1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/oopMap.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/block.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/chaitin.hpp"
  33 #include "opto/coalesce.hpp"
  34 #include "opto/connode.hpp"
  35 #include "opto/indexSet.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/opcodes.hpp"
  39 
  40 //=============================================================================
  41 //------------------------------IFG--------------------------------------------
  42 PhaseIFG::PhaseIFG( Arena *arena ) : Phase(Interference_Graph), _arena(arena) {
  43 }
  44 
  45 //------------------------------init-------------------------------------------
  46 void PhaseIFG::init( uint maxlrg ) {
  47   _maxlrg = maxlrg;
  48   _yanked = new (_arena) VectorSet(_arena);
  49   _is_square = false;
  50   // Make uninitialized adjacency lists
  51   _adjs = (IndexSet*)_arena->Amalloc(sizeof(IndexSet)*maxlrg);
  52   // Also make empty live range structures
  53   _lrgs = (LRG *)_arena->Amalloc( maxlrg * sizeof(LRG) );
  54   memset(_lrgs,0,sizeof(LRG)*maxlrg);
  55   // Init all to empty
  56   for( uint i = 0; i < maxlrg; i++ ) {
  57     _adjs[i].initialize(maxlrg);
  58     _lrgs[i].Set_All();
  59   }
  60 }
  61 
  62 //------------------------------add--------------------------------------------
  63 // Add edge between vertices a & b.  These are sorted (triangular matrix),
  64 // then the smaller number is inserted in the larger numbered array.
  65 int PhaseIFG::add_edge( uint a, uint b ) {
  66   lrgs(a).invalid_degree();
  67   lrgs(b).invalid_degree();
  68   // Sort a and b, so that a is bigger
  69   assert( !_is_square, "only on triangular" );
  70   if( a < b ) { uint tmp = a; a = b; b = tmp; }
  71   return _adjs[a].insert( b );
  72 }
  73 
  74 //------------------------------add_vector-------------------------------------
  75 // Add an edge between 'a' and everything in the vector.
  76 void PhaseIFG::add_vector( uint a, IndexSet *vec ) {
  77   // IFG is triangular, so do the inserts where 'a' < 'b'.
  78   assert( !_is_square, "only on triangular" );
  79   IndexSet *adjs_a = &_adjs[a];
  80   if( !vec->count() ) return;
  81 
  82   IndexSetIterator elements(vec);
  83   uint neighbor;
  84   while ((neighbor = elements.next()) != 0) {
  85     add_edge( a, neighbor );
  86   }
  87 }
  88 
  89 //------------------------------test-------------------------------------------
  90 // Is there an edge between a and b?
  91 int PhaseIFG::test_edge( uint a, uint b ) const {
  92   // Sort a and b, so that a is larger
  93   assert( !_is_square, "only on triangular" );
  94   if( a < b ) { uint tmp = a; a = b; b = tmp; }
  95   return _adjs[a].member(b);
  96 }
  97 
  98 //------------------------------SquareUp---------------------------------------
  99 // Convert triangular matrix to square matrix
 100 void PhaseIFG::SquareUp() {
 101   assert( !_is_square, "only on triangular" );
 102 
 103   // Simple transpose
 104   for( uint i = 0; i < _maxlrg; i++ ) {
 105     IndexSetIterator elements(&_adjs[i]);
 106     uint datum;
 107     while ((datum = elements.next()) != 0) {
 108       _adjs[datum].insert( i );
 109     }
 110   }
 111   _is_square = true;
 112 }
 113 
 114 //------------------------------Compute_Effective_Degree-----------------------
 115 // Compute effective degree in bulk
 116 void PhaseIFG::Compute_Effective_Degree() {
 117   assert( _is_square, "only on square" );
 118 
 119   for( uint i = 0; i < _maxlrg; i++ )
 120     lrgs(i).set_degree(effective_degree(i));
 121 }
 122 
 123 //------------------------------test_edge_sq-----------------------------------
 124 int PhaseIFG::test_edge_sq( uint a, uint b ) const {
 125   assert( _is_square, "only on square" );
 126   // Swap, so that 'a' has the lesser count.  Then binary search is on
 127   // the smaller of a's list and b's list.
 128   if( neighbor_cnt(a) > neighbor_cnt(b) ) { uint tmp = a; a = b; b = tmp; }
 129   //return _adjs[a].unordered_member(b);
 130   return _adjs[a].member(b);
 131 }
 132 
 133 //------------------------------Union------------------------------------------
 134 // Union edges of B into A
 135 void PhaseIFG::Union( uint a, uint b ) {
 136   assert( _is_square, "only on square" );
 137   IndexSet *A = &_adjs[a];
 138   IndexSetIterator b_elements(&_adjs[b]);
 139   uint datum;
 140   while ((datum = b_elements.next()) != 0) {
 141     if(A->insert(datum)) {
 142       _adjs[datum].insert(a);
 143       lrgs(a).invalid_degree();
 144       lrgs(datum).invalid_degree();
 145     }
 146   }
 147 }
 148 
 149 //------------------------------remove_node------------------------------------
 150 // Yank a Node and all connected edges from the IFG.  Return a
 151 // list of neighbors (edges) yanked.
 152 IndexSet *PhaseIFG::remove_node( uint a ) {
 153   assert( _is_square, "only on square" );
 154   assert( !_yanked->test(a), "" );
 155   _yanked->set(a);
 156 
 157   // I remove the LRG from all neighbors.
 158   IndexSetIterator elements(&_adjs[a]);
 159   LRG &lrg_a = lrgs(a);
 160   uint datum;
 161   while ((datum = elements.next()) != 0) {
 162     _adjs[datum].remove(a);
 163     lrgs(datum).inc_degree( -lrg_a.compute_degree(lrgs(datum)) );
 164   }
 165   return neighbors(a);
 166 }
 167 
 168 //------------------------------re_insert--------------------------------------
 169 // Re-insert a yanked Node.
 170 void PhaseIFG::re_insert( uint a ) {
 171   assert( _is_square, "only on square" );
 172   assert( _yanked->test(a), "" );
 173   (*_yanked) >>= a;
 174 
 175   IndexSetIterator elements(&_adjs[a]);
 176   uint datum;
 177   while ((datum = elements.next()) != 0) {
 178     _adjs[datum].insert(a);
 179     lrgs(datum).invalid_degree();
 180   }
 181 }
 182 
 183 //------------------------------compute_degree---------------------------------
 184 // Compute the degree between 2 live ranges.  If both live ranges are
 185 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
 186 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
 187 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
 188 // this is so.
 189 int LRG::compute_degree( LRG &l ) const {
 190   int tmp;
 191   int num_regs = _num_regs;
 192   int nregs = l.num_regs();
 193   tmp =  (_fat_proj || l._fat_proj)     // either is a fat-proj?
 194     ? (num_regs * nregs)                // then use product
 195     : MAX2(num_regs,nregs);             // else use max
 196   return tmp;
 197 }
 198 
 199 //------------------------------effective_degree-------------------------------
 200 // Compute effective degree for this live range.  If both live ranges are
 201 // aligned-adjacent powers-of-2 then we use the MAX size.  If either is
 202 // mis-aligned (or for Fat-Projections, not-adjacent) then we have to
 203 // MULTIPLY the sizes.  Inspect Brigg's thesis on register pairs to see why
 204 // this is so.
 205 int PhaseIFG::effective_degree( uint lidx ) const {
 206   int eff = 0;
 207   int num_regs = lrgs(lidx).num_regs();
 208   int fat_proj = lrgs(lidx)._fat_proj;
 209   IndexSet *s = neighbors(lidx);
 210   IndexSetIterator elements(s);
 211   uint nidx;
 212   while((nidx = elements.next()) != 0) {
 213     LRG &lrgn = lrgs(nidx);
 214     int nregs = lrgn.num_regs();
 215     eff += (fat_proj || lrgn._fat_proj) // either is a fat-proj?
 216       ? (num_regs * nregs)              // then use product
 217       : MAX2(num_regs,nregs);           // else use max
 218   }
 219   return eff;
 220 }
 221 
 222 
 223 #ifndef PRODUCT
 224 //------------------------------dump-------------------------------------------
 225 void PhaseIFG::dump() const {
 226   tty->print_cr("-- Interference Graph --%s--",
 227                 _is_square ? "square" : "triangular" );
 228   if( _is_square ) {
 229     for( uint i = 0; i < _maxlrg; i++ ) {
 230       tty->print( (*_yanked)[i] ? "XX " : "  ");
 231       tty->print("L%d: { ",i);
 232       IndexSetIterator elements(&_adjs[i]);
 233       uint datum;
 234       while ((datum = elements.next()) != 0) {
 235         tty->print("L%d ", datum);
 236       }
 237       tty->print_cr("}");
 238 
 239     }
 240     return;
 241   }
 242 
 243   // Triangular
 244   for( uint i = 0; i < _maxlrg; i++ ) {
 245     uint j;
 246     tty->print( (*_yanked)[i] ? "XX " : "  ");
 247     tty->print("L%d: { ",i);
 248     for( j = _maxlrg; j > i; j-- )
 249       if( test_edge(j - 1,i) ) {
 250         tty->print("L%d ",j - 1);
 251       }
 252     tty->print("| ");
 253     IndexSetIterator elements(&_adjs[i]);
 254     uint datum;
 255     while ((datum = elements.next()) != 0) {
 256       tty->print("L%d ", datum);
 257     }
 258     tty->print("}\n");
 259   }
 260   tty->print("\n");
 261 }
 262 
 263 //------------------------------stats------------------------------------------
 264 void PhaseIFG::stats() const {
 265   ResourceMark rm;
 266   int *h_cnt = NEW_RESOURCE_ARRAY(int,_maxlrg*2);
 267   memset( h_cnt, 0, sizeof(int)*_maxlrg*2 );
 268   uint i;
 269   for( i = 0; i < _maxlrg; i++ ) {
 270     h_cnt[neighbor_cnt(i)]++;
 271   }
 272   tty->print_cr("--Histogram of counts--");
 273   for( i = 0; i < _maxlrg*2; i++ )
 274     if( h_cnt[i] )
 275       tty->print("%d/%d ",i,h_cnt[i]);
 276   tty->print_cr("");
 277 }
 278 
 279 //------------------------------verify-----------------------------------------
 280 void PhaseIFG::verify( const PhaseChaitin *pc ) const {
 281   // IFG is square, sorted and no need for Find
 282   for( uint i = 0; i < _maxlrg; i++ ) {
 283     assert(!((*_yanked)[i]) || !neighbor_cnt(i), "Is removed completely" );
 284     IndexSet *set = &_adjs[i];
 285     IndexSetIterator elements(set);
 286     uint idx;
 287     uint last = 0;
 288     while ((idx = elements.next()) != 0) {
 289       assert(idx != i, "Must have empty diagonal");
 290       assert(pc->_lrg_map.find_const(idx) == idx, "Must not need Find");
 291       assert(_adjs[idx].member(i), "IFG not square");
 292       assert(!(*_yanked)[idx], "No yanked neighbors");
 293       assert(last < idx, "not sorted increasing");
 294       last = idx;
 295     }
 296     assert(!lrgs(i)._degree_valid || effective_degree(i) == lrgs(i).degree(), "degree is valid but wrong");
 297   }
 298 }
 299 #endif
 300 
 301 //------------------------------interfere_with_live----------------------------
 302 // Interfere this register with everything currently live.  Use the RegMasks
 303 // to trim the set of possible interferences. Return a count of register-only
 304 // interferences as an estimate of register pressure.
 305 void PhaseChaitin::interfere_with_live( uint r, IndexSet *liveout ) {
 306   uint retval = 0;
 307   // Interfere with everything live.
 308   const RegMask &rm = lrgs(r).mask();
 309   // Check for interference by checking overlap of regmasks.
 310   // Only interfere if acceptable register masks overlap.
 311   IndexSetIterator elements(liveout);
 312   uint l;
 313   while( (l = elements.next()) != 0 )
 314     if( rm.overlap( lrgs(l).mask() ) )
 315       _ifg->add_edge( r, l );
 316 }
 317 
 318 //------------------------------build_ifg_virtual------------------------------
 319 // Actually build the interference graph.  Uses virtual registers only, no
 320 // physical register masks.  This allows me to be very aggressive when
 321 // coalescing copies.  Some of this aggressiveness will have to be undone
 322 // later, but I'd rather get all the copies I can now (since unremoved copies
 323 // at this point can end up in bad places).  Copies I re-insert later I have
 324 // more opportunity to insert them in low-frequency locations.
 325 void PhaseChaitin::build_ifg_virtual( ) {
 326 
 327   // For all blocks (in any order) do...
 328   for( uint i=0; i<_cfg._num_blocks; i++ ) {
 329     Block *b = _cfg._blocks[i];
 330     IndexSet *liveout = _live->live(b);
 331 
 332     // The IFG is built by a single reverse pass over each basic block.
 333     // Starting with the known live-out set, we remove things that get
 334     // defined and add things that become live (essentially executing one
 335     // pass of a standard LIVE analysis). Just before a Node defines a value
 336     // (and removes it from the live-ness set) that value is certainly live.
 337     // The defined value interferes with everything currently live.  The
 338     // value is then removed from the live-ness set and it's inputs are
 339     // added to the live-ness set.
 340     for( uint j = b->end_idx() + 1; j > 1; j-- ) {
 341       Node *n = b->_nodes[j-1];
 342 
 343       // Get value being defined
 344       uint r = _lrg_map.live_range_id(n);
 345 
 346       // Some special values do not allocate
 347       if (r) {
 348 
 349         // Remove from live-out set
 350         liveout->remove(r);
 351 
 352         // Copies do not define a new value and so do not interfere.
 353         // Remove the copies source from the liveout set before interfering.
 354         uint idx = n->is_Copy();
 355         if (idx) {
 356           liveout->remove(_lrg_map.live_range_id(n->in(idx)));
 357         }
 358 
 359         // Interfere with everything live
 360         interfere_with_live(r, liveout);
 361       }
 362 
 363       // Make all inputs live
 364       if (!n->is_Phi()) {      // Phi function uses come from prior block
 365         for(uint k = 1; k < n->req(); k++) {
 366           liveout->insert(_lrg_map.live_range_id(n->in(k)));
 367         }
 368       }
 369 
 370       // 2-address instructions always have the defined value live
 371       // on entry to the instruction, even though it is being defined
 372       // by the instruction.  We pretend a virtual copy sits just prior
 373       // to the instruction and kills the src-def'd register.
 374       // In other words, for 2-address instructions the defined value
 375       // interferes with all inputs.
 376       uint idx;
 377       if( n->is_Mach() && (idx = n->as_Mach()->two_adr()) ) {
 378         const MachNode *mach = n->as_Mach();
 379         // Sometimes my 2-address ADDs are commuted in a bad way.
 380         // We generally want the USE-DEF register to refer to the
 381         // loop-varying quantity, to avoid a copy.
 382         uint op = mach->ideal_Opcode();
 383         // Check that mach->num_opnds() == 3 to ensure instruction is
 384         // not subsuming constants, effectively excludes addI_cin_imm
 385         // Can NOT swap for instructions like addI_cin_imm since it
 386         // is adding zero to yhi + carry and the second ideal-input
 387         // points to the result of adding low-halves.
 388         // Checking req() and num_opnds() does NOT distinguish addI_cout from addI_cout_imm
 389         if( (op == Op_AddI && mach->req() == 3 && mach->num_opnds() == 3) &&
 390             n->in(1)->bottom_type()->base() == Type::Int &&
 391             // See if the ADD is involved in a tight data loop the wrong way
 392             n->in(2)->is_Phi() &&
 393             n->in(2)->in(2) == n ) {
 394           Node *tmp = n->in(1);
 395           n->set_req( 1, n->in(2) );
 396           n->set_req( 2, tmp );
 397         }
 398         // Defined value interferes with all inputs
 399         uint lidx = _lrg_map.live_range_id(n->in(idx));
 400         for (uint k = 1; k < n->req(); k++) {
 401           uint kidx = _lrg_map.live_range_id(n->in(k));
 402           if (kidx != lidx) {
 403             _ifg->add_edge(r, kidx);
 404           }
 405         }
 406       }
 407     } // End of forall instructions in block
 408   } // End of forall blocks
 409 }
 410 
 411 //------------------------------count_int_pressure-----------------------------
 412 uint PhaseChaitin::count_int_pressure( IndexSet *liveout ) {
 413   IndexSetIterator elements(liveout);
 414   uint lidx;
 415   uint cnt = 0;
 416   while ((lidx = elements.next()) != 0) {
 417     if( lrgs(lidx).mask().is_UP() &&
 418         lrgs(lidx).mask_size() &&
 419         !lrgs(lidx)._is_float &&
 420         !lrgs(lidx)._is_vector &&
 421         lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) )
 422       cnt += lrgs(lidx).reg_pressure();
 423   }
 424   return cnt;
 425 }
 426 
 427 //------------------------------count_float_pressure---------------------------
 428 uint PhaseChaitin::count_float_pressure( IndexSet *liveout ) {
 429   IndexSetIterator elements(liveout);
 430   uint lidx;
 431   uint cnt = 0;
 432   while ((lidx = elements.next()) != 0) {
 433     if( lrgs(lidx).mask().is_UP() &&
 434         lrgs(lidx).mask_size() &&
 435         (lrgs(lidx)._is_float || lrgs(lidx)._is_vector))
 436       cnt += lrgs(lidx).reg_pressure();
 437   }
 438   return cnt;
 439 }
 440 
 441 //------------------------------lower_pressure---------------------------------
 442 // Adjust register pressure down by 1.  Capture last hi-to-low transition,
 443 static void lower_pressure( LRG *lrg, uint where, Block *b, uint *pressure, uint *hrp_index ) {
 444   if (lrg->mask().is_UP() && lrg->mask_size()) {
 445     if (lrg->_is_float || lrg->_is_vector) {
 446       pressure[1] -= lrg->reg_pressure();
 447       if( pressure[1] == (uint)FLOATPRESSURE ) {
 448         hrp_index[1] = where;
 449         if( pressure[1] > b->_freg_pressure )
 450           b->_freg_pressure = pressure[1]+1;
 451       }
 452     } else if( lrg->mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 453       pressure[0] -= lrg->reg_pressure();
 454       if( pressure[0] == (uint)INTPRESSURE   ) {
 455         hrp_index[0] = where;
 456         if( pressure[0] > b->_reg_pressure )
 457           b->_reg_pressure = pressure[0]+1;
 458       }
 459     }
 460   }
 461 }
 462 
 463 //------------------------------build_ifg_physical-----------------------------
 464 // Build the interference graph using physical registers when available.
 465 // That is, if 2 live ranges are simultaneously alive but in their acceptable
 466 // register sets do not overlap, then they do not interfere.
 467 uint PhaseChaitin::build_ifg_physical( ResourceArea *a ) {
 468   NOT_PRODUCT( Compile::TracePhase t3("buildIFG", &_t_buildIFGphysical, TimeCompiler); )
 469 
 470   uint spill_reg = LRG::SPILL_REG;
 471   uint must_spill = 0;
 472 
 473   // For all blocks (in any order) do...
 474   for( uint i = 0; i < _cfg._num_blocks; i++ ) {
 475     Block *b = _cfg._blocks[i];
 476     // Clone (rather than smash in place) the liveout info, so it is alive
 477     // for the "collect_gc_info" phase later.
 478     IndexSet liveout(_live->live(b));
 479     uint last_inst = b->end_idx();
 480     // Compute first nonphi node index
 481     uint first_inst;
 482     for( first_inst = 1; first_inst < last_inst; first_inst++ )
 483       if( !b->_nodes[first_inst]->is_Phi() )
 484         break;
 485 
 486     // Spills could be inserted before CreateEx node which should be
 487     // first instruction in block after Phis. Move CreateEx up.
 488     for( uint insidx = first_inst; insidx < last_inst; insidx++ ) {
 489       Node *ex = b->_nodes[insidx];
 490       if( ex->is_SpillCopy() ) continue;
 491       if( insidx > first_inst && ex->is_Mach() &&
 492           ex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
 493         // If the CreateEx isn't above all the MachSpillCopies
 494         // then move it to the top.
 495         b->_nodes.remove(insidx);
 496         b->_nodes.insert(first_inst, ex);
 497       }
 498       // Stop once a CreateEx or any other node is found
 499       break;
 500     }
 501 
 502     // Reset block's register pressure values for each ifg construction
 503     uint pressure[2], hrp_index[2];
 504     pressure[0] = pressure[1] = 0;
 505     hrp_index[0] = hrp_index[1] = last_inst+1;
 506     b->_reg_pressure = b->_freg_pressure = 0;
 507     // Liveout things are presumed live for the whole block.  We accumulate
 508     // 'area' accordingly.  If they get killed in the block, we'll subtract
 509     // the unused part of the block from the area.
 510     int inst_count = last_inst - first_inst;
 511     double cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
 512     assert(!(cost < 0.0), "negative spill cost" );
 513     IndexSetIterator elements(&liveout);
 514     uint lidx;
 515     while ((lidx = elements.next()) != 0) {
 516       LRG &lrg = lrgs(lidx);
 517       lrg._area += cost;
 518       // Compute initial register pressure
 519       if (lrg.mask().is_UP() && lrg.mask_size()) {
 520         if (lrg._is_float || lrg._is_vector) {   // Count float pressure
 521           pressure[1] += lrg.reg_pressure();
 522           if( pressure[1] > b->_freg_pressure )
 523             b->_freg_pressure = pressure[1];
 524           // Count int pressure, but do not count the SP, flags
 525         } else if( lrgs(lidx).mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 526           pressure[0] += lrg.reg_pressure();
 527           if( pressure[0] > b->_reg_pressure )
 528             b->_reg_pressure = pressure[0];
 529         }
 530       }
 531     }
 532     assert( pressure[0] == count_int_pressure  (&liveout), "" );
 533     assert( pressure[1] == count_float_pressure(&liveout), "" );
 534 
 535     // The IFG is built by a single reverse pass over each basic block.
 536     // Starting with the known live-out set, we remove things that get
 537     // defined and add things that become live (essentially executing one
 538     // pass of a standard LIVE analysis).  Just before a Node defines a value
 539     // (and removes it from the live-ness set) that value is certainly live.
 540     // The defined value interferes with everything currently live.  The
 541     // value is then removed from the live-ness set and it's inputs are added
 542     // to the live-ness set.
 543     uint j;
 544     for( j = last_inst + 1; j > 1; j-- ) {
 545       Node *n = b->_nodes[j - 1];
 546 
 547       // Get value being defined
 548       uint r = _lrg_map.live_range_id(n);
 549 
 550       // Some special values do not allocate
 551       if(r) {
 552         // A DEF normally costs block frequency; rematerialized values are
 553         // removed from the DEF sight, so LOWER costs here.
 554         lrgs(r)._cost += n->rematerialize() ? 0 : b->_freq;
 555 
 556         // If it is not live, then this instruction is dead.  Probably caused
 557         // by spilling and rematerialization.  Who cares why, yank this baby.
 558         if( !liveout.member(r) && n->Opcode() != Op_SafePoint ) {
 559           Node *def = n->in(0);
 560           if( !n->is_Proj() ||
 561               // Could also be a flags-projection of a dead ADD or such.
 562               (_lrg_map.live_range_id(def) && !liveout.member(_lrg_map.live_range_id(def)))) {
 563             b->_nodes.remove(j - 1);
 564             if (lrgs(r)._def == n) {
 565               lrgs(r)._def = 0;
 566             }
 567             n->disconnect_inputs(NULL, C);
 568             _cfg._bbs.map(n->_idx,NULL);
 569             n->replace_by(C->top());
 570             // Since yanking a Node from block, high pressure moves up one
 571             hrp_index[0]--;
 572             hrp_index[1]--;
 573             continue;
 574           }
 575 
 576           // Fat-projections kill many registers which cannot be used to
 577           // hold live ranges.
 578           if (lrgs(r)._fat_proj) {
 579             // Count the int-only registers
 580             RegMask itmp = lrgs(r).mask();
 581             itmp.AND(*Matcher::idealreg2regmask[Op_RegI]);
 582             int iregs = itmp.Size();
 583             if( pressure[0]+iregs > b->_reg_pressure )
 584               b->_reg_pressure = pressure[0]+iregs;
 585             if( pressure[0]       <= (uint)INTPRESSURE &&
 586                 pressure[0]+iregs >  (uint)INTPRESSURE ) {
 587               hrp_index[0] = j-1;
 588             }
 589             // Count the float-only registers
 590             RegMask ftmp = lrgs(r).mask();
 591             ftmp.AND(*Matcher::idealreg2regmask[Op_RegD]);
 592             int fregs = ftmp.Size();
 593             if( pressure[1]+fregs > b->_freg_pressure )
 594               b->_freg_pressure = pressure[1]+fregs;
 595             if( pressure[1]       <= (uint)FLOATPRESSURE &&
 596                 pressure[1]+fregs >  (uint)FLOATPRESSURE ) {
 597               hrp_index[1] = j-1;
 598             }
 599           }
 600 
 601         } else {                // Else it is live
 602           // A DEF also ends 'area' partway through the block.
 603           lrgs(r)._area -= cost;
 604           assert(!(lrgs(r)._area < 0.0), "negative spill area" );
 605 
 606           // Insure high score for immediate-use spill copies so they get a color
 607           if( n->is_SpillCopy()
 608               && lrgs(r).is_singledef()        // MultiDef live range can still split
 609               && n->outcnt() == 1              // and use must be in this block
 610               && _cfg._bbs[n->unique_out()->_idx] == b ) {
 611             // All single-use MachSpillCopy(s) that immediately precede their
 612             // use must color early.  If a longer live range steals their
 613             // color, the spill copy will split and may push another spill copy
 614             // further away resulting in an infinite spill-split-retry cycle.
 615             // Assigning a zero area results in a high score() and a good
 616             // location in the simplify list.
 617             //
 618 
 619             Node *single_use = n->unique_out();
 620             assert( b->find_node(single_use) >= j, "Use must be later in block");
 621             // Use can be earlier in block if it is a Phi, but then I should be a MultiDef
 622 
 623             // Find first non SpillCopy 'm' that follows the current instruction
 624             // (j - 1) is index for current instruction 'n'
 625             Node *m = n;
 626             for( uint i = j; i <= last_inst && m->is_SpillCopy(); ++i ) { m = b->_nodes[i]; }
 627             if( m == single_use ) {
 628               lrgs(r)._area = 0.0;
 629             }
 630           }
 631 
 632           // Remove from live-out set
 633           if( liveout.remove(r) ) {
 634             // Adjust register pressure.
 635             // Capture last hi-to-lo pressure transition
 636             lower_pressure( &lrgs(r), j-1, b, pressure, hrp_index );
 637             assert( pressure[0] == count_int_pressure  (&liveout), "" );
 638             assert( pressure[1] == count_float_pressure(&liveout), "" );
 639           }
 640 
 641           // Copies do not define a new value and so do not interfere.
 642           // Remove the copies source from the liveout set before interfering.
 643           uint idx = n->is_Copy();
 644           if (idx) {
 645             uint x = _lrg_map.live_range_id(n->in(idx));
 646             if (liveout.remove(x)) {
 647               lrgs(x)._area -= cost;
 648               // Adjust register pressure.
 649               lower_pressure(&lrgs(x), j-1, b, pressure, hrp_index);
 650               assert( pressure[0] == count_int_pressure  (&liveout), "" );
 651               assert( pressure[1] == count_float_pressure(&liveout), "" );
 652             }
 653           }
 654         } // End of if live or not
 655 
 656         // Interfere with everything live.  If the defined value must
 657         // go in a particular register, just remove that register from
 658         // all conflicting parties and avoid the interference.
 659 
 660         // Make exclusions for rematerializable defs.  Since rematerializable
 661         // DEFs are not bound but the live range is, some uses must be bound.
 662         // If we spill live range 'r', it can rematerialize at each use site
 663         // according to its bindings.
 664         const RegMask &rmask = lrgs(r).mask();
 665         if( lrgs(r).is_bound() && !(n->rematerialize()) && rmask.is_NotEmpty() ) {
 666           // Check for common case
 667           int r_size = lrgs(r).num_regs();
 668           OptoReg::Name r_reg = (r_size == 1) ? rmask.find_first_elem() : OptoReg::Physical;
 669           // Smear odd bits
 670           IndexSetIterator elements(&liveout);
 671           uint l;
 672           while ((l = elements.next()) != 0) {
 673             LRG &lrg = lrgs(l);
 674             // If 'l' must spill already, do not further hack his bits.
 675             // He'll get some interferences and be forced to spill later.
 676             if( lrg._must_spill ) continue;
 677             // Remove bound register(s) from 'l's choices
 678             RegMask old = lrg.mask();
 679             uint old_size = lrg.mask_size();
 680             // Remove the bits from LRG 'r' from LRG 'l' so 'l' no
 681             // longer interferes with 'r'.  If 'l' requires aligned
 682             // adjacent pairs, subtract out bit pairs.
 683             assert(!lrg._is_vector || !lrg._fat_proj, "sanity");
 684             if (lrg.num_regs() > 1 && !lrg._fat_proj) {
 685               RegMask r2mask = rmask;
 686               // Leave only aligned set of bits.
 687               r2mask.smear_to_sets(lrg.num_regs());
 688               // It includes vector case.
 689               lrg.SUBTRACT( r2mask );
 690               lrg.compute_set_mask_size();
 691             } else if( r_size != 1 ) { // fat proj
 692               lrg.SUBTRACT( rmask );
 693               lrg.compute_set_mask_size();
 694             } else {            // Common case: size 1 bound removal
 695               if( lrg.mask().Member(r_reg) ) {
 696                 lrg.Remove(r_reg);
 697                 lrg.set_mask_size(lrg.mask().is_AllStack() ? 65535:old_size-1);
 698               }
 699             }
 700             // If 'l' goes completely dry, it must spill.
 701             if( lrg.not_free() ) {
 702               // Give 'l' some kind of reasonable mask, so he picks up
 703               // interferences (and will spill later).
 704               lrg.set_mask( old );
 705               lrg.set_mask_size(old_size);
 706               must_spill++;
 707               lrg._must_spill = 1;
 708               lrg.set_reg(OptoReg::Name(LRG::SPILL_REG));
 709             }
 710           }
 711         } // End of if bound
 712 
 713         // Now interference with everything that is live and has
 714         // compatible register sets.
 715         interfere_with_live(r,&liveout);
 716 
 717       } // End of if normal register-allocated value
 718 
 719       // Area remaining in the block
 720       inst_count--;
 721       cost = (inst_count <= 0) ? 0.0 : b->_freq * double(inst_count);
 722 
 723       // Make all inputs live
 724       if( !n->is_Phi() ) {      // Phi function uses come from prior block
 725         JVMState* jvms = n->jvms();
 726         uint debug_start = jvms ? jvms->debug_start() : 999999;
 727         // Start loop at 1 (skip control edge) for most Nodes.
 728         // SCMemProj's might be the sole use of a StoreLConditional.
 729         // While StoreLConditionals set memory (the SCMemProj use)
 730         // they also def flags; if that flag def is unused the
 731         // allocator sees a flag-setting instruction with no use of
 732         // the flags and assumes it's dead.  This keeps the (useless)
 733         // flag-setting behavior alive while also keeping the (useful)
 734         // memory update effect.
 735         for (uint k = ((n->Opcode() == Op_SCMemProj) ? 0:1); k < n->req(); k++) {
 736           Node *def = n->in(k);
 737           uint x = _lrg_map.live_range_id(def);
 738           if (!x) {
 739             continue;
 740           }
 741           LRG &lrg = lrgs(x);
 742           // No use-side cost for spilling debug info
 743           if (k < debug_start) {
 744             // A USE costs twice block frequency (once for the Load, once
 745             // for a Load-delay).  Rematerialized uses only cost once.
 746             lrg._cost += (def->rematerialize() ? b->_freq : (b->_freq + b->_freq));
 747           }
 748           // It is live now
 749           if (liveout.insert(x)) {
 750             // Newly live things assumed live from here to top of block
 751             lrg._area += cost;
 752             // Adjust register pressure
 753             if (lrg.mask().is_UP() && lrg.mask_size()) {
 754               if (lrg._is_float || lrg._is_vector) {
 755                 pressure[1] += lrg.reg_pressure();
 756                 if( pressure[1] > b->_freg_pressure )
 757                   b->_freg_pressure = pressure[1];
 758               } else if( lrg.mask().overlap(*Matcher::idealreg2regmask[Op_RegI]) ) {
 759                 pressure[0] += lrg.reg_pressure();
 760                 if( pressure[0] > b->_reg_pressure )
 761                   b->_reg_pressure = pressure[0];
 762               }
 763             }
 764             assert( pressure[0] == count_int_pressure  (&liveout), "" );
 765             assert( pressure[1] == count_float_pressure(&liveout), "" );
 766           }
 767           assert(!(lrg._area < 0.0), "negative spill area" );
 768         }
 769       }
 770     } // End of reverse pass over all instructions in block
 771 
 772     // If we run off the top of the block with high pressure and
 773     // never see a hi-to-low pressure transition, just record that
 774     // the whole block is high pressure.
 775     if( pressure[0] > (uint)INTPRESSURE   ) {
 776       hrp_index[0] = 0;
 777       if( pressure[0] > b->_reg_pressure )
 778         b->_reg_pressure = pressure[0];
 779     }
 780     if( pressure[1] > (uint)FLOATPRESSURE ) {
 781       hrp_index[1] = 0;
 782       if( pressure[1] > b->_freg_pressure )
 783         b->_freg_pressure = pressure[1];
 784     }
 785 
 786     // Compute high pressure indice; avoid landing in the middle of projnodes
 787     j = hrp_index[0];
 788     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
 789       Node *cur = b->_nodes[j];
 790       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
 791         j--;
 792         cur = b->_nodes[j];
 793       }
 794     }
 795     b->_ihrp_index = j;
 796     j = hrp_index[1];
 797     if( j < b->_nodes.size() && j < b->end_idx()+1 ) {
 798       Node *cur = b->_nodes[j];
 799       while( cur->is_Proj() || (cur->is_MachNullCheck()) || cur->is_Catch() ) {
 800         j--;
 801         cur = b->_nodes[j];
 802       }
 803     }
 804     b->_fhrp_index = j;
 805 
 806 #ifndef PRODUCT
 807     // Gather Register Pressure Statistics
 808     if( PrintOptoStatistics ) {
 809       if( b->_reg_pressure > (uint)INTPRESSURE || b->_freg_pressure > (uint)FLOATPRESSURE )
 810         _high_pressure++;
 811       else
 812         _low_pressure++;
 813     }
 814 #endif
 815   } // End of for all blocks
 816 
 817   return must_spill;
 818 }