Pages /... / Valhalla JVM Explorations

L-World Value Types

Created by Karen Kinnear, last modified just a moment ago

L-World Value Type Terminology:

e Reference types: object class types, value class types, array types, interface types

e represented by LFoo; signature for maximum backward compatibility, thence the name L-World
e value class type: defines a class whose instances are identity-less and immutable
e object class type: neither a value class type nor an array class type

Goals and Assumptions

Goals

Functional

e Add value classes which have no identity commitment and have immutable instances
e allowing optimizations such as flattening when contained in a variable
e Perform quickly and potentially use less javaheap memory
e support
e value classes in instance and static fields
e value class arrays
e value class methods and method invocation
e value classes inherit from interfaces with default methods

Migration and Compatibility

e Existing interfaces should be implementable by both object classes and value classes - without requiring recompilation
e Existing code should be able to handle both object class and value class dynamic arguments - without requiring
recompilation
e Migration:
e object class -> value class migration: for value-based classes
e author must opt-in: by declaring in source (language policy) - requires compilation
e any existing class that meets the requirements could become a value class, value-based classes
are candidates (with additional restrictions)
e Client challenges with object class -> value class migration for value-based classes with separate
compilation
e For a given method argument or return:
e caller, callee, actual type: caller and callee may each assume object class or value class,
only the actual class when loaded gives the actual class type
e prior to loading the type, existing code may pass a null and we do not want to have to
preload all classes for all signatures
o fields:
e client, declarer, actual type: client and declarer may each assume object class or value
class, only the actual class when loaded gives the actual class type
e Sample test cases:
e migrate Optional, have Stream interface continue to work with its subclasses unchanged

Risks

e Customer Compatibility Risks
e Existing code that takes an argument that is an Object or interface, which expected object classes and is

https://wiki.se.oracle.com/collector/pages.action?key=JPG&src=breadcrumbs-collector
https://wiki.se.oracle.com/display/JPG/Valhalla+JVM+Explorations?src=breadcrumbs-parent
https://wiki.se.oracle.com/display/~acorn
https://wiki.se.oracle.com/pages/diffpagesbyversion.action?pageId=86394482&selectedPageVersions=37&selectedPageVersions=38
https://wiki.se.oracle.com/display/JPG/L-World+Value+Types

passed value classes may see unexpected results
e use of if_acmp_eq/ne without subsequent .equals() call
e attempts to synchronize on an argument which is dynamically a value class, will throw an exception
e Performance Risks

e Can we get the performance we need for value types without performance loss for object types?

Non-Goals

¢ No support for value class > object class migration for classes that do not currently meet valuebased class restrictions
e any client that attempts to create an instance of an existing object class via "new/dup/<init>" that has migrated
to be a value class will fail

e Brian pointed out that if you have no separate compilation issues, then you could migrate other object classes
to value classes

e This assumes that java compiler will catch incompatibility issues such as
e "new" usage
e identity assumptions
e immutability assumptions (including use of setAccessible())

e This assumes that the opt-in author is aware of all uses of a given type - which is not something we can

actually check
e Karen: if you have no separate compilation issues, you can change the name and guarantee complete
coverage, so we don't need to provide migration on a non-guarantee
e No support for value class -> object class migration

e Primitives as value types - is a future phase, not part of LWorld value types

Assumptions of L-World model

1. New root: java.lang.Object - for all object classes and value classes
e no separate root for value classes
2. Value Type characteristics:

e value-based class characteristics:
e final
e no subclasses
¢ shallowly immutable (unmodifiable instance fields) (language may appear to update, but actually creates new

instance underneath) (may contain references to mutable objects)
e no identity commitment:

e have implementations of equals, hashCode, toString computed solely from state (not from identity)
e equals solely based on equals() (not on ==

e freely substitutable when equal, no visible change in behavior if equals()

e unpredictable results if sync, identity hash, serialization, ...

e no non-private constructors: instantiated through factory methods, no identity commitment
e additional characteristics:

e Nullability proposal:

e Aclass declaring an instance field can declare it as non-nullable and therefore potentially flattenable in
the declaring class
e Non-nullable is a property of the field, not a property of a value class
e Only a value class may be stored in a non-nullable field today
e note: in future we may explore non-nullability for non-value types. This would not make
them flattenable.
o clarify: flattenable, JVM makes per-implementation/per-platform decisions about actual flattening
e you can NOT individually address and update flattened fields
e Aclass declaring an instance field containing an array can declare the array FieldType as non-nullable

(in the classfile) and thereby potentially flattenable
e no boxing

e no default box, no boxing at all

e all fields for an instance in the heap will be contained in the heap, whether through a reference
(indirection) or through flattening in the container

all arrays in the heap will have every index either contain a null, a heap allocated reference or a value
type flattened in the container

if you want identity, create an object instance storing a value type field

note: a value type does NOT have a box in this model. In future we may need to special case primitives
as value types and java.lang.Integer etc. but that will need corner case handling.

A given runtime type will either be an object type or a value type, determined when the class is loaded
There is NO such thing as a conversion operation, no heisenboxes, no accidental identity

e support interfaces
e java.lang.Object as only superclass (so not all value-based classes will meet the migration requirement,
although current JDK value-based classes do)

Expected Behaviors for Value Types

JDK java.lang.Object Methods

final wait/notify/etc: if isValue(): throw exception (IMSE or ICCE? - see open issues)
final getClass: normal behavior (no ambiguity with no boxes)

toString: nothing special

clone: nothing special

finalize: ICCE, note: no one should ever call it (but old code will)

equals: if isValue(): JDK component-wise comparison

hashcode: must work with equals

Java level APIs

e Class.isValue()

e System.isSubstitutableValue(), System.getSubstituteableHashCode() (to wean folks off of System.identityHashCode
for values)
System.identityHashCode() - should not work for values
setAccessible() does NOT give you the ability to write to value instance

LWVT bytecodes vs. JVMS 9

e special handling:

o if acmpeq/if_acmpne: false/true if either is a value instance. They should fall back to .equals

e needs dynamic different handling:

e aaload: no semantic change, implementation based on element type and properties (e.g. non-nullable,
flattened, atomic, ...)

e aastore: today throws NPE if arrayref is null, change: if non-nullable array and passed null: NPE. no other
semantic change, implementation based on element type and properties (e.g. non-nullable, flattened, atomic,

)

areturn: no semantic change

e exception if wrong:

putfield: field of a value class: lllegalAccessError (already throws), null to ACC_FLATTENABLE: NPE (already
throws due to null object ref)

monitorenter/exit: objectref instance of value class : lllegalMonitorStateException (already throws)

new: InstantiationError if symbolic reference to value class (already throws for existing interface, or abstract

class)

withfield: field of object class type: ICCE

defaultvalue: symbolic reference resolves to an object class: InstantiationError if

unchanged or already implemented (in MVT) or should fall out:

aload/astore: handle object class or value class

getfield: handle field of an object class or value class, handle field that is an object class or value class
dynamically

anewarray/multianewarray: handle object class or value class, the type of the reference is resolved before
array creation already

athrow: always an object class (subtype of Error) - unchanged

invoke*: handle object class vs. value class arguments and return values

e checkcast/instanceof: keep current behavior
e |dc: should fall out
e ifnull/ifnonnull: no change
e aconst_null: only return object class
e defaultvalue: only returns an initialized value class (initialized to the default value)

Design Issues

Open Design Issues

Nullability and migration

Migration of an object class to a value class (e.g. value-based-class) and nullability expectations

e Goal is to allow as much existing code to work as possible in the face of migration
e without requiring preloading classes for all fields
e Proposal: Have the declarer of an instance field declare flattenable (prototype syntax TBD) for a field or array if it
wants to allow flattening
e cases:
e Legacy declaration of LFoo; field
e field is nullable in this container
e jtis ok to write null, it is ok to read null, field is initialized to null
e Foo continues to be lazily loaded
e when Foo is loaded, regardless of whether it is actually an object class or a value class, the
behavior does not change
¢ in the java heap, an instance field will always be also stored in the java heap, whether it is a
reference to an object class or a reference to a value class
e Flattenable declaration of LFoo; field or [LFoo; array
e Foo is pre-loaded (for a field, before completing loading of the declaring class, for an array before
creating the array - unchanged)
e when Foo is loaded, if it actually is a object class, throw an exception (e.g. ICCE) on the
declaring class
e [f Foo is actually a value class
e attempts to store a null fail with a NullPointerException
e fields are initialized to the default value, so you can never read a null
e This allows the JVM implementation to flatten the field if it deems it beneficial
e In the java heap, a field will always be also stored in the java heap, whether it is a
reference to a value class or the value fields are flattened in the container
e Proposal: only detect nullability errors when we publish a value type to a field declared as ACC_FLATTENABLE
e aastore - do not allow storing a null to a non-nullable array: throw NPE
e putfield, withfield for a field declared as non-nullable: throw NPE
¢ Note: we do not perform null checks for:
e Local variable table/expression stack
e argument passing, argument return
e Note:
e Future may want to explore non-nullable non-value type fields and arrays

Nullability Handling and generics over value types

e Need to think more closely about how value types will migrate to support generics over value types
e With the current nullability proposal, we get a free migration to allow existing generics to work with value classes
e with no source changes
¢ and no flattening optimizations in current classes for any fields exposed via APIs that could pass in "null"
e However, if an existing parameterized class chooses to declare a field as non-nullable
e chooses to declare a field as flattenable for a value type
e (potential future) for non-value type fields and arrays
¢ this changes the behavior of the class and APIs and will come as a surprise
e Need to explore ways to catch the surprise at compilation time

Where do we need explicit value class information in the constant pool?

e Proposal:
e there is no value-class information in the constant pool

e constant pool uses CONSTANT _Class_info for both object classes and value classes
e Descriptors all use the LFoo; signature format.

How would we represent value class information in the class file?

e ACC_ VALUETYPE for Class modifier
e ACC_FLATTENABLE for Field modifier

Identity: monitorenter/exit handling

e What exception should we throw if we use monitorenter/exit/wait/notify* for a value type? IllegalMonitorStateException
or IncompatibleClassChangeError?

Where does the Java language need to distinguish a value class? vs. what can javac do for you?

e Declaration of a class as a value type (translates into classfile with ACC_VALUETYPE class attribute)
e instance field declaration

e Declare a field element as non-nullable which allows flattening (e.g. translates into classfile as
ACC_FLATTENABLE on the Field_info)

e default for field - nullable unless declared in source
e default for an array - non-nullable if the array element is a value type unless declared in source?

e or do we want the default to be the same for fields and arrays? i.e. nullable unless declared in
source

e Would javac want to generate isnonnull checks before storing to a non-nullable field or array element so as to reduce
NullPointerException throwing?

e instance creation

e defaultvalue/withfield vs. new/dup/init mechanism
e Restrictions on Value Types:
e class must be final
e java.lang.Object as only superclass (empty superclass, javac fills in)
e no <init>
e ltis invalid to declare a field or array element as non-nullable if the actual type of the field or array element is
an object class type
¢ this will also be caught at runtime by the JVM for separate compilation

Array Subtyping

e Open Question: Specifically are all arrays of value types subtypes of Object[]?
e Proposal:

e initial prototype should assume this is true and revisit if this is too expensive from a performance standpoint

Value Class and top level vs. inner class

e Open Question: Can an inner class be a Value Class or only a top-level class?
e Yes for static inner classes

e Forinstance inner classes there might be implicit fields from an enclosing class
e TODO - discuss in more detail

Java Language questions

e Must a value class not declare a superclass? Or should it declare java.lang.Object explicitly?
e Proposal: NOT declare a superclass to allow evolution
e Where can withfield be used?

e Proposal:
¢ In any method declared in the value class itself or declared in a nestmate
e alternative considered:
e in a value class factory:
e a static method declared in a value class with a modifier (lworld prototype proposal:
__ValueFactory in source)
e the return type of the static factory method must be identical to the value class of which
the static factory is a member
e inside the factory: value instances are created with the invocation of __MakeDefault
ValueType()
e itis ok to have more than one factory
e only the factory methods can use defaultvalue and withfield bytecodes
e you can have additional factories that take arguments
e client (Iworld prototype) invokes MakeDefault ValueType()

Are static fields candidates for ACC_FLATTENABLE?

e Cons:
e There is very little gain to any flattening for statics
e There is a significant loss forbidding constructs at the language level due to class circularity issues
e Precedent for no parameterized types in static fields
e Pros:
¢ Not want to limit this from the JVM side
e Proposal is:
e Allow this at the language level in the initial prototype

Resolved Design Issues LWVT

Q:Do Value classes support superclasses other than java.lang.Object?

1. note: value classes have no subclasses

2. for now - value class has only jIO as superclass, may be extended in future (see if that would break any optimizations
after JIT working)

e note: if we were to change this - ANY LFoo; passed as an argument (not just Object and interfaces) would
require dynamic checking of object class vs. value class
¢ In addition, there would be interactions in circularity checking between superclasses and non-nullable fields.

Q: acmp behavior options:

failing: return false <- propose for try 1
throw exception
field-equality using ucmp as "substitutable" - field-wise comparison
e general bit equality including floating point
e may need to recurse on values buffered
A: LWorld1: if >= one operand isValue(): if acmpeq -> false, if_acmpne -> true
John's mental model: even if both operands are values, "NaN-like" condition - still return if_acmpeq->false, if_acmpne-
>true

Q: What should the verifier be required to check relative to value classes?

e Goals:

e ensure no insecure behavior based on type mismatches
e minimize eager class loading

e Proposal:

e verifier could continue to perform checks such as reference vs. primitive, and isAssignable checks, including
value classes as well as object classes as references

e Therefore bytecodes at runtime would explicitly check and throw exceptions if they only apply to value classes
or object classes
e note: if passed an LObject or interface we need the dynamic check anyway in many cases
e Alternatives Considered:
e verifier could perform checks for bytecodes that require value class vs. object class
e concerns: this would need to be delayed until the classes were loaded
e for loaded classes such as super types, value types fields or isAssignable checks, some classes are
already loaded - concern - this would throw errors at randomly different times
e there are very few bytecodes that require an explicit value class or object class - defaultvalue, withfield,
putfield, monitor enter/exit, new, <init> invocation

Q: Migration value class->object class support?

e Customers will try migrating type Foo from value class to object class, by changing the source
e A: Need to ensure we catch failures - this is not supported
e challenges:
¢ field declaration of a non-nullable field should fail when loading an object class when a value class was
expected
e client instance creation: defaultvalue for value class will fail with an object class

Q: Circularity handling for Field types?

e Need to explore implementation issues relative to accurate ClassCircularityError vs. StackOverflowError.

Q: Do we need a java API for isFlattened (for a reflection Field or Array)

e John: Let's NOT provide that information. Let's have flattening be transparent from the java level.

Q: Do we need a java APl isComponentValue?

e For now, let's skip this. The information is available via getComponentType.isValue().

Is there meaning to a value interface or an abstract value class?

e No. Since a value class can have no subtypes, there appears to be no meaning to a value interface or an abstract
value class

How is java.lang.Object evolving?

e LObject as "more of an interface"
e no (inheritable) fields allowed
e LOBiject as "not an interface"
e instantiable
¢ allows methods that are not public/not private
e already has a constructor - do we need a root without one?
e order of method searching - selection searches classes/superclasses before searching superinterfaces
e resolution searches java.lang.Object before searching super interfaces
e overriding - j.I.Object methods are overridden by class methods but never by interface methods
e equals and hashCode are overridable, so | have been assuming that value types can override them
e to me this implies that the JVM/JIT can NOT optimize away calls to Object.equals (or at least not
any that are overridden)
e For all interfaces and LObject, we can no longer assume identity, but must check the actual runtime subtype
e An LObject or Linterface variable can be set to null, which implies not a value instance

What is the root type?

e Proposal: java.lang.Object is the global root type is intended to help with migration, so that code that today defines a
field or parameter as LODbject (including erased generics) will transparently work with value types
e If we believe this is possible, then we need to keep LObject as a super type of all value types (note: it in itself
could have another super-root if needed)

e Alternative: new root of I$3Object which is an interface, super interface of all types
e todo: figure out how existing interfaces could work with this one -
e note: this seems to be here to clean up interface handling,
e concerns: it isn't needed for value types
e concerns: it breaks the ability to pass a value type for a reference which currently expects LObject which

is needed for value-based-class migration

Do value types need to be able to override java.lang.Object.Equals?

e Proposal: yes

Why can't enums be value classes?

e Backward compatibility issue
e enums have identity
e enums have java.lang.Enum abstract class as super-class, not java.lang.Object
e there is no clear default value
e enums have mutable fields

Should we allow ACC_FLATTENABLE for an object class

e Out of scope for this project.
e The challenge is instance initialization
e Obiject classes are created via new, dup, <init>. The new bytecode initializes all instance variables of the new object to
their default initial value.
e The default initial value for an object class is null
e Once <init> if it exists is complete, the instance class is considered initialized, and there is no requirement that
<init> actually exist or update each instance field.

Should we allow any object class to migrate to come a value class?
e Migration is restricted to value-based classes because

e they already assume no identity
¢ they only have private constructors, so there is no existing code that executes new/dup/<init>

References

e http://cr.openjdk.java.net/~dlsmith/values-notes.html
e http://cr.openjdk.java.net/~fparain/L-world/L-World-JVMS-3.pdf

@) Like Be the first to like this

@ Like No labels

https://wiki.se.oracle.com/display/JPG/L-World+Value+Types
https://wiki.se.oracle.com/display/JPG/L-World+Value+Types
http://cr.openjdk.java.net/~dlsmith/values-notes.html
http://cr.openjdk.java.net/~fparain/L-world/L-World-JVMS-3.pdf
http://www.atlassian.com/

