1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/chaitin.hpp"
  30 #include "opto/coalesce.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/indexSet.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/regmask.hpp"
  36 
  37 //=============================================================================
  38 //------------------------------Dump-------------------------------------------
  39 #ifndef PRODUCT
  40 void PhaseCoalesce::dump(Node *n) const {
  41   // Being a const function means I cannot use 'Find'
  42   uint r = _phc._lrg_map.find(n);
  43   tty->print("L%d/N%d ",r,n->_idx);
  44 }
  45 
  46 //------------------------------dump-------------------------------------------
  47 void PhaseCoalesce::dump() const {
  48   // I know I have a block layout now, so I can print blocks in a loop
  49   for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
  50     uint j;
  51     Block *b = _phc._cfg._blocks[i];
  52     // Print a nice block header
  53     tty->print("B%d: ",b->_pre_order);
  54     for( j=1; j<b->num_preds(); j++ )
  55       tty->print("B%d ", _phc._cfg.get_block_for_node(b->pred(j))->_pre_order);
  56     tty->print("-> ");
  57     for( j=0; j<b->_num_succs; j++ )
  58       tty->print("B%d ",b->_succs[j]->_pre_order);
  59     tty->print(" IDom: B%d/#%d\n", b->_idom ? b->_idom->_pre_order : 0, b->_dom_depth);
  60     uint cnt = b->_nodes.size();
  61     for( j=0; j<cnt; j++ ) {
  62       Node *n = b->_nodes[j];
  63       dump( n );
  64       tty->print("\t%s\t",n->Name());
  65 
  66       // Dump the inputs
  67       uint k;                   // Exit value of loop
  68       for( k=0; k<n->req(); k++ ) // For all required inputs
  69         if( n->in(k) ) dump( n->in(k) );
  70         else tty->print("_ ");
  71       int any_prec = 0;
  72       for( ; k<n->len(); k++ )          // For all precedence inputs
  73         if( n->in(k) ) {
  74           if( !any_prec++ ) tty->print(" |");
  75           dump( n->in(k) );
  76         }
  77 
  78       // Dump node-specific info
  79       n->dump_spec(tty);
  80       tty->print("\n");
  81 
  82     }
  83     tty->print("\n");
  84   }
  85 }
  86 #endif
  87 
  88 //------------------------------combine_these_two------------------------------
  89 // Combine the live ranges def'd by these 2 Nodes.  N2 is an input to N1.
  90 void PhaseCoalesce::combine_these_two(Node *n1, Node *n2) {
  91   uint lr1 = _phc._lrg_map.find(n1);
  92   uint lr2 = _phc._lrg_map.find(n2);
  93   if( lr1 != lr2 &&             // Different live ranges already AND
  94       !_phc._ifg->test_edge_sq( lr1, lr2 ) ) {  // Do not interfere
  95     LRG *lrg1 = &_phc.lrgs(lr1);
  96     LRG *lrg2 = &_phc.lrgs(lr2);
  97     // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
  98 
  99     // Now, why is int->oop OK?  We end up declaring a raw-pointer as an oop
 100     // and in general that's a bad thing.  However, int->oop conversions only
 101     // happen at GC points, so the lifetime of the misclassified raw-pointer
 102     // is from the CheckCastPP (that converts it to an oop) backwards up
 103     // through a merge point and into the slow-path call, and around the
 104     // diamond up to the heap-top check and back down into the slow-path call.
 105     // The misclassified raw pointer is NOT live across the slow-path call,
 106     // and so does not appear in any GC info, so the fact that it is
 107     // misclassified is OK.
 108 
 109     if( (lrg1->_is_oop || !lrg2->_is_oop) && // not an oop->int cast AND
 110         // Compatible final mask
 111         lrg1->mask().overlap( lrg2->mask() ) ) {
 112       // Merge larger into smaller.
 113       if( lr1 > lr2 ) {
 114         uint  tmp =  lr1;  lr1 =  lr2;  lr2 =  tmp;
 115         Node   *n =   n1;   n1 =   n2;   n2 =    n;
 116         LRG *ltmp = lrg1; lrg1 = lrg2; lrg2 = ltmp;
 117       }
 118       // Union lr2 into lr1
 119       _phc.Union( n1, n2 );
 120       if (lrg1->_maxfreq < lrg2->_maxfreq)
 121         lrg1->_maxfreq = lrg2->_maxfreq;
 122       // Merge in the IFG
 123       _phc._ifg->Union( lr1, lr2 );
 124       // Combine register restrictions
 125       lrg1->AND(lrg2->mask());
 126     }
 127   }
 128 }
 129 
 130 //------------------------------coalesce_driver--------------------------------
 131 // Copy coalescing
 132 void PhaseCoalesce::coalesce_driver( ) {
 133 
 134   verify();
 135   // Coalesce from high frequency to low
 136   for( uint i=0; i<_phc._cfg._num_blocks; i++ )
 137     coalesce( _phc._blks[i] );
 138 
 139 }
 140 
 141 //------------------------------insert_copy_with_overlap-----------------------
 142 // I am inserting copies to come out of SSA form.  In the general case, I am
 143 // doing a parallel renaming.  I'm in the Named world now, so I can't do a
 144 // general parallel renaming.  All the copies now use  "names" (live-ranges)
 145 // to carry values instead of the explicit use-def chains.  Suppose I need to
 146 // insert 2 copies into the same block.  They copy L161->L128 and L128->L132.
 147 // If I insert them in the wrong order then L128 will get clobbered before it
 148 // can get used by the second copy.  This cannot happen in the SSA model;
 149 // direct use-def chains get me the right value.  It DOES happen in the named
 150 // model so I have to handle the reordering of copies.
 151 //
 152 // In general, I need to topo-sort the placed copies to avoid conflicts.
 153 // Its possible to have a closed cycle of copies (e.g., recirculating the same
 154 // values around a loop).  In this case I need a temp to break the cycle.
 155 void PhaseAggressiveCoalesce::insert_copy_with_overlap( Block *b, Node *copy, uint dst_name, uint src_name ) {
 156 
 157   // Scan backwards for the locations of the last use of the dst_name.
 158   // I am about to clobber the dst_name, so the copy must be inserted
 159   // after the last use.  Last use is really first-use on a backwards scan.
 160   uint i = b->end_idx()-1;
 161   while(1) {
 162     Node *n = b->_nodes[i];
 163     // Check for end of virtual copies; this is also the end of the
 164     // parallel renaming effort.
 165     if (n->_idx < _unique) {
 166       break;
 167     }
 168     uint idx = n->is_Copy();
 169     assert( idx || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
 170     if (idx && _phc._lrg_map.find(n->in(idx)) == dst_name) {
 171       break;
 172     }
 173     i--;
 174   }
 175   uint last_use_idx = i;
 176 
 177   // Also search for any kill of src_name that exits the block.
 178   // Since the copy uses src_name, I have to come before any kill.
 179   uint kill_src_idx = b->end_idx();
 180   // There can be only 1 kill that exits any block and that is
 181   // the last kill.  Thus it is the first kill on a backwards scan.
 182   i = b->end_idx()-1;
 183   while (1) {
 184     Node *n = b->_nodes[i];
 185     // Check for end of virtual copies; this is also the end of the
 186     // parallel renaming effort.
 187     if (n->_idx < _unique) {
 188       break;
 189     }
 190     assert( n->is_Copy() || n->is_Con() || n->is_MachProj(), "Only copies during parallel renaming" );
 191     if (_phc._lrg_map.find(n) == src_name) {
 192       kill_src_idx = i;
 193       break;
 194     }
 195     i--;
 196   }
 197   // Need a temp?  Last use of dst comes after the kill of src?
 198   if (last_use_idx >= kill_src_idx) {
 199     // Need to break a cycle with a temp
 200     uint idx = copy->is_Copy();
 201     Node *tmp = copy->clone();
 202     uint max_lrg_id = _phc._lrg_map.max_lrg_id();
 203     _phc.new_lrg(tmp, max_lrg_id);
 204     _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
 205 
 206     // Insert new temp between copy and source
 207     tmp ->set_req(idx,copy->in(idx));
 208     copy->set_req(idx,tmp);
 209     // Save source in temp early, before source is killed
 210     b->_nodes.insert(kill_src_idx,tmp);
 211     _phc._cfg.map_node_to_block(tmp, b);
 212     last_use_idx++;
 213   }
 214 
 215   // Insert just after last use
 216   b->_nodes.insert(last_use_idx+1,copy);
 217 }
 218 
 219 //------------------------------insert_copies----------------------------------
 220 void PhaseAggressiveCoalesce::insert_copies( Matcher &matcher ) {
 221   // We do LRGs compressing and fix a liveout data only here since the other
 222   // place in Split() is guarded by the assert which we never hit.
 223   _phc._lrg_map.compress_uf_map_for_nodes();
 224   // Fix block's liveout data for compressed live ranges.
 225   for (uint lrg = 1; lrg < _phc._lrg_map.max_lrg_id(); lrg++) {
 226     uint compressed_lrg = _phc._lrg_map.find(lrg);
 227     if (lrg != compressed_lrg) {
 228       for (uint bidx = 0; bidx < _phc._cfg._num_blocks; bidx++) {
 229         IndexSet *liveout = _phc._live->live(_phc._cfg._blocks[bidx]);
 230         if (liveout->member(lrg)) {
 231           liveout->remove(lrg);
 232           liveout->insert(compressed_lrg);
 233         }
 234       }
 235     }
 236   }
 237 
 238   // All new nodes added are actual copies to replace virtual copies.
 239   // Nodes with index less than '_unique' are original, non-virtual Nodes.
 240   _unique = C->unique();
 241 
 242   for( uint i=0; i<_phc._cfg._num_blocks; i++ ) {
 243     C->check_node_count(NodeLimitFudgeFactor, "out of nodes in coalesce");
 244     if (C->failing()) return;
 245     Block *b = _phc._cfg._blocks[i];
 246     uint cnt = b->num_preds();  // Number of inputs to the Phi
 247 
 248     for( uint l = 1; l<b->_nodes.size(); l++ ) {
 249       Node *n = b->_nodes[l];
 250 
 251       // Do not use removed-copies, use copied value instead
 252       uint ncnt = n->req();
 253       for( uint k = 1; k<ncnt; k++ ) {
 254         Node *copy = n->in(k);
 255         uint cidx = copy->is_Copy();
 256         if( cidx ) {
 257           Node *def = copy->in(cidx);
 258           if (_phc._lrg_map.find(copy) == _phc._lrg_map.find(def)) {
 259             n->set_req(k, def);
 260           }
 261         }
 262       }
 263 
 264       // Remove any explicit copies that get coalesced.
 265       uint cidx = n->is_Copy();
 266       if( cidx ) {
 267         Node *def = n->in(cidx);
 268         if (_phc._lrg_map.find(n) == _phc._lrg_map.find(def)) {
 269           n->replace_by(def);
 270           n->set_req(cidx,NULL);
 271           b->_nodes.remove(l);
 272           l--;
 273           continue;
 274         }
 275       }
 276 
 277       if (n->is_Phi()) {
 278         // Get the chosen name for the Phi
 279         uint phi_name = _phc._lrg_map.find(n);
 280         // Ignore the pre-allocated specials
 281         if (!phi_name) {
 282           continue;
 283         }
 284         // Check for mismatch inputs to Phi
 285         for (uint j = 1; j < cnt; j++) {
 286           Node *m = n->in(j);
 287           uint src_name = _phc._lrg_map.find(m);
 288           if (src_name != phi_name) {
 289             Block *pred = _phc._cfg.get_block_for_node(b->pred(j));
 290             Node *copy;
 291             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
 292             // Rematerialize constants instead of copying them
 293             if( m->is_Mach() && m->as_Mach()->is_Con() &&
 294                 m->as_Mach()->rematerialize() ) {
 295               copy = m->clone();
 296               // Insert the copy in the predecessor basic block
 297               pred->add_inst(copy);
 298               // Copy any flags as well
 299               _phc.clone_projs(pred, pred->end_idx(), m, copy, _phc._lrg_map);
 300             } else {
 301               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
 302               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
 303               // Find a good place to insert.  Kinda tricky, use a subroutine
 304               insert_copy_with_overlap(pred,copy,phi_name,src_name);
 305             }
 306             // Insert the copy in the use-def chain
 307             n->set_req(j, copy);
 308             _phc._cfg.map_node_to_block(copy, pred);
 309             // Extend ("register allocate") the names array for the copy.
 310             _phc._lrg_map.extend(copy->_idx, phi_name);
 311           } // End of if Phi names do not match
 312         } // End of for all inputs to Phi
 313       } else { // End of if Phi
 314 
 315         // Now check for 2-address instructions
 316         uint idx;
 317         if( n->is_Mach() && (idx=n->as_Mach()->two_adr()) ) {
 318           // Get the chosen name for the Node
 319           uint name = _phc._lrg_map.find(n);
 320           assert (name, "no 2-address specials");
 321           // Check for name mis-match on the 2-address input
 322           Node *m = n->in(idx);
 323           if (_phc._lrg_map.find(m) != name) {
 324             Node *copy;
 325             assert(!m->is_Con() || m->is_Mach(), "all Con must be Mach");
 326             // At this point it is unsafe to extend live ranges (6550579).
 327             // Rematerialize only constants as we do for Phi above.
 328             if(m->is_Mach() && m->as_Mach()->is_Con() &&
 329                m->as_Mach()->rematerialize()) {
 330               copy = m->clone();
 331               // Insert the copy in the basic block, just before us
 332               b->_nodes.insert(l++, copy);
 333               if(_phc.clone_projs(b, l, m, copy, _phc._lrg_map)) {
 334                 l++;
 335               }
 336             } else {
 337               const RegMask *rm = C->matcher()->idealreg2spillmask[m->ideal_reg()];
 338               copy = new (C) MachSpillCopyNode(m, *rm, *rm);
 339               // Insert the copy in the basic block, just before us
 340               b->_nodes.insert(l++, copy);
 341             }
 342             // Insert the copy in the use-def chain
 343             n->set_req(idx, copy);
 344             // Extend ("register allocate") the names array for the copy.
 345             _phc._lrg_map.extend(copy->_idx, name);
 346             _phc._cfg.map_node_to_block(copy, b);
 347           }
 348 
 349         } // End of is two-adr
 350 
 351         // Insert a copy at a debug use for a lrg which has high frequency
 352         if (b->_freq < OPTO_DEBUG_SPLIT_FREQ || b->is_uncommon(&_phc._cfg)) {
 353           // Walk the debug inputs to the node and check for lrg freq
 354           JVMState* jvms = n->jvms();
 355           uint debug_start = jvms ? jvms->debug_start() : 999999;
 356           uint debug_end   = jvms ? jvms->debug_end()   : 999999;
 357           for(uint inpidx = debug_start; inpidx < debug_end; inpidx++) {
 358             // Do not split monitors; they are only needed for debug table
 359             // entries and need no code.
 360             if (jvms->is_monitor_use(inpidx)) {
 361               continue;
 362             }
 363             Node *inp = n->in(inpidx);
 364             uint nidx = _phc._lrg_map.live_range_id(inp);
 365             LRG &lrg = lrgs(nidx);
 366 
 367             // If this lrg has a high frequency use/def
 368             if( lrg._maxfreq >= _phc.high_frequency_lrg() ) {
 369               // If the live range is also live out of this block (like it
 370               // would be for a fast/slow idiom), the normal spill mechanism
 371               // does an excellent job.  If it is not live out of this block
 372               // (like it would be for debug info to uncommon trap) splitting
 373               // the live range now allows a better allocation in the high
 374               // frequency blocks.
 375               //   Build_IFG_virtual has converted the live sets to
 376               // live-IN info, not live-OUT info.
 377               uint k;
 378               for( k=0; k < b->_num_succs; k++ )
 379                 if( _phc._live->live(b->_succs[k])->member( nidx ) )
 380                   break;      // Live in to some successor block?
 381               if( k < b->_num_succs )
 382                 continue;     // Live out; do not pre-split
 383               // Split the lrg at this use
 384               const RegMask *rm = C->matcher()->idealreg2spillmask[inp->ideal_reg()];
 385               Node *copy = new (C) MachSpillCopyNode( inp, *rm, *rm );
 386               // Insert the copy in the use-def chain
 387               n->set_req(inpidx, copy );
 388               // Insert the copy in the basic block, just before us
 389               b->_nodes.insert( l++, copy );
 390               // Extend ("register allocate") the names array for the copy.
 391               uint max_lrg_id = _phc._lrg_map.max_lrg_id();
 392               _phc.new_lrg(copy, max_lrg_id);
 393               _phc._lrg_map.set_max_lrg_id(max_lrg_id + 1);
 394               _phc._cfg.map_node_to_block(copy, b);
 395               //tty->print_cr("Split a debug use in Aggressive Coalesce");
 396             }  // End of if high frequency use/def
 397           }  // End of for all debug inputs
 398         }  // End of if low frequency safepoint
 399 
 400       } // End of if Phi
 401 
 402     } // End of for all instructions
 403   } // End of for all blocks
 404 }
 405 
 406 //=============================================================================
 407 //------------------------------coalesce---------------------------------------
 408 // Aggressive (but pessimistic) copy coalescing of a single block
 409 
 410 // The following coalesce pass represents a single round of aggressive
 411 // pessimistic coalesce.  "Aggressive" means no attempt to preserve
 412 // colorability when coalescing.  This occasionally means more spills, but
 413 // it also means fewer rounds of coalescing for better code - and that means
 414 // faster compiles.
 415 
 416 // "Pessimistic" means we do not hit the fixed point in one pass (and we are
 417 // reaching for the least fixed point to boot).  This is typically solved
 418 // with a few more rounds of coalescing, but the compiler must run fast.  We
 419 // could optimistically coalescing everything touching PhiNodes together
 420 // into one big live range, then check for self-interference.  Everywhere
 421 // the live range interferes with self it would have to be split.  Finding
 422 // the right split points can be done with some heuristics (based on
 423 // expected frequency of edges in the live range).  In short, it's a real
 424 // research problem and the timeline is too short to allow such research.
 425 // Further thoughts: (1) build the LR in a pass, (2) find self-interference
 426 // in another pass, (3) per each self-conflict, split, (4) split by finding
 427 // the low-cost cut (min-cut) of the LR, (5) edges in the LR are weighted
 428 // according to the GCM algorithm (or just exec freq on CFG edges).
 429 
 430 void PhaseAggressiveCoalesce::coalesce( Block *b ) {
 431   // Copies are still "virtual" - meaning we have not made them explicitly
 432   // copies.  Instead, Phi functions of successor blocks have mis-matched
 433   // live-ranges.  If I fail to coalesce, I'll have to insert a copy to line
 434   // up the live-ranges.  Check for Phis in successor blocks.
 435   uint i;
 436   for( i=0; i<b->_num_succs; i++ ) {
 437     Block *bs = b->_succs[i];
 438     // Find index of 'b' in 'bs' predecessors
 439     uint j=1;
 440     while (_phc._cfg.get_block_for_node(bs->pred(j)) != b) {
 441       j++;
 442     }
 443 
 444     // Visit all the Phis in successor block
 445     for( uint k = 1; k<bs->_nodes.size(); k++ ) {
 446       Node *n = bs->_nodes[k];
 447       if( !n->is_Phi() ) break;
 448       combine_these_two( n, n->in(j) );
 449     }
 450   } // End of for all successor blocks
 451 
 452 
 453   // Check _this_ block for 2-address instructions and copies.
 454   uint cnt = b->end_idx();
 455   for( i = 1; i<cnt; i++ ) {
 456     Node *n = b->_nodes[i];
 457     uint idx;
 458     // 2-address instructions have a virtual Copy matching their input
 459     // to their output
 460     if (n->is_Mach() && (idx = n->as_Mach()->two_adr())) {
 461       MachNode *mach = n->as_Mach();
 462       combine_these_two(mach, mach->in(idx));
 463     }
 464   } // End of for all instructions in block
 465 }
 466 
 467 //=============================================================================
 468 //------------------------------PhaseConservativeCoalesce----------------------
 469 PhaseConservativeCoalesce::PhaseConservativeCoalesce(PhaseChaitin &chaitin) : PhaseCoalesce(chaitin) {
 470   _ulr.initialize(_phc._lrg_map.max_lrg_id());
 471 }
 472 
 473 //------------------------------verify-----------------------------------------
 474 void PhaseConservativeCoalesce::verify() {
 475 #ifdef ASSERT
 476   _phc.set_was_low();
 477 #endif
 478 }
 479 
 480 //------------------------------union_helper-----------------------------------
 481 void PhaseConservativeCoalesce::union_helper( Node *lr1_node, Node *lr2_node, uint lr1, uint lr2, Node *src_def, Node *dst_copy, Node *src_copy, Block *b, uint bindex ) {
 482   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
 483   // union-find tree
 484   _phc.Union( lr1_node, lr2_node );
 485 
 486   // Single-def live range ONLY if both live ranges are single-def.
 487   // If both are single def, then src_def powers one live range
 488   // and def_copy powers the other.  After merging, src_def powers
 489   // the combined live range.
 490   lrgs(lr1)._def = (lrgs(lr1).is_multidef() ||
 491                         lrgs(lr2).is_multidef() )
 492     ? NodeSentinel : src_def;
 493   lrgs(lr2)._def = NULL;    // No def for lrg 2
 494   lrgs(lr2).Clear();        // Force empty mask for LRG 2
 495   //lrgs(lr2)._size = 0;      // Live-range 2 goes dead
 496   lrgs(lr1)._is_oop |= lrgs(lr2)._is_oop;
 497   lrgs(lr2)._is_oop = 0;    // In particular, not an oop for GC info
 498 
 499   if (lrgs(lr1)._maxfreq < lrgs(lr2)._maxfreq)
 500     lrgs(lr1)._maxfreq = lrgs(lr2)._maxfreq;
 501 
 502   // Copy original value instead.  Intermediate copies go dead, and
 503   // the dst_copy becomes useless.
 504   int didx = dst_copy->is_Copy();
 505   dst_copy->set_req( didx, src_def );
 506   // Add copy to free list
 507   // _phc.free_spillcopy(b->_nodes[bindex]);
 508   assert( b->_nodes[bindex] == dst_copy, "" );
 509   dst_copy->replace_by( dst_copy->in(didx) );
 510   dst_copy->set_req( didx, NULL);
 511   b->_nodes.remove(bindex);
 512   if( bindex < b->_ihrp_index ) b->_ihrp_index--;
 513   if( bindex < b->_fhrp_index ) b->_fhrp_index--;
 514 
 515   // Stretched lr1; add it to liveness of intermediate blocks
 516   Block *b2 = _phc._cfg.get_block_for_node(src_copy);
 517   while( b != b2 ) {
 518     b = _phc._cfg.get_block_for_node(b->pred(1));
 519     _phc._live->live(b)->insert(lr1);
 520   }
 521 }
 522 
 523 //------------------------------compute_separating_interferences---------------
 524 // Factored code from copy_copy that computes extra interferences from
 525 // lengthening a live range by double-coalescing.
 526 uint PhaseConservativeCoalesce::compute_separating_interferences(Node *dst_copy, Node *src_copy, Block *b, uint bindex, RegMask &rm, uint reg_degree, uint rm_size, uint lr1, uint lr2 ) {
 527 
 528   assert(!lrgs(lr1)._fat_proj, "cannot coalesce fat_proj");
 529   assert(!lrgs(lr2)._fat_proj, "cannot coalesce fat_proj");
 530   Node *prev_copy = dst_copy->in(dst_copy->is_Copy());
 531   Block *b2 = b;
 532   uint bindex2 = bindex;
 533   while( 1 ) {
 534     // Find previous instruction
 535     bindex2--;                  // Chain backwards 1 instruction
 536     while( bindex2 == 0 ) {     // At block start, find prior block
 537       assert( b2->num_preds() == 2, "cannot double coalesce across c-flow" );
 538       b2 = _phc._cfg.get_block_for_node(b2->pred(1));
 539       bindex2 = b2->end_idx()-1;
 540     }
 541     // Get prior instruction
 542     assert(bindex2 < b2->_nodes.size(), "index out of bounds");
 543     Node *x = b2->_nodes[bindex2];
 544     if( x == prev_copy ) {      // Previous copy in copy chain?
 545       if( prev_copy == src_copy)// Found end of chain and all interferences
 546         break;                  // So break out of loop
 547       // Else work back one in copy chain
 548       prev_copy = prev_copy->in(prev_copy->is_Copy());
 549     } else {                    // Else collect interferences
 550       uint lidx = _phc._lrg_map.find(x);
 551       // Found another def of live-range being stretched?
 552       if(lidx == lr1) {
 553         return max_juint;
 554       }
 555       if(lidx == lr2) {
 556         return max_juint;
 557       }
 558 
 559       // If we attempt to coalesce across a bound def
 560       if( lrgs(lidx).is_bound() ) {
 561         // Do not let the coalesced LRG expect to get the bound color
 562         rm.SUBTRACT( lrgs(lidx).mask() );
 563         // Recompute rm_size
 564         rm_size = rm.Size();
 565         //if( rm._flags ) rm_size += 1000000;
 566         if( reg_degree >= rm_size ) return max_juint;
 567       }
 568       if( rm.overlap(lrgs(lidx).mask()) ) {
 569         // Insert lidx into union LRG; returns TRUE if actually inserted
 570         if( _ulr.insert(lidx) ) {
 571           // Infinite-stack neighbors do not alter colorability, as they
 572           // can always color to some other color.
 573           if( !lrgs(lidx).mask().is_AllStack() ) {
 574             // If this coalesce will make any new neighbor uncolorable,
 575             // do not coalesce.
 576             if( lrgs(lidx).just_lo_degree() )
 577               return max_juint;
 578             // Bump our degree
 579             if( ++reg_degree >= rm_size )
 580               return max_juint;
 581           } // End of if not infinite-stack neighbor
 582         } // End of if actually inserted
 583       } // End of if live range overlaps
 584     } // End of else collect interferences for 1 node
 585   } // End of while forever, scan back for interferences
 586   return reg_degree;
 587 }
 588 
 589 //------------------------------update_ifg-------------------------------------
 590 void PhaseConservativeCoalesce::update_ifg(uint lr1, uint lr2, IndexSet *n_lr1, IndexSet *n_lr2) {
 591   // Some original neighbors of lr1 might have gone away
 592   // because the constrained register mask prevented them.
 593   // Remove lr1 from such neighbors.
 594   IndexSetIterator one(n_lr1);
 595   uint neighbor;
 596   LRG &lrg1 = lrgs(lr1);
 597   while ((neighbor = one.next()) != 0)
 598     if( !_ulr.member(neighbor) )
 599       if( _phc._ifg->neighbors(neighbor)->remove(lr1) )
 600         lrgs(neighbor).inc_degree( -lrg1.compute_degree(lrgs(neighbor)) );
 601 
 602 
 603   // lr2 is now called (coalesced into) lr1.
 604   // Remove lr2 from the IFG.
 605   IndexSetIterator two(n_lr2);
 606   LRG &lrg2 = lrgs(lr2);
 607   while ((neighbor = two.next()) != 0)
 608     if( _phc._ifg->neighbors(neighbor)->remove(lr2) )
 609       lrgs(neighbor).inc_degree( -lrg2.compute_degree(lrgs(neighbor)) );
 610 
 611   // Some neighbors of intermediate copies now interfere with the
 612   // combined live range.
 613   IndexSetIterator three(&_ulr);
 614   while ((neighbor = three.next()) != 0)
 615     if( _phc._ifg->neighbors(neighbor)->insert(lr1) )
 616       lrgs(neighbor).inc_degree( lrg1.compute_degree(lrgs(neighbor)) );
 617 }
 618 
 619 //------------------------------record_bias------------------------------------
 620 static void record_bias( const PhaseIFG *ifg, int lr1, int lr2 ) {
 621   // Tag copy bias here
 622   if( !ifg->lrgs(lr1)._copy_bias )
 623     ifg->lrgs(lr1)._copy_bias = lr2;
 624   if( !ifg->lrgs(lr2)._copy_bias )
 625     ifg->lrgs(lr2)._copy_bias = lr1;
 626 }
 627 
 628 //------------------------------copy_copy--------------------------------------
 629 // See if I can coalesce a series of multiple copies together.  I need the
 630 // final dest copy and the original src copy.  They can be the same Node.
 631 // Compute the compatible register masks.
 632 bool PhaseConservativeCoalesce::copy_copy(Node *dst_copy, Node *src_copy, Block *b, uint bindex) {
 633 
 634   if (!dst_copy->is_SpillCopy()) {
 635     return false;
 636   }
 637   if (!src_copy->is_SpillCopy()) {
 638     return false;
 639   }
 640   Node *src_def = src_copy->in(src_copy->is_Copy());
 641   uint lr1 = _phc._lrg_map.find(dst_copy);
 642   uint lr2 = _phc._lrg_map.find(src_def);
 643 
 644   // Same live ranges already?
 645   if (lr1 == lr2) {
 646     return false;
 647   }
 648 
 649   // Interfere?
 650   if (_phc._ifg->test_edge_sq(lr1, lr2)) {
 651     return false;
 652   }
 653 
 654   // Not an oop->int cast; oop->oop, int->int, AND int->oop are OK.
 655   if (!lrgs(lr1)._is_oop && lrgs(lr2)._is_oop) { // not an oop->int cast
 656     return false;
 657   }
 658 
 659   // Coalescing between an aligned live range and a mis-aligned live range?
 660   // No, no!  Alignment changes how we count degree.
 661   if (lrgs(lr1)._fat_proj != lrgs(lr2)._fat_proj) {
 662     return false;
 663   }
 664 
 665   // Sort; use smaller live-range number
 666   Node *lr1_node = dst_copy;
 667   Node *lr2_node = src_def;
 668   if (lr1 > lr2) {
 669     uint tmp = lr1; lr1 = lr2; lr2 = tmp;
 670     lr1_node = src_def;  lr2_node = dst_copy;
 671   }
 672 
 673   // Check for compatibility of the 2 live ranges by
 674   // intersecting their allowed register sets.
 675   RegMask rm = lrgs(lr1).mask();
 676   rm.AND(lrgs(lr2).mask());
 677   // Number of bits free
 678   uint rm_size = rm.Size();
 679 
 680   if (UseFPUForSpilling && rm.is_AllStack() ) {
 681     // Don't coalesce when frequency difference is large
 682     Block *dst_b = _phc._cfg.get_block_for_node(dst_copy);
 683     Block *src_def_b = _phc._cfg.get_block_for_node(src_def);
 684     if (src_def_b->_freq > 10*dst_b->_freq )
 685       return false;
 686   }
 687 
 688   // If we can use any stack slot, then effective size is infinite
 689   if( rm.is_AllStack() ) rm_size += 1000000;
 690   // Incompatible masks, no way to coalesce
 691   if( rm_size == 0 ) return false;
 692 
 693   // Another early bail-out test is when we are double-coalescing and the
 694   // 2 copies are separated by some control flow.
 695   if( dst_copy != src_copy ) {
 696     Block *src_b = _phc._cfg.get_block_for_node(src_copy);
 697     Block *b2 = b;
 698     while( b2 != src_b ) {
 699       if( b2->num_preds() > 2 ){// Found merge-point
 700         _phc._lost_opp_cflow_coalesce++;
 701         // extra record_bias commented out because Chris believes it is not
 702         // productive.  Since we can record only 1 bias, we want to choose one
 703         // that stands a chance of working and this one probably does not.
 704         //record_bias( _phc._lrgs, lr1, lr2 );
 705         return false;           // To hard to find all interferences
 706       }
 707       b2 = _phc._cfg.get_block_for_node(b2->pred(1));
 708     }
 709   }
 710 
 711   // Union the two interference sets together into '_ulr'
 712   uint reg_degree = _ulr.lrg_union( lr1, lr2, rm_size, _phc._ifg, rm );
 713 
 714   if( reg_degree >= rm_size ) {
 715     record_bias( _phc._ifg, lr1, lr2 );
 716     return false;
 717   }
 718 
 719   // Now I need to compute all the interferences between dst_copy and
 720   // src_copy.  I'm not willing visit the entire interference graph, so
 721   // I limit my search to things in dst_copy's block or in a straight
 722   // line of previous blocks.  I give up at merge points or when I get
 723   // more interferences than my degree.  I can stop when I find src_copy.
 724   if( dst_copy != src_copy ) {
 725     reg_degree = compute_separating_interferences(dst_copy, src_copy, b, bindex, rm, rm_size, reg_degree, lr1, lr2 );
 726     if( reg_degree == max_juint ) {
 727       record_bias( _phc._ifg, lr1, lr2 );
 728       return false;
 729     }
 730   } // End of if dst_copy & src_copy are different
 731 
 732 
 733   // ---- THE COMBINED LRG IS COLORABLE ----
 734 
 735   // YEAH - Now coalesce this copy away
 736   assert( lrgs(lr1).num_regs() == lrgs(lr2).num_regs(),   "" );
 737 
 738   IndexSet *n_lr1 = _phc._ifg->neighbors(lr1);
 739   IndexSet *n_lr2 = _phc._ifg->neighbors(lr2);
 740 
 741   // Update the interference graph
 742   update_ifg(lr1, lr2, n_lr1, n_lr2);
 743 
 744   _ulr.remove(lr1);
 745 
 746   // Uncomment the following code to trace Coalescing in great detail.
 747   //
 748   //if (false) {
 749   //  tty->cr();
 750   //  tty->print_cr("#######################################");
 751   //  tty->print_cr("union %d and %d", lr1, lr2);
 752   //  n_lr1->dump();
 753   //  n_lr2->dump();
 754   //  tty->print_cr("resulting set is");
 755   //  _ulr.dump();
 756   //}
 757 
 758   // Replace n_lr1 with the new combined live range.  _ulr will use
 759   // n_lr1's old memory on the next iteration.  n_lr2 is cleared to
 760   // send its internal memory to the free list.
 761   _ulr.swap(n_lr1);
 762   _ulr.clear();
 763   n_lr2->clear();
 764 
 765   lrgs(lr1).set_degree( _phc._ifg->effective_degree(lr1) );
 766   lrgs(lr2).set_degree( 0 );
 767 
 768   // Join live ranges.  Merge larger into smaller.  Union lr2 into lr1 in the
 769   // union-find tree
 770   union_helper( lr1_node, lr2_node, lr1, lr2, src_def, dst_copy, src_copy, b, bindex );
 771   // Combine register restrictions
 772   lrgs(lr1).set_mask(rm);
 773   lrgs(lr1).compute_set_mask_size();
 774   lrgs(lr1)._cost += lrgs(lr2)._cost;
 775   lrgs(lr1)._area += lrgs(lr2)._area;
 776 
 777   // While its uncommon to successfully coalesce live ranges that started out
 778   // being not-lo-degree, it can happen.  In any case the combined coalesced
 779   // live range better Simplify nicely.
 780   lrgs(lr1)._was_lo = 1;
 781 
 782   // kinda expensive to do all the time
 783   //tty->print_cr("warning: slow verify happening");
 784   //_phc._ifg->verify( &_phc );
 785   return true;
 786 }
 787 
 788 //------------------------------coalesce---------------------------------------
 789 // Conservative (but pessimistic) copy coalescing of a single block
 790 void PhaseConservativeCoalesce::coalesce( Block *b ) {
 791   // Bail out on infrequent blocks
 792   if (b->is_uncommon(&_phc._cfg)) {
 793     return;
 794   }
 795   // Check this block for copies.
 796   for( uint i = 1; i<b->end_idx(); i++ ) {
 797     // Check for actual copies on inputs.  Coalesce a copy into its
 798     // input if use and copy's input are compatible.
 799     Node *copy1 = b->_nodes[i];
 800     uint idx1 = copy1->is_Copy();
 801     if( !idx1 ) continue;       // Not a copy
 802 
 803     if( copy_copy(copy1,copy1,b,i) ) {
 804       i--;                      // Retry, same location in block
 805       PhaseChaitin::_conserv_coalesce++;  // Collect stats on success
 806       continue;
 807     }
 808   }
 809 }