1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_BLOCK_HPP
  26 #define SHARE_VM_OPTO_BLOCK_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/phase.hpp"
  31 
  32 // Optimization - Graph Style
  33 
  34 class Block;
  35 class CFGLoop;
  36 class MachCallNode;
  37 class Matcher;
  38 class RootNode;
  39 class VectorSet;
  40 struct Tarjan;
  41 
  42 //------------------------------Block_Array------------------------------------
  43 // Map dense integer indices to Blocks.  Uses classic doubling-array trick.
  44 // Abstractly provides an infinite array of Block*'s, initialized to NULL.
  45 // Note that the constructor just zeros things, and since I use Arena
  46 // allocation I do not need a destructor to reclaim storage.
  47 class Block_Array : public ResourceObj {
  48   friend class VMStructs;
  49   uint _size;                   // allocated size, as opposed to formal limit
  50   debug_only(uint _limit;)      // limit to formal domain
  51 protected:
  52   Block **_blocks;
  53   void grow( uint i );          // Grow array node to fit
  54 
  55 public:
  56   Arena *_arena;                // Arena to allocate in
  57 
  58   Block_Array(Arena *a) : _arena(a), _size(OptoBlockListSize) {
  59     debug_only(_limit=0);
  60     _blocks = NEW_ARENA_ARRAY( a, Block *, OptoBlockListSize );
  61     for( int i = 0; i < OptoBlockListSize; i++ ) {
  62       _blocks[i] = NULL;
  63     }
  64   }
  65   Block *lookup( uint i ) const // Lookup, or NULL for not mapped
  66   { return (i<Max()) ? _blocks[i] : (Block*)NULL; }
  67   Block *operator[] ( uint i ) const // Lookup, or assert for not mapped
  68   { assert( i < Max(), "oob" ); return _blocks[i]; }
  69   // Extend the mapping: index i maps to Block *n.
  70   void map( uint i, Block *n ) { if( i>=Max() ) grow(i); _blocks[i] = n; }
  71   uint Max() const { debug_only(return _limit); return _size; }
  72 };
  73 
  74 
  75 class Block_List : public Block_Array {
  76   friend class VMStructs;
  77 public:
  78   uint _cnt;
  79   Block_List() : Block_Array(Thread::current()->resource_area()), _cnt(0) {}
  80   void push( Block *b ) { map(_cnt++,b); }
  81   Block *pop() { return _blocks[--_cnt]; }
  82   Block *rpop() { Block *b = _blocks[0]; _blocks[0]=_blocks[--_cnt]; return b;}
  83   void remove( uint i );
  84   void insert( uint i, Block *n );
  85   uint size() const { return _cnt; }
  86   void reset() { _cnt = 0; }
  87   void print();
  88 };
  89 
  90 
  91 class CFGElement : public ResourceObj {
  92   friend class VMStructs;
  93  public:
  94   float _freq; // Execution frequency (estimate)
  95 
  96   CFGElement() : _freq(0.0f) {}
  97   virtual bool is_block() { return false; }
  98   virtual bool is_loop()  { return false; }
  99   Block*   as_Block() { assert(is_block(), "must be block"); return (Block*)this; }
 100   CFGLoop* as_CFGLoop()  { assert(is_loop(),  "must be loop");  return (CFGLoop*)this;  }
 101 };
 102 
 103 //------------------------------Block------------------------------------------
 104 // This class defines a Basic Block.
 105 // Basic blocks are used during the output routines, and are not used during
 106 // any optimization pass.  They are created late in the game.
 107 class Block : public CFGElement {
 108   friend class VMStructs;
 109  public:
 110   // Nodes in this block, in order
 111   Node_List _nodes;
 112 
 113   // Basic blocks have a Node which defines Control for all Nodes pinned in
 114   // this block.  This Node is a RegionNode.  Exception-causing Nodes
 115   // (division, subroutines) and Phi functions are always pinned.  Later,
 116   // every Node will get pinned to some block.
 117   Node *head() const { return _nodes[0]; }
 118 
 119   // CAUTION: num_preds() is ONE based, so that predecessor numbers match
 120   // input edges to Regions and Phis.
 121   uint num_preds() const { return head()->req(); }
 122   Node *pred(uint i) const { return head()->in(i); }
 123 
 124   // Array of successor blocks, same size as projs array
 125   Block_Array _succs;
 126 
 127   // Basic blocks have some number of Nodes which split control to all
 128   // following blocks.  These Nodes are always Projections.  The field in
 129   // the Projection and the block-ending Node determine which Block follows.
 130   uint _num_succs;
 131 
 132   // Basic blocks also carry all sorts of good old fashioned DFS information
 133   // used to find loops, loop nesting depth, dominators, etc.
 134   uint _pre_order;              // Pre-order DFS number
 135 
 136   // Dominator tree
 137   uint _dom_depth;              // Depth in dominator tree for fast LCA
 138   Block* _idom;                 // Immediate dominator block
 139 
 140   CFGLoop *_loop;               // Loop to which this block belongs
 141   uint _rpo;                    // Number in reverse post order walk
 142 
 143   virtual bool is_block() { return true; }
 144   float succ_prob(uint i);      // return probability of i'th successor
 145   int num_fall_throughs();      // How many fall-through candidate this block has
 146   void update_uncommon_branch(Block* un); // Lower branch prob to uncommon code
 147   bool succ_fall_through(uint i); // Is successor "i" is a fall-through candidate
 148   Block* lone_fall_through();   // Return lone fall-through Block or null
 149 
 150   Block* dom_lca(Block* that);  // Compute LCA in dominator tree.
 151 #ifdef ASSERT
 152   bool dominates(Block* that) {
 153     int dom_diff = this->_dom_depth - that->_dom_depth;
 154     if (dom_diff > 0)  return false;
 155     for (; dom_diff < 0; dom_diff++)  that = that->_idom;
 156     return this == that;
 157   }
 158 #endif
 159 
 160   // Report the alignment required by this block.  Must be a power of 2.
 161   // The previous block will insert nops to get this alignment.
 162   uint code_alignment();
 163   uint compute_loop_alignment();
 164 
 165   // BLOCK_FREQUENCY is a sentinel to mark uses of constant block frequencies.
 166   // It is currently also used to scale such frequencies relative to
 167   // FreqCountInvocations relative to the old value of 1500.
 168 #define BLOCK_FREQUENCY(f) ((f * (float) 1500) / FreqCountInvocations)
 169 
 170   // Register Pressure (estimate) for Splitting heuristic
 171   uint _reg_pressure;
 172   uint _ihrp_index;
 173   uint _freg_pressure;
 174   uint _fhrp_index;
 175 
 176   // Mark and visited bits for an LCA calculation in insert_anti_dependences.
 177   // Since they hold unique node indexes, they do not need reinitialization.
 178   node_idx_t _raise_LCA_mark;
 179   void    set_raise_LCA_mark(node_idx_t x)    { _raise_LCA_mark = x; }
 180   node_idx_t  raise_LCA_mark() const          { return _raise_LCA_mark; }
 181   node_idx_t _raise_LCA_visited;
 182   void    set_raise_LCA_visited(node_idx_t x) { _raise_LCA_visited = x; }
 183   node_idx_t  raise_LCA_visited() const       { return _raise_LCA_visited; }
 184 
 185   // Estimated size in bytes of first instructions in a loop.
 186   uint _first_inst_size;
 187   uint first_inst_size() const     { return _first_inst_size; }
 188   void set_first_inst_size(uint s) { _first_inst_size = s; }
 189 
 190   // Compute the size of first instructions in this block.
 191   uint compute_first_inst_size(uint& sum_size, uint inst_cnt, PhaseRegAlloc* ra);
 192 
 193   // Compute alignment padding if the block needs it.
 194   // Align a loop if loop's padding is less or equal to padding limit
 195   // or the size of first instructions in the loop > padding.
 196   uint alignment_padding(int current_offset) {
 197     int block_alignment = code_alignment();
 198     int max_pad = block_alignment-relocInfo::addr_unit();
 199     if( max_pad > 0 ) {
 200       assert(is_power_of_2(max_pad+relocInfo::addr_unit()), "");
 201       int current_alignment = current_offset & max_pad;
 202       if( current_alignment != 0 ) {
 203         uint padding = (block_alignment-current_alignment) & max_pad;
 204         if( has_loop_alignment() &&
 205             padding > (uint)MaxLoopPad &&
 206             first_inst_size() <= padding ) {
 207           return 0;
 208         }
 209         return padding;
 210       }
 211     }
 212     return 0;
 213   }
 214 
 215   // Connector blocks. Connector blocks are basic blocks devoid of
 216   // instructions, but may have relevant non-instruction Nodes, such as
 217   // Phis or MergeMems. Such blocks are discovered and marked during the
 218   // RemoveEmpty phase, and elided during Output.
 219   bool _connector;
 220   void set_connector() { _connector = true; }
 221   bool is_connector() const { return _connector; };
 222 
 223   // Loop_alignment will be set for blocks which are at the top of loops.
 224   // The block layout pass may rotate loops such that the loop head may not
 225   // be the sequentially first block of the loop encountered in the linear
 226   // list of blocks.  If the layout pass is not run, loop alignment is set
 227   // for each block which is the head of a loop.
 228   uint _loop_alignment;
 229   void set_loop_alignment(Block *loop_top) {
 230     uint new_alignment = loop_top->compute_loop_alignment();
 231     if (new_alignment > _loop_alignment) {
 232       _loop_alignment = new_alignment;
 233     }
 234   }
 235   uint loop_alignment() const { return _loop_alignment; }
 236   bool has_loop_alignment() const { return loop_alignment() > 0; }
 237 
 238   // Create a new Block with given head Node.
 239   // Creates the (empty) predecessor arrays.
 240   Block( Arena *a, Node *headnode )
 241     : CFGElement(),
 242       _nodes(a),
 243       _succs(a),
 244       _num_succs(0),
 245       _pre_order(0),
 246       _idom(0),
 247       _loop(NULL),
 248       _reg_pressure(0),
 249       _ihrp_index(1),
 250       _freg_pressure(0),
 251       _fhrp_index(1),
 252       _raise_LCA_mark(0),
 253       _raise_LCA_visited(0),
 254       _first_inst_size(999999),
 255       _connector(false),
 256       _loop_alignment(0) {
 257     _nodes.push(headnode);
 258   }
 259 
 260   // Index of 'end' Node
 261   uint end_idx() const {
 262     // %%%%% add a proj after every goto
 263     // so (last->is_block_proj() != last) always, then simplify this code
 264     // This will not give correct end_idx for block 0 when it only contains root.
 265     int last_idx = _nodes.size() - 1;
 266     Node *last  = _nodes[last_idx];
 267     assert(last->is_block_proj() == last || last->is_block_proj() == _nodes[last_idx - _num_succs], "");
 268     return (last->is_block_proj() == last) ? last_idx : (last_idx - _num_succs);
 269   }
 270 
 271   // Basic blocks have a Node which ends them.  This Node determines which
 272   // basic block follows this one in the program flow.  This Node is either an
 273   // IfNode, a GotoNode, a JmpNode, or a ReturnNode.
 274   Node *end() const { return _nodes[end_idx()]; }
 275 
 276   // Add an instruction to an existing block.  It must go after the head
 277   // instruction and before the end instruction.
 278   void add_inst( Node *n ) { _nodes.insert(end_idx(),n); }
 279   // Find node in block
 280   uint find_node( const Node *n ) const;
 281   // Find and remove n from block list
 282   void find_remove( const Node *n );
 283 
 284   // helper function that adds caller save registers to MachProjNode
 285   void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe);
 286   // Schedule a call next in the block
 287   uint sched_call(Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call);
 288 
 289   // Perform basic-block local scheduling
 290   Node *select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot);
 291   void set_next_call( Node *n, VectorSet &next_call, Block_Array &bbs );
 292   void needed_for_next_call(Node *this_call, VectorSet &next_call, Block_Array &bbs);
 293   bool schedule_local(PhaseCFG *cfg, Matcher &m, GrowableArray<int> &ready_cnt, VectorSet &next_call);
 294   // Cleanup if any code lands between a Call and his Catch
 295   void call_catch_cleanup(Block_Array &bbs, Compile *C);
 296   // Detect implicit-null-check opportunities.  Basically, find NULL checks
 297   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
 298   // I can generate a memory op if there is not one nearby.
 299   void implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons);
 300 
 301   // Return the empty status of a block
 302   enum { not_empty, empty_with_goto, completely_empty };
 303   int is_Empty() const;
 304 
 305   // Forward through connectors
 306   Block* non_connector() {
 307     Block* s = this;
 308     while (s->is_connector()) {
 309       s = s->_succs[0];
 310     }
 311     return s;
 312   }
 313 
 314   // Return true if b is a successor of this block
 315   bool has_successor(Block* b) const {
 316     for (uint i = 0; i < _num_succs; i++ ) {
 317       if (non_connector_successor(i) == b) {
 318         return true;
 319       }
 320     }
 321     return false;
 322   }
 323 
 324   // Successor block, after forwarding through connectors
 325   Block* non_connector_successor(int i) const {
 326     return _succs[i]->non_connector();
 327   }
 328 
 329   // Examine block's code shape to predict if it is not commonly executed.
 330   bool has_uncommon_code() const;
 331 
 332   // Use frequency calculations and code shape to predict if the block
 333   // is uncommon.
 334   bool is_uncommon( Block_Array &bbs ) const;
 335 
 336 #ifndef PRODUCT
 337   // Debugging print of basic block
 338   void dump_bidx(const Block* orig, outputStream* st = tty) const;
 339   void dump_pred(const Block_Array *bbs, Block* orig, outputStream* st = tty) const;
 340   void dump_head( const Block_Array *bbs, outputStream* st = tty ) const;
 341   void dump() const;
 342   void dump( const Block_Array *bbs ) const;
 343 #endif
 344 };
 345 
 346 
 347 //------------------------------PhaseCFG---------------------------------------
 348 // Build an array of Basic Block pointers, one per Node.
 349 class PhaseCFG : public Phase {
 350   friend class VMStructs;
 351  private:
 352   // Build a proper looking cfg.  Return count of basic blocks
 353   uint build_cfg();
 354 
 355   // Perform DFS search.
 356   // Setup 'vertex' as DFS to vertex mapping.
 357   // Setup 'semi' as vertex to DFS mapping.
 358   // Set 'parent' to DFS parent.
 359   uint DFS( Tarjan *tarjan );
 360 
 361   // Helper function to insert a node into a block
 362   void schedule_node_into_block( Node *n, Block *b );
 363 
 364   void replace_block_proj_ctrl( Node *n );
 365 
 366   // Set the basic block for pinned Nodes
 367   void schedule_pinned_nodes( VectorSet &visited );
 368 
 369   // I'll need a few machine-specific GotoNodes.  Clone from this one.
 370   MachNode *_goto;
 371 
 372   Block* insert_anti_dependences(Block* LCA, Node* load, bool verify = false);
 373   void verify_anti_dependences(Block* LCA, Node* load) {
 374     assert(LCA == _bbs[load->_idx], "should already be scheduled");
 375     insert_anti_dependences(LCA, load, true);
 376   }
 377 
 378  public:
 379   PhaseCFG( Arena *a, RootNode *r, Matcher &m );
 380 
 381   uint _num_blocks;             // Count of basic blocks
 382   Block_List _blocks;           // List of basic blocks
 383   RootNode *_root;              // Root of whole program
 384   Block_Array _bbs;             // Map Nodes to owning Basic Block
 385   Block *_broot;                // Basic block of root
 386   uint _rpo_ctr;
 387   CFGLoop* _root_loop;
 388   float _outer_loop_freq;       // Outmost loop frequency
 389 
 390   // Per node latency estimation, valid only during GCM
 391   GrowableArray<uint> *_node_latency;
 392 
 393 #ifndef PRODUCT
 394   bool _trace_opto_pipelining;  // tracing flag
 395 #endif
 396 
 397 #ifdef ASSERT
 398   Unique_Node_List _raw_oops;
 399 #endif
 400 
 401   // Build dominators
 402   void Dominators();
 403 
 404   // Estimate block frequencies based on IfNode probabilities
 405   void Estimate_Block_Frequency();
 406 
 407   // Global Code Motion.  See Click's PLDI95 paper.  Place Nodes in specific
 408   // basic blocks; i.e. _bbs now maps _idx for all Nodes to some Block.
 409   void GlobalCodeMotion( Matcher &m, uint unique, Node_List &proj_list );
 410 
 411   // Compute the (backwards) latency of a node from the uses
 412   void latency_from_uses(Node *n);
 413 
 414   // Compute the (backwards) latency of a node from a single use
 415   int latency_from_use(Node *n, const Node *def, Node *use);
 416 
 417   // Compute the (backwards) latency of a node from the uses of this instruction
 418   void partial_latency_of_defs(Node *n);
 419 
 420   // Schedule Nodes early in their basic blocks.
 421   bool schedule_early(VectorSet &visited, Node_List &roots);
 422 
 423   // For each node, find the latest block it can be scheduled into
 424   // and then select the cheapest block between the latest and earliest
 425   // block to place the node.
 426   void schedule_late(VectorSet &visited, Node_List &stack);
 427 
 428   // Pick a block between early and late that is a cheaper alternative
 429   // to late. Helper for schedule_late.
 430   Block* hoist_to_cheaper_block(Block* LCA, Block* early, Node* self);
 431 
 432   // Compute the instruction global latency with a backwards walk
 433   void ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack);
 434 
 435   // Set loop alignment
 436   void set_loop_alignment();
 437 
 438   // Remove empty basic blocks
 439   void remove_empty();
 440   void fixup_flow();
 441   bool move_to_next(Block* bx, uint b_index);
 442   void move_to_end(Block* bx, uint b_index);
 443   void insert_goto_at(uint block_no, uint succ_no);
 444 
 445   // Check for NeverBranch at block end.  This needs to become a GOTO to the
 446   // true target.  NeverBranch are treated as a conditional branch that always
 447   // goes the same direction for most of the optimizer and are used to give a
 448   // fake exit path to infinite loops.  At this late stage they need to turn
 449   // into Goto's so that when you enter the infinite loop you indeed hang.
 450   void convert_NeverBranch_to_Goto(Block *b);
 451 
 452   CFGLoop* create_loop_tree();
 453 
 454   // Insert a node into a block, and update the _bbs
 455   void insert( Block *b, uint idx, Node *n ) {
 456     b->_nodes.insert( idx, n );
 457     _bbs.map( n->_idx, b );
 458   }
 459 
 460 #ifndef PRODUCT
 461   bool trace_opto_pipelining() const { return _trace_opto_pipelining; }
 462 
 463   // Debugging print of CFG
 464   void dump( ) const;           // CFG only
 465   void _dump_cfg( const Node *end, VectorSet &visited  ) const;
 466   void verify() const;
 467   void dump_headers();
 468 #else
 469   bool trace_opto_pipelining() const { return false; }
 470 #endif
 471 };
 472 
 473 
 474 //------------------------------UnionFind--------------------------------------
 475 // Map Block indices to a block-index for a cfg-cover.
 476 // Array lookup in the optimized case.
 477 class UnionFind : public ResourceObj {
 478   uint _cnt, _max;
 479   uint* _indices;
 480   ReallocMark _nesting;  // assertion check for reallocations
 481 public:
 482   UnionFind( uint max );
 483   void reset( uint max );  // Reset to identity map for [0..max]
 484 
 485   uint lookup( uint nidx ) const {
 486     return _indices[nidx];
 487   }
 488   uint operator[] (uint nidx) const { return lookup(nidx); }
 489 
 490   void map( uint from_idx, uint to_idx ) {
 491     assert( from_idx < _cnt, "oob" );
 492     _indices[from_idx] = to_idx;
 493   }
 494   void extend( uint from_idx, uint to_idx );
 495 
 496   uint Size() const { return _cnt; }
 497 
 498   uint Find( uint idx ) {
 499     assert( idx < 65536, "Must fit into uint");
 500     uint uf_idx = lookup(idx);
 501     return (uf_idx == idx) ? uf_idx : Find_compress(idx);
 502   }
 503   uint Find_compress( uint idx );
 504   uint Find_const( uint idx ) const;
 505   void Union( uint idx1, uint idx2 );
 506 
 507 };
 508 
 509 //----------------------------BlockProbPair---------------------------
 510 // Ordered pair of Node*.
 511 class BlockProbPair VALUE_OBJ_CLASS_SPEC {
 512 protected:
 513   Block* _target;      // block target
 514   float  _prob;        // probability of edge to block
 515 public:
 516   BlockProbPair() : _target(NULL), _prob(0.0) {}
 517   BlockProbPair(Block* b, float p) : _target(b), _prob(p) {}
 518 
 519   Block* get_target() const { return _target; }
 520   float get_prob() const { return _prob; }
 521 };
 522 
 523 //------------------------------CFGLoop-------------------------------------------
 524 class CFGLoop : public CFGElement {
 525   friend class VMStructs;
 526   int _id;
 527   int _depth;
 528   CFGLoop *_parent;      // root of loop tree is the method level "pseudo" loop, it's parent is null
 529   CFGLoop *_sibling;     // null terminated list
 530   CFGLoop *_child;       // first child, use child's sibling to visit all immediately nested loops
 531   GrowableArray<CFGElement*> _members; // list of members of loop
 532   GrowableArray<BlockProbPair> _exits; // list of successor blocks and their probabilities
 533   float _exit_prob;       // probability any loop exit is taken on a single loop iteration
 534   void update_succ_freq(Block* b, float freq);
 535 
 536  public:
 537   CFGLoop(int id) :
 538     CFGElement(),
 539     _id(id),
 540     _depth(0),
 541     _parent(NULL),
 542     _sibling(NULL),
 543     _child(NULL),
 544     _exit_prob(1.0f) {}
 545   CFGLoop* parent() { return _parent; }
 546   void push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk);
 547   void add_member(CFGElement *s) { _members.push(s); }
 548   void add_nested_loop(CFGLoop* cl);
 549   Block* head() {
 550     assert(_members.at(0)->is_block(), "head must be a block");
 551     Block* hd = _members.at(0)->as_Block();
 552     assert(hd->_loop == this, "just checking");
 553     assert(hd->head()->is_Loop(), "must begin with loop head node");
 554     return hd;
 555   }
 556   Block* backedge_block(); // Return the block on the backedge of the loop (else NULL)
 557   void compute_loop_depth(int depth);
 558   void compute_freq(); // compute frequency with loop assuming head freq 1.0f
 559   void scale_freq();   // scale frequency by loop trip count (including outer loops)
 560   float outer_loop_freq() const; // frequency of outer loop
 561   bool in_loop_nest(Block* b);
 562   float trip_count() const { return 1.0f / _exit_prob; }
 563   virtual bool is_loop()  { return true; }
 564   int id() { return _id; }
 565 
 566 #ifndef PRODUCT
 567   void dump( ) const;
 568   void dump_tree() const;
 569 #endif
 570 };
 571 
 572 
 573 //----------------------------------CFGEdge------------------------------------
 574 // A edge between two basic blocks that will be embodied by a branch or a
 575 // fall-through.
 576 class CFGEdge : public ResourceObj {
 577   friend class VMStructs;
 578  private:
 579   Block * _from;        // Source basic block
 580   Block * _to;          // Destination basic block
 581   float _freq;          // Execution frequency (estimate)
 582   int   _state;
 583   bool  _infrequent;
 584   int   _from_pct;
 585   int   _to_pct;
 586 
 587   // Private accessors
 588   int  from_pct() const { return _from_pct; }
 589   int  to_pct()   const { return _to_pct;   }
 590   int  from_infrequent() const { return from_pct() < BlockLayoutMinDiamondPercentage; }
 591   int  to_infrequent()   const { return to_pct()   < BlockLayoutMinDiamondPercentage; }
 592 
 593  public:
 594   enum {
 595     open,               // initial edge state; unprocessed
 596     connected,          // edge used to connect two traces together
 597     interior            // edge is interior to trace (could be backedge)
 598   };
 599 
 600   CFGEdge(Block *from, Block *to, float freq, int from_pct, int to_pct) :
 601     _from(from), _to(to), _freq(freq),
 602     _from_pct(from_pct), _to_pct(to_pct), _state(open) {
 603     _infrequent = from_infrequent() || to_infrequent();
 604   }
 605 
 606   float  freq() const { return _freq; }
 607   Block* from() const { return _from; }
 608   Block* to  () const { return _to;   }
 609   int  infrequent() const { return _infrequent; }
 610   int state() const { return _state; }
 611 
 612   void set_state(int state) { _state = state; }
 613 
 614 #ifndef PRODUCT
 615   void dump( ) const;
 616 #endif
 617 };
 618 
 619 
 620 //-----------------------------------Trace-------------------------------------
 621 // An ordered list of basic blocks.
 622 class Trace : public ResourceObj {
 623  private:
 624   uint _id;             // Unique Trace id (derived from initial block)
 625   Block ** _next_list;  // Array mapping index to next block
 626   Block ** _prev_list;  // Array mapping index to previous block
 627   Block * _first;       // First block in the trace
 628   Block * _last;        // Last block in the trace
 629 
 630   // Return the block that follows "b" in the trace.
 631   Block * next(Block *b) const { return _next_list[b->_pre_order]; }
 632   void set_next(Block *b, Block *n) const { _next_list[b->_pre_order] = n; }
 633 
 634   // Return the block that precedes "b" in the trace.
 635   Block * prev(Block *b) const { return _prev_list[b->_pre_order]; }
 636   void set_prev(Block *b, Block *p) const { _prev_list[b->_pre_order] = p; }
 637 
 638   // We've discovered a loop in this trace. Reset last to be "b", and first as
 639   // the block following "b
 640   void break_loop_after(Block *b) {
 641     _last = b;
 642     _first = next(b);
 643     set_prev(_first, NULL);
 644     set_next(_last, NULL);
 645   }
 646 
 647  public:
 648 
 649   Trace(Block *b, Block **next_list, Block **prev_list) :
 650     _first(b),
 651     _last(b),
 652     _next_list(next_list),
 653     _prev_list(prev_list),
 654     _id(b->_pre_order) {
 655     set_next(b, NULL);
 656     set_prev(b, NULL);
 657   };
 658 
 659   // Return the id number
 660   uint id() const { return _id; }
 661   void set_id(uint id) { _id = id; }
 662 
 663   // Return the first block in the trace
 664   Block * first_block() const { return _first; }
 665 
 666   // Return the last block in the trace
 667   Block * last_block() const { return _last; }
 668 
 669   // Insert a trace in the middle of this one after b
 670   void insert_after(Block *b, Trace *tr) {
 671     set_next(tr->last_block(), next(b));
 672     if (next(b) != NULL) {
 673       set_prev(next(b), tr->last_block());
 674     }
 675 
 676     set_next(b, tr->first_block());
 677     set_prev(tr->first_block(), b);
 678 
 679     if (b == _last) {
 680       _last = tr->last_block();
 681     }
 682   }
 683 
 684   void insert_before(Block *b, Trace *tr) {
 685     Block *p = prev(b);
 686     assert(p != NULL, "use append instead");
 687     insert_after(p, tr);
 688   }
 689 
 690   // Append another trace to this one.
 691   void append(Trace *tr) {
 692     insert_after(_last, tr);
 693   }
 694 
 695   // Append a block at the end of this trace
 696   void append(Block *b) {
 697     set_next(_last, b);
 698     set_prev(b, _last);
 699     _last = b;
 700   }
 701 
 702   // Adjust the the blocks in this trace
 703   void fixup_blocks(PhaseCFG &cfg);
 704   bool backedge(CFGEdge *e);
 705 
 706 #ifndef PRODUCT
 707   void dump( ) const;
 708 #endif
 709 };
 710 
 711 //------------------------------PhaseBlockLayout-------------------------------
 712 // Rearrange blocks into some canonical order, based on edges and their frequencies
 713 class PhaseBlockLayout : public Phase {
 714   friend class VMStructs;
 715   PhaseCFG &_cfg;               // Control flow graph
 716 
 717   GrowableArray<CFGEdge *> *edges;
 718   Trace **traces;
 719   Block **next;
 720   Block **prev;
 721   UnionFind *uf;
 722 
 723   // Given a block, find its encompassing Trace
 724   Trace * trace(Block *b) {
 725     return traces[uf->Find_compress(b->_pre_order)];
 726   }
 727  public:
 728   PhaseBlockLayout(PhaseCFG &cfg);
 729 
 730   void find_edges();
 731   void grow_traces();
 732   void merge_traces(bool loose_connections);
 733   void reorder_traces(int count);
 734   void union_traces(Trace* from, Trace* to);
 735 };
 736 
 737 #endif // SHARE_VM_OPTO_BLOCK_HPP