1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/machnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/rootnode.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 //------------------------------Tarjan-----------------------------------------
  38 // A data structure that holds all the information needed to find dominators.
  39 struct Tarjan {
  40   Block *_block;                // Basic block for this info
  41 
  42   uint _semi;                   // Semi-dominators
  43   uint _size;                   // Used for faster LINK and EVAL
  44   Tarjan *_parent;              // Parent in DFS
  45   Tarjan *_label;               // Used for LINK and EVAL
  46   Tarjan *_ancestor;            // Used for LINK and EVAL
  47   Tarjan *_child;               // Used for faster LINK and EVAL
  48   Tarjan *_dom;                 // Parent in dominator tree (immediate dom)
  49   Tarjan *_bucket;              // Set of vertices with given semidominator
  50 
  51   Tarjan *_dom_child;           // Child in dominator tree
  52   Tarjan *_dom_next;            // Next in dominator tree
  53 
  54   // Fast union-find work
  55   void COMPRESS();
  56   Tarjan *EVAL(void);
  57   void LINK( Tarjan *w, Tarjan *tarjan0 );
  58 
  59   void setdepth( uint size );
  60 
  61 };
  62 
  63 //------------------------------Dominator--------------------------------------
  64 // Compute the dominator tree of the CFG.  The CFG must already have been
  65 // constructed.  This is the Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
  66 void PhaseCFG::Dominators( ) {
  67   // Pre-grow the blocks array, prior to the ResourceMark kicking in
  68   _blocks.map(_num_blocks,0);
  69 
  70   ResourceMark rm;
  71   // Setup mappings from my Graph to Tarjan's stuff and back
  72   // Note: Tarjan uses 1-based arrays
  73   Tarjan *tarjan = NEW_RESOURCE_ARRAY(Tarjan,_num_blocks+1);
  74 
  75   // Tarjan's algorithm, almost verbatim:
  76   // Step 1:
  77   _rpo_ctr = _num_blocks;
  78   uint dfsnum = DFS( tarjan );
  79   if( dfsnum-1 != _num_blocks ) {// Check for unreachable loops!
  80     // If the returned dfsnum does not match the number of blocks, then we
  81     // must have some unreachable loops.  These can be made at any time by
  82     // IterGVN.  They are cleaned up by CCP or the loop opts, but the last
  83     // IterGVN can always make more that are not cleaned up.  Highly unlikely
  84     // except in ZKM.jar, where endless irreducible loops cause the loop opts
  85     // to not get run.
  86     //
  87     // Having found unreachable loops, we have made a bad RPO _block layout.
  88     // We can re-run the above DFS pass with the correct number of blocks,
  89     // and hack the Tarjan algorithm below to be robust in the presence of
  90     // such dead loops (as was done for the NTarjan code farther below).
  91     // Since this situation is so unlikely, instead I've decided to bail out.
  92     // CNC 7/24/2001
  93     C->record_method_not_compilable("unreachable loop");
  94     return;
  95   }
  96   _blocks._cnt = _num_blocks;
  97 
  98   // Tarjan is using 1-based arrays, so these are some initialize flags
  99   tarjan[0]._size = tarjan[0]._semi = 0;
 100   tarjan[0]._label = &tarjan[0];
 101 
 102   uint i;
 103   for( i=_num_blocks; i>=2; i-- ) { // For all vertices in DFS order
 104     Tarjan *w = &tarjan[i];     // Get vertex from DFS
 105 
 106     // Step 2:
 107     Node *whead = w->_block->head();
 108     for( uint j=1; j < whead->req(); j++ ) {
 109       Block *b = _bbs[whead->in(j)->_idx];
 110       Tarjan *vx = &tarjan[b->_pre_order];
 111       Tarjan *u = vx->EVAL();
 112       if( u->_semi < w->_semi )
 113         w->_semi = u->_semi;
 114     }
 115 
 116     // w is added to a bucket here, and only here.
 117     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
 118     // Thus bucket can be a linked list.
 119     // Thus we do not need a small integer name for each Block.
 120     w->_bucket = tarjan[w->_semi]._bucket;
 121     tarjan[w->_semi]._bucket = w;
 122 
 123     w->_parent->LINK( w, &tarjan[0] );
 124 
 125     // Step 3:
 126     for( Tarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
 127       Tarjan *u = vx->EVAL();
 128       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
 129     }
 130   }
 131 
 132   // Step 4:
 133   for( i=2; i <= _num_blocks; i++ ) {
 134     Tarjan *w = &tarjan[i];
 135     if( w->_dom != &tarjan[w->_semi] )
 136       w->_dom = w->_dom->_dom;
 137     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 138   }
 139   // No immediate dominator for the root
 140   Tarjan *w = &tarjan[_broot->_pre_order];
 141   w->_dom = NULL;
 142   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 143 
 144   // Convert the dominator tree array into my kind of graph
 145   for( i=1; i<=_num_blocks;i++){// For all Tarjan vertices
 146     Tarjan *t = &tarjan[i];     // Handy access
 147     Tarjan *tdom = t->_dom;     // Handy access to immediate dominator
 148     if( tdom )  {               // Root has no immediate dominator
 149       t->_block->_idom = tdom->_block; // Set immediate dominator
 150       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
 151       tdom->_dom_child = t;     // Make me a child of my parent
 152     } else
 153       t->_block->_idom = NULL;  // Root
 154   }
 155   w->setdepth( _num_blocks+1 ); // Set depth in dominator tree
 156 
 157 }
 158 
 159 //----------------------------Block_Stack--------------------------------------
 160 class Block_Stack {
 161   private:
 162     struct Block_Descr {
 163       Block  *block;     // Block
 164       int    index;      // Index of block's successor pushed on stack
 165       int    freq_idx;   // Index of block's most frequent successor
 166     };
 167     Block_Descr *_stack_top;
 168     Block_Descr *_stack_max;
 169     Block_Descr *_stack;
 170     Tarjan *_tarjan;
 171     uint most_frequent_successor( Block *b );
 172   public:
 173     Block_Stack(Tarjan *tarjan, int size) : _tarjan(tarjan) {
 174       _stack = NEW_RESOURCE_ARRAY(Block_Descr, size);
 175       _stack_max = _stack + size;
 176       _stack_top = _stack - 1; // stack is empty
 177     }
 178     void push(uint pre_order, Block *b) {
 179       Tarjan *t = &_tarjan[pre_order]; // Fast local access
 180       b->_pre_order = pre_order;    // Flag as visited
 181       t->_block = b;                // Save actual block
 182       t->_semi = pre_order;         // Block to DFS map
 183       t->_label = t;                // DFS to vertex map
 184       t->_ancestor = NULL;          // Fast LINK & EVAL setup
 185       t->_child = &_tarjan[0];      // Sentenial
 186       t->_size = 1;
 187       t->_bucket = NULL;
 188       if (pre_order == 1)
 189         t->_parent = NULL;          // first block doesn't have parent
 190       else {
 191         // Save parent (current top block on stack) in DFS
 192         t->_parent = &_tarjan[_stack_top->block->_pre_order];
 193       }
 194       // Now put this block on stack
 195       ++_stack_top;
 196       assert(_stack_top < _stack_max, ""); // assert if stack have to grow
 197       _stack_top->block  = b;
 198       _stack_top->index  = -1;
 199       // Find the index into b->succs[] array of the most frequent successor.
 200       _stack_top->freq_idx = most_frequent_successor(b); // freq_idx >= 0
 201     }
 202     Block* pop() { Block* b = _stack_top->block; _stack_top--; return b; }
 203     bool is_nonempty() { return (_stack_top >= _stack); }
 204     bool last_successor() { return (_stack_top->index == _stack_top->freq_idx); }
 205     Block* next_successor()  {
 206       int i = _stack_top->index;
 207       i++;
 208       if (i == _stack_top->freq_idx) i++;
 209       if (i >= (int)(_stack_top->block->_num_succs)) {
 210         i = _stack_top->freq_idx;   // process most frequent successor last
 211       }
 212       _stack_top->index = i;
 213       return _stack_top->block->_succs[ i ];
 214     }
 215 };
 216 
 217 //-------------------------most_frequent_successor-----------------------------
 218 // Find the index into the b->succs[] array of the most frequent successor.
 219 uint Block_Stack::most_frequent_successor( Block *b ) {
 220   uint freq_idx = 0;
 221   int eidx = b->end_idx();
 222   Node *n = b->_nodes[eidx];
 223   int op = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : n->Opcode();
 224   switch( op ) {
 225   case Op_CountedLoopEnd:
 226   case Op_If: {               // Split frequency amongst children
 227     float prob = n->as_MachIf()->_prob;
 228     // Is succ[0] the TRUE branch or the FALSE branch?
 229     if( b->_nodes[eidx+1]->Opcode() == Op_IfFalse )
 230       prob = 1.0f - prob;
 231     freq_idx = prob < PROB_FAIR;      // freq=1 for succ[0] < 0.5 prob
 232     break;
 233   }
 234   case Op_Catch:                // Split frequency amongst children
 235     for( freq_idx = 0; freq_idx < b->_num_succs; freq_idx++ )
 236       if( b->_nodes[eidx+1+freq_idx]->as_CatchProj()->_con == CatchProjNode::fall_through_index )
 237         break;
 238     // Handle case of no fall-thru (e.g., check-cast MUST throw an exception)
 239     if( freq_idx == b->_num_succs ) freq_idx = 0;
 240     break;
 241     // Currently there is no support for finding out the most
 242     // frequent successor for jumps, so lets just make it the first one
 243   case Op_Jump:
 244   case Op_Root:
 245   case Op_Goto:
 246   case Op_NeverBranch:
 247     freq_idx = 0;               // fall thru
 248     break;
 249   case Op_TailCall:
 250   case Op_TailJump:
 251   case Op_Return:
 252   case Op_Halt:
 253   case Op_Rethrow:
 254     break;
 255   default:
 256     ShouldNotReachHere();
 257   }
 258   return freq_idx;
 259 }
 260 
 261 //------------------------------DFS--------------------------------------------
 262 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
 263 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
 264 uint PhaseCFG::DFS( Tarjan *tarjan ) {
 265   Block *b = _broot;
 266   uint pre_order = 1;
 267   // Allocate stack of size _num_blocks+1 to avoid frequent realloc
 268   Block_Stack bstack(tarjan, _num_blocks+1);
 269 
 270   // Push on stack the state for the first block
 271   bstack.push(pre_order, b);
 272   ++pre_order;
 273 
 274   while (bstack.is_nonempty()) {
 275     if (!bstack.last_successor()) {
 276       // Walk over all successors in pre-order (DFS).
 277       Block *s = bstack.next_successor();
 278       if (s->_pre_order == 0) { // Check for no-pre-order, not-visited
 279         // Push on stack the state of successor
 280         bstack.push(pre_order, s);
 281         ++pre_order;
 282       }
 283     }
 284     else {
 285       // Build a reverse post-order in the CFG _blocks array
 286       Block *stack_top = bstack.pop();
 287       stack_top->_rpo = --_rpo_ctr;
 288       _blocks.map(stack_top->_rpo, stack_top);
 289     }
 290   }
 291   return pre_order;
 292 }
 293 
 294 //------------------------------COMPRESS---------------------------------------
 295 void Tarjan::COMPRESS()
 296 {
 297   assert( _ancestor != 0, "" );
 298   if( _ancestor->_ancestor != 0 ) {
 299     _ancestor->COMPRESS( );
 300     if( _ancestor->_label->_semi < _label->_semi )
 301       _label = _ancestor->_label;
 302     _ancestor = _ancestor->_ancestor;
 303   }
 304 }
 305 
 306 //------------------------------EVAL-------------------------------------------
 307 Tarjan *Tarjan::EVAL() {
 308   if( !_ancestor ) return _label;
 309   COMPRESS();
 310   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
 311 }
 312 
 313 //------------------------------LINK-------------------------------------------
 314 void Tarjan::LINK( Tarjan *w, Tarjan *tarjan0 ) {
 315   Tarjan *s = w;
 316   while( w->_label->_semi < s->_child->_label->_semi ) {
 317     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
 318       s->_child->_ancestor = s;
 319       s->_child = s->_child->_child;
 320     } else {
 321       s->_child->_size = s->_size;
 322       s = s->_ancestor = s->_child;
 323     }
 324   }
 325   s->_label = w->_label;
 326   _size += w->_size;
 327   if( _size < (w->_size << 1) ) {
 328     Tarjan *tmp = s; s = _child; _child = tmp;
 329   }
 330   while( s != tarjan0 ) {
 331     s->_ancestor = this;
 332     s = s->_child;
 333   }
 334 }
 335 
 336 //------------------------------setdepth---------------------------------------
 337 void Tarjan::setdepth( uint stack_size ) {
 338   Tarjan **top  = NEW_RESOURCE_ARRAY(Tarjan*, stack_size);
 339   Tarjan **next = top;
 340   Tarjan **last;
 341   uint depth = 0;
 342   *top = this;
 343   ++top;
 344   do {
 345     // next level
 346     ++depth;
 347     last = top;
 348     do {
 349       // Set current depth for all tarjans on this level
 350       Tarjan *t = *next;     // next tarjan from stack
 351       ++next;
 352       do {
 353         t->_block->_dom_depth = depth; // Set depth in dominator tree
 354         Tarjan *dom_child = t->_dom_child;
 355         t = t->_dom_next;    // next tarjan
 356         if (dom_child != NULL) {
 357           *top = dom_child;  // save child on stack
 358           ++top;
 359         }
 360       } while (t != NULL);
 361     } while (next < last);
 362   } while (last < top);
 363 }
 364 
 365 //*********************** DOMINATORS ON THE SEA OF NODES***********************
 366 //------------------------------NTarjan----------------------------------------
 367 // A data structure that holds all the information needed to find dominators.
 368 struct NTarjan {
 369   Node *_control;               // Control node associated with this info
 370 
 371   uint _semi;                   // Semi-dominators
 372   uint _size;                   // Used for faster LINK and EVAL
 373   NTarjan *_parent;             // Parent in DFS
 374   NTarjan *_label;              // Used for LINK and EVAL
 375   NTarjan *_ancestor;           // Used for LINK and EVAL
 376   NTarjan *_child;              // Used for faster LINK and EVAL
 377   NTarjan *_dom;                // Parent in dominator tree (immediate dom)
 378   NTarjan *_bucket;             // Set of vertices with given semidominator
 379 
 380   NTarjan *_dom_child;          // Child in dominator tree
 381   NTarjan *_dom_next;           // Next in dominator tree
 382 
 383   // Perform DFS search.
 384   // Setup 'vertex' as DFS to vertex mapping.
 385   // Setup 'semi' as vertex to DFS mapping.
 386   // Set 'parent' to DFS parent.
 387   static int DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder );
 388   void setdepth( uint size, uint *dom_depth );
 389 
 390   // Fast union-find work
 391   void COMPRESS();
 392   NTarjan *EVAL(void);
 393   void LINK( NTarjan *w, NTarjan *ntarjan0 );
 394 #ifndef PRODUCT
 395   void dump(int offset) const;
 396 #endif
 397 };
 398 
 399 //------------------------------Dominator--------------------------------------
 400 // Compute the dominator tree of the sea of nodes.  This version walks all CFG
 401 // nodes (using the is_CFG() call) and places them in a dominator tree.  Thus,
 402 // it needs a count of the CFG nodes for the mapping table. This is the
 403 // Lengauer & Tarjan O(E-alpha(E,V)) algorithm.
 404 void PhaseIdealLoop::Dominators() {
 405   ResourceMark rm;
 406   // Setup mappings from my Graph to Tarjan's stuff and back
 407   // Note: Tarjan uses 1-based arrays
 408   NTarjan *ntarjan = NEW_RESOURCE_ARRAY(NTarjan,C->unique()+1);
 409   // Initialize _control field for fast reference
 410   int i;
 411   for( i= C->unique()-1; i>=0; i-- )
 412     ntarjan[i]._control = NULL;
 413 
 414   // Store the DFS order for the main loop
 415   uint *dfsorder = NEW_RESOURCE_ARRAY(uint,C->unique()+1);
 416   memset(dfsorder, max_uint, (C->unique()+1) * sizeof(uint));
 417 
 418   // Tarjan's algorithm, almost verbatim:
 419   // Step 1:
 420   VectorSet visited(Thread::current()->resource_area());
 421   int dfsnum = NTarjan::DFS( ntarjan, visited, this, dfsorder);
 422 
 423   // Tarjan is using 1-based arrays, so these are some initialize flags
 424   ntarjan[0]._size = ntarjan[0]._semi = 0;
 425   ntarjan[0]._label = &ntarjan[0];
 426 
 427   for( i = dfsnum-1; i>1; i-- ) {        // For all nodes in reverse DFS order
 428     NTarjan *w = &ntarjan[i];            // Get Node from DFS
 429     assert(w->_control != NULL,"bad DFS walk");
 430 
 431     // Step 2:
 432     Node *whead = w->_control;
 433     for( uint j=0; j < whead->req(); j++ ) { // For each predecessor
 434       if( whead->in(j) == NULL || !whead->in(j)->is_CFG() )
 435         continue;                            // Only process control nodes
 436       uint b = dfsorder[whead->in(j)->_idx];
 437       if(b == max_uint) continue;
 438       NTarjan *vx = &ntarjan[b];
 439       NTarjan *u = vx->EVAL();
 440       if( u->_semi < w->_semi )
 441         w->_semi = u->_semi;
 442     }
 443 
 444     // w is added to a bucket here, and only here.
 445     // Thus w is in at most one bucket and the sum of all bucket sizes is O(n).
 446     // Thus bucket can be a linked list.
 447     w->_bucket = ntarjan[w->_semi]._bucket;
 448     ntarjan[w->_semi]._bucket = w;
 449 
 450     w->_parent->LINK( w, &ntarjan[0] );
 451 
 452     // Step 3:
 453     for( NTarjan *vx = w->_parent->_bucket; vx; vx = vx->_bucket ) {
 454       NTarjan *u = vx->EVAL();
 455       vx->_dom = (u->_semi < vx->_semi) ? u : w->_parent;
 456     }
 457 
 458     // Cleanup any unreachable loops now.  Unreachable loops are loops that
 459     // flow into the main graph (and hence into ROOT) but are not reachable
 460     // from above.  Such code is dead, but requires a global pass to detect
 461     // it; this global pass was the 'build_loop_tree' pass run just prior.
 462     if( !_verify_only && whead->is_Region() ) {
 463       for( uint i = 1; i < whead->req(); i++ ) {
 464         if (!has_node(whead->in(i))) {
 465           // Kill dead input path
 466           assert( !visited.test(whead->in(i)->_idx),
 467                   "input with no loop must be dead" );
 468           _igvn.delete_input_of(whead, i);
 469           for (DUIterator_Fast jmax, j = whead->fast_outs(jmax); j < jmax; j++) {
 470             Node* p = whead->fast_out(j);
 471             if( p->is_Phi() ) {
 472               _igvn.delete_input_of(p, i);
 473             }
 474           }
 475           i--;                  // Rerun same iteration
 476         } // End of if dead input path
 477       } // End of for all input paths
 478     } // End if if whead is a Region
 479   } // End of for all Nodes in reverse DFS order
 480 
 481   // Step 4:
 482   for( i=2; i < dfsnum; i++ ) { // DFS order
 483     NTarjan *w = &ntarjan[i];
 484     assert(w->_control != NULL,"Bad DFS walk");
 485     if( w->_dom != &ntarjan[w->_semi] )
 486       w->_dom = w->_dom->_dom;
 487     w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 488   }
 489   // No immediate dominator for the root
 490   NTarjan *w = &ntarjan[dfsorder[C->root()->_idx]];
 491   w->_dom = NULL;
 492   w->_parent = NULL;
 493   w->_dom_next = w->_dom_child = NULL;  // Initialize for building tree later
 494 
 495   // Convert the dominator tree array into my kind of graph
 496   for( i=1; i<dfsnum; i++ ) {          // For all Tarjan vertices
 497     NTarjan *t = &ntarjan[i];          // Handy access
 498     assert(t->_control != NULL,"Bad DFS walk");
 499     NTarjan *tdom = t->_dom;           // Handy access to immediate dominator
 500     if( tdom )  {                      // Root has no immediate dominator
 501       _idom[t->_control->_idx] = tdom->_control; // Set immediate dominator
 502       t->_dom_next = tdom->_dom_child; // Make me a sibling of parent's child
 503       tdom->_dom_child = t;            // Make me a child of my parent
 504     } else
 505       _idom[C->root()->_idx] = NULL; // Root
 506   }
 507   w->setdepth( C->unique()+1, _dom_depth ); // Set depth in dominator tree
 508   // Pick up the 'top' node as well
 509   _idom     [C->top()->_idx] = C->root();
 510   _dom_depth[C->top()->_idx] = 1;
 511 
 512   // Debug Print of Dominator tree
 513   if( PrintDominators ) {
 514 #ifndef PRODUCT
 515     w->dump(0);
 516 #endif
 517   }
 518 }
 519 
 520 //------------------------------DFS--------------------------------------------
 521 // Perform DFS search.  Setup 'vertex' as DFS to vertex mapping.  Setup
 522 // 'semi' as vertex to DFS mapping.  Set 'parent' to DFS parent.
 523 int NTarjan::DFS( NTarjan *ntarjan, VectorSet &visited, PhaseIdealLoop *pil, uint *dfsorder) {
 524   // Allocate stack of size C->unique()/8 to avoid frequent realloc
 525   GrowableArray <Node *> dfstack(pil->C->unique() >> 3);
 526   Node *b = pil->C->root();
 527   int dfsnum = 1;
 528   dfsorder[b->_idx] = dfsnum; // Cache parent's dfsnum for a later use
 529   dfstack.push(b);
 530 
 531   while (dfstack.is_nonempty()) {
 532     b = dfstack.pop();
 533     if( !visited.test_set(b->_idx) ) { // Test node and flag it as visited
 534       NTarjan *w = &ntarjan[dfsnum];
 535       // Only fully process control nodes
 536       w->_control = b;                 // Save actual node
 537       // Use parent's cached dfsnum to identify "Parent in DFS"
 538       w->_parent = &ntarjan[dfsorder[b->_idx]];
 539       dfsorder[b->_idx] = dfsnum;      // Save DFS order info
 540       w->_semi = dfsnum;               // Node to DFS map
 541       w->_label = w;                   // DFS to vertex map
 542       w->_ancestor = NULL;             // Fast LINK & EVAL setup
 543       w->_child = &ntarjan[0];         // Sentinal
 544       w->_size = 1;
 545       w->_bucket = NULL;
 546 
 547       // Need DEF-USE info for this pass
 548       for ( int i = b->outcnt(); i-- > 0; ) { // Put on stack backwards
 549         Node* s = b->raw_out(i);       // Get a use
 550         // CFG nodes only and not dead stuff
 551         if( s->is_CFG() && pil->has_node(s) && !visited.test(s->_idx) ) {
 552           dfsorder[s->_idx] = dfsnum;  // Cache parent's dfsnum for a later use
 553           dfstack.push(s);
 554         }
 555       }
 556       dfsnum++;  // update after parent's dfsnum has been cached.
 557     }
 558   }
 559 
 560   return dfsnum;
 561 }
 562 
 563 //------------------------------COMPRESS---------------------------------------
 564 void NTarjan::COMPRESS()
 565 {
 566   assert( _ancestor != 0, "" );
 567   if( _ancestor->_ancestor != 0 ) {
 568     _ancestor->COMPRESS( );
 569     if( _ancestor->_label->_semi < _label->_semi )
 570       _label = _ancestor->_label;
 571     _ancestor = _ancestor->_ancestor;
 572   }
 573 }
 574 
 575 //------------------------------EVAL-------------------------------------------
 576 NTarjan *NTarjan::EVAL() {
 577   if( !_ancestor ) return _label;
 578   COMPRESS();
 579   return (_ancestor->_label->_semi >= _label->_semi) ? _label : _ancestor->_label;
 580 }
 581 
 582 //------------------------------LINK-------------------------------------------
 583 void NTarjan::LINK( NTarjan *w, NTarjan *ntarjan0 ) {
 584   NTarjan *s = w;
 585   while( w->_label->_semi < s->_child->_label->_semi ) {
 586     if( s->_size + s->_child->_child->_size >= (s->_child->_size << 1) ) {
 587       s->_child->_ancestor = s;
 588       s->_child = s->_child->_child;
 589     } else {
 590       s->_child->_size = s->_size;
 591       s = s->_ancestor = s->_child;
 592     }
 593   }
 594   s->_label = w->_label;
 595   _size += w->_size;
 596   if( _size < (w->_size << 1) ) {
 597     NTarjan *tmp = s; s = _child; _child = tmp;
 598   }
 599   while( s != ntarjan0 ) {
 600     s->_ancestor = this;
 601     s = s->_child;
 602   }
 603 }
 604 
 605 //------------------------------setdepth---------------------------------------
 606 void NTarjan::setdepth( uint stack_size, uint *dom_depth ) {
 607   NTarjan **top  = NEW_RESOURCE_ARRAY(NTarjan*, stack_size);
 608   NTarjan **next = top;
 609   NTarjan **last;
 610   uint depth = 0;
 611   *top = this;
 612   ++top;
 613   do {
 614     // next level
 615     ++depth;
 616     last = top;
 617     do {
 618       // Set current depth for all tarjans on this level
 619       NTarjan *t = *next;    // next tarjan from stack
 620       ++next;
 621       do {
 622         dom_depth[t->_control->_idx] = depth; // Set depth in dominator tree
 623         NTarjan *dom_child = t->_dom_child;
 624         t = t->_dom_next;    // next tarjan
 625         if (dom_child != NULL) {
 626           *top = dom_child;  // save child on stack
 627           ++top;
 628         }
 629       } while (t != NULL);
 630     } while (next < last);
 631   } while (last < top);
 632 }
 633 
 634 //------------------------------dump-------------------------------------------
 635 #ifndef PRODUCT
 636 void NTarjan::dump(int offset) const {
 637   // Dump the data from this node
 638   int i;
 639   for(i = offset; i >0; i--)  // Use indenting for tree structure
 640     tty->print("  ");
 641   tty->print("Dominator Node: ");
 642   _control->dump();               // Control node for this dom node
 643   tty->print("\n");
 644   for(i = offset; i >0; i--)      // Use indenting for tree structure
 645     tty->print("  ");
 646   tty->print("semi:%d, size:%d\n",_semi, _size);
 647   for(i = offset; i >0; i--)      // Use indenting for tree structure
 648     tty->print("  ");
 649   tty->print("DFS Parent: ");
 650   if(_parent != NULL)
 651     _parent->_control->dump();    // Parent in DFS
 652   tty->print("\n");
 653   for(i = offset; i >0; i--)      // Use indenting for tree structure
 654     tty->print("  ");
 655   tty->print("Dom Parent: ");
 656   if(_dom != NULL)
 657     _dom->_control->dump();       // Parent in Dominator Tree
 658   tty->print("\n");
 659 
 660   // Recurse over remaining tree
 661   if( _dom_child ) _dom_child->dump(offset+2);   // Children in dominator tree
 662   if( _dom_next  ) _dom_next ->dump(offset  );   // Siblings in dominator tree
 663 
 664 }
 665 #endif