1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void clear_jweak_tag(Register possibly_jweak);
 298   void resolve_jobject(Register value, Register thread, Register tmp);
 299 
 300   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 301   void c2bool(Register x);
 302 
 303   // C++ bool manipulation
 304 
 305   void movbool(Register dst, Address src);
 306   void movbool(Address dst, bool boolconst);
 307   void movbool(Address dst, Register src);
 308   void testbool(Register dst);
 309 
 310   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 311   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 312 
 313   // oop manipulations
 314   void load_klass(Register dst, Register src);
 315   void store_klass(Register dst, Register src);
 316 
 317   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 318                       Register tmp1, Register thread_tmp);
 319   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 320                        Register tmp1, Register tmp2);
 321 
 322   // Resolves obj access. Result is placed in the same register.
 323   // All other registers are preserved.
 324   void resolve(DecoratorSet decorators, Register obj);
 325 
 326   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 327                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 328   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 329                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 330   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 331                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 332 
 333   // Used for storing NULL. All other oop constants should be
 334   // stored using routines that take a jobject.
 335   void store_heap_oop_null(Address dst);
 336 
 337   void load_prototype_header(Register dst, Register src);
 338 
 339 #ifdef _LP64
 340   void store_klass_gap(Register dst, Register src);
 341 
 342   // This dummy is to prevent a call to store_heap_oop from
 343   // converting a zero (like NULL) into a Register by giving
 344   // the compiler two choices it can't resolve
 345 
 346   void store_heap_oop(Address dst, void* dummy);
 347 
 348   void encode_heap_oop(Register r);
 349   void decode_heap_oop(Register r);
 350   void encode_heap_oop_not_null(Register r);
 351   void decode_heap_oop_not_null(Register r);
 352   void encode_heap_oop_not_null(Register dst, Register src);
 353   void decode_heap_oop_not_null(Register dst, Register src);
 354 
 355   void set_narrow_oop(Register dst, jobject obj);
 356   void set_narrow_oop(Address dst, jobject obj);
 357   void cmp_narrow_oop(Register dst, jobject obj);
 358   void cmp_narrow_oop(Address dst, jobject obj);
 359 
 360   void encode_klass_not_null(Register r);
 361   void decode_klass_not_null(Register r);
 362   void encode_klass_not_null(Register dst, Register src);
 363   void decode_klass_not_null(Register dst, Register src);
 364   void set_narrow_klass(Register dst, Klass* k);
 365   void set_narrow_klass(Address dst, Klass* k);
 366   void cmp_narrow_klass(Register dst, Klass* k);
 367   void cmp_narrow_klass(Address dst, Klass* k);
 368 
 369   // Returns the byte size of the instructions generated by decode_klass_not_null()
 370   // when compressed klass pointers are being used.
 371   static int instr_size_for_decode_klass_not_null();
 372 
 373   // if heap base register is used - reinit it with the correct value
 374   void reinit_heapbase();
 375 
 376   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 377 
 378 #endif // _LP64
 379 
 380   // Int division/remainder for Java
 381   // (as idivl, but checks for special case as described in JVM spec.)
 382   // returns idivl instruction offset for implicit exception handling
 383   int corrected_idivl(Register reg);
 384 
 385   // Long division/remainder for Java
 386   // (as idivq, but checks for special case as described in JVM spec.)
 387   // returns idivq instruction offset for implicit exception handling
 388   int corrected_idivq(Register reg);
 389 
 390   void int3();
 391 
 392   // Long operation macros for a 32bit cpu
 393   // Long negation for Java
 394   void lneg(Register hi, Register lo);
 395 
 396   // Long multiplication for Java
 397   // (destroys contents of eax, ebx, ecx and edx)
 398   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 399 
 400   // Long shifts for Java
 401   // (semantics as described in JVM spec.)
 402   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 403   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 404 
 405   // Long compare for Java
 406   // (semantics as described in JVM spec.)
 407   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 408 
 409 
 410   // misc
 411 
 412   // Sign extension
 413   void sign_extend_short(Register reg);
 414   void sign_extend_byte(Register reg);
 415 
 416   // Division by power of 2, rounding towards 0
 417   void division_with_shift(Register reg, int shift_value);
 418 
 419   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 420   //
 421   // CF (corresponds to C0) if x < y
 422   // PF (corresponds to C2) if unordered
 423   // ZF (corresponds to C3) if x = y
 424   //
 425   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 426   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 427   void fcmp(Register tmp);
 428   // Variant of the above which allows y to be further down the stack
 429   // and which only pops x and y if specified. If pop_right is
 430   // specified then pop_left must also be specified.
 431   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 432 
 433   // Floating-point comparison for Java
 434   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 435   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 436   // (semantics as described in JVM spec.)
 437   void fcmp2int(Register dst, bool unordered_is_less);
 438   // Variant of the above which allows y to be further down the stack
 439   // and which only pops x and y if specified. If pop_right is
 440   // specified then pop_left must also be specified.
 441   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 442 
 443   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 444   // tmp is a temporary register, if none is available use noreg
 445   void fremr(Register tmp);
 446 
 447   // dst = c = a * b + c
 448   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 449   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 450 
 451   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 452   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 453   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 454   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 455 
 456 
 457   // same as fcmp2int, but using SSE2
 458   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 459   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 460 
 461   // branch to L if FPU flag C2 is set/not set
 462   // tmp is a temporary register, if none is available use noreg
 463   void jC2 (Register tmp, Label& L);
 464   void jnC2(Register tmp, Label& L);
 465 
 466   // Pop ST (ffree & fincstp combined)
 467   void fpop();
 468 
 469   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 470   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 471   void load_float(Address src);
 472 
 473   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 474   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 475   void store_float(Address dst);
 476 
 477   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 478   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 479   void load_double(Address src);
 480 
 481   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 482   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 483   void store_double(Address dst);
 484 
 485   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 486   void push_fTOS();
 487 
 488   // pops double TOS element from CPU stack and pushes on FPU stack
 489   void pop_fTOS();
 490 
 491   void empty_FPU_stack();
 492 
 493   void push_IU_state();
 494   void pop_IU_state();
 495 
 496   void push_FPU_state();
 497   void pop_FPU_state();
 498 
 499   void push_CPU_state();
 500   void pop_CPU_state();
 501 
 502   // Round up to a power of two
 503   void round_to(Register reg, int modulus);
 504 
 505   // Callee saved registers handling
 506   void push_callee_saved_registers();
 507   void pop_callee_saved_registers();
 508 
 509   // allocation
 510   void eden_allocate(
 511     Register thread,                   // Current thread
 512     Register obj,                      // result: pointer to object after successful allocation
 513     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 514     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 515     Register t1,                       // temp register
 516     Label&   slow_case                 // continuation point if fast allocation fails
 517   );
 518   void tlab_allocate(
 519     Register thread,                   // Current thread
 520     Register obj,                      // result: pointer to object after successful allocation
 521     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 522     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 523     Register t1,                       // temp register
 524     Register t2,                       // temp register
 525     Label&   slow_case                 // continuation point if fast allocation fails
 526   );
 527   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 528 
 529   // interface method calling
 530   void lookup_interface_method(Register recv_klass,
 531                                Register intf_klass,
 532                                RegisterOrConstant itable_index,
 533                                Register method_result,
 534                                Register scan_temp,
 535                                Label& no_such_interface,
 536                                bool return_method = true);
 537 
 538   // virtual method calling
 539   void lookup_virtual_method(Register recv_klass,
 540                              RegisterOrConstant vtable_index,
 541                              Register method_result);
 542 
 543   // Test sub_klass against super_klass, with fast and slow paths.
 544 
 545   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 546   // One of the three labels can be NULL, meaning take the fall-through.
 547   // If super_check_offset is -1, the value is loaded up from super_klass.
 548   // No registers are killed, except temp_reg.
 549   void check_klass_subtype_fast_path(Register sub_klass,
 550                                      Register super_klass,
 551                                      Register temp_reg,
 552                                      Label* L_success,
 553                                      Label* L_failure,
 554                                      Label* L_slow_path,
 555                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 556 
 557   // The rest of the type check; must be wired to a corresponding fast path.
 558   // It does not repeat the fast path logic, so don't use it standalone.
 559   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 560   // Updates the sub's secondary super cache as necessary.
 561   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 562   void check_klass_subtype_slow_path(Register sub_klass,
 563                                      Register super_klass,
 564                                      Register temp_reg,
 565                                      Register temp2_reg,
 566                                      Label* L_success,
 567                                      Label* L_failure,
 568                                      bool set_cond_codes = false);
 569 
 570   // Simplified, combined version, good for typical uses.
 571   // Falls through on failure.
 572   void check_klass_subtype(Register sub_klass,
 573                            Register super_klass,
 574                            Register temp_reg,
 575                            Label& L_success);
 576 
 577   // method handles (JSR 292)
 578   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 579 
 580   //----
 581   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 582 
 583   // Debugging
 584 
 585   // only if +VerifyOops
 586   // TODO: Make these macros with file and line like sparc version!
 587   void verify_oop(Register reg, const char* s = "broken oop");
 588   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 589 
 590   // TODO: verify method and klass metadata (compare against vptr?)
 591   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 592   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 593 
 594 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 595 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 596 
 597   // only if +VerifyFPU
 598   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 599 
 600   // Verify or restore cpu control state after JNI call
 601   void restore_cpu_control_state_after_jni();
 602 
 603   // prints msg, dumps registers and stops execution
 604   void stop(const char* msg);
 605 
 606   // prints msg and continues
 607   void warn(const char* msg);
 608 
 609   // dumps registers and other state
 610   void print_state();
 611 
 612   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 613   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 614   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 615   static void print_state64(int64_t pc, int64_t regs[]);
 616 
 617   void os_breakpoint();
 618 
 619   void untested()                                { stop("untested"); }
 620 
 621   void unimplemented(const char* what = "");
 622 
 623   void should_not_reach_here()                   { stop("should not reach here"); }
 624 
 625   void print_CPU_state();
 626 
 627   // Stack overflow checking
 628   void bang_stack_with_offset(int offset) {
 629     // stack grows down, caller passes positive offset
 630     assert(offset > 0, "must bang with negative offset");
 631     movl(Address(rsp, (-offset)), rax);
 632   }
 633 
 634   // Writes to stack successive pages until offset reached to check for
 635   // stack overflow + shadow pages.  Also, clobbers tmp
 636   void bang_stack_size(Register size, Register tmp);
 637 
 638   // Check for reserved stack access in method being exited (for JIT)
 639   void reserved_stack_check();
 640 
 641   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 642                                                 Register tmp,
 643                                                 int offset);
 644 
 645   // Support for serializing memory accesses between threads
 646   void serialize_memory(Register thread, Register tmp);
 647 
 648   // If thread_reg is != noreg the code assumes the register passed contains
 649   // the thread (required on 64 bit).
 650   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 651 
 652   void verify_tlab();
 653 
 654   // Biased locking support
 655   // lock_reg and obj_reg must be loaded up with the appropriate values.
 656   // swap_reg must be rax, and is killed.
 657   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 658   // be killed; if not supplied, push/pop will be used internally to
 659   // allocate a temporary (inefficient, avoid if possible).
 660   // Optional slow case is for implementations (interpreter and C1) which branch to
 661   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 662   // Returns offset of first potentially-faulting instruction for null
 663   // check info (currently consumed only by C1). If
 664   // swap_reg_contains_mark is true then returns -1 as it is assumed
 665   // the calling code has already passed any potential faults.
 666   int biased_locking_enter(Register lock_reg, Register obj_reg,
 667                            Register swap_reg, Register tmp_reg,
 668                            bool swap_reg_contains_mark,
 669                            Label& done, Label* slow_case = NULL,
 670                            BiasedLockingCounters* counters = NULL);
 671   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 672 #ifdef COMPILER2
 673   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 674   // See full desription in macroAssembler_x86.cpp.
 675   void fast_lock(Register obj, Register box, Register tmp,
 676                  Register scr, Register cx1, Register cx2,
 677                  BiasedLockingCounters* counters,
 678                  RTMLockingCounters* rtm_counters,
 679                  RTMLockingCounters* stack_rtm_counters,
 680                  Metadata* method_data,
 681                  bool use_rtm, bool profile_rtm);
 682   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 683 #if INCLUDE_RTM_OPT
 684   void rtm_counters_update(Register abort_status, Register rtm_counters);
 685   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 686   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 687                                    RTMLockingCounters* rtm_counters,
 688                                    Metadata* method_data);
 689   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 690                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 691   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 692   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 693   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 694                          Register retry_on_abort_count,
 695                          RTMLockingCounters* stack_rtm_counters,
 696                          Metadata* method_data, bool profile_rtm,
 697                          Label& DONE_LABEL, Label& IsInflated);
 698   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 699                             Register scr, Register retry_on_busy_count,
 700                             Register retry_on_abort_count,
 701                             RTMLockingCounters* rtm_counters,
 702                             Metadata* method_data, bool profile_rtm,
 703                             Label& DONE_LABEL);
 704 #endif
 705 #endif
 706 
 707   Condition negate_condition(Condition cond);
 708 
 709   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 710   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 711   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 712   // here in MacroAssembler. The major exception to this rule is call
 713 
 714   // Arithmetics
 715 
 716 
 717   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 718   void addptr(Address dst, Register src);
 719 
 720   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 721   void addptr(Register dst, int32_t src);
 722   void addptr(Register dst, Register src);
 723   void addptr(Register dst, RegisterOrConstant src) {
 724     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 725     else                   addptr(dst,       src.as_register());
 726   }
 727 
 728   void andptr(Register dst, int32_t src);
 729   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 730 
 731   void cmp8(AddressLiteral src1, int imm);
 732 
 733   // renamed to drag out the casting of address to int32_t/intptr_t
 734   void cmp32(Register src1, int32_t imm);
 735 
 736   void cmp32(AddressLiteral src1, int32_t imm);
 737   // compare reg - mem, or reg - &mem
 738   void cmp32(Register src1, AddressLiteral src2);
 739 
 740   void cmp32(Register src1, Address src2);
 741 
 742 #ifndef _LP64
 743   void cmpklass(Address dst, Metadata* obj);
 744   void cmpklass(Register dst, Metadata* obj);
 745   void cmpoop(Address dst, jobject obj);
 746   void cmpoop_raw(Address dst, jobject obj);
 747 #endif // _LP64
 748 
 749   void cmpoop(Register src1, Register src2);
 750   void cmpoop(Register src1, Address src2);
 751   void cmpoop(Register dst, jobject obj);
 752   void cmpoop_raw(Register dst, jobject obj);
 753 
 754   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 755   void cmpptr(Address src1, AddressLiteral src2);
 756 
 757   void cmpptr(Register src1, AddressLiteral src2);
 758 
 759   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 760   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 761   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 762 
 763   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 764   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 765 
 766   // cmp64 to avoild hiding cmpq
 767   void cmp64(Register src1, AddressLiteral src);
 768 
 769   void cmpxchgptr(Register reg, Address adr);
 770 
 771   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 772 
 773 
 774   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 775   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 776 
 777 
 778   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 779 
 780   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 781 
 782   void shlptr(Register dst, int32_t shift);
 783   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 784 
 785   void shrptr(Register dst, int32_t shift);
 786   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 787 
 788   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 789   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 790 
 791   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 792 
 793   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 794   void subptr(Register dst, int32_t src);
 795   // Force generation of a 4 byte immediate value even if it fits into 8bit
 796   void subptr_imm32(Register dst, int32_t src);
 797   void subptr(Register dst, Register src);
 798   void subptr(Register dst, RegisterOrConstant src) {
 799     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 800     else                   subptr(dst,       src.as_register());
 801   }
 802 
 803   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 804   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 805 
 806   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 807   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 808 
 809   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 810 
 811 
 812 
 813   // Helper functions for statistics gathering.
 814   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 815   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 816   // Unconditional atomic increment.
 817   void atomic_incl(Address counter_addr);
 818   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 819 #ifdef _LP64
 820   void atomic_incq(Address counter_addr);
 821   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 822 #endif
 823   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 824   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 825 
 826   void lea(Register dst, AddressLiteral adr);
 827   void lea(Address dst, AddressLiteral adr);
 828   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 829 
 830   void leal32(Register dst, Address src) { leal(dst, src); }
 831 
 832   // Import other testl() methods from the parent class or else
 833   // they will be hidden by the following overriding declaration.
 834   using Assembler::testl;
 835   void testl(Register dst, AddressLiteral src);
 836 
 837   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 838   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 839   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 840   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 841 
 842   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 843   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 844   void testptr(Register src1, Register src2);
 845 
 846   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 847   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 848 
 849   // Calls
 850 
 851   void call(Label& L, relocInfo::relocType rtype);
 852   void call(Register entry);
 853 
 854   // NOTE: this call transfers to the effective address of entry NOT
 855   // the address contained by entry. This is because this is more natural
 856   // for jumps/calls.
 857   void call(AddressLiteral entry);
 858 
 859   // Emit the CompiledIC call idiom
 860   void ic_call(address entry, jint method_index = 0);
 861 
 862   // Jumps
 863 
 864   // NOTE: these jumps tranfer to the effective address of dst NOT
 865   // the address contained by dst. This is because this is more natural
 866   // for jumps/calls.
 867   void jump(AddressLiteral dst);
 868   void jump_cc(Condition cc, AddressLiteral dst);
 869 
 870   // 32bit can do a case table jump in one instruction but we no longer allow the base
 871   // to be installed in the Address class. This jump will tranfers to the address
 872   // contained in the location described by entry (not the address of entry)
 873   void jump(ArrayAddress entry);
 874 
 875   // Floating
 876 
 877   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 878   void andpd(XMMRegister dst, AddressLiteral src);
 879   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 880 
 881   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 882   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 883   void andps(XMMRegister dst, AddressLiteral src);
 884 
 885   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 886   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 887   void comiss(XMMRegister dst, AddressLiteral src);
 888 
 889   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 890   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 891   void comisd(XMMRegister dst, AddressLiteral src);
 892 
 893   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 894   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 895 
 896   void fldcw(Address src) { Assembler::fldcw(src); }
 897   void fldcw(AddressLiteral src);
 898 
 899   void fld_s(int index)   { Assembler::fld_s(index); }
 900   void fld_s(Address src) { Assembler::fld_s(src); }
 901   void fld_s(AddressLiteral src);
 902 
 903   void fld_d(Address src) { Assembler::fld_d(src); }
 904   void fld_d(AddressLiteral src);
 905 
 906   void fld_x(Address src) { Assembler::fld_x(src); }
 907   void fld_x(AddressLiteral src);
 908 
 909   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 910   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 911 
 912   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 913   void ldmxcsr(AddressLiteral src);
 914 
 915 #ifdef _LP64
 916  private:
 917   void sha256_AVX2_one_round_compute(
 918     Register  reg_old_h,
 919     Register  reg_a,
 920     Register  reg_b,
 921     Register  reg_c,
 922     Register  reg_d,
 923     Register  reg_e,
 924     Register  reg_f,
 925     Register  reg_g,
 926     Register  reg_h,
 927     int iter);
 928   void sha256_AVX2_four_rounds_compute_first(int start);
 929   void sha256_AVX2_four_rounds_compute_last(int start);
 930   void sha256_AVX2_one_round_and_sched(
 931         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 932         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 933         XMMRegister xmm_2,     /* ymm6 */
 934         XMMRegister xmm_3,     /* ymm7 */
 935         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 936         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 937         Register    reg_c,      /* edi */
 938         Register    reg_d,      /* esi */
 939         Register    reg_e,      /* r8d */
 940         Register    reg_f,      /* r9d */
 941         Register    reg_g,      /* r10d */
 942         Register    reg_h,      /* r11d */
 943         int iter);
 944 
 945   void addm(int disp, Register r1, Register r2);
 946 
 947  public:
 948   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 949                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 950                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 951                    bool multi_block, XMMRegister shuf_mask);
 952 #endif
 953 
 954 #ifdef _LP64
 955  private:
 956   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 957                                      Register e, Register f, Register g, Register h, int iteration);
 958 
 959   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 960                                           Register a, Register b, Register c, Register d, Register e, Register f,
 961                                           Register g, Register h, int iteration);
 962 
 963   void addmq(int disp, Register r1, Register r2);
 964  public:
 965   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 966                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 967                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 968                    XMMRegister shuf_mask);
 969 #endif
 970 
 971   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 972                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 973                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 974                  bool multi_block);
 975 
 976 #ifdef _LP64
 977   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 978                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 979                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 980                    bool multi_block, XMMRegister shuf_mask);
 981 #else
 982   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 983                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 984                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 985                    bool multi_block);
 986 #endif
 987 
 988   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                 Register rax, Register rcx, Register rdx, Register tmp);
 991 
 992 #ifdef _LP64
 993   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 994                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 995                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 996 
 997   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 998                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 999                   Register rax, Register rcx, Register rdx, Register r11);
1000 
1001   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1002                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1003                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1004 
1005   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1008                 Register tmp3, Register tmp4);
1009 
1010   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rcx, Register rdx, Register tmp1,
1013                 Register tmp2, Register tmp3, Register tmp4);
1014   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp1,
1017                 Register tmp2, Register tmp3, Register tmp4);
1018 #else
1019   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                 Register rax, Register rcx, Register rdx, Register tmp1);
1022 
1023   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1024                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1025                 Register rax, Register rcx, Register rdx, Register tmp);
1026 
1027   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1028                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1029                 Register rdx, Register tmp);
1030 
1031   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1032                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1033                 Register rax, Register rbx, Register rdx);
1034 
1035   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rcx, Register rdx, Register tmp);
1038 
1039   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1040                         Register edx, Register ebx, Register esi, Register edi,
1041                         Register ebp, Register esp);
1042 
1043   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1044                          Register esi, Register edi, Register ebp, Register esp);
1045 
1046   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1047                         Register edx, Register ebx, Register esi, Register edi,
1048                         Register ebp, Register esp);
1049 
1050   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                 Register rax, Register rcx, Register rdx, Register tmp);
1053 #endif
1054 
1055   void increase_precision();
1056   void restore_precision();
1057 
1058 private:
1059 
1060   // these are private because users should be doing movflt/movdbl
1061 
1062   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1063   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1064   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1065   void movss(XMMRegister dst, AddressLiteral src);
1066 
1067   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1068   void movlpd(XMMRegister dst, AddressLiteral src);
1069 
1070 public:
1071 
1072   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1073   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1074   void addsd(XMMRegister dst, AddressLiteral src);
1075 
1076   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1077   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1078   void addss(XMMRegister dst, AddressLiteral src);
1079 
1080   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1081   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1082   void addpd(XMMRegister dst, AddressLiteral src);
1083 
1084   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1085   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1086   void divsd(XMMRegister dst, AddressLiteral src);
1087 
1088   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1089   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1090   void divss(XMMRegister dst, AddressLiteral src);
1091 
1092   // Move Unaligned Double Quadword
1093   void movdqu(Address     dst, XMMRegister src);
1094   void movdqu(XMMRegister dst, Address src);
1095   void movdqu(XMMRegister dst, XMMRegister src);
1096   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1097   // AVX Unaligned forms
1098   void vmovdqu(Address     dst, XMMRegister src);
1099   void vmovdqu(XMMRegister dst, Address src);
1100   void vmovdqu(XMMRegister dst, XMMRegister src);
1101   void vmovdqu(XMMRegister dst, AddressLiteral src);
1102   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1103   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1104   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1105   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1106 
1107   // Move Aligned Double Quadword
1108   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1109   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1110   void movdqa(XMMRegister dst, AddressLiteral src);
1111 
1112   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1113   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1114   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1115   void movsd(XMMRegister dst, AddressLiteral src);
1116 
1117   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1118   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1119   void mulpd(XMMRegister dst, AddressLiteral src);
1120 
1121   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1122   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1123   void mulsd(XMMRegister dst, AddressLiteral src);
1124 
1125   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1126   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1127   void mulss(XMMRegister dst, AddressLiteral src);
1128 
1129   // Carry-Less Multiplication Quadword
1130   void pclmulldq(XMMRegister dst, XMMRegister src) {
1131     // 0x00 - multiply lower 64 bits [0:63]
1132     Assembler::pclmulqdq(dst, src, 0x00);
1133   }
1134   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1135     // 0x11 - multiply upper 64 bits [64:127]
1136     Assembler::pclmulqdq(dst, src, 0x11);
1137   }
1138 
1139   void pcmpeqb(XMMRegister dst, XMMRegister src);
1140   void pcmpeqw(XMMRegister dst, XMMRegister src);
1141 
1142   void pcmpestri(XMMRegister dst, Address src, int imm8);
1143   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1144 
1145   void pmovzxbw(XMMRegister dst, XMMRegister src);
1146   void pmovzxbw(XMMRegister dst, Address src);
1147 
1148   void pmovmskb(Register dst, XMMRegister src);
1149 
1150   void ptest(XMMRegister dst, XMMRegister src);
1151 
1152   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1153   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1154   void sqrtsd(XMMRegister dst, AddressLiteral src);
1155 
1156   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1157   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1158   void sqrtss(XMMRegister dst, AddressLiteral src);
1159 
1160   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1161   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1162   void subsd(XMMRegister dst, AddressLiteral src);
1163 
1164   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1165   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1166   void subss(XMMRegister dst, AddressLiteral src);
1167 
1168   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1169   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1170   void ucomiss(XMMRegister dst, AddressLiteral src);
1171 
1172   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1173   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1174   void ucomisd(XMMRegister dst, AddressLiteral src);
1175 
1176   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1177   void xorpd(XMMRegister dst, XMMRegister src);
1178   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1179   void xorpd(XMMRegister dst, AddressLiteral src);
1180 
1181   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1182   void xorps(XMMRegister dst, XMMRegister src);
1183   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1184   void xorps(XMMRegister dst, AddressLiteral src);
1185 
1186   // Shuffle Bytes
1187   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1188   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1189   void pshufb(XMMRegister dst, AddressLiteral src);
1190   // AVX 3-operands instructions
1191 
1192   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1193   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1194   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1195 
1196   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1197   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1198   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1199 
1200   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1201   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1202 
1203   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1204   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1205 
1206   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1207   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1208 
1209   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1210   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1211   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1212 
1213   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1214 
1215   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1216   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1217 
1218   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1219   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1220 
1221   void vpmovmskb(Register dst, XMMRegister src);
1222 
1223   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1224   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1225 
1226   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1227   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1228 
1229   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1230   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1231 
1232   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1233   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1234 
1235   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1236   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1237 
1238   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1239   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1240 
1241   void vptest(XMMRegister dst, XMMRegister src);
1242 
1243   void punpcklbw(XMMRegister dst, XMMRegister src);
1244   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1245 
1246   void pshufd(XMMRegister dst, Address src, int mode);
1247   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1248 
1249   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1250   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1251 
1252   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1253   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1254   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1255 
1256   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1257   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1258   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1259 
1260   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1261   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1262   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1263 
1264   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1265   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1266   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1267 
1268   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1269   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1270   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1271 
1272   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1273   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1274   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1275 
1276   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1277   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1278   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279 
1280   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1281   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1282   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283 
1284   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1285   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1286 
1287   // AVX Vector instructions
1288 
1289   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1290   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1291   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1292 
1293   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1294   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1295   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1296 
1297   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1298     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1299       Assembler::vpxor(dst, nds, src, vector_len);
1300     else
1301       Assembler::vxorpd(dst, nds, src, vector_len);
1302   }
1303   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1304     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1305       Assembler::vpxor(dst, nds, src, vector_len);
1306     else
1307       Assembler::vxorpd(dst, nds, src, vector_len);
1308   }
1309 
1310   // Simple version for AVX2 256bit vectors
1311   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1312   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1313 
1314   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1315     if (UseAVX > 2) {
1316       Assembler::vinserti32x4(dst, dst, src, imm8);
1317     } else if (UseAVX > 1) {
1318       // vinserti128 is available only in AVX2
1319       Assembler::vinserti128(dst, nds, src, imm8);
1320     } else {
1321       Assembler::vinsertf128(dst, nds, src, imm8);
1322     }
1323   }
1324 
1325   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1326     if (UseAVX > 2) {
1327       Assembler::vinserti32x4(dst, dst, src, imm8);
1328     } else if (UseAVX > 1) {
1329       // vinserti128 is available only in AVX2
1330       Assembler::vinserti128(dst, nds, src, imm8);
1331     } else {
1332       Assembler::vinsertf128(dst, nds, src, imm8);
1333     }
1334   }
1335 
1336   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1337     if (UseAVX > 2) {
1338       Assembler::vextracti32x4(dst, src, imm8);
1339     } else if (UseAVX > 1) {
1340       // vextracti128 is available only in AVX2
1341       Assembler::vextracti128(dst, src, imm8);
1342     } else {
1343       Assembler::vextractf128(dst, src, imm8);
1344     }
1345   }
1346 
1347   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1348     if (UseAVX > 2) {
1349       Assembler::vextracti32x4(dst, src, imm8);
1350     } else if (UseAVX > 1) {
1351       // vextracti128 is available only in AVX2
1352       Assembler::vextracti128(dst, src, imm8);
1353     } else {
1354       Assembler::vextractf128(dst, src, imm8);
1355     }
1356   }
1357 
1358   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1359   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1360     vinserti128(dst, dst, src, 1);
1361   }
1362   void vinserti128_high(XMMRegister dst, Address src) {
1363     vinserti128(dst, dst, src, 1);
1364   }
1365   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1366     vextracti128(dst, src, 1);
1367   }
1368   void vextracti128_high(Address dst, XMMRegister src) {
1369     vextracti128(dst, src, 1);
1370   }
1371 
1372   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1373     if (UseAVX > 2) {
1374       Assembler::vinsertf32x4(dst, dst, src, 1);
1375     } else {
1376       Assembler::vinsertf128(dst, dst, src, 1);
1377     }
1378   }
1379 
1380   void vinsertf128_high(XMMRegister dst, Address src) {
1381     if (UseAVX > 2) {
1382       Assembler::vinsertf32x4(dst, dst, src, 1);
1383     } else {
1384       Assembler::vinsertf128(dst, dst, src, 1);
1385     }
1386   }
1387 
1388   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1389     if (UseAVX > 2) {
1390       Assembler::vextractf32x4(dst, src, 1);
1391     } else {
1392       Assembler::vextractf128(dst, src, 1);
1393     }
1394   }
1395 
1396   void vextractf128_high(Address dst, XMMRegister src) {
1397     if (UseAVX > 2) {
1398       Assembler::vextractf32x4(dst, src, 1);
1399     } else {
1400       Assembler::vextractf128(dst, src, 1);
1401     }
1402   }
1403 
1404   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1405   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1406     Assembler::vinserti64x4(dst, dst, src, 1);
1407   }
1408   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1409     Assembler::vinsertf64x4(dst, dst, src, 1);
1410   }
1411   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1412     Assembler::vextracti64x4(dst, src, 1);
1413   }
1414   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1415     Assembler::vextractf64x4(dst, src, 1);
1416   }
1417   void vextractf64x4_high(Address dst, XMMRegister src) {
1418     Assembler::vextractf64x4(dst, src, 1);
1419   }
1420   void vinsertf64x4_high(XMMRegister dst, Address src) {
1421     Assembler::vinsertf64x4(dst, dst, src, 1);
1422   }
1423 
1424   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1425   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1426     vinserti128(dst, dst, src, 0);
1427   }
1428   void vinserti128_low(XMMRegister dst, Address src) {
1429     vinserti128(dst, dst, src, 0);
1430   }
1431   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1432     vextracti128(dst, src, 0);
1433   }
1434   void vextracti128_low(Address dst, XMMRegister src) {
1435     vextracti128(dst, src, 0);
1436   }
1437 
1438   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1439     if (UseAVX > 2) {
1440       Assembler::vinsertf32x4(dst, dst, src, 0);
1441     } else {
1442       Assembler::vinsertf128(dst, dst, src, 0);
1443     }
1444   }
1445 
1446   void vinsertf128_low(XMMRegister dst, Address src) {
1447     if (UseAVX > 2) {
1448       Assembler::vinsertf32x4(dst, dst, src, 0);
1449     } else {
1450       Assembler::vinsertf128(dst, dst, src, 0);
1451     }
1452   }
1453 
1454   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1455     if (UseAVX > 2) {
1456       Assembler::vextractf32x4(dst, src, 0);
1457     } else {
1458       Assembler::vextractf128(dst, src, 0);
1459     }
1460   }
1461 
1462   void vextractf128_low(Address dst, XMMRegister src) {
1463     if (UseAVX > 2) {
1464       Assembler::vextractf32x4(dst, src, 0);
1465     } else {
1466       Assembler::vextractf128(dst, src, 0);
1467     }
1468   }
1469 
1470   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1471   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1472     Assembler::vinserti64x4(dst, dst, src, 0);
1473   }
1474   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1475     Assembler::vinsertf64x4(dst, dst, src, 0);
1476   }
1477   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1478     Assembler::vextracti64x4(dst, src, 0);
1479   }
1480   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1481     Assembler::vextractf64x4(dst, src, 0);
1482   }
1483   void vextractf64x4_low(Address dst, XMMRegister src) {
1484     Assembler::vextractf64x4(dst, src, 0);
1485   }
1486   void vinsertf64x4_low(XMMRegister dst, Address src) {
1487     Assembler::vinsertf64x4(dst, dst, src, 0);
1488   }
1489 
1490   // Carry-Less Multiplication Quadword
1491   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1492     // 0x00 - multiply lower 64 bits [0:63]
1493     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1494   }
1495   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1496     // 0x11 - multiply upper 64 bits [64:127]
1497     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1498   }
1499   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1500     // 0x00 - multiply lower 64 bits [0:63]
1501     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1502   }
1503   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1504     // 0x11 - multiply upper 64 bits [64:127]
1505     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1506   }
1507 
1508   // Data
1509 
1510   void cmov32( Condition cc, Register dst, Address  src);
1511   void cmov32( Condition cc, Register dst, Register src);
1512 
1513   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1514 
1515   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1516   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1517 
1518   void movoop(Register dst, jobject obj);
1519   void movoop(Address dst, jobject obj);
1520 
1521   void mov_metadata(Register dst, Metadata* obj);
1522   void mov_metadata(Address dst, Metadata* obj);
1523 
1524   void movptr(ArrayAddress dst, Register src);
1525   // can this do an lea?
1526   void movptr(Register dst, ArrayAddress src);
1527 
1528   void movptr(Register dst, Address src);
1529 
1530 #ifdef _LP64
1531   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1532 #else
1533   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1534 #endif
1535 
1536   void movptr(Register dst, intptr_t src);
1537   void movptr(Register dst, Register src);
1538   void movptr(Address dst, intptr_t src);
1539 
1540   void movptr(Address dst, Register src);
1541 
1542   void movptr(Register dst, RegisterOrConstant src) {
1543     if (src.is_constant()) movptr(dst, src.as_constant());
1544     else                   movptr(dst, src.as_register());
1545   }
1546 
1547 #ifdef _LP64
1548   // Generally the next two are only used for moving NULL
1549   // Although there are situations in initializing the mark word where
1550   // they could be used. They are dangerous.
1551 
1552   // They only exist on LP64 so that int32_t and intptr_t are not the same
1553   // and we have ambiguous declarations.
1554 
1555   void movptr(Address dst, int32_t imm32);
1556   void movptr(Register dst, int32_t imm32);
1557 #endif // _LP64
1558 
1559   // to avoid hiding movl
1560   void mov32(AddressLiteral dst, Register src);
1561   void mov32(Register dst, AddressLiteral src);
1562 
1563   // to avoid hiding movb
1564   void movbyte(ArrayAddress dst, int src);
1565 
1566   // Import other mov() methods from the parent class or else
1567   // they will be hidden by the following overriding declaration.
1568   using Assembler::movdl;
1569   using Assembler::movq;
1570   void movdl(XMMRegister dst, AddressLiteral src);
1571   void movq(XMMRegister dst, AddressLiteral src);
1572 
1573   // Can push value or effective address
1574   void pushptr(AddressLiteral src);
1575 
1576   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1577   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1578 
1579   void pushoop(jobject obj);
1580   void pushklass(Metadata* obj);
1581 
1582   // sign extend as need a l to ptr sized element
1583   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1584   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1585 
1586   // C2 compiled method's prolog code.
1587   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1588 
1589   // clear memory of size 'cnt' qwords, starting at 'base';
1590   // if 'is_large' is set, do not try to produce short loop
1591   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1592 
1593   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1594   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1595 
1596 #ifdef COMPILER2
1597   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1598                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1599 
1600   // IndexOf strings.
1601   // Small strings are loaded through stack if they cross page boundary.
1602   void string_indexof(Register str1, Register str2,
1603                       Register cnt1, Register cnt2,
1604                       int int_cnt2,  Register result,
1605                       XMMRegister vec, Register tmp,
1606                       int ae);
1607 
1608   // IndexOf for constant substrings with size >= 8 elements
1609   // which don't need to be loaded through stack.
1610   void string_indexofC8(Register str1, Register str2,
1611                       Register cnt1, Register cnt2,
1612                       int int_cnt2,  Register result,
1613                       XMMRegister vec, Register tmp,
1614                       int ae);
1615 
1616     // Smallest code: we don't need to load through stack,
1617     // check string tail.
1618 
1619   // helper function for string_compare
1620   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1621                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1622                           Address::ScaleFactor scale2, Register index, int ae);
1623   // Compare strings.
1624   void string_compare(Register str1, Register str2,
1625                       Register cnt1, Register cnt2, Register result,
1626                       XMMRegister vec1, int ae);
1627 
1628   // Search for Non-ASCII character (Negative byte value) in a byte array,
1629   // return true if it has any and false otherwise.
1630   void has_negatives(Register ary1, Register len,
1631                      Register result, Register tmp1,
1632                      XMMRegister vec1, XMMRegister vec2);
1633 
1634   // Compare char[] or byte[] arrays.
1635   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1636                      Register limit, Register result, Register chr,
1637                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1638 
1639 #endif
1640 
1641   // Fill primitive arrays
1642   void generate_fill(BasicType t, bool aligned,
1643                      Register to, Register value, Register count,
1644                      Register rtmp, XMMRegister xtmp);
1645 
1646   void encode_iso_array(Register src, Register dst, Register len,
1647                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1648                         XMMRegister tmp4, Register tmp5, Register result);
1649 
1650 #ifdef _LP64
1651   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1652   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1653                              Register y, Register y_idx, Register z,
1654                              Register carry, Register product,
1655                              Register idx, Register kdx);
1656   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1657                               Register yz_idx, Register idx,
1658                               Register carry, Register product, int offset);
1659   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1660                                     Register carry, Register carry2,
1661                                     Register idx, Register jdx,
1662                                     Register yz_idx1, Register yz_idx2,
1663                                     Register tmp, Register tmp3, Register tmp4);
1664   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1665                                Register yz_idx, Register idx, Register jdx,
1666                                Register carry, Register product,
1667                                Register carry2);
1668   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1669                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1670   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1671                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1672   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1673                             Register tmp2);
1674   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1675                        Register rdxReg, Register raxReg);
1676   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1677   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1678                        Register tmp3, Register tmp4);
1679   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1680                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1681 
1682   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1683                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1684                Register raxReg);
1685   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1686                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1687                Register raxReg);
1688   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1689                            Register result, Register tmp1, Register tmp2,
1690                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1691 #endif
1692 
1693   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1694   void update_byte_crc32(Register crc, Register val, Register table);
1695   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1696   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1697   // Note on a naming convention:
1698   // Prefix w = register only used on a Westmere+ architecture
1699   // Prefix n = register only used on a Nehalem architecture
1700 #ifdef _LP64
1701   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1702                        Register tmp1, Register tmp2, Register tmp3);
1703 #else
1704   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1705                        Register tmp1, Register tmp2, Register tmp3,
1706                        XMMRegister xtmp1, XMMRegister xtmp2);
1707 #endif
1708   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1709                         Register in_out,
1710                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1711                         XMMRegister w_xtmp2,
1712                         Register tmp1,
1713                         Register n_tmp2, Register n_tmp3);
1714   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1715                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1716                        Register tmp1, Register tmp2,
1717                        Register n_tmp3);
1718   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1719                          Register in_out1, Register in_out2, Register in_out3,
1720                          Register tmp1, Register tmp2, Register tmp3,
1721                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1722                          Register tmp4, Register tmp5,
1723                          Register n_tmp6);
1724   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1725                             Register tmp1, Register tmp2, Register tmp3,
1726                             Register tmp4, Register tmp5, Register tmp6,
1727                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1728                             bool is_pclmulqdq_supported);
1729   // Fold 128-bit data chunk
1730   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1731   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1732   // Fold 8-bit data
1733   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1734   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1735   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1736 
1737   // Compress char[] array to byte[].
1738   void char_array_compress(Register src, Register dst, Register len,
1739                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1740                            XMMRegister tmp4, Register tmp5, Register result);
1741 
1742   // Inflate byte[] array to char[].
1743   void byte_array_inflate(Register src, Register dst, Register len,
1744                           XMMRegister tmp1, Register tmp2);
1745 
1746 };
1747 
1748 /**
1749  * class SkipIfEqual:
1750  *
1751  * Instantiating this class will result in assembly code being output that will
1752  * jump around any code emitted between the creation of the instance and it's
1753  * automatic destruction at the end of a scope block, depending on the value of
1754  * the flag passed to the constructor, which will be checked at run-time.
1755  */
1756 class SkipIfEqual {
1757  private:
1758   MacroAssembler* _masm;
1759   Label _label;
1760 
1761  public:
1762    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1763    ~SkipIfEqual();
1764 };
1765 
1766 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP