
Pages / … / Valhalla JVM Explorations

Created by Karen Kinnear, last modified just a moment ago

L-World Value Types

L-World Value Type Terminology:
Reference types: object class types, value class types, array types, interface types

represented by LFoo; signature for maximum backward compatibility, thence the name L-World
value class type: defines a class whose instances are identity-less and immutable
object class type: neither a value class type nor an array class type

Goals and Assumptions

Goals

Functional

Add value classes which have no identity commitment and have immutable instances
allowing optimizations such as flattening when contained in a variable
Perform quickly and potentially use less javaheap memory

support
value classes in instance and static fields
value class arrays
value class methods and method invocation
value classes inherit from interfaces with default methods

Migration and Compatibility

Existing interfaces should be implementable by both object classes and value classes - without requiring recompilation
Existing code should be able to handle both object class and value class dynamic arguments - without requiring
recompilation
Migration:

 object class -> value class migration: for value-based classes
author must opt-in: by declaring in source (language policy) - requires compilation

any existing class that meets the requirements could become a value class, value-based classes
are candidates (with additional restrictions)

Client challenges with object class -> value class migration for value-based classes with separate
compilation

For a given method argument or return:
caller, callee, actual type: caller and callee may each assume object class or value class,
only the actual class when loaded gives the actual class type
prior to loading the type, existing code may pass a null and we do not want to have to
preload all classes for all signatures

fields:
client, declarer, actual type: client and declarer may each assume object class or value
class, only the actual class when loaded gives the actual class type

Sample test cases:
migrate Optional, have Stream interface continue to work with its subclasses unchanged

Risks

Customer Compatibility Risks
Existing code that takes an argument that is an Object or interface, which expected object classes and is

https://wiki.se.oracle.com/collector/pages.action?key=JPG&src=breadcrumbs-collector
https://wiki.se.oracle.com/display/JPG/Valhalla+JVM+Explorations?src=breadcrumbs-parent
https://wiki.se.oracle.com/display/~acorn
https://wiki.se.oracle.com/pages/diffpagesbyversion.action?pageId=86394482&selectedPageVersions=37&selectedPageVersions=38
https://wiki.se.oracle.com/display/JPG/L-World+Value+Types

passed value classes may see unexpected results
use of if_acmp_eq/ne without subsequent .equals() call
attempts to synchronize on an argument which is dynamically a value class, will throw an exception

Performance Risks
Can we get the performance we need for value types without performance loss for object types?

 Non-Goals

No support for value class > object class migration for classes that do not currently meet valuebased class restrictions
any client that attempts to create an instance of an existing object class via "new/dup/<init>" that has migrated
to be a value class will fail
Brian pointed out that if you have no separate compilation issues, then you could migrate other object classes
to value classes

This assumes that java compiler will catch incompatibility issues such as
"new" usage
identity assumptions
immutability assumptions (including use of setAccessible())

This assumes that the opt-in author is aware of all uses of a given type - which is not something we can
actually check

Karen: if you have no separate compilation issues, you can change the name and guarantee complete
coverage, so we don't need to provide migration on a non-guarantee

No support for value class -> object class migration
Primitives as value types - is a future phase, not part of LWorld value types

Assumptions of L-World model

 1. New root: java.lang.Object - for all object classes and value classes

no separate root for value classes

2. Value Type characteristics:

value-based class characteristics:
final

no subclasses
shallowly immutable (unmodifiable instance fields) (language may appear to update, but actually creates new
instance underneath) (may contain references to mutable objects)
no identity commitment:

have implementations of equals, hashCode, toString computed solely from state (not from identity)
equals solely based on equals() (not on ==)
freely substitutable when equal, no visible change in behavior if equals()
unpredictable results if sync, identity hash, serialization, ...

no non-private constructors: instantiated through factory methods, no identity commitment
additional characteristics:

Nullability proposal:
A class declaring an instance field can declare it as non-nullable and therefore potentially flattenable in
the declaring class

Non-nullable is a property of the field, not a property of a value class
Only a value class may be stored in a non-nullable field today

note: in future we may explore non-nullability for non-value types. This would not make
them flattenable.

clarify: flattenable, JVM makes per-implementation/per-platform decisions about actual flattening
you can NOT individually address and update flattened fields

A class declaring an instance field containing an array can declare the array FieldType as non-nullable
(in the classfile) and thereby potentially flattenable

no boxing
no default box, no boxing at all
all fields for an instance in the heap will be contained in the heap, whether through a reference
(indirection) or through flattening in the container

all arrays in the heap will have every index either contain a null, a heap allocated reference or a value
type flattened in the container
 if you want identity, create an object instance storing a value type field
note: a value type does NOT have a box in this model. In future we may need to special case primitives
as value types and java.lang.Integer etc. but that will need corner case handling.
A given runtime type will either be an object type or a value type, determined when the class is loaded
There is NO such thing as a conversion operation, no heisenboxes, no accidental identity

support interfaces
java.lang.Object as only superclass (so not all value-based classes will meet the migration requirement,
although current JDK value-based classes do)

Expected Behaviors for Value Types

 JDK java.lang.Object Methods

 final wait/notify/etc: if isValue(): throw exception (IMSE or ICCE? - see open issues)
 final getClass: normal behavior (no ambiguity with no boxes)
 toString: nothing special
 clone: nothing special
 finalize: ICCE, note: no one should ever call it (but old code will)
 equals: if isValue(): JDK component-wise comparison
 hashcode: must work with equals

Java level APIs

Class.isValue()
System.isSubstitutableValue(), System.getSubstituteableHashCode() (to wean folks off of System.identityHashCode
for values)
System.identityHashCode() - should not work for values
setAccessible() does NOT give you the ability to write to value instance

LWVT bytecodes vs. JVMS 9

special handling:
if_acmpeq/if_acmpne: false/true if either is a value instance. They should fall back to .equals

needs dynamic different handling:
aaload: no semantic change, implementation based on element type and properties (e.g. non-nullable,
flattened, atomic, ...)
aastore: today throws NPE if arrayref is null, change: if non-nullable array and passed null: NPE. no other
semantic change, implementation based on element type and properties (e.g. non-nullable, flattened, atomic,
...)
 areturn: no semantic change

exception if wrong:
putfield: field of a value class: IllegalAccessError (already throws), null to ACC_FLATTENABLE: NPE (already
throws due to null object ref)
monitorenter/exit: objectref instance of value class : IllegalMonitorStateException (already throws)
new: InstantiationError if symbolic reference to value class (already throws for existing interface, or abstract
class)
withfield: field of object class type: ICCE
defaultvalue: symbolic reference resolves to an object class: InstantiationError if

 unchanged or already implemented (in MVT) or should fall out:
aload/astore: handle object class or value class
getfield: handle field of an object class or value class, handle field that is an object class or value class
dynamically
anewarray/multianewarray: handle object class or value class, the type of the reference is resolved before
array creation already
athrow: always an object class (subtype of Error) - unchanged
invoke*: handle object class vs. value class arguments and return values

checkcast/instanceof: keep current behavior
ldc: should fall out
ifnull/ifnonnull: no change

 aconst_null: only return object class
defaultvalue: only returns an initialized value class (initialized to the default value)

Design Issues

Open Design Issues

Nullability and migration

Migration of an object class to a value class (e.g. value-based-class) and nullability expectations

Goal is to allow as much existing code to work as possible in the face of migration
without requiring preloading classes for all fields

Proposal: Have the declarer of an instance field declare flattenable (prototype syntax TBD) for a field or array if it
wants to allow flattening

cases:
Legacy declaration of LFoo; field

field is nullable in this container
it is ok to write null, it is ok to read null, field is initialized to null
Foo continues to be lazily loaded
when Foo is loaded, regardless of whether it is actually an object class or a value class, the
behavior does not change
in the java heap, an instance field will always be also stored in the java heap, whether it is a
reference to an object class or a reference to a value class

Flattenable declaration of LFoo; field or [LFoo; array
Foo is pre-loaded (for a field, before completing loading of the declaring class, for an array before
creating the array - unchanged)
when Foo is loaded, if it actually is a object class, throw an exception (e.g. ICCE) on the
declaring class
If Foo is actually a value class

attempts to store a null fail with a NullPointerException
fields are initialized to the default value, so you can never read a null
This allows the JVM implementation to flatten the field if it deems it beneficial
In the java heap, a field will always be also stored in the java heap, whether it is a
reference to a value class or the value fields are flattened in the container

Proposal: only detect nullability errors when we publish a value type to a field declared as ACC_FLATTENABLE
aastore - do not allow storing a null to a non-nullable array: throw NPE
putfield, withfield for a field declared as non-nullable: throw NPE

Note: we do not perform null checks for:
Local variable table/expression stack
argument passing, argument return

Note:
Future may want to explore non-nullable non-value type fields and arrays

Nullability Handling and generics over value types

Need to think more closely about how value types will migrate to support generics over value types
With the current nullability proposal, we get a free migration to allow existing generics to work with value classes

with no source changes
and no flattening optimizations in current classes for any fields exposed via APIs that could pass in "null"

However, if an existing parameterized class chooses to declare a field as non-nullable
chooses to declare a field as flattenable for a value type
(potential future) for non-value type fields and arrays
this changes the behavior of the class and APIs and will come as a surprise

Need to explore ways to catch the surprise at compilation time

Where do we need explicit value class information in the constant pool?

Proposal:
there is no value-class information in the constant pool
constant pool uses CONSTANT_Class_info for both object classes and value classes
Descriptors all use the LFoo; signature format.

How would we represent value class information in the class file?

ACC_VALUETYPE for Class modifier
ACC_FLATTENABLE for Field modifier

Identity: monitorenter/exit handling

What exception should we throw if we use monitorenter/exit/wait/notify* for a value type? IllegalMonitorStateException
or IncompatibleClassChangeError?

Where does the Java language need to distinguish a value class? vs. what can javac do for you?

Declaration of a class as a value type (translates into classfile with ACC_VALUETYPE class attribute)
instance field declaration

Declare a field element as non-nullable which allows flattening (e.g. translates into classfile as
ACC_FLATTENABLE on the Field_info)

default for field - nullable unless declared in source
default for an array - non-nullable if the array element is a value type unless declared in source?

or do we want the default to be the same for fields and arrays? i.e. nullable unless declared in
source

Would javac want to generate isnonnull checks before storing to a non-nullable field or array element so as to reduce
NullPointerException throwing?

instance creation
defaultvalue/withfield vs. new/dup/init mechanism

Restrictions on Value Types:
class must be final
java.lang.Object as only superclass (empty superclass, javac fills in)
no <init>
It is invalid to declare a field or array element as non-nullable if the actual type of the field or array element is
an object class type

this will also be caught at runtime by the JVM for separate compilation

Array Subtyping

Open Question: Specifically are all arrays of value types subtypes of Object[]?
Proposal:

initial prototype should assume this is true and revisit if this is too expensive from a performance standpoint

Value Class and top level vs. inner class

Open Question: Can an inner class be a Value Class or only a top-level class?
Yes for static inner classes
For instance inner classes there might be implicit fields from an enclosing class
TODO - discuss in more detail

Java Language questions

Must a value class not declare a superclass? Or should it declare java.lang.Object explicitly?
Proposal: NOT declare a superclass to allow evolution

Where can withfield be used?

Proposal:
In any method declared in the value class itself or declared in a nestmate

alternative considered:
in a value class factory:

a static method declared in a value class with a modifier (lworld prototype proposal:
__ValueFactory in source)

the return type of the static factory method must be identical to the value class of which
the static factory is a member
inside the factory: value instances are created with the invocation of __MakeDefault
ValueType()
it is ok to have more than one factory
only the factory methods can use defaultvalue and withfield bytecodes
you can have additional factories that take arguments

client (lworld prototype) invokes __MakeDefault ValueType()

Are static fields candidates for ACC_FLATTENABLE?

Cons:
There is very little gain to any flattening for statics
There is a significant loss forbidding constructs at the language level due to class circularity issues
Precedent for no parameterized types in static fields

Pros:
Not want to limit this from the JVM side

Proposal is:
Allow this at the language level in the initial prototype

Resolved Design Issues LWVT

Q:Do Value classes support superclasses other than java.lang.Object?

1. note: value classes have no subclasses
2. for now - value class has only jlO as superclass, may be extended in future (see if that would break any optimizations

after JIT working)
note: if we were to change this - ANY LFoo; passed as an argument (not just Object and interfaces) would
require dynamic checking of object class vs. value class
In addition, there would be interactions in circularity checking between superclasses and non-nullable fields.

Q: acmp behavior options:

failing: return false <- propose for try 1
throw exception
field-equality using ucmp as "substitutable" - field-wise comparison

general bit equality including floating point
 may need to recurse on values buffered

A: LWorld1: if >= one operand isValue(): if_acmpeq -> false, if_acmpne -> true
John's mental model: even if both operands are values, "NaN-like" condition - still return if_acmpeq->false, if_acmpne-
>true

Q: What should the verifier be required to check relative to value classes?

Goals:
ensure no insecure behavior based on type mismatches
minimize eager class loading

Proposal:
verifier could continue to perform checks such as reference vs. primitive, and isAssignable checks, including
value classes as well as object classes as references

Therefore bytecodes at runtime would explicitly check and throw exceptions if they only apply to value classes
or object classes

note: if passed an LObject or interface we need the dynamic check anyway in many cases
Alternatives Considered:

verifier could perform checks for bytecodes that require value class vs. object class
concerns: this would need to be delayed until the classes were loaded
for loaded classes such as super types, value types fields or isAssignable checks, some classes are
already loaded - concern - this would throw errors at randomly different times
there are very few bytecodes that require an explicit value class or object class - defaultvalue, withfield,
putfield, monitor enter/exit, new, <init> invocation

Q: Migration value class->object class support?

 Customers will try migrating type Foo from value class to object class, by changing the source
 A: Need to ensure we catch failures - this is not supported
 challenges:

field declaration of a non-nullable field should fail when loading an object class when a value class was
expected
client instance creation: defaultvalue for value class will fail with an object class

Q: Circularity handling for Field types?

Need to explore implementation issues relative to accurate ClassCircularityError vs. StackOverflowError.

Q: Do we need a java API for isFlattened (for a reflection Field or Array)

John: Let's NOT provide that information. Let's have flattening be transparent from the java level.

Q: Do we need a java API isComponentValue?

For now, let's skip this. The information is available via getComponentType.isValue().

Is there meaning to a value interface or an abstract value class?

No. Since a value class can have no subtypes, there appears to be no meaning to a value interface or an abstract
value class

How is java.lang.Object evolving?

LObject as "more of an interface"
no (inheritable) fields allowed

LOBject as "not an interface"
instantiable
allows methods that are not public/not private
already has a constructor - do we need a root without one?
order of method searching - selection searches classes/superclasses before searching superinterfaces

resolution searches java.lang.Object before searching super interfaces
overriding - j.l.Object methods are overridden by class methods but never by interface methods
equals and hashCode are overridable, so I have been assuming that value types can override them

to me this implies that the JVM/JIT can NOT optimize away calls to Object.equals (or at least not
any that are overridden)

For all interfaces and LObject, we can no longer assume identity, but must check the actual runtime subtype
An LObject or LInterface variable can be set to null, which implies not a value instance

What is the root type?

Like

Like Be the first to like this

Proposal: java.lang.Object is the global root type is intended to help with migration, so that code that today defines a
field or parameter as LObject (including erased generics) will transparently work with value types

If we believe this is possible, then we need to keep LObject as a super type of all value types (note: it in itself
could have another super-root if needed)
Alternative: new root of I$Object which is an interface, super interface of all types

todo: figure out how existing interfaces could work with this one -
note: this seems to be here to clean up interface handling,
concerns: it isn't needed for value types
concerns: it breaks the ability to pass a value type for a reference which currently expects LObject which
is needed for value-based-class migration

Do value types need to be able to override java.lang.Object.Equals?

Proposal: yes

Why can't enums be value classes?

Backward compatibility issue
enums have identity
enums have java.lang.Enum abstract class as super-class, not java.lang.Object
there is no clear default value
enums have mutable fields

Should we allow ACC_FLATTENABLE for an object class

Out of scope for this project.
The challenge is instance initialization
Object classes are created via new, dup, <init>. The new bytecode initializes all instance variables of the new object to
their default initial value.

The default initial value for an object class is null
Once <init> if it exists is complete, the instance class is considered initialized, and there is no requirement that
<init> actually exist or update each instance field.

Should we allow any object class to migrate to come a value class?

Migration is restricted to value-based classes because
they already assume no identity
they only have private constructors, so there is no existing code that executes new/dup/<init>

References
http://cr.openjdk.java.net/~dlsmith/values-notes.html
http://cr.openjdk.java.net/~fparain/L-world/L-World-JVMS-3.pdf

No labels

https://wiki.se.oracle.com/display/JPG/L-World+Value+Types
https://wiki.se.oracle.com/display/JPG/L-World+Value+Types
http://cr.openjdk.java.net/~dlsmith/values-notes.html
http://cr.openjdk.java.net/~fparain/L-world/L-World-JVMS-3.pdf
http://www.atlassian.com/

