< prev index next >

src/hotspot/share/gc/shared/genCollectedHeap.hpp

Print this page




 144 
 145   virtual void check_gen_kinds() = 0;
 146 
 147 public:
 148 
 149   // Returns JNI_OK on success
 150   virtual jint initialize();
 151 
 152   // Does operations required after initialization has been done.
 153   void post_initialize();
 154 
 155   Generation* young_gen() const { return _young_gen; }
 156   Generation* old_gen()   const { return _old_gen; }
 157 
 158   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 159   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 160 
 161   // The generational collector policy.
 162   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 163 
 164   CollectorPolicy* collector_policy() const { return gen_policy(); }
 165 
 166   // Adaptive size policy
 167   AdaptiveSizePolicy* size_policy() {
 168     return gen_policy()->size_policy();
 169   }
 170 
 171   // Return the (conservative) maximum heap alignment
 172   static size_t conservative_max_heap_alignment() {
 173     return Generation::GenGrain;
 174   }
 175 
 176   size_t capacity() const;
 177   size_t used() const;
 178 
 179   // Save the "used_region" for both generations.
 180   void save_used_regions();
 181 
 182   size_t max_capacity() const;
 183 
 184   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 185 
 186   // We may support a shared contiguous allocation area, if the youngest
 187   // generation does.


 200   // Perform a full collection of generations up to and including max_generation.
 201   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 202   void collect(GCCause::Cause cause, GenerationType max_generation);
 203 
 204   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 205   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 206   // be expensive to compute in general, so, to prevent
 207   // their inadvertent use in product jvm's, we restrict their use to
 208   // assertion checking or verification only.
 209   bool is_in(const void* p) const;
 210 
 211   // Returns true if the reference is to an object in the reserved space
 212   // for the young generation.
 213   // Assumes the the young gen address range is less than that of the old gen.
 214   bool is_in_young(oop p);
 215 
 216 #ifdef ASSERT
 217   bool is_in_partial_collection(const void* p);
 218 #endif
 219 
 220   bool is_scavengable(oop obj) {
 221     return is_in_young(obj);
 222   }
 223 
 224   // Optimized nmethod scanning support routines
 225   virtual void register_nmethod(nmethod* nm);
 226   virtual void verify_nmethod(nmethod* nmethod);
 227 
 228   // Iteration functions.
 229   void oop_iterate_no_header(OopClosure* cl);
 230   void oop_iterate(ExtendedOopClosure* cl);
 231   void object_iterate(ObjectClosure* cl);
 232   void safe_object_iterate(ObjectClosure* cl);
 233   Space* space_containing(const void* addr) const;
 234 
 235   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 236   // each address in the (reserved) heap is a member of exactly
 237   // one block.  The defining characteristic of a block is that it is
 238   // possible to find its size, and thus to progress forward to the next
 239   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 240   // represent Java objects, or they might be free blocks in a
 241   // free-list-based heap (or subheap), as long as the two kinds are
 242   // distinguishable and the size of each is determinable.
 243 
 244   // Returns the address of the start of the "block" that contains the
 245   // address "addr".  We say "blocks" instead of "object" since some heaps
 246   // may not pack objects densely; a chunk may either be an object or a
 247   // non-object.
 248   HeapWord* block_start(const void* addr) const;
 249 
 250   // Requires "addr" to be the start of a chunk, and returns its size.
 251   // "addr + size" is required to be the start of a new chunk, or the end
 252   // of the active area of the heap. Assumes (and verifies in non-product
 253   // builds) that addr is in the allocated part of the heap and is
 254   // the start of a chunk.
 255   size_t block_size(const HeapWord* addr) const;
 256 
 257   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 258   // the block is an object. Assumes (and verifies in non-product
 259   // builds) that addr is in the allocated part of the heap and is
 260   // the start of a chunk.
 261   bool block_is_obj(const HeapWord* addr) const;
 262 
 263   // Section on TLAB's.
 264   bool supports_tlab_allocation() const;
 265   size_t tlab_capacity(Thread* thr) const;
 266   size_t tlab_used(Thread* thr) const;
 267   size_t unsafe_max_tlab_alloc(Thread* thr) const;
 268   HeapWord* allocate_new_tlab(size_t size);
 269 
 270   // Can a compiler initialize a new object without store barriers?
 271   // This permission only extends from the creation of a new object
 272   // via a TLAB up to the first subsequent safepoint.
 273   bool can_elide_tlab_store_barriers() const {
 274     return true;
 275   }
 276 
 277   // We don't need barriers for stores to objects in the
 278   // young gen and, a fortiori, for initializing stores to
 279   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 280   // only and may need to be re-examined in case other
 281   // kinds of collectors are implemented in the future.
 282   bool can_elide_initializing_store_barrier(oop new_obj) {
 283     return is_in_young(new_obj);
 284   }
 285 
 286   // The "requestor" generation is performing some garbage collection
 287   // action for which it would be useful to have scratch space.  The
 288   // requestor promises to allocate no more than "max_alloc_words" in any
 289   // older generation (via promotion say.)   Any blocks of space that can
 290   // be provided are returned as a list of ScratchBlocks, sorted by
 291   // decreasing size.
 292   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 293   // Allow each generation to reset any scratch space that it has
 294   // contributed as it needs.
 295   void release_scratch();
 296 
 297   // Ensure parsability: override
 298   void ensure_parsability(bool retire_tlabs);
 299 
 300   // Time in ms since the longest time a collector ran in
 301   // in any generation.
 302   jlong millis_since_last_gc();
 303 
 304   // Total number of full collections completed.
 305   unsigned int total_full_collections_completed() {
 306     assert(_full_collections_completed <= _total_full_collections,
 307            "Can't complete more collections than were started");
 308     return _full_collections_completed;
 309   }
 310 
 311   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 312   unsigned int update_full_collections_completed();
 313   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 314   unsigned int update_full_collections_completed(unsigned int count);
 315 
 316   // Update "time of last gc" for all generations to "now".
 317   void update_time_of_last_gc(jlong now) {
 318     _young_gen->update_time_of_last_gc(now);
 319     _old_gen->update_time_of_last_gc(now);
 320   }
 321 
 322   // Update the gc statistics for each generation.
 323   void update_gc_stats(Generation* current_generation, bool full) {
 324     _old_gen->update_gc_stats(current_generation, full);
 325   }
 326 
 327   bool no_gc_in_progress() { return !is_gc_active(); }
 328 
 329   // Override.
 330   void prepare_for_verify();
 331 
 332   // Override.
 333   void verify(VerifyOption option);
 334 
 335   // Override.
 336   void print_on(outputStream* st) const;
 337   virtual void print_gc_threads_on(outputStream* st) const;
 338   virtual void gc_threads_do(ThreadClosure* tc) const;
 339   void print_tracing_info() const;
 340 
 341   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 342 
 343   // The functions below are helper functions that a subclass of
 344   // "CollectedHeap" can use in the implementation of its virtual
 345   // functions.
 346 
 347   class GenClosure : public StackObj {
 348    public:
 349     virtual void do_generation(Generation* gen) = 0;
 350   };
 351 
 352   // Apply "cl.do_generation" to all generations in the heap
 353   // If "old_to_young" determines the order.
 354   void generation_iterate(GenClosure* cl, bool old_to_young);
 355 
 356   // Return "true" if all generations have reached the
 357   // maximal committed limit that they can reach, without a garbage
 358   // collection.
 359   bool is_maximal_no_gc() const;
 360 
 361   // This function returns the CardTableRS object that allows us to scan
 362   // generations in a fully generational heap.
 363   CardTableRS* rem_set() { return _rem_set; }
 364 
 365   // Convenience function to be used in situations where the heap type can be
 366   // asserted to be this type.
 367   static GenCollectedHeap* heap();
 368 
 369   // The ScanningOption determines which of the roots
 370   // the closure is applied to:
 371   // "SO_None" does none;
 372   enum ScanningOption {
 373     SO_None                =  0x0,
 374     SO_AllCodeCache        =  0x8,
 375     SO_ScavengeCodeCache   = 0x10
 376   };
 377 
 378  protected:
 379   void process_roots(StrongRootsScope* scope,




 144 
 145   virtual void check_gen_kinds() = 0;
 146 
 147 public:
 148 
 149   // Returns JNI_OK on success
 150   virtual jint initialize();
 151 
 152   // Does operations required after initialization has been done.
 153   void post_initialize();
 154 
 155   Generation* young_gen() const { return _young_gen; }
 156   Generation* old_gen()   const { return _old_gen; }
 157 
 158   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 159   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 160 
 161   // The generational collector policy.
 162   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 163 
 164   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 165 
 166   // Adaptive size policy
 167   virtual AdaptiveSizePolicy* size_policy() {
 168     return gen_policy()->size_policy();
 169   }
 170 
 171   // Return the (conservative) maximum heap alignment
 172   static size_t conservative_max_heap_alignment() {
 173     return Generation::GenGrain;
 174   }
 175 
 176   size_t capacity() const;
 177   size_t used() const;
 178 
 179   // Save the "used_region" for both generations.
 180   void save_used_regions();
 181 
 182   size_t max_capacity() const;
 183 
 184   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 185 
 186   // We may support a shared contiguous allocation area, if the youngest
 187   // generation does.


 200   // Perform a full collection of generations up to and including max_generation.
 201   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 202   void collect(GCCause::Cause cause, GenerationType max_generation);
 203 
 204   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 205   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 206   // be expensive to compute in general, so, to prevent
 207   // their inadvertent use in product jvm's, we restrict their use to
 208   // assertion checking or verification only.
 209   bool is_in(const void* p) const;
 210 
 211   // Returns true if the reference is to an object in the reserved space
 212   // for the young generation.
 213   // Assumes the the young gen address range is less than that of the old gen.
 214   bool is_in_young(oop p);
 215 
 216 #ifdef ASSERT
 217   bool is_in_partial_collection(const void* p);
 218 #endif
 219 
 220   virtual bool is_scavengable(oop obj) {
 221     return is_in_young(obj);
 222   }
 223 
 224   // Optimized nmethod scanning support routines
 225   virtual void register_nmethod(nmethod* nm);
 226   virtual void verify_nmethod(nmethod* nmethod);
 227 
 228   // Iteration functions.
 229   void oop_iterate_no_header(OopClosure* cl);
 230   void oop_iterate(ExtendedOopClosure* cl);
 231   void object_iterate(ObjectClosure* cl);
 232   void safe_object_iterate(ObjectClosure* cl);
 233   Space* space_containing(const void* addr) const;
 234 
 235   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 236   // each address in the (reserved) heap is a member of exactly
 237   // one block.  The defining characteristic of a block is that it is
 238   // possible to find its size, and thus to progress forward to the next
 239   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 240   // represent Java objects, or they might be free blocks in a
 241   // free-list-based heap (or subheap), as long as the two kinds are
 242   // distinguishable and the size of each is determinable.
 243 
 244   // Returns the address of the start of the "block" that contains the
 245   // address "addr".  We say "blocks" instead of "object" since some heaps
 246   // may not pack objects densely; a chunk may either be an object or a
 247   // non-object.
 248   virtual HeapWord* block_start(const void* addr) const;
 249 
 250   // Requires "addr" to be the start of a chunk, and returns its size.
 251   // "addr + size" is required to be the start of a new chunk, or the end
 252   // of the active area of the heap. Assumes (and verifies in non-product
 253   // builds) that addr is in the allocated part of the heap and is
 254   // the start of a chunk.
 255   virtual size_t block_size(const HeapWord* addr) const;
 256 
 257   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 258   // the block is an object. Assumes (and verifies in non-product
 259   // builds) that addr is in the allocated part of the heap and is
 260   // the start of a chunk.
 261   virtual bool block_is_obj(const HeapWord* addr) const;
 262 
 263   // Section on TLAB's.
 264   virtual bool supports_tlab_allocation() const;
 265   virtual size_t tlab_capacity(Thread* thr) const;
 266   virtual size_t tlab_used(Thread* thr) const;
 267   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 268   virtual HeapWord* allocate_new_tlab(size_t size);
 269 
 270   // Can a compiler initialize a new object without store barriers?
 271   // This permission only extends from the creation of a new object
 272   // via a TLAB up to the first subsequent safepoint.
 273   virtual bool can_elide_tlab_store_barriers() const {
 274     return true;
 275   }
 276 
 277   // We don't need barriers for stores to objects in the
 278   // young gen and, a fortiori, for initializing stores to
 279   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 280   // only and may need to be re-examined in case other
 281   // kinds of collectors are implemented in the future.
 282   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 283     return is_in_young(new_obj);
 284   }
 285 
 286   // The "requestor" generation is performing some garbage collection
 287   // action for which it would be useful to have scratch space.  The
 288   // requestor promises to allocate no more than "max_alloc_words" in any
 289   // older generation (via promotion say.)   Any blocks of space that can
 290   // be provided are returned as a list of ScratchBlocks, sorted by
 291   // decreasing size.
 292   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 293   // Allow each generation to reset any scratch space that it has
 294   // contributed as it needs.
 295   void release_scratch();
 296 
 297   // Ensure parsability: override
 298   virtual void ensure_parsability(bool retire_tlabs);
 299 
 300   // Time in ms since the longest time a collector ran in
 301   // in any generation.
 302   virtual jlong millis_since_last_gc();
 303 
 304   // Total number of full collections completed.
 305   unsigned int total_full_collections_completed() {
 306     assert(_full_collections_completed <= _total_full_collections,
 307            "Can't complete more collections than were started");
 308     return _full_collections_completed;
 309   }
 310 
 311   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 312   unsigned int update_full_collections_completed();
 313   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 314   unsigned int update_full_collections_completed(unsigned int count);
 315 
 316   // Update "time of last gc" for all generations to "now".
 317   void update_time_of_last_gc(jlong now) {
 318     _young_gen->update_time_of_last_gc(now);
 319     _old_gen->update_time_of_last_gc(now);
 320   }
 321 
 322   // Update the gc statistics for each generation.
 323   void update_gc_stats(Generation* current_generation, bool full) {
 324     _old_gen->update_gc_stats(current_generation, full);
 325   }
 326 
 327   bool no_gc_in_progress() { return !is_gc_active(); }
 328 
 329   // Override.
 330   void prepare_for_verify();
 331 
 332   // Override.
 333   void verify(VerifyOption option);
 334 
 335   // Override.
 336   virtual void print_on(outputStream* st) const;
 337   virtual void print_gc_threads_on(outputStream* st) const;
 338   virtual void gc_threads_do(ThreadClosure* tc) const;
 339   virtual void print_tracing_info() const;
 340 
 341   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 342 
 343   // The functions below are helper functions that a subclass of
 344   // "CollectedHeap" can use in the implementation of its virtual
 345   // functions.
 346 
 347   class GenClosure : public StackObj {
 348    public:
 349     virtual void do_generation(Generation* gen) = 0;
 350   };
 351 
 352   // Apply "cl.do_generation" to all generations in the heap
 353   // If "old_to_young" determines the order.
 354   void generation_iterate(GenClosure* cl, bool old_to_young);
 355 
 356   // Return "true" if all generations have reached the
 357   // maximal committed limit that they can reach, without a garbage
 358   // collection.
 359   virtual bool is_maximal_no_gc() const;
 360 
 361   // This function returns the CardTableRS object that allows us to scan
 362   // generations in a fully generational heap.
 363   CardTableRS* rem_set() { return _rem_set; }
 364 
 365   // Convenience function to be used in situations where the heap type can be
 366   // asserted to be this type.
 367   static GenCollectedHeap* heap();
 368 
 369   // The ScanningOption determines which of the roots
 370   // the closure is applied to:
 371   // "SO_None" does none;
 372   enum ScanningOption {
 373     SO_None                =  0x0,
 374     SO_AllCodeCache        =  0x8,
 375     SO_ScavengeCodeCache   = 0x10
 376   };
 377 
 378  protected:
 379   void process_roots(StrongRootsScope* scope,


< prev index next >