zero
8441     movl(limit, result);
8442     // Fallthru to tail compare
8443   } else if (UseSSE42Intrinsics) {
8444     // With SSE4.2, use double quad vector compare
8445     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8446 
8447     // Compare 16-byte vectors
8448     andl(result, 0x0000000f);  //   tail count (in bytes)
8449     andl(limit, 0xfffffff0);   // vector count (in bytes)
8450     jcc(Assembler::zero, COMPARE_TAIL);
8451 
8452     lea(ary1, Address(ary1, limit, Address::times_1));
8453     lea(ary2, Address(ary2, limit, Address::times_1));
8454     negptr(limit);
8455 
8456     bind(COMPARE_WIDE_VECTORS);
8457     movdqu(vec1, Address(ary1, limit, Address::times_1));
8458     movdqu(vec2, Address(ary2, limit, Address::times_1));
8459     pxor(vec1, vec2);
8460 
8461     ptest(vec1, vec1);
8462     jcc(Assembler::notZero, FALSE_LABEL);
8463     addptr(limit, 16);
8464     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8465 
8466     testl(result, result);
8467     jcc(Assembler::zero, TRUE_LABEL);
8468 
8469     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8470     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8471     pxor(vec1, vec2);
8472 
8473     ptest(vec1, vec1);
8474     jccb(Assembler::notZero, FALSE_LABEL);
8475     jmpb(TRUE_LABEL);
8476 
8477     bind(COMPARE_TAIL); // limit is zero
8478     movl(limit, result);
8479     // Fallthru to tail compare
8480   }
8481 
8482   // Compare 4-byte vectors
8483   andl(limit, 0xfffffffc); // vector count (in bytes)
8484   jccb(Assembler::zero, COMPARE_CHAR);
8485 
8486   lea(ary1, Address(ary1, limit, Address::times_1));
8487   lea(ary2, Address(ary2, limit, Address::times_1));
8488   negptr(limit);
8489 
8490   bind(COMPARE_VECTORS);
8491   movl(chr, Address(ary1, limit, Address::times_1));
8492   cmpl(chr, Address(ary2, limit, Address::times_1));
8493   jccb(Assembler::notEqual, FALSE_LABEL);
8494   addptr(limit, 4);
8495   jcc(Assembler::notZero, COMPARE_VECTORS);
8496 
8497   // Compare trailing char (final 2 bytes), if any
8498   bind(COMPARE_CHAR);
8499   testl(result, 0x2);   // tail  char
8500   jccb(Assembler::zero, COMPARE_BYTE);
8501   load_unsigned_short(chr, Address(ary1, 0));
8502   load_unsigned_short(limit, Address(ary2, 0));
8503   cmpl(chr, limit);
8504   jccb(Assembler::notEqual, FALSE_LABEL);
8505 
8506   if (is_array_equ && is_char) {
8507     bind(COMPARE_BYTE);
8508   } else {
8509     lea(ary1, Address(ary1, 2));
8510     lea(ary2, Address(ary2, 2));
8511 
8512     bind(COMPARE_BYTE);
8513     testl(result, 0x1);   // tail  byte
8514     jccb(Assembler::zero, TRUE_LABEL);
8515     load_unsigned_byte(chr, Address(ary1, 0));
8516     load_unsigned_byte(limit, Address(ary2, 0));
8517     cmpl(chr, limit);
8518     jccb(Assembler::notEqual, FALSE_LABEL);
8519   }
8520   bind(TRUE_LABEL);
8521   movl(result, 1);   // return true
8522   jmpb(DONE);
8523 
8524   bind(FALSE_LABEL);
8525   xorl(result, result); // return false
8526 
8527   // That's it
8528   bind(DONE);
8529   if (UseAVX >= 2) {
8530     // clean upper bits of YMM registers
8531     vpxor(vec1, vec1);
8532     vpxor(vec2, vec2);
8533   }
8534 }
8535 
8536 #endif
8537 
8538 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8539                                    Register to, Register value, Register count,
8540                                    Register rtmp, XMMRegister xtmp) {
8541   ShortBranchVerifier sbv(this);
8542   assert_different_registers(to, value, count, rtmp);
8543   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8544   Label L_fill_2_bytes, L_fill_4_bytes;
8545 
8546   int shift = -1;
8547   switch (t) {
8548     case T_BYTE:
8549       shift = 2;
8550       break;
8551     case T_SHORT:
8552       shift = 1;
8553       break;
8554     case T_INT:
8555       shift = 0;
8556       break;
8557     default: ShouldNotReachHere();
8558   }
8559 
8560   if (t == T_BYTE) {
8561     andl(value, 0xff);
8562     movl(rtmp, value);
8563     shll(rtmp, 8);
8564     orl(value, rtmp);
8565   }
8566   if (t == T_SHORT) {
8567     andl(value, 0xffff);
8568   }
8569   if (t == T_BYTE || t == T_SHORT) {
8570     movl(rtmp, value);
8571     shll(rtmp, 16);
8572     orl(value, rtmp);
8573   }
8574 
8575   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8576   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8577   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8578     // align source address at 4 bytes address boundary
8579     if (t == T_BYTE) {
8580       // One byte misalignment happens only for byte arrays
8581       testptr(to, 1);
8582       jccb(Assembler::zero, L_skip_align1);
8583       movb(Address(to, 0), value);
8584       increment(to);
8585       decrement(count);
8586       BIND(L_skip_align1);
8587     }
8588     // Two bytes misalignment happens only for byte and short (char) arrays
8589     testptr(to, 2);
8590     jccb(Assembler::zero, L_skip_align2);
8591     movw(Address(to, 0), value);
8592     addptr(to, 2);
8593     subl(count, 1<<(shift-1));
8594     BIND(L_skip_align2);
8595   }
8596   if (UseSSE < 2) {
8597     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8598     // Fill 32-byte chunks
8599     subl(count, 8 << shift);
8600     jcc(Assembler::less, L_check_fill_8_bytes);
8601     align(16);
8602 
8603     BIND(L_fill_32_bytes_loop);
8604 
8605     for (int i = 0; i < 32; i += 4) {
8606       movl(Address(to, i), value);
8607     }
8608 
8609     addptr(to, 32);
8610     subl(count, 8 << shift);
8611     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8612     BIND(L_check_fill_8_bytes);
8613     addl(count, 8 << shift);
8614     jccb(Assembler::zero, L_exit);
8615     jmpb(L_fill_8_bytes);
8616 
8617     //
8618     // length is too short, just fill qwords
8619     //
8620     BIND(L_fill_8_bytes_loop);
8621     movl(Address(to, 0), value);
8622     movl(Address(to, 4), value);
8623     addptr(to, 8);
8624     BIND(L_fill_8_bytes);
8625     subl(count, 1 << (shift + 1));
8626     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8627     // fall through to fill 4 bytes
8628   } else {
8629     Label L_fill_32_bytes;
8630     if (!UseUnalignedLoadStores) {
8631       // align to 8 bytes, we know we are 4 byte aligned to start
8632       testptr(to, 4);
8633       jccb(Assembler::zero, L_fill_32_bytes);
8634       movl(Address(to, 0), value);
8635       addptr(to, 4);
8636       subl(count, 1<<shift);
8637     }
8638     BIND(L_fill_32_bytes);
8639     {
8640       assert( UseSSE >= 2, "supported cpu only" );
8641       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8642       if (UseAVX > 2) {
8643         movl(rtmp, 0xffff);
8644         kmovwl(k1, rtmp);
8645       }
8646       movdl(xtmp, value);
8647       if (UseAVX > 2 && UseUnalignedLoadStores) {
8648         // Fill 64-byte chunks
8649         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8650         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8651 
8652         subl(count, 16 << shift);
8653         jcc(Assembler::less, L_check_fill_32_bytes);
8654         align(16);
8655 
8656         BIND(L_fill_64_bytes_loop);
8657         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8658         addptr(to, 64);
8659         subl(count, 16 << shift);
8660         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8661 
8662         BIND(L_check_fill_32_bytes);
8663         addl(count, 8 << shift);
8664         jccb(Assembler::less, L_check_fill_8_bytes);
8665         vmovdqu(Address(to, 0), xtmp);
8666         addptr(to, 32);
8667         subl(count, 8 << shift);
8668 
8669         BIND(L_check_fill_8_bytes);
8670       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8671         // Fill 64-byte chunks
8672         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8673         vpbroadcastd(xtmp, xtmp);
8674 
8675         subl(count, 16 << shift);
8676         jcc(Assembler::less, L_check_fill_32_bytes);
8677         align(16);
8678 
8679         BIND(L_fill_64_bytes_loop);
8680         vmovdqu(Address(to, 0), xtmp);
8681         vmovdqu(Address(to, 32), xtmp);
8682         addptr(to, 64);
8683         subl(count, 16 << shift);
8684         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8685 
8686         BIND(L_check_fill_32_bytes);
8687         addl(count, 8 << shift);
8688         jccb(Assembler::less, L_check_fill_8_bytes);
8689         vmovdqu(Address(to, 0), xtmp);
8690         addptr(to, 32);
8691         subl(count, 8 << shift);
8692 
8693         BIND(L_check_fill_8_bytes);
8694         // clean upper bits of YMM registers
8695         movdl(xtmp, value);
8696         pshufd(xtmp, xtmp, 0);
8697       } else {
8698         // Fill 32-byte chunks
8699         pshufd(xtmp, xtmp, 0);
8700 
8701         subl(count, 8 << shift);
8702         jcc(Assembler::less, L_check_fill_8_bytes);
8703         align(16);
8704 
8705         BIND(L_fill_32_bytes_loop);
8706 
8707         if (UseUnalignedLoadStores) {
8708           movdqu(Address(to, 0), xtmp);
8709           movdqu(Address(to, 16), xtmp);
8710         } else {
8711           movq(Address(to, 0), xtmp);
8712           movq(Address(to, 8), xtmp);
8713           movq(Address(to, 16), xtmp);
8714           movq(Address(to, 24), xtmp);
8715         }
8716 
8717         addptr(to, 32);
8718         subl(count, 8 << shift);
8719         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8720 
8721         BIND(L_check_fill_8_bytes);
8722       }
8723       addl(count, 8 << shift);
8724       jccb(Assembler::zero, L_exit);
8725       jmpb(L_fill_8_bytes);
8726 
8727       //
8728       // length is too short, just fill qwords
8729       //
8730       BIND(L_fill_8_bytes_loop);
8731       movq(Address(to, 0), xtmp);
8732       addptr(to, 8);
8733       BIND(L_fill_8_bytes);
8734       subl(count, 1 << (shift + 1));
8735       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8736     }
8737   }
8738   // fill trailing 4 bytes
8739   BIND(L_fill_4_bytes);
8740   testl(count, 1<<shift);
8741   jccb(Assembler::zero, L_fill_2_bytes);
8742   movl(Address(to, 0), value);
8743   if (t == T_BYTE || t == T_SHORT) {
8744     addptr(to, 4);
8745     BIND(L_fill_2_bytes);
8746     // fill trailing 2 bytes
8747     testl(count, 1<<(shift-1));
8748     jccb(Assembler::zero, L_fill_byte);
8749     movw(Address(to, 0), value);
8750     if (t == T_BYTE) {
8751       addptr(to, 2);
8752       BIND(L_fill_byte);
8753       // fill trailing byte
8754       testl(count, 1);
8755       jccb(Assembler::zero, L_exit);
8756       movb(Address(to, 0), value);
8757     } else {
8758       BIND(L_fill_byte);
8759     }
8760   } else {
8761     BIND(L_fill_2_bytes);
8762   }
8763   BIND(L_exit);
8764 }
8765 
8766 // encode char[] to byte[] in ISO_8859_1
8767    //@HotSpotIntrinsicCandidate
8768    //private static int implEncodeISOArray(byte[] sa, int sp,
8769    //byte[] da, int dp, int len) {
8770    //  int i = 0;
8771    //  for (; i < len; i++) {
8772    //    char c = StringUTF16.getChar(sa, sp++);
8773    //    if (c > '\u00FF')
8774    //      break;
8775    //    da[dp++] = (byte)c;
8776    //  }
8777    //  return i;
8778    //}
8779 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8780   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8781   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8782   Register tmp5, Register result) {
8783 
8784   // rsi: src
8785   // rdi: dst
8786   // rdx: len
8787   // rcx: tmp5
8788   // rax: result
8789   ShortBranchVerifier sbv(this);
8790   assert_different_registers(src, dst, len, tmp5, result);
8791   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8792 
8793   // set result
8794   xorl(result, result);
8795   // check for zero length
8796   testl(len, len);
8797   jcc(Assembler::zero, L_done);
8798 
8799   movl(result, len);
8800 
8801   // Setup pointers
8802   lea(src, Address(src, len, Address::times_2)); // char[]
8803   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8804   negptr(len);
8805 
8806   if (UseSSE42Intrinsics || UseAVX >= 2) {
8807     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8808     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8809 
8810     if (UseAVX >= 2) {
8811       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8812       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8813       movdl(tmp1Reg, tmp5);
8814       vpbroadcastd(tmp1Reg, tmp1Reg);
8815       jmp(L_chars_32_check);
8816 
8817       bind(L_copy_32_chars);
8818       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8819       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8820       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8821       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8822       jccb(Assembler::notZero, L_copy_32_chars_exit);
8823       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8824       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8825       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8826 
8827       bind(L_chars_32_check);
8828       addptr(len, 32);
8829       jcc(Assembler::lessEqual, L_copy_32_chars);
8830 
8831       bind(L_copy_32_chars_exit);
8832       subptr(len, 16);
8833       jccb(Assembler::greater, L_copy_16_chars_exit);
8834 
8835     } else if (UseSSE42Intrinsics) {
8836       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8837       movdl(tmp1Reg, tmp5);
8838       pshufd(tmp1Reg, tmp1Reg, 0);
8839       jmpb(L_chars_16_check);
8840     }
8841 
8842     bind(L_copy_16_chars);
8843     if (UseAVX >= 2) {
8844       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8845       vptest(tmp2Reg, tmp1Reg);
8846       jcc(Assembler::notZero, L_copy_16_chars_exit);
8847       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8848       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8849     } else {
8850       if (UseAVX > 0) {
8851         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8852         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8853         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8854       } else {
8855         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8856         por(tmp2Reg, tmp3Reg);
8857         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8858         por(tmp2Reg, tmp4Reg);
8859       }
8860       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8861       jccb(Assembler::notZero, L_copy_16_chars_exit);
8862       packuswb(tmp3Reg, tmp4Reg);
8863     }
8864     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8865 
8866     bind(L_chars_16_check);
8867     addptr(len, 16);
8868     jcc(Assembler::lessEqual, L_copy_16_chars);
8869 
8870     bind(L_copy_16_chars_exit);
8871     if (UseAVX >= 2) {
8872       // clean upper bits of YMM registers
8873       vpxor(tmp2Reg, tmp2Reg);
8874       vpxor(tmp3Reg, tmp3Reg);
8875       vpxor(tmp4Reg, tmp4Reg);
8876       movdl(tmp1Reg, tmp5);
8877       pshufd(tmp1Reg, tmp1Reg, 0);
8878     }
8879     subptr(len, 8);
8880     jccb(Assembler::greater, L_copy_8_chars_exit);
8881 
8882     bind(L_copy_8_chars);
8883     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8884     ptest(tmp3Reg, tmp1Reg);
8885     jccb(Assembler::notZero, L_copy_8_chars_exit);
8886     packuswb(tmp3Reg, tmp1Reg);
8887     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8888     addptr(len, 8);
8889     jccb(Assembler::lessEqual, L_copy_8_chars);
8890 
8891     bind(L_copy_8_chars_exit);
8892     subptr(len, 8);
8893     jccb(Assembler::zero, L_done);
8894   }
8895 
8896   bind(L_copy_1_char);
8897   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8898   testl(tmp5, 0xff00);      // check if Unicode char
8899   jccb(Assembler::notZero, L_copy_1_char_exit);
8900   movb(Address(dst, len, Address::times_1, 0), tmp5);
8901   addptr(len, 1);
8902   jccb(Assembler::less, L_copy_1_char);
8903 
8904   bind(L_copy_1_char_exit);
8905   addptr(result, len); // len is negative count of not processed elements
8906 
8907   bind(L_done);
8908 }
8909 
8910 #ifdef _LP64
8911 /**
8912  * Helper for multiply_to_len().
8913  */
8914 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8915   addq(dest_lo, src1);
8916   adcq(dest_hi, 0);
8917   addq(dest_lo, src2);
8918   adcq(dest_hi, 0);
8919 }
8920 
8921 /**
8922  * Multiply 64 bit by 64 bit first loop.
8923  */
8924 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8925                                            Register y, Register y_idx, Register z,
8926                                            Register carry, Register product,
8927                                            Register idx, Register kdx) {
8928   //
8929   //  jlong carry, x[], y[], z[];
8930   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8931   //    huge_128 product = y[idx] * x[xstart] + carry;
8932   //    z[kdx] = (jlong)product;
8933   //    carry  = (jlong)(product >>> 64);
8934   //  }
8935   //  z[xstart] = carry;
8936   //
8937 
8938   Label L_first_loop, L_first_loop_exit;
8939   Label L_one_x, L_one_y, L_multiply;
8940 
8941   decrementl(xstart);
8942   jcc(Assembler::negative, L_one_x);
8943 
8944   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8945   rorq(x_xstart, 32); // convert big-endian to little-endian
8946 
8947   bind(L_first_loop);
8948   decrementl(idx);
8949   jcc(Assembler::negative, L_first_loop_exit);
8950   decrementl(idx);
8951   jcc(Assembler::negative, L_one_y);
8952   movq(y_idx, Address(y, idx, Address::times_4,  0));
8953   rorq(y_idx, 32); // convert big-endian to little-endian
8954   bind(L_multiply);
8955   movq(product, x_xstart);
8956   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8957   addq(product, carry);
8958   adcq(rdx, 0);
8959   subl(kdx, 2);
8960   movl(Address(z, kdx, Address::times_4,  4), product);
8961   shrq(product, 32);
8962   movl(Address(z, kdx, Address::times_4,  0), product);
8963   movq(carry, rdx);
8964   jmp(L_first_loop);
8965 
8966   bind(L_one_y);
8967   movl(y_idx, Address(y,  0));
8968   jmp(L_multiply);
8969 
8970   bind(L_one_x);
8971   movl(x_xstart, Address(x,  0));
8972   jmp(L_first_loop);
8973 
8974   bind(L_first_loop_exit);
8975 }
8976 
8977 /**
8978  * Multiply 64 bit by 64 bit and add 128 bit.
8979  */
8980 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8981                                             Register yz_idx, Register idx,
8982                                             Register carry, Register product, int offset) {
8983   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8984   //     z[kdx] = (jlong)product;
8985 
8986   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8987   rorq(yz_idx, 32); // convert big-endian to little-endian
8988   movq(product, x_xstart);
8989   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8990   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
8991   rorq(yz_idx, 32); // convert big-endian to little-endian
8992 
8993   add2_with_carry(rdx, product, carry, yz_idx);
8994 
8995   movl(Address(z, idx, Address::times_4,  offset+4), product);
8996   shrq(product, 32);
8997   movl(Address(z, idx, Address::times_4,  offset), product);
8998 
8999 }
9000 
9001 /**
9002  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9003  */
9004 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9005                                              Register yz_idx, Register idx, Register jdx,
9006                                              Register carry, Register product,
9007                                              Register carry2) {
9008   //   jlong carry, x[], y[], z[];
9009   //   int kdx = ystart+1;
9010   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9011   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9012   //     z[kdx+idx+1] = (jlong)product;
9013   //     jlong carry2  = (jlong)(product >>> 64);
9014   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9015   //     z[kdx+idx] = (jlong)product;
9016   //     carry  = (jlong)(product >>> 64);
9017   //   }
9018   //   idx += 2;
9019   //   if (idx > 0) {
9020   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9021   //     z[kdx+idx] = (jlong)product;
9022   //     carry  = (jlong)(product >>> 64);
9023   //   }
9024   //
9025 
9026   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9027 
9028   movl(jdx, idx);
9029   andl(jdx, 0xFFFFFFFC);
9030   shrl(jdx, 2);
9031 
9032   bind(L_third_loop);
9033   subl(jdx, 1);
9034   jcc(Assembler::negative, L_third_loop_exit);
9035   subl(idx, 4);
9036 
9037   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9038   movq(carry2, rdx);
9039 
9040   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9041   movq(carry, rdx);
9042   jmp(L_third_loop);
9043 
9044   bind (L_third_loop_exit);
9045 
9046   andl (idx, 0x3);
9047   jcc(Assembler::zero, L_post_third_loop_done);
9048 
9049   Label L_check_1;
9050   subl(idx, 2);
9051   jcc(Assembler::negative, L_check_1);
9052 
9053   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9054   movq(carry, rdx);
9055 
9056   bind (L_check_1);
9057   addl (idx, 0x2);
9058   andl (idx, 0x1);
9059   subl(idx, 1);
9060   jcc(Assembler::negative, L_post_third_loop_done);
9061 
9062   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9063   movq(product, x_xstart);
9064   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9065   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9066 
9067   add2_with_carry(rdx, product, yz_idx, carry);
9068 
9069   movl(Address(z, idx, Address::times_4,  0), product);
9070   shrq(product, 32);
9071 
9072   shlq(rdx, 32);
9073   orq(product, rdx);
9074   movq(carry, product);
9075 
9076   bind(L_post_third_loop_done);
9077 }
9078 
9079 /**
9080  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9081  *
9082  */
9083 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9084                                                   Register carry, Register carry2,
9085                                                   Register idx, Register jdx,
9086                                                   Register yz_idx1, Register yz_idx2,
9087                                                   Register tmp, Register tmp3, Register tmp4) {
9088   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9089 
9090   //   jlong carry, x[], y[], z[];
9091   //   int kdx = ystart+1;
9092   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9093   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9094   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9095   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9096   //     carry  = (jlong)(tmp4 >>> 64);
9097   //     z[kdx+idx+1] = (jlong)tmp3;
9098   //     z[kdx+idx] = (jlong)tmp4;
9099   //   }
9100   //   idx += 2;
9101   //   if (idx > 0) {
9102   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9103   //     z[kdx+idx] = (jlong)yz_idx1;
9104   //     carry  = (jlong)(yz_idx1 >>> 64);
9105   //   }
9106   //
9107 
9108   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9109 
9110   movl(jdx, idx);
9111   andl(jdx, 0xFFFFFFFC);
9112   shrl(jdx, 2);
9113 
9114   bind(L_third_loop);
9115   subl(jdx, 1);
9116   jcc(Assembler::negative, L_third_loop_exit);
9117   subl(idx, 4);
9118 
9119   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9120   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9121   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9122   rorxq(yz_idx2, yz_idx2, 32);
9123 
9124   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9125   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9126 
9127   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9128   rorxq(yz_idx1, yz_idx1, 32);
9129   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9130   rorxq(yz_idx2, yz_idx2, 32);
9131 
9132   if (VM_Version::supports_adx()) {
9133     adcxq(tmp3, carry);
9134     adoxq(tmp3, yz_idx1);
9135 
9136     adcxq(tmp4, tmp);
9137     adoxq(tmp4, yz_idx2);
9138 
9139     movl(carry, 0); // does not affect flags
9140     adcxq(carry2, carry);
9141     adoxq(carry2, carry);
9142   } else {
9143     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9144     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9145   }
9146   movq(carry, carry2);
9147 
9148   movl(Address(z, idx, Address::times_4, 12), tmp3);
9149   shrq(tmp3, 32);
9150   movl(Address(z, idx, Address::times_4,  8), tmp3);
9151 
9152   movl(Address(z, idx, Address::times_4,  4), tmp4);
9153   shrq(tmp4, 32);
9154   movl(Address(z, idx, Address::times_4,  0), tmp4);
9155 
9156   jmp(L_third_loop);
9157 
9158   bind (L_third_loop_exit);
9159 
9160   andl (idx, 0x3);
9161   jcc(Assembler::zero, L_post_third_loop_done);
9162 
9163   Label L_check_1;
9164   subl(idx, 2);
9165   jcc(Assembler::negative, L_check_1);
9166 
9167   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9168   rorxq(yz_idx1, yz_idx1, 32);
9169   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9170   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9171   rorxq(yz_idx2, yz_idx2, 32);
9172 
9173   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9174 
9175   movl(Address(z, idx, Address::times_4,  4), tmp3);
9176   shrq(tmp3, 32);
9177   movl(Address(z, idx, Address::times_4,  0), tmp3);
9178   movq(carry, tmp4);
9179 
9180   bind (L_check_1);
9181   addl (idx, 0x2);
9182   andl (idx, 0x1);
9183   subl(idx, 1);
9184   jcc(Assembler::negative, L_post_third_loop_done);
9185   movl(tmp4, Address(y, idx, Address::times_4,  0));
9186   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9187   movl(tmp4, Address(z, idx, Address::times_4,  0));
9188 
9189   add2_with_carry(carry2, tmp3, tmp4, carry);
9190 
9191   movl(Address(z, idx, Address::times_4,  0), tmp3);
9192   shrq(tmp3, 32);
9193 
9194   shlq(carry2, 32);
9195   orq(tmp3, carry2);
9196   movq(carry, tmp3);
9197 
9198   bind(L_post_third_loop_done);
9199 }
9200 
9201 /**
9202  * Code for BigInteger::multiplyToLen() instrinsic.
9203  *
9204  * rdi: x
9205  * rax: xlen
9206  * rsi: y
9207  * rcx: ylen
9208  * r8:  z
9209  * r11: zlen
9210  * r12: tmp1
9211  * r13: tmp2
9212  * r14: tmp3
9213  * r15: tmp4
9214  * rbx: tmp5
9215  *
9216  */
9217 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9218                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9219   ShortBranchVerifier sbv(this);
9220   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9221 
9222   push(tmp1);
9223   push(tmp2);
9224   push(tmp3);
9225   push(tmp4);
9226   push(tmp5);
9227 
9228   push(xlen);
9229   push(zlen);
9230 
9231   const Register idx = tmp1;
9232   const Register kdx = tmp2;
9233   const Register xstart = tmp3;
9234 
9235   const Register y_idx = tmp4;
9236   const Register carry = tmp5;
9237   const Register product  = xlen;
9238   const Register x_xstart = zlen;  // reuse register
9239 
9240   // First Loop.
9241   //
9242   //  final static long LONG_MASK = 0xffffffffL;
9243   //  int xstart = xlen - 1;
9244   //  int ystart = ylen - 1;
9245   //  long carry = 0;
9246   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9247   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9248   //    z[kdx] = (int)product;
9249   //    carry = product >>> 32;
9250   //  }
9251   //  z[xstart] = (int)carry;
9252   //
9253 
9254   movl(idx, ylen);      // idx = ylen;
9255   movl(kdx, zlen);      // kdx = xlen+ylen;
9256   xorq(carry, carry);   // carry = 0;
9257 
9258   Label L_done;
9259 
9260   movl(xstart, xlen);
9261   decrementl(xstart);
9262   jcc(Assembler::negative, L_done);
9263 
9264   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9265 
9266   Label L_second_loop;
9267   testl(kdx, kdx);
9268   jcc(Assembler::zero, L_second_loop);
9269 
9270   Label L_carry;
9271   subl(kdx, 1);
9272   jcc(Assembler::zero, L_carry);
9273 
9274   movl(Address(z, kdx, Address::times_4,  0), carry);
9275   shrq(carry, 32);
9276   subl(kdx, 1);
9277 
9278   bind(L_carry);
9279   movl(Address(z, kdx, Address::times_4,  0), carry);
9280 
9281   // Second and third (nested) loops.
9282   //
9283   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9284   //   carry = 0;
9285   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9286   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9287   //                    (z[k] & LONG_MASK) + carry;
9288   //     z[k] = (int)product;
9289   //     carry = product >>> 32;
9290   //   }
9291   //   z[i] = (int)carry;
9292   // }
9293   //
9294   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9295 
9296   const Register jdx = tmp1;
9297 
9298   bind(L_second_loop);
9299   xorl(carry, carry);    // carry = 0;
9300   movl(jdx, ylen);       // j = ystart+1
9301 
9302   subl(xstart, 1);       // i = xstart-1;
9303   jcc(Assembler::negative, L_done);
9304 
9305   push (z);
9306 
9307   Label L_last_x;
9308   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9309   subl(xstart, 1);       // i = xstart-1;
9310   jcc(Assembler::negative, L_last_x);
9311 
9312   if (UseBMI2Instructions) {
9313     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9314     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9315   } else {
9316     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9317     rorq(x_xstart, 32);  // convert big-endian to little-endian
9318   }
9319 
9320   Label L_third_loop_prologue;
9321   bind(L_third_loop_prologue);
9322 
9323   push (x);
9324   push (xstart);
9325   push (ylen);
9326 
9327 
9328   if (UseBMI2Instructions) {
9329     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9330   } else { // !UseBMI2Instructions
9331     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9332   }
9333 
9334   pop(ylen);
9335   pop(xlen);
9336   pop(x);
9337   pop(z);
9338 
9339   movl(tmp3, xlen);
9340   addl(tmp3, 1);
9341   movl(Address(z, tmp3, Address::times_4,  0), carry);
9342   subl(tmp3, 1);
9343   jccb(Assembler::negative, L_done);
9344 
9345   shrq(carry, 32);
9346   movl(Address(z, tmp3, Address::times_4,  0), carry);
9347   jmp(L_second_loop);
9348 
9349   // Next infrequent code is moved outside loops.
9350   bind(L_last_x);
9351   if (UseBMI2Instructions) {
9352     movl(rdx, Address(x,  0));
9353   } else {
9354     movl(x_xstart, Address(x,  0));
9355   }
9356   jmp(L_third_loop_prologue);
9357 
9358   bind(L_done);
9359 
9360   pop(zlen);
9361   pop(xlen);
9362 
9363   pop(tmp5);
9364   pop(tmp4);
9365   pop(tmp3);
9366   pop(tmp2);
9367   pop(tmp1);
9368 }
9369 
9370 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9371   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9372   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9373   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9374   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9375   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9376   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9377   Label SAME_TILL_END, DONE;
9378   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9379 
9380   //scale is in rcx in both Win64 and Unix
9381   ShortBranchVerifier sbv(this);
9382 
9383   shlq(length);
9384   xorq(result, result);
9385 
9386   if ((UseAVX > 2) &&
9387       VM_Version::supports_avx512vlbw()) {
9388     set_vector_masking();  // opening of the stub context for programming mask registers
9389     cmpq(length, 64);
9390     jcc(Assembler::less, VECTOR32_TAIL);
9391     movq(tmp1, length);
9392     andq(tmp1, 0x3F);      // tail count
9393     andq(length, ~(0x3F)); //vector count
9394 
9395     bind(VECTOR64_LOOP);
9396     // AVX512 code to compare 64 byte vectors.
9397     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9398     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9399     kortestql(k7, k7);
9400     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9401     addq(result, 64);
9402     subq(length, 64);
9403     jccb(Assembler::notZero, VECTOR64_LOOP);
9404 
9405     //bind(VECTOR64_TAIL);
9406     testq(tmp1, tmp1);
9407     jcc(Assembler::zero, SAME_TILL_END);
9408 
9409     bind(VECTOR64_TAIL);
9410     // AVX512 code to compare upto 63 byte vectors.
9411     // Save k1
9412     kmovql(k3, k1);
9413     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9414     shlxq(tmp2, tmp2, tmp1);
9415     notq(tmp2);
9416     kmovql(k1, tmp2);
9417 
9418     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9419     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9420 
9421     ktestql(k7, k1);
9422     // Restore k1
9423     kmovql(k1, k3);
9424     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9425 
9426     bind(VECTOR64_NOT_EQUAL);
9427     kmovql(tmp1, k7);
9428     notq(tmp1);
9429     tzcntq(tmp1, tmp1);
9430     addq(result, tmp1);
9431     shrq(result);
9432     jmp(DONE);
9433     bind(VECTOR32_TAIL);
9434     clear_vector_masking();   // closing of the stub context for programming mask registers
9435   }
9436 
9437   cmpq(length, 8);
9438   jcc(Assembler::equal, VECTOR8_LOOP);
9439   jcc(Assembler::less, VECTOR4_TAIL);
9440 
9441   if (UseAVX >= 2) {
9442 
9443     cmpq(length, 16);
9444     jcc(Assembler::equal, VECTOR16_LOOP);
9445     jcc(Assembler::less, VECTOR8_LOOP);
9446 
9447     cmpq(length, 32);
9448     jccb(Assembler::less, VECTOR16_TAIL);
9449 
9450     subq(length, 32);
9451     bind(VECTOR32_LOOP);
9452     vmovdqu(rymm0, Address(obja, result));
9453     vmovdqu(rymm1, Address(objb, result));
9454     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9455     vptest(rymm2, rymm2);
9456     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9457     addq(result, 32);
9458     subq(length, 32);
9459     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9460     addq(length, 32);
9461     jcc(Assembler::equal, SAME_TILL_END);
9462     //falling through if less than 32 bytes left //close the branch here.
9463 
9464     bind(VECTOR16_TAIL);
9465     cmpq(length, 16);
9466     jccb(Assembler::less, VECTOR8_TAIL);
9467     bind(VECTOR16_LOOP);
9468     movdqu(rymm0, Address(obja, result));
9469     movdqu(rymm1, Address(objb, result));
9470     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9471     ptest(rymm2, rymm2);
9472     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9473     addq(result, 16);
9474     subq(length, 16);
9475     jcc(Assembler::equal, SAME_TILL_END);
9476     //falling through if less than 16 bytes left
9477   } else {//regular intrinsics
9478 
9479     cmpq(length, 16);
9480     jccb(Assembler::less, VECTOR8_TAIL);
9481 
9482     subq(length, 16);
9483     bind(VECTOR16_LOOP);
9484     movdqu(rymm0, Address(obja, result));
9485     movdqu(rymm1, Address(objb, result));
9486     pxor(rymm0, rymm1);
9487     ptest(rymm0, rymm0);
9488     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9489     addq(result, 16);
9490     subq(length, 16);
9491     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9492     addq(length, 16);
9493     jcc(Assembler::equal, SAME_TILL_END);
9494     //falling through if less than 16 bytes left
9495   }
9496 
9497   bind(VECTOR8_TAIL);
9498   cmpq(length, 8);
9499   jccb(Assembler::less, VECTOR4_TAIL);
9500   bind(VECTOR8_LOOP);
9501   movq(tmp1, Address(obja, result));
9502   movq(tmp2, Address(objb, result));
9503   xorq(tmp1, tmp2);
9504   testq(tmp1, tmp1);
9505   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9506   addq(result, 8);
9507   subq(length, 8);
9508   jcc(Assembler::equal, SAME_TILL_END);
9509   //falling through if less than 8 bytes left
9510 
9511   bind(VECTOR4_TAIL);
9512   cmpq(length, 4);
9513   jccb(Assembler::less, BYTES_TAIL);
9514   bind(VECTOR4_LOOP);
9515   movl(tmp1, Address(obja, result));
9516   xorl(tmp1, Address(objb, result));
9517   testl(tmp1, tmp1);
9518   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9519   addq(result, 4);
9520   subq(length, 4);
9521   jcc(Assembler::equal, SAME_TILL_END);
9522   //falling through if less than 4 bytes left
9523 
9524   bind(BYTES_TAIL);
9525   bind(BYTES_LOOP);
9526   load_unsigned_byte(tmp1, Address(obja, result));
9527   load_unsigned_byte(tmp2, Address(objb, result));
9528   xorl(tmp1, tmp2);
9529   testl(tmp1, tmp1);
9530   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9531   decq(length);
9532   jccb(Assembler::zero, SAME_TILL_END);
9533   incq(result);
9534   load_unsigned_byte(tmp1, Address(obja, result));
9535   load_unsigned_byte(tmp2, Address(objb, result));
9536   xorl(tmp1, tmp2);
9537   testl(tmp1, tmp1);
9538   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9539   decq(length);
9540   jccb(Assembler::zero, SAME_TILL_END);
9541   incq(result);
9542   load_unsigned_byte(tmp1, Address(obja, result));
9543   load_unsigned_byte(tmp2, Address(objb, result));
9544   xorl(tmp1, tmp2);
9545   testl(tmp1, tmp1);
9546   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9547   jmpb(SAME_TILL_END);
9548 
9549   if (UseAVX >= 2) {
9550     bind(VECTOR32_NOT_EQUAL);
9551     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9552     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9553     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9554     vpmovmskb(tmp1, rymm0);
9555     bsfq(tmp1, tmp1);
9556     addq(result, tmp1);
9557     shrq(result);
9558     jmpb(DONE);
9559   }
9560 
9561   bind(VECTOR16_NOT_EQUAL);
9562   if (UseAVX >= 2) {
9563     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9564     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9565     pxor(rymm0, rymm2);
9566   } else {
9567     pcmpeqb(rymm2, rymm2);
9568     pxor(rymm0, rymm1);
9569     pcmpeqb(rymm0, rymm1);
9570     pxor(rymm0, rymm2);
9571   }
9572   pmovmskb(tmp1, rymm0);
9573   bsfq(tmp1, tmp1);
9574   addq(result, tmp1);
9575   shrq(result);
9576   jmpb(DONE);
9577 
9578   bind(VECTOR8_NOT_EQUAL);
9579   bind(VECTOR4_NOT_EQUAL);
9580   bsfq(tmp1, tmp1);
9581   shrq(tmp1, 3);
9582   addq(result, tmp1);
9583   bind(BYTES_NOT_EQUAL);
9584   shrq(result);
9585   jmpb(DONE);
9586 
9587   bind(SAME_TILL_END);
9588   mov64(result, -1);
9589 
9590   bind(DONE);
9591 }
9592 
9593 //Helper functions for square_to_len()
9594 
9595 /**
9596  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9597  * Preserves x and z and modifies rest of the registers.
9598  */
9599 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9600   // Perform square and right shift by 1
9601   // Handle odd xlen case first, then for even xlen do the following
9602   // jlong carry = 0;
9603   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9604   //     huge_128 product = x[j:j+1] * x[j:j+1];
9605   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9606   //     z[i+2:i+3] = (jlong)(product >>> 1);
9607   //     carry = (jlong)product;
9608   // }
9609 
9610   xorq(tmp5, tmp5);     // carry
9611   xorq(rdxReg, rdxReg);
9612   xorl(tmp1, tmp1);     // index for x
9613   xorl(tmp4, tmp4);     // index for z
9614 
9615   Label L_first_loop, L_first_loop_exit;
9616 
9617   testl(xlen, 1);
9618   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9619 
9620   // Square and right shift by 1 the odd element using 32 bit multiply
9621   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9622   imulq(raxReg, raxReg);
9623   shrq(raxReg, 1);
9624   adcq(tmp5, 0);
9625   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9626   incrementl(tmp1);
9627   addl(tmp4, 2);
9628 
9629   // Square and  right shift by 1 the rest using 64 bit multiply
9630   bind(L_first_loop);
9631   cmpptr(tmp1, xlen);
9632   jccb(Assembler::equal, L_first_loop_exit);
9633 
9634   // Square
9635   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9636   rorq(raxReg, 32);    // convert big-endian to little-endian
9637   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9638 
9639   // Right shift by 1 and save carry
9640   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9641   rcrq(rdxReg, 1);
9642   rcrq(raxReg, 1);
9643   adcq(tmp5, 0);
9644 
9645   // Store result in z
9646   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9647   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9648 
9649   // Update indices for x and z
9650   addl(tmp1, 2);
9651   addl(tmp4, 4);
9652   jmp(L_first_loop);
9653 
9654   bind(L_first_loop_exit);
9655 }
9656 
9657 
9658 /**
9659  * Perform the following multiply add operation using BMI2 instructions
9660  * carry:sum = sum + op1*op2 + carry
9661  * op2 should be in rdx
9662  * op2 is preserved, all other registers are modified
9663  */
9664 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9665   // assert op2 is rdx
9666   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9667   addq(sum, carry);
9668   adcq(tmp2, 0);
9669   addq(sum, op1);
9670   adcq(tmp2, 0);
9671   movq(carry, tmp2);
9672 }
9673 
9674 /**
9675  * Perform the following multiply add operation:
9676  * carry:sum = sum + op1*op2 + carry
9677  * Preserves op1, op2 and modifies rest of registers
9678  */
9679 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9680   // rdx:rax = op1 * op2
9681   movq(raxReg, op2);
9682   mulq(op1);
9683 
9684   //  rdx:rax = sum + carry + rdx:rax
9685   addq(sum, carry);
9686   adcq(rdxReg, 0);
9687   addq(sum, raxReg);
9688   adcq(rdxReg, 0);
9689 
9690   // carry:sum = rdx:sum
9691   movq(carry, rdxReg);
9692 }
9693 
9694 /**
9695  * Add 64 bit long carry into z[] with carry propogation.
9696  * Preserves z and carry register values and modifies rest of registers.
9697  *
9698  */
9699 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9700   Label L_fourth_loop, L_fourth_loop_exit;
9701 
9702   movl(tmp1, 1);
9703   subl(zlen, 2);
9704   addq(Address(z, zlen, Address::times_4, 0), carry);
9705 
9706   bind(L_fourth_loop);
9707   jccb(Assembler::carryClear, L_fourth_loop_exit);
9708   subl(zlen, 2);
9709   jccb(Assembler::negative, L_fourth_loop_exit);
9710   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9711   jmp(L_fourth_loop);
9712   bind(L_fourth_loop_exit);
9713 }
9714 
9715 /**
9716  * Shift z[] left by 1 bit.
9717  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9718  *
9719  */
9720 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9721 
9722   Label L_fifth_loop, L_fifth_loop_exit;
9723 
9724   // Fifth loop
9725   // Perform primitiveLeftShift(z, zlen, 1)
9726 
9727   const Register prev_carry = tmp1;
9728   const Register new_carry = tmp4;
9729   const Register value = tmp2;
9730   const Register zidx = tmp3;
9731 
9732   // int zidx, carry;
9733   // long value;
9734   // carry = 0;
9735   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9736   //    (carry:value)  = (z[i] << 1) | carry ;
9737   //    z[i] = value;
9738   // }
9739 
9740   movl(zidx, zlen);
9741   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9742 
9743   bind(L_fifth_loop);
9744   decl(zidx);  // Use decl to preserve carry flag
9745   decl(zidx);
9746   jccb(Assembler::negative, L_fifth_loop_exit);
9747 
9748   if (UseBMI2Instructions) {
9749      movq(value, Address(z, zidx, Address::times_4, 0));
9750      rclq(value, 1);
9751      rorxq(value, value, 32);
9752      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9753   }
9754   else {
9755     // clear new_carry
9756     xorl(new_carry, new_carry);
9757 
9758     // Shift z[i] by 1, or in previous carry and save new carry
9759     movq(value, Address(z, zidx, Address::times_4, 0));
9760     shlq(value, 1);
9761     adcl(new_carry, 0);
9762 
9763     orq(value, prev_carry);
9764     rorq(value, 0x20);
9765     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9766 
9767     // Set previous carry = new carry
9768     movl(prev_carry, new_carry);
9769   }
9770   jmp(L_fifth_loop);
9771 
9772   bind(L_fifth_loop_exit);
9773 }
9774 
9775 
9776 /**
9777  * Code for BigInteger::squareToLen() intrinsic
9778  *
9779  * rdi: x
9780  * rsi: len
9781  * r8:  z
9782  * rcx: zlen
9783  * r12: tmp1
9784  * r13: tmp2
9785  * r14: tmp3
9786  * r15: tmp4
9787  * rbx: tmp5
9788  *
9789  */
9790 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9791 
9792   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9793   push(tmp1);
9794   push(tmp2);
9795   push(tmp3);
9796   push(tmp4);
9797   push(tmp5);
9798 
9799   // First loop
9800   // Store the squares, right shifted one bit (i.e., divided by 2).
9801   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9802 
9803   // Add in off-diagonal sums.
9804   //
9805   // Second, third (nested) and fourth loops.
9806   // zlen +=2;
9807   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9808   //    carry = 0;
9809   //    long op2 = x[xidx:xidx+1];
9810   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9811   //       k -= 2;
9812   //       long op1 = x[j:j+1];
9813   //       long sum = z[k:k+1];
9814   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9815   //       z[k:k+1] = sum;
9816   //    }
9817   //    add_one_64(z, k, carry, tmp_regs);
9818   // }
9819 
9820   const Register carry = tmp5;
9821   const Register sum = tmp3;
9822   const Register op1 = tmp4;
9823   Register op2 = tmp2;
9824 
9825   push(zlen);
9826   push(len);
9827   addl(zlen,2);
9828   bind(L_second_loop);
9829   xorq(carry, carry);
9830   subl(zlen, 4);
9831   subl(len, 2);
9832   push(zlen);
9833   push(len);
9834   cmpl(len, 0);
9835   jccb(Assembler::lessEqual, L_second_loop_exit);
9836 
9837   // Multiply an array by one 64 bit long.
9838   if (UseBMI2Instructions) {
9839     op2 = rdxReg;
9840     movq(op2, Address(x, len, Address::times_4,  0));
9841     rorxq(op2, op2, 32);
9842   }
9843   else {
9844     movq(op2, Address(x, len, Address::times_4,  0));
9845     rorq(op2, 32);
9846   }
9847 
9848   bind(L_third_loop);
9849   decrementl(len);
9850   jccb(Assembler::negative, L_third_loop_exit);
9851   decrementl(len);
9852   jccb(Assembler::negative, L_last_x);
9853 
9854   movq(op1, Address(x, len, Address::times_4,  0));
9855   rorq(op1, 32);
9856 
9857   bind(L_multiply);
9858   subl(zlen, 2);
9859   movq(sum, Address(z, zlen, Address::times_4,  0));
9860 
9861   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9862   if (UseBMI2Instructions) {
9863     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9864   }
9865   else {
9866     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9867   }
9868 
9869   movq(Address(z, zlen, Address::times_4, 0), sum);
9870 
9871   jmp(L_third_loop);
9872   bind(L_third_loop_exit);
9873 
9874   // Fourth loop
9875   // Add 64 bit long carry into z with carry propogation.
9876   // Uses offsetted zlen.
9877   add_one_64(z, zlen, carry, tmp1);
9878 
9879   pop(len);
9880   pop(zlen);
9881   jmp(L_second_loop);
9882 
9883   // Next infrequent code is moved outside loops.
9884   bind(L_last_x);
9885   movl(op1, Address(x, 0));
9886   jmp(L_multiply);
9887 
9888   bind(L_second_loop_exit);
9889   pop(len);
9890   pop(zlen);
9891   pop(len);
9892   pop(zlen);
9893 
9894   // Fifth loop
9895   // Shift z left 1 bit.
9896   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9897 
9898   // z[zlen-1] |= x[len-1] & 1;
9899   movl(tmp3, Address(x, len, Address::times_4, -4));
9900   andl(tmp3, 1);
9901   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9902 
9903   pop(tmp5);
9904   pop(tmp4);
9905   pop(tmp3);
9906   pop(tmp2);
9907   pop(tmp1);
9908 }
9909 
9910 /**
9911  * Helper function for mul_add()
9912  * Multiply the in[] by int k and add to out[] starting at offset offs using
9913  * 128 bit by 32 bit multiply and return the carry in tmp5.
9914  * Only quad int aligned length of in[] is operated on in this function.
9915  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9916  * This function preserves out, in and k registers.
9917  * len and offset point to the appropriate index in "in" & "out" correspondingly
9918  * tmp5 has the carry.
9919  * other registers are temporary and are modified.
9920  *
9921  */
9922 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9923   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9924   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9925 
9926   Label L_first_loop, L_first_loop_exit;
9927 
9928   movl(tmp1, len);
9929   shrl(tmp1, 2);
9930 
9931   bind(L_first_loop);
9932   subl(tmp1, 1);
9933   jccb(Assembler::negative, L_first_loop_exit);
9934 
9935   subl(len, 4);
9936   subl(offset, 4);
9937 
9938   Register op2 = tmp2;
9939   const Register sum = tmp3;
9940   const Register op1 = tmp4;
9941   const Register carry = tmp5;
9942 
9943   if (UseBMI2Instructions) {
9944     op2 = rdxReg;
9945   }
9946 
9947   movq(op1, Address(in, len, Address::times_4,  8));
9948   rorq(op1, 32);
9949   movq(sum, Address(out, offset, Address::times_4,  8));
9950   rorq(sum, 32);
9951   if (UseBMI2Instructions) {
9952     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9953   }
9954   else {
9955     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9956   }
9957   // Store back in big endian from little endian
9958   rorq(sum, 0x20);
9959   movq(Address(out, offset, Address::times_4,  8), sum);
9960 
9961   movq(op1, Address(in, len, Address::times_4,  0));
9962   rorq(op1, 32);
9963   movq(sum, Address(out, offset, Address::times_4,  0));
9964   rorq(sum, 32);
9965   if (UseBMI2Instructions) {
9966     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9967   }
9968   else {
9969     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9970   }
9971   // Store back in big endian from little endian
9972   rorq(sum, 0x20);
9973   movq(Address(out, offset, Address::times_4,  0), sum);
9974 
9975   jmp(L_first_loop);
9976   bind(L_first_loop_exit);
9977 }
9978 
9979 /**
9980  * Code for BigInteger::mulAdd() intrinsic
9981  *
9982  * rdi: out
9983  * rsi: in
9984  * r11: offs (out.length - offset)
9985  * rcx: len
9986  * r8:  k
9987  * r12: tmp1
9988  * r13: tmp2
9989  * r14: tmp3
9990  * r15: tmp4
9991  * rbx: tmp5
9992  * Multiply the in[] by word k and add to out[], return the carry in rax
9993  */
9994 void MacroAssembler::mul_add(Register out, Register in, Register offs,
9995    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
9996    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9997 
9998   Label L_carry, L_last_in, L_done;
9999 
10000 // carry = 0;
10001 // for (int j=len-1; j >= 0; j--) {
10002 //    long product = (in[j] & LONG_MASK) * kLong +
10003 //                   (out[offs] & LONG_MASK) + carry;
10004 //    out[offs--] = (int)product;
10005 //    carry = product >>> 32;
10006 // }
10007 //
10008   push(tmp1);
10009   push(tmp2);
10010   push(tmp3);
10011   push(tmp4);
10012   push(tmp5);
10013 
10014   Register op2 = tmp2;
10015   const Register sum = tmp3;
10016   const Register op1 = tmp4;
10017   const Register carry =  tmp5;
10018 
10019   if (UseBMI2Instructions) {
10020     op2 = rdxReg;
10021     movl(op2, k);
10022   }
10023   else {
10024     movl(op2, k);
10025   }
10026 
10027   xorq(carry, carry);
10028 
10029   //First loop
10030 
10031   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10032   //The carry is in tmp5
10033   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10034 
10035   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10036   decrementl(len);
10037   jccb(Assembler::negative, L_carry);
10038   decrementl(len);
10039   jccb(Assembler::negative, L_last_in);
10040 
10041   movq(op1, Address(in, len, Address::times_4,  0));
10042   rorq(op1, 32);
10043 
10044   subl(offs, 2);
10045   movq(sum, Address(out, offs, Address::times_4,  0));
10046   rorq(sum, 32);
10047 
10048   if (UseBMI2Instructions) {
10049     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10050   }
10051   else {
10052     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10053   }
10054 
10055   // Store back in big endian from little endian
10056   rorq(sum, 0x20);
10057   movq(Address(out, offs, Address::times_4,  0), sum);
10058 
10059   testl(len, len);
10060   jccb(Assembler::zero, L_carry);
10061 
10062   //Multiply the last in[] entry, if any
10063   bind(L_last_in);
10064   movl(op1, Address(in, 0));
10065   movl(sum, Address(out, offs, Address::times_4,  -4));
10066 
10067   movl(raxReg, k);
10068   mull(op1); //tmp4 * eax -> edx:eax
10069   addl(sum, carry);
10070   adcl(rdxReg, 0);
10071   addl(sum, raxReg);
10072   adcl(rdxReg, 0);
10073   movl(carry, rdxReg);
10074 
10075   movl(Address(out, offs, Address::times_4,  -4), sum);
10076 
10077   bind(L_carry);
10078   //return tmp5/carry as carry in rax
10079   movl(rax, carry);
10080 
10081   bind(L_done);
10082   pop(tmp5);
10083   pop(tmp4);
10084   pop(tmp3);
10085   pop(tmp2);
10086   pop(tmp1);
10087 }
10088 #endif
10089 
10090 /**
10091  * Emits code to update CRC-32 with a byte value according to constants in table
10092  *
10093  * @param [in,out]crc   Register containing the crc.
10094  * @param [in]val       Register containing the byte to fold into the CRC.
10095  * @param [in]table     Register containing the table of crc constants.
10096  *
10097  * uint32_t crc;
10098  * val = crc_table[(val ^ crc) & 0xFF];
10099  * crc = val ^ (crc >> 8);
10100  *
10101  */
10102 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10103   xorl(val, crc);
10104   andl(val, 0xFF);
10105   shrl(crc, 8); // unsigned shift
10106   xorl(crc, Address(table, val, Address::times_4, 0));
10107 }
10108 
10109 /**
10110  * Fold 128-bit data chunk
10111  */
10112 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10113   if (UseAVX > 0) {
10114     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10115     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10116     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10117     pxor(xcrc, xtmp);
10118   } else {
10119     movdqa(xtmp, xcrc);
10120     pclmulhdq(xtmp, xK);   // [123:64]
10121     pclmulldq(xcrc, xK);   // [63:0]
10122     pxor(xcrc, xtmp);
10123     movdqu(xtmp, Address(buf, offset));
10124     pxor(xcrc, xtmp);
10125   }
10126 }
10127 
10128 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10129   if (UseAVX > 0) {
10130     vpclmulhdq(xtmp, xK, xcrc);
10131     vpclmulldq(xcrc, xK, xcrc);
10132     pxor(xcrc, xbuf);
10133     pxor(xcrc, xtmp);
10134   } else {
10135     movdqa(xtmp, xcrc);
10136     pclmulhdq(xtmp, xK);
10137     pclmulldq(xcrc, xK);
10138     pxor(xcrc, xbuf);
10139     pxor(xcrc, xtmp);
10140   }
10141 }
10142 
10143 /**
10144  * 8-bit folds to compute 32-bit CRC
10145  *
10146  * uint64_t xcrc;
10147  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10148  */
10149 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10150   movdl(tmp, xcrc);
10151   andl(tmp, 0xFF);
10152   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10153   psrldq(xcrc, 1); // unsigned shift one byte
10154   pxor(xcrc, xtmp);
10155 }
10156 
10157 /**
10158  * uint32_t crc;
10159  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10160  */
10161 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10162   movl(tmp, crc);
10163   andl(tmp, 0xFF);
10164   shrl(crc, 8);
10165   xorl(crc, Address(table, tmp, Address::times_4, 0));
10166 }
10167 
10168 /**
10169  * @param crc   register containing existing CRC (32-bit)
10170  * @param buf   register pointing to input byte buffer (byte*)
10171  * @param len   register containing number of bytes
10172  * @param table register that will contain address of CRC table
10173  * @param tmp   scratch register
10174  */
10175 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10176   assert_different_registers(crc, buf, len, table, tmp, rax);
10177 
10178   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10179   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10180 
10181   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10182   // context for the registers used, where all instructions below are using 128-bit mode
10183   // On EVEX without VL and BW, these instructions will all be AVX.
10184   if (VM_Version::supports_avx512vlbw()) {
10185     movl(tmp, 0xffff);
10186     kmovwl(k1, tmp);
10187   }
10188 
10189   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10190   notl(crc); // ~crc
10191   cmpl(len, 16);
10192   jcc(Assembler::less, L_tail);
10193 
10194   // Align buffer to 16 bytes
10195   movl(tmp, buf);
10196   andl(tmp, 0xF);
10197   jccb(Assembler::zero, L_aligned);
10198   subl(tmp,  16);
10199   addl(len, tmp);
10200 
10201   align(4);
10202   BIND(L_align_loop);
10203   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10204   update_byte_crc32(crc, rax, table);
10205   increment(buf);
10206   incrementl(tmp);
10207   jccb(Assembler::less, L_align_loop);
10208 
10209   BIND(L_aligned);
10210   movl(tmp, len); // save
10211   shrl(len, 4);
10212   jcc(Assembler::zero, L_tail_restore);
10213 
10214   // Fold crc into first bytes of vector
10215   movdqa(xmm1, Address(buf, 0));
10216   movdl(rax, xmm1);
10217   xorl(crc, rax);
10218   if (VM_Version::supports_sse4_1()) {
10219     pinsrd(xmm1, crc, 0);
10220   } else {
10221     pinsrw(xmm1, crc, 0);
10222     shrl(crc, 16);
10223     pinsrw(xmm1, crc, 1);
10224   }
10225   addptr(buf, 16);
10226   subl(len, 4); // len > 0
10227   jcc(Assembler::less, L_fold_tail);
10228 
10229   movdqa(xmm2, Address(buf,  0));
10230   movdqa(xmm3, Address(buf, 16));
10231   movdqa(xmm4, Address(buf, 32));
10232   addptr(buf, 48);
10233   subl(len, 3);
10234   jcc(Assembler::lessEqual, L_fold_512b);
10235 
10236   // Fold total 512 bits of polynomial on each iteration,
10237   // 128 bits per each of 4 parallel streams.
10238   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10239 
10240   align(32);
10241   BIND(L_fold_512b_loop);
10242   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10243   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10244   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10245   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10246   addptr(buf, 64);
10247   subl(len, 4);
10248   jcc(Assembler::greater, L_fold_512b_loop);
10249 
10250   // Fold 512 bits to 128 bits.
10251   BIND(L_fold_512b);
10252   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10253   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10254   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10255   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10256 
10257   // Fold the rest of 128 bits data chunks
10258   BIND(L_fold_tail);
10259   addl(len, 3);
10260   jccb(Assembler::lessEqual, L_fold_128b);
10261   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10262 
10263   BIND(L_fold_tail_loop);
10264   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10265   addptr(buf, 16);
10266   decrementl(len);
10267   jccb(Assembler::greater, L_fold_tail_loop);
10268 
10269   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10270   BIND(L_fold_128b);
10271   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10272   if (UseAVX > 0) {
10273     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10274     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10275     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10276   } else {
10277     movdqa(xmm2, xmm0);
10278     pclmulqdq(xmm2, xmm1, 0x1);
10279     movdqa(xmm3, xmm0);
10280     pand(xmm3, xmm2);
10281     pclmulqdq(xmm0, xmm3, 0x1);
10282   }
10283   psrldq(xmm1, 8);
10284   psrldq(xmm2, 4);
10285   pxor(xmm0, xmm1);
10286   pxor(xmm0, xmm2);
10287 
10288   // 8 8-bit folds to compute 32-bit CRC.
10289   for (int j = 0; j < 4; j++) {
10290     fold_8bit_crc32(xmm0, table, xmm1, rax);
10291   }
10292   movdl(crc, xmm0); // mov 32 bits to general register
10293   for (int j = 0; j < 4; j++) {
10294     fold_8bit_crc32(crc, table, rax);
10295   }
10296 
10297   BIND(L_tail_restore);
10298   movl(len, tmp); // restore
10299   BIND(L_tail);
10300   andl(len, 0xf);
10301   jccb(Assembler::zero, L_exit);
10302 
10303   // Fold the rest of bytes
10304   align(4);
10305   BIND(L_tail_loop);
10306   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10307   update_byte_crc32(crc, rax, table);
10308   increment(buf);
10309   decrementl(len);
10310   jccb(Assembler::greater, L_tail_loop);
10311 
10312   BIND(L_exit);
10313   notl(crc); // ~c
10314 }
10315 
10316 #ifdef _LP64
10317 // S. Gueron / Information Processing Letters 112 (2012) 184
10318 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10319 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10320 // Output: the 64-bit carry-less product of B * CONST
10321 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10322                                      Register tmp1, Register tmp2, Register tmp3) {
10323   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10324   if (n > 0) {
10325     addq(tmp3, n * 256 * 8);
10326   }
10327   //    Q1 = TABLEExt[n][B & 0xFF];
10328   movl(tmp1, in);
10329   andl(tmp1, 0x000000FF);
10330   shll(tmp1, 3);
10331   addq(tmp1, tmp3);
10332   movq(tmp1, Address(tmp1, 0));
10333 
10334   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10335   movl(tmp2, in);
10336   shrl(tmp2, 8);
10337   andl(tmp2, 0x000000FF);
10338   shll(tmp2, 3);
10339   addq(tmp2, tmp3);
10340   movq(tmp2, Address(tmp2, 0));
10341 
10342   shlq(tmp2, 8);
10343   xorq(tmp1, tmp2);
10344 
10345   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10346   movl(tmp2, in);
10347   shrl(tmp2, 16);
10348   andl(tmp2, 0x000000FF);
10349   shll(tmp2, 3);
10350   addq(tmp2, tmp3);
10351   movq(tmp2, Address(tmp2, 0));
10352 
10353   shlq(tmp2, 16);
10354   xorq(tmp1, tmp2);
10355 
10356   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10357   shrl(in, 24);
10358   andl(in, 0x000000FF);
10359   shll(in, 3);
10360   addq(in, tmp3);
10361   movq(in, Address(in, 0));
10362 
10363   shlq(in, 24);
10364   xorq(in, tmp1);
10365   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10366 }
10367 
10368 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10369                                       Register in_out,
10370                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10371                                       XMMRegister w_xtmp2,
10372                                       Register tmp1,
10373                                       Register n_tmp2, Register n_tmp3) {
10374   if (is_pclmulqdq_supported) {
10375     movdl(w_xtmp1, in_out); // modified blindly
10376 
10377     movl(tmp1, const_or_pre_comp_const_index);
10378     movdl(w_xtmp2, tmp1);
10379     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10380 
10381     movdq(in_out, w_xtmp1);
10382   } else {
10383     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10384   }
10385 }
10386 
10387 // Recombination Alternative 2: No bit-reflections
10388 // T1 = (CRC_A * U1) << 1
10389 // T2 = (CRC_B * U2) << 1
10390 // C1 = T1 >> 32
10391 // C2 = T2 >> 32
10392 // T1 = T1 & 0xFFFFFFFF
10393 // T2 = T2 & 0xFFFFFFFF
10394 // T1 = CRC32(0, T1)
10395 // T2 = CRC32(0, T2)
10396 // C1 = C1 ^ T1
10397 // C2 = C2 ^ T2
10398 // CRC = C1 ^ C2 ^ CRC_C
10399 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10400                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10401                                      Register tmp1, Register tmp2,
10402                                      Register n_tmp3) {
10403   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10404   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10405   shlq(in_out, 1);
10406   movl(tmp1, in_out);
10407   shrq(in_out, 32);
10408   xorl(tmp2, tmp2);
10409   crc32(tmp2, tmp1, 4);
10410   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10411   shlq(in1, 1);
10412   movl(tmp1, in1);
10413   shrq(in1, 32);
10414   xorl(tmp2, tmp2);
10415   crc32(tmp2, tmp1, 4);
10416   xorl(in1, tmp2);
10417   xorl(in_out, in1);
10418   xorl(in_out, in2);
10419 }
10420 
10421 // Set N to predefined value
10422 // Subtract from a lenght of a buffer
10423 // execute in a loop:
10424 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10425 // for i = 1 to N do
10426 //  CRC_A = CRC32(CRC_A, A[i])
10427 //  CRC_B = CRC32(CRC_B, B[i])
10428 //  CRC_C = CRC32(CRC_C, C[i])
10429 // end for
10430 // Recombine
10431 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10432                                        Register in_out1, Register in_out2, Register in_out3,
10433                                        Register tmp1, Register tmp2, Register tmp3,
10434                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10435                                        Register tmp4, Register tmp5,
10436                                        Register n_tmp6) {
10437   Label L_processPartitions;
10438   Label L_processPartition;
10439   Label L_exit;
10440 
10441   bind(L_processPartitions);
10442   cmpl(in_out1, 3 * size);
10443   jcc(Assembler::less, L_exit);
10444     xorl(tmp1, tmp1);
10445     xorl(tmp2, tmp2);
10446     movq(tmp3, in_out2);
10447     addq(tmp3, size);
10448 
10449     bind(L_processPartition);
10450       crc32(in_out3, Address(in_out2, 0), 8);
10451       crc32(tmp1, Address(in_out2, size), 8);
10452       crc32(tmp2, Address(in_out2, size * 2), 8);
10453       addq(in_out2, 8);
10454       cmpq(in_out2, tmp3);
10455       jcc(Assembler::less, L_processPartition);
10456     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10457             w_xtmp1, w_xtmp2, w_xtmp3,
10458             tmp4, tmp5,
10459             n_tmp6);
10460     addq(in_out2, 2 * size);
10461     subl(in_out1, 3 * size);
10462     jmp(L_processPartitions);
10463 
10464   bind(L_exit);
10465 }
10466 #else
10467 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10468                                      Register tmp1, Register tmp2, Register tmp3,
10469                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10470   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10471   if (n > 0) {
10472     addl(tmp3, n * 256 * 8);
10473   }
10474   //    Q1 = TABLEExt[n][B & 0xFF];
10475   movl(tmp1, in_out);
10476   andl(tmp1, 0x000000FF);
10477   shll(tmp1, 3);
10478   addl(tmp1, tmp3);
10479   movq(xtmp1, Address(tmp1, 0));
10480 
10481   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10482   movl(tmp2, in_out);
10483   shrl(tmp2, 8);
10484   andl(tmp2, 0x000000FF);
10485   shll(tmp2, 3);
10486   addl(tmp2, tmp3);
10487   movq(xtmp2, Address(tmp2, 0));
10488 
10489   psllq(xtmp2, 8);
10490   pxor(xtmp1, xtmp2);
10491 
10492   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10493   movl(tmp2, in_out);
10494   shrl(tmp2, 16);
10495   andl(tmp2, 0x000000FF);
10496   shll(tmp2, 3);
10497   addl(tmp2, tmp3);
10498   movq(xtmp2, Address(tmp2, 0));
10499 
10500   psllq(xtmp2, 16);
10501   pxor(xtmp1, xtmp2);
10502 
10503   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10504   shrl(in_out, 24);
10505   andl(in_out, 0x000000FF);
10506   shll(in_out, 3);
10507   addl(in_out, tmp3);
10508   movq(xtmp2, Address(in_out, 0));
10509 
10510   psllq(xtmp2, 24);
10511   pxor(xtmp1, xtmp2); // Result in CXMM
10512   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10513 }
10514 
10515 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10516                                       Register in_out,
10517                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10518                                       XMMRegister w_xtmp2,
10519                                       Register tmp1,
10520                                       Register n_tmp2, Register n_tmp3) {
10521   if (is_pclmulqdq_supported) {
10522     movdl(w_xtmp1, in_out);
10523 
10524     movl(tmp1, const_or_pre_comp_const_index);
10525     movdl(w_xtmp2, tmp1);
10526     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10527     // Keep result in XMM since GPR is 32 bit in length
10528   } else {
10529     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10530   }
10531 }
10532 
10533 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10534                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10535                                      Register tmp1, Register tmp2,
10536                                      Register n_tmp3) {
10537   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10538   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10539 
10540   psllq(w_xtmp1, 1);
10541   movdl(tmp1, w_xtmp1);
10542   psrlq(w_xtmp1, 32);
10543   movdl(in_out, w_xtmp1);
10544 
10545   xorl(tmp2, tmp2);
10546   crc32(tmp2, tmp1, 4);
10547   xorl(in_out, tmp2);
10548 
10549   psllq(w_xtmp2, 1);
10550   movdl(tmp1, w_xtmp2);
10551   psrlq(w_xtmp2, 32);
10552   movdl(in1, w_xtmp2);
10553 
10554   xorl(tmp2, tmp2);
10555   crc32(tmp2, tmp1, 4);
10556   xorl(in1, tmp2);
10557   xorl(in_out, in1);
10558   xorl(in_out, in2);
10559 }
10560 
10561 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10562                                        Register in_out1, Register in_out2, Register in_out3,
10563                                        Register tmp1, Register tmp2, Register tmp3,
10564                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10565                                        Register tmp4, Register tmp5,
10566                                        Register n_tmp6) {
10567   Label L_processPartitions;
10568   Label L_processPartition;
10569   Label L_exit;
10570 
10571   bind(L_processPartitions);
10572   cmpl(in_out1, 3 * size);
10573   jcc(Assembler::less, L_exit);
10574     xorl(tmp1, tmp1);
10575     xorl(tmp2, tmp2);
10576     movl(tmp3, in_out2);
10577     addl(tmp3, size);
10578 
10579     bind(L_processPartition);
10580       crc32(in_out3, Address(in_out2, 0), 4);
10581       crc32(tmp1, Address(in_out2, size), 4);
10582       crc32(tmp2, Address(in_out2, size*2), 4);
10583       crc32(in_out3, Address(in_out2, 0+4), 4);
10584       crc32(tmp1, Address(in_out2, size+4), 4);
10585       crc32(tmp2, Address(in_out2, size*2+4), 4);
10586       addl(in_out2, 8);
10587       cmpl(in_out2, tmp3);
10588       jcc(Assembler::less, L_processPartition);
10589 
10590         push(tmp3);
10591         push(in_out1);
10592         push(in_out2);
10593         tmp4 = tmp3;
10594         tmp5 = in_out1;
10595         n_tmp6 = in_out2;
10596 
10597       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10598             w_xtmp1, w_xtmp2, w_xtmp3,
10599             tmp4, tmp5,
10600             n_tmp6);
10601 
10602         pop(in_out2);
10603         pop(in_out1);
10604         pop(tmp3);
10605 
10606     addl(in_out2, 2 * size);
10607     subl(in_out1, 3 * size);
10608     jmp(L_processPartitions);
10609 
10610   bind(L_exit);
10611 }
10612 #endif //LP64
10613 
10614 #ifdef _LP64
10615 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10616 // Input: A buffer I of L bytes.
10617 // Output: the CRC32C value of the buffer.
10618 // Notations:
10619 // Write L = 24N + r, with N = floor (L/24).
10620 // r = L mod 24 (0 <= r < 24).
10621 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10622 // N quadwords, and R consists of r bytes.
10623 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10624 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10625 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10626 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10627 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10628                                           Register tmp1, Register tmp2, Register tmp3,
10629                                           Register tmp4, Register tmp5, Register tmp6,
10630                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10631                                           bool is_pclmulqdq_supported) {
10632   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10633   Label L_wordByWord;
10634   Label L_byteByByteProlog;
10635   Label L_byteByByte;
10636   Label L_exit;
10637 
10638   if (is_pclmulqdq_supported ) {
10639     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10640     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10641 
10642     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10643     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10644 
10645     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10646     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10647     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10648   } else {
10649     const_or_pre_comp_const_index[0] = 1;
10650     const_or_pre_comp_const_index[1] = 0;
10651 
10652     const_or_pre_comp_const_index[2] = 3;
10653     const_or_pre_comp_const_index[3] = 2;
10654 
10655     const_or_pre_comp_const_index[4] = 5;
10656     const_or_pre_comp_const_index[5] = 4;
10657    }
10658   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10659                     in2, in1, in_out,
10660                     tmp1, tmp2, tmp3,
10661                     w_xtmp1, w_xtmp2, w_xtmp3,
10662                     tmp4, tmp5,
10663                     tmp6);
10664   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10665                     in2, in1, in_out,
10666                     tmp1, tmp2, tmp3,
10667                     w_xtmp1, w_xtmp2, w_xtmp3,
10668                     tmp4, tmp5,
10669                     tmp6);
10670   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10671                     in2, in1, in_out,
10672                     tmp1, tmp2, tmp3,
10673                     w_xtmp1, w_xtmp2, w_xtmp3,
10674                     tmp4, tmp5,
10675                     tmp6);
10676   movl(tmp1, in2);
10677   andl(tmp1, 0x00000007);
10678   negl(tmp1);
10679   addl(tmp1, in2);
10680   addq(tmp1, in1);
10681 
10682   BIND(L_wordByWord);
10683   cmpq(in1, tmp1);
10684   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10685     crc32(in_out, Address(in1, 0), 4);
10686     addq(in1, 4);
10687     jmp(L_wordByWord);
10688 
10689   BIND(L_byteByByteProlog);
10690   andl(in2, 0x00000007);
10691   movl(tmp2, 1);
10692 
10693   BIND(L_byteByByte);
10694   cmpl(tmp2, in2);
10695   jccb(Assembler::greater, L_exit);
10696     crc32(in_out, Address(in1, 0), 1);
10697     incq(in1);
10698     incl(tmp2);
10699     jmp(L_byteByByte);
10700 
10701   BIND(L_exit);
10702 }
10703 #else
10704 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10705                                           Register tmp1, Register  tmp2, Register tmp3,
10706                                           Register tmp4, Register  tmp5, Register tmp6,
10707                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10708                                           bool is_pclmulqdq_supported) {
10709   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10710   Label L_wordByWord;
10711   Label L_byteByByteProlog;
10712   Label L_byteByByte;
10713   Label L_exit;
10714 
10715   if (is_pclmulqdq_supported) {
10716     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10717     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10718 
10719     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10720     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10721 
10722     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10723     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10724   } else {
10725     const_or_pre_comp_const_index[0] = 1;
10726     const_or_pre_comp_const_index[1] = 0;
10727 
10728     const_or_pre_comp_const_index[2] = 3;
10729     const_or_pre_comp_const_index[3] = 2;
10730 
10731     const_or_pre_comp_const_index[4] = 5;
10732     const_or_pre_comp_const_index[5] = 4;
10733   }
10734   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10735                     in2, in1, in_out,
10736                     tmp1, tmp2, tmp3,
10737                     w_xtmp1, w_xtmp2, w_xtmp3,
10738                     tmp4, tmp5,
10739                     tmp6);
10740   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10741                     in2, in1, in_out,
10742                     tmp1, tmp2, tmp3,
10743                     w_xtmp1, w_xtmp2, w_xtmp3,
10744                     tmp4, tmp5,
10745                     tmp6);
10746   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10747                     in2, in1, in_out,
10748                     tmp1, tmp2, tmp3,
10749                     w_xtmp1, w_xtmp2, w_xtmp3,
10750                     tmp4, tmp5,
10751                     tmp6);
10752   movl(tmp1, in2);
10753   andl(tmp1, 0x00000007);
10754   negl(tmp1);
10755   addl(tmp1, in2);
10756   addl(tmp1, in1);
10757 
10758   BIND(L_wordByWord);
10759   cmpl(in1, tmp1);
10760   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10761     crc32(in_out, Address(in1,0), 4);
10762     addl(in1, 4);
10763     jmp(L_wordByWord);
10764 
10765   BIND(L_byteByByteProlog);
10766   andl(in2, 0x00000007);
10767   movl(tmp2, 1);
10768 
10769   BIND(L_byteByByte);
10770   cmpl(tmp2, in2);
10771   jccb(Assembler::greater, L_exit);
10772     movb(tmp1, Address(in1, 0));
10773     crc32(in_out, tmp1, 1);
10774     incl(in1);
10775     incl(tmp2);
10776     jmp(L_byteByByte);
10777 
10778   BIND(L_exit);
10779 }
10780 #endif // LP64
10781 #undef BIND
10782 #undef BLOCK_COMMENT
10783 
10784 // Compress char[] array to byte[].
10785 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10786 //   @HotSpotIntrinsicCandidate
10787 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10788 //     for (int i = 0; i < len; i++) {
10789 //       int c = src[srcOff++];
10790 //       if (c >>> 8 != 0) {
10791 //         return 0;
10792 //       }
10793 //       dst[dstOff++] = (byte)c;
10794 //     }
10795 //     return len;
10796 //   }
10797 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10798   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10799   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10800   Register tmp5, Register result) {
10801   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10802 
10803   // rsi: src
10804   // rdi: dst
10805   // rdx: len
10806   // rcx: tmp5
10807   // rax: result
10808 
10809   // rsi holds start addr of source char[] to be compressed
10810   // rdi holds start addr of destination byte[]
10811   // rdx holds length
10812 
10813   assert(len != result, "");
10814 
10815   // save length for return
10816   push(len);
10817 
10818   if ((UseAVX > 2) && // AVX512
10819     VM_Version::supports_avx512vlbw() &&
10820     VM_Version::supports_bmi2()) {
10821 
10822     set_vector_masking();  // opening of the stub context for programming mask registers
10823 
10824     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10825 
10826     // alignement
10827     Label post_alignement;
10828 
10829     // if length of the string is less than 16, handle it in an old fashioned
10830     // way
10831     testl(len, -32);
10832     jcc(Assembler::zero, below_threshold);
10833 
10834     // First check whether a character is compressable ( <= 0xFF).
10835     // Create mask to test for Unicode chars inside zmm vector
10836     movl(result, 0x00FF);
10837     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10838 
10839     // Save k1
10840     kmovql(k3, k1);
10841 
10842     testl(len, -64);
10843     jcc(Assembler::zero, post_alignement);
10844 
10845     movl(tmp5, dst);
10846     andl(tmp5, (32 - 1));
10847     negl(tmp5);
10848     andl(tmp5, (32 - 1));
10849 
10850     // bail out when there is nothing to be done
10851     testl(tmp5, 0xFFFFFFFF);
10852     jcc(Assembler::zero, post_alignement);
10853 
10854     // ~(~0 << len), where len is the # of remaining elements to process
10855     movl(result, 0xFFFFFFFF);
10856     shlxl(result, result, tmp5);
10857     notl(result);
10858     kmovdl(k1, result);
10859 
10860     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10861     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10862     ktestd(k2, k1);
10863     jcc(Assembler::carryClear, restore_k1_return_zero);
10864 
10865     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10866 
10867     addptr(src, tmp5);
10868     addptr(src, tmp5);
10869     addptr(dst, tmp5);
10870     subl(len, tmp5);
10871 
10872     bind(post_alignement);
10873     // end of alignement
10874 
10875     movl(tmp5, len);
10876     andl(tmp5, (32 - 1));    // tail count (in chars)
10877     andl(len, ~(32 - 1));    // vector count (in chars)
10878     jcc(Assembler::zero, copy_loop_tail);
10879 
10880     lea(src, Address(src, len, Address::times_2));
10881     lea(dst, Address(dst, len, Address::times_1));
10882     negptr(len);
10883 
10884     bind(copy_32_loop);
10885     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10886     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10887     kortestdl(k2, k2);
10888     jcc(Assembler::carryClear, restore_k1_return_zero);
10889 
10890     // All elements in current processed chunk are valid candidates for
10891     // compression. Write a truncated byte elements to the memory.
10892     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10893     addptr(len, 32);
10894     jcc(Assembler::notZero, copy_32_loop);
10895 
10896     bind(copy_loop_tail);
10897     // bail out when there is nothing to be done
10898     testl(tmp5, 0xFFFFFFFF);
10899     // Restore k1
10900     kmovql(k1, k3);
10901     jcc(Assembler::zero, return_length);
10902 
10903     movl(len, tmp5);
10904 
10905     // ~(~0 << len), where len is the # of remaining elements to process
10906     movl(result, 0xFFFFFFFF);
10907     shlxl(result, result, len);
10908     notl(result);
10909 
10910     kmovdl(k1, result);
10911 
10912     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10913     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10914     ktestd(k2, k1);
10915     jcc(Assembler::carryClear, restore_k1_return_zero);
10916 
10917     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10918     // Restore k1
10919     kmovql(k1, k3);
10920     jmp(return_length);
10921 
10922     bind(restore_k1_return_zero);
10923     // Restore k1
10924     kmovql(k1, k3);
10925     jmp(return_zero);
10926 
10927     clear_vector_masking();   // closing of the stub context for programming mask registers
10928   }
10929   if (UseSSE42Intrinsics) {
10930     Label copy_32_loop, copy_16, copy_tail;
10931 
10932     bind(below_threshold);
10933 
10934     movl(result, len);
10935 
10936     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10937 
10938     // vectored compression
10939     andl(len, 0xfffffff0);    // vector count (in chars)
10940     andl(result, 0x0000000f);    // tail count (in chars)
10941     testl(len, len);
10942     jccb(Assembler::zero, copy_16);
10943 
10944     // compress 16 chars per iter
10945     movdl(tmp1Reg, tmp5);
10946     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10947     pxor(tmp4Reg, tmp4Reg);
10948 
10949     lea(src, Address(src, len, Address::times_2));
10950     lea(dst, Address(dst, len, Address::times_1));
10951     negptr(len);
10952 
10953     bind(copy_32_loop);
10954     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10955     por(tmp4Reg, tmp2Reg);
10956     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10957     por(tmp4Reg, tmp3Reg);
10958     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10959     jcc(Assembler::notZero, return_zero);
10960     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10961     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10962     addptr(len, 16);
10963     jcc(Assembler::notZero, copy_32_loop);
10964 
10965     // compress next vector of 8 chars (if any)
10966     bind(copy_16);
10967     movl(len, result);
10968     andl(len, 0xfffffff8);    // vector count (in chars)
10969     andl(result, 0x00000007);    // tail count (in chars)
10970     testl(len, len);
10971     jccb(Assembler::zero, copy_tail);
10972 
10973     movdl(tmp1Reg, tmp5);
10974     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10975     pxor(tmp3Reg, tmp3Reg);
10976 
10977     movdqu(tmp2Reg, Address(src, 0));
10978     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10979     jccb(Assembler::notZero, return_zero);
10980     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10981     movq(Address(dst, 0), tmp2Reg);
10982     addptr(src, 16);
10983     addptr(dst, 8);
10984 
10985     bind(copy_tail);
10986     movl(len, result);
10987   }
10988   // compress 1 char per iter
10989   testl(len, len);
10990   jccb(Assembler::zero, return_length);
10991   lea(src, Address(src, len, Address::times_2));
10992   lea(dst, Address(dst, len, Address::times_1));
10993   negptr(len);
10994 
10995   bind(copy_chars_loop);
10996   load_unsigned_short(result, Address(src, len, Address::times_2));
10997   testl(result, 0xff00);      // check if Unicode char
10998   jccb(Assembler::notZero, return_zero);
10999   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
11000   increment(len);
11001   jcc(Assembler::notZero, copy_chars_loop);
11002 
11003   // if compression succeeded, return length
11004   bind(return_length);
11005   pop(result);
11006   jmpb(done);
11007 
11008   // if compression failed, return 0
11009   bind(return_zero);
11010   xorl(result, result);
11011   addptr(rsp, wordSize);
11012 
11013   bind(done);
11014 }
11015 
11016 // Inflate byte[] array to char[].
11017 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11018 //   @HotSpotIntrinsicCandidate
11019 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11020 //     for (int i = 0; i < len; i++) {
11021 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11022 //     }
11023 //   }
11024 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11025   XMMRegister tmp1, Register tmp2) {
11026   Label copy_chars_loop, done, below_threshold;
11027   // rsi: src
11028   // rdi: dst
11029   // rdx: len
11030   // rcx: tmp2
11031 
11032   // rsi holds start addr of source byte[] to be inflated
11033   // rdi holds start addr of destination char[]
11034   // rdx holds length
11035   assert_different_registers(src, dst, len, tmp2);
11036 
11037   if ((UseAVX > 2) && // AVX512
11038     VM_Version::supports_avx512vlbw() &&
11039     VM_Version::supports_bmi2()) {
11040 
11041     set_vector_masking();  // opening of the stub context for programming mask registers
11042 
11043     Label copy_32_loop, copy_tail;
11044     Register tmp3_aliased = len;
11045 
11046     // if length of the string is less than 16, handle it in an old fashioned
11047     // way
11048     testl(len, -16);
11049     jcc(Assembler::zero, below_threshold);
11050 
11051     // In order to use only one arithmetic operation for the main loop we use
11052     // this pre-calculation
11053     movl(tmp2, len);
11054     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11055     andl(len, -32);     // vector count
11056     jccb(Assembler::zero, copy_tail);
11057 
11058     lea(src, Address(src, len, Address::times_1));
11059     lea(dst, Address(dst, len, Address::times_2));
11060     negptr(len);
11061 
11062 
11063     // inflate 32 chars per iter
11064     bind(copy_32_loop);
11065     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11066     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11067     addptr(len, 32);
11068     jcc(Assembler::notZero, copy_32_loop);
11069 
11070     bind(copy_tail);
11071     // bail out when there is nothing to be done
11072     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11073     jcc(Assembler::zero, done);
11074 
11075     // Save k1
11076     kmovql(k2, k1);
11077 
11078     // ~(~0 << length), where length is the # of remaining elements to process
11079     movl(tmp3_aliased, -1);
11080     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11081     notl(tmp3_aliased);
11082     kmovdl(k1, tmp3_aliased);
11083     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11084     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11085 
11086     // Restore k1
11087     kmovql(k1, k2);
11088     jmp(done);
11089 
11090     clear_vector_masking();   // closing of the stub context for programming mask registers
11091   }
11092   if (UseSSE42Intrinsics) {
11093     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11094 
11095     movl(tmp2, len);
11096 
11097     if (UseAVX > 1) {
11098       andl(tmp2, (16 - 1));
11099       andl(len, -16);
11100       jccb(Assembler::zero, copy_new_tail);
11101     } else {
11102       andl(tmp2, 0x00000007);   // tail count (in chars)
11103       andl(len, 0xfffffff8);    // vector count (in chars)
11104       jccb(Assembler::zero, copy_tail);
11105     }
11106 
11107     // vectored inflation
11108     lea(src, Address(src, len, Address::times_1));
11109     lea(dst, Address(dst, len, Address::times_2));
11110     negptr(len);
11111 
11112     if (UseAVX > 1) {
11113       bind(copy_16_loop);
11114       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11115       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11116       addptr(len, 16);
11117       jcc(Assembler::notZero, copy_16_loop);
11118 
11119       bind(below_threshold);
11120       bind(copy_new_tail);
11121       if ((UseAVX > 2) &&
11122         VM_Version::supports_avx512vlbw() &&
11123         VM_Version::supports_bmi2()) {
11124         movl(tmp2, len);
11125       } else {
11126         movl(len, tmp2);
11127       }
11128       andl(tmp2, 0x00000007);
11129       andl(len, 0xFFFFFFF8);
11130       jccb(Assembler::zero, copy_tail);
11131 
11132       pmovzxbw(tmp1, Address(src, 0));
11133       movdqu(Address(dst, 0), tmp1);
11134       addptr(src, 8);
11135       addptr(dst, 2 * 8);
11136 
11137       jmp(copy_tail, true);
11138     }
11139 
11140     // inflate 8 chars per iter
11141     bind(copy_8_loop);
11142     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11143     movdqu(Address(dst, len, Address::times_2), tmp1);
11144     addptr(len, 8);
11145     jcc(Assembler::notZero, copy_8_loop);
11146 
11147     bind(copy_tail);
11148     movl(len, tmp2);
11149 
11150     cmpl(len, 4);
11151     jccb(Assembler::less, copy_bytes);
11152 
11153     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11154     pmovzxbw(tmp1, tmp1);
11155     movq(Address(dst, 0), tmp1);
11156     subptr(len, 4);
11157     addptr(src, 4);
11158     addptr(dst, 8);
11159 
11160     bind(copy_bytes);
11161   }
11162   testl(len, len);
11163   jccb(Assembler::zero, done);
11164   lea(src, Address(src, len, Address::times_1));
11165   lea(dst, Address(dst, len, Address::times_2));
11166   negptr(len);
11167 
11168   // inflate 1 char per iter
11169   bind(copy_chars_loop);
11170   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11171   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11172   increment(len);
11173   jcc(Assembler::notZero, copy_chars_loop);
11174 
11175   bind(done);
11176 }
11177 
11178 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11179   switch (cond) {
11180     // Note some conditions are synonyms for others
11181     case Assembler::zero:         return Assembler::notZero;
11182     case Assembler::notZero:      return Assembler::zero;
11183     case Assembler::less:         return Assembler::greaterEqual;
11184     case Assembler::lessEqual:    return Assembler::greater;
11185     case Assembler::greater:      return Assembler::lessEqual;
11186     case Assembler::greaterEqual: return Assembler::less;
11187     case Assembler::below:        return Assembler::aboveEqual;
11188     case Assembler::belowEqual:   return Assembler::above;
11189     case Assembler::above:        return Assembler::belowEqual;
11190     case Assembler::aboveEqual:   return Assembler::below;
11191     case Assembler::overflow:     return Assembler::noOverflow;
11192     case Assembler::noOverflow:   return Assembler::overflow;
11193     case Assembler::negative:     return Assembler::positive;
11194     case Assembler::positive:     return Assembler::negative;
11195     case Assembler::parity:       return Assembler::noParity;
11196     case Assembler::noParity:     return Assembler::parity;
11197   }
11198   ShouldNotReachHere(); return Assembler::overflow;
11199 }
11200 
11201 SkipIfEqual::SkipIfEqual(
11202     MacroAssembler* masm, const bool* flag_addr, bool value) {
11203   _masm = masm;
11204   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11205   _masm->jcc(Assembler::equal, _label);
11206 }
11207 
11208 SkipIfEqual::~SkipIfEqual() {
11209   _masm->bind(_label);
11210 }
11211 
11212 // 32-bit Windows has its own fast-path implementation
11213 // of get_thread
11214 #if !defined(WIN32) || defined(_LP64)
11215 
11216 // This is simply a call to Thread::current()
11217 void MacroAssembler::get_thread(Register thread) {
11218   if (thread != rax) {
11219     push(rax);
11220   }
11221   LP64_ONLY(push(rdi);)
11222   LP64_ONLY(push(rsi);)
11223   push(rdx);
11224   push(rcx);
11225 #ifdef _LP64
11226   push(r8);
11227   push(r9);
11228   push(r10);
11229   push(r11);
11230 #endif
11231 
11232   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11233 
11234 #ifdef _LP64
11235   pop(r11);
11236   pop(r10);
11237   pop(r9);
11238   pop(r8);
11239 #endif
11240   pop(rcx);
11241   pop(rdx);
11242   LP64_ONLY(pop(rsi);)
11243   LP64_ONLY(pop(rdi);)
11244   if (thread != rax) {
11245     mov(thread, rax);
11246     pop(rax);
11247   }
11248 }
11249 
11250 #endif