1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/block.hpp"
  28 #include "opto/c2compiler.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/runtime.hpp"
  33 #ifdef TARGET_ARCH_MODEL_x86_32
  34 # include "adfiles/ad_x86_32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_MODEL_x86_64
  37 # include "adfiles/ad_x86_64.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_MODEL_sparc
  40 # include "adfiles/ad_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_MODEL_zero
  43 # include "adfiles/ad_zero.hpp"
  44 #endif
  45 #ifdef TARGET_ARCH_MODEL_arm
  46 # include "adfiles/ad_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_MODEL_ppc
  49 # include "adfiles/ad_ppc.hpp"
  50 #endif
  51 
  52 // Optimization - Graph Style
  53 
  54 //------------------------------implicit_null_check----------------------------
  55 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  56 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  57 // I can generate a memory op if there is not one nearby.
  58 // The proj is the control projection for the not-null case.
  59 // The val is the pointer being checked for nullness or
  60 // decodeHeapOop_not_null node if it did not fold into address.
  61 void Block::implicit_null_check(PhaseCFG *cfg, Node *proj, Node *val, int allowed_reasons) {
  62   // Assume if null check need for 0 offset then always needed
  63   // Intel solaris doesn't support any null checks yet and no
  64   // mechanism exists (yet) to set the switches at an os_cpu level
  65   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  66 
  67   // Make sure the ptr-is-null path appears to be uncommon!
  68   float f = end()->as_MachIf()->_prob;
  69   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  70   if( f > PROB_UNLIKELY_MAG(4) ) return;
  71 
  72   uint bidx = 0;                // Capture index of value into memop
  73   bool was_store;               // Memory op is a store op
  74 
  75   // Get the successor block for if the test ptr is non-null
  76   Block* not_null_block;  // this one goes with the proj
  77   Block* null_block;
  78   if (_nodes[_nodes.size()-1] == proj) {
  79     null_block     = _succs[0];
  80     not_null_block = _succs[1];
  81   } else {
  82     assert(_nodes[_nodes.size()-2] == proj, "proj is one or the other");
  83     not_null_block = _succs[0];
  84     null_block     = _succs[1];
  85   }
  86   while (null_block->is_Empty() == Block::empty_with_goto) {
  87     null_block     = null_block->_succs[0];
  88   }
  89 
  90   // Search the exception block for an uncommon trap.
  91   // (See Parse::do_if and Parse::do_ifnull for the reason
  92   // we need an uncommon trap.  Briefly, we need a way to
  93   // detect failure of this optimization, as in 6366351.)
  94   {
  95     bool found_trap = false;
  96     for (uint i1 = 0; i1 < null_block->_nodes.size(); i1++) {
  97       Node* nn = null_block->_nodes[i1];
  98       if (nn->is_MachCall() &&
  99           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 100         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 101         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 102           jint tr_con = trtype->is_int()->get_con();
 103           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 104           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 105           assert((int)reason < (int)BitsPerInt, "recode bit map");
 106           if (is_set_nth_bit(allowed_reasons, (int) reason)
 107               && action != Deoptimization::Action_none) {
 108             // This uncommon trap is sure to recompile, eventually.
 109             // When that happens, C->too_many_traps will prevent
 110             // this transformation from happening again.
 111             found_trap = true;
 112           }
 113         }
 114         break;
 115       }
 116     }
 117     if (!found_trap) {
 118       // We did not find an uncommon trap.
 119       return;
 120     }
 121   }
 122 
 123   // Check for decodeHeapOop_not_null node which did not fold into address
 124   bool is_decoden = ((intptr_t)val) & 1;
 125   val = (Node*)(((intptr_t)val) & ~1);
 126 
 127   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 128          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 129 
 130   // Search the successor block for a load or store who's base value is also
 131   // the tested value.  There may be several.
 132   Node_List *out = new Node_List(Thread::current()->resource_area());
 133   MachNode *best = NULL;        // Best found so far
 134   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 135     Node *m = val->out(i);
 136     if( !m->is_Mach() ) continue;
 137     MachNode *mach = m->as_Mach();
 138     was_store = false;
 139     int iop = mach->ideal_Opcode();
 140     switch( iop ) {
 141     case Op_LoadB:
 142     case Op_LoadUB:
 143     case Op_LoadUS:
 144     case Op_LoadD:
 145     case Op_LoadF:
 146     case Op_LoadI:
 147     case Op_LoadL:
 148     case Op_LoadP:
 149     case Op_LoadN:
 150     case Op_LoadS:
 151     case Op_LoadKlass:
 152     case Op_LoadNKlass:
 153     case Op_LoadRange:
 154     case Op_LoadD_unaligned:
 155     case Op_LoadL_unaligned:
 156       assert(mach->in(2) == val, "should be address");
 157       break;
 158     case Op_StoreB:
 159     case Op_StoreC:
 160     case Op_StoreCM:
 161     case Op_StoreD:
 162     case Op_StoreF:
 163     case Op_StoreI:
 164     case Op_StoreL:
 165     case Op_StoreP:
 166     case Op_StoreN:
 167     case Op_StoreNKlass:
 168       was_store = true;         // Memory op is a store op
 169       // Stores will have their address in slot 2 (memory in slot 1).
 170       // If the value being nul-checked is in another slot, it means we
 171       // are storing the checked value, which does NOT check the value!
 172       if( mach->in(2) != val ) continue;
 173       break;                    // Found a memory op?
 174     case Op_StrComp:
 175     case Op_StrEquals:
 176     case Op_StrIndexOf:
 177     case Op_AryEq:
 178     case Op_EncodeISOArray:
 179       // Not a legit memory op for implicit null check regardless of
 180       // embedded loads
 181       continue;
 182     default:                    // Also check for embedded loads
 183       if( !mach->needs_anti_dependence_check() )
 184         continue;               // Not an memory op; skip it
 185       if( must_clone[iop] ) {
 186         // Do not move nodes which produce flags because
 187         // RA will try to clone it to place near branch and
 188         // it will cause recompilation, see clone_node().
 189         continue;
 190       }
 191       {
 192         // Check that value is used in memory address in
 193         // instructions with embedded load (CmpP val1,(val2+off)).
 194         Node* base;
 195         Node* index;
 196         const MachOper* oper = mach->memory_inputs(base, index);
 197         if (oper == NULL || oper == (MachOper*)-1) {
 198           continue;             // Not an memory op; skip it
 199         }
 200         if (val == base ||
 201             val == index && val->bottom_type()->isa_narrowoop()) {
 202           break;                // Found it
 203         } else {
 204           continue;             // Skip it
 205         }
 206       }
 207       break;
 208     }
 209     // check if the offset is not too high for implicit exception
 210     {
 211       intptr_t offset = 0;
 212       const TypePtr *adr_type = NULL;  // Do not need this return value here
 213       const Node* base = mach->get_base_and_disp(offset, adr_type);
 214       if (base == NULL || base == NodeSentinel) {
 215         // Narrow oop address doesn't have base, only index
 216         if( val->bottom_type()->isa_narrowoop() &&
 217             MacroAssembler::needs_explicit_null_check(offset) )
 218           continue;             // Give up if offset is beyond page size
 219         // cannot reason about it; is probably not implicit null exception
 220       } else {
 221         const TypePtr* tptr;
 222         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 223                                   Universe::narrow_klass_shift() == 0)) {
 224           // 32-bits narrow oop can be the base of address expressions
 225           tptr = base->get_ptr_type();
 226         } else {
 227           // only regular oops are expected here
 228           tptr = base->bottom_type()->is_ptr();
 229         }
 230         // Give up if offset is not a compile-time constant
 231         if( offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot )
 232           continue;
 233         offset += tptr->_offset; // correct if base is offseted
 234         if( MacroAssembler::needs_explicit_null_check(offset) )
 235           continue;             // Give up is reference is beyond 4K page size
 236       }
 237     }
 238 
 239     // Check ctrl input to see if the null-check dominates the memory op
 240     Block *cb = cfg->get_block_for_node(mach);
 241     cb = cb->_idom;             // Always hoist at least 1 block
 242     if( !was_store ) {          // Stores can be hoisted only one block
 243       while( cb->_dom_depth > (_dom_depth + 1))
 244         cb = cb->_idom;         // Hoist loads as far as we want
 245       // The non-null-block should dominate the memory op, too. Live
 246       // range spilling will insert a spill in the non-null-block if it is
 247       // needs to spill the memory op for an implicit null check.
 248       if (cb->_dom_depth == (_dom_depth + 1)) {
 249         if (cb != not_null_block) continue;
 250         cb = cb->_idom;
 251       }
 252     }
 253     if( cb != this ) continue;
 254 
 255     // Found a memory user; see if it can be hoisted to check-block
 256     uint vidx = 0;              // Capture index of value into memop
 257     uint j;
 258     for( j = mach->req()-1; j > 0; j-- ) {
 259       if( mach->in(j) == val ) {
 260         vidx = j;
 261         // Ignore DecodeN val which could be hoisted to where needed.
 262         if( is_decoden ) continue;
 263       }
 264       // Block of memory-op input
 265       Block *inb = cfg->get_block_for_node(mach->in(j));
 266       Block *b = this;          // Start from nul check
 267       while( b != inb && b->_dom_depth > inb->_dom_depth )
 268         b = b->_idom;           // search upwards for input
 269       // See if input dominates null check
 270       if( b != inb )
 271         break;
 272     }
 273     if( j > 0 )
 274       continue;
 275     Block *mb = cfg->get_block_for_node(mach);
 276     // Hoisting stores requires more checks for the anti-dependence case.
 277     // Give up hoisting if we have to move the store past any load.
 278     if( was_store ) {
 279       Block *b = mb;            // Start searching here for a local load
 280       // mach use (faulting) trying to hoist
 281       // n might be blocker to hoisting
 282       while( b != this ) {
 283         uint k;
 284         for( k = 1; k < b->_nodes.size(); k++ ) {
 285           Node *n = b->_nodes[k];
 286           if( n->needs_anti_dependence_check() &&
 287               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 288             break;              // Found anti-dependent load
 289         }
 290         if( k < b->_nodes.size() )
 291           break;                // Found anti-dependent load
 292         // Make sure control does not do a merge (would have to check allpaths)
 293         if( b->num_preds() != 2 ) break;
 294         b = cfg->get_block_for_node(b->pred(1)); // Move up to predecessor block
 295       }
 296       if( b != this ) continue;
 297     }
 298 
 299     // Make sure this memory op is not already being used for a NullCheck
 300     Node *e = mb->end();
 301     if( e->is_MachNullCheck() && e->in(1) == mach )
 302       continue;                 // Already being used as a NULL check
 303 
 304     // Found a candidate!  Pick one with least dom depth - the highest
 305     // in the dom tree should be closest to the null check.
 306     if (best == NULL || cfg->get_block_for_node(mach)->_dom_depth < cfg->get_block_for_node(best)->_dom_depth) {
 307       best = mach;
 308       bidx = vidx;
 309     }
 310   }
 311   // No candidate!
 312   if (best == NULL) {
 313     return;
 314   }
 315 
 316   // ---- Found an implicit null check
 317   extern int implicit_null_checks;
 318   implicit_null_checks++;
 319 
 320   if( is_decoden ) {
 321     // Check if we need to hoist decodeHeapOop_not_null first.
 322     Block *valb = cfg->get_block_for_node(val);
 323     if( this != valb && this->_dom_depth < valb->_dom_depth ) {
 324       // Hoist it up to the end of the test block.
 325       valb->find_remove(val);
 326       this->add_inst(val);
 327       cfg->map_node_to_block(val, this);
 328       // DecodeN on x86 may kill flags. Check for flag-killing projections
 329       // that also need to be hoisted.
 330       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 331         Node* n = val->fast_out(j);
 332         if( n->is_MachProj() ) {
 333           cfg->get_block_for_node(n)->find_remove(n);
 334           this->add_inst(n);
 335           cfg->map_node_to_block(n, this);
 336         }
 337       }
 338     }
 339   }
 340   // Hoist the memory candidate up to the end of the test block.
 341   Block *old_block = cfg->get_block_for_node(best);
 342   old_block->find_remove(best);
 343   add_inst(best);
 344   cfg->map_node_to_block(best, this);
 345 
 346   // Move the control dependence
 347   if (best->in(0) && best->in(0) == old_block->_nodes[0])
 348     best->set_req(0, _nodes[0]);
 349 
 350   // Check for flag-killing projections that also need to be hoisted
 351   // Should be DU safe because no edge updates.
 352   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 353     Node* n = best->fast_out(j);
 354     if( n->is_MachProj() ) {
 355       cfg->get_block_for_node(n)->find_remove(n);
 356       add_inst(n);
 357       cfg->map_node_to_block(n, this);
 358     }
 359   }
 360 
 361   Compile *C = cfg->C;
 362   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 363   // One of two graph shapes got matched:
 364   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 365   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 366   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 367   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 368   // We need to flip the projections to keep the same semantics.
 369   if( proj->Opcode() == Op_IfTrue ) {
 370     // Swap order of projections in basic block to swap branch targets
 371     Node *tmp1 = _nodes[end_idx()+1];
 372     Node *tmp2 = _nodes[end_idx()+2];
 373     _nodes.map(end_idx()+1, tmp2);
 374     _nodes.map(end_idx()+2, tmp1);
 375     Node *tmp = new (C) Node(C->top()); // Use not NULL input
 376     tmp1->replace_by(tmp);
 377     tmp2->replace_by(tmp1);
 378     tmp->replace_by(tmp2);
 379     tmp->destruct();
 380   }
 381 
 382   // Remove the existing null check; use a new implicit null check instead.
 383   // Since schedule-local needs precise def-use info, we need to correct
 384   // it as well.
 385   Node *old_tst = proj->in(0);
 386   MachNode *nul_chk = new (C) MachNullCheckNode(old_tst->in(0),best,bidx);
 387   _nodes.map(end_idx(),nul_chk);
 388   cfg->map_node_to_block(nul_chk, this);
 389   // Redirect users of old_test to nul_chk
 390   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 391     old_tst->last_out(i2)->set_req(0, nul_chk);
 392   // Clean-up any dead code
 393   for (uint i3 = 0; i3 < old_tst->req(); i3++)
 394     old_tst->set_req(i3, NULL);
 395 
 396   cfg->latency_from_uses(nul_chk);
 397   cfg->latency_from_uses(best);
 398 }
 399 
 400 
 401 //------------------------------select-----------------------------------------
 402 // Select a nice fellow from the worklist to schedule next. If there is only
 403 // one choice, then use it. Projections take top priority for correctness
 404 // reasons - if I see a projection, then it is next.  There are a number of
 405 // other special cases, for instructions that consume condition codes, et al.
 406 // These are chosen immediately. Some instructions are required to immediately
 407 // precede the last instruction in the block, and these are taken last. Of the
 408 // remaining cases (most), choose the instruction with the greatest latency
 409 // (that is, the most number of pseudo-cycles required to the end of the
 410 // routine). If there is a tie, choose the instruction with the most inputs.
 411 Node *Block::select(PhaseCFG *cfg, Node_List &worklist, GrowableArray<int> &ready_cnt, VectorSet &next_call, uint sched_slot) {
 412 
 413   // If only a single entry on the stack, use it
 414   uint cnt = worklist.size();
 415   if (cnt == 1) {
 416     Node *n = worklist[0];
 417     worklist.map(0,worklist.pop());
 418     return n;
 419   }
 420 
 421   uint choice  = 0; // Bigger is most important
 422   uint latency = 0; // Bigger is scheduled first
 423   uint score   = 0; // Bigger is better
 424   int idx = -1;     // Index in worklist
 425   int cand_cnt = 0; // Candidate count
 426 
 427   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 428     // Order in worklist is used to break ties.
 429     // See caller for how this is used to delay scheduling
 430     // of induction variable increments to after the other
 431     // uses of the phi are scheduled.
 432     Node *n = worklist[i];      // Get Node on worklist
 433 
 434     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 435     if( n->is_Proj() ||         // Projections always win
 436         n->Opcode()== Op_Con || // So does constant 'Top'
 437         iop == Op_CreateEx ||   // Create-exception must start block
 438         iop == Op_CheckCastPP
 439         ) {
 440       worklist.map(i,worklist.pop());
 441       return n;
 442     }
 443 
 444     // Final call in a block must be adjacent to 'catch'
 445     Node *e = end();
 446     if( e->is_Catch() && e->in(0)->in(0) == n )
 447       continue;
 448 
 449     // Memory op for an implicit null check has to be at the end of the block
 450     if( e->is_MachNullCheck() && e->in(1) == n )
 451       continue;
 452 
 453     // Schedule IV increment last.
 454     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd &&
 455         e->in(1)->in(1) == n && n->is_iteratively_computed())
 456       continue;
 457 
 458     uint n_choice  = 2;
 459 
 460     // See if this instruction is consumed by a branch. If so, then (as the
 461     // branch is the last instruction in the basic block) force it to the
 462     // end of the basic block
 463     if ( must_clone[iop] ) {
 464       // See if any use is a branch
 465       bool found_machif = false;
 466 
 467       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 468         Node* use = n->fast_out(j);
 469 
 470         // The use is a conditional branch, make them adjacent
 471         if (use->is_MachIf() && cfg->get_block_for_node(use) == this) {
 472           found_machif = true;
 473           break;
 474         }
 475 
 476         // More than this instruction pending for successor to be ready,
 477         // don't choose this if other opportunities are ready
 478         if (ready_cnt.at(use->_idx) > 1)
 479           n_choice = 1;
 480       }
 481 
 482       // loop terminated, prefer not to use this instruction
 483       if (found_machif)
 484         continue;
 485     }
 486 
 487     // See if this has a predecessor that is "must_clone", i.e. sets the
 488     // condition code. If so, choose this first
 489     for (uint j = 0; j < n->req() ; j++) {
 490       Node *inn = n->in(j);
 491       if (inn) {
 492         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 493           n_choice = 3;
 494           break;
 495         }
 496       }
 497     }
 498 
 499     // MachTemps should be scheduled last so they are near their uses
 500     if (n->is_MachTemp()) {
 501       n_choice = 1;
 502     }
 503 
 504     uint n_latency = cfg->_node_latency->at_grow(n->_idx);
 505     uint n_score   = n->req();   // Many inputs get high score to break ties
 506 
 507     // Keep best latency found
 508     cand_cnt++;
 509     if (choice < n_choice ||
 510         (choice == n_choice &&
 511          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 512           (!StressLCM &&
 513            (latency < n_latency ||
 514             (latency == n_latency &&
 515              (score < n_score))))))) {
 516       choice  = n_choice;
 517       latency = n_latency;
 518       score   = n_score;
 519       idx     = i;               // Also keep index in worklist
 520     }
 521   } // End of for all ready nodes in worklist
 522 
 523   assert(idx >= 0, "index should be set");
 524   Node *n = worklist[(uint)idx];      // Get the winner
 525 
 526   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 527   return n;
 528 }
 529 
 530 
 531 //------------------------------set_next_call----------------------------------
 532 void Block::set_next_call( Node *n, VectorSet &next_call, PhaseCFG* cfg) {
 533   if( next_call.test_set(n->_idx) ) return;
 534   for( uint i=0; i<n->len(); i++ ) {
 535     Node *m = n->in(i);
 536     if( !m ) continue;  // must see all nodes in block that precede call
 537     if (cfg->get_block_for_node(m) == this) {
 538       set_next_call(m, next_call, cfg);
 539     }
 540   }
 541 }
 542 
 543 //------------------------------needed_for_next_call---------------------------
 544 // Set the flag 'next_call' for each Node that is needed for the next call to
 545 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 546 // next subroutine call get priority - basically it moves things NOT needed
 547 // for the next call till after the call.  This prevents me from trying to
 548 // carry lots of stuff live across a call.
 549 void Block::needed_for_next_call(Node *this_call, VectorSet &next_call, PhaseCFG* cfg) {
 550   // Find the next control-defining Node in this block
 551   Node* call = NULL;
 552   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 553     Node* m = this_call->fast_out(i);
 554     if(cfg->get_block_for_node(m) == this && // Local-block user
 555         m != this_call &&       // Not self-start node
 556         m->is_MachCall() )
 557       call = m;
 558       break;
 559   }
 560   if (call == NULL)  return;    // No next call (e.g., block end is near)
 561   // Set next-call for all inputs to this call
 562   set_next_call(call, next_call, cfg);
 563 }
 564 
 565 //------------------------------add_call_kills-------------------------------------
 566 void Block::add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 567   // Fill in the kill mask for the call
 568   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 569     if( !regs.Member(r) ) {     // Not already defined by the call
 570       // Save-on-call register?
 571       if ((save_policy[r] == 'C') ||
 572           (save_policy[r] == 'A') ||
 573           ((save_policy[r] == 'E') && exclude_soe)) {
 574         proj->_rout.Insert(r);
 575       }
 576     }
 577   }
 578 }
 579 
 580 
 581 //------------------------------sched_call-------------------------------------
 582 uint Block::sched_call( Matcher &matcher, PhaseCFG* cfg, uint node_cnt, Node_List &worklist, GrowableArray<int> &ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
 583   RegMask regs;
 584 
 585   // Schedule all the users of the call right now.  All the users are
 586   // projection Nodes, so they must be scheduled next to the call.
 587   // Collect all the defined registers.
 588   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 589     Node* n = mcall->fast_out(i);
 590     assert( n->is_MachProj(), "" );
 591     int n_cnt = ready_cnt.at(n->_idx)-1;
 592     ready_cnt.at_put(n->_idx, n_cnt);
 593     assert( n_cnt == 0, "" );
 594     // Schedule next to call
 595     _nodes.map(node_cnt++, n);
 596     // Collect defined registers
 597     regs.OR(n->out_RegMask());
 598     // Check for scheduling the next control-definer
 599     if( n->bottom_type() == Type::CONTROL )
 600       // Warm up next pile of heuristic bits
 601       needed_for_next_call(n, next_call, cfg);
 602 
 603     // Children of projections are now all ready
 604     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 605       Node* m = n->fast_out(j); // Get user
 606       if(cfg->get_block_for_node(m) != this) {
 607         continue;
 608       }
 609       if( m->is_Phi() ) continue;
 610       int m_cnt = ready_cnt.at(m->_idx)-1;
 611       ready_cnt.at_put(m->_idx, m_cnt);
 612       if( m_cnt == 0 )
 613         worklist.push(m);
 614     }
 615 
 616   }
 617 
 618   // Act as if the call defines the Frame Pointer.
 619   // Certainly the FP is alive and well after the call.
 620   regs.Insert(matcher.c_frame_pointer());
 621 
 622   // Set all registers killed and not already defined by the call.
 623   uint r_cnt = mcall->tf()->range()->cnt();
 624   int op = mcall->ideal_Opcode();
 625   MachProjNode *proj = new (matcher.C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 626   cfg->map_node_to_block(proj, this);
 627   _nodes.insert(node_cnt++, proj);
 628 
 629   // Select the right register save policy.
 630   const char * save_policy;
 631   switch (op) {
 632     case Op_CallRuntime:
 633     case Op_CallLeaf:
 634     case Op_CallLeafNoFP:
 635       // Calling C code so use C calling convention
 636       save_policy = matcher._c_reg_save_policy;
 637       break;
 638 
 639     case Op_CallStaticJava:
 640     case Op_CallDynamicJava:
 641       // Calling Java code so use Java calling convention
 642       save_policy = matcher._register_save_policy;
 643       break;
 644 
 645     default:
 646       ShouldNotReachHere();
 647   }
 648 
 649   // When using CallRuntime mark SOE registers as killed by the call
 650   // so values that could show up in the RegisterMap aren't live in a
 651   // callee saved register since the register wouldn't know where to
 652   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 653   // have debug info on them.  Strictly speaking this only needs to be
 654   // done for oops since idealreg2debugmask takes care of debug info
 655   // references but there no way to handle oops differently than other
 656   // pointers as far as the kill mask goes.
 657   bool exclude_soe = op == Op_CallRuntime;
 658 
 659   // If the call is a MethodHandle invoke, we need to exclude the
 660   // register which is used to save the SP value over MH invokes from
 661   // the mask.  Otherwise this register could be used for
 662   // deoptimization information.
 663   if (op == Op_CallStaticJava) {
 664     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 665     if (mcallstaticjava->_method_handle_invoke)
 666       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 667   }
 668 
 669   add_call_kills(proj, regs, save_policy, exclude_soe);
 670 
 671   return node_cnt;
 672 }
 673 
 674 
 675 //------------------------------schedule_local---------------------------------
 676 // Topological sort within a block.  Someday become a real scheduler.
 677 bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, GrowableArray<int> &ready_cnt, VectorSet &next_call) {
 678   // Already "sorted" are the block start Node (as the first entry), and
 679   // the block-ending Node and any trailing control projections.  We leave
 680   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 681   // Node.  Everything else gets topo-sorted.
 682 
 683 #ifndef PRODUCT
 684     if (cfg->trace_opto_pipelining()) {
 685       tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
 686       for (uint i = 0;i < _nodes.size();i++) {
 687         tty->print("# ");
 688         _nodes[i]->fast_dump();
 689       }
 690       tty->print_cr("#");
 691     }
 692 #endif
 693 
 694   // RootNode is already sorted
 695   if( _nodes.size() == 1 ) return true;
 696 
 697   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 698   uint node_cnt = end_idx();
 699   uint phi_cnt = 1;
 700   uint i;
 701   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 702     Node *n = _nodes[i];
 703     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 704         (n->is_Proj()  && n->in(0) == head()) ) {
 705       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 706       _nodes.map(i,_nodes[phi_cnt]);
 707       _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
 708     } else {                    // All others
 709       // Count block-local inputs to 'n'
 710       uint cnt = n->len();      // Input count
 711       uint local = 0;
 712       for( uint j=0; j<cnt; j++ ) {
 713         Node *m = n->in(j);
 714         if( m && cfg->get_block_for_node(m) == this && !m->is_top() )
 715           local++;              // One more block-local input
 716       }
 717       ready_cnt.at_put(n->_idx, local); // Count em up
 718 
 719 #ifdef ASSERT
 720       if( UseConcMarkSweepGC || UseG1GC ) {
 721         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 722           // Check the precedence edges
 723           for (uint prec = n->req(); prec < n->len(); prec++) {
 724             Node* oop_store = n->in(prec);
 725             if (oop_store != NULL) {
 726               assert(cfg->get_block_for_node(oop_store)->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
 727             }
 728           }
 729         }
 730       }
 731 #endif
 732 
 733       // A few node types require changing a required edge to a precedence edge
 734       // before allocation.
 735       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 736           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 737            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 738         // MemBarAcquire could be created without Precedent edge.
 739         // del_req() replaces the specified edge with the last input edge
 740         // and then removes the last edge. If the specified edge > number of
 741         // edges the last edge will be moved outside of the input edges array
 742         // and the edge will be lost. This is why this code should be
 743         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 744         Node *x = n->in(TypeFunc::Parms);
 745         n->del_req(TypeFunc::Parms);
 746         n->add_prec(x);
 747       }
 748     }
 749   }
 750   for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
 751     ready_cnt.at_put(_nodes[i2]->_idx, 0);
 752 
 753   // All the prescheduled guys do not hold back internal nodes
 754   uint i3;
 755   for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
 756     Node *n = _nodes[i3];       // Get pre-scheduled
 757     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 758       Node* m = n->fast_out(j);
 759       if (cfg->get_block_for_node(m) == this) { // Local-block user
 760         int m_cnt = ready_cnt.at(m->_idx)-1;
 761         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
 762       }
 763     }
 764   }
 765 
 766   Node_List delay;
 767   // Make a worklist
 768   Node_List worklist;
 769   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
 770     Node *m = _nodes[i4];
 771     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
 772       if (m->is_iteratively_computed()) {
 773         // Push induction variable increments last to allow other uses
 774         // of the phi to be scheduled first. The select() method breaks
 775         // ties in scheduling by worklist order.
 776         delay.push(m);
 777       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
 778         // Force the CreateEx to the top of the list so it's processed
 779         // first and ends up at the start of the block.
 780         worklist.insert(0, m);
 781       } else {
 782         worklist.push(m);         // Then on to worklist!
 783       }
 784     }
 785   }
 786   while (delay.size()) {
 787     Node* d = delay.pop();
 788     worklist.push(d);
 789   }
 790 
 791   // Warm up the 'next_call' heuristic bits
 792   needed_for_next_call(_nodes[0], next_call, cfg);
 793 
 794 #ifndef PRODUCT
 795     if (cfg->trace_opto_pipelining()) {
 796       for (uint j=0; j<_nodes.size(); j++) {
 797         Node     *n = _nodes[j];
 798         int     idx = n->_idx;
 799         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
 800         tty->print("latency:%3d  ", cfg->_node_latency->at_grow(idx));
 801         tty->print("%4d: %s\n", idx, n->Name());
 802       }
 803     }
 804 #endif
 805 
 806   uint max_idx = (uint)ready_cnt.length();
 807   // Pull from worklist and schedule
 808   while( worklist.size() ) {    // Worklist is not ready
 809 
 810 #ifndef PRODUCT
 811     if (cfg->trace_opto_pipelining()) {
 812       tty->print("#   ready list:");
 813       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 814         Node *n = worklist[i];      // Get Node on worklist
 815         tty->print(" %d", n->_idx);
 816       }
 817       tty->cr();
 818     }
 819 #endif
 820 
 821     // Select and pop a ready guy from worklist
 822     Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
 823     _nodes.map(phi_cnt++,n);    // Schedule him next
 824 
 825 #ifndef PRODUCT
 826     if (cfg->trace_opto_pipelining()) {
 827       tty->print("#    select %d: %s", n->_idx, n->Name());
 828       tty->print(", latency:%d", cfg->_node_latency->at_grow(n->_idx));
 829       n->dump();
 830       if (Verbose) {
 831         tty->print("#   ready list:");
 832         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
 833           Node *n = worklist[i];      // Get Node on worklist
 834           tty->print(" %d", n->_idx);
 835         }
 836         tty->cr();
 837       }
 838     }
 839 
 840 #endif
 841     if( n->is_MachCall() ) {
 842       MachCallNode *mcall = n->as_MachCall();
 843       phi_cnt = sched_call(matcher, cfg, phi_cnt, worklist, ready_cnt, mcall, next_call);
 844       continue;
 845     }
 846 
 847     if (n->is_Mach() && n->as_Mach()->has_call()) {
 848       RegMask regs;
 849       regs.Insert(matcher.c_frame_pointer());
 850       regs.OR(n->out_RegMask());
 851 
 852       MachProjNode *proj = new (matcher.C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
 853       cfg->map_node_to_block(proj, this);
 854       _nodes.insert(phi_cnt++, proj);
 855 
 856       add_call_kills(proj, regs, matcher._c_reg_save_policy, false);
 857     }
 858 
 859     // Children are now all ready
 860     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
 861       Node* m = n->fast_out(i5); // Get user
 862       if (cfg->get_block_for_node(m) != this) {
 863         continue;
 864       }
 865       if( m->is_Phi() ) continue;
 866       if (m->_idx >= max_idx) { // new node, skip it
 867         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
 868         continue;
 869       }
 870       int m_cnt = ready_cnt.at(m->_idx)-1;
 871       ready_cnt.at_put(m->_idx, m_cnt);
 872       if( m_cnt == 0 )
 873         worklist.push(m);
 874     }
 875   }
 876 
 877   if( phi_cnt != end_idx() ) {
 878     // did not schedule all.  Retry, Bailout, or Die
 879     Compile* C = matcher.C;
 880     if (C->subsume_loads() == true && !C->failing()) {
 881       // Retry with subsume_loads == false
 882       // If this is the first failure, the sentinel string will "stick"
 883       // to the Compile object, and the C2Compiler will see it and retry.
 884       C->record_failure(C2Compiler::retry_no_subsuming_loads());
 885     }
 886     // assert( phi_cnt == end_idx(), "did not schedule all" );
 887     return false;
 888   }
 889 
 890 #ifndef PRODUCT
 891   if (cfg->trace_opto_pipelining()) {
 892     tty->print_cr("#");
 893     tty->print_cr("# after schedule_local");
 894     for (uint i = 0;i < _nodes.size();i++) {
 895       tty->print("# ");
 896       _nodes[i]->fast_dump();
 897     }
 898     tty->cr();
 899   }
 900 #endif
 901 
 902 
 903   return true;
 904 }
 905 
 906 //--------------------------catch_cleanup_fix_all_inputs-----------------------
 907 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
 908   for (uint l = 0; l < use->len(); l++) {
 909     if (use->in(l) == old_def) {
 910       if (l < use->req()) {
 911         use->set_req(l, new_def);
 912       } else {
 913         use->rm_prec(l);
 914         use->add_prec(new_def);
 915         l--;
 916       }
 917     }
 918   }
 919 }
 920 
 921 //------------------------------catch_cleanup_find_cloned_def------------------
 922 static Node *catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, PhaseCFG* cfg, int n_clone_idx) {
 923   assert( use_blk != def_blk, "Inter-block cleanup only");
 924 
 925   // The use is some block below the Catch.  Find and return the clone of the def
 926   // that dominates the use. If there is no clone in a dominating block, then
 927   // create a phi for the def in a dominating block.
 928 
 929   // Find which successor block dominates this use.  The successor
 930   // blocks must all be single-entry (from the Catch only; I will have
 931   // split blocks to make this so), hence they all dominate.
 932   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
 933     use_blk = use_blk->_idom;
 934 
 935   // Find the successor
 936   Node *fixup = NULL;
 937 
 938   uint j;
 939   for( j = 0; j < def_blk->_num_succs; j++ )
 940     if( use_blk == def_blk->_succs[j] )
 941       break;
 942 
 943   if( j == def_blk->_num_succs ) {
 944     // Block at same level in dom-tree is not a successor.  It needs a
 945     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
 946     Node_Array inputs = new Node_List(Thread::current()->resource_area());
 947     for(uint k = 1; k < use_blk->num_preds(); k++) {
 948       Block* block = cfg->get_block_for_node(use_blk->pred(k));
 949       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, cfg, n_clone_idx));
 950     }
 951 
 952     // Check to see if the use_blk already has an identical phi inserted.
 953     // If it exists, it will be at the first position since all uses of a
 954     // def are processed together.
 955     Node *phi = use_blk->_nodes[1];
 956     if( phi->is_Phi() ) {
 957       fixup = phi;
 958       for (uint k = 1; k < use_blk->num_preds(); k++) {
 959         if (phi->in(k) != inputs[k]) {
 960           // Not a match
 961           fixup = NULL;
 962           break;
 963         }
 964       }
 965     }
 966 
 967     // If an existing PhiNode was not found, make a new one.
 968     if (fixup == NULL) {
 969       Node *new_phi = PhiNode::make(use_blk->head(), def);
 970       use_blk->_nodes.insert(1, new_phi);
 971       cfg->map_node_to_block(new_phi, use_blk);
 972       for (uint k = 1; k < use_blk->num_preds(); k++) {
 973         new_phi->set_req(k, inputs[k]);
 974       }
 975       fixup = new_phi;
 976     }
 977 
 978   } else {
 979     // Found the use just below the Catch.  Make it use the clone.
 980     fixup = use_blk->_nodes[n_clone_idx];
 981   }
 982 
 983   return fixup;
 984 }
 985 
 986 //--------------------------catch_cleanup_intra_block--------------------------
 987 // Fix all input edges in use that reference "def".  The use is in the same
 988 // block as the def and both have been cloned in each successor block.
 989 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
 990 
 991   // Both the use and def have been cloned. For each successor block,
 992   // get the clone of the use, and make its input the clone of the def
 993   // found in that block.
 994 
 995   uint use_idx = blk->find_node(use);
 996   uint offset_idx = use_idx - beg;
 997   for( uint k = 0; k < blk->_num_succs; k++ ) {
 998     // Get clone in each successor block
 999     Block *sb = blk->_succs[k];
1000     Node *clone = sb->_nodes[offset_idx+1];
1001     assert( clone->Opcode() == use->Opcode(), "" );
1002 
1003     // Make use-clone reference the def-clone
1004     catch_cleanup_fix_all_inputs(clone, def, sb->_nodes[n_clone_idx]);
1005   }
1006 }
1007 
1008 //------------------------------catch_cleanup_inter_block---------------------
1009 // Fix all input edges in use that reference "def".  The use is in a different
1010 // block than the def.
1011 static void catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, PhaseCFG* cfg, int n_clone_idx) {
1012   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1013 
1014   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, cfg, n_clone_idx);
1015   catch_cleanup_fix_all_inputs(use, def, new_def);
1016 }
1017 
1018 //------------------------------call_catch_cleanup-----------------------------
1019 // If we inserted any instructions between a Call and his CatchNode,
1020 // clone the instructions on all paths below the Catch.
1021 void Block::call_catch_cleanup(PhaseCFG* cfg, Compile* C) {
1022 
1023   // End of region to clone
1024   uint end = end_idx();
1025   if( !_nodes[end]->is_Catch() ) return;
1026   // Start of region to clone
1027   uint beg = end;
1028   while(!_nodes[beg-1]->is_MachProj() ||
1029         !_nodes[beg-1]->in(0)->is_MachCall() ) {
1030     beg--;
1031     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1032   }
1033   // Range of inserted instructions is [beg, end)
1034   if( beg == end ) return;
1035 
1036   // Clone along all Catch output paths.  Clone area between the 'beg' and
1037   // 'end' indices.
1038   for( uint i = 0; i < _num_succs; i++ ) {
1039     Block *sb = _succs[i];
1040     // Clone the entire area; ignoring the edge fixup for now.
1041     for( uint j = end; j > beg; j-- ) {
1042       // It is safe here to clone a node with anti_dependence
1043       // since clones dominate on each path.
1044       Node *clone = _nodes[j-1]->clone();
1045       sb->_nodes.insert( 1, clone );
1046       cfg->map_node_to_block(clone, sb);
1047     }
1048   }
1049 
1050 
1051   // Fixup edges.  Check the def-use info per cloned Node
1052   for(uint i2 = beg; i2 < end; i2++ ) {
1053     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1054     Node *n = _nodes[i2];        // Node that got cloned
1055     // Need DU safe iterator because of edge manipulation in calls.
1056     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1057     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1058       out->push(n->fast_out(j1));
1059     }
1060     uint max = out->size();
1061     for (uint j = 0; j < max; j++) {// For all users
1062       Node *use = out->pop();
1063       Block *buse = cfg->get_block_for_node(use);
1064       if( use->is_Phi() ) {
1065         for( uint k = 1; k < use->req(); k++ )
1066           if( use->in(k) == n ) {
1067             Block* block = cfg->get_block_for_node(buse->pred(k));
1068             Node *fixup = catch_cleanup_find_cloned_def(block, n, this, cfg, n_clone_idx);
1069             use->set_req(k, fixup);
1070           }
1071       } else {
1072         if (this == buse) {
1073           catch_cleanup_intra_block(use, n, this, beg, n_clone_idx);
1074         } else {
1075           catch_cleanup_inter_block(use, buse, n, this, cfg, n_clone_idx);
1076         }
1077       }
1078     } // End for all users
1079 
1080   } // End of for all Nodes in cloned area
1081 
1082   // Remove the now-dead cloned ops
1083   for(uint i3 = beg; i3 < end; i3++ ) {
1084     _nodes[beg]->disconnect_inputs(NULL, C);
1085     _nodes.remove(beg);
1086   }
1087 
1088   // If the successor blocks have a CreateEx node, move it back to the top
1089   for(uint i4 = 0; i4 < _num_succs; i4++ ) {
1090     Block *sb = _succs[i4];
1091     uint new_cnt = end - beg;
1092     // Remove any newly created, but dead, nodes.
1093     for( uint j = new_cnt; j > 0; j-- ) {
1094       Node *n = sb->_nodes[j];
1095       if (n->outcnt() == 0 &&
1096           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1097         n->disconnect_inputs(NULL, C);
1098         sb->_nodes.remove(j);
1099         new_cnt--;
1100       }
1101     }
1102     // If any newly created nodes remain, move the CreateEx node to the top
1103     if (new_cnt > 0) {
1104       Node *cex = sb->_nodes[1+new_cnt];
1105       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1106         sb->_nodes.remove(1+new_cnt);
1107         sb->_nodes.insert(1,cex);
1108       }
1109     }
1110   }
1111 }