1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "gc/shared/gcVMOperations.hpp"
  36 #include "logging/log.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/guardedMemory.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.hpp"
  44 #include "oops/compressedOops.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/interfaceSupport.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/os.inline.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadSMR.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/mallocTracker.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/nmtCommon.hpp"
  65 #include "services/threadService.hpp"
  66 #include "utilities/align.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 
  70 # include <signal.h>
  71 # include <errno.h>
  72 
  73 OSThread*         os::_starting_thread    = NULL;
  74 address           os::_polling_page       = NULL;
  75 volatile unsigned int os::_rand_seed      = 1;
  76 int               os::_processor_count    = 0;
  77 int               os::_initial_active_processor_count = 0;
  78 size_t            os::_page_sizes[os::page_sizes_max];
  79 
  80 #ifndef PRODUCT
  81 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  82 julong os::alloc_bytes = 0;         // # of bytes allocated
  83 julong os::num_frees = 0;           // # of calls to free
  84 julong os::free_bytes = 0;          // # of bytes freed
  85 #endif
  86 
  87 static size_t cur_malloc_words = 0;  // current size for MallocMaxTestWords
  88 
  89 DEBUG_ONLY(bool os::_mutex_init_done = false;)
  90 
  91 void os_init_globals() {
  92   // Called from init_globals().
  93   // See Threads::create_vm() in thread.cpp, and init.cpp.
  94   os::init_globals();
  95 }
  96 
  97 static time_t get_timezone(const struct tm* time_struct) {
  98 #if defined(_ALLBSD_SOURCE)
  99   return time_struct->tm_gmtoff;
 100 #elif defined(_WINDOWS)
 101   long zone;
 102   _get_timezone(&zone);
 103   return static_cast<time_t>(zone);
 104 #else
 105   return timezone;
 106 #endif
 107 }
 108 
 109 int os::snprintf(char* buf, size_t len, const char* fmt, ...) {
 110   va_list args;
 111   va_start(args, fmt);
 112   int result = os::vsnprintf(buf, len, fmt, args);
 113   va_end(args);
 114   return result;
 115 }
 116 
 117 // Fill in buffer with current local time as an ISO-8601 string.
 118 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
 119 // Returns buffer, or NULL if it failed.
 120 // This would mostly be a call to
 121 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
 122 // except that on Windows the %z behaves badly, so we do it ourselves.
 123 // Also, people wanted milliseconds on there,
 124 // and strftime doesn't do milliseconds.
 125 char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
 126   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 127   //                                      1         2
 128   //                             12345678901234567890123456789
 129   // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
 130   static const size_t needed_buffer = 29;
 131 
 132   // Sanity check the arguments
 133   if (buffer == NULL) {
 134     assert(false, "NULL buffer");
 135     return NULL;
 136   }
 137   if (buffer_length < needed_buffer) {
 138     assert(false, "buffer_length too small");
 139     return NULL;
 140   }
 141   // Get the current time
 142   jlong milliseconds_since_19700101 = javaTimeMillis();
 143   const int milliseconds_per_microsecond = 1000;
 144   const time_t seconds_since_19700101 =
 145     milliseconds_since_19700101 / milliseconds_per_microsecond;
 146   const int milliseconds_after_second =
 147     milliseconds_since_19700101 % milliseconds_per_microsecond;
 148   // Convert the time value to a tm and timezone variable
 149   struct tm time_struct;
 150   if (utc) {
 151     if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 152       assert(false, "Failed gmtime_pd");
 153       return NULL;
 154     }
 155   } else {
 156     if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 157       assert(false, "Failed localtime_pd");
 158       return NULL;
 159     }
 160   }
 161   const time_t zone = get_timezone(&time_struct);
 162 
 163   // If daylight savings time is in effect,
 164   // we are 1 hour East of our time zone
 165   const time_t seconds_per_minute = 60;
 166   const time_t minutes_per_hour = 60;
 167   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 168   time_t UTC_to_local = zone;
 169   if (time_struct.tm_isdst > 0) {
 170     UTC_to_local = UTC_to_local - seconds_per_hour;
 171   }
 172 
 173   // No offset when dealing with UTC
 174   if (utc) {
 175     UTC_to_local = 0;
 176   }
 177 
 178   // Compute the time zone offset.
 179   //    localtime_pd() sets timezone to the difference (in seconds)
 180   //    between UTC and and local time.
 181   //    ISO 8601 says we need the difference between local time and UTC,
 182   //    we change the sign of the localtime_pd() result.
 183   const time_t local_to_UTC = -(UTC_to_local);
 184   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 185   char sign_local_to_UTC = '+';
 186   time_t abs_local_to_UTC = local_to_UTC;
 187   if (local_to_UTC < 0) {
 188     sign_local_to_UTC = '-';
 189     abs_local_to_UTC = -(abs_local_to_UTC);
 190   }
 191   // Convert time zone offset seconds to hours and minutes.
 192   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 193   const time_t zone_min =
 194     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 195 
 196   // Print an ISO 8601 date and time stamp into the buffer
 197   const int year = 1900 + time_struct.tm_year;
 198   const int month = 1 + time_struct.tm_mon;
 199   const int printed = jio_snprintf(buffer, buffer_length,
 200                                    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
 201                                    year,
 202                                    month,
 203                                    time_struct.tm_mday,
 204                                    time_struct.tm_hour,
 205                                    time_struct.tm_min,
 206                                    time_struct.tm_sec,
 207                                    milliseconds_after_second,
 208                                    sign_local_to_UTC,
 209                                    zone_hours,
 210                                    zone_min);
 211   if (printed == 0) {
 212     assert(false, "Failed jio_printf");
 213     return NULL;
 214   }
 215   return buffer;
 216 }
 217 
 218 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 219   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
 220 
 221   if ((p >= MinPriority && p <= MaxPriority) ||
 222       (p == CriticalPriority && thread->is_ConcurrentGC_thread())) {
 223     int priority = java_to_os_priority[p];
 224     return set_native_priority(thread, priority);
 225   } else {
 226     assert(false, "Should not happen");
 227     return OS_ERR;
 228   }
 229 }
 230 
 231 // The mapping from OS priority back to Java priority may be inexact because
 232 // Java priorities can map M:1 with native priorities. If you want the definite
 233 // Java priority then use JavaThread::java_priority()
 234 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 235   int p;
 236   int os_prio;
 237   OSReturn ret = get_native_priority(thread, &os_prio);
 238   if (ret != OS_OK) return ret;
 239 
 240   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 241     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 242   } else {
 243     // niceness values are in reverse order
 244     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 245   }
 246   priority = (ThreadPriority)p;
 247   return OS_OK;
 248 }
 249 
 250 bool os::dll_build_name(char* buffer, size_t size, const char* fname) {
 251   int n = jio_snprintf(buffer, size, "%s%s%s", JNI_LIB_PREFIX, fname, JNI_LIB_SUFFIX);
 252   return (n != -1);
 253 }
 254 
 255 #if !defined(LINUX) && !defined(_WINDOWS)
 256 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
 257   committed_start = start;
 258   committed_size = size;
 259   return true;
 260 }
 261 #endif
 262 
 263 // Helper for dll_locate_lib.
 264 // Pass buffer and printbuffer as we already printed the path to buffer
 265 // when we called get_current_directory. This way we avoid another buffer
 266 // of size MAX_PATH.
 267 static bool conc_path_file_and_check(char *buffer, char *printbuffer, size_t printbuflen,
 268                                      const char* pname, char lastchar, const char* fname) {
 269 
 270   // Concatenate path and file name, but don't print double path separators.
 271   const char *filesep = (WINDOWS_ONLY(lastchar == ':' ||) lastchar == os::file_separator()[0]) ?
 272                         "" : os::file_separator();
 273   int ret = jio_snprintf(printbuffer, printbuflen, "%s%s%s", pname, filesep, fname);
 274   // Check whether file exists.
 275   if (ret != -1) {
 276     struct stat statbuf;
 277     return os::stat(buffer, &statbuf) == 0;
 278   }
 279   return false;
 280 }
 281 
 282 // Frees all memory allocated on the heap for the
 283 // supplied array of arrays of chars (a), where n
 284 // is the number of elements in the array.
 285 static void free_array_of_char_arrays(char** a, size_t n) {
 286       while (n > 0) {
 287           n--;
 288           if (a[n] != NULL) {
 289             FREE_C_HEAP_ARRAY(char, a[n]);
 290           }
 291       }
 292       FREE_C_HEAP_ARRAY(char*, a);
 293 }
 294 
 295 bool os::dll_locate_lib(char *buffer, size_t buflen,
 296                         const char* pname, const char* fname) {
 297   bool retval = false;
 298 
 299   size_t fullfnamelen = strlen(JNI_LIB_PREFIX) + strlen(fname) + strlen(JNI_LIB_SUFFIX);
 300   char* fullfname = (char*)NEW_C_HEAP_ARRAY(char, fullfnamelen + 1, mtInternal);
 301   if (dll_build_name(fullfname, fullfnamelen + 1, fname)) {
 302     const size_t pnamelen = pname ? strlen(pname) : 0;
 303 
 304     if (pnamelen == 0) {
 305       // If no path given, use current working directory.
 306       const char* p = get_current_directory(buffer, buflen);
 307       if (p != NULL) {
 308         const size_t plen = strlen(buffer);
 309         const char lastchar = buffer[plen - 1];
 310         retval = conc_path_file_and_check(buffer, &buffer[plen], buflen - plen,
 311                                           "", lastchar, fullfname);
 312       }
 313     } else if (strchr(pname, *os::path_separator()) != NULL) {
 314       // A list of paths. Search for the path that contains the library.
 315       size_t n;
 316       char** pelements = split_path(pname, &n, fullfnamelen);
 317       if (pelements != NULL) {
 318         for (size_t i = 0; i < n; i++) {
 319           char* path = pelements[i];
 320           // Really shouldn't be NULL, but check can't hurt.
 321           size_t plen = (path == NULL) ? 0 : strlen(path);
 322           if (plen == 0) {
 323             continue; // Skip the empty path values.
 324           }
 325           const char lastchar = path[plen - 1];
 326           retval = conc_path_file_and_check(buffer, buffer, buflen, path, lastchar, fullfname);
 327           if (retval) break;
 328         }
 329         // Release the storage allocated by split_path.
 330         free_array_of_char_arrays(pelements, n);
 331       }
 332     } else {
 333       // A definite path.
 334       const char lastchar = pname[pnamelen-1];
 335       retval = conc_path_file_and_check(buffer, buffer, buflen, pname, lastchar, fullfname);
 336     }
 337   }
 338 
 339   FREE_C_HEAP_ARRAY(char*, fullfname);
 340   return retval;
 341 }
 342 
 343 // --------------------- sun.misc.Signal (optional) ---------------------
 344 
 345 
 346 // SIGBREAK is sent by the keyboard to query the VM state
 347 #ifndef SIGBREAK
 348 #define SIGBREAK SIGQUIT
 349 #endif
 350 
 351 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 352 
 353 
 354 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 355   os::set_priority(thread, NearMaxPriority);
 356   while (true) {
 357     int sig;
 358     {
 359       // FIXME : Currently we have not decided what should be the status
 360       //         for this java thread blocked here. Once we decide about
 361       //         that we should fix this.
 362       sig = os::signal_wait();
 363     }
 364     if (sig == os::sigexitnum_pd()) {
 365        // Terminate the signal thread
 366        return;
 367     }
 368 
 369     switch (sig) {
 370       case SIGBREAK: {
 371         // Check if the signal is a trigger to start the Attach Listener - in that
 372         // case don't print stack traces.
 373         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 374           continue;
 375         }
 376         // Print stack traces
 377         // Any SIGBREAK operations added here should make sure to flush
 378         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 379         // Each module also prints an extra carriage return after its output.
 380         VM_PrintThreads op;
 381         VMThread::execute(&op);
 382         VM_PrintJNI jni_op;
 383         VMThread::execute(&jni_op);
 384         VM_FindDeadlocks op1(tty);
 385         VMThread::execute(&op1);
 386         Universe::print_heap_at_SIGBREAK();
 387         if (PrintClassHistogram) {
 388           VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
 389           VMThread::execute(&op1);
 390         }
 391         if (JvmtiExport::should_post_data_dump()) {
 392           JvmtiExport::post_data_dump();
 393         }
 394         break;
 395       }
 396       default: {
 397         // Dispatch the signal to java
 398         HandleMark hm(THREAD);
 399         Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
 400         if (klass != NULL) {
 401           JavaValue result(T_VOID);
 402           JavaCallArguments args;
 403           args.push_int(sig);
 404           JavaCalls::call_static(
 405             &result,
 406             klass,
 407             vmSymbols::dispatch_name(),
 408             vmSymbols::int_void_signature(),
 409             &args,
 410             THREAD
 411           );
 412         }
 413         if (HAS_PENDING_EXCEPTION) {
 414           // tty is initialized early so we don't expect it to be null, but
 415           // if it is we can't risk doing an initialization that might
 416           // trigger additional out-of-memory conditions
 417           if (tty != NULL) {
 418             char klass_name[256];
 419             char tmp_sig_name[16];
 420             const char* sig_name = "UNKNOWN";
 421             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 422               name()->as_klass_external_name(klass_name, 256);
 423             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 424               sig_name = tmp_sig_name;
 425             warning("Exception %s occurred dispatching signal %s to handler"
 426                     "- the VM may need to be forcibly terminated",
 427                     klass_name, sig_name );
 428           }
 429           CLEAR_PENDING_EXCEPTION;
 430         }
 431       }
 432     }
 433   }
 434 }
 435 
 436 void os::init_before_ergo() {
 437   initialize_initial_active_processor_count();
 438   // We need to initialize large page support here because ergonomics takes some
 439   // decisions depending on large page support and the calculated large page size.
 440   large_page_init();
 441 
 442   // We need to adapt the configured number of stack protection pages given
 443   // in 4K pages to the actual os page size. We must do this before setting
 444   // up minimal stack sizes etc. in os::init_2().
 445   JavaThread::set_stack_red_zone_size     (align_up(StackRedPages      * 4 * K, vm_page_size()));
 446   JavaThread::set_stack_yellow_zone_size  (align_up(StackYellowPages   * 4 * K, vm_page_size()));
 447   JavaThread::set_stack_reserved_zone_size(align_up(StackReservedPages * 4 * K, vm_page_size()));
 448   JavaThread::set_stack_shadow_zone_size  (align_up(StackShadowPages   * 4 * K, vm_page_size()));
 449 
 450   // VM version initialization identifies some characteristics of the
 451   // platform that are used during ergonomic decisions.
 452   VM_Version::init_before_ergo();
 453 }
 454 
 455 void os::initialize_jdk_signal_support(TRAPS) {
 456   if (!ReduceSignalUsage) {
 457     // Setup JavaThread for processing signals
 458     const char thread_name[] = "Signal Dispatcher";
 459     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 460 
 461     // Initialize thread_oop to put it into the system threadGroup
 462     Handle thread_group (THREAD, Universe::system_thread_group());
 463     Handle thread_oop = JavaCalls::construct_new_instance(SystemDictionary::Thread_klass(),
 464                            vmSymbols::threadgroup_string_void_signature(),
 465                            thread_group,
 466                            string,
 467                            CHECK);
 468 
 469     Klass* group = SystemDictionary::ThreadGroup_klass();
 470     JavaValue result(T_VOID);
 471     JavaCalls::call_special(&result,
 472                             thread_group,
 473                             group,
 474                             vmSymbols::add_method_name(),
 475                             vmSymbols::thread_void_signature(),
 476                             thread_oop,
 477                             CHECK);
 478 
 479     { MutexLocker mu(Threads_lock);
 480       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 481 
 482       // At this point it may be possible that no osthread was created for the
 483       // JavaThread due to lack of memory. We would have to throw an exception
 484       // in that case. However, since this must work and we do not allow
 485       // exceptions anyway, check and abort if this fails.
 486       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 487         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 488                                       os::native_thread_creation_failed_msg());
 489       }
 490 
 491       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 492       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 493       java_lang_Thread::set_daemon(thread_oop());
 494 
 495       signal_thread->set_threadObj(thread_oop());
 496       Threads::add(signal_thread);
 497       Thread::start(signal_thread);
 498     }
 499     // Handle ^BREAK
 500     os::signal(SIGBREAK, os::user_handler());
 501   }
 502 }
 503 
 504 
 505 void os::terminate_signal_thread() {
 506   if (!ReduceSignalUsage)
 507     signal_notify(sigexitnum_pd());
 508 }
 509 
 510 
 511 // --------------------- loading libraries ---------------------
 512 
 513 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 514 extern struct JavaVM_ main_vm;
 515 
 516 static void* _native_java_library = NULL;
 517 
 518 void* os::native_java_library() {
 519   if (_native_java_library == NULL) {
 520     char buffer[JVM_MAXPATHLEN];
 521     char ebuf[1024];
 522 
 523     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 524     // always able to find it when the loading executable is outside the JDK.
 525     // In order to keep working with 1.2 we ignore any loading errors.
 526     if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 527                        "verify")) {
 528       dll_load(buffer, ebuf, sizeof(ebuf));
 529     }
 530 
 531     // Load java dll
 532     if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 533                        "java")) {
 534       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 535     }
 536     if (_native_java_library == NULL) {
 537       vm_exit_during_initialization("Unable to load native library", ebuf);
 538     }
 539 
 540 #if defined(__OpenBSD__)
 541     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 542     // ignore errors
 543     if (dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 544                        "net")) {
 545       dll_load(buffer, ebuf, sizeof(ebuf));
 546     }
 547 #endif
 548   }
 549   return _native_java_library;
 550 }
 551 
 552 /*
 553  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 554  * If check_lib == true then we are looking for an
 555  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 556  * this library is statically linked into the image.
 557  * If check_lib == false then we will look for the appropriate symbol in the
 558  * executable if agent_lib->is_static_lib() == true or in the shared library
 559  * referenced by 'handle'.
 560  */
 561 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 562                               const char *syms[], size_t syms_len) {
 563   assert(agent_lib != NULL, "sanity check");
 564   const char *lib_name;
 565   void *handle = agent_lib->os_lib();
 566   void *entryName = NULL;
 567   char *agent_function_name;
 568   size_t i;
 569 
 570   // If checking then use the agent name otherwise test is_static_lib() to
 571   // see how to process this lookup
 572   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 573   for (i = 0; i < syms_len; i++) {
 574     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 575     if (agent_function_name == NULL) {
 576       break;
 577     }
 578     entryName = dll_lookup(handle, agent_function_name);
 579     FREE_C_HEAP_ARRAY(char, agent_function_name);
 580     if (entryName != NULL) {
 581       break;
 582     }
 583   }
 584   return entryName;
 585 }
 586 
 587 // See if the passed in agent is statically linked into the VM image.
 588 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 589                             size_t syms_len) {
 590   void *ret;
 591   void *proc_handle;
 592   void *save_handle;
 593 
 594   assert(agent_lib != NULL, "sanity check");
 595   if (agent_lib->name() == NULL) {
 596     return false;
 597   }
 598   proc_handle = get_default_process_handle();
 599   // Check for Agent_OnLoad/Attach_lib_name function
 600   save_handle = agent_lib->os_lib();
 601   // We want to look in this process' symbol table.
 602   agent_lib->set_os_lib(proc_handle);
 603   ret = find_agent_function(agent_lib, true, syms, syms_len);
 604   if (ret != NULL) {
 605     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 606     agent_lib->set_valid();
 607     agent_lib->set_static_lib(true);
 608     return true;
 609   }
 610   agent_lib->set_os_lib(save_handle);
 611   return false;
 612 }
 613 
 614 // --------------------- heap allocation utilities ---------------------
 615 
 616 char *os::strdup(const char *str, MEMFLAGS flags) {
 617   size_t size = strlen(str);
 618   char *dup_str = (char *)malloc(size + 1, flags);
 619   if (dup_str == NULL) return NULL;
 620   strcpy(dup_str, str);
 621   return dup_str;
 622 }
 623 
 624 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
 625   char* p = os::strdup(str, flags);
 626   if (p == NULL) {
 627     vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
 628   }
 629   return p;
 630 }
 631 
 632 
 633 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 634 
 635 #ifdef ASSERT
 636 
 637 static void verify_memory(void* ptr) {
 638   GuardedMemory guarded(ptr);
 639   if (!guarded.verify_guards()) {
 640     LogTarget(Warning, malloc, free) lt;
 641     ResourceMark rm;
 642     LogStream ls(lt);
 643     ls.print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 644     ls.print_cr("## memory stomp:");
 645     guarded.print_on(&ls);
 646     fatal("memory stomping error");
 647   }
 648 }
 649 
 650 #endif
 651 
 652 //
 653 // This function supports testing of the malloc out of memory
 654 // condition without really running the system out of memory.
 655 //
 656 static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
 657   if (MallocMaxTestWords > 0) {
 658     size_t words = (alloc_size / BytesPerWord);
 659 
 660     if ((cur_malloc_words + words) > MallocMaxTestWords) {
 661       return true;
 662     }
 663     Atomic::add(words, &cur_malloc_words);
 664   }
 665   return false;
 666 }
 667 
 668 void* os::malloc(size_t size, MEMFLAGS flags) {
 669   return os::malloc(size, flags, CALLER_PC);
 670 }
 671 
 672 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 673   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 674   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 675 
 676   // Since os::malloc can be called when the libjvm.{dll,so} is
 677   // first loaded and we don't have a thread yet we must accept NULL also here.
 678   assert(!os::ThreadCrashProtection::is_crash_protected(Thread::current_or_null()),
 679          "malloc() not allowed when crash protection is set");
 680 
 681   if (size == 0) {
 682     // return a valid pointer if size is zero
 683     // if NULL is returned the calling functions assume out of memory.
 684     size = 1;
 685   }
 686 
 687   // NMT support
 688   NMT_TrackingLevel level = MemTracker::tracking_level();
 689   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 690 
 691 #ifndef ASSERT
 692   const size_t alloc_size = size + nmt_header_size;
 693 #else
 694   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 695   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 696     return NULL;
 697   }
 698 #endif
 699 
 700   // For the test flag -XX:MallocMaxTestWords
 701   if (has_reached_max_malloc_test_peak(size)) {
 702     return NULL;
 703   }
 704 
 705   u_char* ptr;
 706   ptr = (u_char*)::malloc(alloc_size);
 707 
 708 #ifdef ASSERT
 709   if (ptr == NULL) {
 710     return NULL;
 711   }
 712   // Wrap memory with guard
 713   GuardedMemory guarded(ptr, size + nmt_header_size);
 714   ptr = guarded.get_user_ptr();
 715 
 716   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 717     log_warning(malloc, free)("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 718     breakpoint();
 719   }
 720   if (paranoid) {
 721     verify_memory(ptr);
 722   }
 723 #endif
 724 
 725   // we do not track guard memory
 726   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 727 }
 728 
 729 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 730   return os::realloc(memblock, size, flags, CALLER_PC);
 731 }
 732 
 733 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 734 
 735   // For the test flag -XX:MallocMaxTestWords
 736   if (has_reached_max_malloc_test_peak(size)) {
 737     return NULL;
 738   }
 739 
 740   if (size == 0) {
 741     // return a valid pointer if size is zero
 742     // if NULL is returned the calling functions assume out of memory.
 743     size = 1;
 744   }
 745 
 746 #ifndef ASSERT
 747   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 748   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 749    // NMT support
 750   void* membase = MemTracker::record_free(memblock);
 751   NMT_TrackingLevel level = MemTracker::tracking_level();
 752   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 753   void* ptr = ::realloc(membase, size + nmt_header_size);
 754   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 755 #else
 756   if (memblock == NULL) {
 757     return os::malloc(size, memflags, stack);
 758   }
 759   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 760     log_warning(malloc, free)("os::realloc caught " PTR_FORMAT, p2i(memblock));
 761     breakpoint();
 762   }
 763   // NMT support
 764   void* membase = MemTracker::malloc_base(memblock);
 765   verify_memory(membase);
 766   // always move the block
 767   void* ptr = os::malloc(size, memflags, stack);
 768   // Copy to new memory if malloc didn't fail
 769   if (ptr != NULL ) {
 770     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 771     // Guard's user data contains NMT header
 772     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 773     memcpy(ptr, memblock, MIN2(size, memblock_size));
 774     if (paranoid) {
 775       verify_memory(MemTracker::malloc_base(ptr));
 776     }
 777     os::free(memblock);
 778   }
 779   return ptr;
 780 #endif
 781 }
 782 
 783 
 784 void  os::free(void *memblock) {
 785   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 786 #ifdef ASSERT
 787   if (memblock == NULL) return;
 788   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 789     log_warning(malloc, free)("os::free caught " PTR_FORMAT, p2i(memblock));
 790     breakpoint();
 791   }
 792   void* membase = MemTracker::record_free(memblock);
 793   verify_memory(membase);
 794 
 795   GuardedMemory guarded(membase);
 796   size_t size = guarded.get_user_size();
 797   inc_stat_counter(&free_bytes, size);
 798   membase = guarded.release_for_freeing();
 799   ::free(membase);
 800 #else
 801   void* membase = MemTracker::record_free(memblock);
 802   ::free(membase);
 803 #endif
 804 }
 805 
 806 void os::init_random(unsigned int initval) {
 807   _rand_seed = initval;
 808 }
 809 
 810 
 811 static int random_helper(unsigned int rand_seed) {
 812   /* standard, well-known linear congruential random generator with
 813    * next_rand = (16807*seed) mod (2**31-1)
 814    * see
 815    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 816    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 817    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 818    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 819   */
 820   const unsigned int a = 16807;
 821   const unsigned int m = 2147483647;
 822   const int q = m / a;        assert(q == 127773, "weird math");
 823   const int r = m % a;        assert(r == 2836, "weird math");
 824 
 825   // compute az=2^31p+q
 826   unsigned int lo = a * (rand_seed & 0xFFFF);
 827   unsigned int hi = a * (rand_seed >> 16);
 828   lo += (hi & 0x7FFF) << 16;
 829 
 830   // if q overflowed, ignore the overflow and increment q
 831   if (lo > m) {
 832     lo &= m;
 833     ++lo;
 834   }
 835   lo += hi >> 15;
 836 
 837   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 838   if (lo > m) {
 839     lo &= m;
 840     ++lo;
 841   }
 842   return lo;
 843 }
 844 
 845 int os::random() {
 846   // Make updating the random seed thread safe.
 847   while (true) {
 848     unsigned int seed = _rand_seed;
 849     unsigned int rand = random_helper(seed);
 850     if (Atomic::cmpxchg(rand, &_rand_seed, seed) == seed) {
 851       return static_cast<int>(rand);
 852     }
 853   }
 854 }
 855 
 856 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 857 // conditions in which a thread is first started are different from those in which
 858 // a suspension is resumed.  These differences make it hard for us to apply the
 859 // tougher checks when starting threads that we want to do when resuming them.
 860 // However, when start_thread is called as a result of Thread.start, on a Java
 861 // thread, the operation is synchronized on the Java Thread object.  So there
 862 // cannot be a race to start the thread and hence for the thread to exit while
 863 // we are working on it.  Non-Java threads that start Java threads either have
 864 // to do so in a context in which races are impossible, or should do appropriate
 865 // locking.
 866 
 867 void os::start_thread(Thread* thread) {
 868   // guard suspend/resume
 869   MutexLocker ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 870   OSThread* osthread = thread->osthread();
 871   osthread->set_state(RUNNABLE);
 872   pd_start_thread(thread);
 873 }
 874 
 875 void os::abort(bool dump_core) {
 876   abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
 877 }
 878 
 879 //---------------------------------------------------------------------------
 880 // Helper functions for fatal error handler
 881 
 882 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 883   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 884 
 885   start = align_down(start, unitsize);
 886 
 887   int cols = 0;
 888   int cols_per_line = 0;
 889   switch (unitsize) {
 890     case 1: cols_per_line = 16; break;
 891     case 2: cols_per_line = 8;  break;
 892     case 4: cols_per_line = 4;  break;
 893     case 8: cols_per_line = 2;  break;
 894     default: return;
 895   }
 896 
 897   address p = start;
 898   st->print(PTR_FORMAT ":   ", p2i(start));
 899   while (p < end) {
 900     if (is_readable_pointer(p)) {
 901       switch (unitsize) {
 902         case 1: st->print("%02x", *(u1*)p); break;
 903         case 2: st->print("%04x", *(u2*)p); break;
 904         case 4: st->print("%08x", *(u4*)p); break;
 905         case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 906       }
 907     } else {
 908       st->print("%*.*s", 2*unitsize, 2*unitsize, "????????????????");
 909     }
 910     p += unitsize;
 911     cols++;
 912     if (cols >= cols_per_line && p < end) {
 913        cols = 0;
 914        st->cr();
 915        st->print(PTR_FORMAT ":   ", p2i(p));
 916     } else {
 917        st->print(" ");
 918     }
 919   }
 920   st->cr();
 921 }
 922 
 923 void os::print_instructions(outputStream* st, address pc, int unitsize) {
 924   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 925   print_hex_dump(st, pc - 256, pc + 256, unitsize);
 926 }
 927 
 928 void os::print_environment_variables(outputStream* st, const char** env_list) {
 929   if (env_list) {
 930     st->print_cr("Environment Variables:");
 931 
 932     for (int i = 0; env_list[i] != NULL; i++) {
 933       char *envvar = ::getenv(env_list[i]);
 934       if (envvar != NULL) {
 935         st->print("%s", env_list[i]);
 936         st->print("=");
 937         st->print_cr("%s", envvar);
 938       }
 939     }
 940   }
 941 }
 942 
 943 void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
 944   // cpu
 945   st->print("CPU:");
 946   st->print("total %d", os::processor_count());
 947   // It's not safe to query number of active processors after crash
 948   // st->print("(active %d)", os::active_processor_count()); but we can
 949   // print the initial number of active processors.
 950   // We access the raw value here because the assert in the accessor will
 951   // fail if the crash occurs before initialization of this value.
 952   st->print(" (initial active %d)", _initial_active_processor_count);
 953   st->print(" %s", VM_Version::features_string());
 954   st->cr();
 955   pd_print_cpu_info(st, buf, buflen);
 956 }
 957 
 958 // Print a one line string summarizing the cpu, number of cores, memory, and operating system version
 959 void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
 960   st->print("Host: ");
 961 #ifndef PRODUCT
 962   if (get_host_name(buf, buflen)) {
 963     st->print("%s, ", buf);
 964   }
 965 #endif // PRODUCT
 966   get_summary_cpu_info(buf, buflen);
 967   st->print("%s, ", buf);
 968   size_t mem = physical_memory()/G;
 969   if (mem == 0) {  // for low memory systems
 970     mem = physical_memory()/M;
 971     st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
 972   } else {
 973     st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
 974   }
 975   get_summary_os_info(buf, buflen);
 976   st->print_raw(buf);
 977   st->cr();
 978 }
 979 
 980 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
 981   const int secs_per_day  = 86400;
 982   const int secs_per_hour = 3600;
 983   const int secs_per_min  = 60;
 984 
 985   time_t tloc;
 986   (void)time(&tloc);
 987   char* timestring = ctime(&tloc);  // ctime adds newline.
 988   // edit out the newline
 989   char* nl = strchr(timestring, '\n');
 990   if (nl != NULL) {
 991     *nl = '\0';
 992   }
 993 
 994   struct tm tz;
 995   if (localtime_pd(&tloc, &tz) != NULL) {
 996     ::strftime(buf, buflen, "%Z", &tz);
 997     st->print("Time: %s %s", timestring, buf);
 998   } else {
 999     st->print("Time: %s", timestring);
1000   }
1001 
1002   double t = os::elapsedTime();
1003   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
1004   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
1005   //       before printf. We lost some precision, but who cares?
1006   int eltime = (int)t;  // elapsed time in seconds
1007 
1008   // print elapsed time in a human-readable format:
1009   int eldays = eltime / secs_per_day;
1010   int day_secs = eldays * secs_per_day;
1011   int elhours = (eltime - day_secs) / secs_per_hour;
1012   int hour_secs = elhours * secs_per_hour;
1013   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
1014   int minute_secs = elmins * secs_per_min;
1015   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
1016   st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
1017 }
1018 
1019 
1020 // Check if pointer can be read from (4-byte read access).
1021 // Helps to prove validity of a not-NULL pointer.
1022 // Returns true in very early stages of VM life when stub is not yet generated.
1023 #define SAFEFETCH_DEFAULT true
1024 bool os::is_readable_pointer(const void* p) {
1025   if (!CanUseSafeFetch32()) {
1026     return SAFEFETCH_DEFAULT;
1027   }
1028   int* const aligned = (int*) align_down((intptr_t)p, 4);
1029   int cafebabe = 0xcafebabe;  // tester value 1
1030   int deadbeef = 0xdeadbeef;  // tester value 2
1031   return (SafeFetch32(aligned, cafebabe) != cafebabe) || (SafeFetch32(aligned, deadbeef) != deadbeef);
1032 }
1033 
1034 bool os::is_readable_range(const void* from, const void* to) {
1035   if ((uintptr_t)from >= (uintptr_t)to) return false;
1036   for (uintptr_t p = align_down((uintptr_t)from, min_page_size()); p < (uintptr_t)to; p += min_page_size()) {
1037     if (!is_readable_pointer((const void*)p)) {
1038       return false;
1039     }
1040   }
1041   return true;
1042 }
1043 
1044 
1045 // moved from debug.cpp (used to be find()) but still called from there
1046 // The verbose parameter is only set by the debug code in one case
1047 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
1048   address addr = (address)x;
1049   // Handle NULL first, so later checks don't need to protect against it.
1050   if (addr == NULL) {
1051     st->print_cr("0x0 is NULL");
1052     return;
1053   }
1054 
1055   // Check if addr points into a code blob.
1056   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
1057   if (b != NULL) {
1058     b->dump_for_addr(addr, st, verbose);
1059     return;
1060   }
1061 
1062   // Check if addr points into Java heap.
1063   if (Universe::heap()->is_in(addr)) {
1064     oop o = oopDesc::oop_or_null(addr);
1065     if (o != NULL) {
1066       if ((HeapWord*)o == (HeapWord*)addr) {
1067         st->print(INTPTR_FORMAT " is an oop: ", p2i(addr));
1068       } else {
1069         st->print(INTPTR_FORMAT " is pointing into object: " , p2i(addr));
1070       }
1071       o->print_on(st);
1072       return;
1073     }
1074   } else if (Universe::heap()->is_in_reserved(addr)) {
1075     st->print_cr(INTPTR_FORMAT " is an unallocated location in the heap", p2i(addr));
1076     return;
1077   }
1078 
1079   // Compressed oop needs to be decoded first.
1080 #ifdef _LP64
1081   if (UseCompressedOops && ((uintptr_t)addr &~ (uintptr_t)max_juint) == 0) {
1082     narrowOop narrow_oop = (narrowOop)(uintptr_t)addr;
1083     oop o = CompressedOops::decode_raw(narrow_oop);
1084 
1085     if (oopDesc::is_valid(o)) {
1086       st->print(UINT32_FORMAT " is a compressed pointer to object: ", narrow_oop);
1087       o->print_on(st);
1088       return;
1089     }
1090   }
1091 #endif
1092 
1093   bool accessible = is_readable_pointer(addr);
1094 
1095   // Check if addr is a JNI handle.
1096   if (align_down((intptr_t)addr, sizeof(intptr_t)) != 0 && accessible) {
1097     if (JNIHandles::is_global_handle((jobject) addr)) {
1098       st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1099       return;
1100     }
1101     if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1102       st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1103       return;
1104     }
1105 #ifndef PRODUCT
1106     // we don't keep the block list in product mode
1107     if (JNIHandles::is_local_handle((jobject) addr)) {
1108       st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1109       return;
1110     }
1111 #endif
1112   }
1113 
1114   // Check if addr belongs to a Java thread.
1115   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) {
1116     // If the addr is a java thread print information about that.
1117     if (addr == (address)thread) {
1118       if (verbose) {
1119         thread->print_on(st);
1120       } else {
1121         st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1122       }
1123       return;
1124     }
1125     // If the addr is in the stack region for this thread then report that
1126     // and print thread info
1127     if (thread->on_local_stack(addr)) {
1128       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1129                    INTPTR_FORMAT, p2i(addr), p2i(thread));
1130       if (verbose) thread->print_on(st);
1131       return;
1132     }
1133   }
1134 
1135   // Check if in metaspace and print types that have vptrs
1136   if (Metaspace::contains(addr)) {
1137     if (Klass::is_valid((Klass*)addr)) {
1138       st->print_cr(INTPTR_FORMAT " is a pointer to class: ", p2i(addr));
1139       ((Klass*)addr)->print_on(st);
1140     } else if (Method::is_valid_method((const Method*)addr)) {
1141       ((Method*)addr)->print_value_on(st);
1142       st->cr();
1143     } else {
1144       // Use addr->print() from the debugger instead (not here)
1145       st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1146     }
1147     return;
1148   }
1149 
1150   // Compressed klass needs to be decoded first.
1151 #ifdef _LP64
1152   if (UseCompressedClassPointers && ((uintptr_t)addr &~ (uintptr_t)max_juint) == 0) {
1153     narrowKlass narrow_klass = (narrowKlass)(uintptr_t)addr;
1154     Klass* k = CompressedKlassPointers::decode_raw(narrow_klass);
1155 
1156     if (Klass::is_valid(k)) {
1157       st->print_cr(UINT32_FORMAT " is a compressed pointer to class: " INTPTR_FORMAT, narrow_klass, p2i((HeapWord*)k));
1158       k->print_on(st);
1159       return;
1160     }
1161   }
1162 #endif
1163 
1164   // Try an OS specific find
1165   if (os::find(addr, st)) {
1166     return;
1167   }
1168 
1169   if (accessible) {
1170     st->print(INTPTR_FORMAT " points into unknown readable memory:", p2i(addr));
1171     for (address p = addr; p < align_up(addr + 1, sizeof(intptr_t)); ++p) {
1172       st->print(" %02x", *(u1*)p);
1173     }
1174     st->cr();
1175     return;
1176   }
1177 
1178   st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1179 }
1180 
1181 // Looks like all platforms can use the same function to check if C
1182 // stack is walkable beyond current frame. The check for fp() is not
1183 // necessary on Sparc, but it's harmless.
1184 bool os::is_first_C_frame(frame* fr) {
1185   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1186   // Check usp first, because if that's bad the other accessors may fault
1187   // on some architectures.  Ditto ufp second, etc.
1188   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1189   // sp on amd can be 32 bit aligned.
1190   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1191 
1192   uintptr_t usp    = (uintptr_t)fr->sp();
1193   if ((usp & sp_align_mask) != 0) return true;
1194 
1195   uintptr_t ufp    = (uintptr_t)fr->fp();
1196   if ((ufp & fp_align_mask) != 0) return true;
1197 
1198   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1199   if ((old_sp & sp_align_mask) != 0) return true;
1200   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1201 
1202   uintptr_t old_fp = (uintptr_t)fr->link();
1203   if ((old_fp & fp_align_mask) != 0) return true;
1204   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1205 
1206   // stack grows downwards; if old_fp is below current fp or if the stack
1207   // frame is too large, either the stack is corrupted or fp is not saved
1208   // on stack (i.e. on x86, ebp may be used as general register). The stack
1209   // is not walkable beyond current frame.
1210   if (old_fp < ufp) return true;
1211   if (old_fp - ufp > 64 * K) return true;
1212 
1213   return false;
1214 }
1215 
1216 
1217 // Set up the boot classpath.
1218 
1219 char* os::format_boot_path(const char* format_string,
1220                            const char* home,
1221                            int home_len,
1222                            char fileSep,
1223                            char pathSep) {
1224     assert((fileSep == '/' && pathSep == ':') ||
1225            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1226 
1227     // Scan the format string to determine the length of the actual
1228     // boot classpath, and handle platform dependencies as well.
1229     int formatted_path_len = 0;
1230     const char* p;
1231     for (p = format_string; *p != 0; ++p) {
1232         if (*p == '%') formatted_path_len += home_len - 1;
1233         ++formatted_path_len;
1234     }
1235 
1236     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1237     if (formatted_path == NULL) {
1238         return NULL;
1239     }
1240 
1241     // Create boot classpath from format, substituting separator chars and
1242     // java home directory.
1243     char* q = formatted_path;
1244     for (p = format_string; *p != 0; ++p) {
1245         switch (*p) {
1246         case '%':
1247             strcpy(q, home);
1248             q += home_len;
1249             break;
1250         case '/':
1251             *q++ = fileSep;
1252             break;
1253         case ':':
1254             *q++ = pathSep;
1255             break;
1256         default:
1257             *q++ = *p;
1258         }
1259     }
1260     *q = '\0';
1261 
1262     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1263     return formatted_path;
1264 }
1265 
1266 // This function is a proxy to fopen, it tries to add a non standard flag ('e' or 'N')
1267 // that ensures automatic closing of the file on exec. If it can not find support in
1268 // the underlying c library, it will make an extra system call (fcntl) to ensure automatic
1269 // closing of the file on exec.
1270 FILE* os::fopen(const char* path, const char* mode) {
1271   char modified_mode[20];
1272   assert(strlen(mode) + 1 < sizeof(modified_mode), "mode chars plus one extra must fit in buffer");
1273   sprintf(modified_mode, "%s" LINUX_ONLY("e") BSD_ONLY("e") WINDOWS_ONLY("N"), mode);
1274   FILE* file = ::fopen(path, modified_mode);
1275 
1276 #if !(defined LINUX || defined BSD || defined _WINDOWS)
1277   // assume fcntl FD_CLOEXEC support as a backup solution when 'e' or 'N'
1278   // is not supported as mode in fopen
1279   if (file != NULL) {
1280     int fd = fileno(file);
1281     if (fd != -1) {
1282       int fd_flags = fcntl(fd, F_GETFD);
1283       if (fd_flags != -1) {
1284         fcntl(fd, F_SETFD, fd_flags | FD_CLOEXEC);
1285       }
1286     }
1287   }
1288 #endif
1289 
1290   return file;
1291 }
1292 
1293 bool os::set_boot_path(char fileSep, char pathSep) {
1294   const char* home = Arguments::get_java_home();
1295   int home_len = (int)strlen(home);
1296 
1297   struct stat st;
1298 
1299   // modular image if "modules" jimage exists
1300   char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1301   if (jimage == NULL) return false;
1302   bool has_jimage = (os::stat(jimage, &st) == 0);
1303   if (has_jimage) {
1304     Arguments::set_sysclasspath(jimage, true);
1305     FREE_C_HEAP_ARRAY(char, jimage);
1306     return true;
1307   }
1308   FREE_C_HEAP_ARRAY(char, jimage);
1309 
1310   // check if developer build with exploded modules
1311   char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
1312   if (base_classes == NULL) return false;
1313   if (os::stat(base_classes, &st) == 0) {
1314     Arguments::set_sysclasspath(base_classes, false);
1315     FREE_C_HEAP_ARRAY(char, base_classes);
1316     return true;
1317   }
1318   FREE_C_HEAP_ARRAY(char, base_classes);
1319 
1320   return false;
1321 }
1322 
1323 // Splits a path, based on its separator, the number of
1324 // elements is returned back in "elements". 
1325 // file_name_length is used as a modifier for each path's 
1326 // length when compared to JVM_MAXPATHLEN. So if you know 
1327 // each returned path will have something appended when 
1328 // in use, you can pass the length of that in 
1329 // file_name_length, to ensure we detect if any path 
1330 // exceeds the maximum path length once prepended onto 
1331 // the sub-path/file name.
1332 // It is the callers responsibility to:
1333 //   a> check the value of "elements", which may be 0.
1334 //   b> ignore any empty path elements
1335 //   c> free up the data.
1336 char** os::split_path(const char* path, size_t* elements, size_t file_name_length) {
1337   *elements = (size_t)0;
1338   if (path == NULL || strlen(path) == 0 || file_name_length == (size_t)NULL) {
1339     return NULL;
1340   }
1341   const char psepchar = *os::path_separator();
1342   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1343   if (inpath == NULL) {
1344     return NULL;
1345   }
1346   strcpy(inpath, path);
1347   size_t count = 1;
1348   char* p = strchr(inpath, psepchar);
1349   // Get a count of elements to allocate memory
1350   while (p != NULL) {
1351     count++;
1352     p++;
1353     p = strchr(p, psepchar);
1354   }
1355   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1356 
1357   // do the actual splitting
1358   p = inpath;
1359   for (size_t i = 0 ; i < count ; i++) {
1360     size_t len = strcspn(p, os::path_separator());
1361     if (len + file_name_length > JVM_MAXPATHLEN) {
1362       // release allocated storage before exiting the vm
1363       free_array_of_char_arrays(opath, i++);
1364       vm_exit_during_initialization("The VM tried to use a path that exceeds the maximum path length for "
1365                                     "this system. Review path-containing parameters and properties, such as "
1366                                     "sun.boot.library.path, to identify potential sources for this path.");
1367     }
1368     // allocate the string and add terminator storage
1369     char* s  = (char*)NEW_C_HEAP_ARRAY_RETURN_NULL(char, len + 1, mtInternal);
1370     if (s == NULL) {
1371       // release allocated storage before returning null
1372       free_array_of_char_arrays(opath, i++);
1373       return NULL;
1374     }
1375     strncpy(s, p, len);
1376     s[len] = '\0';
1377     opath[i] = s;
1378     p += len + 1;
1379   }
1380   FREE_C_HEAP_ARRAY(char, inpath);
1381   *elements = count;
1382   return opath;
1383 }
1384 
1385 // Returns true if the current stack pointer is above the stack shadow
1386 // pages, false otherwise.
1387 bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1388   if (!thread->is_Java_thread()) return false;
1389   // Check if we have StackShadowPages above the yellow zone.  This parameter
1390   // is dependent on the depth of the maximum VM call stack possible from
1391   // the handler for stack overflow.  'instanceof' in the stack overflow
1392   // handler or a println uses at least 8k stack of VM and native code
1393   // respectively.
1394   const int framesize_in_bytes =
1395     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1396 
1397   address limit = ((JavaThread*)thread)->stack_end() +
1398                   (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1399 
1400   return sp > (limit + framesize_in_bytes);
1401 }
1402 
1403 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1404   assert(min_pages > 0, "sanity");
1405   if (UseLargePages) {
1406     const size_t max_page_size = region_size / min_pages;
1407 
1408     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1409       const size_t page_size = _page_sizes[i];
1410       if (page_size <= max_page_size) {
1411         if (!must_be_aligned || is_aligned(region_size, page_size)) {
1412           return page_size;
1413         }
1414       }
1415     }
1416   }
1417 
1418   return vm_page_size();
1419 }
1420 
1421 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1422   return page_size_for_region(region_size, min_pages, true);
1423 }
1424 
1425 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1426   return page_size_for_region(region_size, min_pages, false);
1427 }
1428 
1429 static const char* errno_to_string (int e, bool short_text) {
1430   #define ALL_SHARED_ENUMS(X) \
1431     X(E2BIG, "Argument list too long") \
1432     X(EACCES, "Permission denied") \
1433     X(EADDRINUSE, "Address in use") \
1434     X(EADDRNOTAVAIL, "Address not available") \
1435     X(EAFNOSUPPORT, "Address family not supported") \
1436     X(EAGAIN, "Resource unavailable, try again") \
1437     X(EALREADY, "Connection already in progress") \
1438     X(EBADF, "Bad file descriptor") \
1439     X(EBADMSG, "Bad message") \
1440     X(EBUSY, "Device or resource busy") \
1441     X(ECANCELED, "Operation canceled") \
1442     X(ECHILD, "No child processes") \
1443     X(ECONNABORTED, "Connection aborted") \
1444     X(ECONNREFUSED, "Connection refused") \
1445     X(ECONNRESET, "Connection reset") \
1446     X(EDEADLK, "Resource deadlock would occur") \
1447     X(EDESTADDRREQ, "Destination address required") \
1448     X(EDOM, "Mathematics argument out of domain of function") \
1449     X(EEXIST, "File exists") \
1450     X(EFAULT, "Bad address") \
1451     X(EFBIG, "File too large") \
1452     X(EHOSTUNREACH, "Host is unreachable") \
1453     X(EIDRM, "Identifier removed") \
1454     X(EILSEQ, "Illegal byte sequence") \
1455     X(EINPROGRESS, "Operation in progress") \
1456     X(EINTR, "Interrupted function") \
1457     X(EINVAL, "Invalid argument") \
1458     X(EIO, "I/O error") \
1459     X(EISCONN, "Socket is connected") \
1460     X(EISDIR, "Is a directory") \
1461     X(ELOOP, "Too many levels of symbolic links") \
1462     X(EMFILE, "Too many open files") \
1463     X(EMLINK, "Too many links") \
1464     X(EMSGSIZE, "Message too large") \
1465     X(ENAMETOOLONG, "Filename too long") \
1466     X(ENETDOWN, "Network is down") \
1467     X(ENETRESET, "Connection aborted by network") \
1468     X(ENETUNREACH, "Network unreachable") \
1469     X(ENFILE, "Too many files open in system") \
1470     X(ENOBUFS, "No buffer space available") \
1471     X(ENODATA, "No message is available on the STREAM head read queue") \
1472     X(ENODEV, "No such device") \
1473     X(ENOENT, "No such file or directory") \
1474     X(ENOEXEC, "Executable file format error") \
1475     X(ENOLCK, "No locks available") \
1476     X(ENOLINK, "Reserved") \
1477     X(ENOMEM, "Not enough space") \
1478     X(ENOMSG, "No message of the desired type") \
1479     X(ENOPROTOOPT, "Protocol not available") \
1480     X(ENOSPC, "No space left on device") \
1481     X(ENOSR, "No STREAM resources") \
1482     X(ENOSTR, "Not a STREAM") \
1483     X(ENOSYS, "Function not supported") \
1484     X(ENOTCONN, "The socket is not connected") \
1485     X(ENOTDIR, "Not a directory") \
1486     X(ENOTEMPTY, "Directory not empty") \
1487     X(ENOTSOCK, "Not a socket") \
1488     X(ENOTSUP, "Not supported") \
1489     X(ENOTTY, "Inappropriate I/O control operation") \
1490     X(ENXIO, "No such device or address") \
1491     X(EOPNOTSUPP, "Operation not supported on socket") \
1492     X(EOVERFLOW, "Value too large to be stored in data type") \
1493     X(EPERM, "Operation not permitted") \
1494     X(EPIPE, "Broken pipe") \
1495     X(EPROTO, "Protocol error") \
1496     X(EPROTONOSUPPORT, "Protocol not supported") \
1497     X(EPROTOTYPE, "Protocol wrong type for socket") \
1498     X(ERANGE, "Result too large") \
1499     X(EROFS, "Read-only file system") \
1500     X(ESPIPE, "Invalid seek") \
1501     X(ESRCH, "No such process") \
1502     X(ETIME, "Stream ioctl() timeout") \
1503     X(ETIMEDOUT, "Connection timed out") \
1504     X(ETXTBSY, "Text file busy") \
1505     X(EWOULDBLOCK, "Operation would block") \
1506     X(EXDEV, "Cross-device link")
1507 
1508   #define DEFINE_ENTRY(e, text) { e, #e, text },
1509 
1510   static const struct {
1511     int v;
1512     const char* short_text;
1513     const char* long_text;
1514   } table [] = {
1515 
1516     ALL_SHARED_ENUMS(DEFINE_ENTRY)
1517 
1518     // The following enums are not defined on all platforms.
1519     #ifdef ESTALE
1520     DEFINE_ENTRY(ESTALE, "Reserved")
1521     #endif
1522     #ifdef EDQUOT
1523     DEFINE_ENTRY(EDQUOT, "Reserved")
1524     #endif
1525     #ifdef EMULTIHOP
1526     DEFINE_ENTRY(EMULTIHOP, "Reserved")
1527     #endif
1528 
1529     // End marker.
1530     { -1, "Unknown errno", "Unknown error" }
1531 
1532   };
1533 
1534   #undef DEFINE_ENTRY
1535   #undef ALL_FLAGS
1536 
1537   int i = 0;
1538   while (table[i].v != -1 && table[i].v != e) {
1539     i ++;
1540   }
1541 
1542   return short_text ? table[i].short_text : table[i].long_text;
1543 
1544 }
1545 
1546 const char* os::strerror(int e) {
1547   return errno_to_string(e, false);
1548 }
1549 
1550 const char* os::errno_name(int e) {
1551   return errno_to_string(e, true);
1552 }
1553 
1554 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1555   LogTarget(Info, pagesize) log;
1556   if (log.is_enabled()) {
1557     LogStream out(log);
1558 
1559     out.print("%s: ", str);
1560     for (int i = 0; i < count; ++i) {
1561       out.print(" " SIZE_FORMAT, page_sizes[i]);
1562     }
1563     out.cr();
1564   }
1565 }
1566 
1567 #define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1568 
1569 void os::trace_page_sizes(const char* str,
1570                           const size_t region_min_size,
1571                           const size_t region_max_size,
1572                           const size_t page_size,
1573                           const char* base,
1574                           const size_t size) {
1575 
1576   log_info(pagesize)("%s: "
1577                      " min=" SIZE_FORMAT "%s"
1578                      " max=" SIZE_FORMAT "%s"
1579                      " base=" PTR_FORMAT
1580                      " page_size=" SIZE_FORMAT "%s"
1581                      " size=" SIZE_FORMAT "%s",
1582                      str,
1583                      trace_page_size_params(region_min_size),
1584                      trace_page_size_params(region_max_size),
1585                      p2i(base),
1586                      trace_page_size_params(page_size),
1587                      trace_page_size_params(size));
1588 }
1589 
1590 void os::trace_page_sizes_for_requested_size(const char* str,
1591                                              const size_t requested_size,
1592                                              const size_t page_size,
1593                                              const size_t alignment,
1594                                              const char* base,
1595                                              const size_t size) {
1596 
1597   log_info(pagesize)("%s:"
1598                      " req_size=" SIZE_FORMAT "%s"
1599                      " base=" PTR_FORMAT
1600                      " page_size=" SIZE_FORMAT "%s"
1601                      " alignment=" SIZE_FORMAT "%s"
1602                      " size=" SIZE_FORMAT "%s",
1603                      str,
1604                      trace_page_size_params(requested_size),
1605                      p2i(base),
1606                      trace_page_size_params(page_size),
1607                      trace_page_size_params(alignment),
1608                      trace_page_size_params(size));
1609 }
1610 
1611 
1612 // This is the working definition of a server class machine:
1613 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1614 // because the graphics memory (?) sometimes masks physical memory.
1615 // If you want to change the definition of a server class machine
1616 // on some OS or platform, e.g., >=4GB on Windows platforms,
1617 // then you'll have to parameterize this method based on that state,
1618 // as was done for logical processors here, or replicate and
1619 // specialize this method for each platform.  (Or fix os to have
1620 // some inheritance structure and use subclassing.  Sigh.)
1621 // If you want some platform to always or never behave as a server
1622 // class machine, change the setting of AlwaysActAsServerClassMachine
1623 // and NeverActAsServerClassMachine in globals*.hpp.
1624 bool os::is_server_class_machine() {
1625   // First check for the early returns
1626   if (NeverActAsServerClassMachine) {
1627     return false;
1628   }
1629   if (AlwaysActAsServerClassMachine) {
1630     return true;
1631   }
1632   // Then actually look at the machine
1633   bool         result            = false;
1634   const unsigned int    server_processors = 2;
1635   const julong server_memory     = 2UL * G;
1636   // We seem not to get our full complement of memory.
1637   //     We allow some part (1/8?) of the memory to be "missing",
1638   //     based on the sizes of DIMMs, and maybe graphics cards.
1639   const julong missing_memory   = 256UL * M;
1640 
1641   /* Is this a server class machine? */
1642   if ((os::active_processor_count() >= (int)server_processors) &&
1643       (os::physical_memory() >= (server_memory - missing_memory))) {
1644     const unsigned int logical_processors =
1645       VM_Version::logical_processors_per_package();
1646     if (logical_processors > 1) {
1647       const unsigned int physical_packages =
1648         os::active_processor_count() / logical_processors;
1649       if (physical_packages >= server_processors) {
1650         result = true;
1651       }
1652     } else {
1653       result = true;
1654     }
1655   }
1656   return result;
1657 }
1658 
1659 void os::initialize_initial_active_processor_count() {
1660   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1661   _initial_active_processor_count = active_processor_count();
1662   log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1663 }
1664 
1665 void os::SuspendedThreadTask::run() {
1666   internal_do_task();
1667   _done = true;
1668 }
1669 
1670 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1671   return os::pd_create_stack_guard_pages(addr, bytes);
1672 }
1673 
1674 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint, int file_desc) {
1675   char* result = NULL;
1676 
1677   if (file_desc != -1) {
1678     // Could have called pd_reserve_memory() followed by replace_existing_mapping_with_file_mapping(),
1679     // but AIX may use SHM in which case its more trouble to detach the segment and remap memory to the file.
1680     result = os::map_memory_to_file(addr, bytes, file_desc);
1681     if (result != NULL) {
1682       MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1683     }
1684   } else {
1685     result = pd_reserve_memory(bytes, addr, alignment_hint);
1686     if (result != NULL) {
1687       MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1688     }
1689   }
1690 
1691   return result;
1692 }
1693 
1694 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1695    MEMFLAGS flags) {
1696   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1697   if (result != NULL) {
1698     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1699     MemTracker::record_virtual_memory_type((address)result, flags);
1700   }
1701 
1702   return result;
1703 }
1704 
1705 char* os::attempt_reserve_memory_at(size_t bytes, char* addr, int file_desc) {
1706   char* result = NULL;
1707   if (file_desc != -1) {
1708     result = pd_attempt_reserve_memory_at(bytes, addr, file_desc);
1709     if (result != NULL) {
1710       MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1711     }
1712   } else {
1713     result = pd_attempt_reserve_memory_at(bytes, addr);
1714     if (result != NULL) {
1715       MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1716     }
1717   }
1718   return result;
1719 }
1720 
1721 void os::split_reserved_memory(char *base, size_t size,
1722                                  size_t split, bool realloc) {
1723   pd_split_reserved_memory(base, size, split, realloc);
1724 }
1725 
1726 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1727   bool res = pd_commit_memory(addr, bytes, executable);
1728   if (res) {
1729     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1730   }
1731   return res;
1732 }
1733 
1734 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1735                               bool executable) {
1736   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1737   if (res) {
1738     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1739   }
1740   return res;
1741 }
1742 
1743 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1744                                const char* mesg) {
1745   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1746   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1747 }
1748 
1749 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1750                                bool executable, const char* mesg) {
1751   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1752   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1753 }
1754 
1755 bool os::uncommit_memory(char* addr, size_t bytes) {
1756   bool res;
1757   if (MemTracker::tracking_level() > NMT_minimal) {
1758     Tracker tkr(Tracker::uncommit);
1759     res = pd_uncommit_memory(addr, bytes);
1760     if (res) {
1761       tkr.record((address)addr, bytes);
1762     }
1763   } else {
1764     res = pd_uncommit_memory(addr, bytes);
1765   }
1766   return res;
1767 }
1768 
1769 bool os::release_memory(char* addr, size_t bytes) {
1770   bool res;
1771   if (MemTracker::tracking_level() > NMT_minimal) {
1772     Tracker tkr(Tracker::release);
1773     res = pd_release_memory(addr, bytes);
1774     if (res) {
1775       tkr.record((address)addr, bytes);
1776     }
1777   } else {
1778     res = pd_release_memory(addr, bytes);
1779   }
1780   return res;
1781 }
1782 
1783 void os::pretouch_memory(void* start, void* end, size_t page_size) {
1784   for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1785     *p = 0;
1786   }
1787 }
1788 
1789 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1790                            char *addr, size_t bytes, bool read_only,
1791                            bool allow_exec) {
1792   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1793   if (result != NULL) {
1794     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1795   }
1796   return result;
1797 }
1798 
1799 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1800                              char *addr, size_t bytes, bool read_only,
1801                              bool allow_exec) {
1802   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1803                     read_only, allow_exec);
1804 }
1805 
1806 bool os::unmap_memory(char *addr, size_t bytes) {
1807   bool result;
1808   if (MemTracker::tracking_level() > NMT_minimal) {
1809     Tracker tkr(Tracker::release);
1810     result = pd_unmap_memory(addr, bytes);
1811     if (result) {
1812       tkr.record((address)addr, bytes);
1813     }
1814   } else {
1815     result = pd_unmap_memory(addr, bytes);
1816   }
1817   return result;
1818 }
1819 
1820 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1821   pd_free_memory(addr, bytes, alignment_hint);
1822 }
1823 
1824 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1825   pd_realign_memory(addr, bytes, alignment_hint);
1826 }
1827 
1828 #ifndef _WINDOWS
1829 /* try to switch state from state "from" to state "to"
1830  * returns the state set after the method is complete
1831  */
1832 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1833                                                          os::SuspendResume::State to)
1834 {
1835   os::SuspendResume::State result = Atomic::cmpxchg(to, &_state, from);
1836   if (result == from) {
1837     // success
1838     return to;
1839   }
1840   return result;
1841 }
1842 #endif