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= about compilers in general
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Static vs Dynamic

AOT vs JIT
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Comparison

= Static compilation
— “Ahead-Of-Time”(AOT) compilation
— Source code — Native executable
— Most of compilation work happens before executing
= Modern Java VMs use dynamic compilers (JIT)
— “Just-In-Time” (JIT) compilation
— Source code — Bytecode — Interpreter + JITted executable
— Most of compilation work happens during application execution
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. Dynamic and Static Compilation

Comparison

= Static compilation (AOT)
— can utilize complex and heavy analyses and optimizations
= ... but static information sometimes isn’t enough
= ... and it's hard to guess actual application behavior

— moreover, how to utilize specific platform features?
= like SSE4.2 / AVX [ AVX2, TSX, AES-NI, RdRand
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. Profiling

= Gathers data about code during execution
— Invariants
= types, constants (e.g. null pointers)
— statistics
= branches, calls
= Gathered data can be used during optimization
— Educated guess
— Guess can be wrong



. Optimistic Compilers

= Assume profile is accurate
— Aggressively optimize based on profile
— Bail out if they’re wrong

= ...and hope that they’re usually right



. Profile-guided optimizations (PGO)

= Use profile for more efficient optimization

= PGO in JVMs
— Always have it, turned on by default
— Developers (usually) not interested or concerned about it
— Profile is always consistent to execution scenario



. Optimistic Compilers

Example

public void f() {
A a;
if (cond ) {
a = new B();
} else {
a = new C();

a.m();

}



. Optimistic Compilers

Example

public void f() {
Aa;
if (cond ) {
a = new B();
} else {
tolnterpreter();

a.m();

}



Dynamic Compilation
in (J)VM



. Dynamic Compilation (JIT)

= Can do non-conservative optimizations at runtime

= Separates optimization from product delivery cycle
— Update JVM, run the same application, realize improved performance!
— Can be "tuned" to the target platform



. Dynamic Compilation (JIT)

= Knows a lot about Java program
— loaded classes, executed methods, profiling
= Makes optimization based on that

= May re-optimize if previous assumption was wrong



. JVM

= Runtime
— class loading, bytecode verification, synchronization
= JIT
— profiling, compilation plans
— aggressive optimizations
- GC
— different algorithms: throughput vs response time vs footprint
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. JVM: Makes Bytecodes Fast

= JVMs eventually JIT-compile bytecodes
— To make them fast
— compiled when needed
= Maybe immediately before execution
= ...or when we decide it's important
= ...0r never?
— Some JITs are high quality optimizing compilers
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. JVM: Makes Bytecodes Fast

= JVMs eventually JIT-compile bytecodes

= But cannot use existing static compilers directly
— different cost model
= time & resource constraints (CPU, memory)
— tracking OOPs (ptrs) for GC
— Java Memory Model (volatile reordering & fences)
— New code patterns to optimize
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. JVM: Makes Bytecodes Fast

= JIT'ing requires Profiling

— Because you don't want to JIT everything
= Profiling allows focused code-gen
= Profiling allows better code-gen

— Inline what’s hot

— Loop unrolling, range-check elimination, etc
— Branch prediction, spill-code-gen, scheduling
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. Dynamic Compilation (JIT)

Overhead

= |s dynamic compilation overhead essential?
— The longer your application runs, the less the overhead
= Trading off compilation time, not application time
— Steal some cycles very early in execution
— Done automagically and transparently to application
= Most of “perceived” overhead is compiler waiting for more data
— ...thus running semi-optimal code for time being

25
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. Mixed-Mode Execution

«——SP

20 «—SP
= Interpreted » .
— Bytecode-walking 13 ADD B
— Artificial stack machine 45 45
| |
= Compiled
— Direct native operations add $0x7,%r8d

— Native register machine
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. Bytecode Execution
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. Bytecode Execution
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. Deoptimization

= Bail out of running native code
— stop executing native (JIT-generated) code
— start interpreting bytecode

= |It's a complicated operation at runtime...

— different calling conventions
— different stack layout
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. Bytecode Execution

Interpretation => Native code execution

Interpretation ‘ ‘ Profiling
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. OSR: On-Stack Replacement

= Running method never exits? But it's getting really hot?
— Generally means loops, back-branching
= Compile and replace while running

= Not typically useful in large systems
— ... but looks great on benchmarks!
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Optimizations



. Optimizations in HotSpot JVM
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compiler tactics
delayed compilation
tiered compilation
on-stack replacement
delayed reoptimization
program dependence graph rep.
static single assignment rep.
proof-based techniques
exact type inference
memory value inference
memory value tracking
constant folding
reassociation
operator strength reduction
null check elimination
type test strength reduction
type test elimination
algebraic simplification

common subexpression elimination

integer range typing
flow-sensitive rewrites

conditional constant propagation

dominating test detection

flow-carried type narrowing

dead code elimination

language-specific techniques

class hierarchy analysis
devirtualization

symbolic constant propagation
autobox elimination

escape analysis

lock elision

lock fusion

de-reflection

speculative (profile-based) techniques

optimistic nullness assertions
optimistic type assertions

optimistic type strengthening
optimistic array length strengthening
untaken branch pruning

optimistic N-morphic inlining

branch frequency prediction

call frequency prediction

memory and placement transformation

expression hoisting
expression sinking
redundant store elimination
adjacent store fusion
card-mark elimination
merge-point splitting

loop transformations
loop unrolling
loop peeling
safepoint elimination
iteration range splitting
range check elimination
loop vectorization

global code shaping
inlining (graph integration)
global code motion
heat-based code layout
switch balancing
throw inlining

control flow graph transformation
local code scheduling
local code bundling
delay slot filling
graph-coloring register allocation
linear scan register allocation
live range splitting
copy coalescing
constant splitting
copy removal
address mode matching
instruction peepholing
DFA-based code generator



. JVM: Makes Virtual Calls Fast

= C++ avoids virtual calls
— ... because they are “slow”
— ... hard to see “through” virtual call
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. JVM: Makes Virtual Calls Fast

= C++ avoids virtual calls

= Java embraces them
— ... and makes them fast
— both invokevirtual & invokeinterface



. invokevirtual vs invokeinterface

class B extends A implements I, J, K{ ... }

class C implements I, J, K { ... }
invokevirtual A.m B invokeinterface I.m B
invokevirtual B.m B invokeinterface I.m C

invokevirtual C.m C



<+0>:
<+4>:

<+8>:

<+12>:

<+20>:

<+23>:

<+29>:
<+32>:
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mov

shl

mov

mov

test

je

jmpq
jmpgq

invokevirtual

0x8 (%rsi) ,%rl0d
$0x3,%rl0

0x10 (%r8),%rll
0x1c8(%rl0,%rll,8) ,%rbx
$rbx, $rbx

<+32>

*0x48 (%$rbx)
<throw_AbstractMethodError_ stub>

.
4

.
4

.
4

load Klass*

load vmindex

load entry point address



invokeinterface

<+0>: mov 0x8 (%rsi) ,%rl0d =»<+50>: O0x...fl2: test $rbx, $rbx

<+4>: shl $0x3,%rl0 <+53>: 0x...f15: je <+96>

<+8>: mov 0x20 (%$rdx) , %$eax <+59>: 0x...flb: add $0x10,%rll
<+10>: shl $0x3, %rax <+63>: 0x...f1f: mov (%$rll) ,$rbx
<+15>: mov 0x48 (%$rax) ,%rax <+66>: 0x...£f22: cmp $rbx,%rax

<+19>: mov 0x10 (%$rdx) , $rbx ——<+69>: 0x...£f25: jne <+50>

<+23>: mov 0x128 (%rl1l0) ,%rlld »<+71>: 0x...£27: mov 0x8 (%rll) ,%rlld
<+30>: lea 0x1c8(%rl1l0,%rll,8),%rll <+75>: 0x...£f2b: mov (%rl0,%rll,1),%rbx
<+38>: lea (%$rl0,%rbx,8) ,%rl0 <+79>: 0x...£f2f: test $rbx, $rbx

<+42>: mov (%rll) ,%rbx <+82>: 0x...£f32: je <+91>

<+45>: cmp %rbx, $rax <+88>: 0x...£38: jmpqg *0x48 (%rbx)
<+48>: je <+71> <+91>: O0x...£f3b: jmpg <throw_ AME stub>

= <+96>: 0x...f40: jmpqg <throw_ ICCE stub>
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. JVM: Makes Virtual Calls Fast

= Well, mostly fast
— Class Hierarchy Analysis (CHA)
— profiling (exact types @ call sites)

= Fallback to slower mechanisms if needed
— inline caches (ICs)
— virtual dispatch



. JVM: Makes Virtual Calls Fast

A
A a = new B1(); m
invokevirtual A.m() B1 B1 B2 B3
CHA: A.m()

Profile: B1 => A.m()



. JVM: Makes Virtual Calls Fast

A
A a = new C2(); m
a.m() RN
B1 m
invokevirtual A.m() C2 /T B2 B3
CHA: A.m() || B3.m() => failed C2 C3

Profile: C2 => A.m()



. JVM: Makes Virtual Calls Fast

A
Aa=(...) ? new C2() : new C3(); m
a.m() /1
B1 m
invokevirtual A.m() C2/C3 / T B2 B3
CHA: A.m() || B3.m() => failed C2 C3

Profile: C2, C3 => A.m()



. JVM: Makes Virtual Calls Fast

= CHA & profiling turns most virtual calls into static calls

= Fallback to slower mechanisms
— new classes loaded => adjusts CHA
— uncommon traps

= When JVM fails to make the call static, use inline caches (ICs)
= When ICs fail, issue virtual call
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. Inlining

= Combine caller and callee into one unit
— e.g. based on profile
— ... or proved using CHA (Class Hierarchy Analysis)
— Perhaps with a type test (guard)
= Optimize as a whole (single compilation unit)
— More code means better visibility

46



. Inlining

Before

int addAll(int max) {
int accum = 0;
for (int i = 0; i < max; i++) {
accum = add(accum, 1i);
}

return accum;

}

int add(int a, int b) { return a + b; }



. Inlining

After

int addAll(int max) {
int accum = 0;
for (int i = 0; 1 < max; i++) {
accum = accum + 1i;
}

return accum;
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. Inlining and devirtualization

= Inlining is the most profitable compiler optimization

— Rather straightforward to implement

— Huge benefits: expands the scope for other optimizations
= OOP needs polymorphism, that implies virtual calls

— Prevents naive inlining

— Devirtualization is required

— (This does not mean you should not write OOP code)
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Call Site

Flavors

= The place where you make a call
= Types
— Monomorphic (“one shape”)
= Single target class
— Bimorphic (“two shapes”)
— Polymorphic (“many shapes”)
— Megamorphic (“too many shapes”)
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. Devirtualization in JVM

= Analyzes hierarchy of currently loaded classes (CHA)
= Efficiently devirtualizes all monomorphic calls
= Able to devirtualize polymorphic calls

= JVM may inline dynamic methods
— Reflection calls
— Runtime-synthesized methods
- JSR 292



. Devirtualization in JVM

= Class Hierarchy Analysis (CHA)
— most of monomorphic call sites
= Type profiling
— monomorphic, bimorphic & polymorphic call sites
= JVM may inline dynamic methods
— Reflection calls, runtime-synthesized methods, JSR 292
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. Feedback multiplies optimizations

= Profiling and CHA produces information
— ...which lets the JIT ignore unused paths
— ...and helps the JIT sharpen types on hot paths
— ...which allows calls to be devirtualized
— ...allowing them to be inlined

— ...expanding an ever-widening optimization horizon
= Result:

Large native methods containing tightly optimized machine code for
hundreds of inlined calls!
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HotSpot JVM



. Existing JVMs

= Oracle HotSpot
= Oracle JRockit
= IBM J9

= Excelsior JET

= Azul Zing

- SAPJVM



HotSpot JVM

JIT-compilers

= client / C1
= server / C2
= tiered mode (C1 + C2)



. HotSpot JVM

JIT-compilers

= client / C1
— $ java —client
= only available in 32-bit VM
— fast code generation of acceptable quality
— basic optimizations
— doesn’t need profile
— compilation threshold: 1,5k invocations
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. HotSpot JVM

JIT-compilers

= server / C2
— $ java —server
— highly optimized code for speed
— many aggressive optimizations which rely on profile
— compilation threshold: 10k invocations

58



. HotSpot JVM

JIT-compilers comparison

= Client / C1

+ fast startup
— peak performance suffers

= Server / C2

+ very good code for hot methods
— slow startup / warmup
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. Tiered compilation
C1+C2

= -XX:+TieredCompilation
— since 7; default for —server since 8
= Multiple tiers of interpretation, C1, and C2
= LevelO=Interpreter
= Level1-3=C1
— #1: C1 w/o profiling
— #2: C1 w/ basic profiling
— #3: C1 w/ full profiling
= Level4=C2
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Monitoring JIT



. Monitoring JIT-Compiler

= how to print info about compiled methods?
— -XX:+PrintCompilation
= how to print info about inlining decisions
— -XX:+PrintlInlining
= how to control compilation policy?
— -XX:CompileCommand-=...
= how to print assembly code?
— -XX:+PrintAssembly
— -XX:+PrintOptoAssembly (C2-only)
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. Print Compilation

= -XX:+PrintCompilation
= Print methods as they are JIT-compiled
= Class + name + size
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. Print Compilation

Sample output

$ java -XX:+PrintCompilation
988 1 java.lang.String::hashCode (55 bytes)
1271 2 sun.nio.cs.UTF_8%$Encoder::encode (361 bytes)
1406 3 java.lang.String::charAt (29 bytes)



. Print Compilation

Other useful info

= 2043 470 %! jdk.nashorn.internal.ir.FunctionNode::accept @ 136 (265 bytes)
% == OSR compilation
I == has exception handles (may be expensive)
s == synchronized method

= 2028 466 n java.lang.Class::isArray (native)

n == native method
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. Print Compilation

Not just compilation notifications

= 621 160 java.lang.Object::equals (11 bytes) made not entrant
— don't allow any new calls into this compiled version

= 1807 160 java.lang.Object::equals (11 bytes) made zombie
— can safely throw away compiled version
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. No JIT At All?

= Code is too large

= Code isn’t too «hot»
— executed not too often



Print Inlining

= -XX:+UnlockDiagnosticVMOptions -XX:+Printlnlining
= Shows hierarchy of inlined methods
= Prints reason, if a method isn’t inlined
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Print Inlining

$ java -XX:+PrintCompilation -XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining
75 1 java.lang.String::hashCode (55 bytes)
88 2 sun.nio.cs.UTF_8%Encoder::encode (361 bytes)
@ 14 java.lang.Math::min (11 bytes) (intrinsic)
@ 139 java.lang.Character::iisSurrogate (18 bytes) never executed
103 3 java.lang.String::charAt (29 bytes)
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Print Inlining

$ java -XX:+PrintCompilation -XX:+UnlockDiagnosticVMOptions -XX:+PrintInlining
75 1 java.lang.String::hashCode (55 bytes)
88 2 sun.nio.cs.UTF_8%Encoder::encode (361 bytes)
@ 14 java.lang.Math::min (11 bytes) (intrinsic)
@ 139 java.lang.Character::iisSurrogate (18 bytes) never executed
103 3 java.lang.String::charAt (29 bytes)
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. Intrinsic

= Known to the JIT compiler
— method bytecode is ignored
— inserts “best” native code

= e.g. optimized sqrt in machine code
= Existing intrinsics

— String::equals, Math::*, System::arraycopy, Object::hashCode,
Object::getClass, sun.misc.Unsafe:.*
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. Inlining Tuning

= -XX:MaxInlineSize=35

— Largest inlinable method (bytecode)
= -XX:InlineSmallCode=#

— Largest inlinable compiled method
= -XX:FreqinlineSize=#

— Largest frequently-called method...
= -XX:MaxInlineLevel=9

— How deep does the rabbit hole go?
= -XX:MaxRecursivelnlineLevel=#

72 — recursive inlining



. Machine Code

= -XX:+PrintAssembly
— http://wikis.sun.com/display/HotSpotinternals/PrintAssembly
= Knowing code compiles is good

= Knowing code inlines is better
= Seeing the actual assembly is best!



. -XX:CompileCommand=

= Syntax

— “[command] [method] [signature]”
= Supported commands

— exclude — never compile

— inline — always inline

— dontinline — never inline
= Method reference

— class.name::methodName

= Method signature is optional



. -XX:+LogCompilation

= Dumps detailed compilation-related info
— info hotspot.log / hotspot_pid%.log (XML format)
= How to process
— JITwatch
= visualizes —XX:+LogCompilation output
— logc.jar

= http://hg.openjdk.java.net/idk9/hs-comp/hotspot/share/tools/
LLogCompilation/
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. What Have We Learned?

= How JIT compilers work
= How HotSpot JIT works
= How to monitor the JIT in HotSpot



Questions?

W

vladimir.x.ivanov@oracle.com

@iwanOwww



Optimizations



. Loop Unrolling

Before

public void foo(int[] arr, int a) {
for (int i = 0; i < arr.length; i++) {
arr[i] += a;
¥



. Loop Unrolling
After?

public void foo(int[] arr, int a) {
for (int i = 0; i < arr.length; i=i+4) {
arr[il += a; arr[i+1] += a;
arr[i+2] += a; arr[i+3] += a;



. Loop unrolling
After!

public void foo(int[] arr, int a) {
int i = 0;
for (; 1 < (arr.length-4); i += 4) {
arr[i] += a; arr[i+l] += a;
arr[i+2] += a; arr[i+3] += a;

}

for (; i < arr.length; i++) {
arr[i] += a;

}



. Loop unrolling

Machine code

82

- 0x. .
0x..
0x..

0x..

0x..

- 0x. .

.70:
.17

.7b:

.82:

.86:
.89:

vmovdqu 0x10 (%rsi,%r8,4) ,%ymml
vpaddd S$ymmO, $ymml, 3ymml

vmovdqu %$ymml,0x10 (%$rsi,%$r8,4)

add $0x8,%r8d

cmp %r9d, $r8d
jl 0x...70



. Lock Coarsening

Before

public void m(Object newValue) {
synchronized(this) {
fieldl = newValue;
¥

synchronized(this) {
field2 = newValue;
¥



. Lock Coarsening
After

public void m(Object newValue) {
synchronized(this) {
fieldl = newValue;
field2 = newValue;



. Lock Elision

Before

public List<?> m() {
List<Object> list = new ArrayList<>();
synchronized (list) {
list.add(someMethod());
¥

return list;



. Lock Elision
After

public List<?> m() {
List<Object> list = new ArrayList<>();
list.add(someMethod());
return list;



. Escape Analysis

Before

public int ml1() {
Pair p = new Pair(1, 2);
return m2(p);

¥

public int m2(Pair p) {
return p.first + m3(p);

¥

public int m3(Pair p) { return p.second;}



. Escape Analysis
After deep inlining

public int m1() {
Pair p = new Pair(1, 2);
return p.first + p.second;



. Escape Analysis
After

public int ml1() {
return 3;
¥






