1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 
  38 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  39 // is an abstract class: there may be many different kinds of heaps.  This
  40 // class defines the functions that a heap must implement, and contains
  41 // infrastructure common to all heaps.
  42 
  43 class AdaptiveSizePolicy;
  44 class BarrierSet;
  45 class CollectorPolicy;
  46 class GCHeapSummary;
  47 class GCTimer;
  48 class GCTracer;
  49 class MetaspaceSummary;
  50 class Thread;
  51 class ThreadClosure;
  52 class VirtualSpaceSummary;
  53 class WorkGang;
  54 class nmethod;
  55 
  56 class GCMessage : public FormatBuffer<1024> {
  57  public:
  58   bool is_before;
  59 
  60  public:
  61   GCMessage() {}
  62 };
  63 
  64 class CollectedHeap;
  65 
  66 class GCHeapLog : public EventLogBase<GCMessage> {
  67  private:
  68   void log_heap(CollectedHeap* heap, bool before);
  69 
  70  public:
  71   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  72 
  73   void log_heap_before(CollectedHeap* heap) {
  74     log_heap(heap, true);
  75   }
  76   void log_heap_after(CollectedHeap* heap) {
  77     log_heap(heap, false);
  78   }
  79 };
  80 
  81 //
  82 // CollectedHeap
  83 //   GenCollectedHeap
  84 //   G1CollectedHeap
  85 //   ParallelScavengeHeap
  86 //
  87 class CollectedHeap : public CHeapObj<mtInternal> {
  88   friend class VMStructs;
  89   friend class JVMCIVMStructs;
  90   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  91 
  92  private:
  93 #ifdef ASSERT
  94   static int       _fire_out_of_memory_count;
  95 #endif
  96 
  97   GCHeapLog* _gc_heap_log;
  98 
  99   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 100   // or INCLUDE_JVMCI is being used
 101   bool _defer_initial_card_mark;
 102 
 103   MemRegion _reserved;
 104 
 105   WorkGang* _safepoint_workers;
 106 
 107  protected:
 108   BarrierSet* _barrier_set;
 109   bool _is_gc_active;
 110 
 111   // Used for filler objects (static, but initialized in ctor).
 112   static size_t _filler_array_max_size;
 113 
 114   unsigned int _total_collections;          // ... started
 115   unsigned int _total_full_collections;     // ... started
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 117   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 118 
 119   // Reason for current garbage collection.  Should be set to
 120   // a value reflecting no collection between collections.
 121   GCCause::Cause _gc_cause;
 122   GCCause::Cause _gc_lastcause;
 123   PerfStringVariable* _perf_gc_cause;
 124   PerfStringVariable* _perf_gc_lastcause;
 125 
 126   // Constructor
 127   CollectedHeap();
 128 
 129   // Do common initializations that must follow instance construction,
 130   // for example, those needing virtual calls.
 131   // This code could perhaps be moved into initialize() but would
 132   // be slightly more awkward because we want the latter to be a
 133   // pure virtual.
 134   void pre_initialize();
 135 
 136   // Create a new tlab. All TLAB allocations must go through this.
 137   virtual HeapWord* allocate_new_tlab(size_t size);
 138 
 139   // Accumulate statistics on all tlabs.
 140   virtual void accumulate_statistics_all_tlabs();
 141 
 142   // Reinitialize tlabs before resuming mutators.
 143   virtual void resize_all_tlabs();
 144 
 145   // Allocate from the current thread's TLAB, with broken-out slow path.
 146   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 147   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 148 
 149   // Allocate an uninitialized block of the given size, or returns NULL if
 150   // this is impossible.
 151   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 152 
 153   // Like allocate_init, but the block returned by a successful allocation
 154   // is guaranteed initialized to zeros.
 155   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 156 
 157   // Helper functions for (VM) allocation.
 158   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 159   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 160                                                             HeapWord* objPtr);
 161 
 162   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 163 
 164   inline static void post_allocation_setup_array(Klass* klass,
 165                                                  HeapWord* obj, int length);
 166 
 167   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 168 
 169   // Clears an allocated object.
 170   inline static void init_obj(HeapWord* obj, size_t size);
 171 
 172   // Filler object utilities.
 173   static inline size_t filler_array_hdr_size();
 174   static inline size_t filler_array_min_size();
 175 
 176   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 177   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 178 
 179   // Fill with a single array; caller must ensure filler_array_min_size() <=
 180   // words <= filler_array_max_size().
 181   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 182 
 183   // Fill with a single object (either an int array or a java.lang.Object).
 184   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 185 
 186   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 187 
 188   // Verification functions
 189   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 190     PRODUCT_RETURN;
 191   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 192     PRODUCT_RETURN;
 193   debug_only(static void check_for_valid_allocation_state();)
 194 
 195  public:
 196   enum Name {
 197     GenCollectedHeap,
 198     ParallelScavengeHeap,
 199     G1CollectedHeap
 200   };
 201 
 202   static inline size_t filler_array_max_size() {
 203     return _filler_array_max_size;
 204   }
 205 
 206   virtual Name kind() const = 0;
 207 
 208   virtual const char* name() const = 0;
 209 
 210   /**
 211    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 212    * and JNI_OK on success.
 213    */
 214   virtual jint initialize() = 0;
 215 
 216   // In many heaps, there will be a need to perform some initialization activities
 217   // after the Universe is fully formed, but before general heap allocation is allowed.
 218   // This is the correct place to place such initialization methods.
 219   virtual void post_initialize() = 0;
 220 
 221   // Stop any onging concurrent work and prepare for exit.
 222   virtual void stop() {}
 223 
 224   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 225   MemRegion reserved_region() const { return _reserved; }
 226   address base() const { return (address)reserved_region().start(); }
 227 
 228   virtual size_t capacity() const = 0;
 229   virtual size_t used() const = 0;
 230 
 231   // Return "true" if the part of the heap that allocates Java
 232   // objects has reached the maximal committed limit that it can
 233   // reach, without a garbage collection.
 234   virtual bool is_maximal_no_gc() const = 0;
 235 
 236   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 237   // memory that the vm could make available for storing 'normal' java objects.
 238   // This is based on the reserved address space, but should not include space
 239   // that the vm uses internally for bookkeeping or temporary storage
 240   // (e.g., in the case of the young gen, one of the survivor
 241   // spaces).
 242   virtual size_t max_capacity() const = 0;
 243 
 244   // Returns "TRUE" if "p" points into the reserved area of the heap.
 245   bool is_in_reserved(const void* p) const {
 246     return _reserved.contains(p);
 247   }
 248 
 249   bool is_in_reserved_or_null(const void* p) const {
 250     return p == NULL || is_in_reserved(p);
 251   }
 252 
 253   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 254   // This method can be expensive so avoid using it in performance critical
 255   // code.
 256   virtual bool is_in(const void* p) const = 0;
 257 
 258   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 259 
 260   // Let's define some terms: a "closed" subset of a heap is one that
 261   //
 262   // 1) contains all currently-allocated objects, and
 263   //
 264   // 2) is closed under reference: no object in the closed subset
 265   //    references one outside the closed subset.
 266   //
 267   // Membership in a heap's closed subset is useful for assertions.
 268   // Clearly, the entire heap is a closed subset, so the default
 269   // implementation is to use "is_in_reserved".  But this may not be too
 270   // liberal to perform useful checking.  Also, the "is_in" predicate
 271   // defines a closed subset, but may be too expensive, since "is_in"
 272   // verifies that its argument points to an object head.  The
 273   // "closed_subset" method allows a heap to define an intermediate
 274   // predicate, allowing more precise checking than "is_in_reserved" at
 275   // lower cost than "is_in."
 276 
 277   // One important case is a heap composed of disjoint contiguous spaces,
 278   // such as the Garbage-First collector.  Such heaps have a convenient
 279   // closed subset consisting of the allocated portions of those
 280   // contiguous spaces.
 281 
 282   // Return "TRUE" iff the given pointer points into the heap's defined
 283   // closed subset (which defaults to the entire heap).
 284   virtual bool is_in_closed_subset(const void* p) const {
 285     return is_in_reserved(p);
 286   }
 287 
 288   bool is_in_closed_subset_or_null(const void* p) const {
 289     return p == NULL || is_in_closed_subset(p);
 290   }
 291 
 292   // An object is scavengable if its location may move during a scavenge.
 293   // (A scavenge is a GC which is not a full GC.)
 294   virtual bool is_scavengable(const void *p) = 0;
 295 
 296   void set_gc_cause(GCCause::Cause v) {
 297      if (UsePerfData) {
 298        _gc_lastcause = _gc_cause;
 299        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 300        _perf_gc_cause->set_value(GCCause::to_string(v));
 301      }
 302     _gc_cause = v;
 303   }
 304   GCCause::Cause gc_cause() { return _gc_cause; }
 305 
 306   // General obj/array allocation facilities.
 307   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 308   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 309   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 310   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 311 
 312   // Raw memory allocation facilities
 313   // The obj and array allocate methods are covers for these methods.
 314   // mem_allocate() should never be
 315   // called to allocate TLABs, only individual objects.
 316   virtual HeapWord* mem_allocate(size_t size,
 317                                  bool* gc_overhead_limit_was_exceeded) = 0;
 318 
 319   // Utilities for turning raw memory into filler objects.
 320   //
 321   // min_fill_size() is the smallest region that can be filled.
 322   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 323   // multiple objects.  fill_with_object() is for regions known to be smaller
 324   // than the largest array of integers; it uses a single object to fill the
 325   // region and has slightly less overhead.
 326   static size_t min_fill_size() {
 327     return size_t(align_object_size(oopDesc::header_size()));
 328   }
 329 
 330   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 331 
 332   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 333   static void fill_with_object(MemRegion region, bool zap = true) {
 334     fill_with_object(region.start(), region.word_size(), zap);
 335   }
 336   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 337     fill_with_object(start, pointer_delta(end, start), zap);
 338   }
 339 
 340   // Return the address "addr" aligned by "alignment_in_bytes" if such
 341   // an address is below "end".  Return NULL otherwise.
 342   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 343                                                    HeapWord* end,
 344                                                    unsigned short alignment_in_bytes);
 345 
 346   // Some heaps may offer a contiguous region for shared non-blocking
 347   // allocation, via inlined code (by exporting the address of the top and
 348   // end fields defining the extent of the contiguous allocation region.)
 349 
 350   // This function returns "true" iff the heap supports this kind of
 351   // allocation.  (Default is "no".)
 352   virtual bool supports_inline_contig_alloc() const {
 353     return false;
 354   }
 355   // These functions return the addresses of the fields that define the
 356   // boundaries of the contiguous allocation area.  (These fields should be
 357   // physically near to one another.)
 358   virtual HeapWord* volatile* top_addr() const {
 359     guarantee(false, "inline contiguous allocation not supported");
 360     return NULL;
 361   }
 362   virtual HeapWord** end_addr() const {
 363     guarantee(false, "inline contiguous allocation not supported");
 364     return NULL;
 365   }
 366 
 367   // Some heaps may be in an unparseable state at certain times between
 368   // collections. This may be necessary for efficient implementation of
 369   // certain allocation-related activities. Calling this function before
 370   // attempting to parse a heap ensures that the heap is in a parsable
 371   // state (provided other concurrent activity does not introduce
 372   // unparsability). It is normally expected, therefore, that this
 373   // method is invoked with the world stopped.
 374   // NOTE: if you override this method, make sure you call
 375   // super::ensure_parsability so that the non-generational
 376   // part of the work gets done. See implementation of
 377   // CollectedHeap::ensure_parsability and, for instance,
 378   // that of GenCollectedHeap::ensure_parsability().
 379   // The argument "retire_tlabs" controls whether existing TLABs
 380   // are merely filled or also retired, thus preventing further
 381   // allocation from them and necessitating allocation of new TLABs.
 382   virtual void ensure_parsability(bool retire_tlabs);
 383 
 384   // Section on thread-local allocation buffers (TLABs)
 385   // If the heap supports thread-local allocation buffers, it should override
 386   // the following methods:
 387   // Returns "true" iff the heap supports thread-local allocation buffers.
 388   // The default is "no".
 389   virtual bool supports_tlab_allocation() const = 0;
 390 
 391   // The amount of space available for thread-local allocation buffers.
 392   virtual size_t tlab_capacity(Thread *thr) const = 0;
 393 
 394   // The amount of used space for thread-local allocation buffers for the given thread.
 395   virtual size_t tlab_used(Thread *thr) const = 0;
 396 
 397   virtual size_t max_tlab_size() const;
 398 
 399   // An estimate of the maximum allocation that could be performed
 400   // for thread-local allocation buffers without triggering any
 401   // collection or expansion activity.
 402   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 403     guarantee(false, "thread-local allocation buffers not supported");
 404     return 0;
 405   }
 406 
 407   // Can a compiler initialize a new object without store barriers?
 408   // This permission only extends from the creation of a new object
 409   // via a TLAB up to the first subsequent safepoint. If such permission
 410   // is granted for this heap type, the compiler promises to call
 411   // defer_store_barrier() below on any slow path allocation of
 412   // a new object for which such initializing store barriers will
 413   // have been elided.
 414   virtual bool can_elide_tlab_store_barriers() const = 0;
 415 
 416   // If a compiler is eliding store barriers for TLAB-allocated objects,
 417   // there is probably a corresponding slow path which can produce
 418   // an object allocated anywhere.  The compiler's runtime support
 419   // promises to call this function on such a slow-path-allocated
 420   // object before performing initializations that have elided
 421   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 422   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 423 
 424   // Answers whether an initializing store to a new object currently
 425   // allocated at the given address doesn't need a store
 426   // barrier. Returns "true" if it doesn't need an initializing
 427   // store barrier; answers "false" if it does.
 428   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 429 
 430   // If a compiler is eliding store barriers for TLAB-allocated objects,
 431   // we will be informed of a slow-path allocation by a call
 432   // to new_store_pre_barrier() above. Such a call precedes the
 433   // initialization of the object itself, and no post-store-barriers will
 434   // be issued. Some heap types require that the barrier strictly follows
 435   // the initializing stores. (This is currently implemented by deferring the
 436   // barrier until the next slow-path allocation or gc-related safepoint.)
 437   // This interface answers whether a particular heap type needs the card
 438   // mark to be thus strictly sequenced after the stores.
 439   virtual bool card_mark_must_follow_store() const = 0;
 440 
 441   // If the CollectedHeap was asked to defer a store barrier above,
 442   // this informs it to flush such a deferred store barrier to the
 443   // remembered set.
 444   virtual void flush_deferred_store_barrier(JavaThread* thread);
 445 
 446   // Perform a collection of the heap; intended for use in implementing
 447   // "System.gc".  This probably implies as full a collection as the
 448   // "CollectedHeap" supports.
 449   virtual void collect(GCCause::Cause cause) = 0;
 450 
 451   // Perform a full collection
 452   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 453 
 454   // This interface assumes that it's being called by the
 455   // vm thread. It collects the heap assuming that the
 456   // heap lock is already held and that we are executing in
 457   // the context of the vm thread.
 458   virtual void collect_as_vm_thread(GCCause::Cause cause);
 459 
 460   // Returns the barrier set for this heap
 461   BarrierSet* barrier_set() { return _barrier_set; }
 462   void set_barrier_set(BarrierSet* barrier_set);
 463 
 464   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 465   // that it should answer "false" for the concurrent part of a concurrent
 466   // collector -- dld).
 467   bool is_gc_active() const { return _is_gc_active; }
 468 
 469   // Total number of GC collections (started)
 470   unsigned int total_collections() const { return _total_collections; }
 471   unsigned int total_full_collections() const { return _total_full_collections;}
 472 
 473   // Increment total number of GC collections (started)
 474   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 475   void increment_total_collections(bool full = false) {
 476     _total_collections++;
 477     if (full) {
 478       increment_total_full_collections();
 479     }
 480   }
 481 
 482   void increment_total_full_collections() { _total_full_collections++; }
 483 
 484   // Return the CollectorPolicy for the heap
 485   virtual CollectorPolicy* collector_policy() const = 0;
 486 
 487   // Iterate over all objects, calling "cl.do_object" on each.
 488   virtual void object_iterate(ObjectClosure* cl) = 0;
 489 
 490   // Similar to object_iterate() except iterates only
 491   // over live objects.
 492   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 493 
 494   // NOTE! There is no requirement that a collector implement these
 495   // functions.
 496   //
 497   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 498   // each address in the (reserved) heap is a member of exactly
 499   // one block.  The defining characteristic of a block is that it is
 500   // possible to find its size, and thus to progress forward to the next
 501   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 502   // represent Java objects, or they might be free blocks in a
 503   // free-list-based heap (or subheap), as long as the two kinds are
 504   // distinguishable and the size of each is determinable.
 505 
 506   // Returns the address of the start of the "block" that contains the
 507   // address "addr".  We say "blocks" instead of "object" since some heaps
 508   // may not pack objects densely; a chunk may either be an object or a
 509   // non-object.
 510   virtual HeapWord* block_start(const void* addr) const = 0;
 511 
 512   // Requires "addr" to be the start of a chunk, and returns its size.
 513   // "addr + size" is required to be the start of a new chunk, or the end
 514   // of the active area of the heap.
 515   virtual size_t block_size(const HeapWord* addr) const = 0;
 516 
 517   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 518   // the block is an object.
 519   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 520 
 521   // Returns the longest time (in ms) that has elapsed since the last
 522   // time that any part of the heap was examined by a garbage collection.
 523   virtual jlong millis_since_last_gc() = 0;
 524 
 525   // Perform any cleanup actions necessary before allowing a verification.
 526   virtual void prepare_for_verify() = 0;
 527 
 528   // Generate any dumps preceding or following a full gc
 529  private:
 530   void full_gc_dump(GCTimer* timer, bool before);
 531  public:
 532   void pre_full_gc_dump(GCTimer* timer);
 533   void post_full_gc_dump(GCTimer* timer);
 534 
 535   VirtualSpaceSummary create_heap_space_summary();
 536   GCHeapSummary create_heap_summary();
 537 
 538   MetaspaceSummary create_metaspace_summary();
 539 
 540   // Print heap information on the given outputStream.
 541   virtual void print_on(outputStream* st) const = 0;
 542   // The default behavior is to call print_on() on tty.
 543   virtual void print() const {
 544     print_on(tty);
 545   }
 546   // Print more detailed heap information on the given
 547   // outputStream. The default behavior is to call print_on(). It is
 548   // up to each subclass to override it and add any additional output
 549   // it needs.
 550   virtual void print_extended_on(outputStream* st) const {
 551     print_on(st);
 552   }
 553 
 554   virtual void print_on_error(outputStream* st) const;
 555 
 556   // Print all GC threads (other than the VM thread)
 557   // used by this heap.
 558   virtual void print_gc_threads_on(outputStream* st) const = 0;
 559   // The default behavior is to call print_gc_threads_on() on tty.
 560   void print_gc_threads() {
 561     print_gc_threads_on(tty);
 562   }
 563   // Iterator for all GC threads (other than VM thread)
 564   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 565 
 566   // Print any relevant tracing info that flags imply.
 567   // Default implementation does nothing.
 568   virtual void print_tracing_info() const = 0;
 569 
 570   void print_heap_before_gc();
 571   void print_heap_after_gc();
 572 
 573   // Registering and unregistering an nmethod (compiled code) with the heap.
 574   // Override with specific mechanism for each specialized heap type.
 575   virtual void register_nmethod(nmethod* nm);
 576   virtual void unregister_nmethod(nmethod* nm);
 577 
 578   void trace_heap_before_gc(const GCTracer* gc_tracer);
 579   void trace_heap_after_gc(const GCTracer* gc_tracer);
 580 
 581   // Heap verification
 582   virtual void verify(VerifyOption option) = 0;
 583 
 584   // Return true if concurrent phase control (via
 585   // request_concurrent_phase_control) is supported by this collector.
 586   // The default implementation returns false.
 587   virtual bool supports_concurrent_phase_control() const;
 588 
 589   // Return a NULL terminated array of concurrent phase names provided
 590   // by this collector.  Supports Whitebox testing.  These are the
 591   // names recognized by request_concurrent_phase(). The default
 592   // implementation returns an array of one NULL element.
 593   virtual const char* const* concurrent_phases() const;
 594 
 595   // Request the collector enter the indicated concurrent phase, and
 596   // wait until it does so.  Supports WhiteBox testing.  Only one
 597   // request may be active at a time.  Phases are designated by name;
 598   // the set of names and their meaning is GC-specific.  Once the
 599   // requested phase has been reached, the collector will attempt to
 600   // avoid transitioning to a new phase until a new request is made.
 601   // [Note: A collector might not be able to remain in a given phase.
 602   // For example, a full collection might cancel an in-progress
 603   // concurrent collection.]
 604   //
 605   // Returns true when the phase is reached.  Returns false for an
 606   // unknown phase.  The default implementation returns false.
 607   virtual bool request_concurrent_phase(const char* phase);
 608 
 609   // Provides a thread pool to SafepointSynchronize to use
 610   // for parallel safepoint cleanup.
 611   // GCs that use a GC worker thread pool may want to share
 612   // it for use during safepoint cleanup. This is only possible
 613   // if the GC can pause and resume concurrent work (e.g. G1
 614   // concurrent marking) for an intermittent non-GC safepoint.
 615   // If this method returns NULL, SafepointSynchronize will
 616   // perform cleanup tasks serially in the VMThread.
 617   virtual WorkGang* get_safepoint_workers() { return _safepoint_workers; }
 618 
 619   // Non product verification and debugging.
 620 #ifndef PRODUCT
 621   // Support for PromotionFailureALot.  Return true if it's time to cause a
 622   // promotion failure.  The no-argument version uses
 623   // this->_promotion_failure_alot_count as the counter.
 624   inline bool promotion_should_fail(volatile size_t* count);
 625   inline bool promotion_should_fail();
 626 
 627   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 628   // GC in which promotion failure occurred.
 629   inline void reset_promotion_should_fail(volatile size_t* count);
 630   inline void reset_promotion_should_fail();
 631 #endif  // #ifndef PRODUCT
 632 
 633 #ifdef ASSERT
 634   static int fired_fake_oom() {
 635     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 636   }
 637 #endif
 638 
 639  public:
 640   // Copy the current allocation context statistics for the specified contexts.
 641   // For each context in contexts, set the corresponding entries in the totals
 642   // and accuracy arrays to the current values held by the statistics.  Each
 643   // array should be of length len.
 644   // Returns true if there are more stats available.
 645   virtual bool copy_allocation_context_stats(const jint* contexts,
 646                                              jlong* totals,
 647                                              jbyte* accuracy,
 648                                              jint len) {
 649     return false;
 650   }
 651 
 652 };
 653 
 654 // Class to set and reset the GC cause for a CollectedHeap.
 655 
 656 class GCCauseSetter : StackObj {
 657   CollectedHeap* _heap;
 658   GCCause::Cause _previous_cause;
 659  public:
 660   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 661     assert(SafepointSynchronize::is_at_safepoint(),
 662            "This method manipulates heap state without locking");
 663     _heap = heap;
 664     _previous_cause = _heap->gc_cause();
 665     _heap->set_gc_cause(cause);
 666   }
 667 
 668   ~GCCauseSetter() {
 669     assert(SafepointSynchronize::is_at_safepoint(),
 670           "This method manipulates heap state without locking");
 671     _heap->set_gc_cause(_previous_cause);
 672   }
 673 };
 674 
 675 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP