src/share/vm/opto/output.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File JDK-8023691 Sdiff src/share/vm/opto

src/share/vm/opto/output.cpp

Print this page




  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 // Convert Nodes to instruction bits and pass off to the VM
  58 void Compile::Output() {
  59   // RootNode goes
  60   assert( _cfg->get_root_block()->_nodes.size() == 0, "" );
  61 
  62   // The number of new nodes (mostly MachNop) is proportional to
  63   // the number of java calls and inner loops which are aligned.
  64   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  65                             C->inner_loops()*(OptoLoopAlignment-1)),
  66                            "out of nodes before code generation" ) ) {
  67     return;
  68   }
  69   // Make sure I can find the Start Node
  70   Block *entry = _cfg->get_block(1);
  71   Block *broot = _cfg->get_root_block();
  72 
  73   const StartNode *start = entry->_nodes[0]->as_Start();
  74 
  75   // Replace StartNode with prolog
  76   MachPrologNode *prolog = new (this) MachPrologNode();
  77   entry->_nodes.map( 0, prolog );
  78   _cfg->map_node_to_block(prolog, entry);
  79   _cfg->unmap_node_from_block(start); // start is no longer in any block
  80 
  81   // Virtual methods need an unverified entry point
  82 
  83   if( is_osr_compilation() ) {
  84     if( PoisonOSREntry ) {
  85       // TODO: Should use a ShouldNotReachHereNode...
  86       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  87     }
  88   } else {
  89     if( _method && !_method->flags().is_static() ) {
  90       // Insert unvalidated entry point
  91       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  92     }
  93 
  94   }
  95 
  96 
  97   // Break before main entry point


 127 # endif
 128 
 129   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 130   blk_starts[0] = 0;
 131 
 132   // Initialize code buffer and process short branches.
 133   CodeBuffer* cb = init_buffer(blk_starts);
 134 
 135   if (cb == NULL || failing()) {
 136     return;
 137   }
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block* block = _cfg->get_block(i);
 147       for (uint j = 0; j < block->_nodes.size(); j++) {
 148         Node* n = block->_nodes[j];
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing()) {
 158     return;
 159   }
 160 
 161   BuildOopMaps();
 162 
 163   if (failing())  {
 164     return;
 165   }
 166 
 167   fill_buffer(cb, blk_starts);
 168 }


 209   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 210   else if ( CompileZapFirst  == CompiledZap_count() )
 211     warning("starting zap compilation after skipping");
 212 
 213        if ( CompileZapLast  ==  -1  ) ; // nothing special
 214   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 215   else if ( CompileZapLast  ==  CompiledZap_count() )
 216     warning("about to compile last zap");
 217 
 218   ++_CompiledZap_count; // counts skipped zaps, too
 219 
 220   if ( skip )  return;
 221 
 222 
 223   if ( _method == NULL )
 224     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 225 
 226   // Insert call to zap runtime stub before every node with an oop map
 227   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 228     Block *b = _cfg->get_block(i);
 229     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 230       Node *n = b->_nodes[j];
 231 
 232       // Determining if we should insert a zap-a-lot node in output.
 233       // We do that for all nodes that has oopmap info, except for calls
 234       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 235       // and expect the C code to reset it.  Hence, there can be no safepoints between
 236       // the inlined-allocation and the call to new_Java, etc.
 237       // We also cannot zap monitor calls, as they must hold the microlock
 238       // during the call to Zap, which also wants to grab the microlock.
 239       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 240       if ( insert ) { // it is MachSafePoint
 241         if ( !n->is_MachCall() ) {
 242           insert = false;
 243         } else if ( n->is_MachCall() ) {
 244           MachCallNode* call = n->as_MachCall();
 245           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 246               call->entry_point() == OptoRuntime::new_array_Java() ||
 247               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 248               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 249               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 250               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 251               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 252               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 253               ) {
 254             insert = false;
 255           }
 256         }
 257         if (insert) {
 258           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 259           b->_nodes.insert( j, zap );
 260           _cfg->map_node_to_block(zap, b);
 261           ++j;
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 
 269 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 270   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 271   CallStaticJavaNode* ideal_node =
 272     new (this) CallStaticJavaNode( tf,
 273          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 274                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 275   // We need to copy the OopMap from the site we're zapping at.
 276   // We have to make a copy, because the zap site might not be
 277   // a call site, and zap_dead is a call site.
 278   OopMap* clone = node_to_check->oop_map()->deep_copy();
 279 


 362   // third inserts nops where needed.
 363 
 364   // Step one, perform a pessimistic sizing pass.
 365   uint last_call_adr = max_uint;
 366   uint last_avoid_back_to_back_adr = max_uint;
 367   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 368   for (uint i = 0; i < nblocks; i++) { // For all blocks
 369     Block* block = _cfg->get_block(i);
 370 
 371     // During short branch replacement, we store the relative (to blk_starts)
 372     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 373     // This is so that we do not need to recompute sizes of all nodes when
 374     // we compute correct blk_starts in our next sizing pass.
 375     jmp_offset[i] = 0;
 376     jmp_size[i]   = 0;
 377     jmp_nidx[i]   = -1;
 378     DEBUG_ONLY( jmp_target[i] = 0; )
 379     DEBUG_ONLY( jmp_rule[i]   = 0; )
 380 
 381     // Sum all instruction sizes to compute block size
 382     uint last_inst = block->_nodes.size();
 383     uint blk_size = 0;
 384     for (uint j = 0; j < last_inst; j++) {
 385       Node* nj = block->_nodes[j];
 386       // Handle machine instruction nodes
 387       if (nj->is_Mach()) {
 388         MachNode *mach = nj->as_Mach();
 389         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 390         reloc_size += mach->reloc();
 391         if (mach->is_MachCall()) {
 392           MachCallNode *mcall = mach->as_MachCall();
 393           // This destination address is NOT PC-relative
 394 
 395           mcall->method_set((intptr_t)mcall->entry_point());
 396 
 397           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 398             stub_size  += CompiledStaticCall::to_interp_stub_size();
 399             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 400           }
 401         } else if (mach->is_MachSafePoint()) {
 402           // If call/safepoint are adjacent, account for possible
 403           // nop to disambiguate the two safepoints.
 404           // ScheduleAndBundle() can rearrange nodes in a block,
 405           // check for all offsets inside this block.


 460           last_avoid_back_to_back_adr += max_loop_pad;
 461         }
 462         blk_size += max_loop_pad;
 463       }
 464     }
 465 
 466     // Save block size; update total method size
 467     blk_starts[i+1] = blk_starts[i]+blk_size;
 468   }
 469 
 470   // Step two, replace eligible long jumps.
 471   bool progress = true;
 472   uint last_may_be_short_branch_adr = max_uint;
 473   while (has_short_branch_candidate && progress) {
 474     progress = false;
 475     has_short_branch_candidate = false;
 476     int adjust_block_start = 0;
 477     for (uint i = 0; i < nblocks; i++) {
 478       Block* block = _cfg->get_block(i);
 479       int idx = jmp_nidx[i];
 480       MachNode* mach = (idx == -1) ? NULL: block->_nodes[idx]->as_Mach();
 481       if (mach != NULL && mach->may_be_short_branch()) {
 482 #ifdef ASSERT
 483         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 484         int j;
 485         // Find the branch; ignore trailing NOPs.
 486         for (j = block->_nodes.size()-1; j>=0; j--) {
 487           Node* n = block->_nodes[j];
 488           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 489             break;
 490         }
 491         assert(j >= 0 && j == idx && block->_nodes[j] == (Node*)mach, "sanity");
 492 #endif
 493         int br_size = jmp_size[i];
 494         int br_offs = blk_starts[i] + jmp_offset[i];
 495 
 496         // This requires the TRUE branch target be in succs[0]
 497         uint bnum = block->non_connector_successor(0)->_pre_order;
 498         int offset = blk_starts[bnum] - br_offs;
 499         if (bnum > i) { // adjust following block's offset
 500           offset -= adjust_block_start;
 501         }
 502         // In the following code a nop could be inserted before
 503         // the branch which will increase the backward distance.
 504         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
 505         if (needs_padding && offset <= 0)
 506           offset -= nop_size;
 507 
 508         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 509           // We've got a winner.  Replace this branch.
 510           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 511 
 512           // Update the jmp_size.
 513           int new_size = replacement->size(_regalloc);
 514           int diff     = br_size - new_size;
 515           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 516           // Conservatively take into accound padding between
 517           // avoid_back_to_back branches. Previous branch could be
 518           // converted into avoid_back_to_back branch during next
 519           // rounds.
 520           if (needs_padding && replacement->avoid_back_to_back()) {
 521             jmp_offset[i] += nop_size;
 522             diff -= nop_size;
 523           }
 524           adjust_block_start += diff;
 525           block->_nodes.map(idx, replacement);
 526           mach->subsume_by(replacement, C);
 527           mach = replacement;
 528           progress = true;
 529 
 530           jmp_size[i] = new_size;
 531           DEBUG_ONLY( jmp_target[i] = bnum; );
 532           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 533         } else {
 534           // The jump distance is not short, try again during next iteration.
 535           has_short_branch_candidate = true;
 536         }
 537       } // (mach->may_be_short_branch())
 538       if (mach != NULL && (mach->may_be_short_branch() ||
 539                            mach->avoid_back_to_back())) {
 540         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 541       }
 542       blk_starts[i+1] -= adjust_block_start;
 543     }
 544   }
 545 


1071     // The usual spill mechanism can only generate stfd's in this case, which
1072     // doesn't work if the fp reg to spill contains a single-precision denorm.
1073     // Instead, we hack around the normal spill mechanism using stfspill's and
1074     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1075     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1076     //
1077     // If we ever implement 16-byte 'registers' == stack slots, we can
1078     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1079     // instead of stfd/stfs/ldfd/ldfs.
1080     _frame_slots += 8*(16/BytesPerInt);
1081   }
1082 #endif
1083   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1084 
1085   if (has_mach_constant_base_node()) {
1086     // Fill the constant table.
1087     // Note:  This must happen before shorten_branches.
1088     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1089       Block* b = _cfg->get_block(i);
1090 
1091       for (uint j = 0; j < b->_nodes.size(); j++) {
1092         Node* n = b->_nodes[j];
1093 
1094         // If the node is a MachConstantNode evaluate the constant
1095         // value section.
1096         if (n->is_MachConstant()) {
1097           MachConstantNode* machcon = n->as_MachConstant();
1098           machcon->eval_constant(C);
1099         }
1100       }
1101     }
1102 
1103     // Calculate the offsets of the constants and the size of the
1104     // constant table (including the padding to the next section).
1105     constant_table().calculate_offsets_and_size();
1106     const_req = constant_table().size();
1107   }
1108 
1109   // Initialize the space for the BufferBlob used to find and verify
1110   // instruction size in MachNode::emit_size()
1111   init_scratch_buffer_blob(const_req);
1112   if (failing())  return NULL; // Out of memory


1230     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1231       cb->flush_bundle(true);
1232     }
1233 
1234 #ifdef ASSERT
1235     if (!block->is_connector()) {
1236       stringStream st;
1237       block->dump_head(_cfg, &st);
1238       MacroAssembler(cb).block_comment(st.as_string());
1239     }
1240     jmp_target[i] = 0;
1241     jmp_offset[i] = 0;
1242     jmp_size[i]   = 0;
1243     jmp_rule[i]   = 0;
1244 #endif
1245     int blk_offset = current_offset;
1246 
1247     // Define the label at the beginning of the basic block
1248     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1249 
1250     uint last_inst = block->_nodes.size();
1251 
1252     // Emit block normally, except for last instruction.
1253     // Emit means "dump code bits into code buffer".
1254     for (uint j = 0; j<last_inst; j++) {
1255 
1256       // Get the node
1257       Node* n = block->_nodes[j];
1258 
1259       // See if delay slots are supported
1260       if (valid_bundle_info(n) &&
1261           node_bundling(n)->used_in_unconditional_delay()) {
1262         assert(delay_slot == NULL, "no use of delay slot node");
1263         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1264 
1265         delay_slot = n;
1266         continue;
1267       }
1268 
1269       // If this starts a new instruction group, then flush the current one
1270       // (but allow split bundles)
1271       if (Pipeline::requires_bundling() && starts_bundle(n))
1272         cb->flush_bundle(false);
1273 
1274       // The following logic is duplicated in the code ifdeffed for
1275       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1276       // should be factored out.  Or maybe dispersed to the nodes?
1277 


1291         // A padding may be needed again since a previous instruction
1292         // could be moved to delay slot.
1293 
1294         // align the instruction if necessary
1295         int padding = mach->compute_padding(current_offset);
1296         // Make sure safepoint node for polling is distinct from a call's
1297         // return by adding a nop if needed.
1298         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1299           padding = nop_size;
1300         }
1301         if (padding == 0 && mach->avoid_back_to_back() &&
1302             current_offset == last_avoid_back_to_back_offset) {
1303           // Avoid back to back some instructions.
1304           padding = nop_size;
1305         }
1306 
1307         if(padding > 0) {
1308           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1309           int nops_cnt = padding / nop_size;
1310           MachNode *nop = new (this) MachNopNode(nops_cnt);
1311           block->_nodes.insert(j++, nop);
1312           last_inst++;
1313           _cfg->map_node_to_block(nop, block);
1314           nop->emit(*cb, _regalloc);
1315           cb->flush_bundle(true);
1316           current_offset = cb->insts_size();
1317         }
1318 
1319         // Remember the start of the last call in a basic block
1320         if (is_mcall) {
1321           MachCallNode *mcall = mach->as_MachCall();
1322 
1323           // This destination address is NOT PC-relative
1324           mcall->method_set((intptr_t)mcall->entry_point());
1325 
1326           // Save the return address
1327           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1328 
1329           if (mcall->is_MachCallLeaf()) {
1330             is_mcall = false;
1331             is_sfn = false;


1377               // finilized yet, adjust distance by the difference
1378               // between calculated and final offsets of current block.
1379               offset -= (blk_starts[i] - blk_offset);
1380             }
1381             // In the following code a nop could be inserted before
1382             // the branch which will increase the backward distance.
1383             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1384             if (needs_padding && offset <= 0)
1385               offset -= nop_size;
1386 
1387             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1388               // We've got a winner.  Replace this branch.
1389               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1390 
1391               // Update the jmp_size.
1392               int new_size = replacement->size(_regalloc);
1393               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1394               // Insert padding between avoid_back_to_back branches.
1395               if (needs_padding && replacement->avoid_back_to_back()) {
1396                 MachNode *nop = new (this) MachNopNode();
1397                 block->_nodes.insert(j++, nop);
1398                 _cfg->map_node_to_block(nop, block);
1399                 last_inst++;
1400                 nop->emit(*cb, _regalloc);
1401                 cb->flush_bundle(true);
1402                 current_offset = cb->insts_size();
1403               }
1404 #ifdef ASSERT
1405               jmp_target[i] = block_num;
1406               jmp_offset[i] = current_offset - blk_offset;
1407               jmp_size[i]   = new_size;
1408               jmp_rule[i]   = mach->rule();
1409 #endif
1410               block->_nodes.map(j, replacement);
1411               mach->subsume_by(replacement, C);
1412               n    = replacement;
1413               mach = replacement;
1414             }
1415           }
1416           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1417         } else if (mach->ideal_Opcode() == Op_Jump) {
1418           for (uint h = 0; h < block->_num_succs; h++) {
1419             Block* succs_block = block->_succs[h];
1420             for (uint j = 1; j < succs_block->num_preds(); j++) {
1421               Node* jpn = succs_block->pred(j);
1422               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1423                 uint block_num = succs_block->non_connector()->_pre_order;
1424                 Label *blkLabel = &blk_labels[block_num];
1425                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1426               }
1427             }
1428           }
1429         }
1430 #ifdef ASSERT
1431         // Check that oop-store precedes the card-mark
1432         else if (mach->ideal_Opcode() == Op_StoreCM) {
1433           uint storeCM_idx = j;
1434           int count = 0;
1435           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1436             Node *oop_store = mach->in(prec);  // Precedence edge
1437             if (oop_store == NULL) continue;
1438             count++;
1439             uint i4;
1440             for (i4 = 0; i4 < last_inst; ++i4) {
1441               if (block->_nodes[i4] == oop_store) {
1442                 break;
1443               }
1444             }
1445             // Note: This test can provide a false failure if other precedence
1446             // edges have been added to the storeCMNode.
1447             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1448           }
1449           assert(count > 0, "storeCM expects at least one precedence edge");
1450         }
1451 #endif
1452         else if (!n->is_Proj()) {
1453           // Remember the beginning of the previous instruction, in case
1454           // it's followed by a flag-kill and a null-check.  Happens on
1455           // Intel all the time, with add-to-memory kind of opcodes.
1456           previous_offset = current_offset;
1457         }
1458       }
1459 
1460       // Verify that there is sufficient space remaining
1461       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);


1531           // Generate an OopMap entry
1532           Process_OopMap_Node(mach, adjusted_offset);
1533         }
1534 
1535         // Insert the delay slot instruction
1536         delay_slot->emit(*cb, _regalloc);
1537 
1538         // Don't reuse it
1539         delay_slot = NULL;
1540       }
1541 
1542     } // End for all instructions in block
1543 
1544     // If the next block is the top of a loop, pad this block out to align
1545     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1546     if (i < nblocks-1) {
1547       Block *nb = _cfg->get_block(i + 1);
1548       int padding = nb->alignment_padding(current_offset);
1549       if( padding > 0 ) {
1550         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1551         block->_nodes.insert(block->_nodes.size(), nop);
1552         _cfg->map_node_to_block(nop, block);
1553         nop->emit(*cb, _regalloc);
1554         current_offset = cb->insts_size();
1555       }
1556     }
1557     // Verify that the distance for generated before forward
1558     // short branches is still valid.
1559     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1560 
1561     // Save new block start offset
1562     blk_starts[i] = blk_offset;
1563   } // End of for all blocks
1564   blk_starts[nblocks] = current_offset;
1565 
1566   non_safepoints.flush_at_end();
1567 
1568   // Offset too large?
1569   if (failing())  return;
1570 
1571   // Define a pseudo-label at the end of the code


1638       dump_asm(node_offsets, node_offset_limit);
1639       if (xtty != NULL) {
1640         xtty->tail("opto_assembly");
1641       }
1642     }
1643   }
1644 #endif
1645 
1646 }
1647 
1648 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1649   _inc_table.set_size(cnt);
1650 
1651   uint inct_cnt = 0;
1652   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1653     Block* block = _cfg->get_block(i);
1654     Node *n = NULL;
1655     int j;
1656 
1657     // Find the branch; ignore trailing NOPs.
1658     for (j = block->_nodes.size() - 1; j >= 0; j--) {
1659       n = block->_nodes[j];
1660       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1661         break;
1662       }
1663     }
1664 
1665     // If we didn't find anything, continue
1666     if (j < 0) {
1667       continue;
1668     }
1669 
1670     // Compute ExceptionHandlerTable subtable entry and add it
1671     // (skip empty blocks)
1672     if (n->is_Catch()) {
1673 
1674       // Get the offset of the return from the call
1675       uint call_return = call_returns[block->_pre_order];
1676 #ifdef ASSERT
1677       assert( call_return > 0, "no call seen for this basic block" );
1678       while (block->_nodes[--j]->is_MachProj()) ;
1679       assert(block->_nodes[j]->is_MachCall(), "CatchProj must follow call");
1680 #endif
1681       // last instruction is a CatchNode, find it's CatchProjNodes
1682       int nof_succs = block->_num_succs;
1683       // allocate space
1684       GrowableArray<intptr_t> handler_bcis(nof_succs);
1685       GrowableArray<intptr_t> handler_pcos(nof_succs);
1686       // iterate through all successors
1687       for (int j = 0; j < nof_succs; j++) {
1688         Block* s = block->_succs[j];
1689         bool found_p = false;
1690         for (uint k = 1; k < s->num_preds(); k++) {
1691           Node* pk = s->pred(k);
1692           if (pk->is_CatchProj() && pk->in(0) == n) {
1693             const CatchProjNode* p = pk->as_CatchProj();
1694             found_p = true;
1695             // add the corresponding handler bci & pco information
1696             if (p->_con != CatchProjNode::fall_through_index) {
1697               // p leads to an exception handler (and is not fall through)
1698               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1699               // no duplicates, please


1765   // This one is persistent within the Compile class
1766   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1767 
1768   // Allocate space for fixed-size arrays
1769   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1770   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1771   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1772 
1773   // Clear the arrays
1774   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1775   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1776   memset(_uses,               0, node_max * sizeof(short));
1777   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1778 
1779   // Clear the bundling information
1780   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1781 
1782   // Get the last node
1783   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1784 
1785   _next_node = block->_nodes[block->_nodes.size() - 1];
1786 }
1787 
1788 #ifndef PRODUCT
1789 // Scheduling destructor
1790 Scheduling::~Scheduling() {
1791   _total_branches             += _branches;
1792   _total_unconditional_delays += _unconditional_delays;
1793 }
1794 #endif
1795 
1796 // Step ahead "i" cycles
1797 void Scheduling::step(uint i) {
1798 
1799   Bundle *bundle = node_bundling(_next_node);
1800   bundle->set_starts_bundle();
1801 
1802   // Update the bundle record, but leave the flags information alone
1803   if (_bundle_instr_count > 0) {
1804     bundle->set_instr_count(_bundle_instr_count);
1805     bundle->set_resources_used(_bundle_use.resourcesUsed());


1858   scheduling.DoScheduling();
1859 }
1860 
1861 // Compute the latency of all the instructions.  This is fairly simple,
1862 // because we already have a legal ordering.  Walk over the instructions
1863 // from first to last, and compute the latency of the instruction based
1864 // on the latency of the preceding instruction(s).
1865 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1866 #ifndef PRODUCT
1867   if (_cfg->C->trace_opto_output())
1868     tty->print("# -> ComputeLocalLatenciesForward\n");
1869 #endif
1870 
1871   // Walk over all the schedulable instructions
1872   for( uint j=_bb_start; j < _bb_end; j++ ) {
1873 
1874     // This is a kludge, forcing all latency calculations to start at 1.
1875     // Used to allow latency 0 to force an instruction to the beginning
1876     // of the bb
1877     uint latency = 1;
1878     Node *use = bb->_nodes[j];
1879     uint nlen = use->len();
1880 
1881     // Walk over all the inputs
1882     for ( uint k=0; k < nlen; k++ ) {
1883       Node *def = use->in(k);
1884       if (!def)
1885         continue;
1886 
1887       uint l = _node_latency[def->_idx] + use->latency(k);
1888       if (latency < l)
1889         latency = l;
1890     }
1891 
1892     _node_latency[use->_idx] = latency;
1893 
1894 #ifndef PRODUCT
1895     if (_cfg->C->trace_opto_output()) {
1896       tty->print("# latency %4d: ", latency);
1897       use->dump();
1898     }


2269 
2270     // Increment the number of instructions in this bundle
2271     _bundle_instr_count += instruction_count;
2272 
2273     // Remember this node for later
2274     if (n->is_Mach())
2275       _next_node = n;
2276   }
2277 
2278   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2279   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2280   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2281   // into the block.  All other scheduled nodes get put in the schedule here.
2282   int op = n->Opcode();
2283   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2284       (op != Op_Node &&         // Not an unused antidepedence node and
2285        // not an unallocated boxlock
2286        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2287 
2288     // Push any trailing projections
2289     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2290       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2291         Node *foi = n->fast_out(i);
2292         if( foi->is_Proj() )
2293           _scheduled.push(foi);
2294       }
2295     }
2296 
2297     // Put the instruction in the schedule list
2298     _scheduled.push(n);
2299   }
2300 
2301 #ifndef PRODUCT
2302   if (_cfg->C->trace_opto_output())
2303     dump_available();
2304 #endif
2305 
2306   // Walk all the definitions, decrementing use counts, and
2307   // if a definition has a 0 use count, place it in the available list.
2308   DecrementUseCounts(n,bb);
2309 }


2312 // uses outside the current basic block.  As we are doing a backwards walk,
2313 // any node we reach that has a use count of 0 may be scheduled.  This also
2314 // avoids the problem of cyclic references from phi nodes, as long as phi
2315 // nodes are at the front of the basic block.  This method also initializes
2316 // the available list to the set of instructions that have no uses within this
2317 // basic block.
2318 void Scheduling::ComputeUseCount(const Block *bb) {
2319 #ifndef PRODUCT
2320   if (_cfg->C->trace_opto_output())
2321     tty->print("# -> ComputeUseCount\n");
2322 #endif
2323 
2324   // Clear the list of available and scheduled instructions, just in case
2325   _available.clear();
2326   _scheduled.clear();
2327 
2328   // No delay slot specified
2329   _unconditional_delay_slot = NULL;
2330 
2331 #ifdef ASSERT
2332   for( uint i=0; i < bb->_nodes.size(); i++ )
2333     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2334 #endif
2335 
2336   // Force the _uses count to never go to zero for unscheduable pieces
2337   // of the block
2338   for( uint k = 0; k < _bb_start; k++ )
2339     _uses[bb->_nodes[k]->_idx] = 1;
2340   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2341     _uses[bb->_nodes[l]->_idx] = 1;
2342 
2343   // Iterate backwards over the instructions in the block.  Don't count the
2344   // branch projections at end or the block header instructions.
2345   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2346     Node *n = bb->_nodes[j];
2347     if( n->is_Proj() ) continue; // Projections handled another way
2348 
2349     // Account for all uses
2350     for ( uint k = 0; k < n->len(); k++ ) {
2351       Node *inp = n->in(k);
2352       if (!inp) continue;
2353       assert(inp != n, "no cycles allowed" );
2354       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2355         if (inp->is_Proj()) { // Skip through Proj's
2356           inp = inp->in(0);
2357         }
2358         ++_uses[inp->_idx];     // Count 1 block-local use
2359       }
2360     }
2361 
2362     // If this instruction has a 0 use count, then it is available
2363     if (!_uses[n->_idx]) {
2364       _current_latency[n->_idx] = _bundle_cycle_number;
2365       AddNodeToAvailableList(n);
2366     }


2381 
2382 // This routine performs scheduling on each basic block in reverse order,
2383 // using instruction latencies and taking into account function unit
2384 // availability.
2385 void Scheduling::DoScheduling() {
2386 #ifndef PRODUCT
2387   if (_cfg->C->trace_opto_output())
2388     tty->print("# -> DoScheduling\n");
2389 #endif
2390 
2391   Block *succ_bb = NULL;
2392   Block *bb;
2393 
2394   // Walk over all the basic blocks in reverse order
2395   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2396     bb = _cfg->get_block(i);
2397 
2398 #ifndef PRODUCT
2399     if (_cfg->C->trace_opto_output()) {
2400       tty->print("#  Schedule BB#%03d (initial)\n", i);
2401       for (uint j = 0; j < bb->_nodes.size(); j++) {
2402         bb->_nodes[j]->dump();
2403       }
2404     }
2405 #endif
2406 
2407     // On the head node, skip processing
2408     if (bb == _cfg->get_root_block()) {
2409       continue;
2410     }
2411 
2412     // Skip empty, connector blocks
2413     if (bb->is_connector())
2414       continue;
2415 
2416     // If the following block is not the sole successor of
2417     // this one, then reset the pipeline information
2418     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2419 #ifndef PRODUCT
2420       if (_cfg->C->trace_opto_output()) {
2421         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2422                    _next_node->_idx, _bundle_instr_count);
2423       }
2424 #endif
2425       step_and_clear();
2426     }
2427 
2428     // Leave untouched the starting instruction, any Phis, a CreateEx node
2429     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2430     _bb_end = bb->_nodes.size()-1;
2431     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2432       Node *n = bb->_nodes[_bb_start];
2433       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2434       // Also, MachIdealNodes do not get scheduled
2435       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2436       MachNode *mach = n->as_Mach();
2437       int iop = mach->ideal_Opcode();
2438       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2439       if( iop == Op_Con ) continue;      // Do not schedule Top
2440       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2441           mach->pipeline() == MachNode::pipeline_class() &&
2442           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2443         continue;
2444       break;                    // Funny loop structure to be sure...
2445     }
2446     // Compute last "interesting" instruction in block - last instruction we
2447     // might schedule.  _bb_end points just after last schedulable inst.  We
2448     // normally schedule conditional branches (despite them being forced last
2449     // in the block), because they have delay slots we can fill.  Calls all
2450     // have their delay slots filled in the template expansions, so we don't
2451     // bother scheduling them.
2452     Node *last = bb->_nodes[_bb_end];
2453     // Ignore trailing NOPs.
2454     while (_bb_end > 0 && last->is_Mach() &&
2455            last->as_Mach()->ideal_Opcode() == Op_Con) {
2456       last = bb->_nodes[--_bb_end];
2457     }
2458     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2459     if( last->is_Catch() ||
2460        // Exclude unreachable path case when Halt node is in a separate block.
2461        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2462       // There must be a prior call.  Skip it.
2463       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2464         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2465       }
2466     } else if( last->is_MachNullCheck() ) {
2467       // Backup so the last null-checked memory instruction is
2468       // outside the schedulable range. Skip over the nullcheck,
2469       // projection, and the memory nodes.
2470       Node *mem = last->in(1);
2471       do {
2472         _bb_end--;
2473       } while (mem != bb->_nodes[_bb_end]);
2474     } else {
2475       // Set _bb_end to point after last schedulable inst.
2476       _bb_end++;
2477     }
2478 
2479     assert( _bb_start <= _bb_end, "inverted block ends" );
2480 
2481     // Compute the register antidependencies for the basic block
2482     ComputeRegisterAntidependencies(bb);
2483     if (_cfg->C->failing())  return;  // too many D-U pinch points
2484 
2485     // Compute intra-bb latencies for the nodes
2486     ComputeLocalLatenciesForward(bb);
2487 
2488     // Compute the usage within the block, and set the list of all nodes
2489     // in the block that have no uses within the block.
2490     ComputeUseCount(bb);
2491 
2492     // Schedule the remaining instructions in the block
2493     while ( _available.size() > 0 ) {
2494       Node *n = ChooseNodeToBundle();
2495       guarantee(n != NULL, "no nodes available");
2496       AddNodeToBundle(n,bb);
2497     }
2498 
2499     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2500 #ifdef ASSERT
2501     for( uint l = _bb_start; l < _bb_end; l++ ) {
2502       Node *n = bb->_nodes[l];
2503       uint m;
2504       for( m = 0; m < _bb_end-_bb_start; m++ )
2505         if( _scheduled[m] == n )
2506           break;
2507       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2508     }
2509 #endif
2510 
2511     // Now copy the instructions (in reverse order) back to the block
2512     for ( uint k = _bb_start; k < _bb_end; k++ )
2513       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2514 
2515 #ifndef PRODUCT
2516     if (_cfg->C->trace_opto_output()) {
2517       tty->print("#  Schedule BB#%03d (final)\n", i);
2518       uint current = 0;
2519       for (uint j = 0; j < bb->_nodes.size(); j++) {
2520         Node *n = bb->_nodes[j];
2521         if( valid_bundle_info(n) ) {
2522           Bundle *bundle = node_bundling(n);
2523           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2524             tty->print("*** Bundle: ");
2525             bundle->dump();
2526           }
2527           n->dump();
2528         }
2529       }
2530     }
2531 #endif
2532 #ifdef ASSERT
2533   verify_good_schedule(bb,"after block local scheduling");
2534 #endif
2535   }
2536 
2537 #ifndef PRODUCT
2538   if (_cfg->C->trace_opto_output())
2539     tty->print("# <- DoScheduling\n");
2540 #endif


2562     Node *prior_use = _reg_node[def];
2563     if( prior_use && !edge_from_to(prior_use,n) ) {
2564       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2565       n->dump();
2566       tty->print_cr("...");
2567       prior_use->dump();
2568       assert(edge_from_to(prior_use,n),msg);
2569     }
2570     _reg_node.map(def,NULL); // Kill live USEs
2571   }
2572 }
2573 
2574 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2575 
2576   // Zap to something reasonable for the verify code
2577   _reg_node.clear();
2578 
2579   // Walk over the block backwards.  Check to make sure each DEF doesn't
2580   // kill a live value (other than the one it's supposed to).  Add each
2581   // USE to the live set.
2582   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2583     Node *n = b->_nodes[i];
2584     int n_op = n->Opcode();
2585     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2586       // Fat-proj kills a slew of registers
2587       RegMask rm = n->out_RegMask();// Make local copy
2588       while( rm.is_NotEmpty() ) {
2589         OptoReg::Name kill = rm.find_first_elem();
2590         rm.Remove(kill);
2591         verify_do_def( n, kill, msg );
2592       }
2593     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2594       // Get DEF'd registers the normal way
2595       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2596       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2597     }
2598 
2599     // Now make all USEs live
2600     for( uint i=1; i<n->req(); i++ ) {
2601       Node *def = n->in(i);
2602       assert(def != 0, "input edge required");
2603       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);


2694       }
2695     }
2696   }
2697 
2698   // Add edge from kill to pinch-point
2699   add_prec_edge_from_to(kill,pinch);
2700 }
2701 
2702 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2703   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2704     return;
2705   Node *pinch = _reg_node[use_reg]; // Get pinch point
2706   // Check for no later def_reg/kill in block
2707   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2708       // Use has to be block-local as well
2709       _cfg->get_block_for_node(use) == b) {
2710     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2711         pinch->req() == 1 ) {   // pinch not yet in block?
2712       pinch->del_req(0);        // yank pointer to later-def, also set flag
2713       // Insert the pinch-point in the block just after the last use
2714       b->_nodes.insert(b->find_node(use)+1,pinch);
2715       _bb_end++;                // Increase size scheduled region in block
2716     }
2717 
2718     add_prec_edge_from_to(pinch,use);
2719   }
2720 }
2721 
2722 // We insert antidependences between the reads and following write of
2723 // allocated registers to prevent illegal code motion. Hopefully, the
2724 // number of added references should be fairly small, especially as we
2725 // are only adding references within the current basic block.
2726 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2727 
2728 #ifdef ASSERT
2729   verify_good_schedule(b,"before block local scheduling");
2730 #endif
2731 
2732   // A valid schedule, for each register independently, is an endless cycle
2733   // of: a def, then some uses (connected to the def by true dependencies),
2734   // then some kills (defs with no uses), finally the cycle repeats with a new


2746 
2747   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2748   // register.  If not, we record the DEF/KILL in _reg_node, the
2749   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2750   // "pinch point", a new Node that's in the graph but not in the block.
2751   // We put edges from the prior and current DEF/KILLs to the pinch point.
2752   // We put the pinch point in _reg_node.  If there's already a pinch point
2753   // we merely add an edge from the current DEF/KILL to the pinch point.
2754 
2755   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2756   // put an edge from the pinch point to the USE.
2757 
2758   // To be expedient, the _reg_node array is pre-allocated for the whole
2759   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2760   // or a valid def/kill/pinch-point, or a leftover node from some prior
2761   // block.  Leftover node from some prior block is treated like a NULL (no
2762   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2763   // it being in the current block.
2764   bool fat_proj_seen = false;
2765   uint last_safept = _bb_end-1;
2766   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2767   Node* last_safept_node = end_node;
2768   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2769     Node *n = b->_nodes[i];
2770     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2771     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2772       // Fat-proj kills a slew of registers
2773       // This can add edges to 'n' and obscure whether or not it was a def,
2774       // hence the is_def flag.
2775       fat_proj_seen = true;
2776       RegMask rm = n->out_RegMask();// Make local copy
2777       while( rm.is_NotEmpty() ) {
2778         OptoReg::Name kill = rm.find_first_elem();
2779         rm.Remove(kill);
2780         anti_do_def( b, n, kill, is_def );
2781       }
2782     } else {
2783       // Get DEF'd registers the normal way
2784       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2785       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2786     }
2787 
2788     // Kill projections on a branch should appear to occur on the
2789     // branch, not afterwards, so grab the masks from the projections


2798             rm.Remove(kill);
2799             anti_do_def( b, n, kill, false );
2800           }
2801         }
2802       }
2803     }
2804 
2805     // Check each register used by this instruction for a following DEF/KILL
2806     // that must occur afterward and requires an anti-dependence edge.
2807     for( uint j=0; j<n->req(); j++ ) {
2808       Node *def = n->in(j);
2809       if( def ) {
2810         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2811         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2812         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2813       }
2814     }
2815     // Do not allow defs of new derived values to float above GC
2816     // points unless the base is definitely available at the GC point.
2817 
2818     Node *m = b->_nodes[i];
2819 
2820     // Add precedence edge from following safepoint to use of derived pointer
2821     if( last_safept_node != end_node &&
2822         m != last_safept_node) {
2823       for (uint k = 1; k < m->req(); k++) {
2824         const Type *t = m->in(k)->bottom_type();
2825         if( t->isa_oop_ptr() &&
2826             t->is_ptr()->offset() != 0 ) {
2827           last_safept_node->add_prec( m );
2828           break;
2829         }
2830       }
2831     }
2832 
2833     if( n->jvms() ) {           // Precedence edge from derived to safept
2834       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2835       if( b->_nodes[last_safept] != last_safept_node ) {
2836         last_safept = b->find_node(last_safept_node);
2837       }
2838       for( uint j=last_safept; j > i; j-- ) {
2839         Node *mach = b->_nodes[j];
2840         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2841           mach->add_prec( n );
2842       }
2843       last_safept = i;
2844       last_safept_node = m;
2845     }
2846   }
2847 
2848   if (fat_proj_seen) {
2849     // Garbage collect pinch nodes that were not consumed.
2850     // They are usually created by a fat kill MachProj for a call.
2851     garbage_collect_pinch_nodes();
2852   }
2853 }
2854 
2855 // Garbage collect pinch nodes for reuse by other blocks.
2856 //
2857 // The block scheduler's insertion of anti-dependence
2858 // edges creates many pinch nodes when the block contains
2859 // 2 or more Calls.  A pinch node is used to prevent a




  40 #include "opto/subnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "utilities/xmlstream.hpp"
  44 
  45 extern uint size_exception_handler();
  46 extern uint size_deopt_handler();
  47 
  48 #ifndef PRODUCT
  49 #define DEBUG_ARG(x) , x
  50 #else
  51 #define DEBUG_ARG(x)
  52 #endif
  53 
  54 extern int emit_exception_handler(CodeBuffer &cbuf);
  55 extern int emit_deopt_handler(CodeBuffer &cbuf);
  56 
  57 // Convert Nodes to instruction bits and pass off to the VM
  58 void Compile::Output() {
  59   // RootNode goes
  60   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
  61 
  62   // The number of new nodes (mostly MachNop) is proportional to
  63   // the number of java calls and inner loops which are aligned.
  64   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  65                             C->inner_loops()*(OptoLoopAlignment-1)),
  66                            "out of nodes before code generation" ) ) {
  67     return;
  68   }
  69   // Make sure I can find the Start Node
  70   Block *entry = _cfg->get_block(1);
  71   Block *broot = _cfg->get_root_block();
  72 
  73   const StartNode *start = entry->head()->as_Start();
  74 
  75   // Replace StartNode with prolog
  76   MachPrologNode *prolog = new (this) MachPrologNode();
  77   entry->map_node(prolog, 0);
  78   _cfg->map_node_to_block(prolog, entry);
  79   _cfg->unmap_node_from_block(start); // start is no longer in any block
  80 
  81   // Virtual methods need an unverified entry point
  82 
  83   if( is_osr_compilation() ) {
  84     if( PoisonOSREntry ) {
  85       // TODO: Should use a ShouldNotReachHereNode...
  86       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  87     }
  88   } else {
  89     if( _method && !_method->flags().is_static() ) {
  90       // Insert unvalidated entry point
  91       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  92     }
  93 
  94   }
  95 
  96 
  97   // Break before main entry point


 127 # endif
 128 
 129   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 130   blk_starts[0] = 0;
 131 
 132   // Initialize code buffer and process short branches.
 133   CodeBuffer* cb = init_buffer(blk_starts);
 134 
 135   if (cb == NULL || failing()) {
 136     return;
 137   }
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block* block = _cfg->get_block(i);
 147       for (uint j = 0; j < block->number_of_nodes(); j++) {
 148         Node* n = block->get_node(j);
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing()) {
 158     return;
 159   }
 160 
 161   BuildOopMaps();
 162 
 163   if (failing())  {
 164     return;
 165   }
 166 
 167   fill_buffer(cb, blk_starts);
 168 }


 209   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 210   else if ( CompileZapFirst  == CompiledZap_count() )
 211     warning("starting zap compilation after skipping");
 212 
 213        if ( CompileZapLast  ==  -1  ) ; // nothing special
 214   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 215   else if ( CompileZapLast  ==  CompiledZap_count() )
 216     warning("about to compile last zap");
 217 
 218   ++_CompiledZap_count; // counts skipped zaps, too
 219 
 220   if ( skip )  return;
 221 
 222 
 223   if ( _method == NULL )
 224     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 225 
 226   // Insert call to zap runtime stub before every node with an oop map
 227   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 228     Block *b = _cfg->get_block(i);
 229     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
 230       Node *n = b->get_node(j);
 231 
 232       // Determining if we should insert a zap-a-lot node in output.
 233       // We do that for all nodes that has oopmap info, except for calls
 234       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 235       // and expect the C code to reset it.  Hence, there can be no safepoints between
 236       // the inlined-allocation and the call to new_Java, etc.
 237       // We also cannot zap monitor calls, as they must hold the microlock
 238       // during the call to Zap, which also wants to grab the microlock.
 239       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 240       if ( insert ) { // it is MachSafePoint
 241         if ( !n->is_MachCall() ) {
 242           insert = false;
 243         } else if ( n->is_MachCall() ) {
 244           MachCallNode* call = n->as_MachCall();
 245           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 246               call->entry_point() == OptoRuntime::new_array_Java() ||
 247               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 248               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 249               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 250               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 251               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 252               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 253               ) {
 254             insert = false;
 255           }
 256         }
 257         if (insert) {
 258           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 259           b->insert_node(zap, j);
 260           _cfg->map_node_to_block(zap, b);
 261           ++j;
 262         }
 263       }
 264     }
 265   }
 266 }
 267 
 268 
 269 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 270   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 271   CallStaticJavaNode* ideal_node =
 272     new (this) CallStaticJavaNode( tf,
 273          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 274                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 275   // We need to copy the OopMap from the site we're zapping at.
 276   // We have to make a copy, because the zap site might not be
 277   // a call site, and zap_dead is a call site.
 278   OopMap* clone = node_to_check->oop_map()->deep_copy();
 279 


 362   // third inserts nops where needed.
 363 
 364   // Step one, perform a pessimistic sizing pass.
 365   uint last_call_adr = max_uint;
 366   uint last_avoid_back_to_back_adr = max_uint;
 367   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 368   for (uint i = 0; i < nblocks; i++) { // For all blocks
 369     Block* block = _cfg->get_block(i);
 370 
 371     // During short branch replacement, we store the relative (to blk_starts)
 372     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 373     // This is so that we do not need to recompute sizes of all nodes when
 374     // we compute correct blk_starts in our next sizing pass.
 375     jmp_offset[i] = 0;
 376     jmp_size[i]   = 0;
 377     jmp_nidx[i]   = -1;
 378     DEBUG_ONLY( jmp_target[i] = 0; )
 379     DEBUG_ONLY( jmp_rule[i]   = 0; )
 380 
 381     // Sum all instruction sizes to compute block size
 382     uint last_inst = block->number_of_nodes();
 383     uint blk_size = 0;
 384     for (uint j = 0; j < last_inst; j++) {
 385       Node* nj = block->get_node(j);
 386       // Handle machine instruction nodes
 387       if (nj->is_Mach()) {
 388         MachNode *mach = nj->as_Mach();
 389         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 390         reloc_size += mach->reloc();
 391         if (mach->is_MachCall()) {
 392           MachCallNode *mcall = mach->as_MachCall();
 393           // This destination address is NOT PC-relative
 394 
 395           mcall->method_set((intptr_t)mcall->entry_point());
 396 
 397           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 398             stub_size  += CompiledStaticCall::to_interp_stub_size();
 399             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 400           }
 401         } else if (mach->is_MachSafePoint()) {
 402           // If call/safepoint are adjacent, account for possible
 403           // nop to disambiguate the two safepoints.
 404           // ScheduleAndBundle() can rearrange nodes in a block,
 405           // check for all offsets inside this block.


 460           last_avoid_back_to_back_adr += max_loop_pad;
 461         }
 462         blk_size += max_loop_pad;
 463       }
 464     }
 465 
 466     // Save block size; update total method size
 467     blk_starts[i+1] = blk_starts[i]+blk_size;
 468   }
 469 
 470   // Step two, replace eligible long jumps.
 471   bool progress = true;
 472   uint last_may_be_short_branch_adr = max_uint;
 473   while (has_short_branch_candidate && progress) {
 474     progress = false;
 475     has_short_branch_candidate = false;
 476     int adjust_block_start = 0;
 477     for (uint i = 0; i < nblocks; i++) {
 478       Block* block = _cfg->get_block(i);
 479       int idx = jmp_nidx[i];
 480       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 481       if (mach != NULL && mach->may_be_short_branch()) {
 482 #ifdef ASSERT
 483         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 484         int j;
 485         // Find the branch; ignore trailing NOPs.
 486         for (j = block->number_of_nodes()-1; j>=0; j--) {
 487           Node* n = block->get_node(j);
 488           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 489             break;
 490         }
 491         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 492 #endif
 493         int br_size = jmp_size[i];
 494         int br_offs = blk_starts[i] + jmp_offset[i];
 495 
 496         // This requires the TRUE branch target be in succs[0]
 497         uint bnum = block->non_connector_successor(0)->_pre_order;
 498         int offset = blk_starts[bnum] - br_offs;
 499         if (bnum > i) { // adjust following block's offset
 500           offset -= adjust_block_start;
 501         }
 502         // In the following code a nop could be inserted before
 503         // the branch which will increase the backward distance.
 504         bool needs_padding = ((uint)br_offs == last_may_be_short_branch_adr);
 505         if (needs_padding && offset <= 0)
 506           offset -= nop_size;
 507 
 508         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 509           // We've got a winner.  Replace this branch.
 510           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 511 
 512           // Update the jmp_size.
 513           int new_size = replacement->size(_regalloc);
 514           int diff     = br_size - new_size;
 515           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 516           // Conservatively take into accound padding between
 517           // avoid_back_to_back branches. Previous branch could be
 518           // converted into avoid_back_to_back branch during next
 519           // rounds.
 520           if (needs_padding && replacement->avoid_back_to_back()) {
 521             jmp_offset[i] += nop_size;
 522             diff -= nop_size;
 523           }
 524           adjust_block_start += diff;
 525           block->map_node(replacement, idx);
 526           mach->subsume_by(replacement, C);
 527           mach = replacement;
 528           progress = true;
 529 
 530           jmp_size[i] = new_size;
 531           DEBUG_ONLY( jmp_target[i] = bnum; );
 532           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 533         } else {
 534           // The jump distance is not short, try again during next iteration.
 535           has_short_branch_candidate = true;
 536         }
 537       } // (mach->may_be_short_branch())
 538       if (mach != NULL && (mach->may_be_short_branch() ||
 539                            mach->avoid_back_to_back())) {
 540         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 541       }
 542       blk_starts[i+1] -= adjust_block_start;
 543     }
 544   }
 545 


1071     // The usual spill mechanism can only generate stfd's in this case, which
1072     // doesn't work if the fp reg to spill contains a single-precision denorm.
1073     // Instead, we hack around the normal spill mechanism using stfspill's and
1074     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1075     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1076     //
1077     // If we ever implement 16-byte 'registers' == stack slots, we can
1078     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1079     // instead of stfd/stfs/ldfd/ldfs.
1080     _frame_slots += 8*(16/BytesPerInt);
1081   }
1082 #endif
1083   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1084 
1085   if (has_mach_constant_base_node()) {
1086     // Fill the constant table.
1087     // Note:  This must happen before shorten_branches.
1088     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1089       Block* b = _cfg->get_block(i);
1090 
1091       for (uint j = 0; j < b->number_of_nodes(); j++) {
1092         Node* n = b->get_node(j);
1093 
1094         // If the node is a MachConstantNode evaluate the constant
1095         // value section.
1096         if (n->is_MachConstant()) {
1097           MachConstantNode* machcon = n->as_MachConstant();
1098           machcon->eval_constant(C);
1099         }
1100       }
1101     }
1102 
1103     // Calculate the offsets of the constants and the size of the
1104     // constant table (including the padding to the next section).
1105     constant_table().calculate_offsets_and_size();
1106     const_req = constant_table().size();
1107   }
1108 
1109   // Initialize the space for the BufferBlob used to find and verify
1110   // instruction size in MachNode::emit_size()
1111   init_scratch_buffer_blob(const_req);
1112   if (failing())  return NULL; // Out of memory


1230     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1231       cb->flush_bundle(true);
1232     }
1233 
1234 #ifdef ASSERT
1235     if (!block->is_connector()) {
1236       stringStream st;
1237       block->dump_head(_cfg, &st);
1238       MacroAssembler(cb).block_comment(st.as_string());
1239     }
1240     jmp_target[i] = 0;
1241     jmp_offset[i] = 0;
1242     jmp_size[i]   = 0;
1243     jmp_rule[i]   = 0;
1244 #endif
1245     int blk_offset = current_offset;
1246 
1247     // Define the label at the beginning of the basic block
1248     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1249 
1250     uint last_inst = block->number_of_nodes();
1251 
1252     // Emit block normally, except for last instruction.
1253     // Emit means "dump code bits into code buffer".
1254     for (uint j = 0; j<last_inst; j++) {
1255 
1256       // Get the node
1257       Node* n = block->get_node(j);
1258 
1259       // See if delay slots are supported
1260       if (valid_bundle_info(n) &&
1261           node_bundling(n)->used_in_unconditional_delay()) {
1262         assert(delay_slot == NULL, "no use of delay slot node");
1263         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1264 
1265         delay_slot = n;
1266         continue;
1267       }
1268 
1269       // If this starts a new instruction group, then flush the current one
1270       // (but allow split bundles)
1271       if (Pipeline::requires_bundling() && starts_bundle(n))
1272         cb->flush_bundle(false);
1273 
1274       // The following logic is duplicated in the code ifdeffed for
1275       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1276       // should be factored out.  Or maybe dispersed to the nodes?
1277 


1291         // A padding may be needed again since a previous instruction
1292         // could be moved to delay slot.
1293 
1294         // align the instruction if necessary
1295         int padding = mach->compute_padding(current_offset);
1296         // Make sure safepoint node for polling is distinct from a call's
1297         // return by adding a nop if needed.
1298         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1299           padding = nop_size;
1300         }
1301         if (padding == 0 && mach->avoid_back_to_back() &&
1302             current_offset == last_avoid_back_to_back_offset) {
1303           // Avoid back to back some instructions.
1304           padding = nop_size;
1305         }
1306 
1307         if(padding > 0) {
1308           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1309           int nops_cnt = padding / nop_size;
1310           MachNode *nop = new (this) MachNopNode(nops_cnt);
1311           block->insert_node(nop, j++);
1312           last_inst++;
1313           _cfg->map_node_to_block(nop, block);
1314           nop->emit(*cb, _regalloc);
1315           cb->flush_bundle(true);
1316           current_offset = cb->insts_size();
1317         }
1318 
1319         // Remember the start of the last call in a basic block
1320         if (is_mcall) {
1321           MachCallNode *mcall = mach->as_MachCall();
1322 
1323           // This destination address is NOT PC-relative
1324           mcall->method_set((intptr_t)mcall->entry_point());
1325 
1326           // Save the return address
1327           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1328 
1329           if (mcall->is_MachCallLeaf()) {
1330             is_mcall = false;
1331             is_sfn = false;


1377               // finilized yet, adjust distance by the difference
1378               // between calculated and final offsets of current block.
1379               offset -= (blk_starts[i] - blk_offset);
1380             }
1381             // In the following code a nop could be inserted before
1382             // the branch which will increase the backward distance.
1383             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1384             if (needs_padding && offset <= 0)
1385               offset -= nop_size;
1386 
1387             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1388               // We've got a winner.  Replace this branch.
1389               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1390 
1391               // Update the jmp_size.
1392               int new_size = replacement->size(_regalloc);
1393               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1394               // Insert padding between avoid_back_to_back branches.
1395               if (needs_padding && replacement->avoid_back_to_back()) {
1396                 MachNode *nop = new (this) MachNopNode();
1397                 block->insert_node(nop, j++);
1398                 _cfg->map_node_to_block(nop, block);
1399                 last_inst++;
1400                 nop->emit(*cb, _regalloc);
1401                 cb->flush_bundle(true);
1402                 current_offset = cb->insts_size();
1403               }
1404 #ifdef ASSERT
1405               jmp_target[i] = block_num;
1406               jmp_offset[i] = current_offset - blk_offset;
1407               jmp_size[i]   = new_size;
1408               jmp_rule[i]   = mach->rule();
1409 #endif
1410               block->map_node(replacement, j);
1411               mach->subsume_by(replacement, C);
1412               n    = replacement;
1413               mach = replacement;
1414             }
1415           }
1416           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1417         } else if (mach->ideal_Opcode() == Op_Jump) {
1418           for (uint h = 0; h < block->_num_succs; h++) {
1419             Block* succs_block = block->_succs[h];
1420             for (uint j = 1; j < succs_block->num_preds(); j++) {
1421               Node* jpn = succs_block->pred(j);
1422               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1423                 uint block_num = succs_block->non_connector()->_pre_order;
1424                 Label *blkLabel = &blk_labels[block_num];
1425                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1426               }
1427             }
1428           }
1429         }
1430 #ifdef ASSERT
1431         // Check that oop-store precedes the card-mark
1432         else if (mach->ideal_Opcode() == Op_StoreCM) {
1433           uint storeCM_idx = j;
1434           int count = 0;
1435           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1436             Node *oop_store = mach->in(prec);  // Precedence edge
1437             if (oop_store == NULL) continue;
1438             count++;
1439             uint i4;
1440             for (i4 = 0; i4 < last_inst; ++i4) {
1441               if (block->get_node(i4) == oop_store) {
1442                 break;
1443               }
1444             }
1445             // Note: This test can provide a false failure if other precedence
1446             // edges have been added to the storeCMNode.
1447             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1448           }
1449           assert(count > 0, "storeCM expects at least one precedence edge");
1450         }
1451 #endif
1452         else if (!n->is_Proj()) {
1453           // Remember the beginning of the previous instruction, in case
1454           // it's followed by a flag-kill and a null-check.  Happens on
1455           // Intel all the time, with add-to-memory kind of opcodes.
1456           previous_offset = current_offset;
1457         }
1458       }
1459 
1460       // Verify that there is sufficient space remaining
1461       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);


1531           // Generate an OopMap entry
1532           Process_OopMap_Node(mach, adjusted_offset);
1533         }
1534 
1535         // Insert the delay slot instruction
1536         delay_slot->emit(*cb, _regalloc);
1537 
1538         // Don't reuse it
1539         delay_slot = NULL;
1540       }
1541 
1542     } // End for all instructions in block
1543 
1544     // If the next block is the top of a loop, pad this block out to align
1545     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1546     if (i < nblocks-1) {
1547       Block *nb = _cfg->get_block(i + 1);
1548       int padding = nb->alignment_padding(current_offset);
1549       if( padding > 0 ) {
1550         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1551         block->insert_node(nop, block->number_of_nodes());
1552         _cfg->map_node_to_block(nop, block);
1553         nop->emit(*cb, _regalloc);
1554         current_offset = cb->insts_size();
1555       }
1556     }
1557     // Verify that the distance for generated before forward
1558     // short branches is still valid.
1559     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1560 
1561     // Save new block start offset
1562     blk_starts[i] = blk_offset;
1563   } // End of for all blocks
1564   blk_starts[nblocks] = current_offset;
1565 
1566   non_safepoints.flush_at_end();
1567 
1568   // Offset too large?
1569   if (failing())  return;
1570 
1571   // Define a pseudo-label at the end of the code


1638       dump_asm(node_offsets, node_offset_limit);
1639       if (xtty != NULL) {
1640         xtty->tail("opto_assembly");
1641       }
1642     }
1643   }
1644 #endif
1645 
1646 }
1647 
1648 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1649   _inc_table.set_size(cnt);
1650 
1651   uint inct_cnt = 0;
1652   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1653     Block* block = _cfg->get_block(i);
1654     Node *n = NULL;
1655     int j;
1656 
1657     // Find the branch; ignore trailing NOPs.
1658     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1659       n = block->get_node(j);
1660       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1661         break;
1662       }
1663     }
1664 
1665     // If we didn't find anything, continue
1666     if (j < 0) {
1667       continue;
1668     }
1669 
1670     // Compute ExceptionHandlerTable subtable entry and add it
1671     // (skip empty blocks)
1672     if (n->is_Catch()) {
1673 
1674       // Get the offset of the return from the call
1675       uint call_return = call_returns[block->_pre_order];
1676 #ifdef ASSERT
1677       assert( call_return > 0, "no call seen for this basic block" );
1678       while (block->get_node(--j)->is_MachProj()) ;
1679       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1680 #endif
1681       // last instruction is a CatchNode, find it's CatchProjNodes
1682       int nof_succs = block->_num_succs;
1683       // allocate space
1684       GrowableArray<intptr_t> handler_bcis(nof_succs);
1685       GrowableArray<intptr_t> handler_pcos(nof_succs);
1686       // iterate through all successors
1687       for (int j = 0; j < nof_succs; j++) {
1688         Block* s = block->_succs[j];
1689         bool found_p = false;
1690         for (uint k = 1; k < s->num_preds(); k++) {
1691           Node* pk = s->pred(k);
1692           if (pk->is_CatchProj() && pk->in(0) == n) {
1693             const CatchProjNode* p = pk->as_CatchProj();
1694             found_p = true;
1695             // add the corresponding handler bci & pco information
1696             if (p->_con != CatchProjNode::fall_through_index) {
1697               // p leads to an exception handler (and is not fall through)
1698               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1699               // no duplicates, please


1765   // This one is persistent within the Compile class
1766   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1767 
1768   // Allocate space for fixed-size arrays
1769   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1770   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1771   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1772 
1773   // Clear the arrays
1774   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1775   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1776   memset(_uses,               0, node_max * sizeof(short));
1777   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1778 
1779   // Clear the bundling information
1780   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1781 
1782   // Get the last node
1783   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1784 
1785   _next_node = block->get_node(block->number_of_nodes() - 1);
1786 }
1787 
1788 #ifndef PRODUCT
1789 // Scheduling destructor
1790 Scheduling::~Scheduling() {
1791   _total_branches             += _branches;
1792   _total_unconditional_delays += _unconditional_delays;
1793 }
1794 #endif
1795 
1796 // Step ahead "i" cycles
1797 void Scheduling::step(uint i) {
1798 
1799   Bundle *bundle = node_bundling(_next_node);
1800   bundle->set_starts_bundle();
1801 
1802   // Update the bundle record, but leave the flags information alone
1803   if (_bundle_instr_count > 0) {
1804     bundle->set_instr_count(_bundle_instr_count);
1805     bundle->set_resources_used(_bundle_use.resourcesUsed());


1858   scheduling.DoScheduling();
1859 }
1860 
1861 // Compute the latency of all the instructions.  This is fairly simple,
1862 // because we already have a legal ordering.  Walk over the instructions
1863 // from first to last, and compute the latency of the instruction based
1864 // on the latency of the preceding instruction(s).
1865 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1866 #ifndef PRODUCT
1867   if (_cfg->C->trace_opto_output())
1868     tty->print("# -> ComputeLocalLatenciesForward\n");
1869 #endif
1870 
1871   // Walk over all the schedulable instructions
1872   for( uint j=_bb_start; j < _bb_end; j++ ) {
1873 
1874     // This is a kludge, forcing all latency calculations to start at 1.
1875     // Used to allow latency 0 to force an instruction to the beginning
1876     // of the bb
1877     uint latency = 1;
1878     Node *use = bb->get_node(j);
1879     uint nlen = use->len();
1880 
1881     // Walk over all the inputs
1882     for ( uint k=0; k < nlen; k++ ) {
1883       Node *def = use->in(k);
1884       if (!def)
1885         continue;
1886 
1887       uint l = _node_latency[def->_idx] + use->latency(k);
1888       if (latency < l)
1889         latency = l;
1890     }
1891 
1892     _node_latency[use->_idx] = latency;
1893 
1894 #ifndef PRODUCT
1895     if (_cfg->C->trace_opto_output()) {
1896       tty->print("# latency %4d: ", latency);
1897       use->dump();
1898     }


2269 
2270     // Increment the number of instructions in this bundle
2271     _bundle_instr_count += instruction_count;
2272 
2273     // Remember this node for later
2274     if (n->is_Mach())
2275       _next_node = n;
2276   }
2277 
2278   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2279   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2280   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2281   // into the block.  All other scheduled nodes get put in the schedule here.
2282   int op = n->Opcode();
2283   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2284       (op != Op_Node &&         // Not an unused antidepedence node and
2285        // not an unallocated boxlock
2286        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2287 
2288     // Push any trailing projections
2289     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2290       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2291         Node *foi = n->fast_out(i);
2292         if( foi->is_Proj() )
2293           _scheduled.push(foi);
2294       }
2295     }
2296 
2297     // Put the instruction in the schedule list
2298     _scheduled.push(n);
2299   }
2300 
2301 #ifndef PRODUCT
2302   if (_cfg->C->trace_opto_output())
2303     dump_available();
2304 #endif
2305 
2306   // Walk all the definitions, decrementing use counts, and
2307   // if a definition has a 0 use count, place it in the available list.
2308   DecrementUseCounts(n,bb);
2309 }


2312 // uses outside the current basic block.  As we are doing a backwards walk,
2313 // any node we reach that has a use count of 0 may be scheduled.  This also
2314 // avoids the problem of cyclic references from phi nodes, as long as phi
2315 // nodes are at the front of the basic block.  This method also initializes
2316 // the available list to the set of instructions that have no uses within this
2317 // basic block.
2318 void Scheduling::ComputeUseCount(const Block *bb) {
2319 #ifndef PRODUCT
2320   if (_cfg->C->trace_opto_output())
2321     tty->print("# -> ComputeUseCount\n");
2322 #endif
2323 
2324   // Clear the list of available and scheduled instructions, just in case
2325   _available.clear();
2326   _scheduled.clear();
2327 
2328   // No delay slot specified
2329   _unconditional_delay_slot = NULL;
2330 
2331 #ifdef ASSERT
2332   for( uint i=0; i < bb->number_of_nodes(); i++ )
2333     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2334 #endif
2335 
2336   // Force the _uses count to never go to zero for unscheduable pieces
2337   // of the block
2338   for( uint k = 0; k < _bb_start; k++ )
2339     _uses[bb->get_node(k)->_idx] = 1;
2340   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2341     _uses[bb->get_node(l)->_idx] = 1;
2342 
2343   // Iterate backwards over the instructions in the block.  Don't count the
2344   // branch projections at end or the block header instructions.
2345   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2346     Node *n = bb->get_node(j);
2347     if( n->is_Proj() ) continue; // Projections handled another way
2348 
2349     // Account for all uses
2350     for ( uint k = 0; k < n->len(); k++ ) {
2351       Node *inp = n->in(k);
2352       if (!inp) continue;
2353       assert(inp != n, "no cycles allowed" );
2354       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2355         if (inp->is_Proj()) { // Skip through Proj's
2356           inp = inp->in(0);
2357         }
2358         ++_uses[inp->_idx];     // Count 1 block-local use
2359       }
2360     }
2361 
2362     // If this instruction has a 0 use count, then it is available
2363     if (!_uses[n->_idx]) {
2364       _current_latency[n->_idx] = _bundle_cycle_number;
2365       AddNodeToAvailableList(n);
2366     }


2381 
2382 // This routine performs scheduling on each basic block in reverse order,
2383 // using instruction latencies and taking into account function unit
2384 // availability.
2385 void Scheduling::DoScheduling() {
2386 #ifndef PRODUCT
2387   if (_cfg->C->trace_opto_output())
2388     tty->print("# -> DoScheduling\n");
2389 #endif
2390 
2391   Block *succ_bb = NULL;
2392   Block *bb;
2393 
2394   // Walk over all the basic blocks in reverse order
2395   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2396     bb = _cfg->get_block(i);
2397 
2398 #ifndef PRODUCT
2399     if (_cfg->C->trace_opto_output()) {
2400       tty->print("#  Schedule BB#%03d (initial)\n", i);
2401       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2402         bb->get_node(j)->dump();
2403       }
2404     }
2405 #endif
2406 
2407     // On the head node, skip processing
2408     if (bb == _cfg->get_root_block()) {
2409       continue;
2410     }
2411 
2412     // Skip empty, connector blocks
2413     if (bb->is_connector())
2414       continue;
2415 
2416     // If the following block is not the sole successor of
2417     // this one, then reset the pipeline information
2418     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2419 #ifndef PRODUCT
2420       if (_cfg->C->trace_opto_output()) {
2421         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2422                    _next_node->_idx, _bundle_instr_count);
2423       }
2424 #endif
2425       step_and_clear();
2426     }
2427 
2428     // Leave untouched the starting instruction, any Phis, a CreateEx node
2429     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2430     _bb_end = bb->number_of_nodes()-1;
2431     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2432       Node *n = bb->get_node(_bb_start);
2433       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2434       // Also, MachIdealNodes do not get scheduled
2435       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2436       MachNode *mach = n->as_Mach();
2437       int iop = mach->ideal_Opcode();
2438       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2439       if( iop == Op_Con ) continue;      // Do not schedule Top
2440       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2441           mach->pipeline() == MachNode::pipeline_class() &&
2442           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2443         continue;
2444       break;                    // Funny loop structure to be sure...
2445     }
2446     // Compute last "interesting" instruction in block - last instruction we
2447     // might schedule.  _bb_end points just after last schedulable inst.  We
2448     // normally schedule conditional branches (despite them being forced last
2449     // in the block), because they have delay slots we can fill.  Calls all
2450     // have their delay slots filled in the template expansions, so we don't
2451     // bother scheduling them.
2452     Node *last = bb->get_node(_bb_end);
2453     // Ignore trailing NOPs.
2454     while (_bb_end > 0 && last->is_Mach() &&
2455            last->as_Mach()->ideal_Opcode() == Op_Con) {
2456       last = bb->get_node(--_bb_end);
2457     }
2458     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2459     if( last->is_Catch() ||
2460        // Exclude unreachable path case when Halt node is in a separate block.
2461        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2462       // There must be a prior call.  Skip it.
2463       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2464         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2465       }
2466     } else if( last->is_MachNullCheck() ) {
2467       // Backup so the last null-checked memory instruction is
2468       // outside the schedulable range. Skip over the nullcheck,
2469       // projection, and the memory nodes.
2470       Node *mem = last->in(1);
2471       do {
2472         _bb_end--;
2473       } while (mem != bb->get_node(_bb_end));
2474     } else {
2475       // Set _bb_end to point after last schedulable inst.
2476       _bb_end++;
2477     }
2478 
2479     assert( _bb_start <= _bb_end, "inverted block ends" );
2480 
2481     // Compute the register antidependencies for the basic block
2482     ComputeRegisterAntidependencies(bb);
2483     if (_cfg->C->failing())  return;  // too many D-U pinch points
2484 
2485     // Compute intra-bb latencies for the nodes
2486     ComputeLocalLatenciesForward(bb);
2487 
2488     // Compute the usage within the block, and set the list of all nodes
2489     // in the block that have no uses within the block.
2490     ComputeUseCount(bb);
2491 
2492     // Schedule the remaining instructions in the block
2493     while ( _available.size() > 0 ) {
2494       Node *n = ChooseNodeToBundle();
2495       guarantee(n != NULL, "no nodes available");
2496       AddNodeToBundle(n,bb);
2497     }
2498 
2499     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2500 #ifdef ASSERT
2501     for( uint l = _bb_start; l < _bb_end; l++ ) {
2502       Node *n = bb->get_node(l);
2503       uint m;
2504       for( m = 0; m < _bb_end-_bb_start; m++ )
2505         if( _scheduled[m] == n )
2506           break;
2507       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2508     }
2509 #endif
2510 
2511     // Now copy the instructions (in reverse order) back to the block
2512     for ( uint k = _bb_start; k < _bb_end; k++ )
2513       bb->map_node(_scheduled[_bb_end-k-1], k);
2514 
2515 #ifndef PRODUCT
2516     if (_cfg->C->trace_opto_output()) {
2517       tty->print("#  Schedule BB#%03d (final)\n", i);
2518       uint current = 0;
2519       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2520         Node *n = bb->get_node(j);
2521         if( valid_bundle_info(n) ) {
2522           Bundle *bundle = node_bundling(n);
2523           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2524             tty->print("*** Bundle: ");
2525             bundle->dump();
2526           }
2527           n->dump();
2528         }
2529       }
2530     }
2531 #endif
2532 #ifdef ASSERT
2533   verify_good_schedule(bb,"after block local scheduling");
2534 #endif
2535   }
2536 
2537 #ifndef PRODUCT
2538   if (_cfg->C->trace_opto_output())
2539     tty->print("# <- DoScheduling\n");
2540 #endif


2562     Node *prior_use = _reg_node[def];
2563     if( prior_use && !edge_from_to(prior_use,n) ) {
2564       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2565       n->dump();
2566       tty->print_cr("...");
2567       prior_use->dump();
2568       assert(edge_from_to(prior_use,n),msg);
2569     }
2570     _reg_node.map(def,NULL); // Kill live USEs
2571   }
2572 }
2573 
2574 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2575 
2576   // Zap to something reasonable for the verify code
2577   _reg_node.clear();
2578 
2579   // Walk over the block backwards.  Check to make sure each DEF doesn't
2580   // kill a live value (other than the one it's supposed to).  Add each
2581   // USE to the live set.
2582   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2583     Node *n = b->get_node(i);
2584     int n_op = n->Opcode();
2585     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2586       // Fat-proj kills a slew of registers
2587       RegMask rm = n->out_RegMask();// Make local copy
2588       while( rm.is_NotEmpty() ) {
2589         OptoReg::Name kill = rm.find_first_elem();
2590         rm.Remove(kill);
2591         verify_do_def( n, kill, msg );
2592       }
2593     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2594       // Get DEF'd registers the normal way
2595       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2596       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2597     }
2598 
2599     // Now make all USEs live
2600     for( uint i=1; i<n->req(); i++ ) {
2601       Node *def = n->in(i);
2602       assert(def != 0, "input edge required");
2603       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);


2694       }
2695     }
2696   }
2697 
2698   // Add edge from kill to pinch-point
2699   add_prec_edge_from_to(kill,pinch);
2700 }
2701 
2702 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2703   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2704     return;
2705   Node *pinch = _reg_node[use_reg]; // Get pinch point
2706   // Check for no later def_reg/kill in block
2707   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2708       // Use has to be block-local as well
2709       _cfg->get_block_for_node(use) == b) {
2710     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2711         pinch->req() == 1 ) {   // pinch not yet in block?
2712       pinch->del_req(0);        // yank pointer to later-def, also set flag
2713       // Insert the pinch-point in the block just after the last use
2714       b->insert_node(pinch, b->find_node(use) + 1);
2715       _bb_end++;                // Increase size scheduled region in block
2716     }
2717 
2718     add_prec_edge_from_to(pinch,use);
2719   }
2720 }
2721 
2722 // We insert antidependences between the reads and following write of
2723 // allocated registers to prevent illegal code motion. Hopefully, the
2724 // number of added references should be fairly small, especially as we
2725 // are only adding references within the current basic block.
2726 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2727 
2728 #ifdef ASSERT
2729   verify_good_schedule(b,"before block local scheduling");
2730 #endif
2731 
2732   // A valid schedule, for each register independently, is an endless cycle
2733   // of: a def, then some uses (connected to the def by true dependencies),
2734   // then some kills (defs with no uses), finally the cycle repeats with a new


2746 
2747   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2748   // register.  If not, we record the DEF/KILL in _reg_node, the
2749   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2750   // "pinch point", a new Node that's in the graph but not in the block.
2751   // We put edges from the prior and current DEF/KILLs to the pinch point.
2752   // We put the pinch point in _reg_node.  If there's already a pinch point
2753   // we merely add an edge from the current DEF/KILL to the pinch point.
2754 
2755   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2756   // put an edge from the pinch point to the USE.
2757 
2758   // To be expedient, the _reg_node array is pre-allocated for the whole
2759   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2760   // or a valid def/kill/pinch-point, or a leftover node from some prior
2761   // block.  Leftover node from some prior block is treated like a NULL (no
2762   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2763   // it being in the current block.
2764   bool fat_proj_seen = false;
2765   uint last_safept = _bb_end-1;
2766   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2767   Node* last_safept_node = end_node;
2768   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2769     Node *n = b->get_node(i);
2770     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2771     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2772       // Fat-proj kills a slew of registers
2773       // This can add edges to 'n' and obscure whether or not it was a def,
2774       // hence the is_def flag.
2775       fat_proj_seen = true;
2776       RegMask rm = n->out_RegMask();// Make local copy
2777       while( rm.is_NotEmpty() ) {
2778         OptoReg::Name kill = rm.find_first_elem();
2779         rm.Remove(kill);
2780         anti_do_def( b, n, kill, is_def );
2781       }
2782     } else {
2783       // Get DEF'd registers the normal way
2784       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2785       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2786     }
2787 
2788     // Kill projections on a branch should appear to occur on the
2789     // branch, not afterwards, so grab the masks from the projections


2798             rm.Remove(kill);
2799             anti_do_def( b, n, kill, false );
2800           }
2801         }
2802       }
2803     }
2804 
2805     // Check each register used by this instruction for a following DEF/KILL
2806     // that must occur afterward and requires an anti-dependence edge.
2807     for( uint j=0; j<n->req(); j++ ) {
2808       Node *def = n->in(j);
2809       if( def ) {
2810         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2811         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2812         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2813       }
2814     }
2815     // Do not allow defs of new derived values to float above GC
2816     // points unless the base is definitely available at the GC point.
2817 
2818     Node *m = b->get_node(i);
2819 
2820     // Add precedence edge from following safepoint to use of derived pointer
2821     if( last_safept_node != end_node &&
2822         m != last_safept_node) {
2823       for (uint k = 1; k < m->req(); k++) {
2824         const Type *t = m->in(k)->bottom_type();
2825         if( t->isa_oop_ptr() &&
2826             t->is_ptr()->offset() != 0 ) {
2827           last_safept_node->add_prec( m );
2828           break;
2829         }
2830       }
2831     }
2832 
2833     if( n->jvms() ) {           // Precedence edge from derived to safept
2834       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2835       if( b->get_node(last_safept) != last_safept_node ) {
2836         last_safept = b->find_node(last_safept_node);
2837       }
2838       for( uint j=last_safept; j > i; j-- ) {
2839         Node *mach = b->get_node(j);
2840         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2841           mach->add_prec( n );
2842       }
2843       last_safept = i;
2844       last_safept_node = m;
2845     }
2846   }
2847 
2848   if (fat_proj_seen) {
2849     // Garbage collect pinch nodes that were not consumed.
2850     // They are usually created by a fat kill MachProj for a call.
2851     garbage_collect_pinch_nodes();
2852   }
2853 }
2854 
2855 // Garbage collect pinch nodes for reuse by other blocks.
2856 //
2857 // The block scheduler's insertion of anti-dependence
2858 // edges creates many pinch nodes when the block contains
2859 // 2 or more Calls.  A pinch node is used to prevent a


src/share/vm/opto/output.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File