src/share/vm/opto/gcm.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File JDK-8022284 Sdiff src/share/vm/opto

src/share/vm/opto/gcm.cpp

Print this page




  49 #endif
  50 #ifdef TARGET_ARCH_MODEL_arm
  51 # include "adfiles/ad_arm.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_MODEL_ppc
  54 # include "adfiles/ad_ppc.hpp"
  55 #endif
  56 
  57 // Portions of code courtesy of Clifford Click
  58 
  59 // Optimization - Graph Style
  60 
  61 // To avoid float value underflow
  62 #define MIN_BLOCK_FREQUENCY 1.e-35f
  63 
  64 //----------------------------schedule_node_into_block-------------------------
  65 // Insert node n into block b. Look for projections of n and make sure they
  66 // are in b also.
  67 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  68   // Set basic block of n, Add n to b,
  69   _bbs.map(n->_idx, b);
  70   b->add_inst(n);
  71 
  72   // After Matching, nearly any old Node may have projections trailing it.
  73   // These are usually machine-dependent flags.  In any case, they might
  74   // float to another block below this one.  Move them up.
  75   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  76     Node*  use  = n->fast_out(i);
  77     if (use->is_Proj()) {
  78       Block* buse = _bbs[use->_idx];
  79       if (buse != b) {              // In wrong block?
  80         if (buse != NULL)
  81           buse->find_remove(use);   // Remove from wrong block
  82         _bbs.map(use->_idx, b);     // Re-insert in this block

  83         b->add_inst(use);
  84       }
  85     }
  86   }
  87 }
  88 
  89 //----------------------------replace_block_proj_ctrl-------------------------
  90 // Nodes that have is_block_proj() nodes as their control need to use
  91 // the appropriate Region for their actual block as their control since
  92 // the projection will be in a predecessor block.
  93 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  94   const Node *in0 = n->in(0);
  95   assert(in0 != NULL, "Only control-dependent");
  96   const Node *p = in0->is_block_proj();
  97   if (p != NULL && p != n) {    // Control from a block projection?
  98     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
  99     // Find trailing Region
 100     Block *pb = _bbs[in0->_idx]; // Block-projection already has basic block
 101     uint j = 0;
 102     if (pb->_num_succs != 1) {  // More then 1 successor?
 103       // Search for successor
 104       uint max = pb->_nodes.size();
 105       assert( max > 1, "" );
 106       uint start = max - pb->_num_succs;
 107       // Find which output path belongs to projection
 108       for (j = start; j < max; j++) {
 109         if( pb->_nodes[j] == in0 )
 110           break;
 111       }
 112       assert( j < max, "must find" );
 113       // Change control to match head of successor basic block
 114       j -= start;
 115     }
 116     n->set_req(0, pb->_succs[j]->head());
 117   }
 118 }
 119 
 120 
 121 //------------------------------schedule_pinned_nodes--------------------------
 122 // Set the basic block for Nodes pinned into blocks
 123 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
 124   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
 125   GrowableArray <Node *> spstack(C->unique()+8);
 126   spstack.push(_root);
 127   while ( spstack.is_nonempty() ) {
 128     Node *n = spstack.pop();
 129     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
 130       if( n->pinned() && !_bbs.lookup(n->_idx) ) {  // Pinned?  Nail it down!
 131         assert( n->in(0), "pinned Node must have Control" );
 132         // Before setting block replace block_proj control edge
 133         replace_block_proj_ctrl(n);
 134         Node *input = n->in(0);
 135         while( !input->is_block_start() )
 136           input = input->in(0);
 137         Block *b = _bbs[input->_idx];  // Basic block of controlling input

 138         schedule_node_into_block(n, b);
 139       }
 140       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
 141         if( n->in(i) != NULL )
 142           spstack.push(n->in(i));
 143       }
 144     }
 145   }
 146 }
 147 
 148 #ifdef ASSERT
 149 // Assert that new input b2 is dominated by all previous inputs.
 150 // Check this by by seeing that it is dominated by b1, the deepest
 151 // input observed until b2.
 152 static void assert_dom(Block* b1, Block* b2, Node* n, Block_Array &bbs) {
 153   if (b1 == NULL)  return;
 154   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 155   Block* tmp = b2;
 156   while (tmp != b1 && tmp != NULL) {
 157     tmp = tmp->_idom;
 158   }
 159   if (tmp != b1) {
 160     // Detected an unschedulable graph.  Print some nice stuff and die.
 161     tty->print_cr("!!! Unschedulable graph !!!");
 162     for (uint j=0; j<n->len(); j++) { // For all inputs
 163       Node* inn = n->in(j); // Get input
 164       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 165       Block* inb = bbs[inn->_idx];
 166       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 167                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 168       inn->dump();
 169     }
 170     tty->print("Failing node: ");
 171     n->dump();
 172     assert(false, "unscheduable graph");
 173   }
 174 }
 175 #endif
 176 
 177 static Block* find_deepest_input(Node* n, Block_Array &bbs) {
 178   // Find the last input dominated by all other inputs.
 179   Block* deepb           = NULL;        // Deepest block so far
 180   int    deepb_dom_depth = 0;
 181   for (uint k = 0; k < n->len(); k++) { // For all inputs
 182     Node* inn = n->in(k);               // Get input
 183     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 184     Block* inb = bbs[inn->_idx];
 185     assert(inb != NULL, "must already have scheduled this input");
 186     if (deepb_dom_depth < (int) inb->_dom_depth) {
 187       // The new inb must be dominated by the previous deepb.
 188       // The various inputs must be linearly ordered in the dom
 189       // tree, or else there will not be a unique deepest block.
 190       DEBUG_ONLY(assert_dom(deepb, inb, n, bbs));
 191       deepb = inb;                      // Save deepest block
 192       deepb_dom_depth = deepb->_dom_depth;
 193     }
 194   }
 195   assert(deepb != NULL, "must be at least one input to n");
 196   return deepb;
 197 }
 198 
 199 
 200 //------------------------------schedule_early---------------------------------
 201 // Find the earliest Block any instruction can be placed in.  Some instructions
 202 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 203 // which all their inputs occur.
 204 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 205   // Allocate stack with enough space to avoid frequent realloc
 206   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 207   // roots.push(_root); _root will be processed among C->top() inputs
 208   roots.push(C->top());
 209   visited.set(C->top()->_idx);
 210 


 226         const Node *in0 = n->in(0);
 227         if (in0 != NULL) {              // Control-dependent?
 228           replace_block_proj_ctrl(n);
 229         } else {               // n->in(0) == NULL
 230           if (n->req() == 1) { // This guy is a constant with NO inputs?
 231             n->set_req(0, _root);
 232           }
 233         }
 234       }
 235 
 236       // First, visit all inputs and force them to get a block.  If an
 237       // input is already in a block we quit following inputs (to avoid
 238       // cycles). Instead we put that Node on a worklist to be handled
 239       // later (since IT'S inputs may not have a block yet).
 240       bool done = true;              // Assume all n's inputs will be processed
 241       while (i < n->len()) {         // For all inputs
 242         Node *in = n->in(i);         // Get input
 243         ++i;
 244         if (in == NULL) continue;    // Ignore NULL, missing inputs
 245         int is_visited = visited.test_set(in->_idx);
 246         if (!_bbs.lookup(in->_idx)) { // Missing block selection?
 247           if (is_visited) {
 248             // assert( !visited.test(in->_idx), "did not schedule early" );
 249             return false;
 250           }
 251           nstack.push(n, i);         // Save parent node and next input's index.
 252           nstack_top_n = in;         // Process current input now.
 253           nstack_top_i = 0;
 254           done = false;              // Not all n's inputs processed.
 255           break; // continue while_nstack_nonempty;
 256         } else if (!is_visited) {    // Input not yet visited?
 257           roots.push(in);            // Visit this guy later, using worklist
 258         }
 259       }
 260       if (done) {
 261         // All of n's inputs have been processed, complete post-processing.
 262 
 263         // Some instructions are pinned into a block.  These include Region,
 264         // Phi, Start, Return, and other control-dependent instructions and
 265         // any projections which depend on them.
 266         if (!n->pinned()) {
 267           // Set earliest legal block.
 268           _bbs.map(n->_idx, find_deepest_input(n, _bbs));
 269         } else {
 270           assert(_bbs[n->_idx] == _bbs[n->in(0)->_idx], "Pinned Node should be at the same block as its control edge");
 271         }
 272 
 273         if (nstack.is_empty()) {
 274           // Finished all nodes on stack.
 275           // Process next node on the worklist 'roots'.
 276           break;
 277         }
 278         // Get saved parent node and next input's index.
 279         nstack_top_n = nstack.node();
 280         nstack_top_i = nstack.index();
 281         nstack.pop();
 282       } //    if (done)
 283     }   // while (true)
 284   }     // while (roots.size() != 0)
 285   return true;
 286 }
 287 
 288 //------------------------------dom_lca----------------------------------------
 289 // Find least common ancestor in dominator tree
 290 // LCA is a current notion of LCA, to be raised above 'this'.


 296   Block* anc = this;
 297   while (anc->_dom_depth > LCA->_dom_depth)
 298     anc = anc->_idom;           // Walk up till anc is as high as LCA
 299 
 300   while (LCA->_dom_depth > anc->_dom_depth)
 301     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 302 
 303   while (LCA != anc) {          // Walk both up till they are the same
 304     LCA = LCA->_idom;
 305     anc = anc->_idom;
 306   }
 307 
 308   return LCA;
 309 }
 310 
 311 //--------------------------raise_LCA_above_use--------------------------------
 312 // We are placing a definition, and have been given a def->use edge.
 313 // The definition must dominate the use, so move the LCA upward in the
 314 // dominator tree to dominate the use.  If the use is a phi, adjust
 315 // the LCA only with the phi input paths which actually use this def.
 316 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, Block_Array &bbs) {
 317   Block* buse = bbs[use->_idx];
 318   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 319   if (!use->is_Phi())  return buse->dom_lca(LCA);
 320   uint pmax = use->req();       // Number of Phi inputs
 321   // Why does not this loop just break after finding the matching input to
 322   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 323   // chains.  Means I cannot distinguish, from the def-use direction, which
 324   // of many use-defs lead from the same use to the same def.  That is, this
 325   // Phi might have several uses of the same def.  Each use appears in a
 326   // different predecessor block.  But when I enter here, I cannot distinguish
 327   // which use-def edge I should find the predecessor block for.  So I find
 328   // them all.  Means I do a little extra work if a Phi uses the same value
 329   // more than once.
 330   for (uint j=1; j<pmax; j++) { // For all inputs
 331     if (use->in(j) == def) {    // Found matching input?
 332       Block* pred = bbs[buse->pred(j)->_idx];
 333       LCA = pred->dom_lca(LCA);
 334     }
 335   }
 336   return LCA;
 337 }
 338 
 339 //----------------------------raise_LCA_above_marks----------------------------
 340 // Return a new LCA that dominates LCA and any of its marked predecessors.
 341 // Search all my parents up to 'early' (exclusive), looking for predecessors
 342 // which are marked with the given index.  Return the LCA (in the dom tree)
 343 // of all marked blocks.  If there are none marked, return the original
 344 // LCA.
 345 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark,
 346                                     Block* early, Block_Array &bbs) {
 347   Block_List worklist;
 348   worklist.push(LCA);
 349   while (worklist.size() > 0) {
 350     Block* mid = worklist.pop();
 351     if (mid == early)  continue;  // stop searching here
 352 
 353     // Test and set the visited bit.
 354     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 355 
 356     // Don't process the current LCA, otherwise the search may terminate early
 357     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 358       // Raise the LCA.
 359       LCA = mid->dom_lca(LCA);
 360       if (LCA == early)  break;   // stop searching everywhere
 361       assert(early->dominates(LCA), "early is high enough");
 362       // Resume searching at that point, skipping intermediate levels.
 363       worklist.push(LCA);
 364       if (LCA == mid)
 365         continue; // Don't mark as visited to avoid early termination.
 366     } else {
 367       // Keep searching through this block's predecessors.
 368       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 369         Block* mid_parent = bbs[ mid->pred(j)->_idx ];
 370         worklist.push(mid_parent);
 371       }
 372     }
 373     mid->set_raise_LCA_visited(mark);
 374   }
 375   return LCA;
 376 }
 377 
 378 //--------------------------memory_early_block--------------------------------
 379 // This is a variation of find_deepest_input, the heart of schedule_early.
 380 // Find the "early" block for a load, if we considered only memory and
 381 // address inputs, that is, if other data inputs were ignored.
 382 //
 383 // Because a subset of edges are considered, the resulting block will
 384 // be earlier (at a shallower dom_depth) than the true schedule_early
 385 // point of the node. We compute this earlier block as a more permissive
 386 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 387 static Block* memory_early_block(Node* load, Block* early, Block_Array &bbs) {
 388   Node* base;
 389   Node* index;
 390   Node* store = load->in(MemNode::Memory);
 391   load->as_Mach()->memory_inputs(base, index);
 392 
 393   assert(base != NodeSentinel && index != NodeSentinel,
 394          "unexpected base/index inputs");
 395 
 396   Node* mem_inputs[4];
 397   int mem_inputs_length = 0;
 398   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 399   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 400   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 401 
 402   // In the comparision below, add one to account for the control input,
 403   // which may be null, but always takes up a spot in the in array.
 404   if (mem_inputs_length + 1 < (int) load->req()) {
 405     // This "load" has more inputs than just the memory, base and index inputs.
 406     // For purposes of checking anti-dependences, we need to start
 407     // from the early block of only the address portion of the instruction,
 408     // and ignore other blocks that may have factored into the wider
 409     // schedule_early calculation.
 410     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 411 
 412     Block* deepb           = NULL;        // Deepest block so far
 413     int    deepb_dom_depth = 0;
 414     for (int i = 0; i < mem_inputs_length; i++) {
 415       Block* inb = bbs[mem_inputs[i]->_idx];
 416       if (deepb_dom_depth < (int) inb->_dom_depth) {
 417         // The new inb must be dominated by the previous deepb.
 418         // The various inputs must be linearly ordered in the dom
 419         // tree, or else there will not be a unique deepest block.
 420         DEBUG_ONLY(assert_dom(deepb, inb, load, bbs));
 421         deepb = inb;                      // Save deepest block
 422         deepb_dom_depth = deepb->_dom_depth;
 423       }
 424     }
 425     early = deepb;
 426   }
 427 
 428   return early;
 429 }
 430 
 431 //--------------------------insert_anti_dependences---------------------------
 432 // A load may need to witness memory that nearby stores can overwrite.
 433 // For each nearby store, either insert an "anti-dependence" edge
 434 // from the load to the store, or else move LCA upward to force the
 435 // load to (eventually) be scheduled in a block above the store.
 436 //
 437 // Do not add edges to stores on distinct control-flow paths;
 438 // only add edges to stores which might interfere.
 439 //
 440 // Return the (updated) LCA.  There will not be any possibly interfering


 471          "String equals is a 'load' that does not conflict with any stores");
 472   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 473          "String indexOf is a 'load' that does not conflict with any stores");
 474   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 475          "Arrays equals is a 'load' that do not conflict with any stores");
 476 
 477   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 478     // It is impossible to spoil this load by putting stores before it,
 479     // because we know that the stores will never update the value
 480     // which 'load' must witness.
 481     return LCA;
 482   }
 483 
 484   node_idx_t load_index = load->_idx;
 485 
 486   // Note the earliest legal placement of 'load', as determined by
 487   // by the unique point in the dom tree where all memory effects
 488   // and other inputs are first available.  (Computed by schedule_early.)
 489   // For normal loads, 'early' is the shallowest place (dom graph wise)
 490   // to look for anti-deps between this load and any store.
 491   Block* early = _bbs[load_index];
 492 
 493   // If we are subsuming loads, compute an "early" block that only considers
 494   // memory or address inputs. This block may be different than the
 495   // schedule_early block in that it could be at an even shallower depth in the
 496   // dominator tree, and allow for a broader discovery of anti-dependences.
 497   if (C->subsume_loads()) {
 498     early = memory_early_block(load, early, _bbs);
 499   }
 500 
 501   ResourceArea *area = Thread::current()->resource_area();
 502   Node_List worklist_mem(area);     // prior memory state to store
 503   Node_List worklist_store(area);   // possible-def to explore
 504   Node_List worklist_visited(area); // visited mergemem nodes
 505   Node_List non_early_stores(area); // all relevant stores outside of early
 506   bool must_raise_LCA = false;
 507 
 508 #ifdef TRACK_PHI_INPUTS
 509   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 510   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 511   // original memory state.  This indicates a PhiNode for which should not
 512   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 513   // may be overly conservative.
 514   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 515   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 516 #endif
 517 
 518   // 'load' uses some memory state; look for users of the same state.


 602         // instead of control + memory.
 603         if (mstore->ideal_Opcode() == Op_SafePoint)
 604           continue;
 605       } else {
 606         // Some raw memory, such as the load of "top" at an allocation,
 607         // can be control dependent on the previous safepoint. See
 608         // comments in GraphKit::allocate_heap() about control input.
 609         // Inserting an anti-dep between such a safepoint and a use
 610         // creates a cycle, and will cause a subsequent failure in
 611         // local scheduling.  (BugId 4919904)
 612         // (%%% How can a control input be a safepoint and not a projection??)
 613         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 614           continue;
 615       }
 616     }
 617 
 618     // Identify a block that the current load must be above,
 619     // or else observe that 'store' is all the way up in the
 620     // earliest legal block for 'load'.  In the latter case,
 621     // immediately insert an anti-dependence edge.
 622     Block* store_block = _bbs[store->_idx];
 623     assert(store_block != NULL, "unused killing projections skipped above");
 624 
 625     if (store->is_Phi()) {
 626       // 'load' uses memory which is one (or more) of the Phi's inputs.
 627       // It must be scheduled not before the Phi, but rather before
 628       // each of the relevant Phi inputs.
 629       //
 630       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 631       // we mark each corresponding predecessor block and do a combined
 632       // hoisting operation later (raise_LCA_above_marks).
 633       //
 634       // Do not assert(store_block != early, "Phi merging memory after access")
 635       // PhiNode may be at start of block 'early' with backedge to 'early'
 636       DEBUG_ONLY(bool found_match = false);
 637       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 638         if (store->in(j) == mem) {   // Found matching input?
 639           DEBUG_ONLY(found_match = true);
 640           Block* pred_block = _bbs[store_block->pred(j)->_idx];
 641           if (pred_block != early) {
 642             // If any predecessor of the Phi matches the load's "early block",
 643             // we do not need a precedence edge between the Phi and 'load'
 644             // since the load will be forced into a block preceding the Phi.
 645             pred_block->set_raise_LCA_mark(load_index);
 646             assert(!LCA_orig->dominates(pred_block) ||
 647                    early->dominates(pred_block), "early is high enough");
 648             must_raise_LCA = true;
 649           } else {
 650             // anti-dependent upon PHI pinned below 'early', no edge needed
 651             LCA = early;             // but can not schedule below 'early'
 652           }
 653         }
 654       }
 655       assert(found_match, "no worklist bug");
 656 #ifdef TRACK_PHI_INPUTS
 657 #ifdef ASSERT
 658       // This assert asks about correct handling of PhiNodes, which may not
 659       // have all input edges directly from 'mem'. See BugId 4621264
 660       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;


 694     }
 695   }
 696   // (Worklist is now empty; all nearby stores have been visited.)
 697 
 698   // Finished if 'load' must be scheduled in its 'early' block.
 699   // If we found any stores there, they have already been given
 700   // precedence edges.
 701   if (LCA == early)  return LCA;
 702 
 703   // We get here only if there are no possibly-interfering stores
 704   // in the load's 'early' block.  Move LCA up above all predecessors
 705   // which contain stores we have noted.
 706   //
 707   // The raised LCA block can be a home to such interfering stores,
 708   // but its predecessors must not contain any such stores.
 709   //
 710   // The raised LCA will be a lower bound for placing the load,
 711   // preventing the load from sinking past any block containing
 712   // a store that may invalidate the memory state required by 'load'.
 713   if (must_raise_LCA)
 714     LCA = raise_LCA_above_marks(LCA, load->_idx, early, _bbs);
 715   if (LCA == early)  return LCA;
 716 
 717   // Insert anti-dependence edges from 'load' to each store
 718   // in the non-early LCA block.
 719   // Mine the non_early_stores list for such stores.
 720   if (LCA->raise_LCA_mark() == load_index) {
 721     while (non_early_stores.size() > 0) {
 722       Node* store = non_early_stores.pop();
 723       Block* store_block = _bbs[store->_idx];
 724       if (store_block == LCA) {
 725         // add anti_dependence from store to load in its own block
 726         assert(store != load->in(0), "dependence cycle found");
 727         if (verify) {
 728           assert(store->find_edge(load) != -1, "missing precedence edge");
 729         } else {
 730           store->add_prec(load);
 731         }
 732       } else {
 733         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 734         // Any other stores we found must be either inside the new LCA
 735         // or else outside the original LCA.  In the latter case, they
 736         // did not interfere with any use of 'load'.
 737         assert(LCA->dominates(store_block)
 738                || !LCA_orig->dominates(store_block), "no stray stores");
 739       }
 740     }
 741   }
 742 
 743   // Return the highest block containing stores; any stores
 744   // within that block have been given anti-dependence edges.
 745   return LCA;
 746 }
 747 
 748 // This class is used to iterate backwards over the nodes in the graph.
 749 
 750 class Node_Backward_Iterator {
 751 
 752 private:
 753   Node_Backward_Iterator();
 754 
 755 public:
 756   // Constructor for the iterator
 757   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs);
 758 
 759   // Postincrement operator to iterate over the nodes
 760   Node *next();
 761 
 762 private:
 763   VectorSet   &_visited;
 764   Node_List   &_stack;
 765   Block_Array &_bbs;
 766 };
 767 
 768 // Constructor for the Node_Backward_Iterator
 769 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, Block_Array &bbs )
 770   : _visited(visited), _stack(stack), _bbs(bbs) {
 771   // The stack should contain exactly the root
 772   stack.clear();
 773   stack.push(root);
 774 
 775   // Clear the visited bits
 776   visited.Clear();
 777 }
 778 
 779 // Iterator for the Node_Backward_Iterator
 780 Node *Node_Backward_Iterator::next() {
 781 
 782   // If the _stack is empty, then just return NULL: finished.
 783   if ( !_stack.size() )
 784     return NULL;
 785 
 786   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 787   // made stateless, so I do not need to record the index 'i' on my _stack.
 788   // Instead I visit all users each time, scanning for unvisited users.
 789   // I visit unvisited not-anti-dependence users first, then anti-dependent
 790   // children next.
 791   Node *self = _stack.pop();
 792 
 793   // I cycle here when I am entering a deeper level of recursion.
 794   // The key variable 'self' was set prior to jumping here.
 795   while( 1 ) {
 796 
 797     _visited.set(self->_idx);
 798 
 799     // Now schedule all uses as late as possible.
 800     uint src     = self->is_Proj() ? self->in(0)->_idx : self->_idx;
 801     uint src_rpo = _bbs[src]->_rpo;
 802 
 803     // Schedule all nodes in a post-order visit
 804     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 805 
 806     // Scan for unvisited nodes
 807     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 808       // For all uses, schedule late
 809       Node* n = self->fast_out(i); // Use
 810 
 811       // Skip already visited children
 812       if ( _visited.test(n->_idx) )
 813         continue;
 814 
 815       // do not traverse backward control edges
 816       Node *use = n->is_Proj() ? n->in(0) : n;
 817       uint use_rpo = _bbs[use->_idx]->_rpo;
 818 
 819       if ( use_rpo < src_rpo )
 820         continue;
 821 
 822       // Phi nodes always precede uses in a basic block
 823       if ( use_rpo == src_rpo && use->is_Phi() )
 824         continue;
 825 
 826       unvisited = n;      // Found unvisited
 827 
 828       // Check for possible-anti-dependent
 829       if( !n->needs_anti_dependence_check() )
 830         break;            // Not visited, not anti-dep; schedule it NOW
 831     }
 832 
 833     // Did I find an unvisited not-anti-dependent Node?
 834     if ( !unvisited )
 835       break;                  // All done with children; post-visit 'self'
 836 
 837     // Visit the unvisited Node.  Contains the obvious push to
 838     // indicate I'm entering a deeper level of recursion.  I push the
 839     // old state onto the _stack and set a new state and loop (recurse).
 840     _stack.push(self);
 841     self = unvisited;
 842   } // End recursion loop
 843 
 844   return self;
 845 }
 846 
 847 //------------------------------ComputeLatenciesBackwards----------------------
 848 // Compute the latency of all the instructions.
 849 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 850 #ifndef PRODUCT
 851   if (trace_opto_pipelining())
 852     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 853 #endif
 854 
 855   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
 856   Node *n;
 857 
 858   // Walk over all the nodes from last to first
 859   while (n = iter.next()) {
 860     // Set the latency for the definitions of this instruction
 861     partial_latency_of_defs(n);
 862   }
 863 } // end ComputeLatenciesBackwards
 864 
 865 //------------------------------partial_latency_of_defs------------------------
 866 // Compute the latency impact of this node on all defs.  This computes
 867 // a number that increases as we approach the beginning of the routine.
 868 void PhaseCFG::partial_latency_of_defs(Node *n) {
 869   // Set the latency for this instruction
 870 #ifndef PRODUCT
 871   if (trace_opto_pipelining()) {
 872     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 873                n->_idx, _node_latency->at_grow(n->_idx));
 874     dump();
 875   }
 876 #endif
 877 
 878   if (n->is_Proj())
 879     n = n->in(0);
 880 
 881   if (n->is_Root())
 882     return;
 883 
 884   uint nlen = n->len();
 885   uint use_latency = _node_latency->at_grow(n->_idx);
 886   uint use_pre_order = _bbs[n->_idx]->_pre_order;
 887 
 888   for ( uint j=0; j<nlen; j++ ) {
 889     Node *def = n->in(j);
 890 
 891     if (!def || def == n)
 892       continue;
 893 
 894     // Walk backwards thru projections
 895     if (def->is_Proj())
 896       def = def->in(0);
 897 
 898 #ifndef PRODUCT
 899     if (trace_opto_pipelining()) {
 900       tty->print("#    in(%2d): ", j);
 901       def->dump();
 902     }
 903 #endif
 904 
 905     // If the defining block is not known, assume it is ok
 906     Block *def_block = _bbs[def->_idx];
 907     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 908 
 909     if ( (use_pre_order <  def_pre_order) ||
 910          (use_pre_order == def_pre_order && n->is_Phi()) )
 911       continue;
 912 
 913     uint delta_latency = n->latency(j);
 914     uint current_latency = delta_latency + use_latency;
 915 
 916     if (_node_latency->at_grow(def->_idx) < current_latency) {
 917       _node_latency->at_put_grow(def->_idx, current_latency);
 918     }
 919 
 920 #ifndef PRODUCT
 921     if (trace_opto_pipelining()) {
 922       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 923                     use_latency, j, delta_latency, current_latency, def->_idx,
 924                     _node_latency->at_grow(def->_idx));
 925     }
 926 #endif
 927   }
 928 }
 929 
 930 //------------------------------latency_from_use-------------------------------
 931 // Compute the latency of a specific use
 932 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 933   // If self-reference, return no latency
 934   if (use == n || use->is_Root())
 935     return 0;

 936 
 937   uint def_pre_order = _bbs[def->_idx]->_pre_order;
 938   uint latency = 0;
 939 
 940   // If the use is not a projection, then it is simple...
 941   if (!use->is_Proj()) {
 942 #ifndef PRODUCT
 943     if (trace_opto_pipelining()) {
 944       tty->print("#    out(): ");
 945       use->dump();
 946     }
 947 #endif
 948 
 949     uint use_pre_order = _bbs[use->_idx]->_pre_order;
 950 
 951     if (use_pre_order < def_pre_order)
 952       return 0;
 953 
 954     if (use_pre_order == def_pre_order && use->is_Phi())
 955       return 0;
 956 
 957     uint nlen = use->len();
 958     uint nl = _node_latency->at_grow(use->_idx);
 959 
 960     for ( uint j=0; j<nlen; j++ ) {
 961       if (use->in(j) == n) {
 962         // Change this if we want local latencies
 963         uint ul = use->latency(j);
 964         uint  l = ul + nl;
 965         if (latency < l) latency = l;
 966 #ifndef PRODUCT
 967         if (trace_opto_pipelining()) {
 968           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 969                         nl, j, ul, l, latency);


1001   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1002     uint l = latency_from_use(n, def, n->fast_out(i));
1003 
1004     if (latency < l) latency = l;
1005   }
1006 
1007   _node_latency->at_put_grow(n->_idx, latency);
1008 }
1009 
1010 //------------------------------hoist_to_cheaper_block-------------------------
1011 // Pick a block for node self, between early and LCA, that is a cheaper
1012 // alternative to LCA.
1013 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1014   const double delta = 1+PROB_UNLIKELY_MAG(4);
1015   Block* least       = LCA;
1016   double least_freq  = least->_freq;
1017   uint target        = _node_latency->at_grow(self->_idx);
1018   uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx);
1019   uint end_latency   = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
1020   bool in_latency    = (target <= start_latency);
1021   const Block* root_block = _bbs[_root->_idx];
1022 
1023   // Turn off latency scheduling if scheduling is just plain off
1024   if (!C->do_scheduling())
1025     in_latency = true;
1026 
1027   // Do not hoist (to cover latency) instructions which target a
1028   // single register.  Hoisting stretches the live range of the
1029   // single register and may force spilling.
1030   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1031   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1032     in_latency = true;
1033 
1034 #ifndef PRODUCT
1035   if (trace_opto_pipelining()) {
1036     tty->print("# Find cheaper block for latency %d: ",
1037       _node_latency->at_grow(self->_idx));
1038     self->dump();
1039     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1040       LCA->_pre_order,
1041       LCA->_nodes[0]->_idx,


1109 #endif
1110     _node_latency->at_put_grow(self->_idx, end_latency);
1111     partial_latency_of_defs(self);
1112   }
1113 
1114   return least;
1115 }
1116 
1117 
1118 //------------------------------schedule_late-----------------------------------
1119 // Now schedule all codes as LATE as possible.  This is the LCA in the
1120 // dominator tree of all USES of a value.  Pick the block with the least
1121 // loop nesting depth that is lowest in the dominator tree.
1122 extern const char must_clone[];
1123 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1124 #ifndef PRODUCT
1125   if (trace_opto_pipelining())
1126     tty->print("\n#---- schedule_late ----\n");
1127 #endif
1128 
1129   Node_Backward_Iterator iter((Node *)_root, visited, stack, _bbs);
1130   Node *self;
1131 
1132   // Walk over all the nodes from last to first
1133   while (self = iter.next()) {
1134     Block* early = _bbs[self->_idx];   // Earliest legal placement
1135 
1136     if (self->is_top()) {
1137       // Top node goes in bb #2 with other constants.
1138       // It must be special-cased, because it has no out edges.
1139       early->add_inst(self);
1140       continue;
1141     }
1142 
1143     // No uses, just terminate
1144     if (self->outcnt() == 0) {
1145       assert(self->is_MachProj(), "sanity");
1146       continue;                   // Must be a dead machine projection
1147     }
1148 
1149     // If node is pinned in the block, then no scheduling can be done.
1150     if( self->pinned() )          // Pinned in block?
1151       continue;
1152 
1153     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1154     if (mach) {


1162         // Don't move CheckCastPP nodes away from their input, if the input
1163         // is a rawptr (5071820).
1164         Node *def = self->in(1);
1165         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1166           early->add_inst(self);
1167 #ifdef ASSERT
1168           _raw_oops.push(def);
1169 #endif
1170           continue;
1171         }
1172         break;
1173       }
1174     }
1175 
1176     // Gather LCA of all uses
1177     Block *LCA = NULL;
1178     {
1179       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1180         // For all uses, find LCA
1181         Node* use = self->fast_out(i);
1182         LCA = raise_LCA_above_use(LCA, use, self, _bbs);
1183       }
1184     }  // (Hide defs of imax, i from rest of block.)
1185 
1186     // Place temps in the block of their use.  This isn't a
1187     // requirement for correctness but it reduces useless
1188     // interference between temps and other nodes.
1189     if (mach != NULL && mach->is_MachTemp()) {
1190       _bbs.map(self->_idx, LCA);
1191       LCA->add_inst(self);
1192       continue;
1193     }
1194 
1195     // Check if 'self' could be anti-dependent on memory
1196     if (self->needs_anti_dependence_check()) {
1197       // Hoist LCA above possible-defs and insert anti-dependences to
1198       // defs in new LCA block.
1199       LCA = insert_anti_dependences(LCA, self);
1200     }
1201 
1202     if (early->_dom_depth > LCA->_dom_depth) {
1203       // Somehow the LCA has moved above the earliest legal point.
1204       // (One way this can happen is via memory_early_block.)
1205       if (C->subsume_loads() == true && !C->failing()) {
1206         // Retry with subsume_loads == false
1207         // If this is the first failure, the sentinel string will "stick"
1208         // to the Compile object, and the C2Compiler will see it and retry.
1209         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1210       } else {


1245       // since precedence edges are only inserted when we're sure they
1246       // are needed make sure that after placement in a block we don't
1247       // need any new precedence edges.
1248       verify_anti_dependences(late, self);
1249     }
1250 #endif
1251   } // Loop until all nodes have been visited
1252 
1253 } // end ScheduleLate
1254 
1255 //------------------------------GlobalCodeMotion-------------------------------
1256 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1257   ResourceMark rm;
1258 
1259 #ifndef PRODUCT
1260   if (trace_opto_pipelining()) {
1261     tty->print("\n---- Start GlobalCodeMotion ----\n");
1262   }
1263 #endif
1264 
1265   // Initialize the bbs.map for things on the proj_list
1266   uint i;
1267   for( i=0; i < proj_list.size(); i++ )
1268     _bbs.map(proj_list[i]->_idx, NULL);
1269 
1270   // Set the basic block for Nodes pinned into blocks
1271   Arena *a = Thread::current()->resource_area();
1272   VectorSet visited(a);
1273   schedule_pinned_nodes( visited );
1274 
1275   // Find the earliest Block any instruction can be placed in.  Some
1276   // instructions are pinned into Blocks.  Unpinned instructions can
1277   // appear in last block in which all their inputs occur.
1278   visited.Clear();
1279   Node_List stack(a);
1280   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1281   if (!schedule_early(visited, stack)) {
1282     // Bailout without retry
1283     C->record_method_not_compilable("early schedule failed");
1284     return;
1285   }
1286 
1287   // Build Def-Use edges.
1288   proj_list.push(_root);        // Add real root as another root


1316 
1317   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1318   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1319   // I can generate a memory op if there is not one nearby.
1320   if (C->is_method_compilation()) {
1321     // Don't do it for natives, adapters, or runtime stubs
1322     int allowed_reasons = 0;
1323     // ...and don't do it when there have been too many traps, globally.
1324     for (int reason = (int)Deoptimization::Reason_none+1;
1325          reason < Compile::trapHistLength; reason++) {
1326       assert(reason < BitsPerInt, "recode bit map");
1327       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1328         allowed_reasons |= nth_bit(reason);
1329     }
1330     // By reversing the loop direction we get a very minor gain on mpegaudio.
1331     // Feel free to revert to a forward loop for clarity.
1332     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1333     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1334       Node *proj = matcher._null_check_tests[i  ];
1335       Node *val  = matcher._null_check_tests[i+1];
1336       _bbs[proj->_idx]->implicit_null_check(this, proj, val, allowed_reasons);
1337       // The implicit_null_check will only perform the transformation
1338       // if the null branch is truly uncommon, *and* it leads to an
1339       // uncommon trap.  Combined with the too_many_traps guards
1340       // above, this prevents SEGV storms reported in 6366351,
1341       // by recompiling offending methods without this optimization.
1342     }
1343   }
1344 
1345 #ifndef PRODUCT
1346   if (trace_opto_pipelining()) {
1347     tty->print("\n---- Start Local Scheduling ----\n");
1348   }
1349 #endif
1350 
1351   // Schedule locally.  Right now a simple topological sort.
1352   // Later, do a real latency aware scheduler.
1353   uint max_idx = C->unique();
1354   GrowableArray<int> ready_cnt(max_idx, max_idx, -1);
1355   visited.Clear();
1356   for (i = 0; i < _num_blocks; i++) {
1357     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1358       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1359         C->record_method_not_compilable("local schedule failed");
1360       }
1361       return;
1362     }
1363   }
1364 
1365   // If we inserted any instructions between a Call and his CatchNode,
1366   // clone the instructions on all paths below the Catch.
1367   for( i=0; i < _num_blocks; i++ )
1368     _blocks[i]->call_catch_cleanup(_bbs, C);

1369 
1370 #ifndef PRODUCT
1371   if (trace_opto_pipelining()) {
1372     tty->print("\n---- After GlobalCodeMotion ----\n");
1373     for (uint i = 0; i < _num_blocks; i++) {
1374       _blocks[i]->dump();
1375     }
1376   }
1377 #endif
1378   // Dead.
1379   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1380 }
1381 
1382 
1383 //------------------------------Estimate_Block_Frequency-----------------------
1384 // Estimate block frequencies based on IfNode probabilities.
1385 void PhaseCFG::Estimate_Block_Frequency() {
1386 
1387   // Force conditional branches leading to uncommon traps to be unlikely,
1388   // not because we get to the uncommon_trap with less relative frequency,
1389   // but because an uncommon_trap typically causes a deopt, so we only get
1390   // there once.
1391   if (C->do_freq_based_layout()) {
1392     Block_List worklist;
1393     Block* root_blk = _blocks[0];
1394     for (uint i = 1; i < root_blk->num_preds(); i++) {
1395       Block *pb = _bbs[root_blk->pred(i)->_idx];
1396       if (pb->has_uncommon_code()) {
1397         worklist.push(pb);
1398       }
1399     }
1400     while (worklist.size() > 0) {
1401       Block* uct = worklist.pop();
1402       if (uct == _broot) continue;
1403       for (uint i = 1; i < uct->num_preds(); i++) {
1404         Block *pb = _bbs[uct->pred(i)->_idx];
1405         if (pb->_num_succs == 1) {
1406           worklist.push(pb);
1407         } else if (pb->num_fall_throughs() == 2) {
1408           pb->update_uncommon_branch(uct);
1409         }
1410       }
1411     }
1412   }
1413 
1414   // Create the loop tree and calculate loop depth.
1415   _root_loop = create_loop_tree();
1416   _root_loop->compute_loop_depth(0);
1417 
1418   // Compute block frequency of each block, relative to a single loop entry.
1419   _root_loop->compute_freq();
1420 
1421   // Adjust all frequencies to be relative to a single method entry
1422   _root_loop->_freq = 1.0;
1423   _root_loop->scale_freq();
1424 
1425   // Save outmost loop frequency for LRG frequency threshold
1426   _outer_loop_freq = _root_loop->outer_loop_freq();
1427 
1428   // force paths ending at uncommon traps to be infrequent
1429   if (!C->do_freq_based_layout()) {
1430     Block_List worklist;
1431     Block* root_blk = _blocks[0];
1432     for (uint i = 1; i < root_blk->num_preds(); i++) {
1433       Block *pb = _bbs[root_blk->pred(i)->_idx];
1434       if (pb->has_uncommon_code()) {
1435         worklist.push(pb);
1436       }
1437     }
1438     while (worklist.size() > 0) {
1439       Block* uct = worklist.pop();
1440       uct->_freq = PROB_MIN;
1441       for (uint i = 1; i < uct->num_preds(); i++) {
1442         Block *pb = _bbs[uct->pred(i)->_idx];
1443         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1444           worklist.push(pb);
1445         }
1446       }
1447     }
1448   }
1449 
1450 #ifdef ASSERT
1451   for (uint i = 0; i < _num_blocks; i++ ) {
1452     Block *b = _blocks[i];
1453     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1454   }
1455 #endif
1456 
1457 #ifndef PRODUCT
1458   if (PrintCFGBlockFreq) {
1459     tty->print_cr("CFG Block Frequencies");
1460     _root_loop->dump_tree();
1461     if (Verbose) {
1462       tty->print_cr("PhaseCFG dump");


1482     // It doesn't have to be for the loop tree to be built, but if it is not,
1483     // then the blocks have been reordered since dom graph building...which
1484     // may question the RPO numbering
1485     assert(b->_rpo == i, "unexpected reverse post order number");
1486   }
1487 #endif
1488 
1489   int idct = 0;
1490   CFGLoop* root_loop = new CFGLoop(idct++);
1491 
1492   Block_List worklist;
1493 
1494   // Assign blocks to loops
1495   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1496     Block *b = _blocks[i];
1497 
1498     if (b->head()->is_Loop()) {
1499       Block* loop_head = b;
1500       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1501       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1502       Block* tail = _bbs[tail_n->_idx];
1503 
1504       // Defensively filter out Loop nodes for non-single-entry loops.
1505       // For all reasonable loops, the head occurs before the tail in RPO.
1506       if (i <= tail->_rpo) {
1507 
1508         // The tail and (recursive) predecessors of the tail
1509         // are made members of a new loop.
1510 
1511         assert(worklist.size() == 0, "nonempty worklist");
1512         CFGLoop* nloop = new CFGLoop(idct++);
1513         assert(loop_head->_loop == NULL, "just checking");
1514         loop_head->_loop = nloop;
1515         // Add to nloop so push_pred() will skip over inner loops
1516         nloop->add_member(loop_head);
1517         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, _bbs);
1518 
1519         while (worklist.size() > 0) {
1520           Block* member = worklist.pop();
1521           if (member != loop_head) {
1522             for (uint j = 1; j < member->num_preds(); j++) {
1523               nloop->push_pred(member, j, worklist, _bbs);
1524             }
1525           }
1526         }
1527       }
1528     }
1529   }
1530 
1531   // Create a member list for each loop consisting
1532   // of both blocks and (immediate child) loops.
1533   for (uint i = 0; i < _num_blocks; i++) {
1534     Block *b = _blocks[i];
1535     CFGLoop* lp = b->_loop;
1536     if (lp == NULL) {
1537       // Not assigned to a loop. Add it to the method's pseudo loop.
1538       b->_loop = root_loop;
1539       lp = root_loop;
1540     }
1541     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1542       lp->add_member(b);
1543     }
1544     if (lp != root_loop) {
1545       if (lp->parent() == NULL) {
1546         // Not a nested loop. Make it a child of the method's pseudo loop.
1547         root_loop->add_nested_loop(lp);
1548       }
1549       if (b == lp->head()) {
1550         // Add nested loop to member list of parent loop.
1551         lp->parent()->add_member(lp);
1552       }
1553     }
1554   }
1555 
1556   return root_loop;
1557 }
1558 
1559 //------------------------------push_pred--------------------------------------
1560 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, Block_Array& node_to_blk) {
1561   Node* pred_n = blk->pred(i);
1562   Block* pred = node_to_blk[pred_n->_idx];
1563   CFGLoop *pred_loop = pred->_loop;
1564   if (pred_loop == NULL) {
1565     // Filter out blocks for non-single-entry loops.
1566     // For all reasonable loops, the head occurs before the tail in RPO.
1567     if (pred->_rpo > head()->_rpo) {
1568       pred->_loop = this;
1569       worklist.push(pred);
1570     }
1571   } else if (pred_loop != this) {
1572     // Nested loop.
1573     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1574       pred_loop = pred_loop->_parent;
1575     }
1576     // Make pred's loop be a child
1577     if (pred_loop->_parent == NULL) {
1578       add_nested_loop(pred_loop);
1579       // Continue with loop entry predecessor.
1580       Block* pred_head = pred_loop->head();
1581       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1582       assert(pred_head != head(), "loop head in only one loop");
1583       push_pred(pred_head, LoopNode::EntryControl, worklist, node_to_blk);
1584     } else {
1585       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1586     }
1587   }
1588 }
1589 
1590 //------------------------------add_nested_loop--------------------------------
1591 // Make cl a child of the current loop in the loop tree.
1592 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1593   assert(_parent == NULL, "no parent yet");
1594   assert(cl != this, "not my own parent");
1595   cl->_parent = this;
1596   CFGLoop* ch = _child;
1597   if (ch == NULL) {
1598     _child = cl;
1599   } else {
1600     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1601     ch->_sibling = cl;
1602   }
1603 }




  49 #endif
  50 #ifdef TARGET_ARCH_MODEL_arm
  51 # include "adfiles/ad_arm.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_MODEL_ppc
  54 # include "adfiles/ad_ppc.hpp"
  55 #endif
  56 
  57 // Portions of code courtesy of Clifford Click
  58 
  59 // Optimization - Graph Style
  60 
  61 // To avoid float value underflow
  62 #define MIN_BLOCK_FREQUENCY 1.e-35f
  63 
  64 //----------------------------schedule_node_into_block-------------------------
  65 // Insert node n into block b. Look for projections of n and make sure they
  66 // are in b also.
  67 void PhaseCFG::schedule_node_into_block( Node *n, Block *b ) {
  68   // Set basic block of n, Add n to b,
  69   map_node_to_block(n, b);
  70   b->add_inst(n);
  71 
  72   // After Matching, nearly any old Node may have projections trailing it.
  73   // These are usually machine-dependent flags.  In any case, they might
  74   // float to another block below this one.  Move them up.
  75   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  76     Node*  use  = n->fast_out(i);
  77     if (use->is_Proj()) {
  78       Block* buse = get_block_for_node(use);
  79       if (buse != b) {              // In wrong block?
  80         if (buse != NULL) {
  81           buse->find_remove(use);   // Remove from wrong block
  82         }
  83         map_node_to_block(use, b);
  84         b->add_inst(use);
  85       }
  86     }
  87   }
  88 }
  89 
  90 //----------------------------replace_block_proj_ctrl-------------------------
  91 // Nodes that have is_block_proj() nodes as their control need to use
  92 // the appropriate Region for their actual block as their control since
  93 // the projection will be in a predecessor block.
  94 void PhaseCFG::replace_block_proj_ctrl( Node *n ) {
  95   const Node *in0 = n->in(0);
  96   assert(in0 != NULL, "Only control-dependent");
  97   const Node *p = in0->is_block_proj();
  98   if (p != NULL && p != n) {    // Control from a block projection?
  99     assert(!n->pinned() || n->is_MachConstantBase(), "only pinned MachConstantBase node is expected here");
 100     // Find trailing Region
 101     Block *pb = get_block_for_node(in0); // Block-projection already has basic block
 102     uint j = 0;
 103     if (pb->_num_succs != 1) {  // More then 1 successor?
 104       // Search for successor
 105       uint max = pb->_nodes.size();
 106       assert( max > 1, "" );
 107       uint start = max - pb->_num_succs;
 108       // Find which output path belongs to projection
 109       for (j = start; j < max; j++) {
 110         if( pb->_nodes[j] == in0 )
 111           break;
 112       }
 113       assert( j < max, "must find" );
 114       // Change control to match head of successor basic block
 115       j -= start;
 116     }
 117     n->set_req(0, pb->_succs[j]->head());
 118   }
 119 }
 120 
 121 
 122 //------------------------------schedule_pinned_nodes--------------------------
 123 // Set the basic block for Nodes pinned into blocks
 124 void PhaseCFG::schedule_pinned_nodes( VectorSet &visited ) {
 125   // Allocate node stack of size C->unique()+8 to avoid frequent realloc
 126   GrowableArray <Node *> spstack(C->unique()+8);
 127   spstack.push(_root);
 128   while ( spstack.is_nonempty() ) {
 129     Node *n = spstack.pop();
 130     if( !visited.test_set(n->_idx) ) { // Test node and flag it as visited
 131       if( n->pinned() && !has_block(n)) {  // Pinned?  Nail it down!
 132         assert( n->in(0), "pinned Node must have Control" );
 133         // Before setting block replace block_proj control edge
 134         replace_block_proj_ctrl(n);
 135         Node *input = n->in(0);
 136         while (!input->is_block_start()) {
 137           input = input->in(0);
 138         }
 139         Block *b = get_block_for_node(input); // Basic block of controlling input
 140         schedule_node_into_block(n, b);
 141       }
 142       for( int i = n->req() - 1; i >= 0; --i ) {  // For all inputs
 143         if( n->in(i) != NULL )
 144           spstack.push(n->in(i));
 145       }
 146     }
 147   }
 148 }
 149 
 150 #ifdef ASSERT
 151 // Assert that new input b2 is dominated by all previous inputs.
 152 // Check this by by seeing that it is dominated by b1, the deepest
 153 // input observed until b2.
 154 static void assert_dom(Block* b1, Block* b2, Node* n, const PhaseCFG* cfg) {
 155   if (b1 == NULL)  return;
 156   assert(b1->_dom_depth < b2->_dom_depth, "sanity");
 157   Block* tmp = b2;
 158   while (tmp != b1 && tmp != NULL) {
 159     tmp = tmp->_idom;
 160   }
 161   if (tmp != b1) {
 162     // Detected an unschedulable graph.  Print some nice stuff and die.
 163     tty->print_cr("!!! Unschedulable graph !!!");
 164     for (uint j=0; j<n->len(); j++) { // For all inputs
 165       Node* inn = n->in(j); // Get input
 166       if (inn == NULL)  continue;  // Ignore NULL, missing inputs
 167       Block* inb = cfg->get_block_for_node(inn);
 168       tty->print("B%d idom=B%d depth=%2d ",inb->_pre_order,
 169                  inb->_idom ? inb->_idom->_pre_order : 0, inb->_dom_depth);
 170       inn->dump();
 171     }
 172     tty->print("Failing node: ");
 173     n->dump();
 174     assert(false, "unscheduable graph");
 175   }
 176 }
 177 #endif
 178 
 179 static Block* find_deepest_input(Node* n, const PhaseCFG* cfg) {
 180   // Find the last input dominated by all other inputs.
 181   Block* deepb           = NULL;        // Deepest block so far
 182   int    deepb_dom_depth = 0;
 183   for (uint k = 0; k < n->len(); k++) { // For all inputs
 184     Node* inn = n->in(k);               // Get input
 185     if (inn == NULL)  continue;         // Ignore NULL, missing inputs
 186     Block* inb = cfg->get_block_for_node(inn);
 187     assert(inb != NULL, "must already have scheduled this input");
 188     if (deepb_dom_depth < (int) inb->_dom_depth) {
 189       // The new inb must be dominated by the previous deepb.
 190       // The various inputs must be linearly ordered in the dom
 191       // tree, or else there will not be a unique deepest block.
 192       DEBUG_ONLY(assert_dom(deepb, inb, n, cfg));
 193       deepb = inb;                      // Save deepest block
 194       deepb_dom_depth = deepb->_dom_depth;
 195     }
 196   }
 197   assert(deepb != NULL, "must be at least one input to n");
 198   return deepb;
 199 }
 200 
 201 
 202 //------------------------------schedule_early---------------------------------
 203 // Find the earliest Block any instruction can be placed in.  Some instructions
 204 // are pinned into Blocks.  Unpinned instructions can appear in last block in
 205 // which all their inputs occur.
 206 bool PhaseCFG::schedule_early(VectorSet &visited, Node_List &roots) {
 207   // Allocate stack with enough space to avoid frequent realloc
 208   Node_Stack nstack(roots.Size() + 8); // (unique >> 1) + 24 from Java2D stats
 209   // roots.push(_root); _root will be processed among C->top() inputs
 210   roots.push(C->top());
 211   visited.set(C->top()->_idx);
 212 


 228         const Node *in0 = n->in(0);
 229         if (in0 != NULL) {              // Control-dependent?
 230           replace_block_proj_ctrl(n);
 231         } else {               // n->in(0) == NULL
 232           if (n->req() == 1) { // This guy is a constant with NO inputs?
 233             n->set_req(0, _root);
 234           }
 235         }
 236       }
 237 
 238       // First, visit all inputs and force them to get a block.  If an
 239       // input is already in a block we quit following inputs (to avoid
 240       // cycles). Instead we put that Node on a worklist to be handled
 241       // later (since IT'S inputs may not have a block yet).
 242       bool done = true;              // Assume all n's inputs will be processed
 243       while (i < n->len()) {         // For all inputs
 244         Node *in = n->in(i);         // Get input
 245         ++i;
 246         if (in == NULL) continue;    // Ignore NULL, missing inputs
 247         int is_visited = visited.test_set(in->_idx);
 248         if (!has_block(in)) { // Missing block selection?
 249           if (is_visited) {
 250             // assert( !visited.test(in->_idx), "did not schedule early" );
 251             return false;
 252           }
 253           nstack.push(n, i);         // Save parent node and next input's index.
 254           nstack_top_n = in;         // Process current input now.
 255           nstack_top_i = 0;
 256           done = false;              // Not all n's inputs processed.
 257           break; // continue while_nstack_nonempty;
 258         } else if (!is_visited) {    // Input not yet visited?
 259           roots.push(in);            // Visit this guy later, using worklist
 260         }
 261       }
 262       if (done) {
 263         // All of n's inputs have been processed, complete post-processing.
 264 
 265         // Some instructions are pinned into a block.  These include Region,
 266         // Phi, Start, Return, and other control-dependent instructions and
 267         // any projections which depend on them.
 268         if (!n->pinned()) {
 269           // Set earliest legal block.
 270           map_node_to_block(n, find_deepest_input(n, this));
 271         } else {
 272           assert(get_block_for_node(n) == get_block_for_node(n->in(0)), "Pinned Node should be at the same block as its control edge");
 273         }
 274 
 275         if (nstack.is_empty()) {
 276           // Finished all nodes on stack.
 277           // Process next node on the worklist 'roots'.
 278           break;
 279         }
 280         // Get saved parent node and next input's index.
 281         nstack_top_n = nstack.node();
 282         nstack_top_i = nstack.index();
 283         nstack.pop();
 284       } //    if (done)
 285     }   // while (true)
 286   }     // while (roots.size() != 0)
 287   return true;
 288 }
 289 
 290 //------------------------------dom_lca----------------------------------------
 291 // Find least common ancestor in dominator tree
 292 // LCA is a current notion of LCA, to be raised above 'this'.


 298   Block* anc = this;
 299   while (anc->_dom_depth > LCA->_dom_depth)
 300     anc = anc->_idom;           // Walk up till anc is as high as LCA
 301 
 302   while (LCA->_dom_depth > anc->_dom_depth)
 303     LCA = LCA->_idom;           // Walk up till LCA is as high as anc
 304 
 305   while (LCA != anc) {          // Walk both up till they are the same
 306     LCA = LCA->_idom;
 307     anc = anc->_idom;
 308   }
 309 
 310   return LCA;
 311 }
 312 
 313 //--------------------------raise_LCA_above_use--------------------------------
 314 // We are placing a definition, and have been given a def->use edge.
 315 // The definition must dominate the use, so move the LCA upward in the
 316 // dominator tree to dominate the use.  If the use is a phi, adjust
 317 // the LCA only with the phi input paths which actually use this def.
 318 static Block* raise_LCA_above_use(Block* LCA, Node* use, Node* def, const PhaseCFG* cfg) {
 319   Block* buse = cfg->get_block_for_node(use);
 320   if (buse == NULL)    return LCA;   // Unused killing Projs have no use block
 321   if (!use->is_Phi())  return buse->dom_lca(LCA);
 322   uint pmax = use->req();       // Number of Phi inputs
 323   // Why does not this loop just break after finding the matching input to
 324   // the Phi?  Well...it's like this.  I do not have true def-use/use-def
 325   // chains.  Means I cannot distinguish, from the def-use direction, which
 326   // of many use-defs lead from the same use to the same def.  That is, this
 327   // Phi might have several uses of the same def.  Each use appears in a
 328   // different predecessor block.  But when I enter here, I cannot distinguish
 329   // which use-def edge I should find the predecessor block for.  So I find
 330   // them all.  Means I do a little extra work if a Phi uses the same value
 331   // more than once.
 332   for (uint j=1; j<pmax; j++) { // For all inputs
 333     if (use->in(j) == def) {    // Found matching input?
 334       Block* pred = cfg->get_block_for_node(buse->pred(j));
 335       LCA = pred->dom_lca(LCA);
 336     }
 337   }
 338   return LCA;
 339 }
 340 
 341 //----------------------------raise_LCA_above_marks----------------------------
 342 // Return a new LCA that dominates LCA and any of its marked predecessors.
 343 // Search all my parents up to 'early' (exclusive), looking for predecessors
 344 // which are marked with the given index.  Return the LCA (in the dom tree)
 345 // of all marked blocks.  If there are none marked, return the original
 346 // LCA.
 347 static Block* raise_LCA_above_marks(Block* LCA, node_idx_t mark, Block* early, const PhaseCFG* cfg) {

 348   Block_List worklist;
 349   worklist.push(LCA);
 350   while (worklist.size() > 0) {
 351     Block* mid = worklist.pop();
 352     if (mid == early)  continue;  // stop searching here
 353 
 354     // Test and set the visited bit.
 355     if (mid->raise_LCA_visited() == mark)  continue;  // already visited
 356 
 357     // Don't process the current LCA, otherwise the search may terminate early
 358     if (mid != LCA && mid->raise_LCA_mark() == mark) {
 359       // Raise the LCA.
 360       LCA = mid->dom_lca(LCA);
 361       if (LCA == early)  break;   // stop searching everywhere
 362       assert(early->dominates(LCA), "early is high enough");
 363       // Resume searching at that point, skipping intermediate levels.
 364       worklist.push(LCA);
 365       if (LCA == mid)
 366         continue; // Don't mark as visited to avoid early termination.
 367     } else {
 368       // Keep searching through this block's predecessors.
 369       for (uint j = 1, jmax = mid->num_preds(); j < jmax; j++) {
 370         Block* mid_parent = cfg->get_block_for_node(mid->pred(j));
 371         worklist.push(mid_parent);
 372       }
 373     }
 374     mid->set_raise_LCA_visited(mark);
 375   }
 376   return LCA;
 377 }
 378 
 379 //--------------------------memory_early_block--------------------------------
 380 // This is a variation of find_deepest_input, the heart of schedule_early.
 381 // Find the "early" block for a load, if we considered only memory and
 382 // address inputs, that is, if other data inputs were ignored.
 383 //
 384 // Because a subset of edges are considered, the resulting block will
 385 // be earlier (at a shallower dom_depth) than the true schedule_early
 386 // point of the node. We compute this earlier block as a more permissive
 387 // site for anti-dependency insertion, but only if subsume_loads is enabled.
 388 static Block* memory_early_block(Node* load, Block* early, const PhaseCFG* cfg) {
 389   Node* base;
 390   Node* index;
 391   Node* store = load->in(MemNode::Memory);
 392   load->as_Mach()->memory_inputs(base, index);
 393 
 394   assert(base != NodeSentinel && index != NodeSentinel,
 395          "unexpected base/index inputs");
 396 
 397   Node* mem_inputs[4];
 398   int mem_inputs_length = 0;
 399   if (base != NULL)  mem_inputs[mem_inputs_length++] = base;
 400   if (index != NULL) mem_inputs[mem_inputs_length++] = index;
 401   if (store != NULL) mem_inputs[mem_inputs_length++] = store;
 402 
 403   // In the comparision below, add one to account for the control input,
 404   // which may be null, but always takes up a spot in the in array.
 405   if (mem_inputs_length + 1 < (int) load->req()) {
 406     // This "load" has more inputs than just the memory, base and index inputs.
 407     // For purposes of checking anti-dependences, we need to start
 408     // from the early block of only the address portion of the instruction,
 409     // and ignore other blocks that may have factored into the wider
 410     // schedule_early calculation.
 411     if (load->in(0) != NULL) mem_inputs[mem_inputs_length++] = load->in(0);
 412 
 413     Block* deepb           = NULL;        // Deepest block so far
 414     int    deepb_dom_depth = 0;
 415     for (int i = 0; i < mem_inputs_length; i++) {
 416       Block* inb = cfg->get_block_for_node(mem_inputs[i]);
 417       if (deepb_dom_depth < (int) inb->_dom_depth) {
 418         // The new inb must be dominated by the previous deepb.
 419         // The various inputs must be linearly ordered in the dom
 420         // tree, or else there will not be a unique deepest block.
 421         DEBUG_ONLY(assert_dom(deepb, inb, load, cfg));
 422         deepb = inb;                      // Save deepest block
 423         deepb_dom_depth = deepb->_dom_depth;
 424       }
 425     }
 426     early = deepb;
 427   }
 428 
 429   return early;
 430 }
 431 
 432 //--------------------------insert_anti_dependences---------------------------
 433 // A load may need to witness memory that nearby stores can overwrite.
 434 // For each nearby store, either insert an "anti-dependence" edge
 435 // from the load to the store, or else move LCA upward to force the
 436 // load to (eventually) be scheduled in a block above the store.
 437 //
 438 // Do not add edges to stores on distinct control-flow paths;
 439 // only add edges to stores which might interfere.
 440 //
 441 // Return the (updated) LCA.  There will not be any possibly interfering


 472          "String equals is a 'load' that does not conflict with any stores");
 473   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_StrIndexOf),
 474          "String indexOf is a 'load' that does not conflict with any stores");
 475   assert(load_alias_idx || (load->is_Mach() && load->as_Mach()->ideal_Opcode() == Op_AryEq),
 476          "Arrays equals is a 'load' that do not conflict with any stores");
 477 
 478   if (!C->alias_type(load_alias_idx)->is_rewritable()) {
 479     // It is impossible to spoil this load by putting stores before it,
 480     // because we know that the stores will never update the value
 481     // which 'load' must witness.
 482     return LCA;
 483   }
 484 
 485   node_idx_t load_index = load->_idx;
 486 
 487   // Note the earliest legal placement of 'load', as determined by
 488   // by the unique point in the dom tree where all memory effects
 489   // and other inputs are first available.  (Computed by schedule_early.)
 490   // For normal loads, 'early' is the shallowest place (dom graph wise)
 491   // to look for anti-deps between this load and any store.
 492   Block* early = get_block_for_node(load);
 493 
 494   // If we are subsuming loads, compute an "early" block that only considers
 495   // memory or address inputs. This block may be different than the
 496   // schedule_early block in that it could be at an even shallower depth in the
 497   // dominator tree, and allow for a broader discovery of anti-dependences.
 498   if (C->subsume_loads()) {
 499     early = memory_early_block(load, early, this);
 500   }
 501 
 502   ResourceArea *area = Thread::current()->resource_area();
 503   Node_List worklist_mem(area);     // prior memory state to store
 504   Node_List worklist_store(area);   // possible-def to explore
 505   Node_List worklist_visited(area); // visited mergemem nodes
 506   Node_List non_early_stores(area); // all relevant stores outside of early
 507   bool must_raise_LCA = false;
 508 
 509 #ifdef TRACK_PHI_INPUTS
 510   // %%% This extra checking fails because MergeMem nodes are not GVNed.
 511   // Provide "phi_inputs" to check if every input to a PhiNode is from the
 512   // original memory state.  This indicates a PhiNode for which should not
 513   // prevent the load from sinking.  For such a block, set_raise_LCA_mark
 514   // may be overly conservative.
 515   // Mechanism: count inputs seen for each Phi encountered in worklist_store.
 516   DEBUG_ONLY(GrowableArray<uint> phi_inputs(area, C->unique(),0,0));
 517 #endif
 518 
 519   // 'load' uses some memory state; look for users of the same state.


 603         // instead of control + memory.
 604         if (mstore->ideal_Opcode() == Op_SafePoint)
 605           continue;
 606       } else {
 607         // Some raw memory, such as the load of "top" at an allocation,
 608         // can be control dependent on the previous safepoint. See
 609         // comments in GraphKit::allocate_heap() about control input.
 610         // Inserting an anti-dep between such a safepoint and a use
 611         // creates a cycle, and will cause a subsequent failure in
 612         // local scheduling.  (BugId 4919904)
 613         // (%%% How can a control input be a safepoint and not a projection??)
 614         if (mstore->ideal_Opcode() == Op_SafePoint && load->in(0) == mstore)
 615           continue;
 616       }
 617     }
 618 
 619     // Identify a block that the current load must be above,
 620     // or else observe that 'store' is all the way up in the
 621     // earliest legal block for 'load'.  In the latter case,
 622     // immediately insert an anti-dependence edge.
 623     Block* store_block = get_block_for_node(store);
 624     assert(store_block != NULL, "unused killing projections skipped above");
 625 
 626     if (store->is_Phi()) {
 627       // 'load' uses memory which is one (or more) of the Phi's inputs.
 628       // It must be scheduled not before the Phi, but rather before
 629       // each of the relevant Phi inputs.
 630       //
 631       // Instead of finding the LCA of all inputs to a Phi that match 'mem',
 632       // we mark each corresponding predecessor block and do a combined
 633       // hoisting operation later (raise_LCA_above_marks).
 634       //
 635       // Do not assert(store_block != early, "Phi merging memory after access")
 636       // PhiNode may be at start of block 'early' with backedge to 'early'
 637       DEBUG_ONLY(bool found_match = false);
 638       for (uint j = PhiNode::Input, jmax = store->req(); j < jmax; j++) {
 639         if (store->in(j) == mem) {   // Found matching input?
 640           DEBUG_ONLY(found_match = true);
 641           Block* pred_block = get_block_for_node(store_block->pred(j));
 642           if (pred_block != early) {
 643             // If any predecessor of the Phi matches the load's "early block",
 644             // we do not need a precedence edge between the Phi and 'load'
 645             // since the load will be forced into a block preceding the Phi.
 646             pred_block->set_raise_LCA_mark(load_index);
 647             assert(!LCA_orig->dominates(pred_block) ||
 648                    early->dominates(pred_block), "early is high enough");
 649             must_raise_LCA = true;
 650           } else {
 651             // anti-dependent upon PHI pinned below 'early', no edge needed
 652             LCA = early;             // but can not schedule below 'early'
 653           }
 654         }
 655       }
 656       assert(found_match, "no worklist bug");
 657 #ifdef TRACK_PHI_INPUTS
 658 #ifdef ASSERT
 659       // This assert asks about correct handling of PhiNodes, which may not
 660       // have all input edges directly from 'mem'. See BugId 4621264
 661       int num_mem_inputs = phi_inputs.at_grow(store->_idx,0) + 1;


 695     }
 696   }
 697   // (Worklist is now empty; all nearby stores have been visited.)
 698 
 699   // Finished if 'load' must be scheduled in its 'early' block.
 700   // If we found any stores there, they have already been given
 701   // precedence edges.
 702   if (LCA == early)  return LCA;
 703 
 704   // We get here only if there are no possibly-interfering stores
 705   // in the load's 'early' block.  Move LCA up above all predecessors
 706   // which contain stores we have noted.
 707   //
 708   // The raised LCA block can be a home to such interfering stores,
 709   // but its predecessors must not contain any such stores.
 710   //
 711   // The raised LCA will be a lower bound for placing the load,
 712   // preventing the load from sinking past any block containing
 713   // a store that may invalidate the memory state required by 'load'.
 714   if (must_raise_LCA)
 715     LCA = raise_LCA_above_marks(LCA, load->_idx, early, this);
 716   if (LCA == early)  return LCA;
 717 
 718   // Insert anti-dependence edges from 'load' to each store
 719   // in the non-early LCA block.
 720   // Mine the non_early_stores list for such stores.
 721   if (LCA->raise_LCA_mark() == load_index) {
 722     while (non_early_stores.size() > 0) {
 723       Node* store = non_early_stores.pop();
 724       Block* store_block = get_block_for_node(store);
 725       if (store_block == LCA) {
 726         // add anti_dependence from store to load in its own block
 727         assert(store != load->in(0), "dependence cycle found");
 728         if (verify) {
 729           assert(store->find_edge(load) != -1, "missing precedence edge");
 730         } else {
 731           store->add_prec(load);
 732         }
 733       } else {
 734         assert(store_block->raise_LCA_mark() == load_index, "block was marked");
 735         // Any other stores we found must be either inside the new LCA
 736         // or else outside the original LCA.  In the latter case, they
 737         // did not interfere with any use of 'load'.
 738         assert(LCA->dominates(store_block)
 739                || !LCA_orig->dominates(store_block), "no stray stores");
 740       }
 741     }
 742   }
 743 
 744   // Return the highest block containing stores; any stores
 745   // within that block have been given anti-dependence edges.
 746   return LCA;
 747 }
 748 
 749 // This class is used to iterate backwards over the nodes in the graph.
 750 
 751 class Node_Backward_Iterator {
 752 
 753 private:
 754   Node_Backward_Iterator();
 755 
 756 public:
 757   // Constructor for the iterator
 758   Node_Backward_Iterator(Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg);
 759 
 760   // Postincrement operator to iterate over the nodes
 761   Node *next();
 762 
 763 private:
 764   VectorSet   &_visited;
 765   Node_List   &_stack;
 766   PhaseCFG &_cfg;
 767 };
 768 
 769 // Constructor for the Node_Backward_Iterator
 770 Node_Backward_Iterator::Node_Backward_Iterator( Node *root, VectorSet &visited, Node_List &stack, PhaseCFG &cfg)
 771   : _visited(visited), _stack(stack), _cfg(cfg) {
 772   // The stack should contain exactly the root
 773   stack.clear();
 774   stack.push(root);
 775 
 776   // Clear the visited bits
 777   visited.Clear();
 778 }
 779 
 780 // Iterator for the Node_Backward_Iterator
 781 Node *Node_Backward_Iterator::next() {
 782 
 783   // If the _stack is empty, then just return NULL: finished.
 784   if ( !_stack.size() )
 785     return NULL;
 786 
 787   // '_stack' is emulating a real _stack.  The 'visit-all-users' loop has been
 788   // made stateless, so I do not need to record the index 'i' on my _stack.
 789   // Instead I visit all users each time, scanning for unvisited users.
 790   // I visit unvisited not-anti-dependence users first, then anti-dependent
 791   // children next.
 792   Node *self = _stack.pop();
 793 
 794   // I cycle here when I am entering a deeper level of recursion.
 795   // The key variable 'self' was set prior to jumping here.
 796   while( 1 ) {
 797 
 798     _visited.set(self->_idx);
 799 
 800     // Now schedule all uses as late as possible.
 801     const Node* src = self->is_Proj() ? self->in(0) : self;
 802     uint src_rpo = _cfg.get_block_for_node(src)->_rpo;
 803 
 804     // Schedule all nodes in a post-order visit
 805     Node *unvisited = NULL;  // Unvisited anti-dependent Node, if any
 806 
 807     // Scan for unvisited nodes
 808     for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
 809       // For all uses, schedule late
 810       Node* n = self->fast_out(i); // Use
 811 
 812       // Skip already visited children
 813       if ( _visited.test(n->_idx) )
 814         continue;
 815 
 816       // do not traverse backward control edges
 817       Node *use = n->is_Proj() ? n->in(0) : n;
 818       uint use_rpo = _cfg.get_block_for_node(use)->_rpo;
 819 
 820       if ( use_rpo < src_rpo )
 821         continue;
 822 
 823       // Phi nodes always precede uses in a basic block
 824       if ( use_rpo == src_rpo && use->is_Phi() )
 825         continue;
 826 
 827       unvisited = n;      // Found unvisited
 828 
 829       // Check for possible-anti-dependent
 830       if( !n->needs_anti_dependence_check() )
 831         break;            // Not visited, not anti-dep; schedule it NOW
 832     }
 833 
 834     // Did I find an unvisited not-anti-dependent Node?
 835     if ( !unvisited )
 836       break;                  // All done with children; post-visit 'self'
 837 
 838     // Visit the unvisited Node.  Contains the obvious push to
 839     // indicate I'm entering a deeper level of recursion.  I push the
 840     // old state onto the _stack and set a new state and loop (recurse).
 841     _stack.push(self);
 842     self = unvisited;
 843   } // End recursion loop
 844 
 845   return self;
 846 }
 847 
 848 //------------------------------ComputeLatenciesBackwards----------------------
 849 // Compute the latency of all the instructions.
 850 void PhaseCFG::ComputeLatenciesBackwards(VectorSet &visited, Node_List &stack) {
 851 #ifndef PRODUCT
 852   if (trace_opto_pipelining())
 853     tty->print("\n#---- ComputeLatenciesBackwards ----\n");
 854 #endif
 855 
 856   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
 857   Node *n;
 858 
 859   // Walk over all the nodes from last to first
 860   while (n = iter.next()) {
 861     // Set the latency for the definitions of this instruction
 862     partial_latency_of_defs(n);
 863   }
 864 } // end ComputeLatenciesBackwards
 865 
 866 //------------------------------partial_latency_of_defs------------------------
 867 // Compute the latency impact of this node on all defs.  This computes
 868 // a number that increases as we approach the beginning of the routine.
 869 void PhaseCFG::partial_latency_of_defs(Node *n) {
 870   // Set the latency for this instruction
 871 #ifndef PRODUCT
 872   if (trace_opto_pipelining()) {
 873     tty->print("# latency_to_inputs: node_latency[%d] = %d for node",
 874                n->_idx, _node_latency->at_grow(n->_idx));
 875     dump();
 876   }
 877 #endif
 878 
 879   if (n->is_Proj())
 880     n = n->in(0);
 881 
 882   if (n->is_Root())
 883     return;
 884 
 885   uint nlen = n->len();
 886   uint use_latency = _node_latency->at_grow(n->_idx);
 887   uint use_pre_order = get_block_for_node(n)->_pre_order;
 888 
 889   for ( uint j=0; j<nlen; j++ ) {
 890     Node *def = n->in(j);
 891 
 892     if (!def || def == n)
 893       continue;
 894 
 895     // Walk backwards thru projections
 896     if (def->is_Proj())
 897       def = def->in(0);
 898 
 899 #ifndef PRODUCT
 900     if (trace_opto_pipelining()) {
 901       tty->print("#    in(%2d): ", j);
 902       def->dump();
 903     }
 904 #endif
 905 
 906     // If the defining block is not known, assume it is ok
 907     Block *def_block = get_block_for_node(def);
 908     uint def_pre_order = def_block ? def_block->_pre_order : 0;
 909 
 910     if ( (use_pre_order <  def_pre_order) ||
 911          (use_pre_order == def_pre_order && n->is_Phi()) )
 912       continue;
 913 
 914     uint delta_latency = n->latency(j);
 915     uint current_latency = delta_latency + use_latency;
 916 
 917     if (_node_latency->at_grow(def->_idx) < current_latency) {
 918       _node_latency->at_put_grow(def->_idx, current_latency);
 919     }
 920 
 921 #ifndef PRODUCT
 922     if (trace_opto_pipelining()) {
 923       tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, node_latency[%d] = %d",
 924                     use_latency, j, delta_latency, current_latency, def->_idx,
 925                     _node_latency->at_grow(def->_idx));
 926     }
 927 #endif
 928   }
 929 }
 930 
 931 //------------------------------latency_from_use-------------------------------
 932 // Compute the latency of a specific use
 933 int PhaseCFG::latency_from_use(Node *n, const Node *def, Node *use) {
 934   // If self-reference, return no latency
 935   if (use == n || use->is_Root()) {
 936     return 0;
 937   }
 938 
 939   uint def_pre_order = get_block_for_node(def)->_pre_order;
 940   uint latency = 0;
 941 
 942   // If the use is not a projection, then it is simple...
 943   if (!use->is_Proj()) {
 944 #ifndef PRODUCT
 945     if (trace_opto_pipelining()) {
 946       tty->print("#    out(): ");
 947       use->dump();
 948     }
 949 #endif
 950 
 951     uint use_pre_order = get_block_for_node(use)->_pre_order;
 952 
 953     if (use_pre_order < def_pre_order)
 954       return 0;
 955 
 956     if (use_pre_order == def_pre_order && use->is_Phi())
 957       return 0;
 958 
 959     uint nlen = use->len();
 960     uint nl = _node_latency->at_grow(use->_idx);
 961 
 962     for ( uint j=0; j<nlen; j++ ) {
 963       if (use->in(j) == n) {
 964         // Change this if we want local latencies
 965         uint ul = use->latency(j);
 966         uint  l = ul + nl;
 967         if (latency < l) latency = l;
 968 #ifndef PRODUCT
 969         if (trace_opto_pipelining()) {
 970           tty->print_cr("#      %d + edge_latency(%d) == %d -> %d, latency = %d",
 971                         nl, j, ul, l, latency);


1003   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1004     uint l = latency_from_use(n, def, n->fast_out(i));
1005 
1006     if (latency < l) latency = l;
1007   }
1008 
1009   _node_latency->at_put_grow(n->_idx, latency);
1010 }
1011 
1012 //------------------------------hoist_to_cheaper_block-------------------------
1013 // Pick a block for node self, between early and LCA, that is a cheaper
1014 // alternative to LCA.
1015 Block* PhaseCFG::hoist_to_cheaper_block(Block* LCA, Block* early, Node* self) {
1016   const double delta = 1+PROB_UNLIKELY_MAG(4);
1017   Block* least       = LCA;
1018   double least_freq  = least->_freq;
1019   uint target        = _node_latency->at_grow(self->_idx);
1020   uint start_latency = _node_latency->at_grow(LCA->_nodes[0]->_idx);
1021   uint end_latency   = _node_latency->at_grow(LCA->_nodes[LCA->end_idx()]->_idx);
1022   bool in_latency    = (target <= start_latency);
1023   const Block* root_block = get_block_for_node(_root);
1024 
1025   // Turn off latency scheduling if scheduling is just plain off
1026   if (!C->do_scheduling())
1027     in_latency = true;
1028 
1029   // Do not hoist (to cover latency) instructions which target a
1030   // single register.  Hoisting stretches the live range of the
1031   // single register and may force spilling.
1032   MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1033   if (mach && mach->out_RegMask().is_bound1() && mach->out_RegMask().is_NotEmpty())
1034     in_latency = true;
1035 
1036 #ifndef PRODUCT
1037   if (trace_opto_pipelining()) {
1038     tty->print("# Find cheaper block for latency %d: ",
1039       _node_latency->at_grow(self->_idx));
1040     self->dump();
1041     tty->print_cr("#   B%d: start latency for [%4d]=%d, end latency for [%4d]=%d, freq=%g",
1042       LCA->_pre_order,
1043       LCA->_nodes[0]->_idx,


1111 #endif
1112     _node_latency->at_put_grow(self->_idx, end_latency);
1113     partial_latency_of_defs(self);
1114   }
1115 
1116   return least;
1117 }
1118 
1119 
1120 //------------------------------schedule_late-----------------------------------
1121 // Now schedule all codes as LATE as possible.  This is the LCA in the
1122 // dominator tree of all USES of a value.  Pick the block with the least
1123 // loop nesting depth that is lowest in the dominator tree.
1124 extern const char must_clone[];
1125 void PhaseCFG::schedule_late(VectorSet &visited, Node_List &stack) {
1126 #ifndef PRODUCT
1127   if (trace_opto_pipelining())
1128     tty->print("\n#---- schedule_late ----\n");
1129 #endif
1130 
1131   Node_Backward_Iterator iter((Node *)_root, visited, stack, *this);
1132   Node *self;
1133 
1134   // Walk over all the nodes from last to first
1135   while (self = iter.next()) {
1136     Block* early = get_block_for_node(self); // Earliest legal placement
1137 
1138     if (self->is_top()) {
1139       // Top node goes in bb #2 with other constants.
1140       // It must be special-cased, because it has no out edges.
1141       early->add_inst(self);
1142       continue;
1143     }
1144 
1145     // No uses, just terminate
1146     if (self->outcnt() == 0) {
1147       assert(self->is_MachProj(), "sanity");
1148       continue;                   // Must be a dead machine projection
1149     }
1150 
1151     // If node is pinned in the block, then no scheduling can be done.
1152     if( self->pinned() )          // Pinned in block?
1153       continue;
1154 
1155     MachNode* mach = self->is_Mach() ? self->as_Mach() : NULL;
1156     if (mach) {


1164         // Don't move CheckCastPP nodes away from their input, if the input
1165         // is a rawptr (5071820).
1166         Node *def = self->in(1);
1167         if (def != NULL && def->bottom_type()->base() == Type::RawPtr) {
1168           early->add_inst(self);
1169 #ifdef ASSERT
1170           _raw_oops.push(def);
1171 #endif
1172           continue;
1173         }
1174         break;
1175       }
1176     }
1177 
1178     // Gather LCA of all uses
1179     Block *LCA = NULL;
1180     {
1181       for (DUIterator_Fast imax, i = self->fast_outs(imax); i < imax; i++) {
1182         // For all uses, find LCA
1183         Node* use = self->fast_out(i);
1184         LCA = raise_LCA_above_use(LCA, use, self, this);
1185       }
1186     }  // (Hide defs of imax, i from rest of block.)
1187 
1188     // Place temps in the block of their use.  This isn't a
1189     // requirement for correctness but it reduces useless
1190     // interference between temps and other nodes.
1191     if (mach != NULL && mach->is_MachTemp()) {
1192       map_node_to_block(self, LCA);
1193       LCA->add_inst(self);
1194       continue;
1195     }
1196 
1197     // Check if 'self' could be anti-dependent on memory
1198     if (self->needs_anti_dependence_check()) {
1199       // Hoist LCA above possible-defs and insert anti-dependences to
1200       // defs in new LCA block.
1201       LCA = insert_anti_dependences(LCA, self);
1202     }
1203 
1204     if (early->_dom_depth > LCA->_dom_depth) {
1205       // Somehow the LCA has moved above the earliest legal point.
1206       // (One way this can happen is via memory_early_block.)
1207       if (C->subsume_loads() == true && !C->failing()) {
1208         // Retry with subsume_loads == false
1209         // If this is the first failure, the sentinel string will "stick"
1210         // to the Compile object, and the C2Compiler will see it and retry.
1211         C->record_failure(C2Compiler::retry_no_subsuming_loads());
1212       } else {


1247       // since precedence edges are only inserted when we're sure they
1248       // are needed make sure that after placement in a block we don't
1249       // need any new precedence edges.
1250       verify_anti_dependences(late, self);
1251     }
1252 #endif
1253   } // Loop until all nodes have been visited
1254 
1255 } // end ScheduleLate
1256 
1257 //------------------------------GlobalCodeMotion-------------------------------
1258 void PhaseCFG::GlobalCodeMotion( Matcher &matcher, uint unique, Node_List &proj_list ) {
1259   ResourceMark rm;
1260 
1261 #ifndef PRODUCT
1262   if (trace_opto_pipelining()) {
1263     tty->print("\n---- Start GlobalCodeMotion ----\n");
1264   }
1265 #endif
1266 
1267   // Initialize the node to block mapping for things on the proj_list
1268   for (uint i = 0; i < proj_list.size(); i++) {
1269     unmap_node_from_block(proj_list[i]);
1270   }
1271 
1272   // Set the basic block for Nodes pinned into blocks
1273   Arena *a = Thread::current()->resource_area();
1274   VectorSet visited(a);
1275   schedule_pinned_nodes( visited );
1276 
1277   // Find the earliest Block any instruction can be placed in.  Some
1278   // instructions are pinned into Blocks.  Unpinned instructions can
1279   // appear in last block in which all their inputs occur.
1280   visited.Clear();
1281   Node_List stack(a);
1282   stack.map( (unique >> 1) + 16, NULL); // Pre-grow the list
1283   if (!schedule_early(visited, stack)) {
1284     // Bailout without retry
1285     C->record_method_not_compilable("early schedule failed");
1286     return;
1287   }
1288 
1289   // Build Def-Use edges.
1290   proj_list.push(_root);        // Add real root as another root


1318 
1319   // Detect implicit-null-check opportunities.  Basically, find NULL checks
1320   // with suitable memory ops nearby.  Use the memory op to do the NULL check.
1321   // I can generate a memory op if there is not one nearby.
1322   if (C->is_method_compilation()) {
1323     // Don't do it for natives, adapters, or runtime stubs
1324     int allowed_reasons = 0;
1325     // ...and don't do it when there have been too many traps, globally.
1326     for (int reason = (int)Deoptimization::Reason_none+1;
1327          reason < Compile::trapHistLength; reason++) {
1328       assert(reason < BitsPerInt, "recode bit map");
1329       if (!C->too_many_traps((Deoptimization::DeoptReason) reason))
1330         allowed_reasons |= nth_bit(reason);
1331     }
1332     // By reversing the loop direction we get a very minor gain on mpegaudio.
1333     // Feel free to revert to a forward loop for clarity.
1334     // for( int i=0; i < (int)matcher._null_check_tests.size(); i+=2 ) {
1335     for( int i= matcher._null_check_tests.size()-2; i>=0; i-=2 ) {
1336       Node *proj = matcher._null_check_tests[i  ];
1337       Node *val  = matcher._null_check_tests[i+1];
1338       get_block_for_node(proj)->implicit_null_check(this, proj, val, allowed_reasons);
1339       // The implicit_null_check will only perform the transformation
1340       // if the null branch is truly uncommon, *and* it leads to an
1341       // uncommon trap.  Combined with the too_many_traps guards
1342       // above, this prevents SEGV storms reported in 6366351,
1343       // by recompiling offending methods without this optimization.
1344     }
1345   }
1346 
1347 #ifndef PRODUCT
1348   if (trace_opto_pipelining()) {
1349     tty->print("\n---- Start Local Scheduling ----\n");
1350   }
1351 #endif
1352 
1353   // Schedule locally.  Right now a simple topological sort.
1354   // Later, do a real latency aware scheduler.
1355   uint max_idx = C->unique();
1356   GrowableArray<int> ready_cnt(max_idx, max_idx, -1);
1357   visited.Clear();
1358   for (uint i = 0; i < _num_blocks; i++) {
1359     if (!_blocks[i]->schedule_local(this, matcher, ready_cnt, visited)) {
1360       if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
1361         C->record_method_not_compilable("local schedule failed");
1362       }
1363       return;
1364     }
1365   }
1366 
1367   // If we inserted any instructions between a Call and his CatchNode,
1368   // clone the instructions on all paths below the Catch.
1369   for (uint i = 0; i < _num_blocks; i++) {
1370     _blocks[i]->call_catch_cleanup(this, C);
1371   }
1372 
1373 #ifndef PRODUCT
1374   if (trace_opto_pipelining()) {
1375     tty->print("\n---- After GlobalCodeMotion ----\n");
1376     for (uint i = 0; i < _num_blocks; i++) {
1377       _blocks[i]->dump();
1378     }
1379   }
1380 #endif
1381   // Dead.
1382   _node_latency = (GrowableArray<uint> *)0xdeadbeef;
1383 }
1384 
1385 
1386 //------------------------------Estimate_Block_Frequency-----------------------
1387 // Estimate block frequencies based on IfNode probabilities.
1388 void PhaseCFG::Estimate_Block_Frequency() {
1389 
1390   // Force conditional branches leading to uncommon traps to be unlikely,
1391   // not because we get to the uncommon_trap with less relative frequency,
1392   // but because an uncommon_trap typically causes a deopt, so we only get
1393   // there once.
1394   if (C->do_freq_based_layout()) {
1395     Block_List worklist;
1396     Block* root_blk = _blocks[0];
1397     for (uint i = 1; i < root_blk->num_preds(); i++) {
1398       Block *pb = get_block_for_node(root_blk->pred(i));
1399       if (pb->has_uncommon_code()) {
1400         worklist.push(pb);
1401       }
1402     }
1403     while (worklist.size() > 0) {
1404       Block* uct = worklist.pop();
1405       if (uct == _broot) continue;
1406       for (uint i = 1; i < uct->num_preds(); i++) {
1407         Block *pb = get_block_for_node(uct->pred(i));
1408         if (pb->_num_succs == 1) {
1409           worklist.push(pb);
1410         } else if (pb->num_fall_throughs() == 2) {
1411           pb->update_uncommon_branch(uct);
1412         }
1413       }
1414     }
1415   }
1416 
1417   // Create the loop tree and calculate loop depth.
1418   _root_loop = create_loop_tree();
1419   _root_loop->compute_loop_depth(0);
1420 
1421   // Compute block frequency of each block, relative to a single loop entry.
1422   _root_loop->compute_freq();
1423 
1424   // Adjust all frequencies to be relative to a single method entry
1425   _root_loop->_freq = 1.0;
1426   _root_loop->scale_freq();
1427 
1428   // Save outmost loop frequency for LRG frequency threshold
1429   _outer_loop_freq = _root_loop->outer_loop_freq();
1430 
1431   // force paths ending at uncommon traps to be infrequent
1432   if (!C->do_freq_based_layout()) {
1433     Block_List worklist;
1434     Block* root_blk = _blocks[0];
1435     for (uint i = 1; i < root_blk->num_preds(); i++) {
1436       Block *pb = get_block_for_node(root_blk->pred(i));
1437       if (pb->has_uncommon_code()) {
1438         worklist.push(pb);
1439       }
1440     }
1441     while (worklist.size() > 0) {
1442       Block* uct = worklist.pop();
1443       uct->_freq = PROB_MIN;
1444       for (uint i = 1; i < uct->num_preds(); i++) {
1445         Block *pb = get_block_for_node(uct->pred(i));
1446         if (pb->_num_succs == 1 && pb->_freq > PROB_MIN) {
1447           worklist.push(pb);
1448         }
1449       }
1450     }
1451   }
1452 
1453 #ifdef ASSERT
1454   for (uint i = 0; i < _num_blocks; i++ ) {
1455     Block *b = _blocks[i];
1456     assert(b->_freq >= MIN_BLOCK_FREQUENCY, "Register Allocator requires meaningful block frequency");
1457   }
1458 #endif
1459 
1460 #ifndef PRODUCT
1461   if (PrintCFGBlockFreq) {
1462     tty->print_cr("CFG Block Frequencies");
1463     _root_loop->dump_tree();
1464     if (Verbose) {
1465       tty->print_cr("PhaseCFG dump");


1485     // It doesn't have to be for the loop tree to be built, but if it is not,
1486     // then the blocks have been reordered since dom graph building...which
1487     // may question the RPO numbering
1488     assert(b->_rpo == i, "unexpected reverse post order number");
1489   }
1490 #endif
1491 
1492   int idct = 0;
1493   CFGLoop* root_loop = new CFGLoop(idct++);
1494 
1495   Block_List worklist;
1496 
1497   // Assign blocks to loops
1498   for(uint i = _num_blocks - 1; i > 0; i-- ) { // skip Root block
1499     Block *b = _blocks[i];
1500 
1501     if (b->head()->is_Loop()) {
1502       Block* loop_head = b;
1503       assert(loop_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1504       Node* tail_n = loop_head->pred(LoopNode::LoopBackControl);
1505       Block* tail = get_block_for_node(tail_n);
1506 
1507       // Defensively filter out Loop nodes for non-single-entry loops.
1508       // For all reasonable loops, the head occurs before the tail in RPO.
1509       if (i <= tail->_rpo) {
1510 
1511         // The tail and (recursive) predecessors of the tail
1512         // are made members of a new loop.
1513 
1514         assert(worklist.size() == 0, "nonempty worklist");
1515         CFGLoop* nloop = new CFGLoop(idct++);
1516         assert(loop_head->_loop == NULL, "just checking");
1517         loop_head->_loop = nloop;
1518         // Add to nloop so push_pred() will skip over inner loops
1519         nloop->add_member(loop_head);
1520         nloop->push_pred(loop_head, LoopNode::LoopBackControl, worklist, this);
1521 
1522         while (worklist.size() > 0) {
1523           Block* member = worklist.pop();
1524           if (member != loop_head) {
1525             for (uint j = 1; j < member->num_preds(); j++) {
1526               nloop->push_pred(member, j, worklist, this);
1527             }
1528           }
1529         }
1530       }
1531     }
1532   }
1533 
1534   // Create a member list for each loop consisting
1535   // of both blocks and (immediate child) loops.
1536   for (uint i = 0; i < _num_blocks; i++) {
1537     Block *b = _blocks[i];
1538     CFGLoop* lp = b->_loop;
1539     if (lp == NULL) {
1540       // Not assigned to a loop. Add it to the method's pseudo loop.
1541       b->_loop = root_loop;
1542       lp = root_loop;
1543     }
1544     if (lp == root_loop || b != lp->head()) { // loop heads are already members
1545       lp->add_member(b);
1546     }
1547     if (lp != root_loop) {
1548       if (lp->parent() == NULL) {
1549         // Not a nested loop. Make it a child of the method's pseudo loop.
1550         root_loop->add_nested_loop(lp);
1551       }
1552       if (b == lp->head()) {
1553         // Add nested loop to member list of parent loop.
1554         lp->parent()->add_member(lp);
1555       }
1556     }
1557   }
1558 
1559   return root_loop;
1560 }
1561 
1562 //------------------------------push_pred--------------------------------------
1563 void CFGLoop::push_pred(Block* blk, int i, Block_List& worklist, PhaseCFG* cfg) {
1564   Node* pred_n = blk->pred(i);
1565   Block* pred = cfg->get_block_for_node(pred_n);
1566   CFGLoop *pred_loop = pred->_loop;
1567   if (pred_loop == NULL) {
1568     // Filter out blocks for non-single-entry loops.
1569     // For all reasonable loops, the head occurs before the tail in RPO.
1570     if (pred->_rpo > head()->_rpo) {
1571       pred->_loop = this;
1572       worklist.push(pred);
1573     }
1574   } else if (pred_loop != this) {
1575     // Nested loop.
1576     while (pred_loop->_parent != NULL && pred_loop->_parent != this) {
1577       pred_loop = pred_loop->_parent;
1578     }
1579     // Make pred's loop be a child
1580     if (pred_loop->_parent == NULL) {
1581       add_nested_loop(pred_loop);
1582       // Continue with loop entry predecessor.
1583       Block* pred_head = pred_loop->head();
1584       assert(pred_head->num_preds() - 1 == 2, "loop must have 2 predecessors");
1585       assert(pred_head != head(), "loop head in only one loop");
1586       push_pred(pred_head, LoopNode::EntryControl, worklist, cfg);
1587     } else {
1588       assert(pred_loop->_parent == this && _parent == NULL, "just checking");
1589     }
1590   }
1591 }
1592 
1593 //------------------------------add_nested_loop--------------------------------
1594 // Make cl a child of the current loop in the loop tree.
1595 void CFGLoop::add_nested_loop(CFGLoop* cl) {
1596   assert(_parent == NULL, "no parent yet");
1597   assert(cl != this, "not my own parent");
1598   cl->_parent = this;
1599   CFGLoop* ch = _child;
1600   if (ch == NULL) {
1601     _child = cl;
1602   } else {
1603     while (ch->_sibling != NULL) { ch = ch->_sibling; }
1604     ch->_sibling = cl;
1605   }
1606 }


src/share/vm/opto/gcm.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File