1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86_32.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodDataOop.hpp"
  32 #include "oops/methodOop.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #ifdef TARGET_OS_FAMILY_linux
  40 # include "thread_linux.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_solaris
  43 # include "thread_solaris.inline.hpp"
  44 #endif
  45 #ifdef TARGET_OS_FAMILY_windows
  46 # include "thread_windows.inline.hpp"
  47 #endif
  48 
  49 
  50 // Implementation of InterpreterMacroAssembler
  51 #ifdef CC_INTERP
  52 void InterpreterMacroAssembler::get_method(Register reg) {
  53   movptr(reg, Address(rbp, -(sizeof(BytecodeInterpreter) + 2 * wordSize)));
  54   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  55 }
  56 #endif // CC_INTERP
  57 
  58 
  59 #ifndef CC_INTERP
  60 void InterpreterMacroAssembler::call_VM_leaf_base(
  61   address entry_point,
  62   int     number_of_arguments
  63 ) {
  64   // interpreter specific
  65   //
  66   // Note: No need to save/restore bcp & locals (rsi & rdi) pointer
  67   //       since these are callee saved registers and no blocking/
  68   //       GC can happen in leaf calls.
  69   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  70   // already saved them so that it can use rsi/rdi as temporaries
  71   // then a save/restore here will DESTROY the copy the caller
  72   // saved! There used to be a save_bcp() that only happened in
  73   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  74   // when jvm built with ASSERTs.
  75 #ifdef ASSERT
  76   { Label L;
  77     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  78     jcc(Assembler::equal, L);
  79     stop("InterpreterMacroAssembler::call_VM_leaf_base: last_sp != NULL");
  80     bind(L);
  81   }
  82 #endif
  83   // super call
  84   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  85   // interpreter specific
  86 
  87   // Used to ASSERT that rsi/rdi were equal to frame's bcp/locals
  88   // but since they may not have been saved (and we don't want to
  89   // save them here (see note above) the assert is invalid.
  90 }
  91 
  92 
  93 void InterpreterMacroAssembler::call_VM_base(
  94   Register oop_result,
  95   Register java_thread,
  96   Register last_java_sp,
  97   address  entry_point,
  98   int      number_of_arguments,
  99   bool     check_exceptions
 100 ) {
 101 #ifdef ASSERT
 102   { Label L;
 103     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 104     jcc(Assembler::equal, L);
 105     stop("InterpreterMacroAssembler::call_VM_base: last_sp != NULL");
 106     bind(L);
 107   }
 108 #endif /* ASSERT */
 109   // interpreter specific
 110   //
 111   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
 112   //       really make a difference for these runtime calls, since they are
 113   //       slow anyway. Btw., bcp must be saved/restored since it may change
 114   //       due to GC.
 115   assert(java_thread == noreg , "not expecting a precomputed java thread");
 116   save_bcp();
 117   // super call
 118   MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
 119   // interpreter specific
 120   restore_bcp();
 121   restore_locals();
 122 }
 123 
 124 
 125 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 126   if (JvmtiExport::can_pop_frame()) {
 127     Label L;
 128     // Initiate popframe handling only if it is not already being processed.  If the flag
 129     // has the popframe_processing bit set, it means that this code is called *during* popframe
 130     // handling - we don't want to reenter.
 131     Register pop_cond = java_thread;  // Not clear if any other register is available...
 132     movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
 133     testl(pop_cond, JavaThread::popframe_pending_bit);
 134     jcc(Assembler::zero, L);
 135     testl(pop_cond, JavaThread::popframe_processing_bit);
 136     jcc(Assembler::notZero, L);
 137     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 138     // address of the same-named entrypoint in the generated interpreter code.
 139     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 140     jmp(rax);
 141     bind(L);
 142     get_thread(java_thread);
 143   }
 144 }
 145 
 146 
 147 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 148   get_thread(rcx);
 149   movl(rcx, Address(rcx, JavaThread::jvmti_thread_state_offset()));
 150   const Address tos_addr (rcx, JvmtiThreadState::earlyret_tos_offset());
 151   const Address oop_addr (rcx, JvmtiThreadState::earlyret_oop_offset());
 152   const Address val_addr (rcx, JvmtiThreadState::earlyret_value_offset());
 153   const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
 154                              + in_ByteSize(wordSize));
 155   switch (state) {
 156     case atos: movptr(rax, oop_addr);
 157                movptr(oop_addr, NULL_WORD);
 158                verify_oop(rax, state);                break;
 159     case ltos:
 160                movl(rdx, val_addr1);               // fall through
 161     case btos:                                     // fall through
 162     case ctos:                                     // fall through
 163     case stos:                                     // fall through
 164     case itos: movl(rax, val_addr);                   break;
 165     case ftos: fld_s(val_addr);                       break;
 166     case dtos: fld_d(val_addr);                       break;
 167     case vtos: /* nothing to do */                    break;
 168     default  : ShouldNotReachHere();
 169   }
 170   // Clean up tos value in the thread object
 171   movl(tos_addr,  (int32_t) ilgl);
 172   movptr(val_addr,  NULL_WORD);
 173   NOT_LP64(movptr(val_addr1, NULL_WORD));
 174 }
 175 
 176 
 177 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 178   if (JvmtiExport::can_force_early_return()) {
 179     Label L;
 180     Register tmp = java_thread;
 181     movptr(tmp, Address(tmp, JavaThread::jvmti_thread_state_offset()));
 182     testptr(tmp, tmp);
 183     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 184 
 185     // Initiate earlyret handling only if it is not already being processed.
 186     // If the flag has the earlyret_processing bit set, it means that this code
 187     // is called *during* earlyret handling - we don't want to reenter.
 188     movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
 189     cmpl(tmp, JvmtiThreadState::earlyret_pending);
 190     jcc(Assembler::notEqual, L);
 191 
 192     // Call Interpreter::remove_activation_early_entry() to get the address of the
 193     // same-named entrypoint in the generated interpreter code.
 194     get_thread(java_thread);
 195     movptr(tmp, Address(java_thread, JavaThread::jvmti_thread_state_offset()));
 196     pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
 197     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
 198     jmp(rax);
 199     bind(L);
 200     get_thread(java_thread);
 201   }
 202 }
 203 
 204 
 205 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
 206   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 207   movl(reg, Address(rsi, bcp_offset));
 208   bswapl(reg);
 209   shrl(reg, 16);
 210 }
 211 
 212 
 213 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register reg, int bcp_offset, size_t index_size) {
 214   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 215   if (index_size == sizeof(u2)) {
 216     load_unsigned_short(reg, Address(rsi, bcp_offset));
 217   } else if (index_size == sizeof(u4)) {
 218     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 219     movl(reg, Address(rsi, bcp_offset));
 220     // Check if the secondary index definition is still ~x, otherwise
 221     // we have to change the following assembler code to calculate the
 222     // plain index.
 223     assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
 224     notl(reg);  // convert to plain index
 225   } else if (index_size == sizeof(u1)) {
 226     assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
 227     load_unsigned_byte(reg, Address(rsi, bcp_offset));
 228   } else {
 229     ShouldNotReachHere();
 230   }
 231 }
 232 
 233 
 234 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register index,
 235                                                            int bcp_offset, size_t index_size) {
 236   assert(cache != index, "must use different registers");
 237   get_cache_index_at_bcp(index, bcp_offset, index_size);
 238   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 239   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 240   shlptr(index, 2); // convert from field index to ConstantPoolCacheEntry index
 241 }
 242 
 243 
 244 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
 245                                                                int bcp_offset, size_t index_size) {
 246   assert(cache != tmp, "must use different register");
 247   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 248   assert(sizeof(ConstantPoolCacheEntry) == 4*wordSize, "adjust code below");
 249                                // convert from field index to ConstantPoolCacheEntry index
 250                                // and from word offset to byte offset
 251   shll(tmp, 2 + LogBytesPerWord);
 252   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 253                                // skip past the header
 254   addptr(cache, in_bytes(constantPoolCacheOopDesc::base_offset()));
 255   addptr(cache, tmp);            // construct pointer to cache entry
 256 }
 257 
 258 
 259   // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 260   // a subtype of super_klass.  EAX holds the super_klass.  Blows ECX.
 261   // Resets EDI to locals.  Register sub_klass cannot be any of the above.
 262 void InterpreterMacroAssembler::gen_subtype_check( Register Rsub_klass, Label &ok_is_subtype ) {
 263   assert( Rsub_klass != rax, "rax, holds superklass" );
 264   assert( Rsub_klass != rcx, "used as a temp" );
 265   assert( Rsub_klass != rdi, "used as a temp, restored from locals" );
 266 
 267   // Profile the not-null value's klass.
 268   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 269 
 270   // Do the check.
 271   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 272 
 273   // Profile the failure of the check.
 274   profile_typecheck_failed(rcx); // blows rcx
 275 }
 276 
 277 void InterpreterMacroAssembler::f2ieee() {
 278   if (IEEEPrecision) {
 279     fstp_s(Address(rsp, 0));
 280     fld_s(Address(rsp, 0));
 281   }
 282 }
 283 
 284 
 285 void InterpreterMacroAssembler::d2ieee() {
 286   if (IEEEPrecision) {
 287     fstp_d(Address(rsp, 0));
 288     fld_d(Address(rsp, 0));
 289   }
 290 }
 291 
 292 // Java Expression Stack
 293 
 294 void InterpreterMacroAssembler::pop_ptr(Register r) {
 295   pop(r);
 296 }
 297 
 298 void InterpreterMacroAssembler::pop_i(Register r) {
 299   pop(r);
 300 }
 301 
 302 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
 303   pop(lo);
 304   pop(hi);
 305 }
 306 
 307 void InterpreterMacroAssembler::pop_f() {
 308   fld_s(Address(rsp, 0));
 309   addptr(rsp, 1 * wordSize);
 310 }
 311 
 312 void InterpreterMacroAssembler::pop_d() {
 313   fld_d(Address(rsp, 0));
 314   addptr(rsp, 2 * wordSize);
 315 }
 316 
 317 
 318 void InterpreterMacroAssembler::pop(TosState state) {
 319   switch (state) {
 320     case atos: pop_ptr(rax);                                 break;
 321     case btos:                                               // fall through
 322     case ctos:                                               // fall through
 323     case stos:                                               // fall through
 324     case itos: pop_i(rax);                                   break;
 325     case ltos: pop_l(rax, rdx);                              break;
 326     case ftos: pop_f();                                      break;
 327     case dtos: pop_d();                                      break;
 328     case vtos: /* nothing to do */                           break;
 329     default  : ShouldNotReachHere();
 330   }
 331   verify_oop(rax, state);
 332 }
 333 
 334 void InterpreterMacroAssembler::push_ptr(Register r) {
 335   push(r);
 336 }
 337 
 338 void InterpreterMacroAssembler::push_i(Register r) {
 339   push(r);
 340 }
 341 
 342 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
 343   push(hi);
 344   push(lo);
 345 }
 346 
 347 void InterpreterMacroAssembler::push_f() {
 348   // Do not schedule for no AGI! Never write beyond rsp!
 349   subptr(rsp, 1 * wordSize);
 350   fstp_s(Address(rsp, 0));
 351 }
 352 
 353 void InterpreterMacroAssembler::push_d(Register r) {
 354   // Do not schedule for no AGI! Never write beyond rsp!
 355   subptr(rsp, 2 * wordSize);
 356   fstp_d(Address(rsp, 0));
 357 }
 358 
 359 
 360 void InterpreterMacroAssembler::push(TosState state) {
 361   verify_oop(rax, state);
 362   switch (state) {
 363     case atos: push_ptr(rax); break;
 364     case btos:                                               // fall through
 365     case ctos:                                               // fall through
 366     case stos:                                               // fall through
 367     case itos: push_i(rax);                                    break;
 368     case ltos: push_l(rax, rdx);                               break;
 369     case ftos: push_f();                                       break;
 370     case dtos: push_d(rax);                                    break;
 371     case vtos: /* nothing to do */                             break;
 372     default  : ShouldNotReachHere();
 373   }
 374 }
 375 
 376 
 377 // Helpers for swap and dup
 378 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 379   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 380 }
 381 
 382 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 383   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 384 }
 385 
 386 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point) {
 387   MacroAssembler::call_VM_leaf_base(entry_point, 0);
 388 }
 389 
 390 
 391 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1) {
 392   push(arg_1);
 393   MacroAssembler::call_VM_leaf_base(entry_point, 1);
 394 }
 395 
 396 
 397 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
 398   push(arg_2);
 399   push(arg_1);
 400   MacroAssembler::call_VM_leaf_base(entry_point, 2);
 401 }
 402 
 403 
 404 void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3) {
 405   push(arg_3);
 406   push(arg_2);
 407   push(arg_1);
 408   MacroAssembler::call_VM_leaf_base(entry_point, 3);
 409 }
 410 
 411 
 412 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 413   // set sender sp
 414   lea(rsi, Address(rsp, wordSize));
 415   // record last_sp
 416   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), rsi);
 417 }
 418 
 419 
 420 // Jump to from_interpreted entry of a call unless single stepping is possible
 421 // in this thread in which case we must call the i2i entry
 422 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 423   prepare_to_jump_from_interpreted();
 424 
 425   if (JvmtiExport::can_post_interpreter_events()) {
 426     Label run_compiled_code;
 427     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 428     // compiled code in threads for which the event is enabled.  Check here for
 429     // interp_only_mode if these events CAN be enabled.
 430     get_thread(temp);
 431     // interp_only is an int, on little endian it is sufficient to test the byte only
 432     // Is a cmpl faster (ce
 433     cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
 434     jcc(Assembler::zero, run_compiled_code);
 435     jmp(Address(method, methodOopDesc::interpreter_entry_offset()));
 436     bind(run_compiled_code);
 437   }
 438 
 439   jmp(Address(method, methodOopDesc::from_interpreted_offset()));
 440 
 441 }
 442 
 443 
 444 // The following two routines provide a hook so that an implementation
 445 // can schedule the dispatch in two parts.  Intel does not do this.
 446 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 447   // Nothing Intel-specific to be done here.
 448 }
 449 
 450 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 451   dispatch_next(state, step);
 452 }
 453 
 454 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table,
 455                                               bool verifyoop) {
 456   verify_FPU(1, state);
 457   if (VerifyActivationFrameSize) {
 458     Label L;
 459     mov(rcx, rbp);
 460     subptr(rcx, rsp);
 461     int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
 462     cmpptr(rcx, min_frame_size);
 463     jcc(Assembler::greaterEqual, L);
 464     stop("broken stack frame");
 465     bind(L);
 466   }
 467   if (verifyoop) verify_oop(rax, state);
 468   Address index(noreg, rbx, Address::times_ptr);
 469   ExternalAddress tbl((address)table);
 470   ArrayAddress dispatch(tbl, index);
 471   jump(dispatch);
 472 }
 473 
 474 
 475 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 476   dispatch_base(state, Interpreter::dispatch_table(state));
 477 }
 478 
 479 
 480 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 481   dispatch_base(state, Interpreter::normal_table(state));
 482 }
 483 
 484 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 485   dispatch_base(state, Interpreter::normal_table(state), false);
 486 }
 487 
 488 
 489 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 490   // load next bytecode (load before advancing rsi to prevent AGI)
 491   load_unsigned_byte(rbx, Address(rsi, step));
 492   // advance rsi
 493   increment(rsi, step);
 494   dispatch_base(state, Interpreter::dispatch_table(state));
 495 }
 496 
 497 
 498 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 499   // load current bytecode
 500   load_unsigned_byte(rbx, Address(rsi, 0));
 501   dispatch_base(state, table);
 502 }
 503 
 504 // remove activation
 505 //
 506 // Unlock the receiver if this is a synchronized method.
 507 // Unlock any Java monitors from syncronized blocks.
 508 // Remove the activation from the stack.
 509 //
 510 // If there are locked Java monitors
 511 //    If throw_monitor_exception
 512 //       throws IllegalMonitorStateException
 513 //    Else if install_monitor_exception
 514 //       installs IllegalMonitorStateException
 515 //    Else
 516 //       no error processing
 517 void InterpreterMacroAssembler::remove_activation(TosState state, Register ret_addr,
 518                                                   bool throw_monitor_exception,
 519                                                   bool install_monitor_exception,
 520                                                   bool notify_jvmdi) {
 521   // Note: Registers rax, rdx and FPU ST(0) may be in use for the result
 522   // check if synchronized method
 523   Label unlocked, unlock, no_unlock;
 524 
 525   get_thread(rcx);
 526   const Address do_not_unlock_if_synchronized(rcx,
 527     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 528 
 529   movbool(rbx, do_not_unlock_if_synchronized);
 530   mov(rdi,rbx);
 531   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 532 
 533   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); // get method access flags
 534   movl(rcx, Address(rbx, methodOopDesc::access_flags_offset()));
 535 
 536   testl(rcx, JVM_ACC_SYNCHRONIZED);
 537   jcc(Assembler::zero, unlocked);
 538 
 539   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 540   // is set.
 541   mov(rcx,rdi);
 542   testbool(rcx);
 543   jcc(Assembler::notZero, no_unlock);
 544 
 545   // unlock monitor
 546   push(state);                                   // save result
 547 
 548   // BasicObjectLock will be first in list, since this is a synchronized method. However, need
 549   // to check that the object has not been unlocked by an explicit monitorexit bytecode.
 550   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * wordSize - (int)sizeof(BasicObjectLock));
 551   lea   (rdx, monitor);                          // address of first monitor
 552 
 553   movptr (rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));
 554   testptr(rax, rax);
 555   jcc    (Assembler::notZero, unlock);
 556 
 557   pop(state);
 558   if (throw_monitor_exception) {
 559     empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 560 
 561     // Entry already unlocked, need to throw exception
 562     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 563     should_not_reach_here();
 564   } else {
 565     // Monitor already unlocked during a stack unroll.
 566     // If requested, install an illegal_monitor_state_exception.
 567     // Continue with stack unrolling.
 568     if (install_monitor_exception) {
 569       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 570       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 571     }
 572     jmp(unlocked);
 573   }
 574 
 575   bind(unlock);
 576   unlock_object(rdx);
 577   pop(state);
 578 
 579   // Check that for block-structured locking (i.e., that all locked objects has been unlocked)
 580   bind(unlocked);
 581 
 582   // rax, rdx: Might contain return value
 583 
 584   // Check that all monitors are unlocked
 585   {
 586     Label loop, exception, entry, restart;
 587     const int entry_size               = frame::interpreter_frame_monitor_size()           * wordSize;
 588     const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 589     const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
 590 
 591     bind(restart);
 592     movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
 593     lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
 594     jmp(entry);
 595 
 596     // Entry already locked, need to throw exception
 597     bind(exception);
 598 
 599     if (throw_monitor_exception) {
 600       empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 601 
 602       // Throw exception
 603       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 604       should_not_reach_here();
 605     } else {
 606       // Stack unrolling. Unlock object and install illegal_monitor_exception
 607       // Unlock does not block, so don't have to worry about the frame
 608 
 609       push(state);
 610       mov(rdx, rcx);
 611       unlock_object(rdx);
 612       pop(state);
 613 
 614       if (install_monitor_exception) {
 615         empty_FPU_stack();  // remove possible return value from FPU-stack, otherwise stack could overflow
 616         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 617       }
 618 
 619       jmp(restart);
 620     }
 621 
 622     bind(loop);
 623     cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
 624     jcc(Assembler::notEqual, exception);
 625 
 626     addptr(rcx, entry_size);                     // otherwise advance to next entry
 627     bind(entry);
 628     cmpptr(rcx, rbx);                            // check if bottom reached
 629     jcc(Assembler::notEqual, loop);              // if not at bottom then check this entry
 630   }
 631 
 632   bind(no_unlock);
 633 
 634   // jvmti support
 635   if (notify_jvmdi) {
 636     notify_method_exit(state, NotifyJVMTI);     // preserve TOSCA
 637   } else {
 638     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 639   }
 640 
 641   // remove activation
 642   movptr(rbx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
 643   leave();                                     // remove frame anchor
 644   pop(ret_addr);                               // get return address
 645   mov(rsp, rbx);                               // set sp to sender sp
 646   if (UseSSE) {
 647     // float and double are returned in xmm register in SSE-mode
 648     if (state == ftos && UseSSE >= 1) {
 649       subptr(rsp, wordSize);
 650       fstp_s(Address(rsp, 0));
 651       movflt(xmm0, Address(rsp, 0));
 652       addptr(rsp, wordSize);
 653     } else if (state == dtos && UseSSE >= 2) {
 654       subptr(rsp, 2*wordSize);
 655       fstp_d(Address(rsp, 0));
 656       movdbl(xmm0, Address(rsp, 0));
 657       addptr(rsp, 2*wordSize);
 658     }
 659   }
 660 }
 661 
 662 #endif /* !CC_INTERP */
 663 
 664 
 665 // Lock object
 666 //
 667 // Argument: rdx : Points to BasicObjectLock to be used for locking. Must
 668 // be initialized with object to lock
 669 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 670   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 671 
 672   if (UseHeavyMonitors) {
 673     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 674   } else {
 675 
 676     Label done;
 677 
 678     const Register swap_reg = rax;  // Must use rax, for cmpxchg instruction
 679     const Register obj_reg  = rcx;  // Will contain the oop
 680 
 681     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 682     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 683     const int mark_offset = lock_offset + BasicLock::displaced_header_offset_in_bytes();
 684 
 685     Label slow_case;
 686 
 687     // Load object pointer into obj_reg %rcx
 688     movptr(obj_reg, Address(lock_reg, obj_offset));
 689 
 690     if (UseBiasedLocking) {
 691       // Note: we use noreg for the temporary register since it's hard
 692       // to come up with a free register on all incoming code paths
 693       biased_locking_enter(lock_reg, obj_reg, swap_reg, noreg, false, done, &slow_case);
 694     }
 695 
 696     // Load immediate 1 into swap_reg %rax,
 697     movptr(swap_reg, (int32_t)1);
 698 
 699     // Load (object->mark() | 1) into swap_reg %rax,
 700     orptr(swap_reg, Address(obj_reg, 0));
 701 
 702     // Save (object->mark() | 1) into BasicLock's displaced header
 703     movptr(Address(lock_reg, mark_offset), swap_reg);
 704 
 705     assert(lock_offset == 0, "displached header must be first word in BasicObjectLock");
 706     if (os::is_MP()) {
 707       lock();
 708     }
 709     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 710     if (PrintBiasedLockingStatistics) {
 711       cond_inc32(Assembler::zero,
 712                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 713     }
 714     jcc(Assembler::zero, done);
 715 
 716     // Test if the oopMark is an obvious stack pointer, i.e.,
 717     //  1) (mark & 3) == 0, and
 718     //  2) rsp <= mark < mark + os::pagesize()
 719     //
 720     // These 3 tests can be done by evaluating the following
 721     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
 722     // assuming both stack pointer and pagesize have their
 723     // least significant 2 bits clear.
 724     // NOTE: the oopMark is in swap_reg %rax, as the result of cmpxchg
 725     subptr(swap_reg, rsp);
 726     andptr(swap_reg, 3 - os::vm_page_size());
 727 
 728     // Save the test result, for recursive case, the result is zero
 729     movptr(Address(lock_reg, mark_offset), swap_reg);
 730 
 731     if (PrintBiasedLockingStatistics) {
 732       cond_inc32(Assembler::zero,
 733                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 734     }
 735     jcc(Assembler::zero, done);
 736 
 737     bind(slow_case);
 738 
 739     // Call the runtime routine for slow case
 740     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
 741 
 742     bind(done);
 743   }
 744 }
 745 
 746 
 747 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 748 //
 749 // Argument: rdx : Points to BasicObjectLock structure for lock
 750 // Throw an IllegalMonitorException if object is not locked by current thread
 751 //
 752 // Uses: rax, rbx, rcx, rdx
 753 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 754   assert(lock_reg == rdx, "The argument is only for looks. It must be rdx");
 755 
 756   if (UseHeavyMonitors) {
 757     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 758   } else {
 759     Label done;
 760 
 761     const Register swap_reg   = rax;  // Must use rax, for cmpxchg instruction
 762     const Register header_reg = rbx;  // Will contain the old oopMark
 763     const Register obj_reg    = rcx;  // Will contain the oop
 764 
 765     save_bcp(); // Save in case of exception
 766 
 767     // Convert from BasicObjectLock structure to object and BasicLock structure
 768     // Store the BasicLock address into %rax,
 769     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 770 
 771     // Load oop into obj_reg(%rcx)
 772     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes ()));
 773 
 774     // Free entry
 775     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), NULL_WORD);
 776 
 777     if (UseBiasedLocking) {
 778       biased_locking_exit(obj_reg, header_reg, done);
 779     }
 780 
 781     // Load the old header from BasicLock structure
 782     movptr(header_reg, Address(swap_reg, BasicLock::displaced_header_offset_in_bytes()));
 783 
 784     // Test for recursion
 785     testptr(header_reg, header_reg);
 786 
 787     // zero for recursive case
 788     jcc(Assembler::zero, done);
 789 
 790     // Atomic swap back the old header
 791     if (os::is_MP()) lock();
 792     cmpxchgptr(header_reg, Address(obj_reg, 0));
 793 
 794     // zero for recursive case
 795     jcc(Assembler::zero, done);
 796 
 797     // Call the runtime routine for slow case.
 798     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), obj_reg); // restore obj
 799     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
 800 
 801     bind(done);
 802 
 803     restore_bcp();
 804   }
 805 }
 806 
 807 
 808 #ifndef CC_INTERP
 809 
 810 // Test ImethodDataPtr.  If it is null, continue at the specified label
 811 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
 812   assert(ProfileInterpreter, "must be profiling interpreter");
 813   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 814   testptr(mdp, mdp);
 815   jcc(Assembler::zero, zero_continue);
 816 }
 817 
 818 
 819 // Set the method data pointer for the current bcp.
 820 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 821   assert(ProfileInterpreter, "must be profiling interpreter");
 822   Label set_mdp;
 823   push(rax);
 824   push(rbx);
 825 
 826   get_method(rbx);
 827   // Test MDO to avoid the call if it is NULL.
 828   movptr(rax, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 829   testptr(rax, rax);
 830   jcc(Assembler::zero, set_mdp);
 831   // rbx,: method
 832   // rsi: bcp
 833   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, rsi);
 834   // rax,: mdi
 835   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 836   movptr(rbx, Address(rbx, in_bytes(methodOopDesc::method_data_offset())));
 837   addptr(rbx, in_bytes(methodDataOopDesc::data_offset()));
 838   addptr(rax, rbx);
 839   bind(set_mdp);
 840   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 841   pop(rbx);
 842   pop(rax);
 843 }
 844 
 845 void InterpreterMacroAssembler::verify_method_data_pointer() {
 846   assert(ProfileInterpreter, "must be profiling interpreter");
 847 #ifdef ASSERT
 848   Label verify_continue;
 849   push(rax);
 850   push(rbx);
 851   push(rcx);
 852   push(rdx);
 853   test_method_data_pointer(rcx, verify_continue); // If mdp is zero, continue
 854   get_method(rbx);
 855 
 856   // If the mdp is valid, it will point to a DataLayout header which is
 857   // consistent with the bcp.  The converse is highly probable also.
 858   load_unsigned_short(rdx, Address(rcx, in_bytes(DataLayout::bci_offset())));
 859   addptr(rdx, Address(rbx, methodOopDesc::const_offset()));
 860   lea(rdx, Address(rdx, constMethodOopDesc::codes_offset()));
 861   cmpptr(rdx, rsi);
 862   jcc(Assembler::equal, verify_continue);
 863   // rbx,: method
 864   // rsi: bcp
 865   // rcx: mdp
 866   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), rbx, rsi, rcx);
 867   bind(verify_continue);
 868   pop(rdx);
 869   pop(rcx);
 870   pop(rbx);
 871   pop(rax);
 872 #endif // ASSERT
 873 }
 874 
 875 
 876 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
 877   // %%% this seems to be used to store counter data which is surely 32bits
 878   // however 64bit side stores 64 bits which seems wrong
 879   assert(ProfileInterpreter, "must be profiling interpreter");
 880   Address data(mdp_in, constant);
 881   movptr(data, value);
 882 }
 883 
 884 
 885 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 886                                                       int constant,
 887                                                       bool decrement) {
 888   // Counter address
 889   Address data(mdp_in, constant);
 890 
 891   increment_mdp_data_at(data, decrement);
 892 }
 893 
 894 
 895 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 896                                                       bool decrement) {
 897 
 898   assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
 899   assert(ProfileInterpreter, "must be profiling interpreter");
 900 
 901   // %%% 64bit treats this as 64 bit which seems unlikely
 902   if (decrement) {
 903     // Decrement the register.  Set condition codes.
 904     addl(data, -DataLayout::counter_increment);
 905     // If the decrement causes the counter to overflow, stay negative
 906     Label L;
 907     jcc(Assembler::negative, L);
 908     addl(data, DataLayout::counter_increment);
 909     bind(L);
 910   } else {
 911     assert(DataLayout::counter_increment == 1,
 912            "flow-free idiom only works with 1");
 913     // Increment the register.  Set carry flag.
 914     addl(data, DataLayout::counter_increment);
 915     // If the increment causes the counter to overflow, pull back by 1.
 916     sbbl(data, 0);
 917   }
 918 }
 919 
 920 
 921 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 922                                                       Register reg,
 923                                                       int constant,
 924                                                       bool decrement) {
 925   Address data(mdp_in, reg, Address::times_1, constant);
 926 
 927   increment_mdp_data_at(data, decrement);
 928 }
 929 
 930 
 931 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, int flag_byte_constant) {
 932   assert(ProfileInterpreter, "must be profiling interpreter");
 933   int header_offset = in_bytes(DataLayout::header_offset());
 934   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 935   // Set the flag
 936   orl(Address(mdp_in, header_offset), header_bits);
 937 }
 938 
 939 
 940 
 941 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 942                                                  int offset,
 943                                                  Register value,
 944                                                  Register test_value_out,
 945                                                  Label& not_equal_continue) {
 946   assert(ProfileInterpreter, "must be profiling interpreter");
 947   if (test_value_out == noreg) {
 948     cmpptr(value, Address(mdp_in, offset));
 949   } else {
 950     // Put the test value into a register, so caller can use it:
 951     movptr(test_value_out, Address(mdp_in, offset));
 952     cmpptr(test_value_out, value);
 953   }
 954   jcc(Assembler::notEqual, not_equal_continue);
 955 }
 956 
 957 
 958 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
 959   assert(ProfileInterpreter, "must be profiling interpreter");
 960   Address disp_address(mdp_in, offset_of_disp);
 961   addptr(mdp_in,disp_address);
 962   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 963 }
 964 
 965 
 966 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp) {
 967   assert(ProfileInterpreter, "must be profiling interpreter");
 968   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
 969   addptr(mdp_in, disp_address);
 970   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 971 }
 972 
 973 
 974 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
 975   assert(ProfileInterpreter, "must be profiling interpreter");
 976   addptr(mdp_in, constant);
 977   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 978 }
 979 
 980 
 981 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
 982   assert(ProfileInterpreter, "must be profiling interpreter");
 983   push(return_bci);             // save/restore across call_VM
 984   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
 985   pop(return_bci);
 986 }
 987 
 988 
 989 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
 990   if (ProfileInterpreter) {
 991     Label profile_continue;
 992 
 993     // If no method data exists, go to profile_continue.
 994     // Otherwise, assign to mdp
 995     test_method_data_pointer(mdp, profile_continue);
 996 
 997     // We are taking a branch.  Increment the taken count.
 998     // We inline increment_mdp_data_at to return bumped_count in a register
 999     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1000     Address data(mdp, in_bytes(JumpData::taken_offset()));
1001 
1002     // %%% 64bit treats these cells as 64 bit but they seem to be 32 bit
1003     movl(bumped_count,data);
1004     assert( DataLayout::counter_increment==1, "flow-free idiom only works with 1" );
1005     addl(bumped_count, DataLayout::counter_increment);
1006     sbbl(bumped_count, 0);
1007     movl(data,bumped_count);    // Store back out
1008 
1009     // The method data pointer needs to be updated to reflect the new target.
1010     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1011     bind (profile_continue);
1012   }
1013 }
1014 
1015 
1016 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1017   if (ProfileInterpreter) {
1018     Label profile_continue;
1019 
1020     // If no method data exists, go to profile_continue.
1021     test_method_data_pointer(mdp, profile_continue);
1022 
1023     // We are taking a branch.  Increment the not taken count.
1024     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1025 
1026     // The method data pointer needs to be updated to correspond to the next bytecode
1027     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1028     bind (profile_continue);
1029   }
1030 }
1031 
1032 
1033 void InterpreterMacroAssembler::profile_call(Register mdp) {
1034   if (ProfileInterpreter) {
1035     Label profile_continue;
1036 
1037     // If no method data exists, go to profile_continue.
1038     test_method_data_pointer(mdp, profile_continue);
1039 
1040     // We are making a call.  Increment the count.
1041     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1042 
1043     // The method data pointer needs to be updated to reflect the new target.
1044     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1045     bind (profile_continue);
1046   }
1047 }
1048 
1049 
1050 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1051   if (ProfileInterpreter) {
1052     Label profile_continue;
1053 
1054     // If no method data exists, go to profile_continue.
1055     test_method_data_pointer(mdp, profile_continue);
1056 
1057     // We are making a call.  Increment the count.
1058     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1059 
1060     // The method data pointer needs to be updated to reflect the new target.
1061     update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1062     bind (profile_continue);
1063   }
1064 }
1065 
1066 
1067 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, Register mdp,
1068                                                      Register reg2,
1069                                                      bool receiver_can_be_null) {
1070   if (ProfileInterpreter) {
1071     Label profile_continue;
1072 
1073     // If no method data exists, go to profile_continue.
1074     test_method_data_pointer(mdp, profile_continue);
1075 
1076     Label skip_receiver_profile;
1077     if (receiver_can_be_null) {
1078       Label not_null;
1079       testptr(receiver, receiver);
1080       jccb(Assembler::notZero, not_null);
1081       // We are making a call.  Increment the count for null receiver.
1082       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1083       jmp(skip_receiver_profile);
1084       bind(not_null);
1085     }
1086 
1087     // Record the receiver type.
1088     record_klass_in_profile(receiver, mdp, reg2, true);
1089     bind(skip_receiver_profile);
1090 
1091     // The method data pointer needs to be updated to reflect the new target.
1092     update_mdp_by_constant(mdp,
1093                            in_bytes(VirtualCallData::
1094                                     virtual_call_data_size()));
1095     bind(profile_continue);
1096   }
1097 }
1098 
1099 
1100 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1101                                         Register receiver, Register mdp,
1102                                         Register reg2, int start_row,
1103                                         Label& done, bool is_virtual_call) {
1104   if (TypeProfileWidth == 0) {
1105     if (is_virtual_call) {
1106       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1107     }
1108     return;
1109   }
1110 
1111   int last_row = VirtualCallData::row_limit() - 1;
1112   assert(start_row <= last_row, "must be work left to do");
1113   // Test this row for both the receiver and for null.
1114   // Take any of three different outcomes:
1115   //   1. found receiver => increment count and goto done
1116   //   2. found null => keep looking for case 1, maybe allocate this cell
1117   //   3. found something else => keep looking for cases 1 and 2
1118   // Case 3 is handled by a recursive call.
1119   for (int row = start_row; row <= last_row; row++) {
1120     Label next_test;
1121     bool test_for_null_also = (row == start_row);
1122 
1123     // See if the receiver is receiver[n].
1124     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1125     test_mdp_data_at(mdp, recvr_offset, receiver,
1126                      (test_for_null_also ? reg2 : noreg),
1127                      next_test);
1128     // (Reg2 now contains the receiver from the CallData.)
1129 
1130     // The receiver is receiver[n].  Increment count[n].
1131     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1132     increment_mdp_data_at(mdp, count_offset);
1133     jmp(done);
1134     bind(next_test);
1135 
1136     if (row == start_row) {
1137       Label found_null;
1138       // Failed the equality check on receiver[n]...  Test for null.
1139       testptr(reg2, reg2);
1140       if (start_row == last_row) {
1141         // The only thing left to do is handle the null case.
1142         if (is_virtual_call) {
1143           jccb(Assembler::zero, found_null);
1144           // Receiver did not match any saved receiver and there is no empty row for it.
1145           // Increment total counter to indicate polymorphic case.
1146           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1147           jmp(done);
1148           bind(found_null);
1149         } else {
1150           jcc(Assembler::notZero, done);
1151         }
1152         break;
1153       }
1154       // Since null is rare, make it be the branch-taken case.
1155       jcc(Assembler::zero, found_null);
1156 
1157       // Put all the "Case 3" tests here.
1158       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1159 
1160       // Found a null.  Keep searching for a matching receiver,
1161       // but remember that this is an empty (unused) slot.
1162       bind(found_null);
1163     }
1164   }
1165 
1166   // In the fall-through case, we found no matching receiver, but we
1167   // observed the receiver[start_row] is NULL.
1168 
1169   // Fill in the receiver field and increment the count.
1170   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1171   set_mdp_data_at(mdp, recvr_offset, receiver);
1172   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1173   movptr(reg2, (int32_t)DataLayout::counter_increment);
1174   set_mdp_data_at(mdp, count_offset, reg2);
1175   if (start_row > 0) {
1176     jmp(done);
1177   }
1178 }
1179 
1180 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1181                                                         Register mdp, Register reg2,
1182                                                         bool is_virtual_call) {
1183   assert(ProfileInterpreter, "must be profiling");
1184   Label done;
1185 
1186   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1187 
1188   bind (done);
1189 }
1190 
1191 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
1192   if (ProfileInterpreter) {
1193     Label profile_continue;
1194     uint row;
1195 
1196     // If no method data exists, go to profile_continue.
1197     test_method_data_pointer(mdp, profile_continue);
1198 
1199     // Update the total ret count.
1200     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1201 
1202     for (row = 0; row < RetData::row_limit(); row++) {
1203       Label next_test;
1204 
1205       // See if return_bci is equal to bci[n]:
1206       test_mdp_data_at(mdp, in_bytes(RetData::bci_offset(row)), return_bci,
1207                        noreg, next_test);
1208 
1209       // return_bci is equal to bci[n].  Increment the count.
1210       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1211 
1212       // The method data pointer needs to be updated to reflect the new target.
1213       update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
1214       jmp(profile_continue);
1215       bind(next_test);
1216     }
1217 
1218     update_mdp_for_ret(return_bci);
1219 
1220     bind (profile_continue);
1221   }
1222 }
1223 
1224 
1225 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1226   if (ProfileInterpreter) {
1227     Label profile_continue;
1228 
1229     // If no method data exists, go to profile_continue.
1230     test_method_data_pointer(mdp, profile_continue);
1231 
1232     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1233 
1234     // The method data pointer needs to be updated.
1235     int mdp_delta = in_bytes(BitData::bit_data_size());
1236     if (TypeProfileCasts) {
1237       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1238     }
1239     update_mdp_by_constant(mdp, mdp_delta);
1240 
1241     bind (profile_continue);
1242   }
1243 }
1244 
1245 
1246 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1247   if (ProfileInterpreter && TypeProfileCasts) {
1248     Label profile_continue;
1249 
1250     // If no method data exists, go to profile_continue.
1251     test_method_data_pointer(mdp, profile_continue);
1252 
1253     int count_offset = in_bytes(CounterData::count_offset());
1254     // Back up the address, since we have already bumped the mdp.
1255     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1256 
1257     // *Decrement* the counter.  We expect to see zero or small negatives.
1258     increment_mdp_data_at(mdp, count_offset, true);
1259 
1260     bind (profile_continue);
1261   }
1262 }
1263 
1264 
1265 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2)
1266 {
1267   if (ProfileInterpreter) {
1268     Label profile_continue;
1269 
1270     // If no method data exists, go to profile_continue.
1271     test_method_data_pointer(mdp, profile_continue);
1272 
1273     // The method data pointer needs to be updated.
1274     int mdp_delta = in_bytes(BitData::bit_data_size());
1275     if (TypeProfileCasts) {
1276       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1277 
1278       // Record the object type.
1279       record_klass_in_profile(klass, mdp, reg2, false);
1280       assert(reg2 == rdi, "we know how to fix this blown reg");
1281       restore_locals();         // Restore EDI
1282     }
1283     update_mdp_by_constant(mdp, mdp_delta);
1284 
1285     bind(profile_continue);
1286   }
1287 }
1288 
1289 
1290 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1291   if (ProfileInterpreter) {
1292     Label profile_continue;
1293 
1294     // If no method data exists, go to profile_continue.
1295     test_method_data_pointer(mdp, profile_continue);
1296 
1297     // Update the default case count
1298     increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
1299 
1300     // The method data pointer needs to be updated.
1301     update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
1302 
1303     bind (profile_continue);
1304   }
1305 }
1306 
1307 
1308 void InterpreterMacroAssembler::profile_switch_case(Register index, Register mdp, Register reg2) {
1309   if (ProfileInterpreter) {
1310     Label profile_continue;
1311 
1312     // If no method data exists, go to profile_continue.
1313     test_method_data_pointer(mdp, profile_continue);
1314 
1315     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
1316     movptr(reg2, (int32_t)in_bytes(MultiBranchData::per_case_size()));
1317     // index is positive and so should have correct value if this code were
1318     // used on 64bits
1319     imulptr(index, reg2);
1320     addptr(index, in_bytes(MultiBranchData::case_array_offset()));
1321 
1322     // Update the case count
1323     increment_mdp_data_at(mdp, index, in_bytes(MultiBranchData::relative_count_offset()));
1324 
1325     // The method data pointer needs to be updated.
1326     update_mdp_by_offset(mdp, index, in_bytes(MultiBranchData::relative_displacement_offset()));
1327 
1328     bind (profile_continue);
1329   }
1330 }
1331 
1332 #endif // !CC_INTERP
1333 
1334 
1335 
1336 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1337   if (state == atos) MacroAssembler::verify_oop(reg);
1338 }
1339 
1340 
1341 #ifndef CC_INTERP
1342 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1343   if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
1344 }
1345 
1346 #endif /* CC_INTERP */
1347 
1348 
1349 void InterpreterMacroAssembler::notify_method_entry() {
1350   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1351   // track stack depth.  If it is possible to enter interp_only_mode we add
1352   // the code to check if the event should be sent.
1353   if (JvmtiExport::can_post_interpreter_events()) {
1354     Label L;
1355     get_thread(rcx);
1356     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1357     testl(rcx,rcx);
1358     jcc(Assembler::zero, L);
1359     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
1360     bind(L);
1361   }
1362 
1363   {
1364     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1365     get_thread(rcx);
1366     get_method(rbx);
1367     call_VM_leaf(
1368       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), rcx, rbx);
1369   }
1370 
1371   // RedefineClasses() tracing support for obsolete method entry
1372   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1373     get_thread(rcx);
1374     get_method(rbx);
1375     call_VM_leaf(
1376       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1377       rcx, rbx);
1378   }
1379 }
1380 
1381 
1382 void InterpreterMacroAssembler::notify_method_exit(
1383     TosState state, NotifyMethodExitMode mode) {
1384   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1385   // track stack depth.  If it is possible to enter interp_only_mode we add
1386   // the code to check if the event should be sent.
1387   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1388     Label L;
1389     // Note: frame::interpreter_frame_result has a dependency on how the
1390     // method result is saved across the call to post_method_exit. If this
1391     // is changed then the interpreter_frame_result implementation will
1392     // need to be updated too.
1393 
1394     // For c++ interpreter the result is always stored at a known location in the frame
1395     // template interpreter will leave it on the top of the stack.
1396     NOT_CC_INTERP(push(state);)
1397     get_thread(rcx);
1398     movl(rcx, Address(rcx, JavaThread::interp_only_mode_offset()));
1399     testl(rcx,rcx);
1400     jcc(Assembler::zero, L);
1401     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1402     bind(L);
1403     NOT_CC_INTERP(pop(state);)
1404   }
1405 
1406   {
1407     SkipIfEqual skip_if(this, &DTraceMethodProbes, 0);
1408     NOT_CC_INTERP(push(state));
1409     get_thread(rbx);
1410     get_method(rcx);
1411     call_VM_leaf(
1412       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1413       rbx, rcx);
1414     NOT_CC_INTERP(pop(state));
1415   }
1416 }
1417 
1418 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1419 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1420                                                         int increment, int mask,
1421                                                         Register scratch, bool preloaded,
1422                                                         Condition cond, Label* where) {
1423   if (!preloaded) {
1424     movl(scratch, counter_addr);
1425   }
1426   incrementl(scratch, increment);
1427   movl(counter_addr, scratch);
1428   andl(scratch, mask);
1429   jcc(cond, *where);
1430 }