1 /*
   2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/output.hpp"
  38 #include "opto/regalloc.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 //------------------------------Output-----------------------------------------
  58 // Convert Nodes to instruction bits and pass off to the VM
  59 void Compile::Output() {
  60   // RootNode goes
  61   assert( _cfg->_broot->_nodes.size() == 0, "" );
  62 
  63   // The number of new nodes (mostly MachNop) is proportional to
  64   // the number of java calls and inner loops which are aligned.
  65   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  66                             C->inner_loops()*(OptoLoopAlignment-1)),
  67                            "out of nodes before code generation" ) ) {
  68     return;
  69   }
  70   // Make sure I can find the Start Node
  71   Block *entry = _cfg->_blocks[1];
  72   Block *broot = _cfg->_broot;
  73 
  74   const StartNode *start = entry->_nodes[0]->as_Start();
  75 
  76   // Replace StartNode with prolog
  77   MachPrologNode *prolog = new (this) MachPrologNode();
  78   entry->_nodes.map( 0, prolog );
  79   _cfg->map_node_to_block(prolog, entry);
  80   _cfg->unmap_node_from_block(start); // start is no longer in any block
  81 
  82   // Virtual methods need an unverified entry point
  83 
  84   if( is_osr_compilation() ) {
  85     if( PoisonOSREntry ) {
  86       // TODO: Should use a ShouldNotReachHereNode...
  87       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  88     }
  89   } else {
  90     if( _method && !_method->flags().is_static() ) {
  91       // Insert unvalidated entry point
  92       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  93     }
  94 
  95   }
  96 
  97 
  98   // Break before main entry point
  99   if( (_method && _method->break_at_execute())
 100 #ifndef PRODUCT
 101     ||(OptoBreakpoint && is_method_compilation())
 102     ||(OptoBreakpointOSR && is_osr_compilation())
 103     ||(OptoBreakpointC2R && !_method)
 104 #endif
 105     ) {
 106     // checking for _method means that OptoBreakpoint does not apply to
 107     // runtime stubs or frame converters
 108     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 109   }
 110 
 111   // Insert epilogs before every return
 112   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 113     Block *b = _cfg->_blocks[i];
 114     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 115       Node *m = b->end();
 116       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 117         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 118         b->add_inst( epilog );
 119         _cfg->map_node_to_block(epilog, b);
 120       }
 121     }
 122   }
 123 
 124 # ifdef ENABLE_ZAP_DEAD_LOCALS
 125   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 126 # endif
 127 
 128   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 129   blk_starts[0]    = 0;
 130 
 131   // Initialize code buffer and process short branches.
 132   CodeBuffer* cb = init_buffer(blk_starts);
 133 
 134   if (cb == NULL || failing())  return;
 135 
 136   ScheduleAndBundle();
 137 
 138 #ifndef PRODUCT
 139   if (trace_opto_output()) {
 140     tty->print("\n---- After ScheduleAndBundle ----\n");
 141     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 142       tty->print("\nBB#%03d:\n", i);
 143       Block *bb = _cfg->_blocks[i];
 144       for (uint j = 0; j < bb->_nodes.size(); j++) {
 145         Node *n = bb->_nodes[j];
 146         OptoReg::Name reg = _regalloc->get_reg_first(n);
 147         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 148         n->dump();
 149       }
 150     }
 151   }
 152 #endif
 153 
 154   if (failing())  return;
 155 
 156   BuildOopMaps();
 157 
 158   if (failing())  return;
 159 
 160   fill_buffer(cb, blk_starts);
 161 }
 162 
 163 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 164   // Determine if we need to generate a stack overflow check.
 165   // Do it if the method is not a stub function and
 166   // has java calls or has frame size > vm_page_size/8.
 167   return (UseStackBanging && stub_function() == NULL &&
 168           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 169 }
 170 
 171 bool Compile::need_register_stack_bang() const {
 172   // Determine if we need to generate a register stack overflow check.
 173   // This is only used on architectures which have split register
 174   // and memory stacks (ie. IA64).
 175   // Bang if the method is not a stub function and has java calls
 176   return (stub_function() == NULL && has_java_calls());
 177 }
 178 
 179 # ifdef ENABLE_ZAP_DEAD_LOCALS
 180 
 181 
 182 // In order to catch compiler oop-map bugs, we have implemented
 183 // a debugging mode called ZapDeadCompilerLocals.
 184 // This mode causes the compiler to insert a call to a runtime routine,
 185 // "zap_dead_locals", right before each place in compiled code
 186 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 187 // The runtime routine checks that locations mapped as oops are really
 188 // oops, that locations mapped as values do not look like oops,
 189 // and that locations mapped as dead are not used later
 190 // (by zapping them to an invalid address).
 191 
 192 int Compile::_CompiledZap_count = 0;
 193 
 194 void Compile::Insert_zap_nodes() {
 195   bool skip = false;
 196 
 197 
 198   // Dink with static counts because code code without the extra
 199   // runtime calls is MUCH faster for debugging purposes
 200 
 201        if ( CompileZapFirst  ==  0  ) ; // nothing special
 202   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 203   else if ( CompileZapFirst  == CompiledZap_count() )
 204     warning("starting zap compilation after skipping");
 205 
 206        if ( CompileZapLast  ==  -1  ) ; // nothing special
 207   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 208   else if ( CompileZapLast  ==  CompiledZap_count() )
 209     warning("about to compile last zap");
 210 
 211   ++_CompiledZap_count; // counts skipped zaps, too
 212 
 213   if ( skip )  return;
 214 
 215 
 216   if ( _method == NULL )
 217     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 218 
 219   // Insert call to zap runtime stub before every node with an oop map
 220   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 221     Block *b = _cfg->_blocks[i];
 222     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 223       Node *n = b->_nodes[j];
 224 
 225       // Determining if we should insert a zap-a-lot node in output.
 226       // We do that for all nodes that has oopmap info, except for calls
 227       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 228       // and expect the C code to reset it.  Hence, there can be no safepoints between
 229       // the inlined-allocation and the call to new_Java, etc.
 230       // We also cannot zap monitor calls, as they must hold the microlock
 231       // during the call to Zap, which also wants to grab the microlock.
 232       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 233       if ( insert ) { // it is MachSafePoint
 234         if ( !n->is_MachCall() ) {
 235           insert = false;
 236         } else if ( n->is_MachCall() ) {
 237           MachCallNode* call = n->as_MachCall();
 238           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 239               call->entry_point() == OptoRuntime::new_array_Java() ||
 240               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 241               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 242               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 243               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 244               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 245               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 246               ) {
 247             insert = false;
 248           }
 249         }
 250         if (insert) {
 251           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 252           b->_nodes.insert( j, zap );
 253           _cfg->map_node_to_block(zap, b);
 254           ++j;
 255         }
 256       }
 257     }
 258   }
 259 }
 260 
 261 
 262 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 263   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 264   CallStaticJavaNode* ideal_node =
 265     new (this) CallStaticJavaNode( tf,
 266          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 267                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 268   // We need to copy the OopMap from the site we're zapping at.
 269   // We have to make a copy, because the zap site might not be
 270   // a call site, and zap_dead is a call site.
 271   OopMap* clone = node_to_check->oop_map()->deep_copy();
 272 
 273   // Add the cloned OopMap to the zap node
 274   ideal_node->set_oop_map(clone);
 275   return _matcher->match_sfpt(ideal_node);
 276 }
 277 
 278 //------------------------------is_node_getting_a_safepoint--------------------
 279 bool Compile::is_node_getting_a_safepoint( Node* n) {
 280   // This code duplicates the logic prior to the call of add_safepoint
 281   // below in this file.
 282   if( n->is_MachSafePoint() ) return true;
 283   return false;
 284 }
 285 
 286 # endif // ENABLE_ZAP_DEAD_LOCALS
 287 
 288 //------------------------------compute_loop_first_inst_sizes------------------
 289 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 290 // of a loop. When aligning a loop we need to provide enough instructions
 291 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 292 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 293 // By default, the size is set to 999999 by Block's constructor so that
 294 // a loop will be aligned if the size is not reset here.
 295 //
 296 // Note: Mach instructions could contain several HW instructions
 297 // so the size is estimated only.
 298 //
 299 void Compile::compute_loop_first_inst_sizes() {
 300   // The next condition is used to gate the loop alignment optimization.
 301   // Don't aligned a loop if there are enough instructions at the head of a loop
 302   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 303   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 304   // equal to 11 bytes which is the largest address NOP instruction.
 305   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 306     uint last_block = _cfg->_num_blocks-1;
 307     for( uint i=1; i <= last_block; i++ ) {
 308       Block *b = _cfg->_blocks[i];
 309       // Check the first loop's block which requires an alignment.
 310       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 311         uint sum_size = 0;
 312         uint inst_cnt = NumberOfLoopInstrToAlign;
 313         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 314 
 315         // Check subsequent fallthrough blocks if the loop's first
 316         // block(s) does not have enough instructions.
 317         Block *nb = b;
 318         while( inst_cnt > 0 &&
 319                i < last_block &&
 320                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 321                !nb->has_successor(b) ) {
 322           i++;
 323           nb = _cfg->_blocks[i];
 324           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 325         } // while( inst_cnt > 0 && i < last_block  )
 326 
 327         b->set_first_inst_size(sum_size);
 328       } // f( b->head()->is_Loop() )
 329     } // for( i <= last_block )
 330   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 331 }
 332 
 333 //----------------------shorten_branches---------------------------------------
 334 // The architecture description provides short branch variants for some long
 335 // branch instructions. Replace eligible long branches with short branches.
 336 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 337 
 338   // ------------------
 339   // Compute size of each block, method size, and relocation information size
 340   uint nblocks  = _cfg->_num_blocks;
 341 
 342   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 343   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 344   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 345   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 346   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 347 
 348   bool has_short_branch_candidate = false;
 349 
 350   // Initialize the sizes to 0
 351   code_size  = 0;          // Size in bytes of generated code
 352   stub_size  = 0;          // Size in bytes of all stub entries
 353   // Size in bytes of all relocation entries, including those in local stubs.
 354   // Start with 2-bytes of reloc info for the unvalidated entry point
 355   reloc_size = 1;          // Number of relocation entries
 356 
 357   // Make three passes.  The first computes pessimistic blk_starts,
 358   // relative jmp_offset and reloc_size information.  The second performs
 359   // short branch substitution using the pessimistic sizing.  The
 360   // third inserts nops where needed.
 361 
 362   // Step one, perform a pessimistic sizing pass.
 363   uint last_call_adr = max_uint;
 364   uint last_avoid_back_to_back_adr = max_uint;
 365   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 366   for (uint i = 0; i < nblocks; i++) { // For all blocks
 367     Block *b = _cfg->_blocks[i];
 368 
 369     // During short branch replacement, we store the relative (to blk_starts)
 370     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 371     // This is so that we do not need to recompute sizes of all nodes when
 372     // we compute correct blk_starts in our next sizing pass.
 373     jmp_offset[i] = 0;
 374     jmp_size[i]   = 0;
 375     jmp_nidx[i]   = -1;
 376     DEBUG_ONLY( jmp_target[i] = 0; )
 377     DEBUG_ONLY( jmp_rule[i]   = 0; )
 378 
 379     // Sum all instruction sizes to compute block size
 380     uint last_inst = b->_nodes.size();
 381     uint blk_size = 0;
 382     for (uint j = 0; j < last_inst; j++) {
 383       Node* nj = b->_nodes[j];
 384       // Handle machine instruction nodes
 385       if (nj->is_Mach()) {
 386         MachNode *mach = nj->as_Mach();
 387         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 388         reloc_size += mach->reloc();
 389         if (mach->is_MachCall()) {
 390           MachCallNode *mcall = mach->as_MachCall();
 391           // This destination address is NOT PC-relative
 392 
 393           mcall->method_set((intptr_t)mcall->entry_point());
 394 
 395           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 396             stub_size  += CompiledStaticCall::to_interp_stub_size();
 397             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 398           }
 399         } else if (mach->is_MachSafePoint()) {
 400           // If call/safepoint are adjacent, account for possible
 401           // nop to disambiguate the two safepoints.
 402           // ScheduleAndBundle() can rearrange nodes in a block,
 403           // check for all offsets inside this block.
 404           if (last_call_adr >= blk_starts[i]) {
 405             blk_size += nop_size;
 406           }
 407         }
 408         if (mach->avoid_back_to_back()) {
 409           // Nop is inserted between "avoid back to back" instructions.
 410           // ScheduleAndBundle() can rearrange nodes in a block,
 411           // check for all offsets inside this block.
 412           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 413             blk_size += nop_size;
 414           }
 415         }
 416         if (mach->may_be_short_branch()) {
 417           if (!nj->is_MachBranch()) {
 418 #ifndef PRODUCT
 419             nj->dump(3);
 420 #endif
 421             Unimplemented();
 422           }
 423           assert(jmp_nidx[i] == -1, "block should have only one branch");
 424           jmp_offset[i] = blk_size;
 425           jmp_size[i]   = nj->size(_regalloc);
 426           jmp_nidx[i]   = j;
 427           has_short_branch_candidate = true;
 428         }
 429       }
 430       blk_size += nj->size(_regalloc);
 431       // Remember end of call offset
 432       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 433         last_call_adr = blk_starts[i]+blk_size;
 434       }
 435       // Remember end of avoid_back_to_back offset
 436       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 437         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 438       }
 439     }
 440 
 441     // When the next block starts a loop, we may insert pad NOP
 442     // instructions.  Since we cannot know our future alignment,
 443     // assume the worst.
 444     if (i< nblocks-1) {
 445       Block *nb = _cfg->_blocks[i+1];
 446       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 447       if (max_loop_pad > 0) {
 448         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 449         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 450         // If either is the last instruction in this block, bump by
 451         // max_loop_pad in lock-step with blk_size, so sizing
 452         // calculations in subsequent blocks still can conservatively
 453         // detect that it may the last instruction in this block.
 454         if (last_call_adr == blk_starts[i]+blk_size) {
 455           last_call_adr += max_loop_pad;
 456         }
 457         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 458           last_avoid_back_to_back_adr += max_loop_pad;
 459         }
 460         blk_size += max_loop_pad;
 461       }
 462     }
 463 
 464     // Save block size; update total method size
 465     blk_starts[i+1] = blk_starts[i]+blk_size;
 466   }
 467 
 468   // Step two, replace eligible long jumps.
 469   bool progress = true;
 470   uint last_may_be_short_branch_adr = max_uint;
 471   while (has_short_branch_candidate && progress) {
 472     progress = false;
 473     has_short_branch_candidate = false;
 474     int adjust_block_start = 0;
 475     for (uint i = 0; i < nblocks; i++) {
 476       Block *b = _cfg->_blocks[i];
 477       int idx = jmp_nidx[i];
 478       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
 479       if (mach != NULL && mach->may_be_short_branch()) {
 480 #ifdef ASSERT
 481         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 482         int j;
 483         // Find the branch; ignore trailing NOPs.
 484         for (j = b->_nodes.size()-1; j>=0; j--) {
 485           Node* n = b->_nodes[j];
 486           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 487             break;
 488         }
 489         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
 490 #endif
 491         int br_size = jmp_size[i];
 492         int br_offs = blk_starts[i] + jmp_offset[i];
 493 
 494         // This requires the TRUE branch target be in succs[0]
 495         uint bnum = b->non_connector_successor(0)->_pre_order;
 496         int offset = blk_starts[bnum] - br_offs;
 497         if (bnum > i) { // adjust following block's offset
 498           offset -= adjust_block_start;
 499         }
 500         // In the following code a nop could be inserted before
 501         // the branch which will increase the backward distance.
 502         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
 503         if (needs_padding && offset <= 0)
 504           offset -= nop_size;
 505 
 506         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 507           // We've got a winner.  Replace this branch.
 508           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 509 
 510           // Update the jmp_size.
 511           int new_size = replacement->size(_regalloc);
 512           int diff     = br_size - new_size;
 513           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 514           // Conservatively take into accound padding between
 515           // avoid_back_to_back branches. Previous branch could be
 516           // converted into avoid_back_to_back branch during next
 517           // rounds.
 518           if (needs_padding && replacement->avoid_back_to_back()) {
 519             jmp_offset[i] += nop_size;
 520             diff -= nop_size;
 521           }
 522           adjust_block_start += diff;
 523           b->_nodes.map(idx, replacement);
 524           mach->subsume_by(replacement, C);
 525           mach = replacement;
 526           progress = true;
 527 
 528           jmp_size[i] = new_size;
 529           DEBUG_ONLY( jmp_target[i] = bnum; );
 530           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 531         } else {
 532           // The jump distance is not short, try again during next iteration.
 533           has_short_branch_candidate = true;
 534         }
 535       } // (mach->may_be_short_branch())
 536       if (mach != NULL && (mach->may_be_short_branch() ||
 537                            mach->avoid_back_to_back())) {
 538         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 539       }
 540       blk_starts[i+1] -= adjust_block_start;
 541     }
 542   }
 543 
 544 #ifdef ASSERT
 545   for (uint i = 0; i < nblocks; i++) { // For all blocks
 546     if (jmp_target[i] != 0) {
 547       int br_size = jmp_size[i];
 548       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 549       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 550         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 551       }
 552       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 553     }
 554   }
 555 #endif
 556 
 557   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 558   // after ScheduleAndBundle().
 559 
 560   // ------------------
 561   // Compute size for code buffer
 562   code_size = blk_starts[nblocks];
 563 
 564   // Relocation records
 565   reloc_size += 1;              // Relo entry for exception handler
 566 
 567   // Adjust reloc_size to number of record of relocation info
 568   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 569   // a relocation index.
 570   // The CodeBuffer will expand the locs array if this estimate is too low.
 571   reloc_size *= 10 / sizeof(relocInfo);
 572 }
 573 
 574 //------------------------------FillLocArray-----------------------------------
 575 // Create a bit of debug info and append it to the array.  The mapping is from
 576 // Java local or expression stack to constant, register or stack-slot.  For
 577 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 578 // entry has been taken care of and caller should skip it).
 579 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 580   // This should never have accepted Bad before
 581   assert(OptoReg::is_valid(regnum), "location must be valid");
 582   return (OptoReg::is_reg(regnum))
 583     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 584     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 585 }
 586 
 587 
 588 ObjectValue*
 589 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 590   for (int i = 0; i < objs->length(); i++) {
 591     assert(objs->at(i)->is_object(), "corrupt object cache");
 592     ObjectValue* sv = (ObjectValue*) objs->at(i);
 593     if (sv->id() == id) {
 594       return sv;
 595     }
 596   }
 597   // Otherwise..
 598   return NULL;
 599 }
 600 
 601 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 602                                      ObjectValue* sv ) {
 603   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 604   objs->append(sv);
 605 }
 606 
 607 
 608 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 609                             GrowableArray<ScopeValue*> *array,
 610                             GrowableArray<ScopeValue*> *objs ) {
 611   assert( local, "use _top instead of null" );
 612   if (array->length() != idx) {
 613     assert(array->length() == idx + 1, "Unexpected array count");
 614     // Old functionality:
 615     //   return
 616     // New functionality:
 617     //   Assert if the local is not top. In product mode let the new node
 618     //   override the old entry.
 619     assert(local == top(), "LocArray collision");
 620     if (local == top()) {
 621       return;
 622     }
 623     array->pop();
 624   }
 625   const Type *t = local->bottom_type();
 626 
 627   // Is it a safepoint scalar object node?
 628   if (local->is_SafePointScalarObject()) {
 629     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 630 
 631     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 632     if (sv == NULL) {
 633       ciKlass* cik = t->is_oopptr()->klass();
 634       assert(cik->is_instance_klass() ||
 635              cik->is_array_klass(), "Not supported allocation.");
 636       sv = new ObjectValue(spobj->_idx,
 637                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 638       Compile::set_sv_for_object_node(objs, sv);
 639 
 640       uint first_ind = spobj->first_index();
 641       for (uint i = 0; i < spobj->n_fields(); i++) {
 642         Node* fld_node = sfpt->in(first_ind+i);
 643         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 644       }
 645     }
 646     array->append(sv);
 647     return;
 648   }
 649 
 650   // Grab the register number for the local
 651   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 652   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 653     // Record the double as two float registers.
 654     // The register mask for such a value always specifies two adjacent
 655     // float registers, with the lower register number even.
 656     // Normally, the allocation of high and low words to these registers
 657     // is irrelevant, because nearly all operations on register pairs
 658     // (e.g., StoreD) treat them as a single unit.
 659     // Here, we assume in addition that the words in these two registers
 660     // stored "naturally" (by operations like StoreD and double stores
 661     // within the interpreter) such that the lower-numbered register
 662     // is written to the lower memory address.  This may seem like
 663     // a machine dependency, but it is not--it is a requirement on
 664     // the author of the <arch>.ad file to ensure that, for every
 665     // even/odd double-register pair to which a double may be allocated,
 666     // the word in the even single-register is stored to the first
 667     // memory word.  (Note that register numbers are completely
 668     // arbitrary, and are not tied to any machine-level encodings.)
 669 #ifdef _LP64
 670     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 671       array->append(new ConstantIntValue(0));
 672       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 673     } else if ( t->base() == Type::Long ) {
 674       array->append(new ConstantIntValue(0));
 675       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 676     } else if ( t->base() == Type::RawPtr ) {
 677       // jsr/ret return address which must be restored into a the full
 678       // width 64-bit stack slot.
 679       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 680     }
 681 #else //_LP64
 682 #ifdef SPARC
 683     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 684       // For SPARC we have to swap high and low words for
 685       // long values stored in a single-register (g0-g7).
 686       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 687       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 688     } else
 689 #endif //SPARC
 690     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 691       // Repack the double/long as two jints.
 692       // The convention the interpreter uses is that the second local
 693       // holds the first raw word of the native double representation.
 694       // This is actually reasonable, since locals and stack arrays
 695       // grow downwards in all implementations.
 696       // (If, on some machine, the interpreter's Java locals or stack
 697       // were to grow upwards, the embedded doubles would be word-swapped.)
 698       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 699       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 700     }
 701 #endif //_LP64
 702     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 703                OptoReg::is_reg(regnum) ) {
 704       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 705                                    ? Location::float_in_dbl : Location::normal ));
 706     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 707       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 708                                    ? Location::int_in_long : Location::normal ));
 709     } else if( t->base() == Type::NarrowOop ) {
 710       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 711     } else {
 712       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 713     }
 714     return;
 715   }
 716 
 717   // No register.  It must be constant data.
 718   switch (t->base()) {
 719   case Type::Half:              // Second half of a double
 720     ShouldNotReachHere();       // Caller should skip 2nd halves
 721     break;
 722   case Type::AnyPtr:
 723     array->append(new ConstantOopWriteValue(NULL));
 724     break;
 725   case Type::AryPtr:
 726   case Type::InstPtr:          // fall through
 727     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 728     break;
 729   case Type::NarrowOop:
 730     if (t == TypeNarrowOop::NULL_PTR) {
 731       array->append(new ConstantOopWriteValue(NULL));
 732     } else {
 733       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 734     }
 735     break;
 736   case Type::Int:
 737     array->append(new ConstantIntValue(t->is_int()->get_con()));
 738     break;
 739   case Type::RawPtr:
 740     // A return address (T_ADDRESS).
 741     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 742 #ifdef _LP64
 743     // Must be restored to the full-width 64-bit stack slot.
 744     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 745 #else
 746     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 747 #endif
 748     break;
 749   case Type::FloatCon: {
 750     float f = t->is_float_constant()->getf();
 751     array->append(new ConstantIntValue(jint_cast(f)));
 752     break;
 753   }
 754   case Type::DoubleCon: {
 755     jdouble d = t->is_double_constant()->getd();
 756 #ifdef _LP64
 757     array->append(new ConstantIntValue(0));
 758     array->append(new ConstantDoubleValue(d));
 759 #else
 760     // Repack the double as two jints.
 761     // The convention the interpreter uses is that the second local
 762     // holds the first raw word of the native double representation.
 763     // This is actually reasonable, since locals and stack arrays
 764     // grow downwards in all implementations.
 765     // (If, on some machine, the interpreter's Java locals or stack
 766     // were to grow upwards, the embedded doubles would be word-swapped.)
 767     jint   *dp = (jint*)&d;
 768     array->append(new ConstantIntValue(dp[1]));
 769     array->append(new ConstantIntValue(dp[0]));
 770 #endif
 771     break;
 772   }
 773   case Type::Long: {
 774     jlong d = t->is_long()->get_con();
 775 #ifdef _LP64
 776     array->append(new ConstantIntValue(0));
 777     array->append(new ConstantLongValue(d));
 778 #else
 779     // Repack the long as two jints.
 780     // The convention the interpreter uses is that the second local
 781     // holds the first raw word of the native double representation.
 782     // This is actually reasonable, since locals and stack arrays
 783     // grow downwards in all implementations.
 784     // (If, on some machine, the interpreter's Java locals or stack
 785     // were to grow upwards, the embedded doubles would be word-swapped.)
 786     jint *dp = (jint*)&d;
 787     array->append(new ConstantIntValue(dp[1]));
 788     array->append(new ConstantIntValue(dp[0]));
 789 #endif
 790     break;
 791   }
 792   case Type::Top:               // Add an illegal value here
 793     array->append(new LocationValue(Location()));
 794     break;
 795   default:
 796     ShouldNotReachHere();
 797     break;
 798   }
 799 }
 800 
 801 // Determine if this node starts a bundle
 802 bool Compile::starts_bundle(const Node *n) const {
 803   return (_node_bundling_limit > n->_idx &&
 804           _node_bundling_base[n->_idx].starts_bundle());
 805 }
 806 
 807 //--------------------------Process_OopMap_Node--------------------------------
 808 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 809 
 810   // Handle special safepoint nodes for synchronization
 811   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 812   MachCallNode      *mcall;
 813 
 814 #ifdef ENABLE_ZAP_DEAD_LOCALS
 815   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 816 #endif
 817 
 818   int safepoint_pc_offset = current_offset;
 819   bool is_method_handle_invoke = false;
 820   bool return_oop = false;
 821 
 822   // Add the safepoint in the DebugInfoRecorder
 823   if( !mach->is_MachCall() ) {
 824     mcall = NULL;
 825     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 826   } else {
 827     mcall = mach->as_MachCall();
 828 
 829     // Is the call a MethodHandle call?
 830     if (mcall->is_MachCallJava()) {
 831       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 832         assert(has_method_handle_invokes(), "must have been set during call generation");
 833         is_method_handle_invoke = true;
 834       }
 835     }
 836 
 837     // Check if a call returns an object.
 838     if (mcall->return_value_is_used() &&
 839         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 840       return_oop = true;
 841     }
 842     safepoint_pc_offset += mcall->ret_addr_offset();
 843     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 844   }
 845 
 846   // Loop over the JVMState list to add scope information
 847   // Do not skip safepoints with a NULL method, they need monitor info
 848   JVMState* youngest_jvms = sfn->jvms();
 849   int max_depth = youngest_jvms->depth();
 850 
 851   // Allocate the object pool for scalar-replaced objects -- the map from
 852   // small-integer keys (which can be recorded in the local and ostack
 853   // arrays) to descriptions of the object state.
 854   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 855 
 856   // Visit scopes from oldest to youngest.
 857   for (int depth = 1; depth <= max_depth; depth++) {
 858     JVMState* jvms = youngest_jvms->of_depth(depth);
 859     int idx;
 860     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 861     // Safepoints that do not have method() set only provide oop-map and monitor info
 862     // to support GC; these do not support deoptimization.
 863     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 864     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 865     int num_mon  = jvms->nof_monitors();
 866     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 867            "JVMS local count must match that of the method");
 868 
 869     // Add Local and Expression Stack Information
 870 
 871     // Insert locals into the locarray
 872     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 873     for( idx = 0; idx < num_locs; idx++ ) {
 874       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 875     }
 876 
 877     // Insert expression stack entries into the exparray
 878     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 879     for( idx = 0; idx < num_exps; idx++ ) {
 880       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 881     }
 882 
 883     // Add in mappings of the monitors
 884     assert( !method ||
 885             !method->is_synchronized() ||
 886             method->is_native() ||
 887             num_mon > 0 ||
 888             !GenerateSynchronizationCode,
 889             "monitors must always exist for synchronized methods");
 890 
 891     // Build the growable array of ScopeValues for exp stack
 892     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 893 
 894     // Loop over monitors and insert into array
 895     for(idx = 0; idx < num_mon; idx++) {
 896       // Grab the node that defines this monitor
 897       Node* box_node = sfn->monitor_box(jvms, idx);
 898       Node* obj_node = sfn->monitor_obj(jvms, idx);
 899 
 900       // Create ScopeValue for object
 901       ScopeValue *scval = NULL;
 902 
 903       if( obj_node->is_SafePointScalarObject() ) {
 904         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 905         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 906         if (scval == NULL) {
 907           const Type *t = obj_node->bottom_type();
 908           ciKlass* cik = t->is_oopptr()->klass();
 909           assert(cik->is_instance_klass() ||
 910                  cik->is_array_klass(), "Not supported allocation.");
 911           ObjectValue* sv = new ObjectValue(spobj->_idx,
 912                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 913           Compile::set_sv_for_object_node(objs, sv);
 914 
 915           uint first_ind = spobj->first_index();
 916           for (uint i = 0; i < spobj->n_fields(); i++) {
 917             Node* fld_node = sfn->in(first_ind+i);
 918             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 919           }
 920           scval = sv;
 921         }
 922       } else if( !obj_node->is_Con() ) {
 923         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 924         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 925           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 926         } else {
 927           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 928         }
 929       } else {
 930         const TypePtr *tp = obj_node->get_ptr_type();
 931         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 932       }
 933 
 934       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 935       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 936       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 937       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 938     }
 939 
 940     // We dump the object pool first, since deoptimization reads it in first.
 941     debug_info()->dump_object_pool(objs);
 942 
 943     // Build first class objects to pass to scope
 944     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 945     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 946     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 947 
 948     // Make method available for all Safepoints
 949     ciMethod* scope_method = method ? method : _method;
 950     // Describe the scope here
 951     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 952     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 953     // Now we can describe the scope.
 954     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 955   } // End jvms loop
 956 
 957   // Mark the end of the scope set.
 958   debug_info()->end_safepoint(safepoint_pc_offset);
 959 }
 960 
 961 
 962 
 963 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 964 class NonSafepointEmitter {
 965   Compile*  C;
 966   JVMState* _pending_jvms;
 967   int       _pending_offset;
 968 
 969   void emit_non_safepoint();
 970 
 971  public:
 972   NonSafepointEmitter(Compile* compile) {
 973     this->C = compile;
 974     _pending_jvms = NULL;
 975     _pending_offset = 0;
 976   }
 977 
 978   void observe_instruction(Node* n, int pc_offset) {
 979     if (!C->debug_info()->recording_non_safepoints())  return;
 980 
 981     Node_Notes* nn = C->node_notes_at(n->_idx);
 982     if (nn == NULL || nn->jvms() == NULL)  return;
 983     if (_pending_jvms != NULL &&
 984         _pending_jvms->same_calls_as(nn->jvms())) {
 985       // Repeated JVMS?  Stretch it up here.
 986       _pending_offset = pc_offset;
 987     } else {
 988       if (_pending_jvms != NULL &&
 989           _pending_offset < pc_offset) {
 990         emit_non_safepoint();
 991       }
 992       _pending_jvms = NULL;
 993       if (pc_offset > C->debug_info()->last_pc_offset()) {
 994         // This is the only way _pending_jvms can become non-NULL:
 995         _pending_jvms = nn->jvms();
 996         _pending_offset = pc_offset;
 997       }
 998     }
 999   }
1000 
1001   // Stay out of the way of real safepoints:
1002   void observe_safepoint(JVMState* jvms, int pc_offset) {
1003     if (_pending_jvms != NULL &&
1004         !_pending_jvms->same_calls_as(jvms) &&
1005         _pending_offset < pc_offset) {
1006       emit_non_safepoint();
1007     }
1008     _pending_jvms = NULL;
1009   }
1010 
1011   void flush_at_end() {
1012     if (_pending_jvms != NULL) {
1013       emit_non_safepoint();
1014     }
1015     _pending_jvms = NULL;
1016   }
1017 };
1018 
1019 void NonSafepointEmitter::emit_non_safepoint() {
1020   JVMState* youngest_jvms = _pending_jvms;
1021   int       pc_offset     = _pending_offset;
1022 
1023   // Clear it now:
1024   _pending_jvms = NULL;
1025 
1026   DebugInformationRecorder* debug_info = C->debug_info();
1027   assert(debug_info->recording_non_safepoints(), "sanity");
1028 
1029   debug_info->add_non_safepoint(pc_offset);
1030   int max_depth = youngest_jvms->depth();
1031 
1032   // Visit scopes from oldest to youngest.
1033   for (int depth = 1; depth <= max_depth; depth++) {
1034     JVMState* jvms = youngest_jvms->of_depth(depth);
1035     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1036     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1037     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1038   }
1039 
1040   // Mark the end of the scope set.
1041   debug_info->end_non_safepoint(pc_offset);
1042 }
1043 
1044 //------------------------------init_buffer------------------------------------
1045 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1046 
1047   // Set the initially allocated size
1048   int  code_req   = initial_code_capacity;
1049   int  locs_req   = initial_locs_capacity;
1050   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1051   int  const_req  = initial_const_capacity;
1052 
1053   int  pad_req    = NativeCall::instruction_size;
1054   // The extra spacing after the code is necessary on some platforms.
1055   // Sometimes we need to patch in a jump after the last instruction,
1056   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1057 
1058   // Compute the byte offset where we can store the deopt pc.
1059   if (fixed_slots() != 0) {
1060     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1061   }
1062 
1063   // Compute prolog code size
1064   _method_size = 0;
1065   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1066 #ifdef IA64
1067   if (save_argument_registers()) {
1068     // 4815101: this is a stub with implicit and unknown precision fp args.
1069     // The usual spill mechanism can only generate stfd's in this case, which
1070     // doesn't work if the fp reg to spill contains a single-precision denorm.
1071     // Instead, we hack around the normal spill mechanism using stfspill's and
1072     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1073     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1074     //
1075     // If we ever implement 16-byte 'registers' == stack slots, we can
1076     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1077     // instead of stfd/stfs/ldfd/ldfs.
1078     _frame_slots += 8*(16/BytesPerInt);
1079   }
1080 #endif
1081   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1082 
1083   if (has_mach_constant_base_node()) {
1084     // Fill the constant table.
1085     // Note:  This must happen before shorten_branches.
1086     for (uint i = 0; i < _cfg->_num_blocks; i++) {
1087       Block* b = _cfg->_blocks[i];
1088 
1089       for (uint j = 0; j < b->_nodes.size(); j++) {
1090         Node* n = b->_nodes[j];
1091 
1092         // If the node is a MachConstantNode evaluate the constant
1093         // value section.
1094         if (n->is_MachConstant()) {
1095           MachConstantNode* machcon = n->as_MachConstant();
1096           machcon->eval_constant(C);
1097         }
1098       }
1099     }
1100 
1101     // Calculate the offsets of the constants and the size of the
1102     // constant table (including the padding to the next section).
1103     constant_table().calculate_offsets_and_size();
1104     const_req = constant_table().size();
1105   }
1106 
1107   // Initialize the space for the BufferBlob used to find and verify
1108   // instruction size in MachNode::emit_size()
1109   init_scratch_buffer_blob(const_req);
1110   if (failing())  return NULL; // Out of memory
1111 
1112   // Pre-compute the length of blocks and replace
1113   // long branches with short if machine supports it.
1114   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1115 
1116   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1117   int exception_handler_req = size_exception_handler();
1118   int deopt_handler_req = size_deopt_handler();
1119   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1120   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1121   stub_req += MAX_stubs_size;   // ensure per-stub margin
1122   code_req += MAX_inst_size;    // ensure per-instruction margin
1123 
1124   if (StressCodeBuffers)
1125     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1126 
1127   int total_req =
1128     const_req +
1129     code_req +
1130     pad_req +
1131     stub_req +
1132     exception_handler_req +
1133     deopt_handler_req;               // deopt handler
1134 
1135   if (has_method_handle_invokes())
1136     total_req += deopt_handler_req;  // deopt MH handler
1137 
1138   CodeBuffer* cb = code_buffer();
1139   cb->initialize(total_req, locs_req);
1140 
1141   // Have we run out of code space?
1142   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1143     C->record_failure("CodeCache is full");
1144     return NULL;
1145   }
1146   // Configure the code buffer.
1147   cb->initialize_consts_size(const_req);
1148   cb->initialize_stubs_size(stub_req);
1149   cb->initialize_oop_recorder(env()->oop_recorder());
1150 
1151   // fill in the nop array for bundling computations
1152   MachNode *_nop_list[Bundle::_nop_count];
1153   Bundle::initialize_nops(_nop_list, this);
1154 
1155   return cb;
1156 }
1157 
1158 //------------------------------fill_buffer------------------------------------
1159 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1160   // blk_starts[] contains offsets calculated during short branches processing,
1161   // offsets should not be increased during following steps.
1162 
1163   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1164   // of a loop. It is used to determine the padding for loop alignment.
1165   compute_loop_first_inst_sizes();
1166 
1167   // Create oopmap set.
1168   _oop_map_set = new OopMapSet();
1169 
1170   // !!!!! This preserves old handling of oopmaps for now
1171   debug_info()->set_oopmaps(_oop_map_set);
1172 
1173   uint nblocks  = _cfg->_num_blocks;
1174   // Count and start of implicit null check instructions
1175   uint inct_cnt = 0;
1176   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1177 
1178   // Count and start of calls
1179   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1180 
1181   uint  return_offset = 0;
1182   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1183 
1184   int previous_offset = 0;
1185   int current_offset  = 0;
1186   int last_call_offset = -1;
1187   int last_avoid_back_to_back_offset = -1;
1188 #ifdef ASSERT
1189   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1190   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1191   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1192   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1193 #endif
1194 
1195   // Create an array of unused labels, one for each basic block, if printing is enabled
1196 #ifndef PRODUCT
1197   int *node_offsets      = NULL;
1198   uint node_offset_limit = unique();
1199 
1200   if (print_assembly())
1201     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1202 #endif
1203 
1204   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1205 
1206   // Emit the constant table.
1207   if (has_mach_constant_base_node()) {
1208     constant_table().emit(*cb);
1209   }
1210 
1211   // Create an array of labels, one for each basic block
1212   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1213   for (uint i=0; i <= nblocks; i++) {
1214     blk_labels[i].init();
1215   }
1216 
1217   // ------------------
1218   // Now fill in the code buffer
1219   Node *delay_slot = NULL;
1220 
1221   for (uint i=0; i < nblocks; i++) {
1222     Block *b = _cfg->_blocks[i];
1223 
1224     Node *head = b->head();
1225 
1226     // If this block needs to start aligned (i.e, can be reached other
1227     // than by falling-thru from the previous block), then force the
1228     // start of a new bundle.
1229     if (Pipeline::requires_bundling() && starts_bundle(head))
1230       cb->flush_bundle(true);
1231 
1232 #ifdef ASSERT
1233     if (!b->is_connector()) {
1234       stringStream st;
1235       b->dump_head(_cfg, &st);
1236       MacroAssembler(cb).block_comment(st.as_string());
1237     }
1238     jmp_target[i] = 0;
1239     jmp_offset[i] = 0;
1240     jmp_size[i]   = 0;
1241     jmp_rule[i]   = 0;
1242 #endif
1243     int blk_offset = current_offset;
1244 
1245     // Define the label at the beginning of the basic block
1246     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1247 
1248     uint last_inst = b->_nodes.size();
1249 
1250     // Emit block normally, except for last instruction.
1251     // Emit means "dump code bits into code buffer".
1252     for (uint j = 0; j<last_inst; j++) {
1253 
1254       // Get the node
1255       Node* n = b->_nodes[j];
1256 
1257       // See if delay slots are supported
1258       if (valid_bundle_info(n) &&
1259           node_bundling(n)->used_in_unconditional_delay()) {
1260         assert(delay_slot == NULL, "no use of delay slot node");
1261         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1262 
1263         delay_slot = n;
1264         continue;
1265       }
1266 
1267       // If this starts a new instruction group, then flush the current one
1268       // (but allow split bundles)
1269       if (Pipeline::requires_bundling() && starts_bundle(n))
1270         cb->flush_bundle(false);
1271 
1272       // The following logic is duplicated in the code ifdeffed for
1273       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1274       // should be factored out.  Or maybe dispersed to the nodes?
1275 
1276       // Special handling for SafePoint/Call Nodes
1277       bool is_mcall = false;
1278       if (n->is_Mach()) {
1279         MachNode *mach = n->as_Mach();
1280         is_mcall = n->is_MachCall();
1281         bool is_sfn = n->is_MachSafePoint();
1282 
1283         // If this requires all previous instructions be flushed, then do so
1284         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1285           cb->flush_bundle(true);
1286           current_offset = cb->insts_size();
1287         }
1288 
1289         // A padding may be needed again since a previous instruction
1290         // could be moved to delay slot.
1291 
1292         // align the instruction if necessary
1293         int padding = mach->compute_padding(current_offset);
1294         // Make sure safepoint node for polling is distinct from a call's
1295         // return by adding a nop if needed.
1296         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1297           padding = nop_size;
1298         }
1299         if (padding == 0 && mach->avoid_back_to_back() &&
1300             current_offset == last_avoid_back_to_back_offset) {
1301           // Avoid back to back some instructions.
1302           padding = nop_size;
1303         }
1304 
1305         if(padding > 0) {
1306           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1307           int nops_cnt = padding / nop_size;
1308           MachNode *nop = new (this) MachNopNode(nops_cnt);
1309           b->_nodes.insert(j++, nop);
1310           last_inst++;
1311           _cfg->map_node_to_block(nop, b);
1312           nop->emit(*cb, _regalloc);
1313           cb->flush_bundle(true);
1314           current_offset = cb->insts_size();
1315         }
1316 
1317         // Remember the start of the last call in a basic block
1318         if (is_mcall) {
1319           MachCallNode *mcall = mach->as_MachCall();
1320 
1321           // This destination address is NOT PC-relative
1322           mcall->method_set((intptr_t)mcall->entry_point());
1323 
1324           // Save the return address
1325           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1326 
1327           if (mcall->is_MachCallLeaf()) {
1328             is_mcall = false;
1329             is_sfn = false;
1330           }
1331         }
1332 
1333         // sfn will be valid whenever mcall is valid now because of inheritance
1334         if (is_sfn || is_mcall) {
1335 
1336           // Handle special safepoint nodes for synchronization
1337           if (!is_mcall) {
1338             MachSafePointNode *sfn = mach->as_MachSafePoint();
1339             // !!!!! Stubs only need an oopmap right now, so bail out
1340             if (sfn->jvms()->method() == NULL) {
1341               // Write the oopmap directly to the code blob??!!
1342 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1343               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1344 #             endif
1345               continue;
1346             }
1347           } // End synchronization
1348 
1349           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1350                                            current_offset);
1351           Process_OopMap_Node(mach, current_offset);
1352         } // End if safepoint
1353 
1354         // If this is a null check, then add the start of the previous instruction to the list
1355         else if( mach->is_MachNullCheck() ) {
1356           inct_starts[inct_cnt++] = previous_offset;
1357         }
1358 
1359         // If this is a branch, then fill in the label with the target BB's label
1360         else if (mach->is_MachBranch()) {
1361           // This requires the TRUE branch target be in succs[0]
1362           uint block_num = b->non_connector_successor(0)->_pre_order;
1363 
1364           // Try to replace long branch if delay slot is not used,
1365           // it is mostly for back branches since forward branch's
1366           // distance is not updated yet.
1367           bool delay_slot_is_used = valid_bundle_info(n) &&
1368                                     node_bundling(n)->use_unconditional_delay();
1369           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1370            assert(delay_slot == NULL, "not expecting delay slot node");
1371            int br_size = n->size(_regalloc);
1372             int offset = blk_starts[block_num] - current_offset;
1373             if (block_num >= i) {
1374               // Current and following block's offset are not
1375               // finilized yet, adjust distance by the difference
1376               // between calculated and final offsets of current block.
1377               offset -= (blk_starts[i] - blk_offset);
1378             }
1379             // In the following code a nop could be inserted before
1380             // the branch which will increase the backward distance.
1381             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1382             if (needs_padding && offset <= 0)
1383               offset -= nop_size;
1384 
1385             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1386               // We've got a winner.  Replace this branch.
1387               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1388 
1389               // Update the jmp_size.
1390               int new_size = replacement->size(_regalloc);
1391               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1392               // Insert padding between avoid_back_to_back branches.
1393               if (needs_padding && replacement->avoid_back_to_back()) {
1394                 MachNode *nop = new (this) MachNopNode();
1395                 b->_nodes.insert(j++, nop);
1396                 _cfg->map_node_to_block(nop, b);
1397                 last_inst++;
1398                 nop->emit(*cb, _regalloc);
1399                 cb->flush_bundle(true);
1400                 current_offset = cb->insts_size();
1401               }
1402 #ifdef ASSERT
1403               jmp_target[i] = block_num;
1404               jmp_offset[i] = current_offset - blk_offset;
1405               jmp_size[i]   = new_size;
1406               jmp_rule[i]   = mach->rule();
1407 #endif
1408               b->_nodes.map(j, replacement);
1409               mach->subsume_by(replacement, C);
1410               n    = replacement;
1411               mach = replacement;
1412             }
1413           }
1414           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1415         } else if (mach->ideal_Opcode() == Op_Jump) {
1416           for (uint h = 0; h < b->_num_succs; h++) {
1417             Block* succs_block = b->_succs[h];
1418             for (uint j = 1; j < succs_block->num_preds(); j++) {
1419               Node* jpn = succs_block->pred(j);
1420               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1421                 uint block_num = succs_block->non_connector()->_pre_order;
1422                 Label *blkLabel = &blk_labels[block_num];
1423                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1424               }
1425             }
1426           }
1427         }
1428 
1429 #ifdef ASSERT
1430         // Check that oop-store precedes the card-mark
1431         else if (mach->ideal_Opcode() == Op_StoreCM) {
1432           uint storeCM_idx = j;
1433           int count = 0;
1434           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1435             Node *oop_store = mach->in(prec);  // Precedence edge
1436             if (oop_store == NULL) continue;
1437             count++;
1438             uint i4;
1439             for( i4 = 0; i4 < last_inst; ++i4 ) {
1440               if( b->_nodes[i4] == oop_store ) break;
1441             }
1442             // Note: This test can provide a false failure if other precedence
1443             // edges have been added to the storeCMNode.
1444             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1445           }
1446           assert(count > 0, "storeCM expects at least one precedence edge");
1447         }
1448 #endif
1449 
1450         else if (!n->is_Proj()) {
1451           // Remember the beginning of the previous instruction, in case
1452           // it's followed by a flag-kill and a null-check.  Happens on
1453           // Intel all the time, with add-to-memory kind of opcodes.
1454           previous_offset = current_offset;
1455         }
1456       }
1457 
1458       // Verify that there is sufficient space remaining
1459       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1460       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1461         C->record_failure("CodeCache is full");
1462         return;
1463       }
1464 
1465       // Save the offset for the listing
1466 #ifndef PRODUCT
1467       if (node_offsets && n->_idx < node_offset_limit)
1468         node_offsets[n->_idx] = cb->insts_size();
1469 #endif
1470 
1471       // "Normal" instruction case
1472       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1473       n->emit(*cb, _regalloc);
1474       current_offset  = cb->insts_size();
1475 
1476 #ifdef ASSERT
1477       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1478         n->dump();
1479         assert(false, "wrong size of mach node");
1480       }
1481 #endif
1482       non_safepoints.observe_instruction(n, current_offset);
1483 
1484       // mcall is last "call" that can be a safepoint
1485       // record it so we can see if a poll will directly follow it
1486       // in which case we'll need a pad to make the PcDesc sites unique
1487       // see  5010568. This can be slightly inaccurate but conservative
1488       // in the case that return address is not actually at current_offset.
1489       // This is a small price to pay.
1490 
1491       if (is_mcall) {
1492         last_call_offset = current_offset;
1493       }
1494 
1495       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1496         // Avoid back to back some instructions.
1497         last_avoid_back_to_back_offset = current_offset;
1498       }
1499 
1500       // See if this instruction has a delay slot
1501       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1502         assert(delay_slot != NULL, "expecting delay slot node");
1503 
1504         // Back up 1 instruction
1505         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1506 
1507         // Save the offset for the listing
1508 #ifndef PRODUCT
1509         if (node_offsets && delay_slot->_idx < node_offset_limit)
1510           node_offsets[delay_slot->_idx] = cb->insts_size();
1511 #endif
1512 
1513         // Support a SafePoint in the delay slot
1514         if (delay_slot->is_MachSafePoint()) {
1515           MachNode *mach = delay_slot->as_Mach();
1516           // !!!!! Stubs only need an oopmap right now, so bail out
1517           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1518             // Write the oopmap directly to the code blob??!!
1519 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1520             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1521 #           endif
1522             delay_slot = NULL;
1523             continue;
1524           }
1525 
1526           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1527           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1528                                            adjusted_offset);
1529           // Generate an OopMap entry
1530           Process_OopMap_Node(mach, adjusted_offset);
1531         }
1532 
1533         // Insert the delay slot instruction
1534         delay_slot->emit(*cb, _regalloc);
1535 
1536         // Don't reuse it
1537         delay_slot = NULL;
1538       }
1539 
1540     } // End for all instructions in block
1541 
1542     // If the next block is the top of a loop, pad this block out to align
1543     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1544     if (i < nblocks-1) {
1545       Block *nb = _cfg->_blocks[i+1];
1546       int padding = nb->alignment_padding(current_offset);
1547       if( padding > 0 ) {
1548         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1549         b->_nodes.insert( b->_nodes.size(), nop );
1550         _cfg->map_node_to_block(nop, b);
1551         nop->emit(*cb, _regalloc);
1552         current_offset = cb->insts_size();
1553       }
1554     }
1555     // Verify that the distance for generated before forward
1556     // short branches is still valid.
1557     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1558 
1559     // Save new block start offset
1560     blk_starts[i] = blk_offset;
1561   } // End of for all blocks
1562   blk_starts[nblocks] = current_offset;
1563 
1564   non_safepoints.flush_at_end();
1565 
1566   // Offset too large?
1567   if (failing())  return;
1568 
1569   // Define a pseudo-label at the end of the code
1570   MacroAssembler(cb).bind( blk_labels[nblocks] );
1571 
1572   // Compute the size of the first block
1573   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1574 
1575   assert(cb->insts_size() < 500000, "method is unreasonably large");
1576 
1577 #ifdef ASSERT
1578   for (uint i = 0; i < nblocks; i++) { // For all blocks
1579     if (jmp_target[i] != 0) {
1580       int br_size = jmp_size[i];
1581       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1582       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1583         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1584         assert(false, "Displacement too large for short jmp");
1585       }
1586     }
1587   }
1588 #endif
1589 
1590   // ------------------
1591 
1592 #ifndef PRODUCT
1593   // Information on the size of the method, without the extraneous code
1594   Scheduling::increment_method_size(cb->insts_size());
1595 #endif
1596 
1597   // ------------------
1598   // Fill in exception table entries.
1599   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1600 
1601   // Only java methods have exception handlers and deopt handlers
1602   if (_method) {
1603     // Emit the exception handler code.
1604     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1605     // Emit the deopt handler code.
1606     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1607 
1608     // Emit the MethodHandle deopt handler code (if required).
1609     if (has_method_handle_invokes()) {
1610       // We can use the same code as for the normal deopt handler, we
1611       // just need a different entry point address.
1612       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1613     }
1614   }
1615 
1616   // One last check for failed CodeBuffer::expand:
1617   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1618     C->record_failure("CodeCache is full");
1619     return;
1620   }
1621 
1622 #ifndef PRODUCT
1623   // Dump the assembly code, including basic-block numbers
1624   if (print_assembly()) {
1625     ttyLocker ttyl;  // keep the following output all in one block
1626     if (!VMThread::should_terminate()) {  // test this under the tty lock
1627       // This output goes directly to the tty, not the compiler log.
1628       // To enable tools to match it up with the compilation activity,
1629       // be sure to tag this tty output with the compile ID.
1630       if (xtty != NULL) {
1631         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1632                    is_osr_compilation()    ? " compile_kind='osr'" :
1633                    "");
1634       }
1635       if (method() != NULL) {
1636         method()->print_metadata();
1637       }
1638       dump_asm(node_offsets, node_offset_limit);
1639       if (xtty != NULL) {
1640         xtty->tail("opto_assembly");
1641       }
1642     }
1643   }
1644 #endif
1645 
1646 }
1647 
1648 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1649   _inc_table.set_size(cnt);
1650 
1651   uint inct_cnt = 0;
1652   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1653     Block *b = _cfg->_blocks[i];
1654     Node *n = NULL;
1655     int j;
1656 
1657     // Find the branch; ignore trailing NOPs.
1658     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1659       n = b->_nodes[j];
1660       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1661         break;
1662     }
1663 
1664     // If we didn't find anything, continue
1665     if( j < 0 ) continue;
1666 
1667     // Compute ExceptionHandlerTable subtable entry and add it
1668     // (skip empty blocks)
1669     if( n->is_Catch() ) {
1670 
1671       // Get the offset of the return from the call
1672       uint call_return = call_returns[b->_pre_order];
1673 #ifdef ASSERT
1674       assert( call_return > 0, "no call seen for this basic block" );
1675       while( b->_nodes[--j]->is_MachProj() ) ;
1676       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1677 #endif
1678       // last instruction is a CatchNode, find it's CatchProjNodes
1679       int nof_succs = b->_num_succs;
1680       // allocate space
1681       GrowableArray<intptr_t> handler_bcis(nof_succs);
1682       GrowableArray<intptr_t> handler_pcos(nof_succs);
1683       // iterate through all successors
1684       for (int j = 0; j < nof_succs; j++) {
1685         Block* s = b->_succs[j];
1686         bool found_p = false;
1687         for( uint k = 1; k < s->num_preds(); k++ ) {
1688           Node *pk = s->pred(k);
1689           if( pk->is_CatchProj() && pk->in(0) == n ) {
1690             const CatchProjNode* p = pk->as_CatchProj();
1691             found_p = true;
1692             // add the corresponding handler bci & pco information
1693             if( p->_con != CatchProjNode::fall_through_index ) {
1694               // p leads to an exception handler (and is not fall through)
1695               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1696               // no duplicates, please
1697               if( !handler_bcis.contains(p->handler_bci()) ) {
1698                 uint block_num = s->non_connector()->_pre_order;
1699                 handler_bcis.append(p->handler_bci());
1700                 handler_pcos.append(blk_labels[block_num].loc_pos());
1701               }
1702             }
1703           }
1704         }
1705         assert(found_p, "no matching predecessor found");
1706         // Note:  Due to empty block removal, one block may have
1707         // several CatchProj inputs, from the same Catch.
1708       }
1709 
1710       // Set the offset of the return from the call
1711       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1712       continue;
1713     }
1714 
1715     // Handle implicit null exception table updates
1716     if( n->is_MachNullCheck() ) {
1717       uint block_num = b->non_connector_successor(0)->_pre_order;
1718       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1719       continue;
1720     }
1721   } // End of for all blocks fill in exception table entries
1722 }
1723 
1724 // Static Variables
1725 #ifndef PRODUCT
1726 uint Scheduling::_total_nop_size = 0;
1727 uint Scheduling::_total_method_size = 0;
1728 uint Scheduling::_total_branches = 0;
1729 uint Scheduling::_total_unconditional_delays = 0;
1730 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1731 #endif
1732 
1733 // Initializer for class Scheduling
1734 
1735 Scheduling::Scheduling(Arena *arena, Compile &compile)
1736   : _arena(arena),
1737     _cfg(compile.cfg()),
1738     _regalloc(compile.regalloc()),
1739     _reg_node(arena),
1740     _bundle_instr_count(0),
1741     _bundle_cycle_number(0),
1742     _scheduled(arena),
1743     _available(arena),
1744     _next_node(NULL),
1745     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1746     _pinch_free_list(arena)
1747 #ifndef PRODUCT
1748   , _branches(0)
1749   , _unconditional_delays(0)
1750 #endif
1751 {
1752   // Create a MachNopNode
1753   _nop = new (&compile) MachNopNode();
1754 
1755   // Now that the nops are in the array, save the count
1756   // (but allow entries for the nops)
1757   _node_bundling_limit = compile.unique();
1758   uint node_max = _regalloc->node_regs_max_index();
1759 
1760   compile.set_node_bundling_limit(_node_bundling_limit);
1761 
1762   // This one is persistent within the Compile class
1763   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1764 
1765   // Allocate space for fixed-size arrays
1766   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1767   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1768   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1769 
1770   // Clear the arrays
1771   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1772   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1773   memset(_uses,               0, node_max * sizeof(short));
1774   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1775 
1776   // Clear the bundling information
1777   memcpy(_bundle_use_elements,
1778     Pipeline_Use::elaborated_elements,
1779     sizeof(Pipeline_Use::elaborated_elements));
1780 
1781   // Get the last node
1782   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1783 
1784   _next_node = bb->_nodes[bb->_nodes.size()-1];
1785 }
1786 
1787 #ifndef PRODUCT
1788 // Scheduling destructor
1789 Scheduling::~Scheduling() {
1790   _total_branches             += _branches;
1791   _total_unconditional_delays += _unconditional_delays;
1792 }
1793 #endif
1794 
1795 // Step ahead "i" cycles
1796 void Scheduling::step(uint i) {
1797 
1798   Bundle *bundle = node_bundling(_next_node);
1799   bundle->set_starts_bundle();
1800 
1801   // Update the bundle record, but leave the flags information alone
1802   if (_bundle_instr_count > 0) {
1803     bundle->set_instr_count(_bundle_instr_count);
1804     bundle->set_resources_used(_bundle_use.resourcesUsed());
1805   }
1806 
1807   // Update the state information
1808   _bundle_instr_count = 0;
1809   _bundle_cycle_number += i;
1810   _bundle_use.step(i);
1811 }
1812 
1813 void Scheduling::step_and_clear() {
1814   Bundle *bundle = node_bundling(_next_node);
1815   bundle->set_starts_bundle();
1816 
1817   // Update the bundle record
1818   if (_bundle_instr_count > 0) {
1819     bundle->set_instr_count(_bundle_instr_count);
1820     bundle->set_resources_used(_bundle_use.resourcesUsed());
1821 
1822     _bundle_cycle_number += 1;
1823   }
1824 
1825   // Clear the bundling information
1826   _bundle_instr_count = 0;
1827   _bundle_use.reset();
1828 
1829   memcpy(_bundle_use_elements,
1830     Pipeline_Use::elaborated_elements,
1831     sizeof(Pipeline_Use::elaborated_elements));
1832 }
1833 
1834 //------------------------------ScheduleAndBundle------------------------------
1835 // Perform instruction scheduling and bundling over the sequence of
1836 // instructions in backwards order.
1837 void Compile::ScheduleAndBundle() {
1838 
1839   // Don't optimize this if it isn't a method
1840   if (!_method)
1841     return;
1842 
1843   // Don't optimize this if scheduling is disabled
1844   if (!do_scheduling())
1845     return;
1846 
1847   // Scheduling code works only with pairs (8 bytes) maximum.
1848   if (max_vector_size() > 8)
1849     return;
1850 
1851   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1852 
1853   // Create a data structure for all the scheduling information
1854   Scheduling scheduling(Thread::current()->resource_area(), *this);
1855 
1856   // Walk backwards over each basic block, computing the needed alignment
1857   // Walk over all the basic blocks
1858   scheduling.DoScheduling();
1859 }
1860 
1861 //------------------------------ComputeLocalLatenciesForward-------------------
1862 // Compute the latency of all the instructions.  This is fairly simple,
1863 // because we already have a legal ordering.  Walk over the instructions
1864 // from first to last, and compute the latency of the instruction based
1865 // on the latency of the preceding instruction(s).
1866 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1867 #ifndef PRODUCT
1868   if (_cfg->C->trace_opto_output())
1869     tty->print("# -> ComputeLocalLatenciesForward\n");
1870 #endif
1871 
1872   // Walk over all the schedulable instructions
1873   for( uint j=_bb_start; j < _bb_end; j++ ) {
1874 
1875     // This is a kludge, forcing all latency calculations to start at 1.
1876     // Used to allow latency 0 to force an instruction to the beginning
1877     // of the bb
1878     uint latency = 1;
1879     Node *use = bb->_nodes[j];
1880     uint nlen = use->len();
1881 
1882     // Walk over all the inputs
1883     for ( uint k=0; k < nlen; k++ ) {
1884       Node *def = use->in(k);
1885       if (!def)
1886         continue;
1887 
1888       uint l = _node_latency[def->_idx] + use->latency(k);
1889       if (latency < l)
1890         latency = l;
1891     }
1892 
1893     _node_latency[use->_idx] = latency;
1894 
1895 #ifndef PRODUCT
1896     if (_cfg->C->trace_opto_output()) {
1897       tty->print("# latency %4d: ", latency);
1898       use->dump();
1899     }
1900 #endif
1901   }
1902 
1903 #ifndef PRODUCT
1904   if (_cfg->C->trace_opto_output())
1905     tty->print("# <- ComputeLocalLatenciesForward\n");
1906 #endif
1907 
1908 } // end ComputeLocalLatenciesForward
1909 
1910 // See if this node fits into the present instruction bundle
1911 bool Scheduling::NodeFitsInBundle(Node *n) {
1912   uint n_idx = n->_idx;
1913 
1914   // If this is the unconditional delay instruction, then it fits
1915   if (n == _unconditional_delay_slot) {
1916 #ifndef PRODUCT
1917     if (_cfg->C->trace_opto_output())
1918       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1919 #endif
1920     return (true);
1921   }
1922 
1923   // If the node cannot be scheduled this cycle, skip it
1924   if (_current_latency[n_idx] > _bundle_cycle_number) {
1925 #ifndef PRODUCT
1926     if (_cfg->C->trace_opto_output())
1927       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1928         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1929 #endif
1930     return (false);
1931   }
1932 
1933   const Pipeline *node_pipeline = n->pipeline();
1934 
1935   uint instruction_count = node_pipeline->instructionCount();
1936   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1937     instruction_count = 0;
1938   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1939     instruction_count++;
1940 
1941   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1942 #ifndef PRODUCT
1943     if (_cfg->C->trace_opto_output())
1944       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1945         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1946 #endif
1947     return (false);
1948   }
1949 
1950   // Don't allow non-machine nodes to be handled this way
1951   if (!n->is_Mach() && instruction_count == 0)
1952     return (false);
1953 
1954   // See if there is any overlap
1955   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1956 
1957   if (delay > 0) {
1958 #ifndef PRODUCT
1959     if (_cfg->C->trace_opto_output())
1960       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1961 #endif
1962     return false;
1963   }
1964 
1965 #ifndef PRODUCT
1966   if (_cfg->C->trace_opto_output())
1967     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1968 #endif
1969 
1970   return true;
1971 }
1972 
1973 Node * Scheduling::ChooseNodeToBundle() {
1974   uint siz = _available.size();
1975 
1976   if (siz == 0) {
1977 
1978 #ifndef PRODUCT
1979     if (_cfg->C->trace_opto_output())
1980       tty->print("#   ChooseNodeToBundle: NULL\n");
1981 #endif
1982     return (NULL);
1983   }
1984 
1985   // Fast path, if only 1 instruction in the bundle
1986   if (siz == 1) {
1987 #ifndef PRODUCT
1988     if (_cfg->C->trace_opto_output()) {
1989       tty->print("#   ChooseNodeToBundle (only 1): ");
1990       _available[0]->dump();
1991     }
1992 #endif
1993     return (_available[0]);
1994   }
1995 
1996   // Don't bother, if the bundle is already full
1997   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1998     for ( uint i = 0; i < siz; i++ ) {
1999       Node *n = _available[i];
2000 
2001       // Skip projections, we'll handle them another way
2002       if (n->is_Proj())
2003         continue;
2004 
2005       // This presupposed that instructions are inserted into the
2006       // available list in a legality order; i.e. instructions that
2007       // must be inserted first are at the head of the list
2008       if (NodeFitsInBundle(n)) {
2009 #ifndef PRODUCT
2010         if (_cfg->C->trace_opto_output()) {
2011           tty->print("#   ChooseNodeToBundle: ");
2012           n->dump();
2013         }
2014 #endif
2015         return (n);
2016       }
2017     }
2018   }
2019 
2020   // Nothing fits in this bundle, choose the highest priority
2021 #ifndef PRODUCT
2022   if (_cfg->C->trace_opto_output()) {
2023     tty->print("#   ChooseNodeToBundle: ");
2024     _available[0]->dump();
2025   }
2026 #endif
2027 
2028   return _available[0];
2029 }
2030 
2031 //------------------------------AddNodeToAvailableList-------------------------
2032 void Scheduling::AddNodeToAvailableList(Node *n) {
2033   assert( !n->is_Proj(), "projections never directly made available" );
2034 #ifndef PRODUCT
2035   if (_cfg->C->trace_opto_output()) {
2036     tty->print("#   AddNodeToAvailableList: ");
2037     n->dump();
2038   }
2039 #endif
2040 
2041   int latency = _current_latency[n->_idx];
2042 
2043   // Insert in latency order (insertion sort)
2044   uint i;
2045   for ( i=0; i < _available.size(); i++ )
2046     if (_current_latency[_available[i]->_idx] > latency)
2047       break;
2048 
2049   // Special Check for compares following branches
2050   if( n->is_Mach() && _scheduled.size() > 0 ) {
2051     int op = n->as_Mach()->ideal_Opcode();
2052     Node *last = _scheduled[0];
2053     if( last->is_MachIf() && last->in(1) == n &&
2054         ( op == Op_CmpI ||
2055           op == Op_CmpU ||
2056           op == Op_CmpP ||
2057           op == Op_CmpF ||
2058           op == Op_CmpD ||
2059           op == Op_CmpL ) ) {
2060 
2061       // Recalculate position, moving to front of same latency
2062       for ( i=0 ; i < _available.size(); i++ )
2063         if (_current_latency[_available[i]->_idx] >= latency)
2064           break;
2065     }
2066   }
2067 
2068   // Insert the node in the available list
2069   _available.insert(i, n);
2070 
2071 #ifndef PRODUCT
2072   if (_cfg->C->trace_opto_output())
2073     dump_available();
2074 #endif
2075 }
2076 
2077 //------------------------------DecrementUseCounts-----------------------------
2078 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2079   for ( uint i=0; i < n->len(); i++ ) {
2080     Node *def = n->in(i);
2081     if (!def) continue;
2082     if( def->is_Proj() )        // If this is a machine projection, then
2083       def = def->in(0);         // propagate usage thru to the base instruction
2084 
2085     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2086       continue;
2087     }
2088 
2089     // Compute the latency
2090     uint l = _bundle_cycle_number + n->latency(i);
2091     if (_current_latency[def->_idx] < l)
2092       _current_latency[def->_idx] = l;
2093 
2094     // If this does not have uses then schedule it
2095     if ((--_uses[def->_idx]) == 0)
2096       AddNodeToAvailableList(def);
2097   }
2098 }
2099 
2100 //------------------------------AddNodeToBundle--------------------------------
2101 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2102 #ifndef PRODUCT
2103   if (_cfg->C->trace_opto_output()) {
2104     tty->print("#   AddNodeToBundle: ");
2105     n->dump();
2106   }
2107 #endif
2108 
2109   // Remove this from the available list
2110   uint i;
2111   for (i = 0; i < _available.size(); i++)
2112     if (_available[i] == n)
2113       break;
2114   assert(i < _available.size(), "entry in _available list not found");
2115   _available.remove(i);
2116 
2117   // See if this fits in the current bundle
2118   const Pipeline *node_pipeline = n->pipeline();
2119   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2120 
2121   // Check for instructions to be placed in the delay slot. We
2122   // do this before we actually schedule the current instruction,
2123   // because the delay slot follows the current instruction.
2124   if (Pipeline::_branch_has_delay_slot &&
2125       node_pipeline->hasBranchDelay() &&
2126       !_unconditional_delay_slot) {
2127 
2128     uint siz = _available.size();
2129 
2130     // Conditional branches can support an instruction that
2131     // is unconditionally executed and not dependent by the
2132     // branch, OR a conditionally executed instruction if
2133     // the branch is taken.  In practice, this means that
2134     // the first instruction at the branch target is
2135     // copied to the delay slot, and the branch goes to
2136     // the instruction after that at the branch target
2137     if ( n->is_MachBranch() ) {
2138 
2139       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2140       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2141 
2142 #ifndef PRODUCT
2143       _branches++;
2144 #endif
2145 
2146       // At least 1 instruction is on the available list
2147       // that is not dependent on the branch
2148       for (uint i = 0; i < siz; i++) {
2149         Node *d = _available[i];
2150         const Pipeline *avail_pipeline = d->pipeline();
2151 
2152         // Don't allow safepoints in the branch shadow, that will
2153         // cause a number of difficulties
2154         if ( avail_pipeline->instructionCount() == 1 &&
2155             !avail_pipeline->hasMultipleBundles() &&
2156             !avail_pipeline->hasBranchDelay() &&
2157             Pipeline::instr_has_unit_size() &&
2158             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2159             NodeFitsInBundle(d) &&
2160             !node_bundling(d)->used_in_delay()) {
2161 
2162           if (d->is_Mach() && !d->is_MachSafePoint()) {
2163             // A node that fits in the delay slot was found, so we need to
2164             // set the appropriate bits in the bundle pipeline information so
2165             // that it correctly indicates resource usage.  Later, when we
2166             // attempt to add this instruction to the bundle, we will skip
2167             // setting the resource usage.
2168             _unconditional_delay_slot = d;
2169             node_bundling(n)->set_use_unconditional_delay();
2170             node_bundling(d)->set_used_in_unconditional_delay();
2171             _bundle_use.add_usage(avail_pipeline->resourceUse());
2172             _current_latency[d->_idx] = _bundle_cycle_number;
2173             _next_node = d;
2174             ++_bundle_instr_count;
2175 #ifndef PRODUCT
2176             _unconditional_delays++;
2177 #endif
2178             break;
2179           }
2180         }
2181       }
2182     }
2183 
2184     // No delay slot, add a nop to the usage
2185     if (!_unconditional_delay_slot) {
2186       // See if adding an instruction in the delay slot will overflow
2187       // the bundle.
2188       if (!NodeFitsInBundle(_nop)) {
2189 #ifndef PRODUCT
2190         if (_cfg->C->trace_opto_output())
2191           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2192 #endif
2193         step(1);
2194       }
2195 
2196       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2197       _next_node = _nop;
2198       ++_bundle_instr_count;
2199     }
2200 
2201     // See if the instruction in the delay slot requires a
2202     // step of the bundles
2203     if (!NodeFitsInBundle(n)) {
2204 #ifndef PRODUCT
2205         if (_cfg->C->trace_opto_output())
2206           tty->print("#  *** STEP(branch won't fit) ***\n");
2207 #endif
2208         // Update the state information
2209         _bundle_instr_count = 0;
2210         _bundle_cycle_number += 1;
2211         _bundle_use.step(1);
2212     }
2213   }
2214 
2215   // Get the number of instructions
2216   uint instruction_count = node_pipeline->instructionCount();
2217   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2218     instruction_count = 0;
2219 
2220   // Compute the latency information
2221   uint delay = 0;
2222 
2223   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2224     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2225     if (relative_latency < 0)
2226       relative_latency = 0;
2227 
2228     delay = _bundle_use.full_latency(relative_latency, node_usage);
2229 
2230     // Does not fit in this bundle, start a new one
2231     if (delay > 0) {
2232       step(delay);
2233 
2234 #ifndef PRODUCT
2235       if (_cfg->C->trace_opto_output())
2236         tty->print("#  *** STEP(%d) ***\n", delay);
2237 #endif
2238     }
2239   }
2240 
2241   // If this was placed in the delay slot, ignore it
2242   if (n != _unconditional_delay_slot) {
2243 
2244     if (delay == 0) {
2245       if (node_pipeline->hasMultipleBundles()) {
2246 #ifndef PRODUCT
2247         if (_cfg->C->trace_opto_output())
2248           tty->print("#  *** STEP(multiple instructions) ***\n");
2249 #endif
2250         step(1);
2251       }
2252 
2253       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2254 #ifndef PRODUCT
2255         if (_cfg->C->trace_opto_output())
2256           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2257             instruction_count + _bundle_instr_count,
2258             Pipeline::_max_instrs_per_cycle);
2259 #endif
2260         step(1);
2261       }
2262     }
2263 
2264     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2265       _bundle_instr_count++;
2266 
2267     // Set the node's latency
2268     _current_latency[n->_idx] = _bundle_cycle_number;
2269 
2270     // Now merge the functional unit information
2271     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2272       _bundle_use.add_usage(node_usage);
2273 
2274     // Increment the number of instructions in this bundle
2275     _bundle_instr_count += instruction_count;
2276 
2277     // Remember this node for later
2278     if (n->is_Mach())
2279       _next_node = n;
2280   }
2281 
2282   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2283   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2284   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2285   // into the block.  All other scheduled nodes get put in the schedule here.
2286   int op = n->Opcode();
2287   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2288       (op != Op_Node &&         // Not an unused antidepedence node and
2289        // not an unallocated boxlock
2290        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2291 
2292     // Push any trailing projections
2293     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2294       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2295         Node *foi = n->fast_out(i);
2296         if( foi->is_Proj() )
2297           _scheduled.push(foi);
2298       }
2299     }
2300 
2301     // Put the instruction in the schedule list
2302     _scheduled.push(n);
2303   }
2304 
2305 #ifndef PRODUCT
2306   if (_cfg->C->trace_opto_output())
2307     dump_available();
2308 #endif
2309 
2310   // Walk all the definitions, decrementing use counts, and
2311   // if a definition has a 0 use count, place it in the available list.
2312   DecrementUseCounts(n,bb);
2313 }
2314 
2315 //------------------------------ComputeUseCount--------------------------------
2316 // This method sets the use count within a basic block.  We will ignore all
2317 // uses outside the current basic block.  As we are doing a backwards walk,
2318 // any node we reach that has a use count of 0 may be scheduled.  This also
2319 // avoids the problem of cyclic references from phi nodes, as long as phi
2320 // nodes are at the front of the basic block.  This method also initializes
2321 // the available list to the set of instructions that have no uses within this
2322 // basic block.
2323 void Scheduling::ComputeUseCount(const Block *bb) {
2324 #ifndef PRODUCT
2325   if (_cfg->C->trace_opto_output())
2326     tty->print("# -> ComputeUseCount\n");
2327 #endif
2328 
2329   // Clear the list of available and scheduled instructions, just in case
2330   _available.clear();
2331   _scheduled.clear();
2332 
2333   // No delay slot specified
2334   _unconditional_delay_slot = NULL;
2335 
2336 #ifdef ASSERT
2337   for( uint i=0; i < bb->_nodes.size(); i++ )
2338     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2339 #endif
2340 
2341   // Force the _uses count to never go to zero for unscheduable pieces
2342   // of the block
2343   for( uint k = 0; k < _bb_start; k++ )
2344     _uses[bb->_nodes[k]->_idx] = 1;
2345   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2346     _uses[bb->_nodes[l]->_idx] = 1;
2347 
2348   // Iterate backwards over the instructions in the block.  Don't count the
2349   // branch projections at end or the block header instructions.
2350   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2351     Node *n = bb->_nodes[j];
2352     if( n->is_Proj() ) continue; // Projections handled another way
2353 
2354     // Account for all uses
2355     for ( uint k = 0; k < n->len(); k++ ) {
2356       Node *inp = n->in(k);
2357       if (!inp) continue;
2358       assert(inp != n, "no cycles allowed" );
2359       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2360         if (inp->is_Proj()) { // Skip through Proj's
2361           inp = inp->in(0);
2362         }
2363         ++_uses[inp->_idx];     // Count 1 block-local use
2364       }
2365     }
2366 
2367     // If this instruction has a 0 use count, then it is available
2368     if (!_uses[n->_idx]) {
2369       _current_latency[n->_idx] = _bundle_cycle_number;
2370       AddNodeToAvailableList(n);
2371     }
2372 
2373 #ifndef PRODUCT
2374     if (_cfg->C->trace_opto_output()) {
2375       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2376       n->dump();
2377     }
2378 #endif
2379   }
2380 
2381 #ifndef PRODUCT
2382   if (_cfg->C->trace_opto_output())
2383     tty->print("# <- ComputeUseCount\n");
2384 #endif
2385 }
2386 
2387 // This routine performs scheduling on each basic block in reverse order,
2388 // using instruction latencies and taking into account function unit
2389 // availability.
2390 void Scheduling::DoScheduling() {
2391 #ifndef PRODUCT
2392   if (_cfg->C->trace_opto_output())
2393     tty->print("# -> DoScheduling\n");
2394 #endif
2395 
2396   Block *succ_bb = NULL;
2397   Block *bb;
2398 
2399   // Walk over all the basic blocks in reverse order
2400   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2401     bb = _cfg->_blocks[i];
2402 
2403 #ifndef PRODUCT
2404     if (_cfg->C->trace_opto_output()) {
2405       tty->print("#  Schedule BB#%03d (initial)\n", i);
2406       for (uint j = 0; j < bb->_nodes.size(); j++)
2407         bb->_nodes[j]->dump();
2408     }
2409 #endif
2410 
2411     // On the head node, skip processing
2412     if( bb == _cfg->_broot )
2413       continue;
2414 
2415     // Skip empty, connector blocks
2416     if (bb->is_connector())
2417       continue;
2418 
2419     // If the following block is not the sole successor of
2420     // this one, then reset the pipeline information
2421     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2422 #ifndef PRODUCT
2423       if (_cfg->C->trace_opto_output()) {
2424         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2425                    _next_node->_idx, _bundle_instr_count);
2426       }
2427 #endif
2428       step_and_clear();
2429     }
2430 
2431     // Leave untouched the starting instruction, any Phis, a CreateEx node
2432     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2433     _bb_end = bb->_nodes.size()-1;
2434     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2435       Node *n = bb->_nodes[_bb_start];
2436       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2437       // Also, MachIdealNodes do not get scheduled
2438       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2439       MachNode *mach = n->as_Mach();
2440       int iop = mach->ideal_Opcode();
2441       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2442       if( iop == Op_Con ) continue;      // Do not schedule Top
2443       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2444           mach->pipeline() == MachNode::pipeline_class() &&
2445           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2446         continue;
2447       break;                    // Funny loop structure to be sure...
2448     }
2449     // Compute last "interesting" instruction in block - last instruction we
2450     // might schedule.  _bb_end points just after last schedulable inst.  We
2451     // normally schedule conditional branches (despite them being forced last
2452     // in the block), because they have delay slots we can fill.  Calls all
2453     // have their delay slots filled in the template expansions, so we don't
2454     // bother scheduling them.
2455     Node *last = bb->_nodes[_bb_end];
2456     // Ignore trailing NOPs.
2457     while (_bb_end > 0 && last->is_Mach() &&
2458            last->as_Mach()->ideal_Opcode() == Op_Con) {
2459       last = bb->_nodes[--_bb_end];
2460     }
2461     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2462     if( last->is_Catch() ||
2463        // Exclude unreachable path case when Halt node is in a separate block.
2464        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2465       // There must be a prior call.  Skip it.
2466       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2467         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2468       }
2469     } else if( last->is_MachNullCheck() ) {
2470       // Backup so the last null-checked memory instruction is
2471       // outside the schedulable range. Skip over the nullcheck,
2472       // projection, and the memory nodes.
2473       Node *mem = last->in(1);
2474       do {
2475         _bb_end--;
2476       } while (mem != bb->_nodes[_bb_end]);
2477     } else {
2478       // Set _bb_end to point after last schedulable inst.
2479       _bb_end++;
2480     }
2481 
2482     assert( _bb_start <= _bb_end, "inverted block ends" );
2483 
2484     // Compute the register antidependencies for the basic block
2485     ComputeRegisterAntidependencies(bb);
2486     if (_cfg->C->failing())  return;  // too many D-U pinch points
2487 
2488     // Compute intra-bb latencies for the nodes
2489     ComputeLocalLatenciesForward(bb);
2490 
2491     // Compute the usage within the block, and set the list of all nodes
2492     // in the block that have no uses within the block.
2493     ComputeUseCount(bb);
2494 
2495     // Schedule the remaining instructions in the block
2496     while ( _available.size() > 0 ) {
2497       Node *n = ChooseNodeToBundle();
2498       guarantee(n != NULL, "no nodes available");
2499       AddNodeToBundle(n,bb);
2500     }
2501 
2502     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2503 #ifdef ASSERT
2504     for( uint l = _bb_start; l < _bb_end; l++ ) {
2505       Node *n = bb->_nodes[l];
2506       uint m;
2507       for( m = 0; m < _bb_end-_bb_start; m++ )
2508         if( _scheduled[m] == n )
2509           break;
2510       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2511     }
2512 #endif
2513 
2514     // Now copy the instructions (in reverse order) back to the block
2515     for ( uint k = _bb_start; k < _bb_end; k++ )
2516       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2517 
2518 #ifndef PRODUCT
2519     if (_cfg->C->trace_opto_output()) {
2520       tty->print("#  Schedule BB#%03d (final)\n", i);
2521       uint current = 0;
2522       for (uint j = 0; j < bb->_nodes.size(); j++) {
2523         Node *n = bb->_nodes[j];
2524         if( valid_bundle_info(n) ) {
2525           Bundle *bundle = node_bundling(n);
2526           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2527             tty->print("*** Bundle: ");
2528             bundle->dump();
2529           }
2530           n->dump();
2531         }
2532       }
2533     }
2534 #endif
2535 #ifdef ASSERT
2536   verify_good_schedule(bb,"after block local scheduling");
2537 #endif
2538   }
2539 
2540 #ifndef PRODUCT
2541   if (_cfg->C->trace_opto_output())
2542     tty->print("# <- DoScheduling\n");
2543 #endif
2544 
2545   // Record final node-bundling array location
2546   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2547 
2548 } // end DoScheduling
2549 
2550 //------------------------------verify_good_schedule---------------------------
2551 // Verify that no live-range used in the block is killed in the block by a
2552 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2553 
2554 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2555 static bool edge_from_to( Node *from, Node *to ) {
2556   for( uint i=0; i<from->len(); i++ )
2557     if( from->in(i) == to )
2558       return true;
2559   return false;
2560 }
2561 
2562 #ifdef ASSERT
2563 //------------------------------verify_do_def----------------------------------
2564 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2565   // Check for bad kills
2566   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2567     Node *prior_use = _reg_node[def];
2568     if( prior_use && !edge_from_to(prior_use,n) ) {
2569       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2570       n->dump();
2571       tty->print_cr("...");
2572       prior_use->dump();
2573       assert(edge_from_to(prior_use,n),msg);
2574     }
2575     _reg_node.map(def,NULL); // Kill live USEs
2576   }
2577 }
2578 
2579 //------------------------------verify_good_schedule---------------------------
2580 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2581 
2582   // Zap to something reasonable for the verify code
2583   _reg_node.clear();
2584 
2585   // Walk over the block backwards.  Check to make sure each DEF doesn't
2586   // kill a live value (other than the one it's supposed to).  Add each
2587   // USE to the live set.
2588   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2589     Node *n = b->_nodes[i];
2590     int n_op = n->Opcode();
2591     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2592       // Fat-proj kills a slew of registers
2593       RegMask rm = n->out_RegMask();// Make local copy
2594       while( rm.is_NotEmpty() ) {
2595         OptoReg::Name kill = rm.find_first_elem();
2596         rm.Remove(kill);
2597         verify_do_def( n, kill, msg );
2598       }
2599     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2600       // Get DEF'd registers the normal way
2601       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2602       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2603     }
2604 
2605     // Now make all USEs live
2606     for( uint i=1; i<n->req(); i++ ) {
2607       Node *def = n->in(i);
2608       assert(def != 0, "input edge required");
2609       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2610       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2611       if( OptoReg::is_valid(reg_lo) ) {
2612         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2613         _reg_node.map(reg_lo,n);
2614       }
2615       if( OptoReg::is_valid(reg_hi) ) {
2616         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2617         _reg_node.map(reg_hi,n);
2618       }
2619     }
2620 
2621   }
2622 
2623   // Zap to something reasonable for the Antidependence code
2624   _reg_node.clear();
2625 }
2626 #endif
2627 
2628 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2629 static void add_prec_edge_from_to( Node *from, Node *to ) {
2630   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2631     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2632     from = from->in(0);
2633   }
2634   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2635       !edge_from_to( from, to ) ) // Avoid duplicate edge
2636     from->add_prec(to);
2637 }
2638 
2639 //------------------------------anti_do_def------------------------------------
2640 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2641   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2642     return;
2643 
2644   Node *pinch = _reg_node[def_reg]; // Get pinch point
2645   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2646       is_def ) {    // Check for a true def (not a kill)
2647     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2648     return;
2649   }
2650 
2651   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2652   debug_only( def = (Node*)0xdeadbeef; )
2653 
2654   // After some number of kills there _may_ be a later def
2655   Node *later_def = NULL;
2656 
2657   // Finding a kill requires a real pinch-point.
2658   // Check for not already having a pinch-point.
2659   // Pinch points are Op_Node's.
2660   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2661     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2662     if ( _pinch_free_list.size() > 0) {
2663       pinch = _pinch_free_list.pop();
2664     } else {
2665       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2666     }
2667     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2668       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2669       return;
2670     }
2671     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2672     _reg_node.map(def_reg,pinch); // Record pinch-point
2673     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2674     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2675       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2676       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2677       later_def = NULL;           // and no later def
2678     }
2679     pinch->set_req(0,later_def);  // Hook later def so we can find it
2680   } else {                        // Else have valid pinch point
2681     if( pinch->in(0) )            // If there is a later-def
2682       later_def = pinch->in(0);   // Get it
2683   }
2684 
2685   // Add output-dependence edge from later def to kill
2686   if( later_def )               // If there is some original def
2687     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2688 
2689   // See if current kill is also a use, and so is forced to be the pinch-point.
2690   if( pinch->Opcode() == Op_Node ) {
2691     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2692     for( uint i=1; i<uses->req(); i++ ) {
2693       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2694           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2695         // Yes, found a use/kill pinch-point
2696         pinch->set_req(0,NULL);  //
2697         pinch->replace_by(kill); // Move anti-dep edges up
2698         pinch = kill;
2699         _reg_node.map(def_reg,pinch);
2700         return;
2701       }
2702     }
2703   }
2704 
2705   // Add edge from kill to pinch-point
2706   add_prec_edge_from_to(kill,pinch);
2707 }
2708 
2709 //------------------------------anti_do_use------------------------------------
2710 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2711   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2712     return;
2713   Node *pinch = _reg_node[use_reg]; // Get pinch point
2714   // Check for no later def_reg/kill in block
2715   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2716       // Use has to be block-local as well
2717       _cfg->get_block_for_node(use) == b) {
2718     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2719         pinch->req() == 1 ) {   // pinch not yet in block?
2720       pinch->del_req(0);        // yank pointer to later-def, also set flag
2721       // Insert the pinch-point in the block just after the last use
2722       b->_nodes.insert(b->find_node(use)+1,pinch);
2723       _bb_end++;                // Increase size scheduled region in block
2724     }
2725 
2726     add_prec_edge_from_to(pinch,use);
2727   }
2728 }
2729 
2730 //------------------------------ComputeRegisterAntidependences-----------------
2731 // We insert antidependences between the reads and following write of
2732 // allocated registers to prevent illegal code motion. Hopefully, the
2733 // number of added references should be fairly small, especially as we
2734 // are only adding references within the current basic block.
2735 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2736 
2737 #ifdef ASSERT
2738   verify_good_schedule(b,"before block local scheduling");
2739 #endif
2740 
2741   // A valid schedule, for each register independently, is an endless cycle
2742   // of: a def, then some uses (connected to the def by true dependencies),
2743   // then some kills (defs with no uses), finally the cycle repeats with a new
2744   // def.  The uses are allowed to float relative to each other, as are the
2745   // kills.  No use is allowed to slide past a kill (or def).  This requires
2746   // antidependencies between all uses of a single def and all kills that
2747   // follow, up to the next def.  More edges are redundant, because later defs
2748   // & kills are already serialized with true or antidependencies.  To keep
2749   // the edge count down, we add a 'pinch point' node if there's more than
2750   // one use or more than one kill/def.
2751 
2752   // We add dependencies in one bottom-up pass.
2753 
2754   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2755 
2756   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2757   // register.  If not, we record the DEF/KILL in _reg_node, the
2758   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2759   // "pinch point", a new Node that's in the graph but not in the block.
2760   // We put edges from the prior and current DEF/KILLs to the pinch point.
2761   // We put the pinch point in _reg_node.  If there's already a pinch point
2762   // we merely add an edge from the current DEF/KILL to the pinch point.
2763 
2764   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2765   // put an edge from the pinch point to the USE.
2766 
2767   // To be expedient, the _reg_node array is pre-allocated for the whole
2768   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2769   // or a valid def/kill/pinch-point, or a leftover node from some prior
2770   // block.  Leftover node from some prior block is treated like a NULL (no
2771   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2772   // it being in the current block.
2773   bool fat_proj_seen = false;
2774   uint last_safept = _bb_end-1;
2775   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2776   Node* last_safept_node = end_node;
2777   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2778     Node *n = b->_nodes[i];
2779     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2780     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2781       // Fat-proj kills a slew of registers
2782       // This can add edges to 'n' and obscure whether or not it was a def,
2783       // hence the is_def flag.
2784       fat_proj_seen = true;
2785       RegMask rm = n->out_RegMask();// Make local copy
2786       while( rm.is_NotEmpty() ) {
2787         OptoReg::Name kill = rm.find_first_elem();
2788         rm.Remove(kill);
2789         anti_do_def( b, n, kill, is_def );
2790       }
2791     } else {
2792       // Get DEF'd registers the normal way
2793       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2794       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2795     }
2796 
2797     // Kill projections on a branch should appear to occur on the
2798     // branch, not afterwards, so grab the masks from the projections
2799     // and process them.
2800     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2801       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2802         Node* use = n->fast_out(i);
2803         if (use->is_Proj()) {
2804           RegMask rm = use->out_RegMask();// Make local copy
2805           while( rm.is_NotEmpty() ) {
2806             OptoReg::Name kill = rm.find_first_elem();
2807             rm.Remove(kill);
2808             anti_do_def( b, n, kill, false );
2809           }
2810         }
2811       }
2812     }
2813 
2814     // Check each register used by this instruction for a following DEF/KILL
2815     // that must occur afterward and requires an anti-dependence edge.
2816     for( uint j=0; j<n->req(); j++ ) {
2817       Node *def = n->in(j);
2818       if( def ) {
2819         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2820         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2821         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2822       }
2823     }
2824     // Do not allow defs of new derived values to float above GC
2825     // points unless the base is definitely available at the GC point.
2826 
2827     Node *m = b->_nodes[i];
2828 
2829     // Add precedence edge from following safepoint to use of derived pointer
2830     if( last_safept_node != end_node &&
2831         m != last_safept_node) {
2832       for (uint k = 1; k < m->req(); k++) {
2833         const Type *t = m->in(k)->bottom_type();
2834         if( t->isa_oop_ptr() &&
2835             t->is_ptr()->offset() != 0 ) {
2836           last_safept_node->add_prec( m );
2837           break;
2838         }
2839       }
2840     }
2841 
2842     if( n->jvms() ) {           // Precedence edge from derived to safept
2843       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2844       if( b->_nodes[last_safept] != last_safept_node ) {
2845         last_safept = b->find_node(last_safept_node);
2846       }
2847       for( uint j=last_safept; j > i; j-- ) {
2848         Node *mach = b->_nodes[j];
2849         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2850           mach->add_prec( n );
2851       }
2852       last_safept = i;
2853       last_safept_node = m;
2854     }
2855   }
2856 
2857   if (fat_proj_seen) {
2858     // Garbage collect pinch nodes that were not consumed.
2859     // They are usually created by a fat kill MachProj for a call.
2860     garbage_collect_pinch_nodes();
2861   }
2862 }
2863 
2864 //------------------------------garbage_collect_pinch_nodes-------------------------------
2865 
2866 // Garbage collect pinch nodes for reuse by other blocks.
2867 //
2868 // The block scheduler's insertion of anti-dependence
2869 // edges creates many pinch nodes when the block contains
2870 // 2 or more Calls.  A pinch node is used to prevent a
2871 // combinatorial explosion of edges.  If a set of kills for a
2872 // register is anti-dependent on a set of uses (or defs), rather
2873 // than adding an edge in the graph between each pair of kill
2874 // and use (or def), a pinch is inserted between them:
2875 //
2876 //            use1   use2  use3
2877 //                \   |   /
2878 //                 \  |  /
2879 //                  pinch
2880 //                 /  |  \
2881 //                /   |   \
2882 //            kill1 kill2 kill3
2883 //
2884 // One pinch node is created per register killed when
2885 // the second call is encountered during a backwards pass
2886 // over the block.  Most of these pinch nodes are never
2887 // wired into the graph because the register is never
2888 // used or def'ed in the block.
2889 //
2890 void Scheduling::garbage_collect_pinch_nodes() {
2891 #ifndef PRODUCT
2892     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2893 #endif
2894     int trace_cnt = 0;
2895     for (uint k = 0; k < _reg_node.Size(); k++) {
2896       Node* pinch = _reg_node[k];
2897       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2898           // no predecence input edges
2899           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2900         cleanup_pinch(pinch);
2901         _pinch_free_list.push(pinch);
2902         _reg_node.map(k, NULL);
2903 #ifndef PRODUCT
2904         if (_cfg->C->trace_opto_output()) {
2905           trace_cnt++;
2906           if (trace_cnt > 40) {
2907             tty->print("\n");
2908             trace_cnt = 0;
2909           }
2910           tty->print(" %d", pinch->_idx);
2911         }
2912 #endif
2913       }
2914     }
2915 #ifndef PRODUCT
2916     if (_cfg->C->trace_opto_output()) tty->print("\n");
2917 #endif
2918 }
2919 
2920 // Clean up a pinch node for reuse.
2921 void Scheduling::cleanup_pinch( Node *pinch ) {
2922   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2923 
2924   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2925     Node* use = pinch->last_out(i);
2926     uint uses_found = 0;
2927     for (uint j = use->req(); j < use->len(); j++) {
2928       if (use->in(j) == pinch) {
2929         use->rm_prec(j);
2930         uses_found++;
2931       }
2932     }
2933     assert(uses_found > 0, "must be a precedence edge");
2934     i -= uses_found;    // we deleted 1 or more copies of this edge
2935   }
2936   // May have a later_def entry
2937   pinch->set_req(0, NULL);
2938 }
2939 
2940 //------------------------------print_statistics-------------------------------
2941 #ifndef PRODUCT
2942 
2943 void Scheduling::dump_available() const {
2944   tty->print("#Availist  ");
2945   for (uint i = 0; i < _available.size(); i++)
2946     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2947   tty->cr();
2948 }
2949 
2950 // Print Scheduling Statistics
2951 void Scheduling::print_statistics() {
2952   // Print the size added by nops for bundling
2953   tty->print("Nops added %d bytes to total of %d bytes",
2954     _total_nop_size, _total_method_size);
2955   if (_total_method_size > 0)
2956     tty->print(", for %.2f%%",
2957       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2958   tty->print("\n");
2959 
2960   // Print the number of branch shadows filled
2961   if (Pipeline::_branch_has_delay_slot) {
2962     tty->print("Of %d branches, %d had unconditional delay slots filled",
2963       _total_branches, _total_unconditional_delays);
2964     if (_total_branches > 0)
2965       tty->print(", for %.2f%%",
2966         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2967     tty->print("\n");
2968   }
2969 
2970   uint total_instructions = 0, total_bundles = 0;
2971 
2972   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2973     uint bundle_count   = _total_instructions_per_bundle[i];
2974     total_instructions += bundle_count * i;
2975     total_bundles      += bundle_count;
2976   }
2977 
2978   if (total_bundles > 0)
2979     tty->print("Average ILP (excluding nops) is %.2f\n",
2980       ((double)total_instructions) / ((double)total_bundles));
2981 }
2982 #endif