1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_processed;
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 123 
 124   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 125     *card_ptr = CardTableModRefBS::dirty_card_val();
 126     _num_processed++;
 127     return true;
 128   }
 129 
 130   size_t num_processed() const { return _num_processed; }
 131 };
 132 
 133 YoungList::YoungList(G1CollectedHeap* g1h) :
 134     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 135     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 136   guarantee(check_list_empty(false), "just making sure...");
 137 }
 138 
 139 void YoungList::push_region(HeapRegion *hr) {
 140   assert(!hr->is_young(), "should not already be young");
 141   assert(hr->get_next_young_region() == NULL, "cause it should!");
 142 
 143   hr->set_next_young_region(_head);
 144   _head = hr;
 145 
 146   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 147   ++_length;
 148 }
 149 
 150 void YoungList::add_survivor_region(HeapRegion* hr) {
 151   assert(hr->is_survivor(), "should be flagged as survivor region");
 152   assert(hr->get_next_young_region() == NULL, "cause it should!");
 153 
 154   hr->set_next_young_region(_survivor_head);
 155   if (_survivor_head == NULL) {
 156     _survivor_tail = hr;
 157   }
 158   _survivor_head = hr;
 159   ++_survivor_length;
 160 }
 161 
 162 void YoungList::empty_list(HeapRegion* list) {
 163   while (list != NULL) {
 164     HeapRegion* next = list->get_next_young_region();
 165     list->set_next_young_region(NULL);
 166     list->uninstall_surv_rate_group();
 167     // This is called before a Full GC and all the non-empty /
 168     // non-humongous regions at the end of the Full GC will end up as
 169     // old anyway.
 170     list->set_old();
 171     list = next;
 172   }
 173 }
 174 
 175 void YoungList::empty_list() {
 176   assert(check_list_well_formed(), "young list should be well formed");
 177 
 178   empty_list(_head);
 179   _head = NULL;
 180   _length = 0;
 181 
 182   empty_list(_survivor_head);
 183   _survivor_head = NULL;
 184   _survivor_tail = NULL;
 185   _survivor_length = 0;
 186 
 187   _last_sampled_rs_lengths = 0;
 188 
 189   assert(check_list_empty(false), "just making sure...");
 190 }
 191 
 192 bool YoungList::check_list_well_formed() {
 193   bool ret = true;
 194 
 195   uint length = 0;
 196   HeapRegion* curr = _head;
 197   HeapRegion* last = NULL;
 198   while (curr != NULL) {
 199     if (!curr->is_young()) {
 200       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 201                              "incorrectly tagged (y: %d, surv: %d)",
 202                              p2i(curr->bottom()), p2i(curr->end()),
 203                              curr->is_young(), curr->is_survivor());
 204       ret = false;
 205     }
 206     ++length;
 207     last = curr;
 208     curr = curr->get_next_young_region();
 209   }
 210   ret = ret && (length == _length);
 211 
 212   if (!ret) {
 213     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 214     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 215                            length, _length);
 216   }
 217 
 218   return ret;
 219 }
 220 
 221 bool YoungList::check_list_empty(bool check_sample) {
 222   bool ret = true;
 223 
 224   if (_length != 0) {
 225     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 226                   _length);
 227     ret = false;
 228   }
 229   if (check_sample && _last_sampled_rs_lengths != 0) {
 230     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 231     ret = false;
 232   }
 233   if (_head != NULL) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 235     ret = false;
 236   }
 237   if (!ret) {
 238     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 239   }
 240 
 241   return ret;
 242 }
 243 
 244 void
 245 YoungList::rs_length_sampling_init() {
 246   _sampled_rs_lengths = 0;
 247   _curr               = _head;
 248 }
 249 
 250 bool
 251 YoungList::rs_length_sampling_more() {
 252   return _curr != NULL;
 253 }
 254 
 255 void
 256 YoungList::rs_length_sampling_next() {
 257   assert( _curr != NULL, "invariant" );
 258   size_t rs_length = _curr->rem_set()->occupied();
 259 
 260   _sampled_rs_lengths += rs_length;
 261 
 262   // The current region may not yet have been added to the
 263   // incremental collection set (it gets added when it is
 264   // retired as the current allocation region).
 265   if (_curr->in_collection_set()) {
 266     // Update the collection set policy information for this region
 267     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 268   }
 269 
 270   _curr = _curr->get_next_young_region();
 271   if (_curr == NULL) {
 272     _last_sampled_rs_lengths = _sampled_rs_lengths;
 273     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 274   }
 275 }
 276 
 277 void
 278 YoungList::reset_auxilary_lists() {
 279   guarantee( is_empty(), "young list should be empty" );
 280   assert(check_list_well_formed(), "young list should be well formed");
 281 
 282   // Add survivor regions to SurvRateGroup.
 283   _g1h->g1_policy()->note_start_adding_survivor_regions();
 284   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 285 
 286   int young_index_in_cset = 0;
 287   for (HeapRegion* curr = _survivor_head;
 288        curr != NULL;
 289        curr = curr->get_next_young_region()) {
 290     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 291 
 292     // The region is a non-empty survivor so let's add it to
 293     // the incremental collection set for the next evacuation
 294     // pause.
 295     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 296     young_index_in_cset += 1;
 297   }
 298   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 300 
 301   _head   = _survivor_head;
 302   _length = _survivor_length;
 303   if (_survivor_head != NULL) {
 304     assert(_survivor_tail != NULL, "cause it shouldn't be");
 305     assert(_survivor_length > 0, "invariant");
 306     _survivor_tail->set_next_young_region(NULL);
 307   }
 308 
 309   // Don't clear the survivor list handles until the start of
 310   // the next evacuation pause - we need it in order to re-tag
 311   // the survivor regions from this evacuation pause as 'young'
 312   // at the start of the next.
 313 
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 315 
 316   assert(check_list_well_formed(), "young list should be well formed");
 317 }
 318 
 319 void YoungList::print() {
 320   HeapRegion* lists[] = {_head,   _survivor_head};
 321   const char* names[] = {"YOUNG", "SURVIVOR"};
 322 
 323   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 325     HeapRegion *curr = lists[list];
 326     if (curr == NULL)
 327       gclog_or_tty->print_cr("  empty");
 328     while (curr != NULL) {
 329       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 330                              HR_FORMAT_PARAMS(curr),
 331                              p2i(curr->prev_top_at_mark_start()),
 332                              p2i(curr->next_top_at_mark_start()),
 333                              curr->age_in_surv_rate_group_cond());
 334       curr = curr->get_next_young_region();
 335     }
 336   }
 337 
 338   gclog_or_tty->cr();
 339 }
 340 
 341 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 342   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 343 }
 344 
 345 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 346   // The from card cache is not the memory that is actually committed. So we cannot
 347   // take advantage of the zero_filled parameter.
 348   reset_from_card_cache(start_idx, num_regions);
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 // Returns true if the reference points to an object that
 405 // can move in an incremental collection.
 406 bool G1CollectedHeap::is_scavengable(const void* p) {
 407   HeapRegion* hr = heap_region_containing(p);
 408   return !hr->is_pinned();
 409 }
 410 
 411 // Private methods.
 412 
 413 HeapRegion*
 414 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 415   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 416   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 417     if (!_secondary_free_list.is_empty()) {
 418       if (G1ConcRegionFreeingVerbose) {
 419         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 420                                "secondary_free_list has %u entries",
 421                                _secondary_free_list.length());
 422       }
 423       // It looks as if there are free regions available on the
 424       // secondary_free_list. Let's move them to the free_list and try
 425       // again to allocate from it.
 426       append_secondary_free_list();
 427 
 428       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 429              "empty we should have moved at least one entry to the free_list");
 430       HeapRegion* res = _hrm.allocate_free_region(is_old);
 431       if (G1ConcRegionFreeingVerbose) {
 432         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 433                                "allocated " HR_FORMAT " from secondary_free_list",
 434                                HR_FORMAT_PARAMS(res));
 435       }
 436       return res;
 437     }
 438 
 439     // Wait here until we get notified either when (a) there are no
 440     // more free regions coming or (b) some regions have been moved on
 441     // the secondary_free_list.
 442     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 443   }
 444 
 445   if (G1ConcRegionFreeingVerbose) {
 446     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 447                            "could not allocate from secondary_free_list");
 448   }
 449   return NULL;
 450 }
 451 
 452 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 453   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 454          "the only time we use this to allocate a humongous region is "
 455          "when we are allocating a single humongous region");
 456 
 457   HeapRegion* res;
 458   if (G1StressConcRegionFreeing) {
 459     if (!_secondary_free_list.is_empty()) {
 460       if (G1ConcRegionFreeingVerbose) {
 461         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 462                                "forced to look at the secondary_free_list");
 463       }
 464       res = new_region_try_secondary_free_list(is_old);
 465       if (res != NULL) {
 466         return res;
 467       }
 468     }
 469   }
 470 
 471   res = _hrm.allocate_free_region(is_old);
 472 
 473   if (res == NULL) {
 474     if (G1ConcRegionFreeingVerbose) {
 475       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 476                              "res == NULL, trying the secondary_free_list");
 477     }
 478     res = new_region_try_secondary_free_list(is_old);
 479   }
 480   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 481     // Currently, only attempts to allocate GC alloc regions set
 482     // do_expand to true. So, we should only reach here during a
 483     // safepoint. If this assumption changes we might have to
 484     // reconsider the use of _expand_heap_after_alloc_failure.
 485     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 486 
 487     ergo_verbose1(ErgoHeapSizing,
 488                   "attempt heap expansion",
 489                   ergo_format_reason("region allocation request failed")
 490                   ergo_format_byte("allocation request"),
 491                   word_size * HeapWordSize);
 492     if (expand(word_size * HeapWordSize)) {
 493       // Given that expand() succeeded in expanding the heap, and we
 494       // always expand the heap by an amount aligned to the heap
 495       // region size, the free list should in theory not be empty.
 496       // In either case allocate_free_region() will check for NULL.
 497       res = _hrm.allocate_free_region(is_old);
 498     } else {
 499       _expand_heap_after_alloc_failure = false;
 500     }
 501   }
 502   return res;
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 507                                                            uint num_regions,
 508                                                            size_t word_size,
 509                                                            AllocationContext_t context) {
 510   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 511   assert(is_humongous(word_size), "word_size should be humongous");
 512   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 513 
 514   // Index of last region in the series + 1.
 515   uint last = first + num_regions;
 516 
 517   // We need to initialize the region(s) we just discovered. This is
 518   // a bit tricky given that it can happen concurrently with
 519   // refinement threads refining cards on these regions and
 520   // potentially wanting to refine the BOT as they are scanning
 521   // those cards (this can happen shortly after a cleanup; see CR
 522   // 6991377). So we have to set up the region(s) carefully and in
 523   // a specific order.
 524 
 525   // The word size sum of all the regions we will allocate.
 526   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 527   assert(word_size <= word_size_sum, "sanity");
 528 
 529   // This will be the "starts humongous" region.
 530   HeapRegion* first_hr = region_at(first);
 531   // The header of the new object will be placed at the bottom of
 532   // the first region.
 533   HeapWord* new_obj = first_hr->bottom();
 534   // This will be the new end of the first region in the series that
 535   // should also match the end of the last region in the series.
 536   HeapWord* new_end = new_obj + word_size_sum;
 537   // This will be the new top of the first region that will reflect
 538   // this allocation.
 539   HeapWord* new_top = new_obj + word_size;
 540 
 541   // First, we need to zero the header of the space that we will be
 542   // allocating. When we update top further down, some refinement
 543   // threads might try to scan the region. By zeroing the header we
 544   // ensure that any thread that will try to scan the region will
 545   // come across the zero klass word and bail out.
 546   //
 547   // NOTE: It would not have been correct to have used
 548   // CollectedHeap::fill_with_object() and make the space look like
 549   // an int array. The thread that is doing the allocation will
 550   // later update the object header to a potentially different array
 551   // type and, for a very short period of time, the klass and length
 552   // fields will be inconsistent. This could cause a refinement
 553   // thread to calculate the object size incorrectly.
 554   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 555 
 556   // We will set up the first region as "starts humongous". This
 557   // will also update the BOT covering all the regions to reflect
 558   // that there is a single object that starts at the bottom of the
 559   // first region.
 560   first_hr->set_starts_humongous(new_top, new_end);
 561   first_hr->set_allocation_context(context);
 562   // Then, if there are any, we will set up the "continues
 563   // humongous" regions.
 564   HeapRegion* hr = NULL;
 565   for (uint i = first + 1; i < last; ++i) {
 566     hr = region_at(i);
 567     hr->set_continues_humongous(first_hr);
 568     hr->set_allocation_context(context);
 569   }
 570   // If we have "continues humongous" regions (hr != NULL), then the
 571   // end of the last one should match new_end.
 572   assert(hr == NULL || hr->end() == new_end, "sanity");
 573 
 574   // Up to this point no concurrent thread would have been able to
 575   // do any scanning on any region in this series. All the top
 576   // fields still point to bottom, so the intersection between
 577   // [bottom,top] and [card_start,card_end] will be empty. Before we
 578   // update the top fields, we'll do a storestore to make sure that
 579   // no thread sees the update to top before the zeroing of the
 580   // object header and the BOT initialization.
 581   OrderAccess::storestore();
 582 
 583   // Now that the BOT and the object header have been initialized,
 584   // we can update top of the "starts humongous" region.
 585   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 586          "new_top should be in this region");
 587   first_hr->set_top(new_top);
 588   if (_hr_printer.is_active()) {
 589     HeapWord* bottom = first_hr->bottom();
 590     HeapWord* end = first_hr->orig_end();
 591     if ((first + 1) == last) {
 592       // the series has a single humongous region
 593       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 594     } else {
 595       // the series has more than one humongous regions
 596       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 597     }
 598   }
 599 
 600   // Now, we will update the top fields of the "continues humongous"
 601   // regions. The reason we need to do this is that, otherwise,
 602   // these regions would look empty and this will confuse parts of
 603   // G1. For example, the code that looks for a consecutive number
 604   // of empty regions will consider them empty and try to
 605   // re-allocate them. We can extend is_empty() to also include
 606   // !is_continues_humongous(), but it is easier to just update the top
 607   // fields here. The way we set top for all regions (i.e., top ==
 608   // end for all regions but the last one, top == new_top for the
 609   // last one) is actually used when we will free up the humongous
 610   // region in free_humongous_region().
 611   hr = NULL;
 612   for (uint i = first + 1; i < last; ++i) {
 613     hr = region_at(i);
 614     if ((i + 1) == last) {
 615       // last continues humongous region
 616       assert(hr->bottom() < new_top && new_top <= hr->end(),
 617              "new_top should fall on this region");
 618       hr->set_top(new_top);
 619       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 620     } else {
 621       // not last one
 622       assert(new_top > hr->end(), "new_top should be above this region");
 623       hr->set_top(hr->end());
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 625     }
 626   }
 627   // If we have continues humongous regions (hr != NULL), then the
 628   // end of the last one should match new_end and its top should
 629   // match new_top.
 630   assert(hr == NULL ||
 631          (hr->end() == new_end && hr->top() == new_top), "sanity");
 632   check_bitmaps("Humongous Region Allocation", first_hr);
 633 
 634   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 635   increase_used(first_hr->used());
 636   _humongous_set.add(first_hr);
 637 
 638   return new_obj;
 639 }
 640 
 641 // If could fit into free regions w/o expansion, try.
 642 // Otherwise, if can expand, do so.
 643 // Otherwise, if using ex regions might help, try with ex given back.
 644 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 646 
 647   verify_region_sets_optional();
 648 
 649   uint first = G1_NO_HRM_INDEX;
 650   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 651 
 652   if (obj_regions == 1) {
 653     // Only one region to allocate, try to use a fast path by directly allocating
 654     // from the free lists. Do not try to expand here, we will potentially do that
 655     // later.
 656     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 657     if (hr != NULL) {
 658       first = hr->hrm_index();
 659     }
 660   } else {
 661     // We can't allocate humongous regions spanning more than one region while
 662     // cleanupComplete() is running, since some of the regions we find to be
 663     // empty might not yet be added to the free list. It is not straightforward
 664     // to know in which list they are on so that we can remove them. We only
 665     // need to do this if we need to allocate more than one region to satisfy the
 666     // current humongous allocation request. If we are only allocating one region
 667     // we use the one-region region allocation code (see above), that already
 668     // potentially waits for regions from the secondary free list.
 669     wait_while_free_regions_coming();
 670     append_secondary_free_list_if_not_empty_with_lock();
 671 
 672     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 673     // are lucky enough to find some.
 674     first = _hrm.find_contiguous_only_empty(obj_regions);
 675     if (first != G1_NO_HRM_INDEX) {
 676       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 677     }
 678   }
 679 
 680   if (first == G1_NO_HRM_INDEX) {
 681     // Policy: We could not find enough regions for the humongous object in the
 682     // free list. Look through the heap to find a mix of free and uncommitted regions.
 683     // If so, try expansion.
 684     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 685     if (first != G1_NO_HRM_INDEX) {
 686       // We found something. Make sure these regions are committed, i.e. expand
 687       // the heap. Alternatively we could do a defragmentation GC.
 688       ergo_verbose1(ErgoHeapSizing,
 689                     "attempt heap expansion",
 690                     ergo_format_reason("humongous allocation request failed")
 691                     ergo_format_byte("allocation request"),
 692                     word_size * HeapWordSize);
 693 
 694       _hrm.expand_at(first, obj_regions);
 695       g1_policy()->record_new_heap_size(num_regions());
 696 
 697 #ifdef ASSERT
 698       for (uint i = first; i < first + obj_regions; ++i) {
 699         HeapRegion* hr = region_at(i);
 700         assert(hr->is_free(), "sanity");
 701         assert(hr->is_empty(), "sanity");
 702         assert(is_on_master_free_list(hr), "sanity");
 703       }
 704 #endif
 705       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 706     } else {
 707       // Policy: Potentially trigger a defragmentation GC.
 708     }
 709   }
 710 
 711   HeapWord* result = NULL;
 712   if (first != G1_NO_HRM_INDEX) {
 713     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 714                                                        word_size, context);
 715     assert(result != NULL, "it should always return a valid result");
 716 
 717     // A successful humongous object allocation changes the used space
 718     // information of the old generation so we need to recalculate the
 719     // sizes and update the jstat counters here.
 720     g1mm()->update_sizes();
 721   }
 722 
 723   verify_region_sets_optional();
 724 
 725   return result;
 726 }
 727 
 728 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 729   assert_heap_not_locked_and_not_at_safepoint();
 730   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 731 
 732   uint dummy_gc_count_before;
 733   uint dummy_gclocker_retry_count = 0;
 734   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 735 }
 736 
 737 HeapWord*
 738 G1CollectedHeap::mem_allocate(size_t word_size,
 739                               bool*  gc_overhead_limit_was_exceeded) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741 
 742   // Loop until the allocation is satisfied, or unsatisfied after GC.
 743   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 744     uint gc_count_before;
 745 
 746     HeapWord* result = NULL;
 747     if (!is_humongous(word_size)) {
 748       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 749     } else {
 750       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 751     }
 752     if (result != NULL) {
 753       return result;
 754     }
 755 
 756     // Create the garbage collection operation...
 757     VM_G1CollectForAllocation op(gc_count_before, word_size);
 758     op.set_allocation_context(AllocationContext::current());
 759 
 760     // ...and get the VM thread to execute it.
 761     VMThread::execute(&op);
 762 
 763     if (op.prologue_succeeded() && op.pause_succeeded()) {
 764       // If the operation was successful we'll return the result even
 765       // if it is NULL. If the allocation attempt failed immediately
 766       // after a Full GC, it's unlikely we'll be able to allocate now.
 767       HeapWord* result = op.result();
 768       if (result != NULL && !is_humongous(word_size)) {
 769         // Allocations that take place on VM operations do not do any
 770         // card dirtying and we have to do it here. We only have to do
 771         // this for non-humongous allocations, though.
 772         dirty_young_block(result, word_size);
 773       }
 774       return result;
 775     } else {
 776       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 777         return NULL;
 778       }
 779       assert(op.result() == NULL,
 780              "the result should be NULL if the VM op did not succeed");
 781     }
 782 
 783     // Give a warning if we seem to be looping forever.
 784     if ((QueuedAllocationWarningCount > 0) &&
 785         (try_count % QueuedAllocationWarningCount == 0)) {
 786       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 787     }
 788   }
 789 
 790   ShouldNotReachHere();
 791   return NULL;
 792 }
 793 
 794 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 795                                                    AllocationContext_t context,
 796                                                    uint* gc_count_before_ret,
 797                                                    uint* gclocker_retry_count_ret) {
 798   // Make sure you read the note in attempt_allocation_humongous().
 799 
 800   assert_heap_not_locked_and_not_at_safepoint();
 801   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 802          "be called for humongous allocation requests");
 803 
 804   // We should only get here after the first-level allocation attempt
 805   // (attempt_allocation()) failed to allocate.
 806 
 807   // We will loop until a) we manage to successfully perform the
 808   // allocation or b) we successfully schedule a collection which
 809   // fails to perform the allocation. b) is the only case when we'll
 810   // return NULL.
 811   HeapWord* result = NULL;
 812   for (int try_count = 1; /* we'll return */; try_count += 1) {
 813     bool should_try_gc;
 814     uint gc_count_before;
 815 
 816     {
 817       MutexLockerEx x(Heap_lock);
 818       result = _allocator->attempt_allocation_locked(word_size, context);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       if (GC_locker::is_active_and_needs_gc()) {
 824         if (g1_policy()->can_expand_young_list()) {
 825           // No need for an ergo verbose message here,
 826           // can_expand_young_list() does this when it returns true.
 827           result = _allocator->attempt_allocation_force(word_size, context);
 828           if (result != NULL) {
 829             return result;
 830           }
 831         }
 832         should_try_gc = false;
 833       } else {
 834         // The GCLocker may not be active but the GCLocker initiated
 835         // GC may not yet have been performed (GCLocker::needs_gc()
 836         // returns true). In this case we do not try this GC and
 837         // wait until the GCLocker initiated GC is performed, and
 838         // then retry the allocation.
 839         if (GC_locker::needs_gc()) {
 840           should_try_gc = false;
 841         } else {
 842           // Read the GC count while still holding the Heap_lock.
 843           gc_count_before = total_collections();
 844           should_try_gc = true;
 845         }
 846       }
 847     }
 848 
 849     if (should_try_gc) {
 850       bool succeeded;
 851       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 852                                    GCCause::_g1_inc_collection_pause);
 853       if (result != NULL) {
 854         assert(succeeded, "only way to get back a non-NULL result");
 855         return result;
 856       }
 857 
 858       if (succeeded) {
 859         // If we get here we successfully scheduled a collection which
 860         // failed to allocate. No point in trying to allocate
 861         // further. We'll just return NULL.
 862         MutexLockerEx x(Heap_lock);
 863         *gc_count_before_ret = total_collections();
 864         return NULL;
 865       }
 866     } else {
 867       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 868         MutexLockerEx x(Heap_lock);
 869         *gc_count_before_ret = total_collections();
 870         return NULL;
 871       }
 872       // The GCLocker is either active or the GCLocker initiated
 873       // GC has not yet been performed. Stall until it is and
 874       // then retry the allocation.
 875       GC_locker::stall_until_clear();
 876       (*gclocker_retry_count_ret) += 1;
 877     }
 878 
 879     // We can reach here if we were unsuccessful in scheduling a
 880     // collection (because another thread beat us to it) or if we were
 881     // stalled due to the GC locker. In either can we should retry the
 882     // allocation attempt in case another thread successfully
 883     // performed a collection and reclaimed enough space. We do the
 884     // first attempt (without holding the Heap_lock) here and the
 885     // follow-on attempt will be at the start of the next loop
 886     // iteration (after taking the Heap_lock).
 887     result = _allocator->attempt_allocation(word_size, context);
 888     if (result != NULL) {
 889       return result;
 890     }
 891 
 892     // Give a warning if we seem to be looping forever.
 893     if ((QueuedAllocationWarningCount > 0) &&
 894         (try_count % QueuedAllocationWarningCount == 0)) {
 895       warning("G1CollectedHeap::attempt_allocation_slow() "
 896               "retries %d times", try_count);
 897     }
 898   }
 899 
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 void G1CollectedHeap::begin_archive_alloc_range() {
 905   assert_at_safepoint(true /* should_be_vm_thread */);
 906   if (_archive_allocator == NULL) {
 907     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 908   }
 909 }
 910 
 911 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 912   // Allocations in archive regions cannot be of a size that would be considered
 913   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 914   // may be different at archive-restore time.
 915   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 916 }
 917 
 918 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 919   assert_at_safepoint(true /* should_be_vm_thread */);
 920   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 921   if (is_archive_alloc_too_large(word_size)) {
 922     return NULL;
 923   }
 924   return _archive_allocator->archive_mem_allocate(word_size);
 925 }
 926 
 927 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 928                                               size_t end_alignment_in_bytes) {
 929   assert_at_safepoint(true /* should_be_vm_thread */);
 930   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 931 
 932   // Call complete_archive to do the real work, filling in the MemRegion
 933   // array with the archive regions.
 934   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 935   delete _archive_allocator;
 936   _archive_allocator = NULL;
 937 }
 938 
 939 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 940   assert(ranges != NULL, "MemRegion array NULL");
 941   assert(count != 0, "No MemRegions provided");
 942   MemRegion reserved = _hrm.reserved();
 943   for (size_t i = 0; i < count; i++) {
 944     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 945       return false;
 946     }
 947   }
 948   return true;
 949 }
 950 
 951 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 952   assert(ranges != NULL, "MemRegion array NULL");
 953   assert(count != 0, "No MemRegions provided");
 954   MutexLockerEx x(Heap_lock);
 955 
 956   MemRegion reserved = _hrm.reserved();
 957   HeapWord* prev_last_addr = NULL;
 958   HeapRegion* prev_last_region = NULL;
 959 
 960   // Temporarily disable pretouching of heap pages. This interface is used
 961   // when mmap'ing archived heap data in, so pre-touching is wasted.
 962   FlagSetting fs(AlwaysPreTouch, false);
 963 
 964   // Enable archive object checking in G1MarkSweep. We have to let it know
 965   // about each archive range, so that objects in those ranges aren't marked.
 966   G1MarkSweep::enable_archive_object_check();
 967 
 968   // For each specified MemRegion range, allocate the corresponding G1
 969   // regions and mark them as archive regions. We expect the ranges in
 970   // ascending starting address order, without overlap.
 971   for (size_t i = 0; i < count; i++) {
 972     MemRegion curr_range = ranges[i];
 973     HeapWord* start_address = curr_range.start();
 974     size_t word_size = curr_range.word_size();
 975     HeapWord* last_address = curr_range.last();
 976     size_t commits = 0;
 977 
 978     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 979               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 980               p2i(start_address), p2i(last_address)));
 981     guarantee(start_address > prev_last_addr,
 982               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 983               p2i(start_address), p2i(prev_last_addr)));
 984     prev_last_addr = last_address;
 985 
 986     // Check for ranges that start in the same G1 region in which the previous
 987     // range ended, and adjust the start address so we don't try to allocate
 988     // the same region again. If the current range is entirely within that
 989     // region, skip it, just adjusting the recorded top.
 990     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 991     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 992       start_address = start_region->end();
 993       if (start_address > last_address) {
 994         increase_used(word_size * HeapWordSize);
 995         start_region->set_top(last_address + 1);
 996         continue;
 997       }
 998       start_region->set_top(start_address);
 999       curr_range = MemRegion(start_address, last_address + 1);
1000       start_region = _hrm.addr_to_region(start_address);
1001     }
1002 
1003     // Perform the actual region allocation, exiting if it fails.
1004     // Then note how much new space we have allocated.
1005     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1006       return false;
1007     }
1008     increase_used(word_size * HeapWordSize);
1009     if (commits != 0) {
1010       ergo_verbose1(ErgoHeapSizing,
1011                     "attempt heap expansion",
1012                     ergo_format_reason("allocate archive regions")
1013                     ergo_format_byte("total size"),
1014                     HeapRegion::GrainWords * HeapWordSize * commits);
1015     }
1016 
1017     // Mark each G1 region touched by the range as archive, add it to the old set,
1018     // and set the allocation context and top.
1019     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1020     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1021     prev_last_region = last_region;
1022 
1023     while (curr_region != NULL) {
1024       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1025              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1026       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1027       curr_region->set_allocation_context(AllocationContext::system());
1028       curr_region->set_archive();
1029       _old_set.add(curr_region);
1030       if (curr_region != last_region) {
1031         curr_region->set_top(curr_region->end());
1032         curr_region = _hrm.next_region_in_heap(curr_region);
1033       } else {
1034         curr_region->set_top(last_address + 1);
1035         curr_region = NULL;
1036       }
1037     }
1038 
1039     // Notify mark-sweep of the archive range.
1040     G1MarkSweep::mark_range_archive(curr_range);
1041   }
1042   return true;
1043 }
1044 
1045 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1046   assert(ranges != NULL, "MemRegion array NULL");
1047   assert(count != 0, "No MemRegions provided");
1048   MemRegion reserved = _hrm.reserved();
1049   HeapWord *prev_last_addr = NULL;
1050   HeapRegion* prev_last_region = NULL;
1051 
1052   // For each MemRegion, create filler objects, if needed, in the G1 regions
1053   // that contain the address range. The address range actually within the
1054   // MemRegion will not be modified. That is assumed to have been initialized
1055   // elsewhere, probably via an mmap of archived heap data.
1056   MutexLockerEx x(Heap_lock);
1057   for (size_t i = 0; i < count; i++) {
1058     HeapWord* start_address = ranges[i].start();
1059     HeapWord* last_address = ranges[i].last();
1060 
1061     assert(reserved.contains(start_address) && reserved.contains(last_address),
1062            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1063                    p2i(start_address), p2i(last_address)));
1064     assert(start_address > prev_last_addr,
1065            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1066                    p2i(start_address), p2i(prev_last_addr)));
1067 
1068     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1069     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1070     HeapWord* bottom_address = start_region->bottom();
1071 
1072     // Check for a range beginning in the same region in which the
1073     // previous one ended.
1074     if (start_region == prev_last_region) {
1075       bottom_address = prev_last_addr + 1;
1076     }
1077 
1078     // Verify that the regions were all marked as archive regions by
1079     // alloc_archive_regions.
1080     HeapRegion* curr_region = start_region;
1081     while (curr_region != NULL) {
1082       guarantee(curr_region->is_archive(),
1083                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1084       if (curr_region != last_region) {
1085         curr_region = _hrm.next_region_in_heap(curr_region);
1086       } else {
1087         curr_region = NULL;
1088       }
1089     }
1090 
1091     prev_last_addr = last_address;
1092     prev_last_region = last_region;
1093 
1094     // Fill the memory below the allocated range with dummy object(s),
1095     // if the region bottom does not match the range start, or if the previous
1096     // range ended within the same G1 region, and there is a gap.
1097     if (start_address != bottom_address) {
1098       size_t fill_size = pointer_delta(start_address, bottom_address);
1099       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1100       increase_used(fill_size * HeapWordSize);
1101     }
1102   }
1103 }
1104 
1105 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1106                                                      uint* gc_count_before_ret,
1107                                                      uint* gclocker_retry_count_ret) {
1108   assert_heap_not_locked_and_not_at_safepoint();
1109   assert(!is_humongous(word_size), "attempt_allocation() should not "
1110          "be called for humongous allocation requests");
1111 
1112   AllocationContext_t context = AllocationContext::current();
1113   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1114 
1115   if (result == NULL) {
1116     result = attempt_allocation_slow(word_size,
1117                                      context,
1118                                      gc_count_before_ret,
1119                                      gclocker_retry_count_ret);
1120   }
1121   assert_heap_not_locked();
1122   if (result != NULL) {
1123     dirty_young_block(result, word_size);
1124   }
1125   return result;
1126 }
1127 
1128 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1129                                                         uint* gc_count_before_ret,
1130                                                         uint* gclocker_retry_count_ret) {
1131   // The structure of this method has a lot of similarities to
1132   // attempt_allocation_slow(). The reason these two were not merged
1133   // into a single one is that such a method would require several "if
1134   // allocation is not humongous do this, otherwise do that"
1135   // conditional paths which would obscure its flow. In fact, an early
1136   // version of this code did use a unified method which was harder to
1137   // follow and, as a result, it had subtle bugs that were hard to
1138   // track down. So keeping these two methods separate allows each to
1139   // be more readable. It will be good to keep these two in sync as
1140   // much as possible.
1141 
1142   assert_heap_not_locked_and_not_at_safepoint();
1143   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1144          "should only be called for humongous allocations");
1145 
1146   // Humongous objects can exhaust the heap quickly, so we should check if we
1147   // need to start a marking cycle at each humongous object allocation. We do
1148   // the check before we do the actual allocation. The reason for doing it
1149   // before the allocation is that we avoid having to keep track of the newly
1150   // allocated memory while we do a GC.
1151   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1152                                            word_size)) {
1153     collect(GCCause::_g1_humongous_allocation);
1154   }
1155 
1156   // We will loop until a) we manage to successfully perform the
1157   // allocation or b) we successfully schedule a collection which
1158   // fails to perform the allocation. b) is the only case when we'll
1159   // return NULL.
1160   HeapWord* result = NULL;
1161   for (int try_count = 1; /* we'll return */; try_count += 1) {
1162     bool should_try_gc;
1163     uint gc_count_before;
1164 
1165     {
1166       MutexLockerEx x(Heap_lock);
1167 
1168       // Given that humongous objects are not allocated in young
1169       // regions, we'll first try to do the allocation without doing a
1170       // collection hoping that there's enough space in the heap.
1171       result = humongous_obj_allocate(word_size, AllocationContext::current());
1172       if (result != NULL) {
1173         return result;
1174       }
1175 
1176       if (GC_locker::is_active_and_needs_gc()) {
1177         should_try_gc = false;
1178       } else {
1179          // The GCLocker may not be active but the GCLocker initiated
1180         // GC may not yet have been performed (GCLocker::needs_gc()
1181         // returns true). In this case we do not try this GC and
1182         // wait until the GCLocker initiated GC is performed, and
1183         // then retry the allocation.
1184         if (GC_locker::needs_gc()) {
1185           should_try_gc = false;
1186         } else {
1187           // Read the GC count while still holding the Heap_lock.
1188           gc_count_before = total_collections();
1189           should_try_gc = true;
1190         }
1191       }
1192     }
1193 
1194     if (should_try_gc) {
1195       // If we failed to allocate the humongous object, we should try to
1196       // do a collection pause (if we're allowed) in case it reclaims
1197       // enough space for the allocation to succeed after the pause.
1198 
1199       bool succeeded;
1200       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1201                                    GCCause::_g1_humongous_allocation);
1202       if (result != NULL) {
1203         assert(succeeded, "only way to get back a non-NULL result");
1204         return result;
1205       }
1206 
1207       if (succeeded) {
1208         // If we get here we successfully scheduled a collection which
1209         // failed to allocate. No point in trying to allocate
1210         // further. We'll just return NULL.
1211         MutexLockerEx x(Heap_lock);
1212         *gc_count_before_ret = total_collections();
1213         return NULL;
1214       }
1215     } else {
1216       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1217         MutexLockerEx x(Heap_lock);
1218         *gc_count_before_ret = total_collections();
1219         return NULL;
1220       }
1221       // The GCLocker is either active or the GCLocker initiated
1222       // GC has not yet been performed. Stall until it is and
1223       // then retry the allocation.
1224       GC_locker::stall_until_clear();
1225       (*gclocker_retry_count_ret) += 1;
1226     }
1227 
1228     // We can reach here if we were unsuccessful in scheduling a
1229     // collection (because another thread beat us to it) or if we were
1230     // stalled due to the GC locker. In either can we should retry the
1231     // allocation attempt in case another thread successfully
1232     // performed a collection and reclaimed enough space.  Give a
1233     // warning if we seem to be looping forever.
1234 
1235     if ((QueuedAllocationWarningCount > 0) &&
1236         (try_count % QueuedAllocationWarningCount == 0)) {
1237       warning("G1CollectedHeap::attempt_allocation_humongous() "
1238               "retries %d times", try_count);
1239     }
1240   }
1241 
1242   ShouldNotReachHere();
1243   return NULL;
1244 }
1245 
1246 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1247                                                            AllocationContext_t context,
1248                                                            bool expect_null_mutator_alloc_region) {
1249   assert_at_safepoint(true /* should_be_vm_thread */);
1250   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1251          "the current alloc region was unexpectedly found to be non-NULL");
1252 
1253   if (!is_humongous(word_size)) {
1254     return _allocator->attempt_allocation_locked(word_size, context);
1255   } else {
1256     HeapWord* result = humongous_obj_allocate(word_size, context);
1257     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1258       collector_state()->set_initiate_conc_mark_if_possible(true);
1259     }
1260     return result;
1261   }
1262 
1263   ShouldNotReachHere();
1264 }
1265 
1266 class PostMCRemSetClearClosure: public HeapRegionClosure {
1267   G1CollectedHeap* _g1h;
1268   ModRefBarrierSet* _mr_bs;
1269 public:
1270   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1271     _g1h(g1h), _mr_bs(mr_bs) {}
1272 
1273   bool doHeapRegion(HeapRegion* r) {
1274     HeapRegionRemSet* hrrs = r->rem_set();
1275 
1276     if (r->is_continues_humongous()) {
1277       // We'll assert that the strong code root list and RSet is empty
1278       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1279       assert(hrrs->occupied() == 0, "RSet should be empty");
1280       return false;
1281     }
1282 
1283     _g1h->reset_gc_time_stamps(r);
1284     hrrs->clear();
1285     // You might think here that we could clear just the cards
1286     // corresponding to the used region.  But no: if we leave a dirty card
1287     // in a region we might allocate into, then it would prevent that card
1288     // from being enqueued, and cause it to be missed.
1289     // Re: the performance cost: we shouldn't be doing full GC anyway!
1290     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1291 
1292     return false;
1293   }
1294 };
1295 
1296 void G1CollectedHeap::clear_rsets_post_compaction() {
1297   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1298   heap_region_iterate(&rs_clear);
1299 }
1300 
1301 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1302   G1CollectedHeap*   _g1h;
1303   UpdateRSOopClosure _cl;
1304 public:
1305   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1306     _cl(g1->g1_rem_set(), worker_i),
1307     _g1h(g1)
1308   { }
1309 
1310   bool doHeapRegion(HeapRegion* r) {
1311     if (!r->is_continues_humongous()) {
1312       _cl.set_from(r);
1313       r->oop_iterate(&_cl);
1314     }
1315     return false;
1316   }
1317 };
1318 
1319 class ParRebuildRSTask: public AbstractGangTask {
1320   G1CollectedHeap* _g1;
1321   HeapRegionClaimer _hrclaimer;
1322 
1323 public:
1324   ParRebuildRSTask(G1CollectedHeap* g1) :
1325       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1326 
1327   void work(uint worker_id) {
1328     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1329     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1330   }
1331 };
1332 
1333 class PostCompactionPrinterClosure: public HeapRegionClosure {
1334 private:
1335   G1HRPrinter* _hr_printer;
1336 public:
1337   bool doHeapRegion(HeapRegion* hr) {
1338     assert(!hr->is_young(), "not expecting to find young regions");
1339     if (hr->is_free()) {
1340       // We only generate output for non-empty regions.
1341     } else if (hr->is_starts_humongous()) {
1342       if (hr->region_num() == 1) {
1343         // single humongous region
1344         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1345       } else {
1346         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1347       }
1348     } else if (hr->is_continues_humongous()) {
1349       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1350     } else if (hr->is_archive()) {
1351       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1352     } else if (hr->is_old()) {
1353       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1354     } else {
1355       ShouldNotReachHere();
1356     }
1357     return false;
1358   }
1359 
1360   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1361     : _hr_printer(hr_printer) { }
1362 };
1363 
1364 void G1CollectedHeap::print_hrm_post_compaction() {
1365   PostCompactionPrinterClosure cl(hr_printer());
1366   heap_region_iterate(&cl);
1367 }
1368 
1369 bool G1CollectedHeap::do_collection(bool explicit_gc,
1370                                     bool clear_all_soft_refs,
1371                                     size_t word_size) {
1372   assert_at_safepoint(true /* should_be_vm_thread */);
1373 
1374   if (GC_locker::check_active_before_gc()) {
1375     return false;
1376   }
1377 
1378   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1379   gc_timer->register_gc_start();
1380 
1381   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1382   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1383 
1384   SvcGCMarker sgcm(SvcGCMarker::FULL);
1385   ResourceMark rm;
1386 
1387   G1Log::update_level();
1388   print_heap_before_gc();
1389   trace_heap_before_gc(gc_tracer);
1390 
1391   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1392 
1393   verify_region_sets_optional();
1394 
1395   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1396                            collector_policy()->should_clear_all_soft_refs();
1397 
1398   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1399 
1400   {
1401     IsGCActiveMark x;
1402 
1403     // Timing
1404     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1405     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1406 
1407     {
1408       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1409       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1410       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1411 
1412       g1_policy()->record_full_collection_start();
1413 
1414       // Note: When we have a more flexible GC logging framework that
1415       // allows us to add optional attributes to a GC log record we
1416       // could consider timing and reporting how long we wait in the
1417       // following two methods.
1418       wait_while_free_regions_coming();
1419       // If we start the compaction before the CM threads finish
1420       // scanning the root regions we might trip them over as we'll
1421       // be moving objects / updating references. So let's wait until
1422       // they are done. By telling them to abort, they should complete
1423       // early.
1424       _cm->root_regions()->abort();
1425       _cm->root_regions()->wait_until_scan_finished();
1426       append_secondary_free_list_if_not_empty_with_lock();
1427 
1428       gc_prologue(true);
1429       increment_total_collections(true /* full gc */);
1430       increment_old_marking_cycles_started();
1431 
1432       assert(used() == recalculate_used(), "Should be equal");
1433 
1434       verify_before_gc();
1435 
1436       check_bitmaps("Full GC Start");
1437       pre_full_gc_dump(gc_timer);
1438 
1439       COMPILER2_PRESENT(DerivedPointerTable::clear());
1440 
1441       // Disable discovery and empty the discovered lists
1442       // for the CM ref processor.
1443       ref_processor_cm()->disable_discovery();
1444       ref_processor_cm()->abandon_partial_discovery();
1445       ref_processor_cm()->verify_no_references_recorded();
1446 
1447       // Abandon current iterations of concurrent marking and concurrent
1448       // refinement, if any are in progress. We have to do this before
1449       // wait_until_scan_finished() below.
1450       concurrent_mark()->abort();
1451 
1452       // Make sure we'll choose a new allocation region afterwards.
1453       _allocator->release_mutator_alloc_region();
1454       _allocator->abandon_gc_alloc_regions();
1455       g1_rem_set()->cleanupHRRS();
1456 
1457       // We should call this after we retire any currently active alloc
1458       // regions so that all the ALLOC / RETIRE events are generated
1459       // before the start GC event.
1460       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1461 
1462       // We may have added regions to the current incremental collection
1463       // set between the last GC or pause and now. We need to clear the
1464       // incremental collection set and then start rebuilding it afresh
1465       // after this full GC.
1466       abandon_collection_set(g1_policy()->inc_cset_head());
1467       g1_policy()->clear_incremental_cset();
1468       g1_policy()->stop_incremental_cset_building();
1469 
1470       tear_down_region_sets(false /* free_list_only */);
1471       collector_state()->set_gcs_are_young(true);
1472 
1473       // See the comments in g1CollectedHeap.hpp and
1474       // G1CollectedHeap::ref_processing_init() about
1475       // how reference processing currently works in G1.
1476 
1477       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1478       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1479 
1480       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1481       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1482 
1483       ref_processor_stw()->enable_discovery();
1484       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1485 
1486       // Do collection work
1487       {
1488         HandleMark hm;  // Discard invalid handles created during gc
1489         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1490       }
1491 
1492       assert(num_free_regions() == 0, "we should not have added any free regions");
1493       rebuild_region_sets(false /* free_list_only */);
1494 
1495       // Enqueue any discovered reference objects that have
1496       // not been removed from the discovered lists.
1497       ref_processor_stw()->enqueue_discovered_references();
1498 
1499       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1500 
1501       MemoryService::track_memory_usage();
1502 
1503       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1504       ref_processor_stw()->verify_no_references_recorded();
1505 
1506       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1507       ClassLoaderDataGraph::purge();
1508       MetaspaceAux::verify_metrics();
1509 
1510       // Note: since we've just done a full GC, concurrent
1511       // marking is no longer active. Therefore we need not
1512       // re-enable reference discovery for the CM ref processor.
1513       // That will be done at the start of the next marking cycle.
1514       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1515       ref_processor_cm()->verify_no_references_recorded();
1516 
1517       reset_gc_time_stamp();
1518       // Since everything potentially moved, we will clear all remembered
1519       // sets, and clear all cards.  Later we will rebuild remembered
1520       // sets. We will also reset the GC time stamps of the regions.
1521       clear_rsets_post_compaction();
1522       check_gc_time_stamps();
1523 
1524       // Resize the heap if necessary.
1525       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1526 
1527       if (_hr_printer.is_active()) {
1528         // We should do this after we potentially resize the heap so
1529         // that all the COMMIT / UNCOMMIT events are generated before
1530         // the end GC event.
1531 
1532         print_hrm_post_compaction();
1533         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1534       }
1535 
1536       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1537       if (hot_card_cache->use_cache()) {
1538         hot_card_cache->reset_card_counts();
1539         hot_card_cache->reset_hot_cache();
1540       }
1541 
1542       // Rebuild remembered sets of all regions.
1543       uint n_workers =
1544         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1545                                                 workers()->active_workers(),
1546                                                 Threads::number_of_non_daemon_threads());
1547       workers()->set_active_workers(n_workers);
1548 
1549       ParRebuildRSTask rebuild_rs_task(this);
1550       workers()->run_task(&rebuild_rs_task);
1551 
1552       // Rebuild the strong code root lists for each region
1553       rebuild_strong_code_roots();
1554 
1555       if (true) { // FIXME
1556         MetaspaceGC::compute_new_size();
1557       }
1558 
1559 #ifdef TRACESPINNING
1560       ParallelTaskTerminator::print_termination_counts();
1561 #endif
1562 
1563       // Discard all rset updates
1564       JavaThread::dirty_card_queue_set().abandon_logs();
1565       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1566 
1567       _young_list->reset_sampled_info();
1568       // At this point there should be no regions in the
1569       // entire heap tagged as young.
1570       assert(check_young_list_empty(true /* check_heap */),
1571              "young list should be empty at this point");
1572 
1573       // Update the number of full collections that have been completed.
1574       increment_old_marking_cycles_completed(false /* concurrent */);
1575 
1576       _hrm.verify_optional();
1577       verify_region_sets_optional();
1578 
1579       verify_after_gc();
1580 
1581       // Clear the previous marking bitmap, if needed for bitmap verification.
1582       // Note we cannot do this when we clear the next marking bitmap in
1583       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1584       // objects marked during a full GC against the previous bitmap.
1585       // But we need to clear it before calling check_bitmaps below since
1586       // the full GC has compacted objects and updated TAMS but not updated
1587       // the prev bitmap.
1588       if (G1VerifyBitmaps) {
1589         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1590       }
1591       check_bitmaps("Full GC End");
1592 
1593       // Start a new incremental collection set for the next pause
1594       assert(g1_policy()->collection_set() == NULL, "must be");
1595       g1_policy()->start_incremental_cset_building();
1596 
1597       clear_cset_fast_test();
1598 
1599       _allocator->init_mutator_alloc_region();
1600 
1601       g1_policy()->record_full_collection_end();
1602 
1603       if (G1Log::fine()) {
1604         g1_policy()->print_heap_transition();
1605       }
1606 
1607       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1608       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1609       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1610       // before any GC notifications are raised.
1611       g1mm()->update_sizes();
1612 
1613       gc_epilogue(true);
1614     }
1615 
1616     if (G1Log::finer()) {
1617       g1_policy()->print_detailed_heap_transition(true /* full */);
1618     }
1619 
1620     print_heap_after_gc();
1621     trace_heap_after_gc(gc_tracer);
1622 
1623     post_full_gc_dump(gc_timer);
1624 
1625     gc_timer->register_gc_end();
1626     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1627   }
1628 
1629   return true;
1630 }
1631 
1632 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1633   // do_collection() will return whether it succeeded in performing
1634   // the GC. Currently, there is no facility on the
1635   // do_full_collection() API to notify the caller than the collection
1636   // did not succeed (e.g., because it was locked out by the GC
1637   // locker). So, right now, we'll ignore the return value.
1638   bool dummy = do_collection(true,                /* explicit_gc */
1639                              clear_all_soft_refs,
1640                              0                    /* word_size */);
1641 }
1642 
1643 // This code is mostly copied from TenuredGeneration.
1644 void
1645 G1CollectedHeap::
1646 resize_if_necessary_after_full_collection(size_t word_size) {
1647   // Include the current allocation, if any, and bytes that will be
1648   // pre-allocated to support collections, as "used".
1649   const size_t used_after_gc = used();
1650   const size_t capacity_after_gc = capacity();
1651   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1652 
1653   // This is enforced in arguments.cpp.
1654   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1655          "otherwise the code below doesn't make sense");
1656 
1657   // We don't have floating point command-line arguments
1658   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1659   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1660   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1661   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1662 
1663   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1664   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1665 
1666   // We have to be careful here as these two calculations can overflow
1667   // 32-bit size_t's.
1668   double used_after_gc_d = (double) used_after_gc;
1669   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1670   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1671 
1672   // Let's make sure that they are both under the max heap size, which
1673   // by default will make them fit into a size_t.
1674   double desired_capacity_upper_bound = (double) max_heap_size;
1675   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1676                                     desired_capacity_upper_bound);
1677   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1678                                     desired_capacity_upper_bound);
1679 
1680   // We can now safely turn them into size_t's.
1681   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1682   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1683 
1684   // This assert only makes sense here, before we adjust them
1685   // with respect to the min and max heap size.
1686   assert(minimum_desired_capacity <= maximum_desired_capacity,
1687          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1688                  "maximum_desired_capacity = " SIZE_FORMAT,
1689                  minimum_desired_capacity, maximum_desired_capacity));
1690 
1691   // Should not be greater than the heap max size. No need to adjust
1692   // it with respect to the heap min size as it's a lower bound (i.e.,
1693   // we'll try to make the capacity larger than it, not smaller).
1694   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1695   // Should not be less than the heap min size. No need to adjust it
1696   // with respect to the heap max size as it's an upper bound (i.e.,
1697   // we'll try to make the capacity smaller than it, not greater).
1698   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1699 
1700   if (capacity_after_gc < minimum_desired_capacity) {
1701     // Don't expand unless it's significant
1702     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1703     ergo_verbose4(ErgoHeapSizing,
1704                   "attempt heap expansion",
1705                   ergo_format_reason("capacity lower than "
1706                                      "min desired capacity after Full GC")
1707                   ergo_format_byte("capacity")
1708                   ergo_format_byte("occupancy")
1709                   ergo_format_byte_perc("min desired capacity"),
1710                   capacity_after_gc, used_after_gc,
1711                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1712     expand(expand_bytes);
1713 
1714     // No expansion, now see if we want to shrink
1715   } else if (capacity_after_gc > maximum_desired_capacity) {
1716     // Capacity too large, compute shrinking size
1717     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1718     ergo_verbose4(ErgoHeapSizing,
1719                   "attempt heap shrinking",
1720                   ergo_format_reason("capacity higher than "
1721                                      "max desired capacity after Full GC")
1722                   ergo_format_byte("capacity")
1723                   ergo_format_byte("occupancy")
1724                   ergo_format_byte_perc("max desired capacity"),
1725                   capacity_after_gc, used_after_gc,
1726                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1727     shrink(shrink_bytes);
1728   }
1729 }
1730 
1731 HeapWord*
1732 G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1733                                            AllocationContext_t context,
1734                                            bool clear_all_soft_refs,
1735                                            bool* succeeded) {
1736   assert_at_safepoint(true /* should_be_vm_thread */);
1737 
1738   *succeeded = true;
1739   bool gc_succeeded = do_collection(false, /* explicit_gc */
1740                                     clear_all_soft_refs,
1741                                     word_size);
1742   if (!gc_succeeded) {
1743     *succeeded = false;
1744     return NULL;
1745   }
1746 
1747   // Retry the allocation
1748   HeapWord* result = attempt_allocation_at_safepoint(word_size,
1749                                            context,
1750                                            true /* expect_null_mutator_alloc_region */);
1751   if (result != NULL) {
1752     assert(*succeeded, "sanity");
1753     return result;
1754   }
1755 
1756   // We may shrink heap too much after Full GC.
1757   // Need to expand heap.
1758   result = expand_and_allocate(word_size, context);
1759 
1760   assert(*succeeded, "sanity");
1761   return result;
1762 }
1763 
1764 HeapWord*
1765 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1766                                            AllocationContext_t context,
1767                                            bool* succeeded) {
1768   assert_at_safepoint(true /* should_be_vm_thread */);
1769 
1770   *succeeded = true;
1771   // Let's attempt the allocation first.
1772   HeapWord* result =
1773     attempt_allocation_at_safepoint(word_size,
1774                                     context,
1775                                     false /* expect_null_mutator_alloc_region */);
1776   if (result != NULL) {
1777     assert(*succeeded, "sanity");
1778     return result;
1779   }
1780 
1781   // In a G1 heap, we're supposed to keep allocation from failing by
1782   // incremental pauses.  Therefore, at least for now, we'll favor
1783   // expansion over collection.  (This might change in the future if we can
1784   // do something smarter than full collection to satisfy a failed alloc.)
1785   result = expand_and_allocate(word_size, context);
1786   if (result != NULL) {
1787     assert(*succeeded, "sanity");
1788     return result;
1789   }
1790 
1791   // Expansion didn't work, we'll try to do a Full GC.
1792   result = satisfy_failed_allocation_helper(word_size,
1793                                             context,
1794                                             false, /* clear_all_soft_refs */
1795                                             succeeded);
1796   if (!*succeeded || result != NULL) {
1797     return result;
1798   }
1799 
1800   // Then, try a Full GC that will collect all soft references.
1801   result = satisfy_failed_allocation_helper(word_size,
1802                                             context,
1803                                             true, /* clear_all_soft_refs */
1804                                             succeeded);
1805   if (!*succeeded || result != NULL) {
1806     return result;
1807   }
1808 
1809   assert(!collector_policy()->should_clear_all_soft_refs(),
1810          "Flag should have been handled and cleared prior to this point");
1811 
1812   // What else?  We might try synchronous finalization later.  If the total
1813   // space available is large enough for the allocation, then a more
1814   // complete compaction phase than we've tried so far might be
1815   // appropriate.
1816   assert(*succeeded, "sanity");
1817   return NULL;
1818 }
1819 
1820 // Attempting to expand the heap sufficiently
1821 // to support an allocation of the given "word_size".  If
1822 // successful, perform the allocation and return the address of the
1823 // allocated block, or else "NULL".
1824 
1825 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1826   assert_at_safepoint(true /* should_be_vm_thread */);
1827 
1828   verify_region_sets_optional();
1829 
1830   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1831   ergo_verbose1(ErgoHeapSizing,
1832                 "attempt heap expansion",
1833                 ergo_format_reason("allocation request failed")
1834                 ergo_format_byte("allocation request"),
1835                 word_size * HeapWordSize);
1836   if (expand(expand_bytes)) {
1837     _hrm.verify_optional();
1838     verify_region_sets_optional();
1839     return attempt_allocation_at_safepoint(word_size,
1840                                            context,
1841                                            false /* expect_null_mutator_alloc_region */);
1842   }
1843   return NULL;
1844 }
1845 
1846 bool G1CollectedHeap::expand(size_t expand_bytes) {
1847   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1848   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1849                                        HeapRegion::GrainBytes);
1850   ergo_verbose2(ErgoHeapSizing,
1851                 "expand the heap",
1852                 ergo_format_byte("requested expansion amount")
1853                 ergo_format_byte("attempted expansion amount"),
1854                 expand_bytes, aligned_expand_bytes);
1855 
1856   if (is_maximal_no_gc()) {
1857     ergo_verbose0(ErgoHeapSizing,
1858                       "did not expand the heap",
1859                       ergo_format_reason("heap already fully expanded"));
1860     return false;
1861   }
1862 
1863   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1864   assert(regions_to_expand > 0, "Must expand by at least one region");
1865 
1866   uint expanded_by = _hrm.expand_by(regions_to_expand);
1867 
1868   if (expanded_by > 0) {
1869     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1870     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1871     g1_policy()->record_new_heap_size(num_regions());
1872   } else {
1873     ergo_verbose0(ErgoHeapSizing,
1874                   "did not expand the heap",
1875                   ergo_format_reason("heap expansion operation failed"));
1876     // The expansion of the virtual storage space was unsuccessful.
1877     // Let's see if it was because we ran out of swap.
1878     if (G1ExitOnExpansionFailure &&
1879         _hrm.available() >= regions_to_expand) {
1880       // We had head room...
1881       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1882     }
1883   }
1884   return regions_to_expand > 0;
1885 }
1886 
1887 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1888   size_t aligned_shrink_bytes =
1889     ReservedSpace::page_align_size_down(shrink_bytes);
1890   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1891                                          HeapRegion::GrainBytes);
1892   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1893 
1894   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1895   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1896 
1897   ergo_verbose3(ErgoHeapSizing,
1898                 "shrink the heap",
1899                 ergo_format_byte("requested shrinking amount")
1900                 ergo_format_byte("aligned shrinking amount")
1901                 ergo_format_byte("attempted shrinking amount"),
1902                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1903   if (num_regions_removed > 0) {
1904     g1_policy()->record_new_heap_size(num_regions());
1905   } else {
1906     ergo_verbose0(ErgoHeapSizing,
1907                   "did not shrink the heap",
1908                   ergo_format_reason("heap shrinking operation failed"));
1909   }
1910 }
1911 
1912 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1913   verify_region_sets_optional();
1914 
1915   // We should only reach here at the end of a Full GC which means we
1916   // should not not be holding to any GC alloc regions. The method
1917   // below will make sure of that and do any remaining clean up.
1918   _allocator->abandon_gc_alloc_regions();
1919 
1920   // Instead of tearing down / rebuilding the free lists here, we
1921   // could instead use the remove_all_pending() method on free_list to
1922   // remove only the ones that we need to remove.
1923   tear_down_region_sets(true /* free_list_only */);
1924   shrink_helper(shrink_bytes);
1925   rebuild_region_sets(true /* free_list_only */);
1926 
1927   _hrm.verify_optional();
1928   verify_region_sets_optional();
1929 }
1930 
1931 // Public methods.
1932 
1933 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1934 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1935 #endif // _MSC_VER
1936 
1937 
1938 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1939   CollectedHeap(),
1940   _g1_policy(policy_),
1941   _dirty_card_queue_set(false),
1942   _into_cset_dirty_card_queue_set(false),
1943   _is_alive_closure_cm(this),
1944   _is_alive_closure_stw(this),
1945   _ref_processor_cm(NULL),
1946   _ref_processor_stw(NULL),
1947   _bot_shared(NULL),
1948   _cg1r(NULL),
1949   _g1mm(NULL),
1950   _refine_cte_cl(NULL),
1951   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1952   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1953   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1954   _humongous_reclaim_candidates(),
1955   _has_humongous_reclaim_candidates(false),
1956   _archive_allocator(NULL),
1957   _free_regions_coming(false),
1958   _young_list(new YoungList(this)),
1959   _gc_time_stamp(0),
1960   _summary_bytes_used(0),
1961   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1962   _old_plab_stats(OldPLABSize, PLABWeight),
1963   _expand_heap_after_alloc_failure(true),
1964   _surviving_young_words(NULL),
1965   _old_marking_cycles_started(0),
1966   _old_marking_cycles_completed(0),
1967   _heap_summary_sent(false),
1968   _in_cset_fast_test(),
1969   _dirty_cards_region_list(NULL),
1970   _worker_cset_start_region(NULL),
1971   _worker_cset_start_region_time_stamp(NULL),
1972   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1973   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1974   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1975   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1976 
1977   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1978                           /* are_GC_task_threads */true,
1979                           /* are_ConcurrentGC_threads */false);
1980   _workers->initialize_workers();
1981 
1982   _allocator = G1Allocator::create_allocator(this);
1983   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1984 
1985   // Override the default _filler_array_max_size so that no humongous filler
1986   // objects are created.
1987   _filler_array_max_size = _humongous_object_threshold_in_words;
1988 
1989   uint n_queues = ParallelGCThreads;
1990   _task_queues = new RefToScanQueueSet(n_queues);
1991 
1992   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1993   assert(n_rem_sets > 0, "Invariant.");
1994 
1995   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1996   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1997   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1998 
1999   for (uint i = 0; i < n_queues; i++) {
2000     RefToScanQueue* q = new RefToScanQueue();
2001     q->initialize();
2002     _task_queues->register_queue(i, q);
2003     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2004   }
2005   clear_cset_start_regions();
2006 
2007   // Initialize the G1EvacuationFailureALot counters and flags.
2008   NOT_PRODUCT(reset_evacuation_should_fail();)
2009 
2010   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2011 }
2012 
2013 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2014                                                                  size_t size,
2015                                                                  size_t translation_factor) {
2016   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2017   // Allocate a new reserved space, preferring to use large pages.
2018   ReservedSpace rs(size, preferred_page_size);
2019   G1RegionToSpaceMapper* result  =
2020     G1RegionToSpaceMapper::create_mapper(rs,
2021                                          size,
2022                                          rs.alignment(),
2023                                          HeapRegion::GrainBytes,
2024                                          translation_factor,
2025                                          mtGC);
2026   if (TracePageSizes) {
2027     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2028                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2029   }
2030   return result;
2031 }
2032 
2033 jint G1CollectedHeap::initialize() {
2034   CollectedHeap::pre_initialize();
2035   os::enable_vtime();
2036 
2037   G1Log::init();
2038 
2039   // Necessary to satisfy locking discipline assertions.
2040 
2041   MutexLocker x(Heap_lock);
2042 
2043   // We have to initialize the printer before committing the heap, as
2044   // it will be used then.
2045   _hr_printer.set_active(G1PrintHeapRegions);
2046 
2047   // While there are no constraints in the GC code that HeapWordSize
2048   // be any particular value, there are multiple other areas in the
2049   // system which believe this to be true (e.g. oop->object_size in some
2050   // cases incorrectly returns the size in wordSize units rather than
2051   // HeapWordSize).
2052   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2053 
2054   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2055   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2056   size_t heap_alignment = collector_policy()->heap_alignment();
2057 
2058   // Ensure that the sizes are properly aligned.
2059   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2060   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2061   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2062 
2063   _refine_cte_cl = new RefineCardTableEntryClosure();
2064 
2065   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2066 
2067   // Reserve the maximum.
2068 
2069   // When compressed oops are enabled, the preferred heap base
2070   // is calculated by subtracting the requested size from the
2071   // 32Gb boundary and using the result as the base address for
2072   // heap reservation. If the requested size is not aligned to
2073   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2074   // into the ReservedHeapSpace constructor) then the actual
2075   // base of the reserved heap may end up differing from the
2076   // address that was requested (i.e. the preferred heap base).
2077   // If this happens then we could end up using a non-optimal
2078   // compressed oops mode.
2079 
2080   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2081                                                  heap_alignment);
2082 
2083   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2084 
2085   // Create the barrier set for the entire reserved region.
2086   G1SATBCardTableLoggingModRefBS* bs
2087     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2088   bs->initialize();
2089   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2090   set_barrier_set(bs);
2091 
2092   // Also create a G1 rem set.
2093   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2094 
2095   // Carve out the G1 part of the heap.
2096 
2097   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2098   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2099   G1RegionToSpaceMapper* heap_storage =
2100     G1RegionToSpaceMapper::create_mapper(g1_rs,
2101                                          g1_rs.size(),
2102                                          page_size,
2103                                          HeapRegion::GrainBytes,
2104                                          1,
2105                                          mtJavaHeap);
2106   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2107                        max_byte_size, page_size,
2108                        heap_rs.base(),
2109                        heap_rs.size());
2110   heap_storage->set_mapping_changed_listener(&_listener);
2111 
2112   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2113   G1RegionToSpaceMapper* bot_storage =
2114     create_aux_memory_mapper("Block offset table",
2115                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2116                              G1BlockOffsetSharedArray::heap_map_factor());
2117 
2118   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2119   G1RegionToSpaceMapper* cardtable_storage =
2120     create_aux_memory_mapper("Card table",
2121                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2122                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2123 
2124   G1RegionToSpaceMapper* card_counts_storage =
2125     create_aux_memory_mapper("Card counts table",
2126                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2127                              G1CardCounts::heap_map_factor());
2128 
2129   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2130   G1RegionToSpaceMapper* prev_bitmap_storage =
2131     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2132   G1RegionToSpaceMapper* next_bitmap_storage =
2133     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2134 
2135   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2136   g1_barrier_set()->initialize(cardtable_storage);
2137    // Do later initialization work for concurrent refinement.
2138   _cg1r->init(card_counts_storage);
2139 
2140   // 6843694 - ensure that the maximum region index can fit
2141   // in the remembered set structures.
2142   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2143   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2144 
2145   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2146   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2147   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2148             "too many cards per region");
2149 
2150   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2151 
2152   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2153 
2154   {
2155     HeapWord* start = _hrm.reserved().start();
2156     HeapWord* end = _hrm.reserved().end();
2157     size_t granularity = HeapRegion::GrainBytes;
2158 
2159     _in_cset_fast_test.initialize(start, end, granularity);
2160     _humongous_reclaim_candidates.initialize(start, end, granularity);
2161   }
2162 
2163   // Create the ConcurrentMark data structure and thread.
2164   // (Must do this late, so that "max_regions" is defined.)
2165   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2166   if (_cm == NULL || !_cm->completed_initialization()) {
2167     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2168     return JNI_ENOMEM;
2169   }
2170   _cmThread = _cm->cmThread();
2171 
2172   // Initialize the from_card cache structure of HeapRegionRemSet.
2173   HeapRegionRemSet::init_heap(max_regions());
2174 
2175   // Now expand into the initial heap size.
2176   if (!expand(init_byte_size)) {
2177     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2178     return JNI_ENOMEM;
2179   }
2180 
2181   // Perform any initialization actions delegated to the policy.
2182   g1_policy()->init();
2183 
2184   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2185                                                SATB_Q_FL_lock,
2186                                                G1SATBProcessCompletedThreshold,
2187                                                Shared_SATB_Q_lock);
2188 
2189   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2190                                                 DirtyCardQ_CBL_mon,
2191                                                 DirtyCardQ_FL_lock,
2192                                                 concurrent_g1_refine()->yellow_zone(),
2193                                                 concurrent_g1_refine()->red_zone(),
2194                                                 Shared_DirtyCardQ_lock);
2195 
2196   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2197                                     DirtyCardQ_CBL_mon,
2198                                     DirtyCardQ_FL_lock,
2199                                     -1, // never trigger processing
2200                                     -1, // no limit on length
2201                                     Shared_DirtyCardQ_lock,
2202                                     &JavaThread::dirty_card_queue_set());
2203 
2204   // Initialize the card queue set used to hold cards containing
2205   // references into the collection set.
2206   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2207                                              DirtyCardQ_CBL_mon,
2208                                              DirtyCardQ_FL_lock,
2209                                              -1, // never trigger processing
2210                                              -1, // no limit on length
2211                                              Shared_DirtyCardQ_lock,
2212                                              &JavaThread::dirty_card_queue_set());
2213 
2214   // Here we allocate the dummy HeapRegion that is required by the
2215   // G1AllocRegion class.
2216   HeapRegion* dummy_region = _hrm.get_dummy_region();
2217 
2218   // We'll re-use the same region whether the alloc region will
2219   // require BOT updates or not and, if it doesn't, then a non-young
2220   // region will complain that it cannot support allocations without
2221   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2222   dummy_region->set_eden();
2223   // Make sure it's full.
2224   dummy_region->set_top(dummy_region->end());
2225   G1AllocRegion::setup(this, dummy_region);
2226 
2227   _allocator->init_mutator_alloc_region();
2228 
2229   // Do create of the monitoring and management support so that
2230   // values in the heap have been properly initialized.
2231   _g1mm = new G1MonitoringSupport(this);
2232 
2233   G1StringDedup::initialize();
2234 
2235   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2236   for (uint i = 0; i < ParallelGCThreads; i++) {
2237     new (&_preserved_objs[i]) OopAndMarkOopStack();
2238   }
2239 
2240   return JNI_OK;
2241 }
2242 
2243 void G1CollectedHeap::stop() {
2244   // Stop all concurrent threads. We do this to make sure these threads
2245   // do not continue to execute and access resources (e.g. gclog_or_tty)
2246   // that are destroyed during shutdown.
2247   _cg1r->stop();
2248   _cmThread->stop();
2249   if (G1StringDedup::is_enabled()) {
2250     G1StringDedup::stop();
2251   }
2252 }
2253 
2254 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2255   return HeapRegion::max_region_size();
2256 }
2257 
2258 void G1CollectedHeap::post_initialize() {
2259   CollectedHeap::post_initialize();
2260   ref_processing_init();
2261 }
2262 
2263 void G1CollectedHeap::ref_processing_init() {
2264   // Reference processing in G1 currently works as follows:
2265   //
2266   // * There are two reference processor instances. One is
2267   //   used to record and process discovered references
2268   //   during concurrent marking; the other is used to
2269   //   record and process references during STW pauses
2270   //   (both full and incremental).
2271   // * Both ref processors need to 'span' the entire heap as
2272   //   the regions in the collection set may be dotted around.
2273   //
2274   // * For the concurrent marking ref processor:
2275   //   * Reference discovery is enabled at initial marking.
2276   //   * Reference discovery is disabled and the discovered
2277   //     references processed etc during remarking.
2278   //   * Reference discovery is MT (see below).
2279   //   * Reference discovery requires a barrier (see below).
2280   //   * Reference processing may or may not be MT
2281   //     (depending on the value of ParallelRefProcEnabled
2282   //     and ParallelGCThreads).
2283   //   * A full GC disables reference discovery by the CM
2284   //     ref processor and abandons any entries on it's
2285   //     discovered lists.
2286   //
2287   // * For the STW processor:
2288   //   * Non MT discovery is enabled at the start of a full GC.
2289   //   * Processing and enqueueing during a full GC is non-MT.
2290   //   * During a full GC, references are processed after marking.
2291   //
2292   //   * Discovery (may or may not be MT) is enabled at the start
2293   //     of an incremental evacuation pause.
2294   //   * References are processed near the end of a STW evacuation pause.
2295   //   * For both types of GC:
2296   //     * Discovery is atomic - i.e. not concurrent.
2297   //     * Reference discovery will not need a barrier.
2298 
2299   MemRegion mr = reserved_region();
2300 
2301   // Concurrent Mark ref processor
2302   _ref_processor_cm =
2303     new ReferenceProcessor(mr,    // span
2304                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2305                                 // mt processing
2306                            ParallelGCThreads,
2307                                 // degree of mt processing
2308                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2309                                 // mt discovery
2310                            MAX2(ParallelGCThreads, ConcGCThreads),
2311                                 // degree of mt discovery
2312                            false,
2313                                 // Reference discovery is not atomic
2314                            &_is_alive_closure_cm);
2315                                 // is alive closure
2316                                 // (for efficiency/performance)
2317 
2318   // STW ref processor
2319   _ref_processor_stw =
2320     new ReferenceProcessor(mr,    // span
2321                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2322                                 // mt processing
2323                            ParallelGCThreads,
2324                                 // degree of mt processing
2325                            (ParallelGCThreads > 1),
2326                                 // mt discovery
2327                            ParallelGCThreads,
2328                                 // degree of mt discovery
2329                            true,
2330                                 // Reference discovery is atomic
2331                            &_is_alive_closure_stw);
2332                                 // is alive closure
2333                                 // (for efficiency/performance)
2334 }
2335 
2336 size_t G1CollectedHeap::capacity() const {
2337   return _hrm.length() * HeapRegion::GrainBytes;
2338 }
2339 
2340 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2341   assert(!hr->is_continues_humongous(), "pre-condition");
2342   hr->reset_gc_time_stamp();
2343   if (hr->is_starts_humongous()) {
2344     uint first_index = hr->hrm_index() + 1;
2345     uint last_index = hr->last_hc_index();
2346     for (uint i = first_index; i < last_index; i += 1) {
2347       HeapRegion* chr = region_at(i);
2348       assert(chr->is_continues_humongous(), "sanity");
2349       chr->reset_gc_time_stamp();
2350     }
2351   }
2352 }
2353 
2354 #ifndef PRODUCT
2355 
2356 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2357 private:
2358   unsigned _gc_time_stamp;
2359   bool _failures;
2360 
2361 public:
2362   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2363     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2364 
2365   virtual bool doHeapRegion(HeapRegion* hr) {
2366     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2367     if (_gc_time_stamp != region_gc_time_stamp) {
2368       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2369                              "expected %d", HR_FORMAT_PARAMS(hr),
2370                              region_gc_time_stamp, _gc_time_stamp);
2371       _failures = true;
2372     }
2373     return false;
2374   }
2375 
2376   bool failures() { return _failures; }
2377 };
2378 
2379 void G1CollectedHeap::check_gc_time_stamps() {
2380   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2381   heap_region_iterate(&cl);
2382   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2383 }
2384 #endif // PRODUCT
2385 
2386 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2387                                                  DirtyCardQueue* into_cset_dcq,
2388                                                  bool concurrent,
2389                                                  uint worker_i) {
2390   // Clean cards in the hot card cache
2391   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2392   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2393 
2394   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2395   size_t n_completed_buffers = 0;
2396   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2397     n_completed_buffers++;
2398   }
2399   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2400   dcqs.clear_n_completed_buffers();
2401   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2402 }
2403 
2404 // Computes the sum of the storage used by the various regions.
2405 size_t G1CollectedHeap::used() const {
2406   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2407   if (_archive_allocator != NULL) {
2408     result += _archive_allocator->used();
2409   }
2410   return result;
2411 }
2412 
2413 size_t G1CollectedHeap::used_unlocked() const {
2414   return _summary_bytes_used;
2415 }
2416 
2417 class SumUsedClosure: public HeapRegionClosure {
2418   size_t _used;
2419 public:
2420   SumUsedClosure() : _used(0) {}
2421   bool doHeapRegion(HeapRegion* r) {
2422     if (!r->is_continues_humongous()) {
2423       _used += r->used();
2424     }
2425     return false;
2426   }
2427   size_t result() { return _used; }
2428 };
2429 
2430 size_t G1CollectedHeap::recalculate_used() const {
2431   double recalculate_used_start = os::elapsedTime();
2432 
2433   SumUsedClosure blk;
2434   heap_region_iterate(&blk);
2435 
2436   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2437   return blk.result();
2438 }
2439 
2440 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2441   switch (cause) {
2442     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2443     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2444     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2445     case GCCause::_g1_humongous_allocation: return true;
2446     case GCCause::_update_allocation_context_stats_inc: return true;
2447     case GCCause::_wb_conc_mark:            return true;
2448     default:                                return false;
2449   }
2450 }
2451 
2452 #ifndef PRODUCT
2453 void G1CollectedHeap::allocate_dummy_regions() {
2454   // Let's fill up most of the region
2455   size_t word_size = HeapRegion::GrainWords - 1024;
2456   // And as a result the region we'll allocate will be humongous.
2457   guarantee(is_humongous(word_size), "sanity");
2458 
2459   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2460     // Let's use the existing mechanism for the allocation
2461     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2462                                                  AllocationContext::system());
2463     if (dummy_obj != NULL) {
2464       MemRegion mr(dummy_obj, word_size);
2465       CollectedHeap::fill_with_object(mr);
2466     } else {
2467       // If we can't allocate once, we probably cannot allocate
2468       // again. Let's get out of the loop.
2469       break;
2470     }
2471   }
2472 }
2473 #endif // !PRODUCT
2474 
2475 void G1CollectedHeap::increment_old_marking_cycles_started() {
2476   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2477     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2478     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2479     _old_marking_cycles_started, _old_marking_cycles_completed));
2480 
2481   _old_marking_cycles_started++;
2482 }
2483 
2484 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2485   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2486 
2487   // We assume that if concurrent == true, then the caller is a
2488   // concurrent thread that was joined the Suspendible Thread
2489   // Set. If there's ever a cheap way to check this, we should add an
2490   // assert here.
2491 
2492   // Given that this method is called at the end of a Full GC or of a
2493   // concurrent cycle, and those can be nested (i.e., a Full GC can
2494   // interrupt a concurrent cycle), the number of full collections
2495   // completed should be either one (in the case where there was no
2496   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2497   // behind the number of full collections started.
2498 
2499   // This is the case for the inner caller, i.e. a Full GC.
2500   assert(concurrent ||
2501          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2502          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2503          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2504                  "is inconsistent with _old_marking_cycles_completed = %u",
2505                  _old_marking_cycles_started, _old_marking_cycles_completed));
2506 
2507   // This is the case for the outer caller, i.e. the concurrent cycle.
2508   assert(!concurrent ||
2509          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2510          err_msg("for outer caller (concurrent cycle): "
2511                  "_old_marking_cycles_started = %u "
2512                  "is inconsistent with _old_marking_cycles_completed = %u",
2513                  _old_marking_cycles_started, _old_marking_cycles_completed));
2514 
2515   _old_marking_cycles_completed += 1;
2516 
2517   // We need to clear the "in_progress" flag in the CM thread before
2518   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2519   // is set) so that if a waiter requests another System.gc() it doesn't
2520   // incorrectly see that a marking cycle is still in progress.
2521   if (concurrent) {
2522     _cmThread->set_idle();
2523   }
2524 
2525   // This notify_all() will ensure that a thread that called
2526   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2527   // and it's waiting for a full GC to finish will be woken up. It is
2528   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2529   FullGCCount_lock->notify_all();
2530 }
2531 
2532 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2533   collector_state()->set_concurrent_cycle_started(true);
2534   _gc_timer_cm->register_gc_start(start_time);
2535 
2536   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2537   trace_heap_before_gc(_gc_tracer_cm);
2538 }
2539 
2540 void G1CollectedHeap::register_concurrent_cycle_end() {
2541   if (collector_state()->concurrent_cycle_started()) {
2542     if (_cm->has_aborted()) {
2543       _gc_tracer_cm->report_concurrent_mode_failure();
2544     }
2545 
2546     _gc_timer_cm->register_gc_end();
2547     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2548 
2549     // Clear state variables to prepare for the next concurrent cycle.
2550      collector_state()->set_concurrent_cycle_started(false);
2551     _heap_summary_sent = false;
2552   }
2553 }
2554 
2555 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2556   if (collector_state()->concurrent_cycle_started()) {
2557     // This function can be called when:
2558     //  the cleanup pause is run
2559     //  the concurrent cycle is aborted before the cleanup pause.
2560     //  the concurrent cycle is aborted after the cleanup pause,
2561     //   but before the concurrent cycle end has been registered.
2562     // Make sure that we only send the heap information once.
2563     if (!_heap_summary_sent) {
2564       trace_heap_after_gc(_gc_tracer_cm);
2565       _heap_summary_sent = true;
2566     }
2567   }
2568 }
2569 
2570 void G1CollectedHeap::collect(GCCause::Cause cause) {
2571   assert_heap_not_locked();
2572 
2573   uint gc_count_before;
2574   uint old_marking_count_before;
2575   uint full_gc_count_before;
2576   bool retry_gc;
2577 
2578   do {
2579     retry_gc = false;
2580 
2581     {
2582       MutexLocker ml(Heap_lock);
2583 
2584       // Read the GC count while holding the Heap_lock
2585       gc_count_before = total_collections();
2586       full_gc_count_before = total_full_collections();
2587       old_marking_count_before = _old_marking_cycles_started;
2588     }
2589 
2590     if (should_do_concurrent_full_gc(cause)) {
2591       // Schedule an initial-mark evacuation pause that will start a
2592       // concurrent cycle. We're setting word_size to 0 which means that
2593       // we are not requesting a post-GC allocation.
2594       VM_G1IncCollectionPause op(gc_count_before,
2595                                  0,     /* word_size */
2596                                  true,  /* should_initiate_conc_mark */
2597                                  g1_policy()->max_pause_time_ms(),
2598                                  cause);
2599       op.set_allocation_context(AllocationContext::current());
2600 
2601       VMThread::execute(&op);
2602       if (!op.pause_succeeded()) {
2603         if (old_marking_count_before == _old_marking_cycles_started) {
2604           retry_gc = op.should_retry_gc();
2605         } else {
2606           // A Full GC happened while we were trying to schedule the
2607           // initial-mark GC. No point in starting a new cycle given
2608           // that the whole heap was collected anyway.
2609         }
2610 
2611         if (retry_gc) {
2612           if (GC_locker::is_active_and_needs_gc()) {
2613             GC_locker::stall_until_clear();
2614           }
2615         }
2616       }
2617     } else {
2618       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2619           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2620 
2621         // Schedule a standard evacuation pause. We're setting word_size
2622         // to 0 which means that we are not requesting a post-GC allocation.
2623         VM_G1IncCollectionPause op(gc_count_before,
2624                                    0,     /* word_size */
2625                                    false, /* should_initiate_conc_mark */
2626                                    g1_policy()->max_pause_time_ms(),
2627                                    cause);
2628         VMThread::execute(&op);
2629       } else {
2630         // Schedule a Full GC.
2631         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2632         VMThread::execute(&op);
2633       }
2634     }
2635   } while (retry_gc);
2636 }
2637 
2638 bool G1CollectedHeap::is_in(const void* p) const {
2639   if (_hrm.reserved().contains(p)) {
2640     // Given that we know that p is in the reserved space,
2641     // heap_region_containing_raw() should successfully
2642     // return the containing region.
2643     HeapRegion* hr = heap_region_containing_raw(p);
2644     return hr->is_in(p);
2645   } else {
2646     return false;
2647   }
2648 }
2649 
2650 #ifdef ASSERT
2651 bool G1CollectedHeap::is_in_exact(const void* p) const {
2652   bool contains = reserved_region().contains(p);
2653   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2654   if (contains && available) {
2655     return true;
2656   } else {
2657     return false;
2658   }
2659 }
2660 #endif
2661 
2662 bool G1CollectedHeap::obj_in_cs(oop obj) {
2663   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2664   return r != NULL && r->in_collection_set();
2665 }
2666 
2667 // Iteration functions.
2668 
2669 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2670 
2671 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2672   ExtendedOopClosure* _cl;
2673 public:
2674   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2675   bool doHeapRegion(HeapRegion* r) {
2676     if (!r->is_continues_humongous()) {
2677       r->oop_iterate(_cl);
2678     }
2679     return false;
2680   }
2681 };
2682 
2683 // Iterates an ObjectClosure over all objects within a HeapRegion.
2684 
2685 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2686   ObjectClosure* _cl;
2687 public:
2688   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2689   bool doHeapRegion(HeapRegion* r) {
2690     if (!r->is_continues_humongous()) {
2691       r->object_iterate(_cl);
2692     }
2693     return false;
2694   }
2695 };
2696 
2697 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2698   IterateObjectClosureRegionClosure blk(cl);
2699   heap_region_iterate(&blk);
2700 }
2701 
2702 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2703   _hrm.iterate(cl);
2704 }
2705 
2706 void
2707 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2708                                          uint worker_id,
2709                                          HeapRegionClaimer *hrclaimer,
2710                                          bool concurrent) const {
2711   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2712 }
2713 
2714 // Clear the cached CSet starting regions and (more importantly)
2715 // the time stamps. Called when we reset the GC time stamp.
2716 void G1CollectedHeap::clear_cset_start_regions() {
2717   assert(_worker_cset_start_region != NULL, "sanity");
2718   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2719 
2720   for (uint i = 0; i < ParallelGCThreads; i++) {
2721     _worker_cset_start_region[i] = NULL;
2722     _worker_cset_start_region_time_stamp[i] = 0;
2723   }
2724 }
2725 
2726 // Given the id of a worker, obtain or calculate a suitable
2727 // starting region for iterating over the current collection set.
2728 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2729   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2730 
2731   HeapRegion* result = NULL;
2732   unsigned gc_time_stamp = get_gc_time_stamp();
2733 
2734   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2735     // Cached starting region for current worker was set
2736     // during the current pause - so it's valid.
2737     // Note: the cached starting heap region may be NULL
2738     // (when the collection set is empty).
2739     result = _worker_cset_start_region[worker_i];
2740     assert(result == NULL || result->in_collection_set(), "sanity");
2741     return result;
2742   }
2743 
2744   // The cached entry was not valid so let's calculate
2745   // a suitable starting heap region for this worker.
2746 
2747   // We want the parallel threads to start their collection
2748   // set iteration at different collection set regions to
2749   // avoid contention.
2750   // If we have:
2751   //          n collection set regions
2752   //          p threads
2753   // Then thread t will start at region floor ((t * n) / p)
2754 
2755   result = g1_policy()->collection_set();
2756   uint cs_size = g1_policy()->cset_region_length();
2757   uint active_workers = workers()->active_workers();
2758 
2759   uint end_ind   = (cs_size * worker_i) / active_workers;
2760   uint start_ind = 0;
2761 
2762   if (worker_i > 0 &&
2763       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2764     // Previous workers starting region is valid
2765     // so let's iterate from there
2766     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2767     result = _worker_cset_start_region[worker_i - 1];
2768   }
2769 
2770   for (uint i = start_ind; i < end_ind; i++) {
2771     result = result->next_in_collection_set();
2772   }
2773 
2774   // Note: the calculated starting heap region may be NULL
2775   // (when the collection set is empty).
2776   assert(result == NULL || result->in_collection_set(), "sanity");
2777   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2778          "should be updated only once per pause");
2779   _worker_cset_start_region[worker_i] = result;
2780   OrderAccess::storestore();
2781   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2782   return result;
2783 }
2784 
2785 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2786   HeapRegion* r = g1_policy()->collection_set();
2787   while (r != NULL) {
2788     HeapRegion* next = r->next_in_collection_set();
2789     if (cl->doHeapRegion(r)) {
2790       cl->incomplete();
2791       return;
2792     }
2793     r = next;
2794   }
2795 }
2796 
2797 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2798                                                   HeapRegionClosure *cl) {
2799   if (r == NULL) {
2800     // The CSet is empty so there's nothing to do.
2801     return;
2802   }
2803 
2804   assert(r->in_collection_set(),
2805          "Start region must be a member of the collection set.");
2806   HeapRegion* cur = r;
2807   while (cur != NULL) {
2808     HeapRegion* next = cur->next_in_collection_set();
2809     if (cl->doHeapRegion(cur) && false) {
2810       cl->incomplete();
2811       return;
2812     }
2813     cur = next;
2814   }
2815   cur = g1_policy()->collection_set();
2816   while (cur != r) {
2817     HeapRegion* next = cur->next_in_collection_set();
2818     if (cl->doHeapRegion(cur) && false) {
2819       cl->incomplete();
2820       return;
2821     }
2822     cur = next;
2823   }
2824 }
2825 
2826 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2827   HeapRegion* result = _hrm.next_region_in_heap(from);
2828   while (result != NULL && result->is_pinned()) {
2829     result = _hrm.next_region_in_heap(result);
2830   }
2831   return result;
2832 }
2833 
2834 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2835   HeapRegion* hr = heap_region_containing(addr);
2836   return hr->block_start(addr);
2837 }
2838 
2839 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2840   HeapRegion* hr = heap_region_containing(addr);
2841   return hr->block_size(addr);
2842 }
2843 
2844 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2845   HeapRegion* hr = heap_region_containing(addr);
2846   return hr->block_is_obj(addr);
2847 }
2848 
2849 bool G1CollectedHeap::supports_tlab_allocation() const {
2850   return true;
2851 }
2852 
2853 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2854   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2855 }
2856 
2857 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2858   return young_list()->eden_used_bytes();
2859 }
2860 
2861 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2862 // must be smaller than the humongous object limit.
2863 size_t G1CollectedHeap::max_tlab_size() const {
2864   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2865 }
2866 
2867 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2868   AllocationContext_t context = AllocationContext::current();
2869   return _allocator->unsafe_max_tlab_alloc(context);
2870 }
2871 
2872 size_t G1CollectedHeap::max_capacity() const {
2873   return _hrm.reserved().byte_size();
2874 }
2875 
2876 jlong G1CollectedHeap::millis_since_last_gc() {
2877   // assert(false, "NYI");
2878   return 0;
2879 }
2880 
2881 void G1CollectedHeap::prepare_for_verify() {
2882   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2883     ensure_parsability(false);
2884   }
2885   g1_rem_set()->prepare_for_verify();
2886 }
2887 
2888 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2889                                               VerifyOption vo) {
2890   switch (vo) {
2891   case VerifyOption_G1UsePrevMarking:
2892     return hr->obj_allocated_since_prev_marking(obj);
2893   case VerifyOption_G1UseNextMarking:
2894     return hr->obj_allocated_since_next_marking(obj);
2895   case VerifyOption_G1UseMarkWord:
2896     return false;
2897   default:
2898     ShouldNotReachHere();
2899   }
2900   return false; // keep some compilers happy
2901 }
2902 
2903 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2904   switch (vo) {
2905   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2906   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2907   case VerifyOption_G1UseMarkWord:    return NULL;
2908   default:                            ShouldNotReachHere();
2909   }
2910   return NULL; // keep some compilers happy
2911 }
2912 
2913 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2914   switch (vo) {
2915   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2916   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2917   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2918   default:                            ShouldNotReachHere();
2919   }
2920   return false; // keep some compilers happy
2921 }
2922 
2923 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2924   switch (vo) {
2925   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2926   case VerifyOption_G1UseNextMarking: return "NTAMS";
2927   case VerifyOption_G1UseMarkWord:    return "NONE";
2928   default:                            ShouldNotReachHere();
2929   }
2930   return NULL; // keep some compilers happy
2931 }
2932 
2933 class VerifyRootsClosure: public OopClosure {
2934 private:
2935   G1CollectedHeap* _g1h;
2936   VerifyOption     _vo;
2937   bool             _failures;
2938 public:
2939   // _vo == UsePrevMarking -> use "prev" marking information,
2940   // _vo == UseNextMarking -> use "next" marking information,
2941   // _vo == UseMarkWord    -> use mark word from object header.
2942   VerifyRootsClosure(VerifyOption vo) :
2943     _g1h(G1CollectedHeap::heap()),
2944     _vo(vo),
2945     _failures(false) { }
2946 
2947   bool failures() { return _failures; }
2948 
2949   template <class T> void do_oop_nv(T* p) {
2950     T heap_oop = oopDesc::load_heap_oop(p);
2951     if (!oopDesc::is_null(heap_oop)) {
2952       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2953       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2954         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2955                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2956         if (_vo == VerifyOption_G1UseMarkWord) {
2957           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2958         }
2959         obj->print_on(gclog_or_tty);
2960         _failures = true;
2961       }
2962     }
2963   }
2964 
2965   void do_oop(oop* p)       { do_oop_nv(p); }
2966   void do_oop(narrowOop* p) { do_oop_nv(p); }
2967 };
2968 
2969 class G1VerifyCodeRootOopClosure: public OopClosure {
2970   G1CollectedHeap* _g1h;
2971   OopClosure* _root_cl;
2972   nmethod* _nm;
2973   VerifyOption _vo;
2974   bool _failures;
2975 
2976   template <class T> void do_oop_work(T* p) {
2977     // First verify that this root is live
2978     _root_cl->do_oop(p);
2979 
2980     if (!G1VerifyHeapRegionCodeRoots) {
2981       // We're not verifying the code roots attached to heap region.
2982       return;
2983     }
2984 
2985     // Don't check the code roots during marking verification in a full GC
2986     if (_vo == VerifyOption_G1UseMarkWord) {
2987       return;
2988     }
2989 
2990     // Now verify that the current nmethod (which contains p) is
2991     // in the code root list of the heap region containing the
2992     // object referenced by p.
2993 
2994     T heap_oop = oopDesc::load_heap_oop(p);
2995     if (!oopDesc::is_null(heap_oop)) {
2996       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2997 
2998       // Now fetch the region containing the object
2999       HeapRegion* hr = _g1h->heap_region_containing(obj);
3000       HeapRegionRemSet* hrrs = hr->rem_set();
3001       // Verify that the strong code root list for this region
3002       // contains the nmethod
3003       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3004         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3005                                "from nmethod " PTR_FORMAT " not in strong "
3006                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3007                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3008         _failures = true;
3009       }
3010     }
3011   }
3012 
3013 public:
3014   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3015     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3016 
3017   void do_oop(oop* p) { do_oop_work(p); }
3018   void do_oop(narrowOop* p) { do_oop_work(p); }
3019 
3020   void set_nmethod(nmethod* nm) { _nm = nm; }
3021   bool failures() { return _failures; }
3022 };
3023 
3024 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3025   G1VerifyCodeRootOopClosure* _oop_cl;
3026 
3027 public:
3028   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3029     _oop_cl(oop_cl) {}
3030 
3031   void do_code_blob(CodeBlob* cb) {
3032     nmethod* nm = cb->as_nmethod_or_null();
3033     if (nm != NULL) {
3034       _oop_cl->set_nmethod(nm);
3035       nm->oops_do(_oop_cl);
3036     }
3037   }
3038 };
3039 
3040 class YoungRefCounterClosure : public OopClosure {
3041   G1CollectedHeap* _g1h;
3042   int              _count;
3043  public:
3044   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3045   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3046   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3047 
3048   int count() { return _count; }
3049   void reset_count() { _count = 0; };
3050 };
3051 
3052 class VerifyKlassClosure: public KlassClosure {
3053   YoungRefCounterClosure _young_ref_counter_closure;
3054   OopClosure *_oop_closure;
3055  public:
3056   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3057   void do_klass(Klass* k) {
3058     k->oops_do(_oop_closure);
3059 
3060     _young_ref_counter_closure.reset_count();
3061     k->oops_do(&_young_ref_counter_closure);
3062     if (_young_ref_counter_closure.count() > 0) {
3063       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3064     }
3065   }
3066 };
3067 
3068 class VerifyLivenessOopClosure: public OopClosure {
3069   G1CollectedHeap* _g1h;
3070   VerifyOption _vo;
3071 public:
3072   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3073     _g1h(g1h), _vo(vo)
3074   { }
3075   void do_oop(narrowOop *p) { do_oop_work(p); }
3076   void do_oop(      oop *p) { do_oop_work(p); }
3077 
3078   template <class T> void do_oop_work(T *p) {
3079     oop obj = oopDesc::load_decode_heap_oop(p);
3080     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3081               "Dead object referenced by a not dead object");
3082   }
3083 };
3084 
3085 class VerifyObjsInRegionClosure: public ObjectClosure {
3086 private:
3087   G1CollectedHeap* _g1h;
3088   size_t _live_bytes;
3089   HeapRegion *_hr;
3090   VerifyOption _vo;
3091 public:
3092   // _vo == UsePrevMarking -> use "prev" marking information,
3093   // _vo == UseNextMarking -> use "next" marking information,
3094   // _vo == UseMarkWord    -> use mark word from object header.
3095   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3096     : _live_bytes(0), _hr(hr), _vo(vo) {
3097     _g1h = G1CollectedHeap::heap();
3098   }
3099   void do_object(oop o) {
3100     VerifyLivenessOopClosure isLive(_g1h, _vo);
3101     assert(o != NULL, "Huh?");
3102     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3103       // If the object is alive according to the mark word,
3104       // then verify that the marking information agrees.
3105       // Note we can't verify the contra-positive of the
3106       // above: if the object is dead (according to the mark
3107       // word), it may not be marked, or may have been marked
3108       // but has since became dead, or may have been allocated
3109       // since the last marking.
3110       if (_vo == VerifyOption_G1UseMarkWord) {
3111         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3112       }
3113 
3114       o->oop_iterate_no_header(&isLive);
3115       if (!_hr->obj_allocated_since_prev_marking(o)) {
3116         size_t obj_size = o->size();    // Make sure we don't overflow
3117         _live_bytes += (obj_size * HeapWordSize);
3118       }
3119     }
3120   }
3121   size_t live_bytes() { return _live_bytes; }
3122 };
3123 
3124 class VerifyArchiveOopClosure: public OopClosure {
3125 public:
3126   VerifyArchiveOopClosure(HeapRegion *hr) { }
3127   void do_oop(narrowOop *p) { do_oop_work(p); }
3128   void do_oop(      oop *p) { do_oop_work(p); }
3129 
3130   template <class T> void do_oop_work(T *p) {
3131     oop obj = oopDesc::load_decode_heap_oop(p);
3132     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3133               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3134                       p2i(p), p2i(obj)));
3135   }
3136 };
3137 
3138 class VerifyArchiveRegionClosure: public ObjectClosure {
3139 public:
3140   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3141   // Verify that all object pointers are to archive regions.
3142   void do_object(oop o) {
3143     VerifyArchiveOopClosure checkOop(NULL);
3144     assert(o != NULL, "Should not be here for NULL oops");
3145     o->oop_iterate_no_header(&checkOop);
3146   }
3147 };
3148 
3149 class VerifyRegionClosure: public HeapRegionClosure {
3150 private:
3151   bool             _par;
3152   VerifyOption     _vo;
3153   bool             _failures;
3154 public:
3155   // _vo == UsePrevMarking -> use "prev" marking information,
3156   // _vo == UseNextMarking -> use "next" marking information,
3157   // _vo == UseMarkWord    -> use mark word from object header.
3158   VerifyRegionClosure(bool par, VerifyOption vo)
3159     : _par(par),
3160       _vo(vo),
3161       _failures(false) {}
3162 
3163   bool failures() {
3164     return _failures;
3165   }
3166 
3167   bool doHeapRegion(HeapRegion* r) {
3168     // For archive regions, verify there are no heap pointers to
3169     // non-pinned regions. For all others, verify liveness info.
3170     if (r->is_archive()) {
3171       VerifyArchiveRegionClosure verify_oop_pointers(r);
3172       r->object_iterate(&verify_oop_pointers);
3173       return true;
3174     }
3175     if (!r->is_continues_humongous()) {
3176       bool failures = false;
3177       r->verify(_vo, &failures);
3178       if (failures) {
3179         _failures = true;
3180       } else {
3181         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3182         r->object_iterate(&not_dead_yet_cl);
3183         if (_vo != VerifyOption_G1UseNextMarking) {
3184           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3185             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3186                                    "max_live_bytes " SIZE_FORMAT " "
3187                                    "< calculated " SIZE_FORMAT,
3188                                    p2i(r->bottom()), p2i(r->end()),
3189                                    r->max_live_bytes(),
3190                                  not_dead_yet_cl.live_bytes());
3191             _failures = true;
3192           }
3193         } else {
3194           // When vo == UseNextMarking we cannot currently do a sanity
3195           // check on the live bytes as the calculation has not been
3196           // finalized yet.
3197         }
3198       }
3199     }
3200     return false; // stop the region iteration if we hit a failure
3201   }
3202 };
3203 
3204 // This is the task used for parallel verification of the heap regions
3205 
3206 class G1ParVerifyTask: public AbstractGangTask {
3207 private:
3208   G1CollectedHeap*  _g1h;
3209   VerifyOption      _vo;
3210   bool              _failures;
3211   HeapRegionClaimer _hrclaimer;
3212 
3213 public:
3214   // _vo == UsePrevMarking -> use "prev" marking information,
3215   // _vo == UseNextMarking -> use "next" marking information,
3216   // _vo == UseMarkWord    -> use mark word from object header.
3217   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3218       AbstractGangTask("Parallel verify task"),
3219       _g1h(g1h),
3220       _vo(vo),
3221       _failures(false),
3222       _hrclaimer(g1h->workers()->active_workers()) {}
3223 
3224   bool failures() {
3225     return _failures;
3226   }
3227 
3228   void work(uint worker_id) {
3229     HandleMark hm;
3230     VerifyRegionClosure blk(true, _vo);
3231     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3232     if (blk.failures()) {
3233       _failures = true;
3234     }
3235   }
3236 };
3237 
3238 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3239   if (SafepointSynchronize::is_at_safepoint()) {
3240     assert(Thread::current()->is_VM_thread(),
3241            "Expected to be executed serially by the VM thread at this point");
3242 
3243     if (!silent) { gclog_or_tty->print("Roots "); }
3244     VerifyRootsClosure rootsCl(vo);
3245     VerifyKlassClosure klassCl(this, &rootsCl);
3246     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3247 
3248     // We apply the relevant closures to all the oops in the
3249     // system dictionary, class loader data graph, the string table
3250     // and the nmethods in the code cache.
3251     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3252     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3253 
3254     {
3255       G1RootProcessor root_processor(this, 1);
3256       root_processor.process_all_roots(&rootsCl,
3257                                        &cldCl,
3258                                        &blobsCl);
3259     }
3260 
3261     bool failures = rootsCl.failures() || codeRootsCl.failures();
3262 
3263     if (vo != VerifyOption_G1UseMarkWord) {
3264       // If we're verifying during a full GC then the region sets
3265       // will have been torn down at the start of the GC. Therefore
3266       // verifying the region sets will fail. So we only verify
3267       // the region sets when not in a full GC.
3268       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3269       verify_region_sets();
3270     }
3271 
3272     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3273     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3274 
3275       G1ParVerifyTask task(this, vo);
3276       workers()->run_task(&task);
3277       if (task.failures()) {
3278         failures = true;
3279       }
3280 
3281     } else {
3282       VerifyRegionClosure blk(false, vo);
3283       heap_region_iterate(&blk);
3284       if (blk.failures()) {
3285         failures = true;
3286       }
3287     }
3288 
3289     if (G1StringDedup::is_enabled()) {
3290       if (!silent) gclog_or_tty->print("StrDedup ");
3291       G1StringDedup::verify();
3292     }
3293 
3294     if (failures) {
3295       gclog_or_tty->print_cr("Heap:");
3296       // It helps to have the per-region information in the output to
3297       // help us track down what went wrong. This is why we call
3298       // print_extended_on() instead of print_on().
3299       print_extended_on(gclog_or_tty);
3300       gclog_or_tty->cr();
3301       gclog_or_tty->flush();
3302     }
3303     guarantee(!failures, "there should not have been any failures");
3304   } else {
3305     if (!silent) {
3306       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3307       if (G1StringDedup::is_enabled()) {
3308         gclog_or_tty->print(", StrDedup");
3309       }
3310       gclog_or_tty->print(") ");
3311     }
3312   }
3313 }
3314 
3315 void G1CollectedHeap::verify(bool silent) {
3316   verify(silent, VerifyOption_G1UsePrevMarking);
3317 }
3318 
3319 double G1CollectedHeap::verify(bool guard, const char* msg) {
3320   double verify_time_ms = 0.0;
3321 
3322   if (guard && total_collections() >= VerifyGCStartAt) {
3323     double verify_start = os::elapsedTime();
3324     HandleMark hm;  // Discard invalid handles created during verification
3325     prepare_for_verify();
3326     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3327     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3328   }
3329 
3330   return verify_time_ms;
3331 }
3332 
3333 void G1CollectedHeap::verify_before_gc() {
3334   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3335   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3336 }
3337 
3338 void G1CollectedHeap::verify_after_gc() {
3339   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3340   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3341 }
3342 
3343 class PrintRegionClosure: public HeapRegionClosure {
3344   outputStream* _st;
3345 public:
3346   PrintRegionClosure(outputStream* st) : _st(st) {}
3347   bool doHeapRegion(HeapRegion* r) {
3348     r->print_on(_st);
3349     return false;
3350   }
3351 };
3352 
3353 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3354                                        const HeapRegion* hr,
3355                                        const VerifyOption vo) const {
3356   switch (vo) {
3357   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3358   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3359   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3360   default:                            ShouldNotReachHere();
3361   }
3362   return false; // keep some compilers happy
3363 }
3364 
3365 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3366                                        const VerifyOption vo) const {
3367   switch (vo) {
3368   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3369   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3370   case VerifyOption_G1UseMarkWord: {
3371     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3372     return !obj->is_gc_marked() && !hr->is_archive();
3373   }
3374   default:                            ShouldNotReachHere();
3375   }
3376   return false; // keep some compilers happy
3377 }
3378 
3379 void G1CollectedHeap::print_on(outputStream* st) const {
3380   st->print(" %-20s", "garbage-first heap");
3381   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3382             capacity()/K, used_unlocked()/K);
3383   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3384             p2i(_hrm.reserved().start()),
3385             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3386             p2i(_hrm.reserved().end()));
3387   st->cr();
3388   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3389   uint young_regions = _young_list->length();
3390   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3391             (size_t) young_regions * HeapRegion::GrainBytes / K);
3392   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3393   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3394             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3395   st->cr();
3396   MetaspaceAux::print_on(st);
3397 }
3398 
3399 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3400   print_on(st);
3401 
3402   // Print the per-region information.
3403   st->cr();
3404   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3405                "HS=humongous(starts), HC=humongous(continues), "
3406                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3407                "PTAMS=previous top-at-mark-start, "
3408                "NTAMS=next top-at-mark-start)");
3409   PrintRegionClosure blk(st);
3410   heap_region_iterate(&blk);
3411 }
3412 
3413 void G1CollectedHeap::print_on_error(outputStream* st) const {
3414   this->CollectedHeap::print_on_error(st);
3415 
3416   if (_cm != NULL) {
3417     st->cr();
3418     _cm->print_on_error(st);
3419   }
3420 }
3421 
3422 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3423   workers()->print_worker_threads_on(st);
3424   _cmThread->print_on(st);
3425   st->cr();
3426   _cm->print_worker_threads_on(st);
3427   _cg1r->print_worker_threads_on(st);
3428   if (G1StringDedup::is_enabled()) {
3429     G1StringDedup::print_worker_threads_on(st);
3430   }
3431 }
3432 
3433 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3434   workers()->threads_do(tc);
3435   tc->do_thread(_cmThread);
3436   _cg1r->threads_do(tc);
3437   if (G1StringDedup::is_enabled()) {
3438     G1StringDedup::threads_do(tc);
3439   }
3440 }
3441 
3442 void G1CollectedHeap::print_tracing_info() const {
3443   // We'll overload this to mean "trace GC pause statistics."
3444   if (TraceYoungGenTime || TraceOldGenTime) {
3445     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3446     // to that.
3447     g1_policy()->print_tracing_info();
3448   }
3449   if (G1SummarizeRSetStats) {
3450     g1_rem_set()->print_summary_info();
3451   }
3452   if (G1SummarizeConcMark) {
3453     concurrent_mark()->print_summary_info();
3454   }
3455   g1_policy()->print_yg_surv_rate_info();
3456 }
3457 
3458 #ifndef PRODUCT
3459 // Helpful for debugging RSet issues.
3460 
3461 class PrintRSetsClosure : public HeapRegionClosure {
3462 private:
3463   const char* _msg;
3464   size_t _occupied_sum;
3465 
3466 public:
3467   bool doHeapRegion(HeapRegion* r) {
3468     HeapRegionRemSet* hrrs = r->rem_set();
3469     size_t occupied = hrrs->occupied();
3470     _occupied_sum += occupied;
3471 
3472     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3473                            HR_FORMAT_PARAMS(r));
3474     if (occupied == 0) {
3475       gclog_or_tty->print_cr("  RSet is empty");
3476     } else {
3477       hrrs->print();
3478     }
3479     gclog_or_tty->print_cr("----------");
3480     return false;
3481   }
3482 
3483   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3484     gclog_or_tty->cr();
3485     gclog_or_tty->print_cr("========================================");
3486     gclog_or_tty->print_cr("%s", msg);
3487     gclog_or_tty->cr();
3488   }
3489 
3490   ~PrintRSetsClosure() {
3491     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3492     gclog_or_tty->print_cr("========================================");
3493     gclog_or_tty->cr();
3494   }
3495 };
3496 
3497 void G1CollectedHeap::print_cset_rsets() {
3498   PrintRSetsClosure cl("Printing CSet RSets");
3499   collection_set_iterate(&cl);
3500 }
3501 
3502 void G1CollectedHeap::print_all_rsets() {
3503   PrintRSetsClosure cl("Printing All RSets");;
3504   heap_region_iterate(&cl);
3505 }
3506 #endif // PRODUCT
3507 
3508 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3509   YoungList* young_list = heap()->young_list();
3510 
3511   size_t eden_used_bytes = young_list->eden_used_bytes();
3512   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3513 
3514   size_t eden_capacity_bytes =
3515     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3516 
3517   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3518   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3519 }
3520 
3521 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3522   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3523   gc_tracer->report_gc_heap_summary(when, heap_summary);
3524 
3525   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3526   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3527 }
3528 
3529 
3530 G1CollectedHeap* G1CollectedHeap::heap() {
3531   CollectedHeap* heap = Universe::heap();
3532   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3533   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3534   return (G1CollectedHeap*)heap;
3535 }
3536 
3537 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3538   // always_do_update_barrier = false;
3539   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3540   // Fill TLAB's and such
3541   accumulate_statistics_all_tlabs();
3542   ensure_parsability(true);
3543 
3544   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3545       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3546     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3547   }
3548 }
3549 
3550 void G1CollectedHeap::gc_epilogue(bool full) {
3551 
3552   if (G1SummarizeRSetStats &&
3553       (G1SummarizeRSetStatsPeriod > 0) &&
3554       // we are at the end of the GC. Total collections has already been increased.
3555       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3556     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3557   }
3558 
3559   // FIXME: what is this about?
3560   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3561   // is set.
3562   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3563                         "derived pointer present"));
3564   // always_do_update_barrier = true;
3565 
3566   resize_all_tlabs();
3567   allocation_context_stats().update(full);
3568 
3569   // We have just completed a GC. Update the soft reference
3570   // policy with the new heap occupancy
3571   Universe::update_heap_info_at_gc();
3572 }
3573 
3574 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3575                                                uint gc_count_before,
3576                                                bool* succeeded,
3577                                                GCCause::Cause gc_cause) {
3578   assert_heap_not_locked_and_not_at_safepoint();
3579   g1_policy()->record_stop_world_start();
3580   VM_G1IncCollectionPause op(gc_count_before,
3581                              word_size,
3582                              false, /* should_initiate_conc_mark */
3583                              g1_policy()->max_pause_time_ms(),
3584                              gc_cause);
3585 
3586   op.set_allocation_context(AllocationContext::current());
3587   VMThread::execute(&op);
3588 
3589   HeapWord* result = op.result();
3590   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3591   assert(result == NULL || ret_succeeded,
3592          "the result should be NULL if the VM did not succeed");
3593   *succeeded = ret_succeeded;
3594 
3595   assert_heap_not_locked();
3596   return result;
3597 }
3598 
3599 void
3600 G1CollectedHeap::doConcurrentMark() {
3601   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3602   if (!_cmThread->in_progress()) {
3603     _cmThread->set_started();
3604     CGC_lock->notify();
3605   }
3606 }
3607 
3608 size_t G1CollectedHeap::pending_card_num() {
3609   size_t extra_cards = 0;
3610   JavaThread *curr = Threads::first();
3611   while (curr != NULL) {
3612     DirtyCardQueue& dcq = curr->dirty_card_queue();
3613     extra_cards += dcq.size();
3614     curr = curr->next();
3615   }
3616   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3617   size_t buffer_size = dcqs.buffer_size();
3618   size_t buffer_num = dcqs.completed_buffers_num();
3619 
3620   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3621   // in bytes - not the number of 'entries'. We need to convert
3622   // into a number of cards.
3623   return (buffer_size * buffer_num + extra_cards) / oopSize;
3624 }
3625 
3626 size_t G1CollectedHeap::cards_scanned() {
3627   return g1_rem_set()->cardsScanned();
3628 }
3629 
3630 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3631  private:
3632   size_t _total_humongous;
3633   size_t _candidate_humongous;
3634 
3635   DirtyCardQueue _dcq;
3636 
3637   // We don't nominate objects with many remembered set entries, on
3638   // the assumption that such objects are likely still live.
3639   bool is_remset_small(HeapRegion* region) const {
3640     HeapRegionRemSet* const rset = region->rem_set();
3641     return G1EagerReclaimHumongousObjectsWithStaleRefs
3642       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3643       : rset->is_empty();
3644   }
3645 
3646   bool is_typeArray_region(HeapRegion* region) const {
3647     return oop(region->bottom())->is_typeArray();
3648   }
3649 
3650   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3651     assert(region->is_starts_humongous(), "Must start a humongous object");
3652 
3653     // Candidate selection must satisfy the following constraints
3654     // while concurrent marking is in progress:
3655     //
3656     // * In order to maintain SATB invariants, an object must not be
3657     // reclaimed if it was allocated before the start of marking and
3658     // has not had its references scanned.  Such an object must have
3659     // its references (including type metadata) scanned to ensure no
3660     // live objects are missed by the marking process.  Objects
3661     // allocated after the start of concurrent marking don't need to
3662     // be scanned.
3663     //
3664     // * An object must not be reclaimed if it is on the concurrent
3665     // mark stack.  Objects allocated after the start of concurrent
3666     // marking are never pushed on the mark stack.
3667     //
3668     // Nominating only objects allocated after the start of concurrent
3669     // marking is sufficient to meet both constraints.  This may miss
3670     // some objects that satisfy the constraints, but the marking data
3671     // structures don't support efficiently performing the needed
3672     // additional tests or scrubbing of the mark stack.
3673     //
3674     // However, we presently only nominate is_typeArray() objects.
3675     // A humongous object containing references induces remembered
3676     // set entries on other regions.  In order to reclaim such an
3677     // object, those remembered sets would need to be cleaned up.
3678     //
3679     // We also treat is_typeArray() objects specially, allowing them
3680     // to be reclaimed even if allocated before the start of
3681     // concurrent mark.  For this we rely on mark stack insertion to
3682     // exclude is_typeArray() objects, preventing reclaiming an object
3683     // that is in the mark stack.  We also rely on the metadata for
3684     // such objects to be built-in and so ensured to be kept live.
3685     // Frequent allocation and drop of large binary blobs is an
3686     // important use case for eager reclaim, and this special handling
3687     // may reduce needed headroom.
3688 
3689     return is_typeArray_region(region) && is_remset_small(region);
3690   }
3691 
3692  public:
3693   RegisterHumongousWithInCSetFastTestClosure()
3694   : _total_humongous(0),
3695     _candidate_humongous(0),
3696     _dcq(&JavaThread::dirty_card_queue_set()) {
3697   }
3698 
3699   virtual bool doHeapRegion(HeapRegion* r) {
3700     if (!r->is_starts_humongous()) {
3701       return false;
3702     }
3703     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3704 
3705     bool is_candidate = humongous_region_is_candidate(g1h, r);
3706     uint rindex = r->hrm_index();
3707     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3708     if (is_candidate) {
3709       _candidate_humongous++;
3710       g1h->register_humongous_region_with_cset(rindex);
3711       // Is_candidate already filters out humongous object with large remembered sets.
3712       // If we have a humongous object with a few remembered sets, we simply flush these
3713       // remembered set entries into the DCQS. That will result in automatic
3714       // re-evaluation of their remembered set entries during the following evacuation
3715       // phase.
3716       if (!r->rem_set()->is_empty()) {
3717         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3718                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3719         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3720         HeapRegionRemSetIterator hrrs(r->rem_set());
3721         size_t card_index;
3722         while (hrrs.has_next(card_index)) {
3723           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3724           // The remembered set might contain references to already freed
3725           // regions. Filter out such entries to avoid failing card table
3726           // verification.
3727           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3728             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3729               *card_ptr = CardTableModRefBS::dirty_card_val();
3730               _dcq.enqueue(card_ptr);
3731             }
3732           }
3733         }
3734         r->rem_set()->clear_locked();
3735       }
3736       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3737     }
3738     _total_humongous++;
3739 
3740     return false;
3741   }
3742 
3743   size_t total_humongous() const { return _total_humongous; }
3744   size_t candidate_humongous() const { return _candidate_humongous; }
3745 
3746   void flush_rem_set_entries() { _dcq.flush(); }
3747 };
3748 
3749 void G1CollectedHeap::register_humongous_regions_with_cset() {
3750   if (!G1EagerReclaimHumongousObjects) {
3751     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3752     return;
3753   }
3754   double time = os::elapsed_counter();
3755 
3756   // Collect reclaim candidate information and register candidates with cset.
3757   RegisterHumongousWithInCSetFastTestClosure cl;
3758   heap_region_iterate(&cl);
3759 
3760   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3761   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3762                                                                   cl.total_humongous(),
3763                                                                   cl.candidate_humongous());
3764   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3765 
3766   // Finally flush all remembered set entries to re-check into the global DCQS.
3767   cl.flush_rem_set_entries();
3768 }
3769 
3770 void
3771 G1CollectedHeap::setup_surviving_young_words() {
3772   assert(_surviving_young_words == NULL, "pre-condition");
3773   uint array_length = g1_policy()->young_cset_region_length();
3774   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3775   if (_surviving_young_words == NULL) {
3776     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3777                           "Not enough space for young surv words summary.");
3778   }
3779   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3780 #ifdef ASSERT
3781   for (uint i = 0;  i < array_length; ++i) {
3782     assert( _surviving_young_words[i] == 0, "memset above" );
3783   }
3784 #endif // !ASSERT
3785 }
3786 
3787 void
3788 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3789   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3790   uint array_length = g1_policy()->young_cset_region_length();
3791   for (uint i = 0; i < array_length; ++i) {
3792     _surviving_young_words[i] += surv_young_words[i];
3793   }
3794 }
3795 
3796 void
3797 G1CollectedHeap::cleanup_surviving_young_words() {
3798   guarantee( _surviving_young_words != NULL, "pre-condition" );
3799   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3800   _surviving_young_words = NULL;
3801 }
3802 
3803 #ifdef ASSERT
3804 class VerifyCSetClosure: public HeapRegionClosure {
3805 public:
3806   bool doHeapRegion(HeapRegion* hr) {
3807     // Here we check that the CSet region's RSet is ready for parallel
3808     // iteration. The fields that we'll verify are only manipulated
3809     // when the region is part of a CSet and is collected. Afterwards,
3810     // we reset these fields when we clear the region's RSet (when the
3811     // region is freed) so they are ready when the region is
3812     // re-allocated. The only exception to this is if there's an
3813     // evacuation failure and instead of freeing the region we leave
3814     // it in the heap. In that case, we reset these fields during
3815     // evacuation failure handling.
3816     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3817 
3818     // Here's a good place to add any other checks we'd like to
3819     // perform on CSet regions.
3820     return false;
3821   }
3822 };
3823 #endif // ASSERT
3824 
3825 uint G1CollectedHeap::num_task_queues() const {
3826   return _task_queues->size();
3827 }
3828 
3829 #if TASKQUEUE_STATS
3830 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3831   st->print_raw_cr("GC Task Stats");
3832   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3833   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3834 }
3835 
3836 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3837   print_taskqueue_stats_hdr(st);
3838 
3839   TaskQueueStats totals;
3840   const uint n = num_task_queues();
3841   for (uint i = 0; i < n; ++i) {
3842     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3843     totals += task_queue(i)->stats;
3844   }
3845   st->print_raw("tot "); totals.print(st); st->cr();
3846 
3847   DEBUG_ONLY(totals.verify());
3848 }
3849 
3850 void G1CollectedHeap::reset_taskqueue_stats() {
3851   const uint n = num_task_queues();
3852   for (uint i = 0; i < n; ++i) {
3853     task_queue(i)->stats.reset();
3854   }
3855 }
3856 #endif // TASKQUEUE_STATS
3857 
3858 void G1CollectedHeap::log_gc_header() {
3859   if (!G1Log::fine()) {
3860     return;
3861   }
3862 
3863   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3864 
3865   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3866     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3867     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3868 
3869   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3870 }
3871 
3872 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3873   if (!G1Log::fine()) {
3874     return;
3875   }
3876 
3877   if (G1Log::finer()) {
3878     if (evacuation_failed()) {
3879       gclog_or_tty->print(" (to-space exhausted)");
3880     }
3881     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3882     g1_policy()->phase_times()->note_gc_end();
3883     g1_policy()->phase_times()->print(pause_time_sec);
3884     g1_policy()->print_detailed_heap_transition();
3885   } else {
3886     if (evacuation_failed()) {
3887       gclog_or_tty->print("--");
3888     }
3889     g1_policy()->print_heap_transition();
3890     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3891   }
3892   gclog_or_tty->flush();
3893 }
3894 
3895 void G1CollectedHeap::wait_for_root_region_scanning() {
3896   double scan_wait_start = os::elapsedTime();
3897   // We have to wait until the CM threads finish scanning the
3898   // root regions as it's the only way to ensure that all the
3899   // objects on them have been correctly scanned before we start
3900   // moving them during the GC.
3901   bool waited = _cm->root_regions()->wait_until_scan_finished();
3902   double wait_time_ms = 0.0;
3903   if (waited) {
3904     double scan_wait_end = os::elapsedTime();
3905     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3906   }
3907   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3908 }
3909 
3910 bool
3911 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3912   assert_at_safepoint(true /* should_be_vm_thread */);
3913   guarantee(!is_gc_active(), "collection is not reentrant");
3914 
3915   if (GC_locker::check_active_before_gc()) {
3916     return false;
3917   }
3918 
3919   _gc_timer_stw->register_gc_start();
3920 
3921   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3922 
3923   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3924   ResourceMark rm;
3925 
3926   wait_for_root_region_scanning();
3927 
3928   G1Log::update_level();
3929   print_heap_before_gc();
3930   trace_heap_before_gc(_gc_tracer_stw);
3931 
3932   verify_region_sets_optional();
3933   verify_dirty_young_regions();
3934 
3935   // This call will decide whether this pause is an initial-mark
3936   // pause. If it is, during_initial_mark_pause() will return true
3937   // for the duration of this pause.
3938   g1_policy()->decide_on_conc_mark_initiation();
3939 
3940   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3941   assert(!collector_state()->during_initial_mark_pause() ||
3942           collector_state()->gcs_are_young(), "sanity");
3943 
3944   // We also do not allow mixed GCs during marking.
3945   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3946 
3947   // Record whether this pause is an initial mark. When the current
3948   // thread has completed its logging output and it's safe to signal
3949   // the CM thread, the flag's value in the policy has been reset.
3950   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3951 
3952   // Inner scope for scope based logging, timers, and stats collection
3953   {
3954     EvacuationInfo evacuation_info;
3955 
3956     if (collector_state()->during_initial_mark_pause()) {
3957       // We are about to start a marking cycle, so we increment the
3958       // full collection counter.
3959       increment_old_marking_cycles_started();
3960       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3961     }
3962 
3963     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3964 
3965     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3966 
3967     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3968                                                                   workers()->active_workers(),
3969                                                                   Threads::number_of_non_daemon_threads());
3970     workers()->set_active_workers(active_workers);
3971 
3972     double pause_start_sec = os::elapsedTime();
3973     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3974     log_gc_header();
3975 
3976     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3977     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3978 
3979     // If the secondary_free_list is not empty, append it to the
3980     // free_list. No need to wait for the cleanup operation to finish;
3981     // the region allocation code will check the secondary_free_list
3982     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3983     // set, skip this step so that the region allocation code has to
3984     // get entries from the secondary_free_list.
3985     if (!G1StressConcRegionFreeing) {
3986       append_secondary_free_list_if_not_empty_with_lock();
3987     }
3988 
3989     assert(check_young_list_well_formed(), "young list should be well formed");
3990 
3991     // Don't dynamically change the number of GC threads this early.  A value of
3992     // 0 is used to indicate serial work.  When parallel work is done,
3993     // it will be set.
3994 
3995     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3996       IsGCActiveMark x;
3997 
3998       gc_prologue(false);
3999       increment_total_collections(false /* full gc */);
4000       increment_gc_time_stamp();
4001 
4002       verify_before_gc();
4003 
4004       check_bitmaps("GC Start");
4005 
4006       COMPILER2_PRESENT(DerivedPointerTable::clear());
4007 
4008       // Please see comment in g1CollectedHeap.hpp and
4009       // G1CollectedHeap::ref_processing_init() to see how
4010       // reference processing currently works in G1.
4011 
4012       // Enable discovery in the STW reference processor
4013       ref_processor_stw()->enable_discovery();
4014 
4015       {
4016         // We want to temporarily turn off discovery by the
4017         // CM ref processor, if necessary, and turn it back on
4018         // on again later if we do. Using a scoped
4019         // NoRefDiscovery object will do this.
4020         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4021 
4022         // Forget the current alloc region (we might even choose it to be part
4023         // of the collection set!).
4024         _allocator->release_mutator_alloc_region();
4025 
4026         // We should call this after we retire the mutator alloc
4027         // region(s) so that all the ALLOC / RETIRE events are generated
4028         // before the start GC event.
4029         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4030 
4031         // This timing is only used by the ergonomics to handle our pause target.
4032         // It is unclear why this should not include the full pause. We will
4033         // investigate this in CR 7178365.
4034         //
4035         // Preserving the old comment here if that helps the investigation:
4036         //
4037         // The elapsed time induced by the start time below deliberately elides
4038         // the possible verification above.
4039         double sample_start_time_sec = os::elapsedTime();
4040 
4041 #if YOUNG_LIST_VERBOSE
4042         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4043         _young_list->print();
4044         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4045 #endif // YOUNG_LIST_VERBOSE
4046 
4047         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4048 
4049 #if YOUNG_LIST_VERBOSE
4050         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4051         _young_list->print();
4052 #endif // YOUNG_LIST_VERBOSE
4053 
4054         if (collector_state()->during_initial_mark_pause()) {
4055           concurrent_mark()->checkpointRootsInitialPre();
4056         }
4057 
4058 #if YOUNG_LIST_VERBOSE
4059         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4060         _young_list->print();
4061         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4062 #endif // YOUNG_LIST_VERBOSE
4063 
4064         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4065 
4066         register_humongous_regions_with_cset();
4067 
4068         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4069 
4070         _cm->note_start_of_gc();
4071         // We call this after finalize_cset() to
4072         // ensure that the CSet has been finalized.
4073         _cm->verify_no_cset_oops();
4074 
4075         if (_hr_printer.is_active()) {
4076           HeapRegion* hr = g1_policy()->collection_set();
4077           while (hr != NULL) {
4078             _hr_printer.cset(hr);
4079             hr = hr->next_in_collection_set();
4080           }
4081         }
4082 
4083 #ifdef ASSERT
4084         VerifyCSetClosure cl;
4085         collection_set_iterate(&cl);
4086 #endif // ASSERT
4087 
4088         setup_surviving_young_words();
4089 
4090         // Initialize the GC alloc regions.
4091         _allocator->init_gc_alloc_regions(evacuation_info);
4092 
4093         // Actually do the work...
4094         evacuate_collection_set(evacuation_info);
4095 
4096         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4097 
4098         eagerly_reclaim_humongous_regions();
4099 
4100         g1_policy()->clear_collection_set();
4101 
4102         cleanup_surviving_young_words();
4103 
4104         // Start a new incremental collection set for the next pause.
4105         g1_policy()->start_incremental_cset_building();
4106 
4107         clear_cset_fast_test();
4108 
4109         _young_list->reset_sampled_info();
4110 
4111         // Don't check the whole heap at this point as the
4112         // GC alloc regions from this pause have been tagged
4113         // as survivors and moved on to the survivor list.
4114         // Survivor regions will fail the !is_young() check.
4115         assert(check_young_list_empty(false /* check_heap */),
4116           "young list should be empty");
4117 
4118 #if YOUNG_LIST_VERBOSE
4119         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4120         _young_list->print();
4121 #endif // YOUNG_LIST_VERBOSE
4122 
4123         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4124                                              _young_list->first_survivor_region(),
4125                                              _young_list->last_survivor_region());
4126 
4127         _young_list->reset_auxilary_lists();
4128 
4129         if (evacuation_failed()) {
4130           set_used(recalculate_used());
4131           if (_archive_allocator != NULL) {
4132             _archive_allocator->clear_used();
4133           }
4134           for (uint i = 0; i < ParallelGCThreads; i++) {
4135             if (_evacuation_failed_info_array[i].has_failed()) {
4136               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4137             }
4138           }
4139         } else {
4140           // The "used" of the the collection set have already been subtracted
4141           // when they were freed.  Add in the bytes evacuated.
4142           increase_used(g1_policy()->bytes_copied_during_gc());
4143         }
4144 
4145         if (collector_state()->during_initial_mark_pause()) {
4146           // We have to do this before we notify the CM threads that
4147           // they can start working to make sure that all the
4148           // appropriate initialization is done on the CM object.
4149           concurrent_mark()->checkpointRootsInitialPost();
4150           collector_state()->set_mark_in_progress(true);
4151           // Note that we don't actually trigger the CM thread at
4152           // this point. We do that later when we're sure that
4153           // the current thread has completed its logging output.
4154         }
4155 
4156         allocate_dummy_regions();
4157 
4158 #if YOUNG_LIST_VERBOSE
4159         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4160         _young_list->print();
4161         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4162 #endif // YOUNG_LIST_VERBOSE
4163 
4164         _allocator->init_mutator_alloc_region();
4165 
4166         {
4167           size_t expand_bytes = g1_policy()->expansion_amount();
4168           if (expand_bytes > 0) {
4169             size_t bytes_before = capacity();
4170             // No need for an ergo verbose message here,
4171             // expansion_amount() does this when it returns a value > 0.
4172             if (!expand(expand_bytes)) {
4173               // We failed to expand the heap. Cannot do anything about it.
4174             }
4175           }
4176         }
4177 
4178         // We redo the verification but now wrt to the new CSet which
4179         // has just got initialized after the previous CSet was freed.
4180         _cm->verify_no_cset_oops();
4181         _cm->note_end_of_gc();
4182 
4183         // This timing is only used by the ergonomics to handle our pause target.
4184         // It is unclear why this should not include the full pause. We will
4185         // investigate this in CR 7178365.
4186         double sample_end_time_sec = os::elapsedTime();
4187         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4188         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4189 
4190         MemoryService::track_memory_usage();
4191 
4192         // In prepare_for_verify() below we'll need to scan the deferred
4193         // update buffers to bring the RSets up-to-date if
4194         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4195         // the update buffers we'll probably need to scan cards on the
4196         // regions we just allocated to (i.e., the GC alloc
4197         // regions). However, during the last GC we called
4198         // set_saved_mark() on all the GC alloc regions, so card
4199         // scanning might skip the [saved_mark_word()...top()] area of
4200         // those regions (i.e., the area we allocated objects into
4201         // during the last GC). But it shouldn't. Given that
4202         // saved_mark_word() is conditional on whether the GC time stamp
4203         // on the region is current or not, by incrementing the GC time
4204         // stamp here we invalidate all the GC time stamps on all the
4205         // regions and saved_mark_word() will simply return top() for
4206         // all the regions. This is a nicer way of ensuring this rather
4207         // than iterating over the regions and fixing them. In fact, the
4208         // GC time stamp increment here also ensures that
4209         // saved_mark_word() will return top() between pauses, i.e.,
4210         // during concurrent refinement. So we don't need the
4211         // is_gc_active() check to decided which top to use when
4212         // scanning cards (see CR 7039627).
4213         increment_gc_time_stamp();
4214 
4215         verify_after_gc();
4216         check_bitmaps("GC End");
4217 
4218         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4219         ref_processor_stw()->verify_no_references_recorded();
4220 
4221         // CM reference discovery will be re-enabled if necessary.
4222       }
4223 
4224       // We should do this after we potentially expand the heap so
4225       // that all the COMMIT events are generated before the end GC
4226       // event, and after we retire the GC alloc regions so that all
4227       // RETIRE events are generated before the end GC event.
4228       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4229 
4230 #ifdef TRACESPINNING
4231       ParallelTaskTerminator::print_termination_counts();
4232 #endif
4233 
4234       gc_epilogue(false);
4235     }
4236 
4237     // Print the remainder of the GC log output.
4238     log_gc_footer(os::elapsedTime() - pause_start_sec);
4239 
4240     // It is not yet to safe to tell the concurrent mark to
4241     // start as we have some optional output below. We don't want the
4242     // output from the concurrent mark thread interfering with this
4243     // logging output either.
4244 
4245     _hrm.verify_optional();
4246     verify_region_sets_optional();
4247 
4248     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4249     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4250 
4251     print_heap_after_gc();
4252     trace_heap_after_gc(_gc_tracer_stw);
4253 
4254     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4255     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4256     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4257     // before any GC notifications are raised.
4258     g1mm()->update_sizes();
4259 
4260     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4261     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4262     _gc_timer_stw->register_gc_end();
4263     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4264   }
4265   // It should now be safe to tell the concurrent mark thread to start
4266   // without its logging output interfering with the logging output
4267   // that came from the pause.
4268 
4269   if (should_start_conc_mark) {
4270     // CAUTION: after the doConcurrentMark() call below,
4271     // the concurrent marking thread(s) could be running
4272     // concurrently with us. Make sure that anything after
4273     // this point does not assume that we are the only GC thread
4274     // running. Note: of course, the actual marking work will
4275     // not start until the safepoint itself is released in
4276     // SuspendibleThreadSet::desynchronize().
4277     doConcurrentMark();
4278   }
4279 
4280   return true;
4281 }
4282 
4283 void G1CollectedHeap::remove_self_forwarding_pointers() {
4284   double remove_self_forwards_start = os::elapsedTime();
4285 
4286   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4287   workers()->run_task(&rsfp_task);
4288 
4289   // Now restore saved marks, if any.
4290   for (uint i = 0; i < ParallelGCThreads; i++) {
4291     OopAndMarkOopStack& cur = _preserved_objs[i];
4292     while (!cur.is_empty()) {
4293       OopAndMarkOop elem = cur.pop();
4294       elem.set_mark();
4295     }
4296     cur.clear(true);
4297   }
4298 
4299   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4300 }
4301 
4302 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4303   if (!_evacuation_failed) {
4304     _evacuation_failed = true;
4305   }
4306 
4307   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4308 
4309   // We want to call the "for_promotion_failure" version only in the
4310   // case of a promotion failure.
4311   if (m->must_be_preserved_for_promotion_failure(obj)) {
4312     OopAndMarkOop elem(obj, m);
4313     _preserved_objs[worker_id].push(elem);
4314   }
4315 }
4316 
4317 void G1ParCopyHelper::mark_object(oop obj) {
4318   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4319 
4320   // We know that the object is not moving so it's safe to read its size.
4321   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4322 }
4323 
4324 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4325   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4326   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4327   assert(from_obj != to_obj, "should not be self-forwarded");
4328 
4329   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4330   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4331 
4332   // The object might be in the process of being copied by another
4333   // worker so we cannot trust that its to-space image is
4334   // well-formed. So we have to read its size from its from-space
4335   // image which we know should not be changing.
4336   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4337 }
4338 
4339 template <class T>
4340 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4341   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4342     _scanned_klass->record_modified_oops();
4343   }
4344 }
4345 
4346 template <G1Barrier barrier, G1Mark do_mark_object>
4347 template <class T>
4348 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4349   T heap_oop = oopDesc::load_heap_oop(p);
4350 
4351   if (oopDesc::is_null(heap_oop)) {
4352     return;
4353   }
4354 
4355   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4356 
4357   assert(_worker_id == _par_scan_state->worker_id(), "sanity");
4358 
4359   const InCSetState state = _g1->in_cset_state(obj);
4360   if (state.is_in_cset()) {
4361     oop forwardee;
4362     markOop m = obj->mark();
4363     if (m->is_marked()) {
4364       forwardee = (oop) m->decode_pointer();
4365     } else {
4366       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4367     }
4368     assert(forwardee != NULL, "forwardee should not be NULL");
4369     oopDesc::encode_store_heap_oop(p, forwardee);
4370     if (do_mark_object != G1MarkNone && forwardee != obj) {
4371       // If the object is self-forwarded we don't need to explicitly
4372       // mark it, the evacuation failure protocol will do so.
4373       mark_forwarded_object(obj, forwardee);
4374     }
4375 
4376     if (barrier == G1BarrierKlass) {
4377       do_klass_barrier(p, forwardee);
4378     }
4379   } else {
4380     if (state.is_humongous()) {
4381       _g1->set_humongous_is_live(obj);
4382     }
4383     // The object is not in collection set. If we're a root scanning
4384     // closure during an initial mark pause then attempt to mark the object.
4385     if (do_mark_object == G1MarkFromRoot) {
4386       mark_object(obj);
4387     }
4388   }
4389 }
4390 
4391 class G1ParEvacuateFollowersClosure : public VoidClosure {
4392 protected:
4393   G1CollectedHeap*              _g1h;
4394   G1ParScanThreadState*         _par_scan_state;
4395   RefToScanQueueSet*            _queues;
4396   ParallelTaskTerminator*       _terminator;
4397 
4398   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4399   RefToScanQueueSet*      queues()         { return _queues; }
4400   ParallelTaskTerminator* terminator()     { return _terminator; }
4401 
4402 public:
4403   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4404                                 G1ParScanThreadState* par_scan_state,
4405                                 RefToScanQueueSet* queues,
4406                                 ParallelTaskTerminator* terminator)
4407     : _g1h(g1h), _par_scan_state(par_scan_state),
4408       _queues(queues), _terminator(terminator) {}
4409 
4410   void do_void();
4411 
4412 private:
4413   inline bool offer_termination();
4414 };
4415 
4416 bool G1ParEvacuateFollowersClosure::offer_termination() {
4417   G1ParScanThreadState* const pss = par_scan_state();
4418   pss->start_term_time();
4419   const bool res = terminator()->offer_termination();
4420   pss->end_term_time();
4421   return res;
4422 }
4423 
4424 void G1ParEvacuateFollowersClosure::do_void() {
4425   G1ParScanThreadState* const pss = par_scan_state();
4426   pss->trim_queue();
4427   do {
4428     pss->steal_and_trim_queue(queues());
4429   } while (!offer_termination());
4430 }
4431 
4432 class G1KlassScanClosure : public KlassClosure {
4433  G1ParCopyHelper* _closure;
4434  bool             _process_only_dirty;
4435  int              _count;
4436  public:
4437   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4438       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4439   void do_klass(Klass* klass) {
4440     // If the klass has not been dirtied we know that there's
4441     // no references into  the young gen and we can skip it.
4442    if (!_process_only_dirty || klass->has_modified_oops()) {
4443       // Clean the klass since we're going to scavenge all the metadata.
4444       klass->clear_modified_oops();
4445 
4446       // Tell the closure that this klass is the Klass to scavenge
4447       // and is the one to dirty if oops are left pointing into the young gen.
4448       _closure->set_scanned_klass(klass);
4449 
4450       klass->oops_do(_closure);
4451 
4452       _closure->set_scanned_klass(NULL);
4453     }
4454     _count++;
4455   }
4456 };
4457 
4458 class G1ParTask : public AbstractGangTask {
4459 protected:
4460   G1CollectedHeap*       _g1h;
4461   RefToScanQueueSet      *_queues;
4462   G1RootProcessor*       _root_processor;
4463   ParallelTaskTerminator _terminator;
4464   uint _n_workers;
4465 
4466 public:
4467   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4468     : AbstractGangTask("G1 collection"),
4469       _g1h(g1h),
4470       _queues(task_queues),
4471       _root_processor(root_processor),
4472       _terminator(n_workers, _queues),
4473       _n_workers(n_workers)
4474   {}
4475 
4476   RefToScanQueueSet* queues() { return _queues; }
4477 
4478   RefToScanQueue *work_queue(int i) {
4479     return queues()->queue(i);
4480   }
4481 
4482   ParallelTaskTerminator* terminator() { return &_terminator; }
4483 
4484   // Helps out with CLD processing.
4485   //
4486   // During InitialMark we need to:
4487   // 1) Scavenge all CLDs for the young GC.
4488   // 2) Mark all objects directly reachable from strong CLDs.
4489   template <G1Mark do_mark_object>
4490   class G1CLDClosure : public CLDClosure {
4491     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4492     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4493     G1KlassScanClosure                                _klass_in_cld_closure;
4494     bool                                              _claim;
4495 
4496    public:
4497     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4498                  bool only_young, bool claim)
4499         : _oop_closure(oop_closure),
4500           _oop_in_klass_closure(oop_closure->g1(),
4501                                 oop_closure->pss(),
4502                                 oop_closure->rp()),
4503           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4504           _claim(claim) {
4505 
4506     }
4507 
4508     void do_cld(ClassLoaderData* cld) {
4509       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4510     }
4511   };
4512 
4513   void work(uint worker_id) {
4514     if (worker_id >= _n_workers) return;  // no work needed this round
4515 
4516     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4517 
4518     {
4519       ResourceMark rm;
4520       HandleMark   hm;
4521 
4522       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4523 
4524       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4525 
4526       bool only_young = _g1h->collector_state()->gcs_are_young();
4527 
4528       // Non-IM young GC.
4529       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4530       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4531                                                                                only_young, // Only process dirty klasses.
4532                                                                                false);     // No need to claim CLDs.
4533       // IM young GC.
4534       //    Strong roots closures.
4535       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4536       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4537                                                                                false, // Process all klasses.
4538                                                                                true); // Need to claim CLDs.
4539       //    Weak roots closures.
4540       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4541       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4542                                                                                     false, // Process all klasses.
4543                                                                                     true); // Need to claim CLDs.
4544 
4545       OopClosure* strong_root_cl;
4546       OopClosure* weak_root_cl;
4547       CLDClosure* strong_cld_cl;
4548       CLDClosure* weak_cld_cl;
4549 
4550       bool trace_metadata = false;
4551 
4552       if (_g1h->collector_state()->during_initial_mark_pause()) {
4553         // We also need to mark copied objects.
4554         strong_root_cl = &scan_mark_root_cl;
4555         strong_cld_cl  = &scan_mark_cld_cl;
4556         if (ClassUnloadingWithConcurrentMark) {
4557           weak_root_cl = &scan_mark_weak_root_cl;
4558           weak_cld_cl  = &scan_mark_weak_cld_cl;
4559           trace_metadata = true;
4560         } else {
4561           weak_root_cl = &scan_mark_root_cl;
4562           weak_cld_cl  = &scan_mark_cld_cl;
4563         }
4564       } else {
4565         strong_root_cl = &scan_only_root_cl;
4566         weak_root_cl   = &scan_only_root_cl;
4567         strong_cld_cl  = &scan_only_cld_cl;
4568         weak_cld_cl    = &scan_only_cld_cl;
4569       }
4570 
4571       pss.start_strong_roots();
4572 
4573       _root_processor->evacuate_roots(strong_root_cl,
4574                                       weak_root_cl,
4575                                       strong_cld_cl,
4576                                       weak_cld_cl,
4577                                       trace_metadata,
4578                                       worker_id);
4579 
4580       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4581       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4582                                             weak_root_cl,
4583                                             worker_id);
4584       pss.end_strong_roots();
4585 
4586       {
4587         double start = os::elapsedTime();
4588         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4589         evac.do_void();
4590         double elapsed_sec = os::elapsedTime() - start;
4591         double term_sec = pss.term_time();
4592         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4593         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4594         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4595       }
4596       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4597       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4598 
4599       if (PrintTerminationStats) {
4600         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4601         pss.print_termination_stats();
4602       }
4603 
4604       assert(pss.queue_is_empty(), "should be empty");
4605 
4606       // Close the inner scope so that the ResourceMark and HandleMark
4607       // destructors are executed here and are included as part of the
4608       // "GC Worker Time".
4609     }
4610     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4611   }
4612 };
4613 
4614 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4615 private:
4616   BoolObjectClosure* _is_alive;
4617   int _initial_string_table_size;
4618   int _initial_symbol_table_size;
4619 
4620   bool  _process_strings;
4621   int _strings_processed;
4622   int _strings_removed;
4623 
4624   bool  _process_symbols;
4625   int _symbols_processed;
4626   int _symbols_removed;
4627 
4628 public:
4629   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4630     AbstractGangTask("String/Symbol Unlinking"),
4631     _is_alive(is_alive),
4632     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4633     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4634 
4635     _initial_string_table_size = StringTable::the_table()->table_size();
4636     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4637     if (process_strings) {
4638       StringTable::clear_parallel_claimed_index();
4639     }
4640     if (process_symbols) {
4641       SymbolTable::clear_parallel_claimed_index();
4642     }
4643   }
4644 
4645   ~G1StringSymbolTableUnlinkTask() {
4646     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4647               err_msg("claim value %d after unlink less than initial string table size %d",
4648                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4649     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4650               err_msg("claim value %d after unlink less than initial symbol table size %d",
4651                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4652 
4653     if (G1TraceStringSymbolTableScrubbing) {
4654       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4655                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4656                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4657                              strings_processed(), strings_removed(),
4658                              symbols_processed(), symbols_removed());
4659     }
4660   }
4661 
4662   void work(uint worker_id) {
4663     int strings_processed = 0;
4664     int strings_removed = 0;
4665     int symbols_processed = 0;
4666     int symbols_removed = 0;
4667     if (_process_strings) {
4668       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4669       Atomic::add(strings_processed, &_strings_processed);
4670       Atomic::add(strings_removed, &_strings_removed);
4671     }
4672     if (_process_symbols) {
4673       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4674       Atomic::add(symbols_processed, &_symbols_processed);
4675       Atomic::add(symbols_removed, &_symbols_removed);
4676     }
4677   }
4678 
4679   size_t strings_processed() const { return (size_t)_strings_processed; }
4680   size_t strings_removed()   const { return (size_t)_strings_removed; }
4681 
4682   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4683   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4684 };
4685 
4686 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4687 private:
4688   static Monitor* _lock;
4689 
4690   BoolObjectClosure* const _is_alive;
4691   const bool               _unloading_occurred;
4692   const uint               _num_workers;
4693 
4694   // Variables used to claim nmethods.
4695   nmethod* _first_nmethod;
4696   volatile nmethod* _claimed_nmethod;
4697 
4698   // The list of nmethods that need to be processed by the second pass.
4699   volatile nmethod* _postponed_list;
4700   volatile uint     _num_entered_barrier;
4701 
4702  public:
4703   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4704       _is_alive(is_alive),
4705       _unloading_occurred(unloading_occurred),
4706       _num_workers(num_workers),
4707       _first_nmethod(NULL),
4708       _claimed_nmethod(NULL),
4709       _postponed_list(NULL),
4710       _num_entered_barrier(0)
4711   {
4712     nmethod::increase_unloading_clock();
4713     // Get first alive nmethod
4714     NMethodIterator iter = NMethodIterator();
4715     if(iter.next_alive()) {
4716       _first_nmethod = iter.method();
4717     }
4718     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4719   }
4720 
4721   ~G1CodeCacheUnloadingTask() {
4722     CodeCache::verify_clean_inline_caches();
4723 
4724     CodeCache::set_needs_cache_clean(false);
4725     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4726 
4727     CodeCache::verify_icholder_relocations();
4728   }
4729 
4730  private:
4731   void add_to_postponed_list(nmethod* nm) {
4732       nmethod* old;
4733       do {
4734         old = (nmethod*)_postponed_list;
4735         nm->set_unloading_next(old);
4736       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4737   }
4738 
4739   void clean_nmethod(nmethod* nm) {
4740     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4741 
4742     if (postponed) {
4743       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4744       add_to_postponed_list(nm);
4745     }
4746 
4747     // Mark that this thread has been cleaned/unloaded.
4748     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4749     nm->set_unloading_clock(nmethod::global_unloading_clock());
4750   }
4751 
4752   void clean_nmethod_postponed(nmethod* nm) {
4753     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4754   }
4755 
4756   static const int MaxClaimNmethods = 16;
4757 
4758   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4759     nmethod* first;
4760     NMethodIterator last;
4761 
4762     do {
4763       *num_claimed_nmethods = 0;
4764 
4765       first = (nmethod*)_claimed_nmethod;
4766       last = NMethodIterator(first);
4767 
4768       if (first != NULL) {
4769 
4770         for (int i = 0; i < MaxClaimNmethods; i++) {
4771           if (!last.next_alive()) {
4772             break;
4773           }
4774           claimed_nmethods[i] = last.method();
4775           (*num_claimed_nmethods)++;
4776         }
4777       }
4778 
4779     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4780   }
4781 
4782   nmethod* claim_postponed_nmethod() {
4783     nmethod* claim;
4784     nmethod* next;
4785 
4786     do {
4787       claim = (nmethod*)_postponed_list;
4788       if (claim == NULL) {
4789         return NULL;
4790       }
4791 
4792       next = claim->unloading_next();
4793 
4794     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4795 
4796     return claim;
4797   }
4798 
4799  public:
4800   // Mark that we're done with the first pass of nmethod cleaning.
4801   void barrier_mark(uint worker_id) {
4802     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4803     _num_entered_barrier++;
4804     if (_num_entered_barrier == _num_workers) {
4805       ml.notify_all();
4806     }
4807   }
4808 
4809   // See if we have to wait for the other workers to
4810   // finish their first-pass nmethod cleaning work.
4811   void barrier_wait(uint worker_id) {
4812     if (_num_entered_barrier < _num_workers) {
4813       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4814       while (_num_entered_barrier < _num_workers) {
4815           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4816       }
4817     }
4818   }
4819 
4820   // Cleaning and unloading of nmethods. Some work has to be postponed
4821   // to the second pass, when we know which nmethods survive.
4822   void work_first_pass(uint worker_id) {
4823     // The first nmethods is claimed by the first worker.
4824     if (worker_id == 0 && _first_nmethod != NULL) {
4825       clean_nmethod(_first_nmethod);
4826       _first_nmethod = NULL;
4827     }
4828 
4829     int num_claimed_nmethods;
4830     nmethod* claimed_nmethods[MaxClaimNmethods];
4831 
4832     while (true) {
4833       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4834 
4835       if (num_claimed_nmethods == 0) {
4836         break;
4837       }
4838 
4839       for (int i = 0; i < num_claimed_nmethods; i++) {
4840         clean_nmethod(claimed_nmethods[i]);
4841       }
4842     }
4843   }
4844 
4845   void work_second_pass(uint worker_id) {
4846     nmethod* nm;
4847     // Take care of postponed nmethods.
4848     while ((nm = claim_postponed_nmethod()) != NULL) {
4849       clean_nmethod_postponed(nm);
4850     }
4851   }
4852 };
4853 
4854 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4855 
4856 class G1KlassCleaningTask : public StackObj {
4857   BoolObjectClosure*                      _is_alive;
4858   volatile jint                           _clean_klass_tree_claimed;
4859   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4860 
4861  public:
4862   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4863       _is_alive(is_alive),
4864       _clean_klass_tree_claimed(0),
4865       _klass_iterator() {
4866   }
4867 
4868  private:
4869   bool claim_clean_klass_tree_task() {
4870     if (_clean_klass_tree_claimed) {
4871       return false;
4872     }
4873 
4874     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4875   }
4876 
4877   InstanceKlass* claim_next_klass() {
4878     Klass* klass;
4879     do {
4880       klass =_klass_iterator.next_klass();
4881     } while (klass != NULL && !klass->oop_is_instance());
4882 
4883     return (InstanceKlass*)klass;
4884   }
4885 
4886 public:
4887 
4888   void clean_klass(InstanceKlass* ik) {
4889     ik->clean_implementors_list(_is_alive);
4890     ik->clean_method_data(_is_alive);
4891 
4892     // G1 specific cleanup work that has
4893     // been moved here to be done in parallel.
4894     ik->clean_dependent_nmethods();
4895   }
4896 
4897   void work() {
4898     ResourceMark rm;
4899 
4900     // One worker will clean the subklass/sibling klass tree.
4901     if (claim_clean_klass_tree_task()) {
4902       Klass::clean_subklass_tree(_is_alive);
4903     }
4904 
4905     // All workers will help cleaning the classes,
4906     InstanceKlass* klass;
4907     while ((klass = claim_next_klass()) != NULL) {
4908       clean_klass(klass);
4909     }
4910   }
4911 };
4912 
4913 // To minimize the remark pause times, the tasks below are done in parallel.
4914 class G1ParallelCleaningTask : public AbstractGangTask {
4915 private:
4916   G1StringSymbolTableUnlinkTask _string_symbol_task;
4917   G1CodeCacheUnloadingTask      _code_cache_task;
4918   G1KlassCleaningTask           _klass_cleaning_task;
4919 
4920 public:
4921   // The constructor is run in the VMThread.
4922   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4923       AbstractGangTask("Parallel Cleaning"),
4924       _string_symbol_task(is_alive, process_strings, process_symbols),
4925       _code_cache_task(num_workers, is_alive, unloading_occurred),
4926       _klass_cleaning_task(is_alive) {
4927   }
4928 
4929   // The parallel work done by all worker threads.
4930   void work(uint worker_id) {
4931     // Do first pass of code cache cleaning.
4932     _code_cache_task.work_first_pass(worker_id);
4933 
4934     // Let the threads mark that the first pass is done.
4935     _code_cache_task.barrier_mark(worker_id);
4936 
4937     // Clean the Strings and Symbols.
4938     _string_symbol_task.work(worker_id);
4939 
4940     // Wait for all workers to finish the first code cache cleaning pass.
4941     _code_cache_task.barrier_wait(worker_id);
4942 
4943     // Do the second code cache cleaning work, which realize on
4944     // the liveness information gathered during the first pass.
4945     _code_cache_task.work_second_pass(worker_id);
4946 
4947     // Clean all klasses that were not unloaded.
4948     _klass_cleaning_task.work();
4949   }
4950 };
4951 
4952 
4953 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4954                                         bool process_strings,
4955                                         bool process_symbols,
4956                                         bool class_unloading_occurred) {
4957   uint n_workers = workers()->active_workers();
4958 
4959   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4960                                         n_workers, class_unloading_occurred);
4961   workers()->run_task(&g1_unlink_task);
4962 }
4963 
4964 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4965                                                      bool process_strings, bool process_symbols) {
4966   {
4967     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4968     workers()->run_task(&g1_unlink_task);
4969   }
4970 
4971   if (G1StringDedup::is_enabled()) {
4972     G1StringDedup::unlink(is_alive);
4973   }
4974 }
4975 
4976 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4977  private:
4978   DirtyCardQueueSet* _queue;
4979  public:
4980   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4981 
4982   virtual void work(uint worker_id) {
4983     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4984     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4985 
4986     RedirtyLoggedCardTableEntryClosure cl;
4987     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4988 
4989     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4990   }
4991 };
4992 
4993 void G1CollectedHeap::redirty_logged_cards() {
4994   double redirty_logged_cards_start = os::elapsedTime();
4995 
4996   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4997   dirty_card_queue_set().reset_for_par_iteration();
4998   workers()->run_task(&redirty_task);
4999 
5000   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5001   dcq.merge_bufferlists(&dirty_card_queue_set());
5002   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5003 
5004   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5005 }
5006 
5007 // Weak Reference Processing support
5008 
5009 // An always "is_alive" closure that is used to preserve referents.
5010 // If the object is non-null then it's alive.  Used in the preservation
5011 // of referent objects that are pointed to by reference objects
5012 // discovered by the CM ref processor.
5013 class G1AlwaysAliveClosure: public BoolObjectClosure {
5014   G1CollectedHeap* _g1;
5015 public:
5016   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5017   bool do_object_b(oop p) {
5018     if (p != NULL) {
5019       return true;
5020     }
5021     return false;
5022   }
5023 };
5024 
5025 bool G1STWIsAliveClosure::do_object_b(oop p) {
5026   // An object is reachable if it is outside the collection set,
5027   // or is inside and copied.
5028   return !_g1->is_in_cset(p) || p->is_forwarded();
5029 }
5030 
5031 // Non Copying Keep Alive closure
5032 class G1KeepAliveClosure: public OopClosure {
5033   G1CollectedHeap* _g1;
5034 public:
5035   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5036   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5037   void do_oop(oop* p) {
5038     oop obj = *p;
5039     assert(obj != NULL, "the caller should have filtered out NULL values");
5040 
5041     const InCSetState cset_state = _g1->in_cset_state(obj);
5042     if (!cset_state.is_in_cset_or_humongous()) {
5043       return;
5044     }
5045     if (cset_state.is_in_cset()) {
5046       assert( obj->is_forwarded(), "invariant" );
5047       *p = obj->forwardee();
5048     } else {
5049       assert(!obj->is_forwarded(), "invariant" );
5050       assert(cset_state.is_humongous(),
5051              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5052       _g1->set_humongous_is_live(obj);
5053     }
5054   }
5055 };
5056 
5057 // Copying Keep Alive closure - can be called from both
5058 // serial and parallel code as long as different worker
5059 // threads utilize different G1ParScanThreadState instances
5060 // and different queues.
5061 
5062 class G1CopyingKeepAliveClosure: public OopClosure {
5063   G1CollectedHeap*         _g1h;
5064   OopClosure*              _copy_non_heap_obj_cl;
5065   G1ParScanThreadState*    _par_scan_state;
5066 
5067 public:
5068   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5069                             OopClosure* non_heap_obj_cl,
5070                             G1ParScanThreadState* pss):
5071     _g1h(g1h),
5072     _copy_non_heap_obj_cl(non_heap_obj_cl),
5073     _par_scan_state(pss)
5074   {}
5075 
5076   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5077   virtual void do_oop(      oop* p) { do_oop_work(p); }
5078 
5079   template <class T> void do_oop_work(T* p) {
5080     oop obj = oopDesc::load_decode_heap_oop(p);
5081 
5082     if (_g1h->is_in_cset_or_humongous(obj)) {
5083       // If the referent object has been forwarded (either copied
5084       // to a new location or to itself in the event of an
5085       // evacuation failure) then we need to update the reference
5086       // field and, if both reference and referent are in the G1
5087       // heap, update the RSet for the referent.
5088       //
5089       // If the referent has not been forwarded then we have to keep
5090       // it alive by policy. Therefore we have copy the referent.
5091       //
5092       // If the reference field is in the G1 heap then we can push
5093       // on the PSS queue. When the queue is drained (after each
5094       // phase of reference processing) the object and it's followers
5095       // will be copied, the reference field set to point to the
5096       // new location, and the RSet updated. Otherwise we need to
5097       // use the the non-heap or metadata closures directly to copy
5098       // the referent object and update the pointer, while avoiding
5099       // updating the RSet.
5100 
5101       if (_g1h->is_in_g1_reserved(p)) {
5102         _par_scan_state->push_on_queue(p);
5103       } else {
5104         assert(!Metaspace::contains((const void*)p),
5105                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5106         _copy_non_heap_obj_cl->do_oop(p);
5107       }
5108     }
5109   }
5110 };
5111 
5112 // Serial drain queue closure. Called as the 'complete_gc'
5113 // closure for each discovered list in some of the
5114 // reference processing phases.
5115 
5116 class G1STWDrainQueueClosure: public VoidClosure {
5117 protected:
5118   G1CollectedHeap* _g1h;
5119   G1ParScanThreadState* _par_scan_state;
5120 
5121   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5122 
5123 public:
5124   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5125     _g1h(g1h),
5126     _par_scan_state(pss)
5127   { }
5128 
5129   void do_void() {
5130     G1ParScanThreadState* const pss = par_scan_state();
5131     pss->trim_queue();
5132   }
5133 };
5134 
5135 // Parallel Reference Processing closures
5136 
5137 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5138 // processing during G1 evacuation pauses.
5139 
5140 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5141 private:
5142   G1CollectedHeap*   _g1h;
5143   RefToScanQueueSet* _queues;
5144   WorkGang*          _workers;
5145   uint               _active_workers;
5146 
5147 public:
5148   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5149                            WorkGang* workers,
5150                            RefToScanQueueSet *task_queues,
5151                            uint n_workers) :
5152     _g1h(g1h),
5153     _queues(task_queues),
5154     _workers(workers),
5155     _active_workers(n_workers)
5156   {
5157     assert(n_workers > 0, "shouldn't call this otherwise");
5158   }
5159 
5160   // Executes the given task using concurrent marking worker threads.
5161   virtual void execute(ProcessTask& task);
5162   virtual void execute(EnqueueTask& task);
5163 };
5164 
5165 // Gang task for possibly parallel reference processing
5166 
5167 class G1STWRefProcTaskProxy: public AbstractGangTask {
5168   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5169   ProcessTask&     _proc_task;
5170   G1CollectedHeap* _g1h;
5171   RefToScanQueueSet *_task_queues;
5172   ParallelTaskTerminator* _terminator;
5173 
5174 public:
5175   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5176                      G1CollectedHeap* g1h,
5177                      RefToScanQueueSet *task_queues,
5178                      ParallelTaskTerminator* terminator) :
5179     AbstractGangTask("Process reference objects in parallel"),
5180     _proc_task(proc_task),
5181     _g1h(g1h),
5182     _task_queues(task_queues),
5183     _terminator(terminator)
5184   {}
5185 
5186   virtual void work(uint worker_id) {
5187     // The reference processing task executed by a single worker.
5188     ResourceMark rm;
5189     HandleMark   hm;
5190 
5191     G1STWIsAliveClosure is_alive(_g1h);
5192 
5193     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5194 
5195     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5196 
5197     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5198 
5199     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5200 
5201     if (_g1h->collector_state()->during_initial_mark_pause()) {
5202       // We also need to mark copied objects.
5203       copy_non_heap_cl = &copy_mark_non_heap_cl;
5204     }
5205 
5206     // Keep alive closure.
5207     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5208 
5209     // Complete GC closure
5210     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5211 
5212     // Call the reference processing task's work routine.
5213     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5214 
5215     // Note we cannot assert that the refs array is empty here as not all
5216     // of the processing tasks (specifically phase2 - pp2_work) execute
5217     // the complete_gc closure (which ordinarily would drain the queue) so
5218     // the queue may not be empty.
5219   }
5220 };
5221 
5222 // Driver routine for parallel reference processing.
5223 // Creates an instance of the ref processing gang
5224 // task and has the worker threads execute it.
5225 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5226   assert(_workers != NULL, "Need parallel worker threads.");
5227 
5228   ParallelTaskTerminator terminator(_active_workers, _queues);
5229   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5230 
5231   _workers->run_task(&proc_task_proxy);
5232 }
5233 
5234 // Gang task for parallel reference enqueueing.
5235 
5236 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5237   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5238   EnqueueTask& _enq_task;
5239 
5240 public:
5241   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5242     AbstractGangTask("Enqueue reference objects in parallel"),
5243     _enq_task(enq_task)
5244   { }
5245 
5246   virtual void work(uint worker_id) {
5247     _enq_task.work(worker_id);
5248   }
5249 };
5250 
5251 // Driver routine for parallel reference enqueueing.
5252 // Creates an instance of the ref enqueueing gang
5253 // task and has the worker threads execute it.
5254 
5255 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5256   assert(_workers != NULL, "Need parallel worker threads.");
5257 
5258   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5259 
5260   _workers->run_task(&enq_task_proxy);
5261 }
5262 
5263 // End of weak reference support closures
5264 
5265 // Abstract task used to preserve (i.e. copy) any referent objects
5266 // that are in the collection set and are pointed to by reference
5267 // objects discovered by the CM ref processor.
5268 
5269 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5270 protected:
5271   G1CollectedHeap* _g1h;
5272   RefToScanQueueSet      *_queues;
5273   ParallelTaskTerminator _terminator;
5274   uint _n_workers;
5275 
5276 public:
5277   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5278     AbstractGangTask("ParPreserveCMReferents"),
5279     _g1h(g1h),
5280     _queues(task_queues),
5281     _terminator(workers, _queues),
5282     _n_workers(workers)
5283   { }
5284 
5285   void work(uint worker_id) {
5286     ResourceMark rm;
5287     HandleMark   hm;
5288 
5289     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5290     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5291 
5292     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5293 
5294     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5295 
5296     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5297 
5298     if (_g1h->collector_state()->during_initial_mark_pause()) {
5299       // We also need to mark copied objects.
5300       copy_non_heap_cl = &copy_mark_non_heap_cl;
5301     }
5302 
5303     // Is alive closure
5304     G1AlwaysAliveClosure always_alive(_g1h);
5305 
5306     // Copying keep alive closure. Applied to referent objects that need
5307     // to be copied.
5308     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5309 
5310     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5311 
5312     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5313     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5314 
5315     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5316     // So this must be true - but assert just in case someone decides to
5317     // change the worker ids.
5318     assert(worker_id < limit, "sanity");
5319     assert(!rp->discovery_is_atomic(), "check this code");
5320 
5321     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5322     for (uint idx = worker_id; idx < limit; idx += stride) {
5323       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5324 
5325       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5326       while (iter.has_next()) {
5327         // Since discovery is not atomic for the CM ref processor, we
5328         // can see some null referent objects.
5329         iter.load_ptrs(DEBUG_ONLY(true));
5330         oop ref = iter.obj();
5331 
5332         // This will filter nulls.
5333         if (iter.is_referent_alive()) {
5334           iter.make_referent_alive();
5335         }
5336         iter.move_to_next();
5337       }
5338     }
5339 
5340     // Drain the queue - which may cause stealing
5341     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5342     drain_queue.do_void();
5343     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5344     assert(pss.queue_is_empty(), "should be");
5345   }
5346 };
5347 
5348 // Weak Reference processing during an evacuation pause (part 1).
5349 void G1CollectedHeap::process_discovered_references() {
5350   double ref_proc_start = os::elapsedTime();
5351 
5352   ReferenceProcessor* rp = _ref_processor_stw;
5353   assert(rp->discovery_enabled(), "should have been enabled");
5354 
5355   // Any reference objects, in the collection set, that were 'discovered'
5356   // by the CM ref processor should have already been copied (either by
5357   // applying the external root copy closure to the discovered lists, or
5358   // by following an RSet entry).
5359   //
5360   // But some of the referents, that are in the collection set, that these
5361   // reference objects point to may not have been copied: the STW ref
5362   // processor would have seen that the reference object had already
5363   // been 'discovered' and would have skipped discovering the reference,
5364   // but would not have treated the reference object as a regular oop.
5365   // As a result the copy closure would not have been applied to the
5366   // referent object.
5367   //
5368   // We need to explicitly copy these referent objects - the references
5369   // will be processed at the end of remarking.
5370   //
5371   // We also need to do this copying before we process the reference
5372   // objects discovered by the STW ref processor in case one of these
5373   // referents points to another object which is also referenced by an
5374   // object discovered by the STW ref processor.
5375 
5376   uint no_of_gc_workers = workers()->active_workers();
5377 
5378   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5379                                                  no_of_gc_workers,
5380                                                  _task_queues);
5381 
5382   workers()->run_task(&keep_cm_referents);
5383 
5384   // Closure to test whether a referent is alive.
5385   G1STWIsAliveClosure is_alive(this);
5386 
5387   // Even when parallel reference processing is enabled, the processing
5388   // of JNI refs is serial and performed serially by the current thread
5389   // rather than by a worker. The following PSS will be used for processing
5390   // JNI refs.
5391 
5392   // Use only a single queue for this PSS.
5393   G1ParScanThreadState            pss(this, 0, NULL);
5394   assert(pss.queue_is_empty(), "pre-condition");
5395 
5396   // We do not embed a reference processor in the copying/scanning
5397   // closures while we're actually processing the discovered
5398   // reference objects.
5399 
5400   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5401 
5402   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5403 
5404   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5405 
5406   if (collector_state()->during_initial_mark_pause()) {
5407     // We also need to mark copied objects.
5408     copy_non_heap_cl = &copy_mark_non_heap_cl;
5409   }
5410 
5411   // Keep alive closure.
5412   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5413 
5414   // Serial Complete GC closure
5415   G1STWDrainQueueClosure drain_queue(this, &pss);
5416 
5417   // Setup the soft refs policy...
5418   rp->setup_policy(false);
5419 
5420   ReferenceProcessorStats stats;
5421   if (!rp->processing_is_mt()) {
5422     // Serial reference processing...
5423     stats = rp->process_discovered_references(&is_alive,
5424                                               &keep_alive,
5425                                               &drain_queue,
5426                                               NULL,
5427                                               _gc_timer_stw,
5428                                               _gc_tracer_stw->gc_id());
5429   } else {
5430     // Parallel reference processing
5431     assert(rp->num_q() == no_of_gc_workers, "sanity");
5432     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5433 
5434     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5435     stats = rp->process_discovered_references(&is_alive,
5436                                               &keep_alive,
5437                                               &drain_queue,
5438                                               &par_task_executor,
5439                                               _gc_timer_stw,
5440                                               _gc_tracer_stw->gc_id());
5441   }
5442 
5443   _gc_tracer_stw->report_gc_reference_stats(stats);
5444 
5445   // We have completed copying any necessary live referent objects.
5446   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5447 
5448   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5449   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5450 }
5451 
5452 // Weak Reference processing during an evacuation pause (part 2).
5453 void G1CollectedHeap::enqueue_discovered_references() {
5454   double ref_enq_start = os::elapsedTime();
5455 
5456   ReferenceProcessor* rp = _ref_processor_stw;
5457   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5458 
5459   // Now enqueue any remaining on the discovered lists on to
5460   // the pending list.
5461   if (!rp->processing_is_mt()) {
5462     // Serial reference processing...
5463     rp->enqueue_discovered_references();
5464   } else {
5465     // Parallel reference enqueueing
5466 
5467     uint n_workers = workers()->active_workers();
5468 
5469     assert(rp->num_q() == n_workers, "sanity");
5470     assert(n_workers <= rp->max_num_q(), "sanity");
5471 
5472     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5473     rp->enqueue_discovered_references(&par_task_executor);
5474   }
5475 
5476   rp->verify_no_references_recorded();
5477   assert(!rp->discovery_enabled(), "should have been disabled");
5478 
5479   // FIXME
5480   // CM's reference processing also cleans up the string and symbol tables.
5481   // Should we do that here also? We could, but it is a serial operation
5482   // and could significantly increase the pause time.
5483 
5484   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5485   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5486 }
5487 
5488 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5489   _expand_heap_after_alloc_failure = true;
5490   _evacuation_failed = false;
5491 
5492   // Should G1EvacuationFailureALot be in effect for this GC?
5493   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5494 
5495   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5496 
5497   // Disable the hot card cache.
5498   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5499   hot_card_cache->reset_hot_cache_claimed_index();
5500   hot_card_cache->set_use_cache(false);
5501 
5502   const uint n_workers = workers()->active_workers();
5503 
5504   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5505   double start_par_time_sec = os::elapsedTime();
5506   double end_par_time_sec;
5507 
5508   {
5509     G1RootProcessor root_processor(this, n_workers);
5510     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5511     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5512     if (collector_state()->during_initial_mark_pause()) {
5513       ClassLoaderDataGraph::clear_claimed_marks();
5514     }
5515 
5516     // The individual threads will set their evac-failure closures.
5517     if (PrintTerminationStats) {
5518       G1ParScanThreadState::print_termination_stats_hdr();
5519     }
5520 
5521     workers()->run_task(&g1_par_task);
5522     end_par_time_sec = os::elapsedTime();
5523 
5524     // Closing the inner scope will execute the destructor
5525     // for the G1RootProcessor object. We record the current
5526     // elapsed time before closing the scope so that time
5527     // taken for the destructor is NOT included in the
5528     // reported parallel time.
5529   }
5530 
5531   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5532 
5533   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5534   phase_times->record_par_time(par_time_ms);
5535 
5536   double code_root_fixup_time_ms =
5537         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5538   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5539 
5540   // Process any discovered reference objects - we have
5541   // to do this _before_ we retire the GC alloc regions
5542   // as we may have to copy some 'reachable' referent
5543   // objects (and their reachable sub-graphs) that were
5544   // not copied during the pause.
5545   process_discovered_references();
5546 
5547   if (G1StringDedup::is_enabled()) {
5548     double fixup_start = os::elapsedTime();
5549 
5550     G1STWIsAliveClosure is_alive(this);
5551     G1KeepAliveClosure keep_alive(this);
5552     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5553 
5554     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5555     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5556   }
5557 
5558   _allocator->release_gc_alloc_regions(evacuation_info);
5559   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5560 
5561   // Reset and re-enable the hot card cache.
5562   // Note the counts for the cards in the regions in the
5563   // collection set are reset when the collection set is freed.
5564   hot_card_cache->reset_hot_cache();
5565   hot_card_cache->set_use_cache(true);
5566 
5567   purge_code_root_memory();
5568 
5569   if (evacuation_failed()) {
5570     remove_self_forwarding_pointers();
5571 
5572     // Reset the G1EvacuationFailureALot counters and flags
5573     // Note: the values are reset only when an actual
5574     // evacuation failure occurs.
5575     NOT_PRODUCT(reset_evacuation_should_fail();)
5576   }
5577 
5578   // Enqueue any remaining references remaining on the STW
5579   // reference processor's discovered lists. We need to do
5580   // this after the card table is cleaned (and verified) as
5581   // the act of enqueueing entries on to the pending list
5582   // will log these updates (and dirty their associated
5583   // cards). We need these updates logged to update any
5584   // RSets.
5585   enqueue_discovered_references();
5586 
5587   redirty_logged_cards();
5588   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5589 }
5590 
5591 void G1CollectedHeap::free_region(HeapRegion* hr,
5592                                   FreeRegionList* free_list,
5593                                   bool par,
5594                                   bool locked) {
5595   assert(!hr->is_free(), "the region should not be free");
5596   assert(!hr->is_empty(), "the region should not be empty");
5597   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5598   assert(free_list != NULL, "pre-condition");
5599 
5600   if (G1VerifyBitmaps) {
5601     MemRegion mr(hr->bottom(), hr->end());
5602     concurrent_mark()->clearRangePrevBitmap(mr);
5603   }
5604 
5605   // Clear the card counts for this region.
5606   // Note: we only need to do this if the region is not young
5607   // (since we don't refine cards in young regions).
5608   if (!hr->is_young()) {
5609     _cg1r->hot_card_cache()->reset_card_counts(hr);
5610   }
5611   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5612   free_list->add_ordered(hr);
5613 }
5614 
5615 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5616                                      FreeRegionList* free_list,
5617                                      bool par) {
5618   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5619   assert(free_list != NULL, "pre-condition");
5620 
5621   size_t hr_capacity = hr->capacity();
5622   // We need to read this before we make the region non-humongous,
5623   // otherwise the information will be gone.
5624   uint last_index = hr->last_hc_index();
5625   hr->clear_humongous();
5626   free_region(hr, free_list, par);
5627 
5628   uint i = hr->hrm_index() + 1;
5629   while (i < last_index) {
5630     HeapRegion* curr_hr = region_at(i);
5631     assert(curr_hr->is_continues_humongous(), "invariant");
5632     curr_hr->clear_humongous();
5633     free_region(curr_hr, free_list, par);
5634     i += 1;
5635   }
5636 }
5637 
5638 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5639                                        const HeapRegionSetCount& humongous_regions_removed) {
5640   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5641     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5642     _old_set.bulk_remove(old_regions_removed);
5643     _humongous_set.bulk_remove(humongous_regions_removed);
5644   }
5645 
5646 }
5647 
5648 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5649   assert(list != NULL, "list can't be null");
5650   if (!list->is_empty()) {
5651     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5652     _hrm.insert_list_into_free_list(list);
5653   }
5654 }
5655 
5656 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5657   decrease_used(bytes);
5658 }
5659 
5660 class G1ParCleanupCTTask : public AbstractGangTask {
5661   G1SATBCardTableModRefBS* _ct_bs;
5662   G1CollectedHeap* _g1h;
5663   HeapRegion* volatile _su_head;
5664 public:
5665   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5666                      G1CollectedHeap* g1h) :
5667     AbstractGangTask("G1 Par Cleanup CT Task"),
5668     _ct_bs(ct_bs), _g1h(g1h) { }
5669 
5670   void work(uint worker_id) {
5671     HeapRegion* r;
5672     while (r = _g1h->pop_dirty_cards_region()) {
5673       clear_cards(r);
5674     }
5675   }
5676 
5677   void clear_cards(HeapRegion* r) {
5678     // Cards of the survivors should have already been dirtied.
5679     if (!r->is_survivor()) {
5680       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5681     }
5682   }
5683 };
5684 
5685 #ifndef PRODUCT
5686 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5687   G1CollectedHeap* _g1h;
5688   G1SATBCardTableModRefBS* _ct_bs;
5689 public:
5690   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5691     : _g1h(g1h), _ct_bs(ct_bs) { }
5692   virtual bool doHeapRegion(HeapRegion* r) {
5693     if (r->is_survivor()) {
5694       _g1h->verify_dirty_region(r);
5695     } else {
5696       _g1h->verify_not_dirty_region(r);
5697     }
5698     return false;
5699   }
5700 };
5701 
5702 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5703   // All of the region should be clean.
5704   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5705   MemRegion mr(hr->bottom(), hr->end());
5706   ct_bs->verify_not_dirty_region(mr);
5707 }
5708 
5709 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5710   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5711   // dirty allocated blocks as they allocate them. The thread that
5712   // retires each region and replaces it with a new one will do a
5713   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5714   // not dirty that area (one less thing to have to do while holding
5715   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5716   // is dirty.
5717   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5718   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5719   if (hr->is_young()) {
5720     ct_bs->verify_g1_young_region(mr);
5721   } else {
5722     ct_bs->verify_dirty_region(mr);
5723   }
5724 }
5725 
5726 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5727   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5728   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5729     verify_dirty_region(hr);
5730   }
5731 }
5732 
5733 void G1CollectedHeap::verify_dirty_young_regions() {
5734   verify_dirty_young_list(_young_list->first_region());
5735 }
5736 
5737 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5738                                                HeapWord* tams, HeapWord* end) {
5739   guarantee(tams <= end,
5740             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5741   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5742   if (result < end) {
5743     gclog_or_tty->cr();
5744     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5745                            bitmap_name, p2i(result));
5746     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5747                            bitmap_name, p2i(tams), p2i(end));
5748     return false;
5749   }
5750   return true;
5751 }
5752 
5753 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5754   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5755   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5756 
5757   HeapWord* bottom = hr->bottom();
5758   HeapWord* ptams  = hr->prev_top_at_mark_start();
5759   HeapWord* ntams  = hr->next_top_at_mark_start();
5760   HeapWord* end    = hr->end();
5761 
5762   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5763 
5764   bool res_n = true;
5765   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5766   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5767   // if we happen to be in that state.
5768   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5769     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5770   }
5771   if (!res_p || !res_n) {
5772     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5773                            HR_FORMAT_PARAMS(hr));
5774     gclog_or_tty->print_cr("#### Caller: %s", caller);
5775     return false;
5776   }
5777   return true;
5778 }
5779 
5780 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5781   if (!G1VerifyBitmaps) return;
5782 
5783   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5784 }
5785 
5786 class G1VerifyBitmapClosure : public HeapRegionClosure {
5787 private:
5788   const char* _caller;
5789   G1CollectedHeap* _g1h;
5790   bool _failures;
5791 
5792 public:
5793   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5794     _caller(caller), _g1h(g1h), _failures(false) { }
5795 
5796   bool failures() { return _failures; }
5797 
5798   virtual bool doHeapRegion(HeapRegion* hr) {
5799     if (hr->is_continues_humongous()) return false;
5800 
5801     bool result = _g1h->verify_bitmaps(_caller, hr);
5802     if (!result) {
5803       _failures = true;
5804     }
5805     return false;
5806   }
5807 };
5808 
5809 void G1CollectedHeap::check_bitmaps(const char* caller) {
5810   if (!G1VerifyBitmaps) return;
5811 
5812   G1VerifyBitmapClosure cl(caller, this);
5813   heap_region_iterate(&cl);
5814   guarantee(!cl.failures(), "bitmap verification");
5815 }
5816 
5817 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5818  private:
5819   bool _failures;
5820  public:
5821   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5822 
5823   virtual bool doHeapRegion(HeapRegion* hr) {
5824     uint i = hr->hrm_index();
5825     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5826     if (hr->is_humongous()) {
5827       if (hr->in_collection_set()) {
5828         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5829         _failures = true;
5830         return true;
5831       }
5832       if (cset_state.is_in_cset()) {
5833         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5834         _failures = true;
5835         return true;
5836       }
5837       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5838         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5839         _failures = true;
5840         return true;
5841       }
5842     } else {
5843       if (cset_state.is_humongous()) {
5844         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5845         _failures = true;
5846         return true;
5847       }
5848       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5849         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5850                                hr->in_collection_set(), cset_state.value(), i);
5851         _failures = true;
5852         return true;
5853       }
5854       if (cset_state.is_in_cset()) {
5855         if (hr->is_young() != (cset_state.is_young())) {
5856           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5857                                  hr->is_young(), cset_state.value(), i);
5858           _failures = true;
5859           return true;
5860         }
5861         if (hr->is_old() != (cset_state.is_old())) {
5862           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5863                                  hr->is_old(), cset_state.value(), i);
5864           _failures = true;
5865           return true;
5866         }
5867       }
5868     }
5869     return false;
5870   }
5871 
5872   bool failures() const { return _failures; }
5873 };
5874 
5875 bool G1CollectedHeap::check_cset_fast_test() {
5876   G1CheckCSetFastTableClosure cl;
5877   _hrm.iterate(&cl);
5878   return !cl.failures();
5879 }
5880 #endif // PRODUCT
5881 
5882 void G1CollectedHeap::cleanUpCardTable() {
5883   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5884   double start = os::elapsedTime();
5885 
5886   {
5887     // Iterate over the dirty cards region list.
5888     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5889 
5890     workers()->run_task(&cleanup_task);
5891 #ifndef PRODUCT
5892     if (G1VerifyCTCleanup || VerifyAfterGC) {
5893       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5894       heap_region_iterate(&cleanup_verifier);
5895     }
5896 #endif
5897   }
5898 
5899   double elapsed = os::elapsedTime() - start;
5900   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5901 }
5902 
5903 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5904   size_t pre_used = 0;
5905   FreeRegionList local_free_list("Local List for CSet Freeing");
5906 
5907   double young_time_ms     = 0.0;
5908   double non_young_time_ms = 0.0;
5909 
5910   // Since the collection set is a superset of the the young list,
5911   // all we need to do to clear the young list is clear its
5912   // head and length, and unlink any young regions in the code below
5913   _young_list->clear();
5914 
5915   G1CollectorPolicy* policy = g1_policy();
5916 
5917   double start_sec = os::elapsedTime();
5918   bool non_young = true;
5919 
5920   HeapRegion* cur = cs_head;
5921   int age_bound = -1;
5922   size_t rs_lengths = 0;
5923 
5924   while (cur != NULL) {
5925     assert(!is_on_master_free_list(cur), "sanity");
5926     if (non_young) {
5927       if (cur->is_young()) {
5928         double end_sec = os::elapsedTime();
5929         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5930         non_young_time_ms += elapsed_ms;
5931 
5932         start_sec = os::elapsedTime();
5933         non_young = false;
5934       }
5935     } else {
5936       if (!cur->is_young()) {
5937         double end_sec = os::elapsedTime();
5938         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5939         young_time_ms += elapsed_ms;
5940 
5941         start_sec = os::elapsedTime();
5942         non_young = true;
5943       }
5944     }
5945 
5946     rs_lengths += cur->rem_set()->occupied_locked();
5947 
5948     HeapRegion* next = cur->next_in_collection_set();
5949     assert(cur->in_collection_set(), "bad CS");
5950     cur->set_next_in_collection_set(NULL);
5951     clear_in_cset(cur);
5952 
5953     if (cur->is_young()) {
5954       int index = cur->young_index_in_cset();
5955       assert(index != -1, "invariant");
5956       assert((uint) index < policy->young_cset_region_length(), "invariant");
5957       size_t words_survived = _surviving_young_words[index];
5958       cur->record_surv_words_in_group(words_survived);
5959 
5960       // At this point the we have 'popped' cur from the collection set
5961       // (linked via next_in_collection_set()) but it is still in the
5962       // young list (linked via next_young_region()). Clear the
5963       // _next_young_region field.
5964       cur->set_next_young_region(NULL);
5965     } else {
5966       int index = cur->young_index_in_cset();
5967       assert(index == -1, "invariant");
5968     }
5969 
5970     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5971             (!cur->is_young() && cur->young_index_in_cset() == -1),
5972             "invariant" );
5973 
5974     if (!cur->evacuation_failed()) {
5975       MemRegion used_mr = cur->used_region();
5976 
5977       // And the region is empty.
5978       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5979       pre_used += cur->used();
5980       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5981     } else {
5982       cur->uninstall_surv_rate_group();
5983       if (cur->is_young()) {
5984         cur->set_young_index_in_cset(-1);
5985       }
5986       cur->set_evacuation_failed(false);
5987       // The region is now considered to be old.
5988       cur->set_old();
5989       _old_set.add(cur);
5990       evacuation_info.increment_collectionset_used_after(cur->used());
5991     }
5992     cur = next;
5993   }
5994 
5995   evacuation_info.set_regions_freed(local_free_list.length());
5996   policy->record_max_rs_lengths(rs_lengths);
5997   policy->cset_regions_freed();
5998 
5999   double end_sec = os::elapsedTime();
6000   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6001 
6002   if (non_young) {
6003     non_young_time_ms += elapsed_ms;
6004   } else {
6005     young_time_ms += elapsed_ms;
6006   }
6007 
6008   prepend_to_freelist(&local_free_list);
6009   decrement_summary_bytes(pre_used);
6010   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6011   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6012 }
6013 
6014 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6015  private:
6016   FreeRegionList* _free_region_list;
6017   HeapRegionSet* _proxy_set;
6018   HeapRegionSetCount _humongous_regions_removed;
6019   size_t _freed_bytes;
6020  public:
6021 
6022   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6023     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6024   }
6025 
6026   virtual bool doHeapRegion(HeapRegion* r) {
6027     if (!r->is_starts_humongous()) {
6028       return false;
6029     }
6030 
6031     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6032 
6033     oop obj = (oop)r->bottom();
6034     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6035 
6036     // The following checks whether the humongous object is live are sufficient.
6037     // The main additional check (in addition to having a reference from the roots
6038     // or the young gen) is whether the humongous object has a remembered set entry.
6039     //
6040     // A humongous object cannot be live if there is no remembered set for it
6041     // because:
6042     // - there can be no references from within humongous starts regions referencing
6043     // the object because we never allocate other objects into them.
6044     // (I.e. there are no intra-region references that may be missed by the
6045     // remembered set)
6046     // - as soon there is a remembered set entry to the humongous starts region
6047     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6048     // until the end of a concurrent mark.
6049     //
6050     // It is not required to check whether the object has been found dead by marking
6051     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6052     // all objects allocated during that time are considered live.
6053     // SATB marking is even more conservative than the remembered set.
6054     // So if at this point in the collection there is no remembered set entry,
6055     // nobody has a reference to it.
6056     // At the start of collection we flush all refinement logs, and remembered sets
6057     // are completely up-to-date wrt to references to the humongous object.
6058     //
6059     // Other implementation considerations:
6060     // - never consider object arrays at this time because they would pose
6061     // considerable effort for cleaning up the the remembered sets. This is
6062     // required because stale remembered sets might reference locations that
6063     // are currently allocated into.
6064     uint region_idx = r->hrm_index();
6065     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6066         !r->rem_set()->is_empty()) {
6067 
6068       if (G1TraceEagerReclaimHumongousObjects) {
6069         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6070                                region_idx,
6071                                (size_t)obj->size() * HeapWordSize,
6072                                p2i(r->bottom()),
6073                                r->region_num(),
6074                                r->rem_set()->occupied(),
6075                                r->rem_set()->strong_code_roots_list_length(),
6076                                next_bitmap->isMarked(r->bottom()),
6077                                g1h->is_humongous_reclaim_candidate(region_idx),
6078                                obj->is_typeArray()
6079                               );
6080       }
6081 
6082       return false;
6083     }
6084 
6085     guarantee(obj->is_typeArray(),
6086               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6087                       PTR_FORMAT " is not.",
6088                       p2i(r->bottom())));
6089 
6090     if (G1TraceEagerReclaimHumongousObjects) {
6091       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6092                              region_idx,
6093                              (size_t)obj->size() * HeapWordSize,
6094                              p2i(r->bottom()),
6095                              r->region_num(),
6096                              r->rem_set()->occupied(),
6097                              r->rem_set()->strong_code_roots_list_length(),
6098                              next_bitmap->isMarked(r->bottom()),
6099                              g1h->is_humongous_reclaim_candidate(region_idx),
6100                              obj->is_typeArray()
6101                             );
6102     }
6103     // Need to clear mark bit of the humongous object if already set.
6104     if (next_bitmap->isMarked(r->bottom())) {
6105       next_bitmap->clear(r->bottom());
6106     }
6107     _freed_bytes += r->used();
6108     r->set_containing_set(NULL);
6109     _humongous_regions_removed.increment(1u, r->capacity());
6110     g1h->free_humongous_region(r, _free_region_list, false);
6111 
6112     return false;
6113   }
6114 
6115   HeapRegionSetCount& humongous_free_count() {
6116     return _humongous_regions_removed;
6117   }
6118 
6119   size_t bytes_freed() const {
6120     return _freed_bytes;
6121   }
6122 
6123   size_t humongous_reclaimed() const {
6124     return _humongous_regions_removed.length();
6125   }
6126 };
6127 
6128 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6129   assert_at_safepoint(true);
6130 
6131   if (!G1EagerReclaimHumongousObjects ||
6132       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6133     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6134     return;
6135   }
6136 
6137   double start_time = os::elapsedTime();
6138 
6139   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6140 
6141   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6142   heap_region_iterate(&cl);
6143 
6144   HeapRegionSetCount empty_set;
6145   remove_from_old_sets(empty_set, cl.humongous_free_count());
6146 
6147   G1HRPrinter* hrp = hr_printer();
6148   if (hrp->is_active()) {
6149     FreeRegionListIterator iter(&local_cleanup_list);
6150     while (iter.more_available()) {
6151       HeapRegion* hr = iter.get_next();
6152       hrp->cleanup(hr);
6153     }
6154   }
6155 
6156   prepend_to_freelist(&local_cleanup_list);
6157   decrement_summary_bytes(cl.bytes_freed());
6158 
6159   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6160                                                                     cl.humongous_reclaimed());
6161 }
6162 
6163 // This routine is similar to the above but does not record
6164 // any policy statistics or update free lists; we are abandoning
6165 // the current incremental collection set in preparation of a
6166 // full collection. After the full GC we will start to build up
6167 // the incremental collection set again.
6168 // This is only called when we're doing a full collection
6169 // and is immediately followed by the tearing down of the young list.
6170 
6171 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6172   HeapRegion* cur = cs_head;
6173 
6174   while (cur != NULL) {
6175     HeapRegion* next = cur->next_in_collection_set();
6176     assert(cur->in_collection_set(), "bad CS");
6177     cur->set_next_in_collection_set(NULL);
6178     clear_in_cset(cur);
6179     cur->set_young_index_in_cset(-1);
6180     cur = next;
6181   }
6182 }
6183 
6184 void G1CollectedHeap::set_free_regions_coming() {
6185   if (G1ConcRegionFreeingVerbose) {
6186     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6187                            "setting free regions coming");
6188   }
6189 
6190   assert(!free_regions_coming(), "pre-condition");
6191   _free_regions_coming = true;
6192 }
6193 
6194 void G1CollectedHeap::reset_free_regions_coming() {
6195   assert(free_regions_coming(), "pre-condition");
6196 
6197   {
6198     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6199     _free_regions_coming = false;
6200     SecondaryFreeList_lock->notify_all();
6201   }
6202 
6203   if (G1ConcRegionFreeingVerbose) {
6204     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6205                            "reset free regions coming");
6206   }
6207 }
6208 
6209 void G1CollectedHeap::wait_while_free_regions_coming() {
6210   // Most of the time we won't have to wait, so let's do a quick test
6211   // first before we take the lock.
6212   if (!free_regions_coming()) {
6213     return;
6214   }
6215 
6216   if (G1ConcRegionFreeingVerbose) {
6217     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6218                            "waiting for free regions");
6219   }
6220 
6221   {
6222     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6223     while (free_regions_coming()) {
6224       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6225     }
6226   }
6227 
6228   if (G1ConcRegionFreeingVerbose) {
6229     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6230                            "done waiting for free regions");
6231   }
6232 }
6233 
6234 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6235   _young_list->push_region(hr);
6236 }
6237 
6238 class NoYoungRegionsClosure: public HeapRegionClosure {
6239 private:
6240   bool _success;
6241 public:
6242   NoYoungRegionsClosure() : _success(true) { }
6243   bool doHeapRegion(HeapRegion* r) {
6244     if (r->is_young()) {
6245       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6246                              p2i(r->bottom()), p2i(r->end()));
6247       _success = false;
6248     }
6249     return false;
6250   }
6251   bool success() { return _success; }
6252 };
6253 
6254 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6255   bool ret = _young_list->check_list_empty(check_sample);
6256 
6257   if (check_heap) {
6258     NoYoungRegionsClosure closure;
6259     heap_region_iterate(&closure);
6260     ret = ret && closure.success();
6261   }
6262 
6263   return ret;
6264 }
6265 
6266 class TearDownRegionSetsClosure : public HeapRegionClosure {
6267 private:
6268   HeapRegionSet *_old_set;
6269 
6270 public:
6271   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6272 
6273   bool doHeapRegion(HeapRegion* r) {
6274     if (r->is_old()) {
6275       _old_set->remove(r);
6276     } else {
6277       // We ignore free regions, we'll empty the free list afterwards.
6278       // We ignore young regions, we'll empty the young list afterwards.
6279       // We ignore humongous regions, we're not tearing down the
6280       // humongous regions set.
6281       assert(r->is_free() || r->is_young() || r->is_humongous(),
6282              "it cannot be another type");
6283     }
6284     return false;
6285   }
6286 
6287   ~TearDownRegionSetsClosure() {
6288     assert(_old_set->is_empty(), "post-condition");
6289   }
6290 };
6291 
6292 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6293   assert_at_safepoint(true /* should_be_vm_thread */);
6294 
6295   if (!free_list_only) {
6296     TearDownRegionSetsClosure cl(&_old_set);
6297     heap_region_iterate(&cl);
6298 
6299     // Note that emptying the _young_list is postponed and instead done as
6300     // the first step when rebuilding the regions sets again. The reason for
6301     // this is that during a full GC string deduplication needs to know if
6302     // a collected region was young or old when the full GC was initiated.
6303   }
6304   _hrm.remove_all_free_regions();
6305 }
6306 
6307 void G1CollectedHeap::increase_used(size_t bytes) {
6308   _summary_bytes_used += bytes;
6309 }
6310 
6311 void G1CollectedHeap::decrease_used(size_t bytes) {
6312   assert(_summary_bytes_used >= bytes,
6313          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6314                  _summary_bytes_used, bytes));
6315   _summary_bytes_used -= bytes;
6316 }
6317 
6318 void G1CollectedHeap::set_used(size_t bytes) {
6319   _summary_bytes_used = bytes;
6320 }
6321 
6322 class RebuildRegionSetsClosure : public HeapRegionClosure {
6323 private:
6324   bool            _free_list_only;
6325   HeapRegionSet*   _old_set;
6326   HeapRegionManager*   _hrm;
6327   size_t          _total_used;
6328 
6329 public:
6330   RebuildRegionSetsClosure(bool free_list_only,
6331                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6332     _free_list_only(free_list_only),
6333     _old_set(old_set), _hrm(hrm), _total_used(0) {
6334     assert(_hrm->num_free_regions() == 0, "pre-condition");
6335     if (!free_list_only) {
6336       assert(_old_set->is_empty(), "pre-condition");
6337     }
6338   }
6339 
6340   bool doHeapRegion(HeapRegion* r) {
6341     if (r->is_continues_humongous()) {
6342       return false;
6343     }
6344 
6345     if (r->is_empty()) {
6346       // Add free regions to the free list
6347       r->set_free();
6348       r->set_allocation_context(AllocationContext::system());
6349       _hrm->insert_into_free_list(r);
6350     } else if (!_free_list_only) {
6351       assert(!r->is_young(), "we should not come across young regions");
6352 
6353       if (r->is_humongous()) {
6354         // We ignore humongous regions. We left the humongous set unchanged.
6355       } else {
6356         // Objects that were compacted would have ended up on regions
6357         // that were previously old or free.  Archive regions (which are
6358         // old) will not have been touched.
6359         assert(r->is_free() || r->is_old(), "invariant");
6360         // We now consider them old, so register as such. Leave
6361         // archive regions set that way, however, while still adding
6362         // them to the old set.
6363         if (!r->is_archive()) {
6364           r->set_old();
6365         }
6366         _old_set->add(r);
6367       }
6368       _total_used += r->used();
6369     }
6370 
6371     return false;
6372   }
6373 
6374   size_t total_used() {
6375     return _total_used;
6376   }
6377 };
6378 
6379 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6380   assert_at_safepoint(true /* should_be_vm_thread */);
6381 
6382   if (!free_list_only) {
6383     _young_list->empty_list();
6384   }
6385 
6386   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6387   heap_region_iterate(&cl);
6388 
6389   if (!free_list_only) {
6390     set_used(cl.total_used());
6391     if (_archive_allocator != NULL) {
6392       _archive_allocator->clear_used();
6393     }
6394   }
6395   assert(used_unlocked() == recalculate_used(),
6396          err_msg("inconsistent used_unlocked(), "
6397                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6398                  used_unlocked(), recalculate_used()));
6399 }
6400 
6401 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6402   _refine_cte_cl->set_concurrent(concurrent);
6403 }
6404 
6405 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6406   HeapRegion* hr = heap_region_containing(p);
6407   return hr->is_in(p);
6408 }
6409 
6410 // Methods for the mutator alloc region
6411 
6412 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6413                                                       bool force) {
6414   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6415   assert(!force || g1_policy()->can_expand_young_list(),
6416          "if force is true we should be able to expand the young list");
6417   bool young_list_full = g1_policy()->is_young_list_full();
6418   if (force || !young_list_full) {
6419     HeapRegion* new_alloc_region = new_region(word_size,
6420                                               false /* is_old */,
6421                                               false /* do_expand */);
6422     if (new_alloc_region != NULL) {
6423       set_region_short_lived_locked(new_alloc_region);
6424       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6425       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6426       return new_alloc_region;
6427     }
6428   }
6429   return NULL;
6430 }
6431 
6432 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6433                                                   size_t allocated_bytes) {
6434   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6435   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6436 
6437   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6438   increase_used(allocated_bytes);
6439   _hr_printer.retire(alloc_region);
6440   // We update the eden sizes here, when the region is retired,
6441   // instead of when it's allocated, since this is the point that its
6442   // used space has been recored in _summary_bytes_used.
6443   g1mm()->update_eden_size();
6444 }
6445 
6446 // Methods for the GC alloc regions
6447 
6448 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6449                                                  uint count,
6450                                                  InCSetState dest) {
6451   assert(FreeList_lock->owned_by_self(), "pre-condition");
6452 
6453   if (count < g1_policy()->max_regions(dest)) {
6454     const bool is_survivor = (dest.is_young());
6455     HeapRegion* new_alloc_region = new_region(word_size,
6456                                               !is_survivor,
6457                                               true /* do_expand */);
6458     if (new_alloc_region != NULL) {
6459       // We really only need to do this for old regions given that we
6460       // should never scan survivors. But it doesn't hurt to do it
6461       // for survivors too.
6462       new_alloc_region->record_timestamp();
6463       if (is_survivor) {
6464         new_alloc_region->set_survivor();
6465         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6466         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6467       } else {
6468         new_alloc_region->set_old();
6469         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6470         check_bitmaps("Old Region Allocation", new_alloc_region);
6471       }
6472       bool during_im = collector_state()->during_initial_mark_pause();
6473       new_alloc_region->note_start_of_copying(during_im);
6474       return new_alloc_region;
6475     }
6476   }
6477   return NULL;
6478 }
6479 
6480 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6481                                              size_t allocated_bytes,
6482                                              InCSetState dest) {
6483   bool during_im = collector_state()->during_initial_mark_pause();
6484   alloc_region->note_end_of_copying(during_im);
6485   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6486   if (dest.is_young()) {
6487     young_list()->add_survivor_region(alloc_region);
6488   } else {
6489     _old_set.add(alloc_region);
6490   }
6491   _hr_printer.retire(alloc_region);
6492 }
6493 
6494 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6495   bool expanded = false;
6496   uint index = _hrm.find_highest_free(&expanded);
6497 
6498   if (index != G1_NO_HRM_INDEX) {
6499     if (expanded) {
6500       ergo_verbose1(ErgoHeapSizing,
6501                     "attempt heap expansion",
6502                     ergo_format_reason("requested address range outside heap bounds")
6503                     ergo_format_byte("region size"),
6504                     HeapRegion::GrainWords * HeapWordSize);
6505     }
6506     _hrm.allocate_free_regions_starting_at(index, 1);
6507     return region_at(index);
6508   }
6509   return NULL;
6510 }
6511 
6512 // Heap region set verification
6513 
6514 class VerifyRegionListsClosure : public HeapRegionClosure {
6515 private:
6516   HeapRegionSet*   _old_set;
6517   HeapRegionSet*   _humongous_set;
6518   HeapRegionManager*   _hrm;
6519 
6520 public:
6521   HeapRegionSetCount _old_count;
6522   HeapRegionSetCount _humongous_count;
6523   HeapRegionSetCount _free_count;
6524 
6525   VerifyRegionListsClosure(HeapRegionSet* old_set,
6526                            HeapRegionSet* humongous_set,
6527                            HeapRegionManager* hrm) :
6528     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6529     _old_count(), _humongous_count(), _free_count(){ }
6530 
6531   bool doHeapRegion(HeapRegion* hr) {
6532     if (hr->is_continues_humongous()) {
6533       return false;
6534     }
6535 
6536     if (hr->is_young()) {
6537       // TODO
6538     } else if (hr->is_starts_humongous()) {
6539       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6540       _humongous_count.increment(1u, hr->capacity());
6541     } else if (hr->is_empty()) {
6542       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6543       _free_count.increment(1u, hr->capacity());
6544     } else if (hr->is_old()) {
6545       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6546       _old_count.increment(1u, hr->capacity());
6547     } else {
6548       // There are no other valid region types. Check for one invalid
6549       // one we can identify: pinned without old or humongous set.
6550       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6551       ShouldNotReachHere();
6552     }
6553     return false;
6554   }
6555 
6556   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6557     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6558     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6559         old_set->total_capacity_bytes(), _old_count.capacity()));
6560 
6561     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6562     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6563         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6564 
6565     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6566     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6567         free_list->total_capacity_bytes(), _free_count.capacity()));
6568   }
6569 };
6570 
6571 void G1CollectedHeap::verify_region_sets() {
6572   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6573 
6574   // First, check the explicit lists.
6575   _hrm.verify();
6576   {
6577     // Given that a concurrent operation might be adding regions to
6578     // the secondary free list we have to take the lock before
6579     // verifying it.
6580     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6581     _secondary_free_list.verify_list();
6582   }
6583 
6584   // If a concurrent region freeing operation is in progress it will
6585   // be difficult to correctly attributed any free regions we come
6586   // across to the correct free list given that they might belong to
6587   // one of several (free_list, secondary_free_list, any local lists,
6588   // etc.). So, if that's the case we will skip the rest of the
6589   // verification operation. Alternatively, waiting for the concurrent
6590   // operation to complete will have a non-trivial effect on the GC's
6591   // operation (no concurrent operation will last longer than the
6592   // interval between two calls to verification) and it might hide
6593   // any issues that we would like to catch during testing.
6594   if (free_regions_coming()) {
6595     return;
6596   }
6597 
6598   // Make sure we append the secondary_free_list on the free_list so
6599   // that all free regions we will come across can be safely
6600   // attributed to the free_list.
6601   append_secondary_free_list_if_not_empty_with_lock();
6602 
6603   // Finally, make sure that the region accounting in the lists is
6604   // consistent with what we see in the heap.
6605 
6606   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6607   heap_region_iterate(&cl);
6608   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6609 }
6610 
6611 // Optimized nmethod scanning
6612 
6613 class RegisterNMethodOopClosure: public OopClosure {
6614   G1CollectedHeap* _g1h;
6615   nmethod* _nm;
6616 
6617   template <class T> void do_oop_work(T* p) {
6618     T heap_oop = oopDesc::load_heap_oop(p);
6619     if (!oopDesc::is_null(heap_oop)) {
6620       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6621       HeapRegion* hr = _g1h->heap_region_containing(obj);
6622       assert(!hr->is_continues_humongous(),
6623              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6624                      " starting at " HR_FORMAT,
6625                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6626 
6627       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6628       hr->add_strong_code_root_locked(_nm);
6629     }
6630   }
6631 
6632 public:
6633   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6634     _g1h(g1h), _nm(nm) {}
6635 
6636   void do_oop(oop* p)       { do_oop_work(p); }
6637   void do_oop(narrowOop* p) { do_oop_work(p); }
6638 };
6639 
6640 class UnregisterNMethodOopClosure: public OopClosure {
6641   G1CollectedHeap* _g1h;
6642   nmethod* _nm;
6643 
6644   template <class T> void do_oop_work(T* p) {
6645     T heap_oop = oopDesc::load_heap_oop(p);
6646     if (!oopDesc::is_null(heap_oop)) {
6647       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6648       HeapRegion* hr = _g1h->heap_region_containing(obj);
6649       assert(!hr->is_continues_humongous(),
6650              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6651                      " starting at " HR_FORMAT,
6652                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6653 
6654       hr->remove_strong_code_root(_nm);
6655     }
6656   }
6657 
6658 public:
6659   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6660     _g1h(g1h), _nm(nm) {}
6661 
6662   void do_oop(oop* p)       { do_oop_work(p); }
6663   void do_oop(narrowOop* p) { do_oop_work(p); }
6664 };
6665 
6666 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6667   CollectedHeap::register_nmethod(nm);
6668 
6669   guarantee(nm != NULL, "sanity");
6670   RegisterNMethodOopClosure reg_cl(this, nm);
6671   nm->oops_do(&reg_cl);
6672 }
6673 
6674 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6675   CollectedHeap::unregister_nmethod(nm);
6676 
6677   guarantee(nm != NULL, "sanity");
6678   UnregisterNMethodOopClosure reg_cl(this, nm);
6679   nm->oops_do(&reg_cl, true);
6680 }
6681 
6682 void G1CollectedHeap::purge_code_root_memory() {
6683   double purge_start = os::elapsedTime();
6684   G1CodeRootSet::purge();
6685   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6686   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6687 }
6688 
6689 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6690   G1CollectedHeap* _g1h;
6691 
6692 public:
6693   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6694     _g1h(g1h) {}
6695 
6696   void do_code_blob(CodeBlob* cb) {
6697     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6698     if (nm == NULL) {
6699       return;
6700     }
6701 
6702     if (ScavengeRootsInCode) {
6703       _g1h->register_nmethod(nm);
6704     }
6705   }
6706 };
6707 
6708 void G1CollectedHeap::rebuild_strong_code_roots() {
6709   RebuildStrongCodeRootClosure blob_cl(this);
6710   CodeCache::blobs_do(&blob_cl);
6711 }