1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_processed;
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 123 
 124   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 125     *card_ptr = CardTableModRefBS::dirty_card_val();
 126     _num_processed++;
 127     return true;
 128   }
 129 
 130   size_t num_processed() const { return _num_processed; }
 131 };
 132 
 133 YoungList::YoungList(G1CollectedHeap* g1h) :
 134     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 135     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 136   guarantee(check_list_empty(false), "just making sure...");
 137 }
 138 
 139 void YoungList::push_region(HeapRegion *hr) {
 140   assert(!hr->is_young(), "should not already be young");
 141   assert(hr->get_next_young_region() == NULL, "cause it should!");
 142 
 143   hr->set_next_young_region(_head);
 144   _head = hr;
 145 
 146   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 147   ++_length;
 148 }
 149 
 150 void YoungList::add_survivor_region(HeapRegion* hr) {
 151   assert(hr->is_survivor(), "should be flagged as survivor region");
 152   assert(hr->get_next_young_region() == NULL, "cause it should!");
 153 
 154   hr->set_next_young_region(_survivor_head);
 155   if (_survivor_head == NULL) {
 156     _survivor_tail = hr;
 157   }
 158   _survivor_head = hr;
 159   ++_survivor_length;
 160 }
 161 
 162 void YoungList::empty_list(HeapRegion* list) {
 163   while (list != NULL) {
 164     HeapRegion* next = list->get_next_young_region();
 165     list->set_next_young_region(NULL);
 166     list->uninstall_surv_rate_group();
 167     // This is called before a Full GC and all the non-empty /
 168     // non-humongous regions at the end of the Full GC will end up as
 169     // old anyway.
 170     list->set_old();
 171     list = next;
 172   }
 173 }
 174 
 175 void YoungList::empty_list() {
 176   assert(check_list_well_formed(), "young list should be well formed");
 177 
 178   empty_list(_head);
 179   _head = NULL;
 180   _length = 0;
 181 
 182   empty_list(_survivor_head);
 183   _survivor_head = NULL;
 184   _survivor_tail = NULL;
 185   _survivor_length = 0;
 186 
 187   _last_sampled_rs_lengths = 0;
 188 
 189   assert(check_list_empty(false), "just making sure...");
 190 }
 191 
 192 bool YoungList::check_list_well_formed() {
 193   bool ret = true;
 194 
 195   uint length = 0;
 196   HeapRegion* curr = _head;
 197   HeapRegion* last = NULL;
 198   while (curr != NULL) {
 199     if (!curr->is_young()) {
 200       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 201                              "incorrectly tagged (y: %d, surv: %d)",
 202                              p2i(curr->bottom()), p2i(curr->end()),
 203                              curr->is_young(), curr->is_survivor());
 204       ret = false;
 205     }
 206     ++length;
 207     last = curr;
 208     curr = curr->get_next_young_region();
 209   }
 210   ret = ret && (length == _length);
 211 
 212   if (!ret) {
 213     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 214     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 215                            length, _length);
 216   }
 217 
 218   return ret;
 219 }
 220 
 221 bool YoungList::check_list_empty(bool check_sample) {
 222   bool ret = true;
 223 
 224   if (_length != 0) {
 225     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 226                   _length);
 227     ret = false;
 228   }
 229   if (check_sample && _last_sampled_rs_lengths != 0) {
 230     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 231     ret = false;
 232   }
 233   if (_head != NULL) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 235     ret = false;
 236   }
 237   if (!ret) {
 238     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 239   }
 240 
 241   return ret;
 242 }
 243 
 244 void
 245 YoungList::rs_length_sampling_init() {
 246   _sampled_rs_lengths = 0;
 247   _curr               = _head;
 248 }
 249 
 250 bool
 251 YoungList::rs_length_sampling_more() {
 252   return _curr != NULL;
 253 }
 254 
 255 void
 256 YoungList::rs_length_sampling_next() {
 257   assert( _curr != NULL, "invariant" );
 258   size_t rs_length = _curr->rem_set()->occupied();
 259 
 260   _sampled_rs_lengths += rs_length;
 261 
 262   // The current region may not yet have been added to the
 263   // incremental collection set (it gets added when it is
 264   // retired as the current allocation region).
 265   if (_curr->in_collection_set()) {
 266     // Update the collection set policy information for this region
 267     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 268   }
 269 
 270   _curr = _curr->get_next_young_region();
 271   if (_curr == NULL) {
 272     _last_sampled_rs_lengths = _sampled_rs_lengths;
 273     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 274   }
 275 }
 276 
 277 void
 278 YoungList::reset_auxilary_lists() {
 279   guarantee( is_empty(), "young list should be empty" );
 280   assert(check_list_well_formed(), "young list should be well formed");
 281 
 282   // Add survivor regions to SurvRateGroup.
 283   _g1h->g1_policy()->note_start_adding_survivor_regions();
 284   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 285 
 286   int young_index_in_cset = 0;
 287   for (HeapRegion* curr = _survivor_head;
 288        curr != NULL;
 289        curr = curr->get_next_young_region()) {
 290     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 291 
 292     // The region is a non-empty survivor so let's add it to
 293     // the incremental collection set for the next evacuation
 294     // pause.
 295     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 296     young_index_in_cset += 1;
 297   }
 298   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 300 
 301   _head   = _survivor_head;
 302   _length = _survivor_length;
 303   if (_survivor_head != NULL) {
 304     assert(_survivor_tail != NULL, "cause it shouldn't be");
 305     assert(_survivor_length > 0, "invariant");
 306     _survivor_tail->set_next_young_region(NULL);
 307   }
 308 
 309   // Don't clear the survivor list handles until the start of
 310   // the next evacuation pause - we need it in order to re-tag
 311   // the survivor regions from this evacuation pause as 'young'
 312   // at the start of the next.
 313 
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 315 
 316   assert(check_list_well_formed(), "young list should be well formed");
 317 }
 318 
 319 void YoungList::print() {
 320   HeapRegion* lists[] = {_head,   _survivor_head};
 321   const char* names[] = {"YOUNG", "SURVIVOR"};
 322 
 323   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 325     HeapRegion *curr = lists[list];
 326     if (curr == NULL)
 327       gclog_or_tty->print_cr("  empty");
 328     while (curr != NULL) {
 329       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 330                              HR_FORMAT_PARAMS(curr),
 331                              p2i(curr->prev_top_at_mark_start()),
 332                              p2i(curr->next_top_at_mark_start()),
 333                              curr->age_in_surv_rate_group_cond());
 334       curr = curr->get_next_young_region();
 335     }
 336   }
 337 
 338   gclog_or_tty->cr();
 339 }
 340 
 341 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 342   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 343 }
 344 
 345 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 346   // The from card cache is not the memory that is actually committed. So we cannot
 347   // take advantage of the zero_filled parameter.
 348   reset_from_card_cache(start_idx, num_regions);
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 // Returns true if the reference points to an object that
 405 // can move in an incremental collection.
 406 bool G1CollectedHeap::is_scavengable(const void* p) {
 407   HeapRegion* hr = heap_region_containing(p);
 408   return !hr->is_pinned();
 409 }
 410 
 411 // Private methods.
 412 
 413 HeapRegion*
 414 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 415   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 416   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 417     if (!_secondary_free_list.is_empty()) {
 418       if (G1ConcRegionFreeingVerbose) {
 419         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 420                                "secondary_free_list has %u entries",
 421                                _secondary_free_list.length());
 422       }
 423       // It looks as if there are free regions available on the
 424       // secondary_free_list. Let's move them to the free_list and try
 425       // again to allocate from it.
 426       append_secondary_free_list();
 427 
 428       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 429              "empty we should have moved at least one entry to the free_list");
 430       HeapRegion* res = _hrm.allocate_free_region(is_old);
 431       if (G1ConcRegionFreeingVerbose) {
 432         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 433                                "allocated " HR_FORMAT " from secondary_free_list",
 434                                HR_FORMAT_PARAMS(res));
 435       }
 436       return res;
 437     }
 438 
 439     // Wait here until we get notified either when (a) there are no
 440     // more free regions coming or (b) some regions have been moved on
 441     // the secondary_free_list.
 442     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 443   }
 444 
 445   if (G1ConcRegionFreeingVerbose) {
 446     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 447                            "could not allocate from secondary_free_list");
 448   }
 449   return NULL;
 450 }
 451 
 452 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 453   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 454          "the only time we use this to allocate a humongous region is "
 455          "when we are allocating a single humongous region");
 456 
 457   HeapRegion* res;
 458   if (G1StressConcRegionFreeing) {
 459     if (!_secondary_free_list.is_empty()) {
 460       if (G1ConcRegionFreeingVerbose) {
 461         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 462                                "forced to look at the secondary_free_list");
 463       }
 464       res = new_region_try_secondary_free_list(is_old);
 465       if (res != NULL) {
 466         return res;
 467       }
 468     }
 469   }
 470 
 471   res = _hrm.allocate_free_region(is_old);
 472 
 473   if (res == NULL) {
 474     if (G1ConcRegionFreeingVerbose) {
 475       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 476                              "res == NULL, trying the secondary_free_list");
 477     }
 478     res = new_region_try_secondary_free_list(is_old);
 479   }
 480   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 481     // Currently, only attempts to allocate GC alloc regions set
 482     // do_expand to true. So, we should only reach here during a
 483     // safepoint. If this assumption changes we might have to
 484     // reconsider the use of _expand_heap_after_alloc_failure.
 485     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 486 
 487     ergo_verbose1(ErgoHeapSizing,
 488                   "attempt heap expansion",
 489                   ergo_format_reason("region allocation request failed")
 490                   ergo_format_byte("allocation request"),
 491                   word_size * HeapWordSize);
 492     if (expand(word_size * HeapWordSize)) {
 493       // Given that expand() succeeded in expanding the heap, and we
 494       // always expand the heap by an amount aligned to the heap
 495       // region size, the free list should in theory not be empty.
 496       // In either case allocate_free_region() will check for NULL.
 497       res = _hrm.allocate_free_region(is_old);
 498     } else {
 499       _expand_heap_after_alloc_failure = false;
 500     }
 501   }
 502   return res;
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 507                                                            uint num_regions,
 508                                                            size_t word_size,
 509                                                            AllocationContext_t context) {
 510   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 511   assert(is_humongous(word_size), "word_size should be humongous");
 512   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 513 
 514   // Index of last region in the series + 1.
 515   uint last = first + num_regions;
 516 
 517   // We need to initialize the region(s) we just discovered. This is
 518   // a bit tricky given that it can happen concurrently with
 519   // refinement threads refining cards on these regions and
 520   // potentially wanting to refine the BOT as they are scanning
 521   // those cards (this can happen shortly after a cleanup; see CR
 522   // 6991377). So we have to set up the region(s) carefully and in
 523   // a specific order.
 524 
 525   // The word size sum of all the regions we will allocate.
 526   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 527   assert(word_size <= word_size_sum, "sanity");
 528 
 529   // This will be the "starts humongous" region.
 530   HeapRegion* first_hr = region_at(first);
 531   // The header of the new object will be placed at the bottom of
 532   // the first region.
 533   HeapWord* new_obj = first_hr->bottom();
 534   // This will be the new end of the first region in the series that
 535   // should also match the end of the last region in the series.
 536   HeapWord* new_end = new_obj + word_size_sum;
 537   // This will be the new top of the first region that will reflect
 538   // this allocation.
 539   HeapWord* new_top = new_obj + word_size;
 540 
 541   // First, we need to zero the header of the space that we will be
 542   // allocating. When we update top further down, some refinement
 543   // threads might try to scan the region. By zeroing the header we
 544   // ensure that any thread that will try to scan the region will
 545   // come across the zero klass word and bail out.
 546   //
 547   // NOTE: It would not have been correct to have used
 548   // CollectedHeap::fill_with_object() and make the space look like
 549   // an int array. The thread that is doing the allocation will
 550   // later update the object header to a potentially different array
 551   // type and, for a very short period of time, the klass and length
 552   // fields will be inconsistent. This could cause a refinement
 553   // thread to calculate the object size incorrectly.
 554   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 555 
 556   // We will set up the first region as "starts humongous". This
 557   // will also update the BOT covering all the regions to reflect
 558   // that there is a single object that starts at the bottom of the
 559   // first region.
 560   first_hr->set_starts_humongous(new_top, new_end);
 561   first_hr->set_allocation_context(context);
 562   // Then, if there are any, we will set up the "continues
 563   // humongous" regions.
 564   HeapRegion* hr = NULL;
 565   for (uint i = first + 1; i < last; ++i) {
 566     hr = region_at(i);
 567     hr->set_continues_humongous(first_hr);
 568     hr->set_allocation_context(context);
 569   }
 570   // If we have "continues humongous" regions (hr != NULL), then the
 571   // end of the last one should match new_end.
 572   assert(hr == NULL || hr->end() == new_end, "sanity");
 573 
 574   // Up to this point no concurrent thread would have been able to
 575   // do any scanning on any region in this series. All the top
 576   // fields still point to bottom, so the intersection between
 577   // [bottom,top] and [card_start,card_end] will be empty. Before we
 578   // update the top fields, we'll do a storestore to make sure that
 579   // no thread sees the update to top before the zeroing of the
 580   // object header and the BOT initialization.
 581   OrderAccess::storestore();
 582 
 583   // Now that the BOT and the object header have been initialized,
 584   // we can update top of the "starts humongous" region.
 585   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 586          "new_top should be in this region");
 587   first_hr->set_top(new_top);
 588   if (_hr_printer.is_active()) {
 589     HeapWord* bottom = first_hr->bottom();
 590     HeapWord* end = first_hr->orig_end();
 591     if ((first + 1) == last) {
 592       // the series has a single humongous region
 593       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 594     } else {
 595       // the series has more than one humongous regions
 596       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 597     }
 598   }
 599 
 600   // Now, we will update the top fields of the "continues humongous"
 601   // regions. The reason we need to do this is that, otherwise,
 602   // these regions would look empty and this will confuse parts of
 603   // G1. For example, the code that looks for a consecutive number
 604   // of empty regions will consider them empty and try to
 605   // re-allocate them. We can extend is_empty() to also include
 606   // !is_continues_humongous(), but it is easier to just update the top
 607   // fields here. The way we set top for all regions (i.e., top ==
 608   // end for all regions but the last one, top == new_top for the
 609   // last one) is actually used when we will free up the humongous
 610   // region in free_humongous_region().
 611   hr = NULL;
 612   for (uint i = first + 1; i < last; ++i) {
 613     hr = region_at(i);
 614     if ((i + 1) == last) {
 615       // last continues humongous region
 616       assert(hr->bottom() < new_top && new_top <= hr->end(),
 617              "new_top should fall on this region");
 618       hr->set_top(new_top);
 619       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 620     } else {
 621       // not last one
 622       assert(new_top > hr->end(), "new_top should be above this region");
 623       hr->set_top(hr->end());
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 625     }
 626   }
 627   // If we have continues humongous regions (hr != NULL), then the
 628   // end of the last one should match new_end and its top should
 629   // match new_top.
 630   assert(hr == NULL ||
 631          (hr->end() == new_end && hr->top() == new_top), "sanity");
 632   check_bitmaps("Humongous Region Allocation", first_hr);
 633 
 634   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 635   increase_used(first_hr->used());
 636   _humongous_set.add(first_hr);
 637 
 638   return new_obj;
 639 }
 640 
 641 // If could fit into free regions w/o expansion, try.
 642 // Otherwise, if can expand, do so.
 643 // Otherwise, if using ex regions might help, try with ex given back.
 644 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 646 
 647   verify_region_sets_optional();
 648 
 649   uint first = G1_NO_HRM_INDEX;
 650   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 651 
 652   if (obj_regions == 1) {
 653     // Only one region to allocate, try to use a fast path by directly allocating
 654     // from the free lists. Do not try to expand here, we will potentially do that
 655     // later.
 656     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 657     if (hr != NULL) {
 658       first = hr->hrm_index();
 659     }
 660   } else {
 661     // We can't allocate humongous regions spanning more than one region while
 662     // cleanupComplete() is running, since some of the regions we find to be
 663     // empty might not yet be added to the free list. It is not straightforward
 664     // to know in which list they are on so that we can remove them. We only
 665     // need to do this if we need to allocate more than one region to satisfy the
 666     // current humongous allocation request. If we are only allocating one region
 667     // we use the one-region region allocation code (see above), that already
 668     // potentially waits for regions from the secondary free list.
 669     wait_while_free_regions_coming();
 670     append_secondary_free_list_if_not_empty_with_lock();
 671 
 672     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 673     // are lucky enough to find some.
 674     first = _hrm.find_contiguous_only_empty(obj_regions);
 675     if (first != G1_NO_HRM_INDEX) {
 676       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 677     }
 678   }
 679 
 680   if (first == G1_NO_HRM_INDEX) {
 681     // Policy: We could not find enough regions for the humongous object in the
 682     // free list. Look through the heap to find a mix of free and uncommitted regions.
 683     // If so, try expansion.
 684     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 685     if (first != G1_NO_HRM_INDEX) {
 686       // We found something. Make sure these regions are committed, i.e. expand
 687       // the heap. Alternatively we could do a defragmentation GC.
 688       ergo_verbose1(ErgoHeapSizing,
 689                     "attempt heap expansion",
 690                     ergo_format_reason("humongous allocation request failed")
 691                     ergo_format_byte("allocation request"),
 692                     word_size * HeapWordSize);
 693 
 694       _hrm.expand_at(first, obj_regions);
 695       g1_policy()->record_new_heap_size(num_regions());
 696 
 697 #ifdef ASSERT
 698       for (uint i = first; i < first + obj_regions; ++i) {
 699         HeapRegion* hr = region_at(i);
 700         assert(hr->is_free(), "sanity");
 701         assert(hr->is_empty(), "sanity");
 702         assert(is_on_master_free_list(hr), "sanity");
 703       }
 704 #endif
 705       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 706     } else {
 707       // Policy: Potentially trigger a defragmentation GC.
 708     }
 709   }
 710 
 711   HeapWord* result = NULL;
 712   if (first != G1_NO_HRM_INDEX) {
 713     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 714                                                        word_size, context);
 715     assert(result != NULL, "it should always return a valid result");
 716 
 717     // A successful humongous object allocation changes the used space
 718     // information of the old generation so we need to recalculate the
 719     // sizes and update the jstat counters here.
 720     g1mm()->update_sizes();
 721   }
 722 
 723   verify_region_sets_optional();
 724 
 725   return result;
 726 }
 727 
 728 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 729   assert_heap_not_locked_and_not_at_safepoint();
 730   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 731 
 732   uint dummy_gc_count_before;
 733   uint dummy_gclocker_retry_count = 0;
 734   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 735 }
 736 
 737 HeapWord*
 738 G1CollectedHeap::mem_allocate(size_t word_size,
 739                               bool*  gc_overhead_limit_was_exceeded) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741 
 742   // Loop until the allocation is satisfied, or unsatisfied after GC.
 743   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 744     uint gc_count_before;
 745 
 746     HeapWord* result = NULL;
 747     if (!is_humongous(word_size)) {
 748       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 749     } else {
 750       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 751     }
 752     if (result != NULL) {
 753       return result;
 754     }
 755 
 756     // Create the garbage collection operation...
 757     VM_G1CollectForAllocation op(gc_count_before, word_size);
 758     op.set_allocation_context(AllocationContext::current());
 759 
 760     // ...and get the VM thread to execute it.
 761     VMThread::execute(&op);
 762 
 763     if (op.prologue_succeeded() && op.pause_succeeded()) {
 764       // If the operation was successful we'll return the result even
 765       // if it is NULL. If the allocation attempt failed immediately
 766       // after a Full GC, it's unlikely we'll be able to allocate now.
 767       HeapWord* result = op.result();
 768       if (result != NULL && !is_humongous(word_size)) {
 769         // Allocations that take place on VM operations do not do any
 770         // card dirtying and we have to do it here. We only have to do
 771         // this for non-humongous allocations, though.
 772         dirty_young_block(result, word_size);
 773       }
 774       return result;
 775     } else {
 776       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 777         return NULL;
 778       }
 779       assert(op.result() == NULL,
 780              "the result should be NULL if the VM op did not succeed");
 781     }
 782 
 783     // Give a warning if we seem to be looping forever.
 784     if ((QueuedAllocationWarningCount > 0) &&
 785         (try_count % QueuedAllocationWarningCount == 0)) {
 786       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 787     }
 788   }
 789 
 790   ShouldNotReachHere();
 791   return NULL;
 792 }
 793 
 794 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 795                                                    AllocationContext_t context,
 796                                                    uint* gc_count_before_ret,
 797                                                    uint* gclocker_retry_count_ret) {
 798   // Make sure you read the note in attempt_allocation_humongous().
 799 
 800   assert_heap_not_locked_and_not_at_safepoint();
 801   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 802          "be called for humongous allocation requests");
 803 
 804   // We should only get here after the first-level allocation attempt
 805   // (attempt_allocation()) failed to allocate.
 806 
 807   // We will loop until a) we manage to successfully perform the
 808   // allocation or b) we successfully schedule a collection which
 809   // fails to perform the allocation. b) is the only case when we'll
 810   // return NULL.
 811   HeapWord* result = NULL;
 812   for (int try_count = 1; /* we'll return */; try_count += 1) {
 813     bool should_try_gc;
 814     uint gc_count_before;
 815 
 816     {
 817       MutexLockerEx x(Heap_lock);
 818       result = _allocator->attempt_allocation_locked(word_size, context);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       if (GC_locker::is_active_and_needs_gc()) {
 824         if (g1_policy()->can_expand_young_list()) {
 825           // No need for an ergo verbose message here,
 826           // can_expand_young_list() does this when it returns true.
 827           result = _allocator->attempt_allocation_force(word_size, context);
 828           if (result != NULL) {
 829             return result;
 830           }
 831         }
 832         should_try_gc = false;
 833       } else {
 834         // The GCLocker may not be active but the GCLocker initiated
 835         // GC may not yet have been performed (GCLocker::needs_gc()
 836         // returns true). In this case we do not try this GC and
 837         // wait until the GCLocker initiated GC is performed, and
 838         // then retry the allocation.
 839         if (GC_locker::needs_gc()) {
 840           should_try_gc = false;
 841         } else {
 842           // Read the GC count while still holding the Heap_lock.
 843           gc_count_before = total_collections();
 844           should_try_gc = true;
 845         }
 846       }
 847     }
 848 
 849     if (should_try_gc) {
 850       bool succeeded;
 851       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 852                                    GCCause::_g1_inc_collection_pause);
 853       if (result != NULL) {
 854         assert(succeeded, "only way to get back a non-NULL result");
 855         return result;
 856       }
 857 
 858       if (succeeded) {
 859         // If we get here we successfully scheduled a collection which
 860         // failed to allocate. No point in trying to allocate
 861         // further. We'll just return NULL.
 862         MutexLockerEx x(Heap_lock);
 863         *gc_count_before_ret = total_collections();
 864         return NULL;
 865       }
 866     } else {
 867       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 868         MutexLockerEx x(Heap_lock);
 869         *gc_count_before_ret = total_collections();
 870         return NULL;
 871       }
 872       // The GCLocker is either active or the GCLocker initiated
 873       // GC has not yet been performed. Stall until it is and
 874       // then retry the allocation.
 875       GC_locker::stall_until_clear();
 876       (*gclocker_retry_count_ret) += 1;
 877     }
 878 
 879     // We can reach here if we were unsuccessful in scheduling a
 880     // collection (because another thread beat us to it) or if we were
 881     // stalled due to the GC locker. In either can we should retry the
 882     // allocation attempt in case another thread successfully
 883     // performed a collection and reclaimed enough space. We do the
 884     // first attempt (without holding the Heap_lock) here and the
 885     // follow-on attempt will be at the start of the next loop
 886     // iteration (after taking the Heap_lock).
 887     result = _allocator->attempt_allocation(word_size, context);
 888     if (result != NULL) {
 889       return result;
 890     }
 891 
 892     // Give a warning if we seem to be looping forever.
 893     if ((QueuedAllocationWarningCount > 0) &&
 894         (try_count % QueuedAllocationWarningCount == 0)) {
 895       warning("G1CollectedHeap::attempt_allocation_slow() "
 896               "retries %d times", try_count);
 897     }
 898   }
 899 
 900   ShouldNotReachHere();
 901   return NULL;
 902 }
 903 
 904 void G1CollectedHeap::begin_archive_alloc_range() {
 905   assert_at_safepoint(true /* should_be_vm_thread */);
 906   if (_archive_allocator == NULL) {
 907     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 908   }
 909 }
 910 
 911 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 912   // Allocations in archive regions cannot be of a size that would be considered
 913   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 914   // may be different at archive-restore time.
 915   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 916 }
 917 
 918 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 919   assert_at_safepoint(true /* should_be_vm_thread */);
 920   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 921   if (is_archive_alloc_too_large(word_size)) {
 922     return NULL;
 923   }
 924   return _archive_allocator->archive_mem_allocate(word_size);
 925 }
 926 
 927 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 928                                               size_t end_alignment_in_bytes) {
 929   assert_at_safepoint(true /* should_be_vm_thread */);
 930   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 931 
 932   // Call complete_archive to do the real work, filling in the MemRegion
 933   // array with the archive regions.
 934   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 935   delete _archive_allocator;
 936   _archive_allocator = NULL;
 937 }
 938 
 939 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 940   assert(ranges != NULL, "MemRegion array NULL");
 941   assert(count != 0, "No MemRegions provided");
 942   MemRegion reserved = _hrm.reserved();
 943   for (size_t i = 0; i < count; i++) {
 944     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 945       return false;
 946     }
 947   }
 948   return true;
 949 }
 950 
 951 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 952   assert(ranges != NULL, "MemRegion array NULL");
 953   assert(count != 0, "No MemRegions provided");
 954   MutexLockerEx x(Heap_lock);
 955 
 956   MemRegion reserved = _hrm.reserved();
 957   HeapWord* prev_last_addr = NULL;
 958   HeapRegion* prev_last_region = NULL;
 959 
 960   // Temporarily disable pretouching of heap pages. This interface is used
 961   // when mmap'ing archived heap data in, so pre-touching is wasted.
 962   FlagSetting fs(AlwaysPreTouch, false);
 963 
 964   // Enable archive object checking in G1MarkSweep. We have to let it know
 965   // about each archive range, so that objects in those ranges aren't marked.
 966   G1MarkSweep::enable_archive_object_check();
 967 
 968   // For each specified MemRegion range, allocate the corresponding G1
 969   // regions and mark them as archive regions. We expect the ranges in
 970   // ascending starting address order, without overlap.
 971   for (size_t i = 0; i < count; i++) {
 972     MemRegion curr_range = ranges[i];
 973     HeapWord* start_address = curr_range.start();
 974     size_t word_size = curr_range.word_size();
 975     HeapWord* last_address = curr_range.last();
 976     size_t commits = 0;
 977 
 978     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 979               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 980               p2i(start_address), p2i(last_address)));
 981     guarantee(start_address > prev_last_addr,
 982               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 983               p2i(start_address), p2i(prev_last_addr)));
 984     prev_last_addr = last_address;
 985 
 986     // Check for ranges that start in the same G1 region in which the previous
 987     // range ended, and adjust the start address so we don't try to allocate
 988     // the same region again. If the current range is entirely within that
 989     // region, skip it, just adjusting the recorded top.
 990     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 991     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 992       start_address = start_region->end();
 993       if (start_address > last_address) {
 994         increase_used(word_size * HeapWordSize);
 995         start_region->set_top(last_address + 1);
 996         continue;
 997       }
 998       start_region->set_top(start_address);
 999       curr_range = MemRegion(start_address, last_address + 1);
1000       start_region = _hrm.addr_to_region(start_address);
1001     }
1002 
1003     // Perform the actual region allocation, exiting if it fails.
1004     // Then note how much new space we have allocated.
1005     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1006       return false;
1007     }
1008     increase_used(word_size * HeapWordSize);
1009     if (commits != 0) {
1010       ergo_verbose1(ErgoHeapSizing,
1011                     "attempt heap expansion",
1012                     ergo_format_reason("allocate archive regions")
1013                     ergo_format_byte("total size"),
1014                     HeapRegion::GrainWords * HeapWordSize * commits);
1015     }
1016 
1017     // Mark each G1 region touched by the range as archive, add it to the old set,
1018     // and set the allocation context and top.
1019     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1020     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1021     prev_last_region = last_region;
1022 
1023     while (curr_region != NULL) {
1024       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1025              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1026       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1027       curr_region->set_allocation_context(AllocationContext::system());
1028       curr_region->set_archive();
1029       _old_set.add(curr_region);
1030       if (curr_region != last_region) {
1031         curr_region->set_top(curr_region->end());
1032         curr_region = _hrm.next_region_in_heap(curr_region);
1033       } else {
1034         curr_region->set_top(last_address + 1);
1035         curr_region = NULL;
1036       }
1037     }
1038 
1039     // Notify mark-sweep of the archive range.
1040     G1MarkSweep::mark_range_archive(curr_range);
1041   }
1042   return true;
1043 }
1044 
1045 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1046   assert(ranges != NULL, "MemRegion array NULL");
1047   assert(count != 0, "No MemRegions provided");
1048   MemRegion reserved = _hrm.reserved();
1049   HeapWord *prev_last_addr = NULL;
1050   HeapRegion* prev_last_region = NULL;
1051 
1052   // For each MemRegion, create filler objects, if needed, in the G1 regions
1053   // that contain the address range. The address range actually within the
1054   // MemRegion will not be modified. That is assumed to have been initialized
1055   // elsewhere, probably via an mmap of archived heap data.
1056   MutexLockerEx x(Heap_lock);
1057   for (size_t i = 0; i < count; i++) {
1058     HeapWord* start_address = ranges[i].start();
1059     HeapWord* last_address = ranges[i].last();
1060 
1061     assert(reserved.contains(start_address) && reserved.contains(last_address),
1062            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1063                    p2i(start_address), p2i(last_address)));
1064     assert(start_address > prev_last_addr,
1065            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1066                    p2i(start_address), p2i(prev_last_addr)));
1067 
1068     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1069     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1070     HeapWord* bottom_address = start_region->bottom();
1071 
1072     // Check for a range beginning in the same region in which the
1073     // previous one ended.
1074     if (start_region == prev_last_region) {
1075       bottom_address = prev_last_addr + 1;
1076     }
1077 
1078     // Verify that the regions were all marked as archive regions by
1079     // alloc_archive_regions.
1080     HeapRegion* curr_region = start_region;
1081     while (curr_region != NULL) {
1082       guarantee(curr_region->is_archive(),
1083                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1084       if (curr_region != last_region) {
1085         curr_region = _hrm.next_region_in_heap(curr_region);
1086       } else {
1087         curr_region = NULL;
1088       }
1089     }
1090 
1091     prev_last_addr = last_address;
1092     prev_last_region = last_region;
1093 
1094     // Fill the memory below the allocated range with dummy object(s),
1095     // if the region bottom does not match the range start, or if the previous
1096     // range ended within the same G1 region, and there is a gap.
1097     if (start_address != bottom_address) {
1098       size_t fill_size = pointer_delta(start_address, bottom_address);
1099       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1100       increase_used(fill_size * HeapWordSize);
1101     }
1102   }
1103 }
1104 
1105 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
1106                                                      uint* gc_count_before_ret,
1107                                                      uint* gclocker_retry_count_ret) {
1108   assert_heap_not_locked_and_not_at_safepoint();
1109   assert(!is_humongous(word_size), "attempt_allocation() should not "
1110          "be called for humongous allocation requests");
1111 
1112   AllocationContext_t context = AllocationContext::current();
1113   HeapWord* result = _allocator->attempt_allocation(word_size, context);
1114 
1115   if (result == NULL) {
1116     result = attempt_allocation_slow(word_size,
1117                                      context,
1118                                      gc_count_before_ret,
1119                                      gclocker_retry_count_ret);
1120   }
1121   assert_heap_not_locked();
1122   if (result != NULL) {
1123     dirty_young_block(result, word_size);
1124   }
1125   return result;
1126 }
1127 
1128 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1129                                                         uint* gc_count_before_ret,
1130                                                         uint* gclocker_retry_count_ret) {
1131   // The structure of this method has a lot of similarities to
1132   // attempt_allocation_slow(). The reason these two were not merged
1133   // into a single one is that such a method would require several "if
1134   // allocation is not humongous do this, otherwise do that"
1135   // conditional paths which would obscure its flow. In fact, an early
1136   // version of this code did use a unified method which was harder to
1137   // follow and, as a result, it had subtle bugs that were hard to
1138   // track down. So keeping these two methods separate allows each to
1139   // be more readable. It will be good to keep these two in sync as
1140   // much as possible.
1141 
1142   assert_heap_not_locked_and_not_at_safepoint();
1143   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1144          "should only be called for humongous allocations");
1145 
1146   // Humongous objects can exhaust the heap quickly, so we should check if we
1147   // need to start a marking cycle at each humongous object allocation. We do
1148   // the check before we do the actual allocation. The reason for doing it
1149   // before the allocation is that we avoid having to keep track of the newly
1150   // allocated memory while we do a GC.
1151   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1152                                            word_size)) {
1153     collect(GCCause::_g1_humongous_allocation);
1154   }
1155 
1156   // We will loop until a) we manage to successfully perform the
1157   // allocation or b) we successfully schedule a collection which
1158   // fails to perform the allocation. b) is the only case when we'll
1159   // return NULL.
1160   HeapWord* result = NULL;
1161   for (int try_count = 1; /* we'll return */; try_count += 1) {
1162     bool should_try_gc;
1163     uint gc_count_before;
1164 
1165     {
1166       MutexLockerEx x(Heap_lock);
1167 
1168       // Given that humongous objects are not allocated in young
1169       // regions, we'll first try to do the allocation without doing a
1170       // collection hoping that there's enough space in the heap.
1171       result = humongous_obj_allocate(word_size, AllocationContext::current());
1172       if (result != NULL) {
1173         return result;
1174       }
1175 
1176       if (GC_locker::is_active_and_needs_gc()) {
1177         should_try_gc = false;
1178       } else {
1179          // The GCLocker may not be active but the GCLocker initiated
1180         // GC may not yet have been performed (GCLocker::needs_gc()
1181         // returns true). In this case we do not try this GC and
1182         // wait until the GCLocker initiated GC is performed, and
1183         // then retry the allocation.
1184         if (GC_locker::needs_gc()) {
1185           should_try_gc = false;
1186         } else {
1187           // Read the GC count while still holding the Heap_lock.
1188           gc_count_before = total_collections();
1189           should_try_gc = true;
1190         }
1191       }
1192     }
1193 
1194     if (should_try_gc) {
1195       // If we failed to allocate the humongous object, we should try to
1196       // do a collection pause (if we're allowed) in case it reclaims
1197       // enough space for the allocation to succeed after the pause.
1198 
1199       bool succeeded;
1200       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1201                                    GCCause::_g1_humongous_allocation);
1202       if (result != NULL) {
1203         assert(succeeded, "only way to get back a non-NULL result");
1204         return result;
1205       }
1206 
1207       if (succeeded) {
1208         // If we get here we successfully scheduled a collection which
1209         // failed to allocate. No point in trying to allocate
1210         // further. We'll just return NULL.
1211         MutexLockerEx x(Heap_lock);
1212         *gc_count_before_ret = total_collections();
1213         return NULL;
1214       }
1215     } else {
1216       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1217         MutexLockerEx x(Heap_lock);
1218         *gc_count_before_ret = total_collections();
1219         return NULL;
1220       }
1221       // The GCLocker is either active or the GCLocker initiated
1222       // GC has not yet been performed. Stall until it is and
1223       // then retry the allocation.
1224       GC_locker::stall_until_clear();
1225       (*gclocker_retry_count_ret) += 1;
1226     }
1227 
1228     // We can reach here if we were unsuccessful in scheduling a
1229     // collection (because another thread beat us to it) or if we were
1230     // stalled due to the GC locker. In either can we should retry the
1231     // allocation attempt in case another thread successfully
1232     // performed a collection and reclaimed enough space.  Give a
1233     // warning if we seem to be looping forever.
1234 
1235     if ((QueuedAllocationWarningCount > 0) &&
1236         (try_count % QueuedAllocationWarningCount == 0)) {
1237       warning("G1CollectedHeap::attempt_allocation_humongous() "
1238               "retries %d times", try_count);
1239     }
1240   }
1241 
1242   ShouldNotReachHere();
1243   return NULL;
1244 }
1245 
1246 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1247                                                            AllocationContext_t context,
1248                                                            bool expect_null_mutator_alloc_region) {
1249   assert_at_safepoint(true /* should_be_vm_thread */);
1250   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1251          "the current alloc region was unexpectedly found to be non-NULL");
1252 
1253   if (!is_humongous(word_size)) {
1254     return _allocator->attempt_allocation_locked(word_size, context);
1255   } else {
1256     HeapWord* result = humongous_obj_allocate(word_size, context);
1257     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1258       collector_state()->set_initiate_conc_mark_if_possible(true);
1259     }
1260     return result;
1261   }
1262 
1263   ShouldNotReachHere();
1264 }
1265 
1266 class PostMCRemSetClearClosure: public HeapRegionClosure {
1267   G1CollectedHeap* _g1h;
1268   ModRefBarrierSet* _mr_bs;
1269 public:
1270   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1271     _g1h(g1h), _mr_bs(mr_bs) {}
1272 
1273   bool doHeapRegion(HeapRegion* r) {
1274     HeapRegionRemSet* hrrs = r->rem_set();
1275 
1276     if (r->is_continues_humongous()) {
1277       // We'll assert that the strong code root list and RSet is empty
1278       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1279       assert(hrrs->occupied() == 0, "RSet should be empty");
1280       return false;
1281     }
1282 
1283     _g1h->reset_gc_time_stamps(r);
1284     hrrs->clear();
1285     // You might think here that we could clear just the cards
1286     // corresponding to the used region.  But no: if we leave a dirty card
1287     // in a region we might allocate into, then it would prevent that card
1288     // from being enqueued, and cause it to be missed.
1289     // Re: the performance cost: we shouldn't be doing full GC anyway!
1290     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1291 
1292     return false;
1293   }
1294 };
1295 
1296 void G1CollectedHeap::clear_rsets_post_compaction() {
1297   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1298   heap_region_iterate(&rs_clear);
1299 }
1300 
1301 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1302   G1CollectedHeap*   _g1h;
1303   UpdateRSOopClosure _cl;
1304 public:
1305   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1306     _cl(g1->g1_rem_set(), worker_i),
1307     _g1h(g1)
1308   { }
1309 
1310   bool doHeapRegion(HeapRegion* r) {
1311     if (!r->is_continues_humongous()) {
1312       _cl.set_from(r);
1313       r->oop_iterate(&_cl);
1314     }
1315     return false;
1316   }
1317 };
1318 
1319 class ParRebuildRSTask: public AbstractGangTask {
1320   G1CollectedHeap* _g1;
1321   HeapRegionClaimer _hrclaimer;
1322 
1323 public:
1324   ParRebuildRSTask(G1CollectedHeap* g1) :
1325       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1326 
1327   void work(uint worker_id) {
1328     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1329     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1330   }
1331 };
1332 
1333 class PostCompactionPrinterClosure: public HeapRegionClosure {
1334 private:
1335   G1HRPrinter* _hr_printer;
1336 public:
1337   bool doHeapRegion(HeapRegion* hr) {
1338     assert(!hr->is_young(), "not expecting to find young regions");
1339     if (hr->is_free()) {
1340       // We only generate output for non-empty regions.
1341     } else if (hr->is_starts_humongous()) {
1342       if (hr->region_num() == 1) {
1343         // single humongous region
1344         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1345       } else {
1346         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1347       }
1348     } else if (hr->is_continues_humongous()) {
1349       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1350     } else if (hr->is_archive()) {
1351       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1352     } else if (hr->is_old()) {
1353       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1354     } else {
1355       ShouldNotReachHere();
1356     }
1357     return false;
1358   }
1359 
1360   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1361     : _hr_printer(hr_printer) { }
1362 };
1363 
1364 void G1CollectedHeap::print_hrm_post_compaction() {
1365   PostCompactionPrinterClosure cl(hr_printer());
1366   heap_region_iterate(&cl);
1367 }
1368 
1369 bool G1CollectedHeap::do_collection(bool explicit_gc,
1370                                     bool clear_all_soft_refs,
1371                                     size_t word_size) {
1372   assert_at_safepoint(true /* should_be_vm_thread */);
1373 
1374   if (GC_locker::check_active_before_gc()) {
1375     return false;
1376   }
1377 
1378   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1379   gc_timer->register_gc_start();
1380 
1381   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1382   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1383 
1384   SvcGCMarker sgcm(SvcGCMarker::FULL);
1385   ResourceMark rm;
1386 
1387   G1Log::update_level();
1388   print_heap_before_gc();
1389   trace_heap_before_gc(gc_tracer);
1390 
1391   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1392 
1393   verify_region_sets_optional();
1394 
1395   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1396                            collector_policy()->should_clear_all_soft_refs();
1397 
1398   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1399 
1400   {
1401     IsGCActiveMark x;
1402 
1403     // Timing
1404     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1405     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1406 
1407     {
1408       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1409       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1410       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1411 
1412       g1_policy()->record_full_collection_start();
1413 
1414       // Note: When we have a more flexible GC logging framework that
1415       // allows us to add optional attributes to a GC log record we
1416       // could consider timing and reporting how long we wait in the
1417       // following two methods.
1418       wait_while_free_regions_coming();
1419       // If we start the compaction before the CM threads finish
1420       // scanning the root regions we might trip them over as we'll
1421       // be moving objects / updating references. So let's wait until
1422       // they are done. By telling them to abort, they should complete
1423       // early.
1424       _cm->root_regions()->abort();
1425       _cm->root_regions()->wait_until_scan_finished();
1426       append_secondary_free_list_if_not_empty_with_lock();
1427 
1428       gc_prologue(true);
1429       increment_total_collections(true /* full gc */);
1430       increment_old_marking_cycles_started();
1431 
1432       assert(used() == recalculate_used(), "Should be equal");
1433 
1434       verify_before_gc();
1435 
1436       check_bitmaps("Full GC Start");
1437       pre_full_gc_dump(gc_timer);
1438 
1439       COMPILER2_PRESENT(DerivedPointerTable::clear());
1440 
1441       // Disable discovery and empty the discovered lists
1442       // for the CM ref processor.
1443       ref_processor_cm()->disable_discovery();
1444       ref_processor_cm()->abandon_partial_discovery();
1445       ref_processor_cm()->verify_no_references_recorded();
1446 
1447       // Abandon current iterations of concurrent marking and concurrent
1448       // refinement, if any are in progress. We have to do this before
1449       // wait_until_scan_finished() below.
1450       concurrent_mark()->abort();
1451 
1452       // Make sure we'll choose a new allocation region afterwards.
1453       _allocator->release_mutator_alloc_region();
1454       _allocator->abandon_gc_alloc_regions();
1455       g1_rem_set()->cleanupHRRS();
1456 
1457       // We should call this after we retire any currently active alloc
1458       // regions so that all the ALLOC / RETIRE events are generated
1459       // before the start GC event.
1460       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1461 
1462       // We may have added regions to the current incremental collection
1463       // set between the last GC or pause and now. We need to clear the
1464       // incremental collection set and then start rebuilding it afresh
1465       // after this full GC.
1466       abandon_collection_set(g1_policy()->inc_cset_head());
1467       g1_policy()->clear_incremental_cset();
1468       g1_policy()->stop_incremental_cset_building();
1469 
1470       tear_down_region_sets(false /* free_list_only */);
1471       collector_state()->set_gcs_are_young(true);
1472 
1473       // See the comments in g1CollectedHeap.hpp and
1474       // G1CollectedHeap::ref_processing_init() about
1475       // how reference processing currently works in G1.
1476 
1477       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1478       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1479 
1480       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1481       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1482 
1483       ref_processor_stw()->enable_discovery();
1484       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1485 
1486       // Do collection work
1487       {
1488         HandleMark hm;  // Discard invalid handles created during gc
1489         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1490       }
1491 
1492       assert(num_free_regions() == 0, "we should not have added any free regions");
1493       rebuild_region_sets(false /* free_list_only */);
1494 
1495       // Enqueue any discovered reference objects that have
1496       // not been removed from the discovered lists.
1497       ref_processor_stw()->enqueue_discovered_references();
1498 
1499       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1500 
1501       MemoryService::track_memory_usage();
1502 
1503       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1504       ref_processor_stw()->verify_no_references_recorded();
1505 
1506       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1507       ClassLoaderDataGraph::purge();
1508       MetaspaceAux::verify_metrics();
1509 
1510       // Note: since we've just done a full GC, concurrent
1511       // marking is no longer active. Therefore we need not
1512       // re-enable reference discovery for the CM ref processor.
1513       // That will be done at the start of the next marking cycle.
1514       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1515       ref_processor_cm()->verify_no_references_recorded();
1516 
1517       reset_gc_time_stamp();
1518       // Since everything potentially moved, we will clear all remembered
1519       // sets, and clear all cards.  Later we will rebuild remembered
1520       // sets. We will also reset the GC time stamps of the regions.
1521       clear_rsets_post_compaction();
1522       check_gc_time_stamps();
1523 
1524       // Resize the heap if necessary.
1525       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1526 
1527       if (_hr_printer.is_active()) {
1528         // We should do this after we potentially resize the heap so
1529         // that all the COMMIT / UNCOMMIT events are generated before
1530         // the end GC event.
1531 
1532         print_hrm_post_compaction();
1533         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1534       }
1535 
1536       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1537       if (hot_card_cache->use_cache()) {
1538         hot_card_cache->reset_card_counts();
1539         hot_card_cache->reset_hot_cache();
1540       }
1541 
1542       // Rebuild remembered sets of all regions.
1543       uint n_workers =
1544         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1545                                                 workers()->active_workers(),
1546                                                 Threads::number_of_non_daemon_threads());
1547       workers()->set_active_workers(n_workers);
1548 
1549       ParRebuildRSTask rebuild_rs_task(this);
1550       workers()->run_task(&rebuild_rs_task);
1551 
1552       // Rebuild the strong code root lists for each region
1553       rebuild_strong_code_roots();
1554 
1555       if (true) { // FIXME
1556         MetaspaceGC::compute_new_size();
1557       }
1558 
1559 #ifdef TRACESPINNING
1560       ParallelTaskTerminator::print_termination_counts();
1561 #endif
1562 
1563       // Discard all rset updates
1564       JavaThread::dirty_card_queue_set().abandon_logs();
1565       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1566 
1567       _young_list->reset_sampled_info();
1568       // At this point there should be no regions in the
1569       // entire heap tagged as young.
1570       assert(check_young_list_empty(true /* check_heap */),
1571              "young list should be empty at this point");
1572 
1573       // Update the number of full collections that have been completed.
1574       increment_old_marking_cycles_completed(false /* concurrent */);
1575 
1576       _hrm.verify_optional();
1577       verify_region_sets_optional();
1578 
1579       verify_after_gc();
1580 
1581       // Clear the previous marking bitmap, if needed for bitmap verification.
1582       // Note we cannot do this when we clear the next marking bitmap in
1583       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1584       // objects marked during a full GC against the previous bitmap.
1585       // But we need to clear it before calling check_bitmaps below since
1586       // the full GC has compacted objects and updated TAMS but not updated
1587       // the prev bitmap.
1588       if (G1VerifyBitmaps) {
1589         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1590       }
1591       check_bitmaps("Full GC End");
1592 
1593       // Start a new incremental collection set for the next pause
1594       assert(g1_policy()->collection_set() == NULL, "must be");
1595       g1_policy()->start_incremental_cset_building();
1596 
1597       clear_cset_fast_test();
1598 
1599       _allocator->init_mutator_alloc_region();
1600 
1601       g1_policy()->record_full_collection_end();
1602 
1603       if (G1Log::fine()) {
1604         g1_policy()->print_heap_transition();
1605       }
1606 
1607       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1608       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1609       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1610       // before any GC notifications are raised.
1611       g1mm()->update_sizes();
1612 
1613       gc_epilogue(true);
1614     }
1615 
1616     if (G1Log::finer()) {
1617       g1_policy()->print_detailed_heap_transition(true /* full */);
1618     }
1619 
1620     print_heap_after_gc();
1621     trace_heap_after_gc(gc_tracer);
1622 
1623     post_full_gc_dump(gc_timer);
1624 
1625     gc_timer->register_gc_end();
1626     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1627   }
1628 
1629   return true;
1630 }
1631 
1632 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1633   // do_collection() will return whether it succeeded in performing
1634   // the GC. Currently, there is no facility on the
1635   // do_full_collection() API to notify the caller than the collection
1636   // did not succeed (e.g., because it was locked out by the GC
1637   // locker). So, right now, we'll ignore the return value.
1638   bool dummy = do_collection(true,                /* explicit_gc */
1639                              clear_all_soft_refs,
1640                              0                    /* word_size */);
1641 }
1642 
1643 // This code is mostly copied from TenuredGeneration.
1644 void
1645 G1CollectedHeap::
1646 resize_if_necessary_after_full_collection(size_t word_size) {
1647   // Include the current allocation, if any, and bytes that will be
1648   // pre-allocated to support collections, as "used".
1649   const size_t used_after_gc = used();
1650   const size_t capacity_after_gc = capacity();
1651   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1652 
1653   // This is enforced in arguments.cpp.
1654   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1655          "otherwise the code below doesn't make sense");
1656 
1657   // We don't have floating point command-line arguments
1658   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1659   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1660   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1661   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1662 
1663   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1664   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1665 
1666   // We have to be careful here as these two calculations can overflow
1667   // 32-bit size_t's.
1668   double used_after_gc_d = (double) used_after_gc;
1669   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1670   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1671 
1672   // Let's make sure that they are both under the max heap size, which
1673   // by default will make them fit into a size_t.
1674   double desired_capacity_upper_bound = (double) max_heap_size;
1675   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1676                                     desired_capacity_upper_bound);
1677   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1678                                     desired_capacity_upper_bound);
1679 
1680   // We can now safely turn them into size_t's.
1681   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1682   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1683 
1684   // This assert only makes sense here, before we adjust them
1685   // with respect to the min and max heap size.
1686   assert(minimum_desired_capacity <= maximum_desired_capacity,
1687          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1688                  "maximum_desired_capacity = " SIZE_FORMAT,
1689                  minimum_desired_capacity, maximum_desired_capacity));
1690 
1691   // Should not be greater than the heap max size. No need to adjust
1692   // it with respect to the heap min size as it's a lower bound (i.e.,
1693   // we'll try to make the capacity larger than it, not smaller).
1694   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1695   // Should not be less than the heap min size. No need to adjust it
1696   // with respect to the heap max size as it's an upper bound (i.e.,
1697   // we'll try to make the capacity smaller than it, not greater).
1698   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1699 
1700   if (capacity_after_gc < minimum_desired_capacity) {
1701     // Don't expand unless it's significant
1702     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1703     ergo_verbose4(ErgoHeapSizing,
1704                   "attempt heap expansion",
1705                   ergo_format_reason("capacity lower than "
1706                                      "min desired capacity after Full GC")
1707                   ergo_format_byte("capacity")
1708                   ergo_format_byte("occupancy")
1709                   ergo_format_byte_perc("min desired capacity"),
1710                   capacity_after_gc, used_after_gc,
1711                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1712     expand(expand_bytes);
1713 
1714     // No expansion, now see if we want to shrink
1715   } else if (capacity_after_gc > maximum_desired_capacity) {
1716     // Capacity too large, compute shrinking size
1717     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1718     ergo_verbose4(ErgoHeapSizing,
1719                   "attempt heap shrinking",
1720                   ergo_format_reason("capacity higher than "
1721                                      "max desired capacity after Full GC")
1722                   ergo_format_byte("capacity")
1723                   ergo_format_byte("occupancy")
1724                   ergo_format_byte_perc("max desired capacity"),
1725                   capacity_after_gc, used_after_gc,
1726                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1727     shrink(shrink_bytes);
1728   }
1729 }
1730 
1731 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1732                                                             AllocationContext_t context,
1733                                                             bool do_gc,
1734                                                             bool clear_all_soft_refs,
1735                                                             bool expect_null_mutator_alloc_region,
1736                                                             bool* gc_succeeded) {
1737   *gc_succeeded = true;
1738   // Let's attempt the allocation first.
1739   HeapWord* result =
1740     attempt_allocation_at_safepoint(word_size,
1741                                     context,
1742                                     expect_null_mutator_alloc_region);
1743   if (result != NULL) {
1744     assert(*gc_succeeded, "sanity");
1745     return result;
1746   }
1747 
1748   // In a G1 heap, we're supposed to keep allocation from failing by
1749   // incremental pauses.  Therefore, at least for now, we'll favor
1750   // expansion over collection.  (This might change in the future if we can
1751   // do something smarter than full collection to satisfy a failed alloc.)
1752   result = expand_and_allocate(word_size, context);
1753   if (result != NULL) {
1754     assert(*gc_succeeded, "sanity");
1755     return result;
1756   }
1757 
1758   if (do_gc) {
1759     // Expansion didn't work, we'll try to do a Full GC.
1760     *gc_succeeded = do_collection(false, /* explicit_gc */
1761                                   clear_all_soft_refs,
1762                                   word_size);
1763   }
1764 
1765   return NULL;
1766 }
1767 
1768 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1769                                                      AllocationContext_t context,
1770                                                      bool* succeeded) {
1771   assert_at_safepoint(true /* should_be_vm_thread */);
1772 
1773   // Attempts to allocate followed by Full GC.
1774   HeapWord* result =
1775     satisfy_failed_allocation_helper(word_size,
1776                                      context,
1777                                      true, /* do_gc */
1778                                      false, /* clear_all_soft_refs */
1779                                      false, /* expect_null_mutator_alloc_region */
1780                                      succeeded);
1781 
1782   if (result != NULL || !*succeeded) {
1783     return result;
1784   }
1785 
1786   // Attempts to allocate followed by Full GC that will collect all soft references.
1787   result = satisfy_failed_allocation_helper(word_size,
1788                                             context,
1789                                             true, /* do_gc */
1790                                             true, /* clear_all_soft_refs */
1791                                             true, /* expect_null_mutator_alloc_region */
1792                                             succeeded);
1793 
1794   if (result != NULL || !*succeeded) {
1795     return result;
1796   }
1797 
1798   // Attempts to allocate, no GC
1799   result = satisfy_failed_allocation_helper(word_size,
1800                                             context,
1801                                             false, /* do_gc */
1802                                             false, /* clear_all_soft_refs */
1803                                             true, /* expect_null_mutator_alloc_region */
1804                                             succeeded);
1805 
1806   if (result != NULL) {
1807     assert(*succeeded, "sanity");
1808     return result;
1809   }
1810 
1811   assert(!collector_policy()->should_clear_all_soft_refs(),
1812          "Flag should have been handled and cleared prior to this point");
1813 
1814   // What else?  We might try synchronous finalization later.  If the total
1815   // space available is large enough for the allocation, then a more
1816   // complete compaction phase than we've tried so far might be
1817   // appropriate.
1818   assert(*succeeded, "sanity");
1819   return NULL;
1820 }
1821 
1822 // Attempting to expand the heap sufficiently
1823 // to support an allocation of the given "word_size".  If
1824 // successful, perform the allocation and return the address of the
1825 // allocated block, or else "NULL".
1826 
1827 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1828   assert_at_safepoint(true /* should_be_vm_thread */);
1829 
1830   verify_region_sets_optional();
1831 
1832   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1833   ergo_verbose1(ErgoHeapSizing,
1834                 "attempt heap expansion",
1835                 ergo_format_reason("allocation request failed")
1836                 ergo_format_byte("allocation request"),
1837                 word_size * HeapWordSize);
1838   if (expand(expand_bytes)) {
1839     _hrm.verify_optional();
1840     verify_region_sets_optional();
1841     return attempt_allocation_at_safepoint(word_size,
1842                                            context,
1843                                            false /* expect_null_mutator_alloc_region */);
1844   }
1845   return NULL;
1846 }
1847 
1848 bool G1CollectedHeap::expand(size_t expand_bytes) {
1849   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1850   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1851                                        HeapRegion::GrainBytes);
1852   ergo_verbose2(ErgoHeapSizing,
1853                 "expand the heap",
1854                 ergo_format_byte("requested expansion amount")
1855                 ergo_format_byte("attempted expansion amount"),
1856                 expand_bytes, aligned_expand_bytes);
1857 
1858   if (is_maximal_no_gc()) {
1859     ergo_verbose0(ErgoHeapSizing,
1860                       "did not expand the heap",
1861                       ergo_format_reason("heap already fully expanded"));
1862     return false;
1863   }
1864 
1865   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1866   assert(regions_to_expand > 0, "Must expand by at least one region");
1867 
1868   uint expanded_by = _hrm.expand_by(regions_to_expand);
1869 
1870   if (expanded_by > 0) {
1871     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1872     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1873     g1_policy()->record_new_heap_size(num_regions());
1874   } else {
1875     ergo_verbose0(ErgoHeapSizing,
1876                   "did not expand the heap",
1877                   ergo_format_reason("heap expansion operation failed"));
1878     // The expansion of the virtual storage space was unsuccessful.
1879     // Let's see if it was because we ran out of swap.
1880     if (G1ExitOnExpansionFailure &&
1881         _hrm.available() >= regions_to_expand) {
1882       // We had head room...
1883       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1884     }
1885   }
1886   return regions_to_expand > 0;
1887 }
1888 
1889 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1890   size_t aligned_shrink_bytes =
1891     ReservedSpace::page_align_size_down(shrink_bytes);
1892   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1893                                          HeapRegion::GrainBytes);
1894   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1895 
1896   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1897   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1898 
1899   ergo_verbose3(ErgoHeapSizing,
1900                 "shrink the heap",
1901                 ergo_format_byte("requested shrinking amount")
1902                 ergo_format_byte("aligned shrinking amount")
1903                 ergo_format_byte("attempted shrinking amount"),
1904                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1905   if (num_regions_removed > 0) {
1906     g1_policy()->record_new_heap_size(num_regions());
1907   } else {
1908     ergo_verbose0(ErgoHeapSizing,
1909                   "did not shrink the heap",
1910                   ergo_format_reason("heap shrinking operation failed"));
1911   }
1912 }
1913 
1914 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1915   verify_region_sets_optional();
1916 
1917   // We should only reach here at the end of a Full GC which means we
1918   // should not not be holding to any GC alloc regions. The method
1919   // below will make sure of that and do any remaining clean up.
1920   _allocator->abandon_gc_alloc_regions();
1921 
1922   // Instead of tearing down / rebuilding the free lists here, we
1923   // could instead use the remove_all_pending() method on free_list to
1924   // remove only the ones that we need to remove.
1925   tear_down_region_sets(true /* free_list_only */);
1926   shrink_helper(shrink_bytes);
1927   rebuild_region_sets(true /* free_list_only */);
1928 
1929   _hrm.verify_optional();
1930   verify_region_sets_optional();
1931 }
1932 
1933 // Public methods.
1934 
1935 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1936 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1937 #endif // _MSC_VER
1938 
1939 
1940 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1941   CollectedHeap(),
1942   _g1_policy(policy_),
1943   _dirty_card_queue_set(false),
1944   _into_cset_dirty_card_queue_set(false),
1945   _is_alive_closure_cm(this),
1946   _is_alive_closure_stw(this),
1947   _ref_processor_cm(NULL),
1948   _ref_processor_stw(NULL),
1949   _bot_shared(NULL),
1950   _cg1r(NULL),
1951   _g1mm(NULL),
1952   _refine_cte_cl(NULL),
1953   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1954   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1955   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1956   _humongous_reclaim_candidates(),
1957   _has_humongous_reclaim_candidates(false),
1958   _archive_allocator(NULL),
1959   _free_regions_coming(false),
1960   _young_list(new YoungList(this)),
1961   _gc_time_stamp(0),
1962   _summary_bytes_used(0),
1963   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1964   _old_plab_stats(OldPLABSize, PLABWeight),
1965   _expand_heap_after_alloc_failure(true),
1966   _surviving_young_words(NULL),
1967   _old_marking_cycles_started(0),
1968   _old_marking_cycles_completed(0),
1969   _heap_summary_sent(false),
1970   _in_cset_fast_test(),
1971   _dirty_cards_region_list(NULL),
1972   _worker_cset_start_region(NULL),
1973   _worker_cset_start_region_time_stamp(NULL),
1974   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1975   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1976   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1977   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1978 
1979   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1980                           /* are_GC_task_threads */true,
1981                           /* are_ConcurrentGC_threads */false);
1982   _workers->initialize_workers();
1983 
1984   _allocator = G1Allocator::create_allocator(this);
1985   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1986 
1987   // Override the default _filler_array_max_size so that no humongous filler
1988   // objects are created.
1989   _filler_array_max_size = _humongous_object_threshold_in_words;
1990 
1991   uint n_queues = ParallelGCThreads;
1992   _task_queues = new RefToScanQueueSet(n_queues);
1993 
1994   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1995   assert(n_rem_sets > 0, "Invariant.");
1996 
1997   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1998   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1999   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
2000 
2001   for (uint i = 0; i < n_queues; i++) {
2002     RefToScanQueue* q = new RefToScanQueue();
2003     q->initialize();
2004     _task_queues->register_queue(i, q);
2005     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
2006   }
2007   clear_cset_start_regions();
2008 
2009   // Initialize the G1EvacuationFailureALot counters and flags.
2010   NOT_PRODUCT(reset_evacuation_should_fail();)
2011 
2012   guarantee(_task_queues != NULL, "task_queues allocation failure.");
2013 }
2014 
2015 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
2016                                                                  size_t size,
2017                                                                  size_t translation_factor) {
2018   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
2019   // Allocate a new reserved space, preferring to use large pages.
2020   ReservedSpace rs(size, preferred_page_size);
2021   G1RegionToSpaceMapper* result  =
2022     G1RegionToSpaceMapper::create_mapper(rs,
2023                                          size,
2024                                          rs.alignment(),
2025                                          HeapRegion::GrainBytes,
2026                                          translation_factor,
2027                                          mtGC);
2028   if (TracePageSizes) {
2029     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
2030                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2031   }
2032   return result;
2033 }
2034 
2035 jint G1CollectedHeap::initialize() {
2036   CollectedHeap::pre_initialize();
2037   os::enable_vtime();
2038 
2039   G1Log::init();
2040 
2041   // Necessary to satisfy locking discipline assertions.
2042 
2043   MutexLocker x(Heap_lock);
2044 
2045   // We have to initialize the printer before committing the heap, as
2046   // it will be used then.
2047   _hr_printer.set_active(G1PrintHeapRegions);
2048 
2049   // While there are no constraints in the GC code that HeapWordSize
2050   // be any particular value, there are multiple other areas in the
2051   // system which believe this to be true (e.g. oop->object_size in some
2052   // cases incorrectly returns the size in wordSize units rather than
2053   // HeapWordSize).
2054   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2055 
2056   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2057   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2058   size_t heap_alignment = collector_policy()->heap_alignment();
2059 
2060   // Ensure that the sizes are properly aligned.
2061   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2062   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2063   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2064 
2065   _refine_cte_cl = new RefineCardTableEntryClosure();
2066 
2067   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2068 
2069   // Reserve the maximum.
2070 
2071   // When compressed oops are enabled, the preferred heap base
2072   // is calculated by subtracting the requested size from the
2073   // 32Gb boundary and using the result as the base address for
2074   // heap reservation. If the requested size is not aligned to
2075   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2076   // into the ReservedHeapSpace constructor) then the actual
2077   // base of the reserved heap may end up differing from the
2078   // address that was requested (i.e. the preferred heap base).
2079   // If this happens then we could end up using a non-optimal
2080   // compressed oops mode.
2081 
2082   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2083                                                  heap_alignment);
2084 
2085   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2086 
2087   // Create the barrier set for the entire reserved region.
2088   G1SATBCardTableLoggingModRefBS* bs
2089     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2090   bs->initialize();
2091   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2092   set_barrier_set(bs);
2093 
2094   // Also create a G1 rem set.
2095   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2096 
2097   // Carve out the G1 part of the heap.
2098 
2099   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2100   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2101   G1RegionToSpaceMapper* heap_storage =
2102     G1RegionToSpaceMapper::create_mapper(g1_rs,
2103                                          g1_rs.size(),
2104                                          page_size,
2105                                          HeapRegion::GrainBytes,
2106                                          1,
2107                                          mtJavaHeap);
2108   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2109                        max_byte_size, page_size,
2110                        heap_rs.base(),
2111                        heap_rs.size());
2112   heap_storage->set_mapping_changed_listener(&_listener);
2113 
2114   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2115   G1RegionToSpaceMapper* bot_storage =
2116     create_aux_memory_mapper("Block offset table",
2117                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2118                              G1BlockOffsetSharedArray::heap_map_factor());
2119 
2120   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2121   G1RegionToSpaceMapper* cardtable_storage =
2122     create_aux_memory_mapper("Card table",
2123                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2124                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2125 
2126   G1RegionToSpaceMapper* card_counts_storage =
2127     create_aux_memory_mapper("Card counts table",
2128                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2129                              G1CardCounts::heap_map_factor());
2130 
2131   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2132   G1RegionToSpaceMapper* prev_bitmap_storage =
2133     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2134   G1RegionToSpaceMapper* next_bitmap_storage =
2135     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2136 
2137   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2138   g1_barrier_set()->initialize(cardtable_storage);
2139    // Do later initialization work for concurrent refinement.
2140   _cg1r->init(card_counts_storage);
2141 
2142   // 6843694 - ensure that the maximum region index can fit
2143   // in the remembered set structures.
2144   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2145   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2146 
2147   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2148   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2149   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2150             "too many cards per region");
2151 
2152   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2153 
2154   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2155 
2156   {
2157     HeapWord* start = _hrm.reserved().start();
2158     HeapWord* end = _hrm.reserved().end();
2159     size_t granularity = HeapRegion::GrainBytes;
2160 
2161     _in_cset_fast_test.initialize(start, end, granularity);
2162     _humongous_reclaim_candidates.initialize(start, end, granularity);
2163   }
2164 
2165   // Create the ConcurrentMark data structure and thread.
2166   // (Must do this late, so that "max_regions" is defined.)
2167   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2168   if (_cm == NULL || !_cm->completed_initialization()) {
2169     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2170     return JNI_ENOMEM;
2171   }
2172   _cmThread = _cm->cmThread();
2173 
2174   // Initialize the from_card cache structure of HeapRegionRemSet.
2175   HeapRegionRemSet::init_heap(max_regions());
2176 
2177   // Now expand into the initial heap size.
2178   if (!expand(init_byte_size)) {
2179     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2180     return JNI_ENOMEM;
2181   }
2182 
2183   // Perform any initialization actions delegated to the policy.
2184   g1_policy()->init();
2185 
2186   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2187                                                SATB_Q_FL_lock,
2188                                                G1SATBProcessCompletedThreshold,
2189                                                Shared_SATB_Q_lock);
2190 
2191   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2192                                                 DirtyCardQ_CBL_mon,
2193                                                 DirtyCardQ_FL_lock,
2194                                                 concurrent_g1_refine()->yellow_zone(),
2195                                                 concurrent_g1_refine()->red_zone(),
2196                                                 Shared_DirtyCardQ_lock);
2197 
2198   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2199                                     DirtyCardQ_CBL_mon,
2200                                     DirtyCardQ_FL_lock,
2201                                     -1, // never trigger processing
2202                                     -1, // no limit on length
2203                                     Shared_DirtyCardQ_lock,
2204                                     &JavaThread::dirty_card_queue_set());
2205 
2206   // Initialize the card queue set used to hold cards containing
2207   // references into the collection set.
2208   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2209                                              DirtyCardQ_CBL_mon,
2210                                              DirtyCardQ_FL_lock,
2211                                              -1, // never trigger processing
2212                                              -1, // no limit on length
2213                                              Shared_DirtyCardQ_lock,
2214                                              &JavaThread::dirty_card_queue_set());
2215 
2216   // Here we allocate the dummy HeapRegion that is required by the
2217   // G1AllocRegion class.
2218   HeapRegion* dummy_region = _hrm.get_dummy_region();
2219 
2220   // We'll re-use the same region whether the alloc region will
2221   // require BOT updates or not and, if it doesn't, then a non-young
2222   // region will complain that it cannot support allocations without
2223   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2224   dummy_region->set_eden();
2225   // Make sure it's full.
2226   dummy_region->set_top(dummy_region->end());
2227   G1AllocRegion::setup(this, dummy_region);
2228 
2229   _allocator->init_mutator_alloc_region();
2230 
2231   // Do create of the monitoring and management support so that
2232   // values in the heap have been properly initialized.
2233   _g1mm = new G1MonitoringSupport(this);
2234 
2235   G1StringDedup::initialize();
2236 
2237   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2238   for (uint i = 0; i < ParallelGCThreads; i++) {
2239     new (&_preserved_objs[i]) OopAndMarkOopStack();
2240   }
2241 
2242   return JNI_OK;
2243 }
2244 
2245 void G1CollectedHeap::stop() {
2246   // Stop all concurrent threads. We do this to make sure these threads
2247   // do not continue to execute and access resources (e.g. gclog_or_tty)
2248   // that are destroyed during shutdown.
2249   _cg1r->stop();
2250   _cmThread->stop();
2251   if (G1StringDedup::is_enabled()) {
2252     G1StringDedup::stop();
2253   }
2254 }
2255 
2256 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2257   return HeapRegion::max_region_size();
2258 }
2259 
2260 void G1CollectedHeap::post_initialize() {
2261   CollectedHeap::post_initialize();
2262   ref_processing_init();
2263 }
2264 
2265 void G1CollectedHeap::ref_processing_init() {
2266   // Reference processing in G1 currently works as follows:
2267   //
2268   // * There are two reference processor instances. One is
2269   //   used to record and process discovered references
2270   //   during concurrent marking; the other is used to
2271   //   record and process references during STW pauses
2272   //   (both full and incremental).
2273   // * Both ref processors need to 'span' the entire heap as
2274   //   the regions in the collection set may be dotted around.
2275   //
2276   // * For the concurrent marking ref processor:
2277   //   * Reference discovery is enabled at initial marking.
2278   //   * Reference discovery is disabled and the discovered
2279   //     references processed etc during remarking.
2280   //   * Reference discovery is MT (see below).
2281   //   * Reference discovery requires a barrier (see below).
2282   //   * Reference processing may or may not be MT
2283   //     (depending on the value of ParallelRefProcEnabled
2284   //     and ParallelGCThreads).
2285   //   * A full GC disables reference discovery by the CM
2286   //     ref processor and abandons any entries on it's
2287   //     discovered lists.
2288   //
2289   // * For the STW processor:
2290   //   * Non MT discovery is enabled at the start of a full GC.
2291   //   * Processing and enqueueing during a full GC is non-MT.
2292   //   * During a full GC, references are processed after marking.
2293   //
2294   //   * Discovery (may or may not be MT) is enabled at the start
2295   //     of an incremental evacuation pause.
2296   //   * References are processed near the end of a STW evacuation pause.
2297   //   * For both types of GC:
2298   //     * Discovery is atomic - i.e. not concurrent.
2299   //     * Reference discovery will not need a barrier.
2300 
2301   MemRegion mr = reserved_region();
2302 
2303   // Concurrent Mark ref processor
2304   _ref_processor_cm =
2305     new ReferenceProcessor(mr,    // span
2306                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2307                                 // mt processing
2308                            ParallelGCThreads,
2309                                 // degree of mt processing
2310                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2311                                 // mt discovery
2312                            MAX2(ParallelGCThreads, ConcGCThreads),
2313                                 // degree of mt discovery
2314                            false,
2315                                 // Reference discovery is not atomic
2316                            &_is_alive_closure_cm);
2317                                 // is alive closure
2318                                 // (for efficiency/performance)
2319 
2320   // STW ref processor
2321   _ref_processor_stw =
2322     new ReferenceProcessor(mr,    // span
2323                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2324                                 // mt processing
2325                            ParallelGCThreads,
2326                                 // degree of mt processing
2327                            (ParallelGCThreads > 1),
2328                                 // mt discovery
2329                            ParallelGCThreads,
2330                                 // degree of mt discovery
2331                            true,
2332                                 // Reference discovery is atomic
2333                            &_is_alive_closure_stw);
2334                                 // is alive closure
2335                                 // (for efficiency/performance)
2336 }
2337 
2338 size_t G1CollectedHeap::capacity() const {
2339   return _hrm.length() * HeapRegion::GrainBytes;
2340 }
2341 
2342 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2343   assert(!hr->is_continues_humongous(), "pre-condition");
2344   hr->reset_gc_time_stamp();
2345   if (hr->is_starts_humongous()) {
2346     uint first_index = hr->hrm_index() + 1;
2347     uint last_index = hr->last_hc_index();
2348     for (uint i = first_index; i < last_index; i += 1) {
2349       HeapRegion* chr = region_at(i);
2350       assert(chr->is_continues_humongous(), "sanity");
2351       chr->reset_gc_time_stamp();
2352     }
2353   }
2354 }
2355 
2356 #ifndef PRODUCT
2357 
2358 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2359 private:
2360   unsigned _gc_time_stamp;
2361   bool _failures;
2362 
2363 public:
2364   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2365     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2366 
2367   virtual bool doHeapRegion(HeapRegion* hr) {
2368     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2369     if (_gc_time_stamp != region_gc_time_stamp) {
2370       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2371                              "expected %d", HR_FORMAT_PARAMS(hr),
2372                              region_gc_time_stamp, _gc_time_stamp);
2373       _failures = true;
2374     }
2375     return false;
2376   }
2377 
2378   bool failures() { return _failures; }
2379 };
2380 
2381 void G1CollectedHeap::check_gc_time_stamps() {
2382   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2383   heap_region_iterate(&cl);
2384   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2385 }
2386 #endif // PRODUCT
2387 
2388 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2389                                                  DirtyCardQueue* into_cset_dcq,
2390                                                  bool concurrent,
2391                                                  uint worker_i) {
2392   // Clean cards in the hot card cache
2393   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2394   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2395 
2396   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2397   size_t n_completed_buffers = 0;
2398   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2399     n_completed_buffers++;
2400   }
2401   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2402   dcqs.clear_n_completed_buffers();
2403   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2404 }
2405 
2406 // Computes the sum of the storage used by the various regions.
2407 size_t G1CollectedHeap::used() const {
2408   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2409   if (_archive_allocator != NULL) {
2410     result += _archive_allocator->used();
2411   }
2412   return result;
2413 }
2414 
2415 size_t G1CollectedHeap::used_unlocked() const {
2416   return _summary_bytes_used;
2417 }
2418 
2419 class SumUsedClosure: public HeapRegionClosure {
2420   size_t _used;
2421 public:
2422   SumUsedClosure() : _used(0) {}
2423   bool doHeapRegion(HeapRegion* r) {
2424     if (!r->is_continues_humongous()) {
2425       _used += r->used();
2426     }
2427     return false;
2428   }
2429   size_t result() { return _used; }
2430 };
2431 
2432 size_t G1CollectedHeap::recalculate_used() const {
2433   double recalculate_used_start = os::elapsedTime();
2434 
2435   SumUsedClosure blk;
2436   heap_region_iterate(&blk);
2437 
2438   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2439   return blk.result();
2440 }
2441 
2442 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2443   switch (cause) {
2444     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2445     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2446     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2447     case GCCause::_g1_humongous_allocation: return true;
2448     case GCCause::_update_allocation_context_stats_inc: return true;
2449     case GCCause::_wb_conc_mark:            return true;
2450     default:                                return false;
2451   }
2452 }
2453 
2454 #ifndef PRODUCT
2455 void G1CollectedHeap::allocate_dummy_regions() {
2456   // Let's fill up most of the region
2457   size_t word_size = HeapRegion::GrainWords - 1024;
2458   // And as a result the region we'll allocate will be humongous.
2459   guarantee(is_humongous(word_size), "sanity");
2460 
2461   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2462     // Let's use the existing mechanism for the allocation
2463     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2464                                                  AllocationContext::system());
2465     if (dummy_obj != NULL) {
2466       MemRegion mr(dummy_obj, word_size);
2467       CollectedHeap::fill_with_object(mr);
2468     } else {
2469       // If we can't allocate once, we probably cannot allocate
2470       // again. Let's get out of the loop.
2471       break;
2472     }
2473   }
2474 }
2475 #endif // !PRODUCT
2476 
2477 void G1CollectedHeap::increment_old_marking_cycles_started() {
2478   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2479     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2480     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2481     _old_marking_cycles_started, _old_marking_cycles_completed));
2482 
2483   _old_marking_cycles_started++;
2484 }
2485 
2486 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2487   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2488 
2489   // We assume that if concurrent == true, then the caller is a
2490   // concurrent thread that was joined the Suspendible Thread
2491   // Set. If there's ever a cheap way to check this, we should add an
2492   // assert here.
2493 
2494   // Given that this method is called at the end of a Full GC or of a
2495   // concurrent cycle, and those can be nested (i.e., a Full GC can
2496   // interrupt a concurrent cycle), the number of full collections
2497   // completed should be either one (in the case where there was no
2498   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2499   // behind the number of full collections started.
2500 
2501   // This is the case for the inner caller, i.e. a Full GC.
2502   assert(concurrent ||
2503          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2504          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2505          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2506                  "is inconsistent with _old_marking_cycles_completed = %u",
2507                  _old_marking_cycles_started, _old_marking_cycles_completed));
2508 
2509   // This is the case for the outer caller, i.e. the concurrent cycle.
2510   assert(!concurrent ||
2511          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2512          err_msg("for outer caller (concurrent cycle): "
2513                  "_old_marking_cycles_started = %u "
2514                  "is inconsistent with _old_marking_cycles_completed = %u",
2515                  _old_marking_cycles_started, _old_marking_cycles_completed));
2516 
2517   _old_marking_cycles_completed += 1;
2518 
2519   // We need to clear the "in_progress" flag in the CM thread before
2520   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2521   // is set) so that if a waiter requests another System.gc() it doesn't
2522   // incorrectly see that a marking cycle is still in progress.
2523   if (concurrent) {
2524     _cmThread->set_idle();
2525   }
2526 
2527   // This notify_all() will ensure that a thread that called
2528   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2529   // and it's waiting for a full GC to finish will be woken up. It is
2530   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2531   FullGCCount_lock->notify_all();
2532 }
2533 
2534 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2535   collector_state()->set_concurrent_cycle_started(true);
2536   _gc_timer_cm->register_gc_start(start_time);
2537 
2538   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2539   trace_heap_before_gc(_gc_tracer_cm);
2540 }
2541 
2542 void G1CollectedHeap::register_concurrent_cycle_end() {
2543   if (collector_state()->concurrent_cycle_started()) {
2544     if (_cm->has_aborted()) {
2545       _gc_tracer_cm->report_concurrent_mode_failure();
2546     }
2547 
2548     _gc_timer_cm->register_gc_end();
2549     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2550 
2551     // Clear state variables to prepare for the next concurrent cycle.
2552      collector_state()->set_concurrent_cycle_started(false);
2553     _heap_summary_sent = false;
2554   }
2555 }
2556 
2557 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2558   if (collector_state()->concurrent_cycle_started()) {
2559     // This function can be called when:
2560     //  the cleanup pause is run
2561     //  the concurrent cycle is aborted before the cleanup pause.
2562     //  the concurrent cycle is aborted after the cleanup pause,
2563     //   but before the concurrent cycle end has been registered.
2564     // Make sure that we only send the heap information once.
2565     if (!_heap_summary_sent) {
2566       trace_heap_after_gc(_gc_tracer_cm);
2567       _heap_summary_sent = true;
2568     }
2569   }
2570 }
2571 
2572 void G1CollectedHeap::collect(GCCause::Cause cause) {
2573   assert_heap_not_locked();
2574 
2575   uint gc_count_before;
2576   uint old_marking_count_before;
2577   uint full_gc_count_before;
2578   bool retry_gc;
2579 
2580   do {
2581     retry_gc = false;
2582 
2583     {
2584       MutexLocker ml(Heap_lock);
2585 
2586       // Read the GC count while holding the Heap_lock
2587       gc_count_before = total_collections();
2588       full_gc_count_before = total_full_collections();
2589       old_marking_count_before = _old_marking_cycles_started;
2590     }
2591 
2592     if (should_do_concurrent_full_gc(cause)) {
2593       // Schedule an initial-mark evacuation pause that will start a
2594       // concurrent cycle. We're setting word_size to 0 which means that
2595       // we are not requesting a post-GC allocation.
2596       VM_G1IncCollectionPause op(gc_count_before,
2597                                  0,     /* word_size */
2598                                  true,  /* should_initiate_conc_mark */
2599                                  g1_policy()->max_pause_time_ms(),
2600                                  cause);
2601       op.set_allocation_context(AllocationContext::current());
2602 
2603       VMThread::execute(&op);
2604       if (!op.pause_succeeded()) {
2605         if (old_marking_count_before == _old_marking_cycles_started) {
2606           retry_gc = op.should_retry_gc();
2607         } else {
2608           // A Full GC happened while we were trying to schedule the
2609           // initial-mark GC. No point in starting a new cycle given
2610           // that the whole heap was collected anyway.
2611         }
2612 
2613         if (retry_gc) {
2614           if (GC_locker::is_active_and_needs_gc()) {
2615             GC_locker::stall_until_clear();
2616           }
2617         }
2618       }
2619     } else {
2620       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2621           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2622 
2623         // Schedule a standard evacuation pause. We're setting word_size
2624         // to 0 which means that we are not requesting a post-GC allocation.
2625         VM_G1IncCollectionPause op(gc_count_before,
2626                                    0,     /* word_size */
2627                                    false, /* should_initiate_conc_mark */
2628                                    g1_policy()->max_pause_time_ms(),
2629                                    cause);
2630         VMThread::execute(&op);
2631       } else {
2632         // Schedule a Full GC.
2633         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2634         VMThread::execute(&op);
2635       }
2636     }
2637   } while (retry_gc);
2638 }
2639 
2640 bool G1CollectedHeap::is_in(const void* p) const {
2641   if (_hrm.reserved().contains(p)) {
2642     // Given that we know that p is in the reserved space,
2643     // heap_region_containing_raw() should successfully
2644     // return the containing region.
2645     HeapRegion* hr = heap_region_containing_raw(p);
2646     return hr->is_in(p);
2647   } else {
2648     return false;
2649   }
2650 }
2651 
2652 #ifdef ASSERT
2653 bool G1CollectedHeap::is_in_exact(const void* p) const {
2654   bool contains = reserved_region().contains(p);
2655   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2656   if (contains && available) {
2657     return true;
2658   } else {
2659     return false;
2660   }
2661 }
2662 #endif
2663 
2664 bool G1CollectedHeap::obj_in_cs(oop obj) {
2665   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2666   return r != NULL && r->in_collection_set();
2667 }
2668 
2669 // Iteration functions.
2670 
2671 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2672 
2673 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2674   ExtendedOopClosure* _cl;
2675 public:
2676   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2677   bool doHeapRegion(HeapRegion* r) {
2678     if (!r->is_continues_humongous()) {
2679       r->oop_iterate(_cl);
2680     }
2681     return false;
2682   }
2683 };
2684 
2685 // Iterates an ObjectClosure over all objects within a HeapRegion.
2686 
2687 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2688   ObjectClosure* _cl;
2689 public:
2690   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2691   bool doHeapRegion(HeapRegion* r) {
2692     if (!r->is_continues_humongous()) {
2693       r->object_iterate(_cl);
2694     }
2695     return false;
2696   }
2697 };
2698 
2699 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2700   IterateObjectClosureRegionClosure blk(cl);
2701   heap_region_iterate(&blk);
2702 }
2703 
2704 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2705   _hrm.iterate(cl);
2706 }
2707 
2708 void
2709 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2710                                          uint worker_id,
2711                                          HeapRegionClaimer *hrclaimer,
2712                                          bool concurrent) const {
2713   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2714 }
2715 
2716 // Clear the cached CSet starting regions and (more importantly)
2717 // the time stamps. Called when we reset the GC time stamp.
2718 void G1CollectedHeap::clear_cset_start_regions() {
2719   assert(_worker_cset_start_region != NULL, "sanity");
2720   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2721 
2722   for (uint i = 0; i < ParallelGCThreads; i++) {
2723     _worker_cset_start_region[i] = NULL;
2724     _worker_cset_start_region_time_stamp[i] = 0;
2725   }
2726 }
2727 
2728 // Given the id of a worker, obtain or calculate a suitable
2729 // starting region for iterating over the current collection set.
2730 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2731   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2732 
2733   HeapRegion* result = NULL;
2734   unsigned gc_time_stamp = get_gc_time_stamp();
2735 
2736   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2737     // Cached starting region for current worker was set
2738     // during the current pause - so it's valid.
2739     // Note: the cached starting heap region may be NULL
2740     // (when the collection set is empty).
2741     result = _worker_cset_start_region[worker_i];
2742     assert(result == NULL || result->in_collection_set(), "sanity");
2743     return result;
2744   }
2745 
2746   // The cached entry was not valid so let's calculate
2747   // a suitable starting heap region for this worker.
2748 
2749   // We want the parallel threads to start their collection
2750   // set iteration at different collection set regions to
2751   // avoid contention.
2752   // If we have:
2753   //          n collection set regions
2754   //          p threads
2755   // Then thread t will start at region floor ((t * n) / p)
2756 
2757   result = g1_policy()->collection_set();
2758   uint cs_size = g1_policy()->cset_region_length();
2759   uint active_workers = workers()->active_workers();
2760 
2761   uint end_ind   = (cs_size * worker_i) / active_workers;
2762   uint start_ind = 0;
2763 
2764   if (worker_i > 0 &&
2765       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2766     // Previous workers starting region is valid
2767     // so let's iterate from there
2768     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2769     result = _worker_cset_start_region[worker_i - 1];
2770   }
2771 
2772   for (uint i = start_ind; i < end_ind; i++) {
2773     result = result->next_in_collection_set();
2774   }
2775 
2776   // Note: the calculated starting heap region may be NULL
2777   // (when the collection set is empty).
2778   assert(result == NULL || result->in_collection_set(), "sanity");
2779   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2780          "should be updated only once per pause");
2781   _worker_cset_start_region[worker_i] = result;
2782   OrderAccess::storestore();
2783   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2784   return result;
2785 }
2786 
2787 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2788   HeapRegion* r = g1_policy()->collection_set();
2789   while (r != NULL) {
2790     HeapRegion* next = r->next_in_collection_set();
2791     if (cl->doHeapRegion(r)) {
2792       cl->incomplete();
2793       return;
2794     }
2795     r = next;
2796   }
2797 }
2798 
2799 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2800                                                   HeapRegionClosure *cl) {
2801   if (r == NULL) {
2802     // The CSet is empty so there's nothing to do.
2803     return;
2804   }
2805 
2806   assert(r->in_collection_set(),
2807          "Start region must be a member of the collection set.");
2808   HeapRegion* cur = r;
2809   while (cur != NULL) {
2810     HeapRegion* next = cur->next_in_collection_set();
2811     if (cl->doHeapRegion(cur) && false) {
2812       cl->incomplete();
2813       return;
2814     }
2815     cur = next;
2816   }
2817   cur = g1_policy()->collection_set();
2818   while (cur != r) {
2819     HeapRegion* next = cur->next_in_collection_set();
2820     if (cl->doHeapRegion(cur) && false) {
2821       cl->incomplete();
2822       return;
2823     }
2824     cur = next;
2825   }
2826 }
2827 
2828 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2829   HeapRegion* result = _hrm.next_region_in_heap(from);
2830   while (result != NULL && result->is_pinned()) {
2831     result = _hrm.next_region_in_heap(result);
2832   }
2833   return result;
2834 }
2835 
2836 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2837   HeapRegion* hr = heap_region_containing(addr);
2838   return hr->block_start(addr);
2839 }
2840 
2841 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2842   HeapRegion* hr = heap_region_containing(addr);
2843   return hr->block_size(addr);
2844 }
2845 
2846 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2847   HeapRegion* hr = heap_region_containing(addr);
2848   return hr->block_is_obj(addr);
2849 }
2850 
2851 bool G1CollectedHeap::supports_tlab_allocation() const {
2852   return true;
2853 }
2854 
2855 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2856   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2857 }
2858 
2859 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2860   return young_list()->eden_used_bytes();
2861 }
2862 
2863 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2864 // must be smaller than the humongous object limit.
2865 size_t G1CollectedHeap::max_tlab_size() const {
2866   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2867 }
2868 
2869 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2870   AllocationContext_t context = AllocationContext::current();
2871   return _allocator->unsafe_max_tlab_alloc(context);
2872 }
2873 
2874 size_t G1CollectedHeap::max_capacity() const {
2875   return _hrm.reserved().byte_size();
2876 }
2877 
2878 jlong G1CollectedHeap::millis_since_last_gc() {
2879   // assert(false, "NYI");
2880   return 0;
2881 }
2882 
2883 void G1CollectedHeap::prepare_for_verify() {
2884   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2885     ensure_parsability(false);
2886   }
2887   g1_rem_set()->prepare_for_verify();
2888 }
2889 
2890 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2891                                               VerifyOption vo) {
2892   switch (vo) {
2893   case VerifyOption_G1UsePrevMarking:
2894     return hr->obj_allocated_since_prev_marking(obj);
2895   case VerifyOption_G1UseNextMarking:
2896     return hr->obj_allocated_since_next_marking(obj);
2897   case VerifyOption_G1UseMarkWord:
2898     return false;
2899   default:
2900     ShouldNotReachHere();
2901   }
2902   return false; // keep some compilers happy
2903 }
2904 
2905 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2906   switch (vo) {
2907   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2908   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2909   case VerifyOption_G1UseMarkWord:    return NULL;
2910   default:                            ShouldNotReachHere();
2911   }
2912   return NULL; // keep some compilers happy
2913 }
2914 
2915 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2916   switch (vo) {
2917   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2918   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2919   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2920   default:                            ShouldNotReachHere();
2921   }
2922   return false; // keep some compilers happy
2923 }
2924 
2925 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2926   switch (vo) {
2927   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2928   case VerifyOption_G1UseNextMarking: return "NTAMS";
2929   case VerifyOption_G1UseMarkWord:    return "NONE";
2930   default:                            ShouldNotReachHere();
2931   }
2932   return NULL; // keep some compilers happy
2933 }
2934 
2935 class VerifyRootsClosure: public OopClosure {
2936 private:
2937   G1CollectedHeap* _g1h;
2938   VerifyOption     _vo;
2939   bool             _failures;
2940 public:
2941   // _vo == UsePrevMarking -> use "prev" marking information,
2942   // _vo == UseNextMarking -> use "next" marking information,
2943   // _vo == UseMarkWord    -> use mark word from object header.
2944   VerifyRootsClosure(VerifyOption vo) :
2945     _g1h(G1CollectedHeap::heap()),
2946     _vo(vo),
2947     _failures(false) { }
2948 
2949   bool failures() { return _failures; }
2950 
2951   template <class T> void do_oop_nv(T* p) {
2952     T heap_oop = oopDesc::load_heap_oop(p);
2953     if (!oopDesc::is_null(heap_oop)) {
2954       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2955       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2956         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2957                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2958         if (_vo == VerifyOption_G1UseMarkWord) {
2959           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2960         }
2961         obj->print_on(gclog_or_tty);
2962         _failures = true;
2963       }
2964     }
2965   }
2966 
2967   void do_oop(oop* p)       { do_oop_nv(p); }
2968   void do_oop(narrowOop* p) { do_oop_nv(p); }
2969 };
2970 
2971 class G1VerifyCodeRootOopClosure: public OopClosure {
2972   G1CollectedHeap* _g1h;
2973   OopClosure* _root_cl;
2974   nmethod* _nm;
2975   VerifyOption _vo;
2976   bool _failures;
2977 
2978   template <class T> void do_oop_work(T* p) {
2979     // First verify that this root is live
2980     _root_cl->do_oop(p);
2981 
2982     if (!G1VerifyHeapRegionCodeRoots) {
2983       // We're not verifying the code roots attached to heap region.
2984       return;
2985     }
2986 
2987     // Don't check the code roots during marking verification in a full GC
2988     if (_vo == VerifyOption_G1UseMarkWord) {
2989       return;
2990     }
2991 
2992     // Now verify that the current nmethod (which contains p) is
2993     // in the code root list of the heap region containing the
2994     // object referenced by p.
2995 
2996     T heap_oop = oopDesc::load_heap_oop(p);
2997     if (!oopDesc::is_null(heap_oop)) {
2998       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2999 
3000       // Now fetch the region containing the object
3001       HeapRegion* hr = _g1h->heap_region_containing(obj);
3002       HeapRegionRemSet* hrrs = hr->rem_set();
3003       // Verify that the strong code root list for this region
3004       // contains the nmethod
3005       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3006         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
3007                                "from nmethod " PTR_FORMAT " not in strong "
3008                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
3009                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
3010         _failures = true;
3011       }
3012     }
3013   }
3014 
3015 public:
3016   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3017     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3018 
3019   void do_oop(oop* p) { do_oop_work(p); }
3020   void do_oop(narrowOop* p) { do_oop_work(p); }
3021 
3022   void set_nmethod(nmethod* nm) { _nm = nm; }
3023   bool failures() { return _failures; }
3024 };
3025 
3026 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3027   G1VerifyCodeRootOopClosure* _oop_cl;
3028 
3029 public:
3030   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3031     _oop_cl(oop_cl) {}
3032 
3033   void do_code_blob(CodeBlob* cb) {
3034     nmethod* nm = cb->as_nmethod_or_null();
3035     if (nm != NULL) {
3036       _oop_cl->set_nmethod(nm);
3037       nm->oops_do(_oop_cl);
3038     }
3039   }
3040 };
3041 
3042 class YoungRefCounterClosure : public OopClosure {
3043   G1CollectedHeap* _g1h;
3044   int              _count;
3045  public:
3046   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3047   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3048   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3049 
3050   int count() { return _count; }
3051   void reset_count() { _count = 0; };
3052 };
3053 
3054 class VerifyKlassClosure: public KlassClosure {
3055   YoungRefCounterClosure _young_ref_counter_closure;
3056   OopClosure *_oop_closure;
3057  public:
3058   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3059   void do_klass(Klass* k) {
3060     k->oops_do(_oop_closure);
3061 
3062     _young_ref_counter_closure.reset_count();
3063     k->oops_do(&_young_ref_counter_closure);
3064     if (_young_ref_counter_closure.count() > 0) {
3065       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3066     }
3067   }
3068 };
3069 
3070 class VerifyLivenessOopClosure: public OopClosure {
3071   G1CollectedHeap* _g1h;
3072   VerifyOption _vo;
3073 public:
3074   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3075     _g1h(g1h), _vo(vo)
3076   { }
3077   void do_oop(narrowOop *p) { do_oop_work(p); }
3078   void do_oop(      oop *p) { do_oop_work(p); }
3079 
3080   template <class T> void do_oop_work(T *p) {
3081     oop obj = oopDesc::load_decode_heap_oop(p);
3082     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3083               "Dead object referenced by a not dead object");
3084   }
3085 };
3086 
3087 class VerifyObjsInRegionClosure: public ObjectClosure {
3088 private:
3089   G1CollectedHeap* _g1h;
3090   size_t _live_bytes;
3091   HeapRegion *_hr;
3092   VerifyOption _vo;
3093 public:
3094   // _vo == UsePrevMarking -> use "prev" marking information,
3095   // _vo == UseNextMarking -> use "next" marking information,
3096   // _vo == UseMarkWord    -> use mark word from object header.
3097   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3098     : _live_bytes(0), _hr(hr), _vo(vo) {
3099     _g1h = G1CollectedHeap::heap();
3100   }
3101   void do_object(oop o) {
3102     VerifyLivenessOopClosure isLive(_g1h, _vo);
3103     assert(o != NULL, "Huh?");
3104     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3105       // If the object is alive according to the mark word,
3106       // then verify that the marking information agrees.
3107       // Note we can't verify the contra-positive of the
3108       // above: if the object is dead (according to the mark
3109       // word), it may not be marked, or may have been marked
3110       // but has since became dead, or may have been allocated
3111       // since the last marking.
3112       if (_vo == VerifyOption_G1UseMarkWord) {
3113         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3114       }
3115 
3116       o->oop_iterate_no_header(&isLive);
3117       if (!_hr->obj_allocated_since_prev_marking(o)) {
3118         size_t obj_size = o->size();    // Make sure we don't overflow
3119         _live_bytes += (obj_size * HeapWordSize);
3120       }
3121     }
3122   }
3123   size_t live_bytes() { return _live_bytes; }
3124 };
3125 
3126 class VerifyArchiveOopClosure: public OopClosure {
3127 public:
3128   VerifyArchiveOopClosure(HeapRegion *hr) { }
3129   void do_oop(narrowOop *p) { do_oop_work(p); }
3130   void do_oop(      oop *p) { do_oop_work(p); }
3131 
3132   template <class T> void do_oop_work(T *p) {
3133     oop obj = oopDesc::load_decode_heap_oop(p);
3134     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3135               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3136                       p2i(p), p2i(obj)));
3137   }
3138 };
3139 
3140 class VerifyArchiveRegionClosure: public ObjectClosure {
3141 public:
3142   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3143   // Verify that all object pointers are to archive regions.
3144   void do_object(oop o) {
3145     VerifyArchiveOopClosure checkOop(NULL);
3146     assert(o != NULL, "Should not be here for NULL oops");
3147     o->oop_iterate_no_header(&checkOop);
3148   }
3149 };
3150 
3151 class VerifyRegionClosure: public HeapRegionClosure {
3152 private:
3153   bool             _par;
3154   VerifyOption     _vo;
3155   bool             _failures;
3156 public:
3157   // _vo == UsePrevMarking -> use "prev" marking information,
3158   // _vo == UseNextMarking -> use "next" marking information,
3159   // _vo == UseMarkWord    -> use mark word from object header.
3160   VerifyRegionClosure(bool par, VerifyOption vo)
3161     : _par(par),
3162       _vo(vo),
3163       _failures(false) {}
3164 
3165   bool failures() {
3166     return _failures;
3167   }
3168 
3169   bool doHeapRegion(HeapRegion* r) {
3170     // For archive regions, verify there are no heap pointers to
3171     // non-pinned regions. For all others, verify liveness info.
3172     if (r->is_archive()) {
3173       VerifyArchiveRegionClosure verify_oop_pointers(r);
3174       r->object_iterate(&verify_oop_pointers);
3175       return true;
3176     }
3177     if (!r->is_continues_humongous()) {
3178       bool failures = false;
3179       r->verify(_vo, &failures);
3180       if (failures) {
3181         _failures = true;
3182       } else {
3183         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3184         r->object_iterate(&not_dead_yet_cl);
3185         if (_vo != VerifyOption_G1UseNextMarking) {
3186           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3187             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3188                                    "max_live_bytes " SIZE_FORMAT " "
3189                                    "< calculated " SIZE_FORMAT,
3190                                    p2i(r->bottom()), p2i(r->end()),
3191                                    r->max_live_bytes(),
3192                                  not_dead_yet_cl.live_bytes());
3193             _failures = true;
3194           }
3195         } else {
3196           // When vo == UseNextMarking we cannot currently do a sanity
3197           // check on the live bytes as the calculation has not been
3198           // finalized yet.
3199         }
3200       }
3201     }
3202     return false; // stop the region iteration if we hit a failure
3203   }
3204 };
3205 
3206 // This is the task used for parallel verification of the heap regions
3207 
3208 class G1ParVerifyTask: public AbstractGangTask {
3209 private:
3210   G1CollectedHeap*  _g1h;
3211   VerifyOption      _vo;
3212   bool              _failures;
3213   HeapRegionClaimer _hrclaimer;
3214 
3215 public:
3216   // _vo == UsePrevMarking -> use "prev" marking information,
3217   // _vo == UseNextMarking -> use "next" marking information,
3218   // _vo == UseMarkWord    -> use mark word from object header.
3219   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3220       AbstractGangTask("Parallel verify task"),
3221       _g1h(g1h),
3222       _vo(vo),
3223       _failures(false),
3224       _hrclaimer(g1h->workers()->active_workers()) {}
3225 
3226   bool failures() {
3227     return _failures;
3228   }
3229 
3230   void work(uint worker_id) {
3231     HandleMark hm;
3232     VerifyRegionClosure blk(true, _vo);
3233     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3234     if (blk.failures()) {
3235       _failures = true;
3236     }
3237   }
3238 };
3239 
3240 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3241   if (SafepointSynchronize::is_at_safepoint()) {
3242     assert(Thread::current()->is_VM_thread(),
3243            "Expected to be executed serially by the VM thread at this point");
3244 
3245     if (!silent) { gclog_or_tty->print("Roots "); }
3246     VerifyRootsClosure rootsCl(vo);
3247     VerifyKlassClosure klassCl(this, &rootsCl);
3248     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3249 
3250     // We apply the relevant closures to all the oops in the
3251     // system dictionary, class loader data graph, the string table
3252     // and the nmethods in the code cache.
3253     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3254     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3255 
3256     {
3257       G1RootProcessor root_processor(this, 1);
3258       root_processor.process_all_roots(&rootsCl,
3259                                        &cldCl,
3260                                        &blobsCl);
3261     }
3262 
3263     bool failures = rootsCl.failures() || codeRootsCl.failures();
3264 
3265     if (vo != VerifyOption_G1UseMarkWord) {
3266       // If we're verifying during a full GC then the region sets
3267       // will have been torn down at the start of the GC. Therefore
3268       // verifying the region sets will fail. So we only verify
3269       // the region sets when not in a full GC.
3270       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3271       verify_region_sets();
3272     }
3273 
3274     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3275     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3276 
3277       G1ParVerifyTask task(this, vo);
3278       workers()->run_task(&task);
3279       if (task.failures()) {
3280         failures = true;
3281       }
3282 
3283     } else {
3284       VerifyRegionClosure blk(false, vo);
3285       heap_region_iterate(&blk);
3286       if (blk.failures()) {
3287         failures = true;
3288       }
3289     }
3290 
3291     if (G1StringDedup::is_enabled()) {
3292       if (!silent) gclog_or_tty->print("StrDedup ");
3293       G1StringDedup::verify();
3294     }
3295 
3296     if (failures) {
3297       gclog_or_tty->print_cr("Heap:");
3298       // It helps to have the per-region information in the output to
3299       // help us track down what went wrong. This is why we call
3300       // print_extended_on() instead of print_on().
3301       print_extended_on(gclog_or_tty);
3302       gclog_or_tty->cr();
3303       gclog_or_tty->flush();
3304     }
3305     guarantee(!failures, "there should not have been any failures");
3306   } else {
3307     if (!silent) {
3308       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3309       if (G1StringDedup::is_enabled()) {
3310         gclog_or_tty->print(", StrDedup");
3311       }
3312       gclog_or_tty->print(") ");
3313     }
3314   }
3315 }
3316 
3317 void G1CollectedHeap::verify(bool silent) {
3318   verify(silent, VerifyOption_G1UsePrevMarking);
3319 }
3320 
3321 double G1CollectedHeap::verify(bool guard, const char* msg) {
3322   double verify_time_ms = 0.0;
3323 
3324   if (guard && total_collections() >= VerifyGCStartAt) {
3325     double verify_start = os::elapsedTime();
3326     HandleMark hm;  // Discard invalid handles created during verification
3327     prepare_for_verify();
3328     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3329     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3330   }
3331 
3332   return verify_time_ms;
3333 }
3334 
3335 void G1CollectedHeap::verify_before_gc() {
3336   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3337   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3338 }
3339 
3340 void G1CollectedHeap::verify_after_gc() {
3341   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3342   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3343 }
3344 
3345 class PrintRegionClosure: public HeapRegionClosure {
3346   outputStream* _st;
3347 public:
3348   PrintRegionClosure(outputStream* st) : _st(st) {}
3349   bool doHeapRegion(HeapRegion* r) {
3350     r->print_on(_st);
3351     return false;
3352   }
3353 };
3354 
3355 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3356                                        const HeapRegion* hr,
3357                                        const VerifyOption vo) const {
3358   switch (vo) {
3359   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3360   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3361   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3362   default:                            ShouldNotReachHere();
3363   }
3364   return false; // keep some compilers happy
3365 }
3366 
3367 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3368                                        const VerifyOption vo) const {
3369   switch (vo) {
3370   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3371   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3372   case VerifyOption_G1UseMarkWord: {
3373     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3374     return !obj->is_gc_marked() && !hr->is_archive();
3375   }
3376   default:                            ShouldNotReachHere();
3377   }
3378   return false; // keep some compilers happy
3379 }
3380 
3381 void G1CollectedHeap::print_on(outputStream* st) const {
3382   st->print(" %-20s", "garbage-first heap");
3383   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3384             capacity()/K, used_unlocked()/K);
3385   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3386             p2i(_hrm.reserved().start()),
3387             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3388             p2i(_hrm.reserved().end()));
3389   st->cr();
3390   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3391   uint young_regions = _young_list->length();
3392   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3393             (size_t) young_regions * HeapRegion::GrainBytes / K);
3394   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3395   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3396             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3397   st->cr();
3398   MetaspaceAux::print_on(st);
3399 }
3400 
3401 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3402   print_on(st);
3403 
3404   // Print the per-region information.
3405   st->cr();
3406   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3407                "HS=humongous(starts), HC=humongous(continues), "
3408                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3409                "PTAMS=previous top-at-mark-start, "
3410                "NTAMS=next top-at-mark-start)");
3411   PrintRegionClosure blk(st);
3412   heap_region_iterate(&blk);
3413 }
3414 
3415 void G1CollectedHeap::print_on_error(outputStream* st) const {
3416   this->CollectedHeap::print_on_error(st);
3417 
3418   if (_cm != NULL) {
3419     st->cr();
3420     _cm->print_on_error(st);
3421   }
3422 }
3423 
3424 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3425   workers()->print_worker_threads_on(st);
3426   _cmThread->print_on(st);
3427   st->cr();
3428   _cm->print_worker_threads_on(st);
3429   _cg1r->print_worker_threads_on(st);
3430   if (G1StringDedup::is_enabled()) {
3431     G1StringDedup::print_worker_threads_on(st);
3432   }
3433 }
3434 
3435 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3436   workers()->threads_do(tc);
3437   tc->do_thread(_cmThread);
3438   _cg1r->threads_do(tc);
3439   if (G1StringDedup::is_enabled()) {
3440     G1StringDedup::threads_do(tc);
3441   }
3442 }
3443 
3444 void G1CollectedHeap::print_tracing_info() const {
3445   // We'll overload this to mean "trace GC pause statistics."
3446   if (TraceYoungGenTime || TraceOldGenTime) {
3447     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3448     // to that.
3449     g1_policy()->print_tracing_info();
3450   }
3451   if (G1SummarizeRSetStats) {
3452     g1_rem_set()->print_summary_info();
3453   }
3454   if (G1SummarizeConcMark) {
3455     concurrent_mark()->print_summary_info();
3456   }
3457   g1_policy()->print_yg_surv_rate_info();
3458 }
3459 
3460 #ifndef PRODUCT
3461 // Helpful for debugging RSet issues.
3462 
3463 class PrintRSetsClosure : public HeapRegionClosure {
3464 private:
3465   const char* _msg;
3466   size_t _occupied_sum;
3467 
3468 public:
3469   bool doHeapRegion(HeapRegion* r) {
3470     HeapRegionRemSet* hrrs = r->rem_set();
3471     size_t occupied = hrrs->occupied();
3472     _occupied_sum += occupied;
3473 
3474     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3475                            HR_FORMAT_PARAMS(r));
3476     if (occupied == 0) {
3477       gclog_or_tty->print_cr("  RSet is empty");
3478     } else {
3479       hrrs->print();
3480     }
3481     gclog_or_tty->print_cr("----------");
3482     return false;
3483   }
3484 
3485   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3486     gclog_or_tty->cr();
3487     gclog_or_tty->print_cr("========================================");
3488     gclog_or_tty->print_cr("%s", msg);
3489     gclog_or_tty->cr();
3490   }
3491 
3492   ~PrintRSetsClosure() {
3493     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3494     gclog_or_tty->print_cr("========================================");
3495     gclog_or_tty->cr();
3496   }
3497 };
3498 
3499 void G1CollectedHeap::print_cset_rsets() {
3500   PrintRSetsClosure cl("Printing CSet RSets");
3501   collection_set_iterate(&cl);
3502 }
3503 
3504 void G1CollectedHeap::print_all_rsets() {
3505   PrintRSetsClosure cl("Printing All RSets");;
3506   heap_region_iterate(&cl);
3507 }
3508 #endif // PRODUCT
3509 
3510 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3511   YoungList* young_list = heap()->young_list();
3512 
3513   size_t eden_used_bytes = young_list->eden_used_bytes();
3514   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3515 
3516   size_t eden_capacity_bytes =
3517     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3518 
3519   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3520   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3521 }
3522 
3523 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3524   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3525   gc_tracer->report_gc_heap_summary(when, heap_summary);
3526 
3527   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3528   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3529 }
3530 
3531 
3532 G1CollectedHeap* G1CollectedHeap::heap() {
3533   CollectedHeap* heap = Universe::heap();
3534   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3535   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3536   return (G1CollectedHeap*)heap;
3537 }
3538 
3539 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3540   // always_do_update_barrier = false;
3541   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3542   // Fill TLAB's and such
3543   accumulate_statistics_all_tlabs();
3544   ensure_parsability(true);
3545 
3546   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3547       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3548     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3549   }
3550 }
3551 
3552 void G1CollectedHeap::gc_epilogue(bool full) {
3553 
3554   if (G1SummarizeRSetStats &&
3555       (G1SummarizeRSetStatsPeriod > 0) &&
3556       // we are at the end of the GC. Total collections has already been increased.
3557       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3558     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3559   }
3560 
3561   // FIXME: what is this about?
3562   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3563   // is set.
3564   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3565                         "derived pointer present"));
3566   // always_do_update_barrier = true;
3567 
3568   resize_all_tlabs();
3569   allocation_context_stats().update(full);
3570 
3571   // We have just completed a GC. Update the soft reference
3572   // policy with the new heap occupancy
3573   Universe::update_heap_info_at_gc();
3574 }
3575 
3576 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3577                                                uint gc_count_before,
3578                                                bool* succeeded,
3579                                                GCCause::Cause gc_cause) {
3580   assert_heap_not_locked_and_not_at_safepoint();
3581   g1_policy()->record_stop_world_start();
3582   VM_G1IncCollectionPause op(gc_count_before,
3583                              word_size,
3584                              false, /* should_initiate_conc_mark */
3585                              g1_policy()->max_pause_time_ms(),
3586                              gc_cause);
3587 
3588   op.set_allocation_context(AllocationContext::current());
3589   VMThread::execute(&op);
3590 
3591   HeapWord* result = op.result();
3592   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3593   assert(result == NULL || ret_succeeded,
3594          "the result should be NULL if the VM did not succeed");
3595   *succeeded = ret_succeeded;
3596 
3597   assert_heap_not_locked();
3598   return result;
3599 }
3600 
3601 void
3602 G1CollectedHeap::doConcurrentMark() {
3603   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3604   if (!_cmThread->in_progress()) {
3605     _cmThread->set_started();
3606     CGC_lock->notify();
3607   }
3608 }
3609 
3610 size_t G1CollectedHeap::pending_card_num() {
3611   size_t extra_cards = 0;
3612   JavaThread *curr = Threads::first();
3613   while (curr != NULL) {
3614     DirtyCardQueue& dcq = curr->dirty_card_queue();
3615     extra_cards += dcq.size();
3616     curr = curr->next();
3617   }
3618   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3619   size_t buffer_size = dcqs.buffer_size();
3620   size_t buffer_num = dcqs.completed_buffers_num();
3621 
3622   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3623   // in bytes - not the number of 'entries'. We need to convert
3624   // into a number of cards.
3625   return (buffer_size * buffer_num + extra_cards) / oopSize;
3626 }
3627 
3628 size_t G1CollectedHeap::cards_scanned() {
3629   return g1_rem_set()->cardsScanned();
3630 }
3631 
3632 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3633  private:
3634   size_t _total_humongous;
3635   size_t _candidate_humongous;
3636 
3637   DirtyCardQueue _dcq;
3638 
3639   // We don't nominate objects with many remembered set entries, on
3640   // the assumption that such objects are likely still live.
3641   bool is_remset_small(HeapRegion* region) const {
3642     HeapRegionRemSet* const rset = region->rem_set();
3643     return G1EagerReclaimHumongousObjectsWithStaleRefs
3644       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3645       : rset->is_empty();
3646   }
3647 
3648   bool is_typeArray_region(HeapRegion* region) const {
3649     return oop(region->bottom())->is_typeArray();
3650   }
3651 
3652   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3653     assert(region->is_starts_humongous(), "Must start a humongous object");
3654 
3655     // Candidate selection must satisfy the following constraints
3656     // while concurrent marking is in progress:
3657     //
3658     // * In order to maintain SATB invariants, an object must not be
3659     // reclaimed if it was allocated before the start of marking and
3660     // has not had its references scanned.  Such an object must have
3661     // its references (including type metadata) scanned to ensure no
3662     // live objects are missed by the marking process.  Objects
3663     // allocated after the start of concurrent marking don't need to
3664     // be scanned.
3665     //
3666     // * An object must not be reclaimed if it is on the concurrent
3667     // mark stack.  Objects allocated after the start of concurrent
3668     // marking are never pushed on the mark stack.
3669     //
3670     // Nominating only objects allocated after the start of concurrent
3671     // marking is sufficient to meet both constraints.  This may miss
3672     // some objects that satisfy the constraints, but the marking data
3673     // structures don't support efficiently performing the needed
3674     // additional tests or scrubbing of the mark stack.
3675     //
3676     // However, we presently only nominate is_typeArray() objects.
3677     // A humongous object containing references induces remembered
3678     // set entries on other regions.  In order to reclaim such an
3679     // object, those remembered sets would need to be cleaned up.
3680     //
3681     // We also treat is_typeArray() objects specially, allowing them
3682     // to be reclaimed even if allocated before the start of
3683     // concurrent mark.  For this we rely on mark stack insertion to
3684     // exclude is_typeArray() objects, preventing reclaiming an object
3685     // that is in the mark stack.  We also rely on the metadata for
3686     // such objects to be built-in and so ensured to be kept live.
3687     // Frequent allocation and drop of large binary blobs is an
3688     // important use case for eager reclaim, and this special handling
3689     // may reduce needed headroom.
3690 
3691     return is_typeArray_region(region) && is_remset_small(region);
3692   }
3693 
3694  public:
3695   RegisterHumongousWithInCSetFastTestClosure()
3696   : _total_humongous(0),
3697     _candidate_humongous(0),
3698     _dcq(&JavaThread::dirty_card_queue_set()) {
3699   }
3700 
3701   virtual bool doHeapRegion(HeapRegion* r) {
3702     if (!r->is_starts_humongous()) {
3703       return false;
3704     }
3705     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3706 
3707     bool is_candidate = humongous_region_is_candidate(g1h, r);
3708     uint rindex = r->hrm_index();
3709     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3710     if (is_candidate) {
3711       _candidate_humongous++;
3712       g1h->register_humongous_region_with_cset(rindex);
3713       // Is_candidate already filters out humongous object with large remembered sets.
3714       // If we have a humongous object with a few remembered sets, we simply flush these
3715       // remembered set entries into the DCQS. That will result in automatic
3716       // re-evaluation of their remembered set entries during the following evacuation
3717       // phase.
3718       if (!r->rem_set()->is_empty()) {
3719         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3720                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3721         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3722         HeapRegionRemSetIterator hrrs(r->rem_set());
3723         size_t card_index;
3724         while (hrrs.has_next(card_index)) {
3725           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3726           // The remembered set might contain references to already freed
3727           // regions. Filter out such entries to avoid failing card table
3728           // verification.
3729           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3730             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3731               *card_ptr = CardTableModRefBS::dirty_card_val();
3732               _dcq.enqueue(card_ptr);
3733             }
3734           }
3735         }
3736         r->rem_set()->clear_locked();
3737       }
3738       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3739     }
3740     _total_humongous++;
3741 
3742     return false;
3743   }
3744 
3745   size_t total_humongous() const { return _total_humongous; }
3746   size_t candidate_humongous() const { return _candidate_humongous; }
3747 
3748   void flush_rem_set_entries() { _dcq.flush(); }
3749 };
3750 
3751 void G1CollectedHeap::register_humongous_regions_with_cset() {
3752   if (!G1EagerReclaimHumongousObjects) {
3753     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3754     return;
3755   }
3756   double time = os::elapsed_counter();
3757 
3758   // Collect reclaim candidate information and register candidates with cset.
3759   RegisterHumongousWithInCSetFastTestClosure cl;
3760   heap_region_iterate(&cl);
3761 
3762   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3763   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3764                                                                   cl.total_humongous(),
3765                                                                   cl.candidate_humongous());
3766   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3767 
3768   // Finally flush all remembered set entries to re-check into the global DCQS.
3769   cl.flush_rem_set_entries();
3770 }
3771 
3772 void
3773 G1CollectedHeap::setup_surviving_young_words() {
3774   assert(_surviving_young_words == NULL, "pre-condition");
3775   uint array_length = g1_policy()->young_cset_region_length();
3776   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3777   if (_surviving_young_words == NULL) {
3778     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3779                           "Not enough space for young surv words summary.");
3780   }
3781   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3782 #ifdef ASSERT
3783   for (uint i = 0;  i < array_length; ++i) {
3784     assert( _surviving_young_words[i] == 0, "memset above" );
3785   }
3786 #endif // !ASSERT
3787 }
3788 
3789 void
3790 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3791   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3792   uint array_length = g1_policy()->young_cset_region_length();
3793   for (uint i = 0; i < array_length; ++i) {
3794     _surviving_young_words[i] += surv_young_words[i];
3795   }
3796 }
3797 
3798 void
3799 G1CollectedHeap::cleanup_surviving_young_words() {
3800   guarantee( _surviving_young_words != NULL, "pre-condition" );
3801   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3802   _surviving_young_words = NULL;
3803 }
3804 
3805 #ifdef ASSERT
3806 class VerifyCSetClosure: public HeapRegionClosure {
3807 public:
3808   bool doHeapRegion(HeapRegion* hr) {
3809     // Here we check that the CSet region's RSet is ready for parallel
3810     // iteration. The fields that we'll verify are only manipulated
3811     // when the region is part of a CSet and is collected. Afterwards,
3812     // we reset these fields when we clear the region's RSet (when the
3813     // region is freed) so they are ready when the region is
3814     // re-allocated. The only exception to this is if there's an
3815     // evacuation failure and instead of freeing the region we leave
3816     // it in the heap. In that case, we reset these fields during
3817     // evacuation failure handling.
3818     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3819 
3820     // Here's a good place to add any other checks we'd like to
3821     // perform on CSet regions.
3822     return false;
3823   }
3824 };
3825 #endif // ASSERT
3826 
3827 uint G1CollectedHeap::num_task_queues() const {
3828   return _task_queues->size();
3829 }
3830 
3831 #if TASKQUEUE_STATS
3832 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3833   st->print_raw_cr("GC Task Stats");
3834   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3835   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3836 }
3837 
3838 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3839   print_taskqueue_stats_hdr(st);
3840 
3841   TaskQueueStats totals;
3842   const uint n = num_task_queues();
3843   for (uint i = 0; i < n; ++i) {
3844     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3845     totals += task_queue(i)->stats;
3846   }
3847   st->print_raw("tot "); totals.print(st); st->cr();
3848 
3849   DEBUG_ONLY(totals.verify());
3850 }
3851 
3852 void G1CollectedHeap::reset_taskqueue_stats() {
3853   const uint n = num_task_queues();
3854   for (uint i = 0; i < n; ++i) {
3855     task_queue(i)->stats.reset();
3856   }
3857 }
3858 #endif // TASKQUEUE_STATS
3859 
3860 void G1CollectedHeap::log_gc_header() {
3861   if (!G1Log::fine()) {
3862     return;
3863   }
3864 
3865   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3866 
3867   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3868     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3869     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3870 
3871   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3872 }
3873 
3874 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3875   if (!G1Log::fine()) {
3876     return;
3877   }
3878 
3879   if (G1Log::finer()) {
3880     if (evacuation_failed()) {
3881       gclog_or_tty->print(" (to-space exhausted)");
3882     }
3883     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3884     g1_policy()->phase_times()->note_gc_end();
3885     g1_policy()->phase_times()->print(pause_time_sec);
3886     g1_policy()->print_detailed_heap_transition();
3887   } else {
3888     if (evacuation_failed()) {
3889       gclog_or_tty->print("--");
3890     }
3891     g1_policy()->print_heap_transition();
3892     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3893   }
3894   gclog_or_tty->flush();
3895 }
3896 
3897 void G1CollectedHeap::wait_for_root_region_scanning() {
3898   double scan_wait_start = os::elapsedTime();
3899   // We have to wait until the CM threads finish scanning the
3900   // root regions as it's the only way to ensure that all the
3901   // objects on them have been correctly scanned before we start
3902   // moving them during the GC.
3903   bool waited = _cm->root_regions()->wait_until_scan_finished();
3904   double wait_time_ms = 0.0;
3905   if (waited) {
3906     double scan_wait_end = os::elapsedTime();
3907     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3908   }
3909   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3910 }
3911 
3912 bool
3913 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3914   assert_at_safepoint(true /* should_be_vm_thread */);
3915   guarantee(!is_gc_active(), "collection is not reentrant");
3916 
3917   if (GC_locker::check_active_before_gc()) {
3918     return false;
3919   }
3920 
3921   _gc_timer_stw->register_gc_start();
3922 
3923   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3924 
3925   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3926   ResourceMark rm;
3927 
3928   wait_for_root_region_scanning();
3929 
3930   G1Log::update_level();
3931   print_heap_before_gc();
3932   trace_heap_before_gc(_gc_tracer_stw);
3933 
3934   verify_region_sets_optional();
3935   verify_dirty_young_regions();
3936 
3937   // This call will decide whether this pause is an initial-mark
3938   // pause. If it is, during_initial_mark_pause() will return true
3939   // for the duration of this pause.
3940   g1_policy()->decide_on_conc_mark_initiation();
3941 
3942   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3943   assert(!collector_state()->during_initial_mark_pause() ||
3944           collector_state()->gcs_are_young(), "sanity");
3945 
3946   // We also do not allow mixed GCs during marking.
3947   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3948 
3949   // Record whether this pause is an initial mark. When the current
3950   // thread has completed its logging output and it's safe to signal
3951   // the CM thread, the flag's value in the policy has been reset.
3952   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3953 
3954   // Inner scope for scope based logging, timers, and stats collection
3955   {
3956     EvacuationInfo evacuation_info;
3957 
3958     if (collector_state()->during_initial_mark_pause()) {
3959       // We are about to start a marking cycle, so we increment the
3960       // full collection counter.
3961       increment_old_marking_cycles_started();
3962       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3963     }
3964 
3965     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3966 
3967     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3968 
3969     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3970                                                                   workers()->active_workers(),
3971                                                                   Threads::number_of_non_daemon_threads());
3972     workers()->set_active_workers(active_workers);
3973 
3974     double pause_start_sec = os::elapsedTime();
3975     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3976     log_gc_header();
3977 
3978     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3979     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3980 
3981     // If the secondary_free_list is not empty, append it to the
3982     // free_list. No need to wait for the cleanup operation to finish;
3983     // the region allocation code will check the secondary_free_list
3984     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3985     // set, skip this step so that the region allocation code has to
3986     // get entries from the secondary_free_list.
3987     if (!G1StressConcRegionFreeing) {
3988       append_secondary_free_list_if_not_empty_with_lock();
3989     }
3990 
3991     assert(check_young_list_well_formed(), "young list should be well formed");
3992 
3993     // Don't dynamically change the number of GC threads this early.  A value of
3994     // 0 is used to indicate serial work.  When parallel work is done,
3995     // it will be set.
3996 
3997     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3998       IsGCActiveMark x;
3999 
4000       gc_prologue(false);
4001       increment_total_collections(false /* full gc */);
4002       increment_gc_time_stamp();
4003 
4004       verify_before_gc();
4005 
4006       check_bitmaps("GC Start");
4007 
4008       COMPILER2_PRESENT(DerivedPointerTable::clear());
4009 
4010       // Please see comment in g1CollectedHeap.hpp and
4011       // G1CollectedHeap::ref_processing_init() to see how
4012       // reference processing currently works in G1.
4013 
4014       // Enable discovery in the STW reference processor
4015       ref_processor_stw()->enable_discovery();
4016 
4017       {
4018         // We want to temporarily turn off discovery by the
4019         // CM ref processor, if necessary, and turn it back on
4020         // on again later if we do. Using a scoped
4021         // NoRefDiscovery object will do this.
4022         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4023 
4024         // Forget the current alloc region (we might even choose it to be part
4025         // of the collection set!).
4026         _allocator->release_mutator_alloc_region();
4027 
4028         // We should call this after we retire the mutator alloc
4029         // region(s) so that all the ALLOC / RETIRE events are generated
4030         // before the start GC event.
4031         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4032 
4033         // This timing is only used by the ergonomics to handle our pause target.
4034         // It is unclear why this should not include the full pause. We will
4035         // investigate this in CR 7178365.
4036         //
4037         // Preserving the old comment here if that helps the investigation:
4038         //
4039         // The elapsed time induced by the start time below deliberately elides
4040         // the possible verification above.
4041         double sample_start_time_sec = os::elapsedTime();
4042 
4043 #if YOUNG_LIST_VERBOSE
4044         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4045         _young_list->print();
4046         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4047 #endif // YOUNG_LIST_VERBOSE
4048 
4049         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4050 
4051 #if YOUNG_LIST_VERBOSE
4052         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4053         _young_list->print();
4054 #endif // YOUNG_LIST_VERBOSE
4055 
4056         if (collector_state()->during_initial_mark_pause()) {
4057           concurrent_mark()->checkpointRootsInitialPre();
4058         }
4059 
4060 #if YOUNG_LIST_VERBOSE
4061         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4062         _young_list->print();
4063         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4064 #endif // YOUNG_LIST_VERBOSE
4065 
4066         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4067 
4068         register_humongous_regions_with_cset();
4069 
4070         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4071 
4072         _cm->note_start_of_gc();
4073         // We call this after finalize_cset() to
4074         // ensure that the CSet has been finalized.
4075         _cm->verify_no_cset_oops();
4076 
4077         if (_hr_printer.is_active()) {
4078           HeapRegion* hr = g1_policy()->collection_set();
4079           while (hr != NULL) {
4080             _hr_printer.cset(hr);
4081             hr = hr->next_in_collection_set();
4082           }
4083         }
4084 
4085 #ifdef ASSERT
4086         VerifyCSetClosure cl;
4087         collection_set_iterate(&cl);
4088 #endif // ASSERT
4089 
4090         setup_surviving_young_words();
4091 
4092         // Initialize the GC alloc regions.
4093         _allocator->init_gc_alloc_regions(evacuation_info);
4094 
4095         // Actually do the work...
4096         evacuate_collection_set(evacuation_info);
4097 
4098         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4099 
4100         eagerly_reclaim_humongous_regions();
4101 
4102         g1_policy()->clear_collection_set();
4103 
4104         cleanup_surviving_young_words();
4105 
4106         // Start a new incremental collection set for the next pause.
4107         g1_policy()->start_incremental_cset_building();
4108 
4109         clear_cset_fast_test();
4110 
4111         _young_list->reset_sampled_info();
4112 
4113         // Don't check the whole heap at this point as the
4114         // GC alloc regions from this pause have been tagged
4115         // as survivors and moved on to the survivor list.
4116         // Survivor regions will fail the !is_young() check.
4117         assert(check_young_list_empty(false /* check_heap */),
4118           "young list should be empty");
4119 
4120 #if YOUNG_LIST_VERBOSE
4121         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4122         _young_list->print();
4123 #endif // YOUNG_LIST_VERBOSE
4124 
4125         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4126                                              _young_list->first_survivor_region(),
4127                                              _young_list->last_survivor_region());
4128 
4129         _young_list->reset_auxilary_lists();
4130 
4131         if (evacuation_failed()) {
4132           set_used(recalculate_used());
4133           if (_archive_allocator != NULL) {
4134             _archive_allocator->clear_used();
4135           }
4136           for (uint i = 0; i < ParallelGCThreads; i++) {
4137             if (_evacuation_failed_info_array[i].has_failed()) {
4138               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4139             }
4140           }
4141         } else {
4142           // The "used" of the the collection set have already been subtracted
4143           // when they were freed.  Add in the bytes evacuated.
4144           increase_used(g1_policy()->bytes_copied_during_gc());
4145         }
4146 
4147         if (collector_state()->during_initial_mark_pause()) {
4148           // We have to do this before we notify the CM threads that
4149           // they can start working to make sure that all the
4150           // appropriate initialization is done on the CM object.
4151           concurrent_mark()->checkpointRootsInitialPost();
4152           collector_state()->set_mark_in_progress(true);
4153           // Note that we don't actually trigger the CM thread at
4154           // this point. We do that later when we're sure that
4155           // the current thread has completed its logging output.
4156         }
4157 
4158         allocate_dummy_regions();
4159 
4160 #if YOUNG_LIST_VERBOSE
4161         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4162         _young_list->print();
4163         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4164 #endif // YOUNG_LIST_VERBOSE
4165 
4166         _allocator->init_mutator_alloc_region();
4167 
4168         {
4169           size_t expand_bytes = g1_policy()->expansion_amount();
4170           if (expand_bytes > 0) {
4171             size_t bytes_before = capacity();
4172             // No need for an ergo verbose message here,
4173             // expansion_amount() does this when it returns a value > 0.
4174             if (!expand(expand_bytes)) {
4175               // We failed to expand the heap. Cannot do anything about it.
4176             }
4177           }
4178         }
4179 
4180         // We redo the verification but now wrt to the new CSet which
4181         // has just got initialized after the previous CSet was freed.
4182         _cm->verify_no_cset_oops();
4183         _cm->note_end_of_gc();
4184 
4185         // This timing is only used by the ergonomics to handle our pause target.
4186         // It is unclear why this should not include the full pause. We will
4187         // investigate this in CR 7178365.
4188         double sample_end_time_sec = os::elapsedTime();
4189         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4190         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4191 
4192         MemoryService::track_memory_usage();
4193 
4194         // In prepare_for_verify() below we'll need to scan the deferred
4195         // update buffers to bring the RSets up-to-date if
4196         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4197         // the update buffers we'll probably need to scan cards on the
4198         // regions we just allocated to (i.e., the GC alloc
4199         // regions). However, during the last GC we called
4200         // set_saved_mark() on all the GC alloc regions, so card
4201         // scanning might skip the [saved_mark_word()...top()] area of
4202         // those regions (i.e., the area we allocated objects into
4203         // during the last GC). But it shouldn't. Given that
4204         // saved_mark_word() is conditional on whether the GC time stamp
4205         // on the region is current or not, by incrementing the GC time
4206         // stamp here we invalidate all the GC time stamps on all the
4207         // regions and saved_mark_word() will simply return top() for
4208         // all the regions. This is a nicer way of ensuring this rather
4209         // than iterating over the regions and fixing them. In fact, the
4210         // GC time stamp increment here also ensures that
4211         // saved_mark_word() will return top() between pauses, i.e.,
4212         // during concurrent refinement. So we don't need the
4213         // is_gc_active() check to decided which top to use when
4214         // scanning cards (see CR 7039627).
4215         increment_gc_time_stamp();
4216 
4217         verify_after_gc();
4218         check_bitmaps("GC End");
4219 
4220         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4221         ref_processor_stw()->verify_no_references_recorded();
4222 
4223         // CM reference discovery will be re-enabled if necessary.
4224       }
4225 
4226       // We should do this after we potentially expand the heap so
4227       // that all the COMMIT events are generated before the end GC
4228       // event, and after we retire the GC alloc regions so that all
4229       // RETIRE events are generated before the end GC event.
4230       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4231 
4232 #ifdef TRACESPINNING
4233       ParallelTaskTerminator::print_termination_counts();
4234 #endif
4235 
4236       gc_epilogue(false);
4237     }
4238 
4239     // Print the remainder of the GC log output.
4240     log_gc_footer(os::elapsedTime() - pause_start_sec);
4241 
4242     // It is not yet to safe to tell the concurrent mark to
4243     // start as we have some optional output below. We don't want the
4244     // output from the concurrent mark thread interfering with this
4245     // logging output either.
4246 
4247     _hrm.verify_optional();
4248     verify_region_sets_optional();
4249 
4250     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4251     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4252 
4253     print_heap_after_gc();
4254     trace_heap_after_gc(_gc_tracer_stw);
4255 
4256     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4257     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4258     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4259     // before any GC notifications are raised.
4260     g1mm()->update_sizes();
4261 
4262     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4263     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4264     _gc_timer_stw->register_gc_end();
4265     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4266   }
4267   // It should now be safe to tell the concurrent mark thread to start
4268   // without its logging output interfering with the logging output
4269   // that came from the pause.
4270 
4271   if (should_start_conc_mark) {
4272     // CAUTION: after the doConcurrentMark() call below,
4273     // the concurrent marking thread(s) could be running
4274     // concurrently with us. Make sure that anything after
4275     // this point does not assume that we are the only GC thread
4276     // running. Note: of course, the actual marking work will
4277     // not start until the safepoint itself is released in
4278     // SuspendibleThreadSet::desynchronize().
4279     doConcurrentMark();
4280   }
4281 
4282   return true;
4283 }
4284 
4285 void G1CollectedHeap::remove_self_forwarding_pointers() {
4286   double remove_self_forwards_start = os::elapsedTime();
4287 
4288   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4289   workers()->run_task(&rsfp_task);
4290 
4291   // Now restore saved marks, if any.
4292   for (uint i = 0; i < ParallelGCThreads; i++) {
4293     OopAndMarkOopStack& cur = _preserved_objs[i];
4294     while (!cur.is_empty()) {
4295       OopAndMarkOop elem = cur.pop();
4296       elem.set_mark();
4297     }
4298     cur.clear(true);
4299   }
4300 
4301   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4302 }
4303 
4304 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4305   if (!_evacuation_failed) {
4306     _evacuation_failed = true;
4307   }
4308 
4309   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4310 
4311   // We want to call the "for_promotion_failure" version only in the
4312   // case of a promotion failure.
4313   if (m->must_be_preserved_for_promotion_failure(obj)) {
4314     OopAndMarkOop elem(obj, m);
4315     _preserved_objs[worker_id].push(elem);
4316   }
4317 }
4318 
4319 void G1ParCopyHelper::mark_object(oop obj) {
4320   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4321 
4322   // We know that the object is not moving so it's safe to read its size.
4323   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4324 }
4325 
4326 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4327   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4328   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4329   assert(from_obj != to_obj, "should not be self-forwarded");
4330 
4331   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4332   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4333 
4334   // The object might be in the process of being copied by another
4335   // worker so we cannot trust that its to-space image is
4336   // well-formed. So we have to read its size from its from-space
4337   // image which we know should not be changing.
4338   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4339 }
4340 
4341 template <class T>
4342 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4343   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4344     _scanned_klass->record_modified_oops();
4345   }
4346 }
4347 
4348 template <G1Barrier barrier, G1Mark do_mark_object>
4349 template <class T>
4350 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4351   T heap_oop = oopDesc::load_heap_oop(p);
4352 
4353   if (oopDesc::is_null(heap_oop)) {
4354     return;
4355   }
4356 
4357   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4358 
4359   assert(_worker_id == _par_scan_state->worker_id(), "sanity");
4360 
4361   const InCSetState state = _g1->in_cset_state(obj);
4362   if (state.is_in_cset()) {
4363     oop forwardee;
4364     markOop m = obj->mark();
4365     if (m->is_marked()) {
4366       forwardee = (oop) m->decode_pointer();
4367     } else {
4368       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4369     }
4370     assert(forwardee != NULL, "forwardee should not be NULL");
4371     oopDesc::encode_store_heap_oop(p, forwardee);
4372     if (do_mark_object != G1MarkNone && forwardee != obj) {
4373       // If the object is self-forwarded we don't need to explicitly
4374       // mark it, the evacuation failure protocol will do so.
4375       mark_forwarded_object(obj, forwardee);
4376     }
4377 
4378     if (barrier == G1BarrierKlass) {
4379       do_klass_barrier(p, forwardee);
4380     }
4381   } else {
4382     if (state.is_humongous()) {
4383       _g1->set_humongous_is_live(obj);
4384     }
4385     // The object is not in collection set. If we're a root scanning
4386     // closure during an initial mark pause then attempt to mark the object.
4387     if (do_mark_object == G1MarkFromRoot) {
4388       mark_object(obj);
4389     }
4390   }
4391 }
4392 
4393 class G1ParEvacuateFollowersClosure : public VoidClosure {
4394 protected:
4395   G1CollectedHeap*              _g1h;
4396   G1ParScanThreadState*         _par_scan_state;
4397   RefToScanQueueSet*            _queues;
4398   ParallelTaskTerminator*       _terminator;
4399 
4400   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4401   RefToScanQueueSet*      queues()         { return _queues; }
4402   ParallelTaskTerminator* terminator()     { return _terminator; }
4403 
4404 public:
4405   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4406                                 G1ParScanThreadState* par_scan_state,
4407                                 RefToScanQueueSet* queues,
4408                                 ParallelTaskTerminator* terminator)
4409     : _g1h(g1h), _par_scan_state(par_scan_state),
4410       _queues(queues), _terminator(terminator) {}
4411 
4412   void do_void();
4413 
4414 private:
4415   inline bool offer_termination();
4416 };
4417 
4418 bool G1ParEvacuateFollowersClosure::offer_termination() {
4419   G1ParScanThreadState* const pss = par_scan_state();
4420   pss->start_term_time();
4421   const bool res = terminator()->offer_termination();
4422   pss->end_term_time();
4423   return res;
4424 }
4425 
4426 void G1ParEvacuateFollowersClosure::do_void() {
4427   G1ParScanThreadState* const pss = par_scan_state();
4428   pss->trim_queue();
4429   do {
4430     pss->steal_and_trim_queue(queues());
4431   } while (!offer_termination());
4432 }
4433 
4434 class G1KlassScanClosure : public KlassClosure {
4435  G1ParCopyHelper* _closure;
4436  bool             _process_only_dirty;
4437  int              _count;
4438  public:
4439   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4440       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4441   void do_klass(Klass* klass) {
4442     // If the klass has not been dirtied we know that there's
4443     // no references into  the young gen and we can skip it.
4444    if (!_process_only_dirty || klass->has_modified_oops()) {
4445       // Clean the klass since we're going to scavenge all the metadata.
4446       klass->clear_modified_oops();
4447 
4448       // Tell the closure that this klass is the Klass to scavenge
4449       // and is the one to dirty if oops are left pointing into the young gen.
4450       _closure->set_scanned_klass(klass);
4451 
4452       klass->oops_do(_closure);
4453 
4454       _closure->set_scanned_klass(NULL);
4455     }
4456     _count++;
4457   }
4458 };
4459 
4460 class G1ParTask : public AbstractGangTask {
4461 protected:
4462   G1CollectedHeap*       _g1h;
4463   RefToScanQueueSet      *_queues;
4464   G1RootProcessor*       _root_processor;
4465   ParallelTaskTerminator _terminator;
4466   uint _n_workers;
4467 
4468 public:
4469   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4470     : AbstractGangTask("G1 collection"),
4471       _g1h(g1h),
4472       _queues(task_queues),
4473       _root_processor(root_processor),
4474       _terminator(n_workers, _queues),
4475       _n_workers(n_workers)
4476   {}
4477 
4478   RefToScanQueueSet* queues() { return _queues; }
4479 
4480   RefToScanQueue *work_queue(int i) {
4481     return queues()->queue(i);
4482   }
4483 
4484   ParallelTaskTerminator* terminator() { return &_terminator; }
4485 
4486   // Helps out with CLD processing.
4487   //
4488   // During InitialMark we need to:
4489   // 1) Scavenge all CLDs for the young GC.
4490   // 2) Mark all objects directly reachable from strong CLDs.
4491   template <G1Mark do_mark_object>
4492   class G1CLDClosure : public CLDClosure {
4493     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4494     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4495     G1KlassScanClosure                                _klass_in_cld_closure;
4496     bool                                              _claim;
4497 
4498    public:
4499     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4500                  bool only_young, bool claim)
4501         : _oop_closure(oop_closure),
4502           _oop_in_klass_closure(oop_closure->g1(),
4503                                 oop_closure->pss(),
4504                                 oop_closure->rp()),
4505           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4506           _claim(claim) {
4507 
4508     }
4509 
4510     void do_cld(ClassLoaderData* cld) {
4511       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4512     }
4513   };
4514 
4515   void work(uint worker_id) {
4516     if (worker_id >= _n_workers) return;  // no work needed this round
4517 
4518     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4519 
4520     {
4521       ResourceMark rm;
4522       HandleMark   hm;
4523 
4524       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4525 
4526       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4527 
4528       bool only_young = _g1h->collector_state()->gcs_are_young();
4529 
4530       // Non-IM young GC.
4531       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4532       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4533                                                                                only_young, // Only process dirty klasses.
4534                                                                                false);     // No need to claim CLDs.
4535       // IM young GC.
4536       //    Strong roots closures.
4537       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4538       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4539                                                                                false, // Process all klasses.
4540                                                                                true); // Need to claim CLDs.
4541       //    Weak roots closures.
4542       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4543       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4544                                                                                     false, // Process all klasses.
4545                                                                                     true); // Need to claim CLDs.
4546 
4547       OopClosure* strong_root_cl;
4548       OopClosure* weak_root_cl;
4549       CLDClosure* strong_cld_cl;
4550       CLDClosure* weak_cld_cl;
4551 
4552       bool trace_metadata = false;
4553 
4554       if (_g1h->collector_state()->during_initial_mark_pause()) {
4555         // We also need to mark copied objects.
4556         strong_root_cl = &scan_mark_root_cl;
4557         strong_cld_cl  = &scan_mark_cld_cl;
4558         if (ClassUnloadingWithConcurrentMark) {
4559           weak_root_cl = &scan_mark_weak_root_cl;
4560           weak_cld_cl  = &scan_mark_weak_cld_cl;
4561           trace_metadata = true;
4562         } else {
4563           weak_root_cl = &scan_mark_root_cl;
4564           weak_cld_cl  = &scan_mark_cld_cl;
4565         }
4566       } else {
4567         strong_root_cl = &scan_only_root_cl;
4568         weak_root_cl   = &scan_only_root_cl;
4569         strong_cld_cl  = &scan_only_cld_cl;
4570         weak_cld_cl    = &scan_only_cld_cl;
4571       }
4572 
4573       pss.start_strong_roots();
4574 
4575       _root_processor->evacuate_roots(strong_root_cl,
4576                                       weak_root_cl,
4577                                       strong_cld_cl,
4578                                       weak_cld_cl,
4579                                       trace_metadata,
4580                                       worker_id);
4581 
4582       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4583       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4584                                             weak_root_cl,
4585                                             worker_id);
4586       pss.end_strong_roots();
4587 
4588       {
4589         double start = os::elapsedTime();
4590         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4591         evac.do_void();
4592         double elapsed_sec = os::elapsedTime() - start;
4593         double term_sec = pss.term_time();
4594         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4595         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4596         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4597       }
4598       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4599       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4600 
4601       if (PrintTerminationStats) {
4602         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4603         pss.print_termination_stats();
4604       }
4605 
4606       assert(pss.queue_is_empty(), "should be empty");
4607 
4608       // Close the inner scope so that the ResourceMark and HandleMark
4609       // destructors are executed here and are included as part of the
4610       // "GC Worker Time".
4611     }
4612     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4613   }
4614 };
4615 
4616 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4617 private:
4618   BoolObjectClosure* _is_alive;
4619   int _initial_string_table_size;
4620   int _initial_symbol_table_size;
4621 
4622   bool  _process_strings;
4623   int _strings_processed;
4624   int _strings_removed;
4625 
4626   bool  _process_symbols;
4627   int _symbols_processed;
4628   int _symbols_removed;
4629 
4630 public:
4631   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4632     AbstractGangTask("String/Symbol Unlinking"),
4633     _is_alive(is_alive),
4634     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4635     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4636 
4637     _initial_string_table_size = StringTable::the_table()->table_size();
4638     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4639     if (process_strings) {
4640       StringTable::clear_parallel_claimed_index();
4641     }
4642     if (process_symbols) {
4643       SymbolTable::clear_parallel_claimed_index();
4644     }
4645   }
4646 
4647   ~G1StringSymbolTableUnlinkTask() {
4648     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4649               err_msg("claim value %d after unlink less than initial string table size %d",
4650                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4651     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4652               err_msg("claim value %d after unlink less than initial symbol table size %d",
4653                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4654 
4655     if (G1TraceStringSymbolTableScrubbing) {
4656       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4657                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4658                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4659                              strings_processed(), strings_removed(),
4660                              symbols_processed(), symbols_removed());
4661     }
4662   }
4663 
4664   void work(uint worker_id) {
4665     int strings_processed = 0;
4666     int strings_removed = 0;
4667     int symbols_processed = 0;
4668     int symbols_removed = 0;
4669     if (_process_strings) {
4670       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4671       Atomic::add(strings_processed, &_strings_processed);
4672       Atomic::add(strings_removed, &_strings_removed);
4673     }
4674     if (_process_symbols) {
4675       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4676       Atomic::add(symbols_processed, &_symbols_processed);
4677       Atomic::add(symbols_removed, &_symbols_removed);
4678     }
4679   }
4680 
4681   size_t strings_processed() const { return (size_t)_strings_processed; }
4682   size_t strings_removed()   const { return (size_t)_strings_removed; }
4683 
4684   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4685   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4686 };
4687 
4688 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4689 private:
4690   static Monitor* _lock;
4691 
4692   BoolObjectClosure* const _is_alive;
4693   const bool               _unloading_occurred;
4694   const uint               _num_workers;
4695 
4696   // Variables used to claim nmethods.
4697   nmethod* _first_nmethod;
4698   volatile nmethod* _claimed_nmethod;
4699 
4700   // The list of nmethods that need to be processed by the second pass.
4701   volatile nmethod* _postponed_list;
4702   volatile uint     _num_entered_barrier;
4703 
4704  public:
4705   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4706       _is_alive(is_alive),
4707       _unloading_occurred(unloading_occurred),
4708       _num_workers(num_workers),
4709       _first_nmethod(NULL),
4710       _claimed_nmethod(NULL),
4711       _postponed_list(NULL),
4712       _num_entered_barrier(0)
4713   {
4714     nmethod::increase_unloading_clock();
4715     // Get first alive nmethod
4716     NMethodIterator iter = NMethodIterator();
4717     if(iter.next_alive()) {
4718       _first_nmethod = iter.method();
4719     }
4720     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4721   }
4722 
4723   ~G1CodeCacheUnloadingTask() {
4724     CodeCache::verify_clean_inline_caches();
4725 
4726     CodeCache::set_needs_cache_clean(false);
4727     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4728 
4729     CodeCache::verify_icholder_relocations();
4730   }
4731 
4732  private:
4733   void add_to_postponed_list(nmethod* nm) {
4734       nmethod* old;
4735       do {
4736         old = (nmethod*)_postponed_list;
4737         nm->set_unloading_next(old);
4738       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4739   }
4740 
4741   void clean_nmethod(nmethod* nm) {
4742     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4743 
4744     if (postponed) {
4745       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4746       add_to_postponed_list(nm);
4747     }
4748 
4749     // Mark that this thread has been cleaned/unloaded.
4750     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4751     nm->set_unloading_clock(nmethod::global_unloading_clock());
4752   }
4753 
4754   void clean_nmethod_postponed(nmethod* nm) {
4755     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4756   }
4757 
4758   static const int MaxClaimNmethods = 16;
4759 
4760   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4761     nmethod* first;
4762     NMethodIterator last;
4763 
4764     do {
4765       *num_claimed_nmethods = 0;
4766 
4767       first = (nmethod*)_claimed_nmethod;
4768       last = NMethodIterator(first);
4769 
4770       if (first != NULL) {
4771 
4772         for (int i = 0; i < MaxClaimNmethods; i++) {
4773           if (!last.next_alive()) {
4774             break;
4775           }
4776           claimed_nmethods[i] = last.method();
4777           (*num_claimed_nmethods)++;
4778         }
4779       }
4780 
4781     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4782   }
4783 
4784   nmethod* claim_postponed_nmethod() {
4785     nmethod* claim;
4786     nmethod* next;
4787 
4788     do {
4789       claim = (nmethod*)_postponed_list;
4790       if (claim == NULL) {
4791         return NULL;
4792       }
4793 
4794       next = claim->unloading_next();
4795 
4796     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4797 
4798     return claim;
4799   }
4800 
4801  public:
4802   // Mark that we're done with the first pass of nmethod cleaning.
4803   void barrier_mark(uint worker_id) {
4804     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4805     _num_entered_barrier++;
4806     if (_num_entered_barrier == _num_workers) {
4807       ml.notify_all();
4808     }
4809   }
4810 
4811   // See if we have to wait for the other workers to
4812   // finish their first-pass nmethod cleaning work.
4813   void barrier_wait(uint worker_id) {
4814     if (_num_entered_barrier < _num_workers) {
4815       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4816       while (_num_entered_barrier < _num_workers) {
4817           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4818       }
4819     }
4820   }
4821 
4822   // Cleaning and unloading of nmethods. Some work has to be postponed
4823   // to the second pass, when we know which nmethods survive.
4824   void work_first_pass(uint worker_id) {
4825     // The first nmethods is claimed by the first worker.
4826     if (worker_id == 0 && _first_nmethod != NULL) {
4827       clean_nmethod(_first_nmethod);
4828       _first_nmethod = NULL;
4829     }
4830 
4831     int num_claimed_nmethods;
4832     nmethod* claimed_nmethods[MaxClaimNmethods];
4833 
4834     while (true) {
4835       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4836 
4837       if (num_claimed_nmethods == 0) {
4838         break;
4839       }
4840 
4841       for (int i = 0; i < num_claimed_nmethods; i++) {
4842         clean_nmethod(claimed_nmethods[i]);
4843       }
4844     }
4845   }
4846 
4847   void work_second_pass(uint worker_id) {
4848     nmethod* nm;
4849     // Take care of postponed nmethods.
4850     while ((nm = claim_postponed_nmethod()) != NULL) {
4851       clean_nmethod_postponed(nm);
4852     }
4853   }
4854 };
4855 
4856 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4857 
4858 class G1KlassCleaningTask : public StackObj {
4859   BoolObjectClosure*                      _is_alive;
4860   volatile jint                           _clean_klass_tree_claimed;
4861   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4862 
4863  public:
4864   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4865       _is_alive(is_alive),
4866       _clean_klass_tree_claimed(0),
4867       _klass_iterator() {
4868   }
4869 
4870  private:
4871   bool claim_clean_klass_tree_task() {
4872     if (_clean_klass_tree_claimed) {
4873       return false;
4874     }
4875 
4876     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4877   }
4878 
4879   InstanceKlass* claim_next_klass() {
4880     Klass* klass;
4881     do {
4882       klass =_klass_iterator.next_klass();
4883     } while (klass != NULL && !klass->oop_is_instance());
4884 
4885     return (InstanceKlass*)klass;
4886   }
4887 
4888 public:
4889 
4890   void clean_klass(InstanceKlass* ik) {
4891     ik->clean_implementors_list(_is_alive);
4892     ik->clean_method_data(_is_alive);
4893 
4894     // G1 specific cleanup work that has
4895     // been moved here to be done in parallel.
4896     ik->clean_dependent_nmethods();
4897   }
4898 
4899   void work() {
4900     ResourceMark rm;
4901 
4902     // One worker will clean the subklass/sibling klass tree.
4903     if (claim_clean_klass_tree_task()) {
4904       Klass::clean_subklass_tree(_is_alive);
4905     }
4906 
4907     // All workers will help cleaning the classes,
4908     InstanceKlass* klass;
4909     while ((klass = claim_next_klass()) != NULL) {
4910       clean_klass(klass);
4911     }
4912   }
4913 };
4914 
4915 // To minimize the remark pause times, the tasks below are done in parallel.
4916 class G1ParallelCleaningTask : public AbstractGangTask {
4917 private:
4918   G1StringSymbolTableUnlinkTask _string_symbol_task;
4919   G1CodeCacheUnloadingTask      _code_cache_task;
4920   G1KlassCleaningTask           _klass_cleaning_task;
4921 
4922 public:
4923   // The constructor is run in the VMThread.
4924   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4925       AbstractGangTask("Parallel Cleaning"),
4926       _string_symbol_task(is_alive, process_strings, process_symbols),
4927       _code_cache_task(num_workers, is_alive, unloading_occurred),
4928       _klass_cleaning_task(is_alive) {
4929   }
4930 
4931   // The parallel work done by all worker threads.
4932   void work(uint worker_id) {
4933     // Do first pass of code cache cleaning.
4934     _code_cache_task.work_first_pass(worker_id);
4935 
4936     // Let the threads mark that the first pass is done.
4937     _code_cache_task.barrier_mark(worker_id);
4938 
4939     // Clean the Strings and Symbols.
4940     _string_symbol_task.work(worker_id);
4941 
4942     // Wait for all workers to finish the first code cache cleaning pass.
4943     _code_cache_task.barrier_wait(worker_id);
4944 
4945     // Do the second code cache cleaning work, which realize on
4946     // the liveness information gathered during the first pass.
4947     _code_cache_task.work_second_pass(worker_id);
4948 
4949     // Clean all klasses that were not unloaded.
4950     _klass_cleaning_task.work();
4951   }
4952 };
4953 
4954 
4955 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4956                                         bool process_strings,
4957                                         bool process_symbols,
4958                                         bool class_unloading_occurred) {
4959   uint n_workers = workers()->active_workers();
4960 
4961   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4962                                         n_workers, class_unloading_occurred);
4963   workers()->run_task(&g1_unlink_task);
4964 }
4965 
4966 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4967                                                      bool process_strings, bool process_symbols) {
4968   {
4969     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4970     workers()->run_task(&g1_unlink_task);
4971   }
4972 
4973   if (G1StringDedup::is_enabled()) {
4974     G1StringDedup::unlink(is_alive);
4975   }
4976 }
4977 
4978 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4979  private:
4980   DirtyCardQueueSet* _queue;
4981  public:
4982   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4983 
4984   virtual void work(uint worker_id) {
4985     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4986     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4987 
4988     RedirtyLoggedCardTableEntryClosure cl;
4989     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4990 
4991     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4992   }
4993 };
4994 
4995 void G1CollectedHeap::redirty_logged_cards() {
4996   double redirty_logged_cards_start = os::elapsedTime();
4997 
4998   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4999   dirty_card_queue_set().reset_for_par_iteration();
5000   workers()->run_task(&redirty_task);
5001 
5002   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5003   dcq.merge_bufferlists(&dirty_card_queue_set());
5004   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5005 
5006   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5007 }
5008 
5009 // Weak Reference Processing support
5010 
5011 // An always "is_alive" closure that is used to preserve referents.
5012 // If the object is non-null then it's alive.  Used in the preservation
5013 // of referent objects that are pointed to by reference objects
5014 // discovered by the CM ref processor.
5015 class G1AlwaysAliveClosure: public BoolObjectClosure {
5016   G1CollectedHeap* _g1;
5017 public:
5018   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5019   bool do_object_b(oop p) {
5020     if (p != NULL) {
5021       return true;
5022     }
5023     return false;
5024   }
5025 };
5026 
5027 bool G1STWIsAliveClosure::do_object_b(oop p) {
5028   // An object is reachable if it is outside the collection set,
5029   // or is inside and copied.
5030   return !_g1->is_in_cset(p) || p->is_forwarded();
5031 }
5032 
5033 // Non Copying Keep Alive closure
5034 class G1KeepAliveClosure: public OopClosure {
5035   G1CollectedHeap* _g1;
5036 public:
5037   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5038   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5039   void do_oop(oop* p) {
5040     oop obj = *p;
5041     assert(obj != NULL, "the caller should have filtered out NULL values");
5042 
5043     const InCSetState cset_state = _g1->in_cset_state(obj);
5044     if (!cset_state.is_in_cset_or_humongous()) {
5045       return;
5046     }
5047     if (cset_state.is_in_cset()) {
5048       assert( obj->is_forwarded(), "invariant" );
5049       *p = obj->forwardee();
5050     } else {
5051       assert(!obj->is_forwarded(), "invariant" );
5052       assert(cset_state.is_humongous(),
5053              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5054       _g1->set_humongous_is_live(obj);
5055     }
5056   }
5057 };
5058 
5059 // Copying Keep Alive closure - can be called from both
5060 // serial and parallel code as long as different worker
5061 // threads utilize different G1ParScanThreadState instances
5062 // and different queues.
5063 
5064 class G1CopyingKeepAliveClosure: public OopClosure {
5065   G1CollectedHeap*         _g1h;
5066   OopClosure*              _copy_non_heap_obj_cl;
5067   G1ParScanThreadState*    _par_scan_state;
5068 
5069 public:
5070   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5071                             OopClosure* non_heap_obj_cl,
5072                             G1ParScanThreadState* pss):
5073     _g1h(g1h),
5074     _copy_non_heap_obj_cl(non_heap_obj_cl),
5075     _par_scan_state(pss)
5076   {}
5077 
5078   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5079   virtual void do_oop(      oop* p) { do_oop_work(p); }
5080 
5081   template <class T> void do_oop_work(T* p) {
5082     oop obj = oopDesc::load_decode_heap_oop(p);
5083 
5084     if (_g1h->is_in_cset_or_humongous(obj)) {
5085       // If the referent object has been forwarded (either copied
5086       // to a new location or to itself in the event of an
5087       // evacuation failure) then we need to update the reference
5088       // field and, if both reference and referent are in the G1
5089       // heap, update the RSet for the referent.
5090       //
5091       // If the referent has not been forwarded then we have to keep
5092       // it alive by policy. Therefore we have copy the referent.
5093       //
5094       // If the reference field is in the G1 heap then we can push
5095       // on the PSS queue. When the queue is drained (after each
5096       // phase of reference processing) the object and it's followers
5097       // will be copied, the reference field set to point to the
5098       // new location, and the RSet updated. Otherwise we need to
5099       // use the the non-heap or metadata closures directly to copy
5100       // the referent object and update the pointer, while avoiding
5101       // updating the RSet.
5102 
5103       if (_g1h->is_in_g1_reserved(p)) {
5104         _par_scan_state->push_on_queue(p);
5105       } else {
5106         assert(!Metaspace::contains((const void*)p),
5107                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5108         _copy_non_heap_obj_cl->do_oop(p);
5109       }
5110     }
5111   }
5112 };
5113 
5114 // Serial drain queue closure. Called as the 'complete_gc'
5115 // closure for each discovered list in some of the
5116 // reference processing phases.
5117 
5118 class G1STWDrainQueueClosure: public VoidClosure {
5119 protected:
5120   G1CollectedHeap* _g1h;
5121   G1ParScanThreadState* _par_scan_state;
5122 
5123   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5124 
5125 public:
5126   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5127     _g1h(g1h),
5128     _par_scan_state(pss)
5129   { }
5130 
5131   void do_void() {
5132     G1ParScanThreadState* const pss = par_scan_state();
5133     pss->trim_queue();
5134   }
5135 };
5136 
5137 // Parallel Reference Processing closures
5138 
5139 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5140 // processing during G1 evacuation pauses.
5141 
5142 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5143 private:
5144   G1CollectedHeap*   _g1h;
5145   RefToScanQueueSet* _queues;
5146   WorkGang*          _workers;
5147   uint               _active_workers;
5148 
5149 public:
5150   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5151                            WorkGang* workers,
5152                            RefToScanQueueSet *task_queues,
5153                            uint n_workers) :
5154     _g1h(g1h),
5155     _queues(task_queues),
5156     _workers(workers),
5157     _active_workers(n_workers)
5158   {
5159     assert(n_workers > 0, "shouldn't call this otherwise");
5160   }
5161 
5162   // Executes the given task using concurrent marking worker threads.
5163   virtual void execute(ProcessTask& task);
5164   virtual void execute(EnqueueTask& task);
5165 };
5166 
5167 // Gang task for possibly parallel reference processing
5168 
5169 class G1STWRefProcTaskProxy: public AbstractGangTask {
5170   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5171   ProcessTask&     _proc_task;
5172   G1CollectedHeap* _g1h;
5173   RefToScanQueueSet *_task_queues;
5174   ParallelTaskTerminator* _terminator;
5175 
5176 public:
5177   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5178                      G1CollectedHeap* g1h,
5179                      RefToScanQueueSet *task_queues,
5180                      ParallelTaskTerminator* terminator) :
5181     AbstractGangTask("Process reference objects in parallel"),
5182     _proc_task(proc_task),
5183     _g1h(g1h),
5184     _task_queues(task_queues),
5185     _terminator(terminator)
5186   {}
5187 
5188   virtual void work(uint worker_id) {
5189     // The reference processing task executed by a single worker.
5190     ResourceMark rm;
5191     HandleMark   hm;
5192 
5193     G1STWIsAliveClosure is_alive(_g1h);
5194 
5195     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5196 
5197     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5198 
5199     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5200 
5201     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5202 
5203     if (_g1h->collector_state()->during_initial_mark_pause()) {
5204       // We also need to mark copied objects.
5205       copy_non_heap_cl = &copy_mark_non_heap_cl;
5206     }
5207 
5208     // Keep alive closure.
5209     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5210 
5211     // Complete GC closure
5212     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5213 
5214     // Call the reference processing task's work routine.
5215     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5216 
5217     // Note we cannot assert that the refs array is empty here as not all
5218     // of the processing tasks (specifically phase2 - pp2_work) execute
5219     // the complete_gc closure (which ordinarily would drain the queue) so
5220     // the queue may not be empty.
5221   }
5222 };
5223 
5224 // Driver routine for parallel reference processing.
5225 // Creates an instance of the ref processing gang
5226 // task and has the worker threads execute it.
5227 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5228   assert(_workers != NULL, "Need parallel worker threads.");
5229 
5230   ParallelTaskTerminator terminator(_active_workers, _queues);
5231   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5232 
5233   _workers->run_task(&proc_task_proxy);
5234 }
5235 
5236 // Gang task for parallel reference enqueueing.
5237 
5238 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5239   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5240   EnqueueTask& _enq_task;
5241 
5242 public:
5243   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5244     AbstractGangTask("Enqueue reference objects in parallel"),
5245     _enq_task(enq_task)
5246   { }
5247 
5248   virtual void work(uint worker_id) {
5249     _enq_task.work(worker_id);
5250   }
5251 };
5252 
5253 // Driver routine for parallel reference enqueueing.
5254 // Creates an instance of the ref enqueueing gang
5255 // task and has the worker threads execute it.
5256 
5257 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5258   assert(_workers != NULL, "Need parallel worker threads.");
5259 
5260   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5261 
5262   _workers->run_task(&enq_task_proxy);
5263 }
5264 
5265 // End of weak reference support closures
5266 
5267 // Abstract task used to preserve (i.e. copy) any referent objects
5268 // that are in the collection set and are pointed to by reference
5269 // objects discovered by the CM ref processor.
5270 
5271 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5272 protected:
5273   G1CollectedHeap* _g1h;
5274   RefToScanQueueSet      *_queues;
5275   ParallelTaskTerminator _terminator;
5276   uint _n_workers;
5277 
5278 public:
5279   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5280     AbstractGangTask("ParPreserveCMReferents"),
5281     _g1h(g1h),
5282     _queues(task_queues),
5283     _terminator(workers, _queues),
5284     _n_workers(workers)
5285   { }
5286 
5287   void work(uint worker_id) {
5288     ResourceMark rm;
5289     HandleMark   hm;
5290 
5291     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5292     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5293 
5294     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5295 
5296     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5297 
5298     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5299 
5300     if (_g1h->collector_state()->during_initial_mark_pause()) {
5301       // We also need to mark copied objects.
5302       copy_non_heap_cl = &copy_mark_non_heap_cl;
5303     }
5304 
5305     // Is alive closure
5306     G1AlwaysAliveClosure always_alive(_g1h);
5307 
5308     // Copying keep alive closure. Applied to referent objects that need
5309     // to be copied.
5310     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5311 
5312     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5313 
5314     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5315     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5316 
5317     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5318     // So this must be true - but assert just in case someone decides to
5319     // change the worker ids.
5320     assert(worker_id < limit, "sanity");
5321     assert(!rp->discovery_is_atomic(), "check this code");
5322 
5323     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5324     for (uint idx = worker_id; idx < limit; idx += stride) {
5325       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5326 
5327       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5328       while (iter.has_next()) {
5329         // Since discovery is not atomic for the CM ref processor, we
5330         // can see some null referent objects.
5331         iter.load_ptrs(DEBUG_ONLY(true));
5332         oop ref = iter.obj();
5333 
5334         // This will filter nulls.
5335         if (iter.is_referent_alive()) {
5336           iter.make_referent_alive();
5337         }
5338         iter.move_to_next();
5339       }
5340     }
5341 
5342     // Drain the queue - which may cause stealing
5343     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5344     drain_queue.do_void();
5345     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5346     assert(pss.queue_is_empty(), "should be");
5347   }
5348 };
5349 
5350 // Weak Reference processing during an evacuation pause (part 1).
5351 void G1CollectedHeap::process_discovered_references() {
5352   double ref_proc_start = os::elapsedTime();
5353 
5354   ReferenceProcessor* rp = _ref_processor_stw;
5355   assert(rp->discovery_enabled(), "should have been enabled");
5356 
5357   // Any reference objects, in the collection set, that were 'discovered'
5358   // by the CM ref processor should have already been copied (either by
5359   // applying the external root copy closure to the discovered lists, or
5360   // by following an RSet entry).
5361   //
5362   // But some of the referents, that are in the collection set, that these
5363   // reference objects point to may not have been copied: the STW ref
5364   // processor would have seen that the reference object had already
5365   // been 'discovered' and would have skipped discovering the reference,
5366   // but would not have treated the reference object as a regular oop.
5367   // As a result the copy closure would not have been applied to the
5368   // referent object.
5369   //
5370   // We need to explicitly copy these referent objects - the references
5371   // will be processed at the end of remarking.
5372   //
5373   // We also need to do this copying before we process the reference
5374   // objects discovered by the STW ref processor in case one of these
5375   // referents points to another object which is also referenced by an
5376   // object discovered by the STW ref processor.
5377 
5378   uint no_of_gc_workers = workers()->active_workers();
5379 
5380   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5381                                                  no_of_gc_workers,
5382                                                  _task_queues);
5383 
5384   workers()->run_task(&keep_cm_referents);
5385 
5386   // Closure to test whether a referent is alive.
5387   G1STWIsAliveClosure is_alive(this);
5388 
5389   // Even when parallel reference processing is enabled, the processing
5390   // of JNI refs is serial and performed serially by the current thread
5391   // rather than by a worker. The following PSS will be used for processing
5392   // JNI refs.
5393 
5394   // Use only a single queue for this PSS.
5395   G1ParScanThreadState            pss(this, 0, NULL);
5396   assert(pss.queue_is_empty(), "pre-condition");
5397 
5398   // We do not embed a reference processor in the copying/scanning
5399   // closures while we're actually processing the discovered
5400   // reference objects.
5401 
5402   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5403 
5404   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5405 
5406   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5407 
5408   if (collector_state()->during_initial_mark_pause()) {
5409     // We also need to mark copied objects.
5410     copy_non_heap_cl = &copy_mark_non_heap_cl;
5411   }
5412 
5413   // Keep alive closure.
5414   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5415 
5416   // Serial Complete GC closure
5417   G1STWDrainQueueClosure drain_queue(this, &pss);
5418 
5419   // Setup the soft refs policy...
5420   rp->setup_policy(false);
5421 
5422   ReferenceProcessorStats stats;
5423   if (!rp->processing_is_mt()) {
5424     // Serial reference processing...
5425     stats = rp->process_discovered_references(&is_alive,
5426                                               &keep_alive,
5427                                               &drain_queue,
5428                                               NULL,
5429                                               _gc_timer_stw,
5430                                               _gc_tracer_stw->gc_id());
5431   } else {
5432     // Parallel reference processing
5433     assert(rp->num_q() == no_of_gc_workers, "sanity");
5434     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5435 
5436     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5437     stats = rp->process_discovered_references(&is_alive,
5438                                               &keep_alive,
5439                                               &drain_queue,
5440                                               &par_task_executor,
5441                                               _gc_timer_stw,
5442                                               _gc_tracer_stw->gc_id());
5443   }
5444 
5445   _gc_tracer_stw->report_gc_reference_stats(stats);
5446 
5447   // We have completed copying any necessary live referent objects.
5448   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5449 
5450   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5451   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5452 }
5453 
5454 // Weak Reference processing during an evacuation pause (part 2).
5455 void G1CollectedHeap::enqueue_discovered_references() {
5456   double ref_enq_start = os::elapsedTime();
5457 
5458   ReferenceProcessor* rp = _ref_processor_stw;
5459   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5460 
5461   // Now enqueue any remaining on the discovered lists on to
5462   // the pending list.
5463   if (!rp->processing_is_mt()) {
5464     // Serial reference processing...
5465     rp->enqueue_discovered_references();
5466   } else {
5467     // Parallel reference enqueueing
5468 
5469     uint n_workers = workers()->active_workers();
5470 
5471     assert(rp->num_q() == n_workers, "sanity");
5472     assert(n_workers <= rp->max_num_q(), "sanity");
5473 
5474     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5475     rp->enqueue_discovered_references(&par_task_executor);
5476   }
5477 
5478   rp->verify_no_references_recorded();
5479   assert(!rp->discovery_enabled(), "should have been disabled");
5480 
5481   // FIXME
5482   // CM's reference processing also cleans up the string and symbol tables.
5483   // Should we do that here also? We could, but it is a serial operation
5484   // and could significantly increase the pause time.
5485 
5486   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5487   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5488 }
5489 
5490 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5491   _expand_heap_after_alloc_failure = true;
5492   _evacuation_failed = false;
5493 
5494   // Should G1EvacuationFailureALot be in effect for this GC?
5495   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5496 
5497   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5498 
5499   // Disable the hot card cache.
5500   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5501   hot_card_cache->reset_hot_cache_claimed_index();
5502   hot_card_cache->set_use_cache(false);
5503 
5504   const uint n_workers = workers()->active_workers();
5505 
5506   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5507   double start_par_time_sec = os::elapsedTime();
5508   double end_par_time_sec;
5509 
5510   {
5511     G1RootProcessor root_processor(this, n_workers);
5512     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5513     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5514     if (collector_state()->during_initial_mark_pause()) {
5515       ClassLoaderDataGraph::clear_claimed_marks();
5516     }
5517 
5518     // The individual threads will set their evac-failure closures.
5519     if (PrintTerminationStats) {
5520       G1ParScanThreadState::print_termination_stats_hdr();
5521     }
5522 
5523     workers()->run_task(&g1_par_task);
5524     end_par_time_sec = os::elapsedTime();
5525 
5526     // Closing the inner scope will execute the destructor
5527     // for the G1RootProcessor object. We record the current
5528     // elapsed time before closing the scope so that time
5529     // taken for the destructor is NOT included in the
5530     // reported parallel time.
5531   }
5532 
5533   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5534 
5535   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5536   phase_times->record_par_time(par_time_ms);
5537 
5538   double code_root_fixup_time_ms =
5539         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5540   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5541 
5542   // Process any discovered reference objects - we have
5543   // to do this _before_ we retire the GC alloc regions
5544   // as we may have to copy some 'reachable' referent
5545   // objects (and their reachable sub-graphs) that were
5546   // not copied during the pause.
5547   process_discovered_references();
5548 
5549   if (G1StringDedup::is_enabled()) {
5550     double fixup_start = os::elapsedTime();
5551 
5552     G1STWIsAliveClosure is_alive(this);
5553     G1KeepAliveClosure keep_alive(this);
5554     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5555 
5556     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5557     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5558   }
5559 
5560   _allocator->release_gc_alloc_regions(evacuation_info);
5561   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5562 
5563   // Reset and re-enable the hot card cache.
5564   // Note the counts for the cards in the regions in the
5565   // collection set are reset when the collection set is freed.
5566   hot_card_cache->reset_hot_cache();
5567   hot_card_cache->set_use_cache(true);
5568 
5569   purge_code_root_memory();
5570 
5571   if (evacuation_failed()) {
5572     remove_self_forwarding_pointers();
5573 
5574     // Reset the G1EvacuationFailureALot counters and flags
5575     // Note: the values are reset only when an actual
5576     // evacuation failure occurs.
5577     NOT_PRODUCT(reset_evacuation_should_fail();)
5578   }
5579 
5580   // Enqueue any remaining references remaining on the STW
5581   // reference processor's discovered lists. We need to do
5582   // this after the card table is cleaned (and verified) as
5583   // the act of enqueueing entries on to the pending list
5584   // will log these updates (and dirty their associated
5585   // cards). We need these updates logged to update any
5586   // RSets.
5587   enqueue_discovered_references();
5588 
5589   redirty_logged_cards();
5590   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5591 }
5592 
5593 void G1CollectedHeap::free_region(HeapRegion* hr,
5594                                   FreeRegionList* free_list,
5595                                   bool par,
5596                                   bool locked) {
5597   assert(!hr->is_free(), "the region should not be free");
5598   assert(!hr->is_empty(), "the region should not be empty");
5599   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5600   assert(free_list != NULL, "pre-condition");
5601 
5602   if (G1VerifyBitmaps) {
5603     MemRegion mr(hr->bottom(), hr->end());
5604     concurrent_mark()->clearRangePrevBitmap(mr);
5605   }
5606 
5607   // Clear the card counts for this region.
5608   // Note: we only need to do this if the region is not young
5609   // (since we don't refine cards in young regions).
5610   if (!hr->is_young()) {
5611     _cg1r->hot_card_cache()->reset_card_counts(hr);
5612   }
5613   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5614   free_list->add_ordered(hr);
5615 }
5616 
5617 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5618                                      FreeRegionList* free_list,
5619                                      bool par) {
5620   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5621   assert(free_list != NULL, "pre-condition");
5622 
5623   size_t hr_capacity = hr->capacity();
5624   // We need to read this before we make the region non-humongous,
5625   // otherwise the information will be gone.
5626   uint last_index = hr->last_hc_index();
5627   hr->clear_humongous();
5628   free_region(hr, free_list, par);
5629 
5630   uint i = hr->hrm_index() + 1;
5631   while (i < last_index) {
5632     HeapRegion* curr_hr = region_at(i);
5633     assert(curr_hr->is_continues_humongous(), "invariant");
5634     curr_hr->clear_humongous();
5635     free_region(curr_hr, free_list, par);
5636     i += 1;
5637   }
5638 }
5639 
5640 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5641                                        const HeapRegionSetCount& humongous_regions_removed) {
5642   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5643     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5644     _old_set.bulk_remove(old_regions_removed);
5645     _humongous_set.bulk_remove(humongous_regions_removed);
5646   }
5647 
5648 }
5649 
5650 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5651   assert(list != NULL, "list can't be null");
5652   if (!list->is_empty()) {
5653     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5654     _hrm.insert_list_into_free_list(list);
5655   }
5656 }
5657 
5658 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5659   decrease_used(bytes);
5660 }
5661 
5662 class G1ParCleanupCTTask : public AbstractGangTask {
5663   G1SATBCardTableModRefBS* _ct_bs;
5664   G1CollectedHeap* _g1h;
5665   HeapRegion* volatile _su_head;
5666 public:
5667   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5668                      G1CollectedHeap* g1h) :
5669     AbstractGangTask("G1 Par Cleanup CT Task"),
5670     _ct_bs(ct_bs), _g1h(g1h) { }
5671 
5672   void work(uint worker_id) {
5673     HeapRegion* r;
5674     while (r = _g1h->pop_dirty_cards_region()) {
5675       clear_cards(r);
5676     }
5677   }
5678 
5679   void clear_cards(HeapRegion* r) {
5680     // Cards of the survivors should have already been dirtied.
5681     if (!r->is_survivor()) {
5682       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5683     }
5684   }
5685 };
5686 
5687 #ifndef PRODUCT
5688 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5689   G1CollectedHeap* _g1h;
5690   G1SATBCardTableModRefBS* _ct_bs;
5691 public:
5692   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5693     : _g1h(g1h), _ct_bs(ct_bs) { }
5694   virtual bool doHeapRegion(HeapRegion* r) {
5695     if (r->is_survivor()) {
5696       _g1h->verify_dirty_region(r);
5697     } else {
5698       _g1h->verify_not_dirty_region(r);
5699     }
5700     return false;
5701   }
5702 };
5703 
5704 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5705   // All of the region should be clean.
5706   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5707   MemRegion mr(hr->bottom(), hr->end());
5708   ct_bs->verify_not_dirty_region(mr);
5709 }
5710 
5711 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5712   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5713   // dirty allocated blocks as they allocate them. The thread that
5714   // retires each region and replaces it with a new one will do a
5715   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5716   // not dirty that area (one less thing to have to do while holding
5717   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5718   // is dirty.
5719   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5720   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5721   if (hr->is_young()) {
5722     ct_bs->verify_g1_young_region(mr);
5723   } else {
5724     ct_bs->verify_dirty_region(mr);
5725   }
5726 }
5727 
5728 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5729   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5730   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5731     verify_dirty_region(hr);
5732   }
5733 }
5734 
5735 void G1CollectedHeap::verify_dirty_young_regions() {
5736   verify_dirty_young_list(_young_list->first_region());
5737 }
5738 
5739 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5740                                                HeapWord* tams, HeapWord* end) {
5741   guarantee(tams <= end,
5742             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5743   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5744   if (result < end) {
5745     gclog_or_tty->cr();
5746     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5747                            bitmap_name, p2i(result));
5748     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5749                            bitmap_name, p2i(tams), p2i(end));
5750     return false;
5751   }
5752   return true;
5753 }
5754 
5755 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5756   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5757   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5758 
5759   HeapWord* bottom = hr->bottom();
5760   HeapWord* ptams  = hr->prev_top_at_mark_start();
5761   HeapWord* ntams  = hr->next_top_at_mark_start();
5762   HeapWord* end    = hr->end();
5763 
5764   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5765 
5766   bool res_n = true;
5767   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5768   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5769   // if we happen to be in that state.
5770   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5771     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5772   }
5773   if (!res_p || !res_n) {
5774     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5775                            HR_FORMAT_PARAMS(hr));
5776     gclog_or_tty->print_cr("#### Caller: %s", caller);
5777     return false;
5778   }
5779   return true;
5780 }
5781 
5782 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5783   if (!G1VerifyBitmaps) return;
5784 
5785   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5786 }
5787 
5788 class G1VerifyBitmapClosure : public HeapRegionClosure {
5789 private:
5790   const char* _caller;
5791   G1CollectedHeap* _g1h;
5792   bool _failures;
5793 
5794 public:
5795   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5796     _caller(caller), _g1h(g1h), _failures(false) { }
5797 
5798   bool failures() { return _failures; }
5799 
5800   virtual bool doHeapRegion(HeapRegion* hr) {
5801     if (hr->is_continues_humongous()) return false;
5802 
5803     bool result = _g1h->verify_bitmaps(_caller, hr);
5804     if (!result) {
5805       _failures = true;
5806     }
5807     return false;
5808   }
5809 };
5810 
5811 void G1CollectedHeap::check_bitmaps(const char* caller) {
5812   if (!G1VerifyBitmaps) return;
5813 
5814   G1VerifyBitmapClosure cl(caller, this);
5815   heap_region_iterate(&cl);
5816   guarantee(!cl.failures(), "bitmap verification");
5817 }
5818 
5819 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5820  private:
5821   bool _failures;
5822  public:
5823   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5824 
5825   virtual bool doHeapRegion(HeapRegion* hr) {
5826     uint i = hr->hrm_index();
5827     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5828     if (hr->is_humongous()) {
5829       if (hr->in_collection_set()) {
5830         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5831         _failures = true;
5832         return true;
5833       }
5834       if (cset_state.is_in_cset()) {
5835         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5836         _failures = true;
5837         return true;
5838       }
5839       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5840         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5841         _failures = true;
5842         return true;
5843       }
5844     } else {
5845       if (cset_state.is_humongous()) {
5846         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5847         _failures = true;
5848         return true;
5849       }
5850       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5851         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5852                                hr->in_collection_set(), cset_state.value(), i);
5853         _failures = true;
5854         return true;
5855       }
5856       if (cset_state.is_in_cset()) {
5857         if (hr->is_young() != (cset_state.is_young())) {
5858           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5859                                  hr->is_young(), cset_state.value(), i);
5860           _failures = true;
5861           return true;
5862         }
5863         if (hr->is_old() != (cset_state.is_old())) {
5864           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5865                                  hr->is_old(), cset_state.value(), i);
5866           _failures = true;
5867           return true;
5868         }
5869       }
5870     }
5871     return false;
5872   }
5873 
5874   bool failures() const { return _failures; }
5875 };
5876 
5877 bool G1CollectedHeap::check_cset_fast_test() {
5878   G1CheckCSetFastTableClosure cl;
5879   _hrm.iterate(&cl);
5880   return !cl.failures();
5881 }
5882 #endif // PRODUCT
5883 
5884 void G1CollectedHeap::cleanUpCardTable() {
5885   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5886   double start = os::elapsedTime();
5887 
5888   {
5889     // Iterate over the dirty cards region list.
5890     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5891 
5892     workers()->run_task(&cleanup_task);
5893 #ifndef PRODUCT
5894     if (G1VerifyCTCleanup || VerifyAfterGC) {
5895       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5896       heap_region_iterate(&cleanup_verifier);
5897     }
5898 #endif
5899   }
5900 
5901   double elapsed = os::elapsedTime() - start;
5902   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5903 }
5904 
5905 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5906   size_t pre_used = 0;
5907   FreeRegionList local_free_list("Local List for CSet Freeing");
5908 
5909   double young_time_ms     = 0.0;
5910   double non_young_time_ms = 0.0;
5911 
5912   // Since the collection set is a superset of the the young list,
5913   // all we need to do to clear the young list is clear its
5914   // head and length, and unlink any young regions in the code below
5915   _young_list->clear();
5916 
5917   G1CollectorPolicy* policy = g1_policy();
5918 
5919   double start_sec = os::elapsedTime();
5920   bool non_young = true;
5921 
5922   HeapRegion* cur = cs_head;
5923   int age_bound = -1;
5924   size_t rs_lengths = 0;
5925 
5926   while (cur != NULL) {
5927     assert(!is_on_master_free_list(cur), "sanity");
5928     if (non_young) {
5929       if (cur->is_young()) {
5930         double end_sec = os::elapsedTime();
5931         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5932         non_young_time_ms += elapsed_ms;
5933 
5934         start_sec = os::elapsedTime();
5935         non_young = false;
5936       }
5937     } else {
5938       if (!cur->is_young()) {
5939         double end_sec = os::elapsedTime();
5940         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5941         young_time_ms += elapsed_ms;
5942 
5943         start_sec = os::elapsedTime();
5944         non_young = true;
5945       }
5946     }
5947 
5948     rs_lengths += cur->rem_set()->occupied_locked();
5949 
5950     HeapRegion* next = cur->next_in_collection_set();
5951     assert(cur->in_collection_set(), "bad CS");
5952     cur->set_next_in_collection_set(NULL);
5953     clear_in_cset(cur);
5954 
5955     if (cur->is_young()) {
5956       int index = cur->young_index_in_cset();
5957       assert(index != -1, "invariant");
5958       assert((uint) index < policy->young_cset_region_length(), "invariant");
5959       size_t words_survived = _surviving_young_words[index];
5960       cur->record_surv_words_in_group(words_survived);
5961 
5962       // At this point the we have 'popped' cur from the collection set
5963       // (linked via next_in_collection_set()) but it is still in the
5964       // young list (linked via next_young_region()). Clear the
5965       // _next_young_region field.
5966       cur->set_next_young_region(NULL);
5967     } else {
5968       int index = cur->young_index_in_cset();
5969       assert(index == -1, "invariant");
5970     }
5971 
5972     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5973             (!cur->is_young() && cur->young_index_in_cset() == -1),
5974             "invariant" );
5975 
5976     if (!cur->evacuation_failed()) {
5977       MemRegion used_mr = cur->used_region();
5978 
5979       // And the region is empty.
5980       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5981       pre_used += cur->used();
5982       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5983     } else {
5984       cur->uninstall_surv_rate_group();
5985       if (cur->is_young()) {
5986         cur->set_young_index_in_cset(-1);
5987       }
5988       cur->set_evacuation_failed(false);
5989       // The region is now considered to be old.
5990       cur->set_old();
5991       _old_set.add(cur);
5992       evacuation_info.increment_collectionset_used_after(cur->used());
5993     }
5994     cur = next;
5995   }
5996 
5997   evacuation_info.set_regions_freed(local_free_list.length());
5998   policy->record_max_rs_lengths(rs_lengths);
5999   policy->cset_regions_freed();
6000 
6001   double end_sec = os::elapsedTime();
6002   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6003 
6004   if (non_young) {
6005     non_young_time_ms += elapsed_ms;
6006   } else {
6007     young_time_ms += elapsed_ms;
6008   }
6009 
6010   prepend_to_freelist(&local_free_list);
6011   decrement_summary_bytes(pre_used);
6012   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6013   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6014 }
6015 
6016 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6017  private:
6018   FreeRegionList* _free_region_list;
6019   HeapRegionSet* _proxy_set;
6020   HeapRegionSetCount _humongous_regions_removed;
6021   size_t _freed_bytes;
6022  public:
6023 
6024   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6025     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6026   }
6027 
6028   virtual bool doHeapRegion(HeapRegion* r) {
6029     if (!r->is_starts_humongous()) {
6030       return false;
6031     }
6032 
6033     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6034 
6035     oop obj = (oop)r->bottom();
6036     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6037 
6038     // The following checks whether the humongous object is live are sufficient.
6039     // The main additional check (in addition to having a reference from the roots
6040     // or the young gen) is whether the humongous object has a remembered set entry.
6041     //
6042     // A humongous object cannot be live if there is no remembered set for it
6043     // because:
6044     // - there can be no references from within humongous starts regions referencing
6045     // the object because we never allocate other objects into them.
6046     // (I.e. there are no intra-region references that may be missed by the
6047     // remembered set)
6048     // - as soon there is a remembered set entry to the humongous starts region
6049     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6050     // until the end of a concurrent mark.
6051     //
6052     // It is not required to check whether the object has been found dead by marking
6053     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6054     // all objects allocated during that time are considered live.
6055     // SATB marking is even more conservative than the remembered set.
6056     // So if at this point in the collection there is no remembered set entry,
6057     // nobody has a reference to it.
6058     // At the start of collection we flush all refinement logs, and remembered sets
6059     // are completely up-to-date wrt to references to the humongous object.
6060     //
6061     // Other implementation considerations:
6062     // - never consider object arrays at this time because they would pose
6063     // considerable effort for cleaning up the the remembered sets. This is
6064     // required because stale remembered sets might reference locations that
6065     // are currently allocated into.
6066     uint region_idx = r->hrm_index();
6067     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6068         !r->rem_set()->is_empty()) {
6069 
6070       if (G1TraceEagerReclaimHumongousObjects) {
6071         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6072                                region_idx,
6073                                (size_t)obj->size() * HeapWordSize,
6074                                p2i(r->bottom()),
6075                                r->region_num(),
6076                                r->rem_set()->occupied(),
6077                                r->rem_set()->strong_code_roots_list_length(),
6078                                next_bitmap->isMarked(r->bottom()),
6079                                g1h->is_humongous_reclaim_candidate(region_idx),
6080                                obj->is_typeArray()
6081                               );
6082       }
6083 
6084       return false;
6085     }
6086 
6087     guarantee(obj->is_typeArray(),
6088               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6089                       PTR_FORMAT " is not.",
6090                       p2i(r->bottom())));
6091 
6092     if (G1TraceEagerReclaimHumongousObjects) {
6093       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6094                              region_idx,
6095                              (size_t)obj->size() * HeapWordSize,
6096                              p2i(r->bottom()),
6097                              r->region_num(),
6098                              r->rem_set()->occupied(),
6099                              r->rem_set()->strong_code_roots_list_length(),
6100                              next_bitmap->isMarked(r->bottom()),
6101                              g1h->is_humongous_reclaim_candidate(region_idx),
6102                              obj->is_typeArray()
6103                             );
6104     }
6105     // Need to clear mark bit of the humongous object if already set.
6106     if (next_bitmap->isMarked(r->bottom())) {
6107       next_bitmap->clear(r->bottom());
6108     }
6109     _freed_bytes += r->used();
6110     r->set_containing_set(NULL);
6111     _humongous_regions_removed.increment(1u, r->capacity());
6112     g1h->free_humongous_region(r, _free_region_list, false);
6113 
6114     return false;
6115   }
6116 
6117   HeapRegionSetCount& humongous_free_count() {
6118     return _humongous_regions_removed;
6119   }
6120 
6121   size_t bytes_freed() const {
6122     return _freed_bytes;
6123   }
6124 
6125   size_t humongous_reclaimed() const {
6126     return _humongous_regions_removed.length();
6127   }
6128 };
6129 
6130 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6131   assert_at_safepoint(true);
6132 
6133   if (!G1EagerReclaimHumongousObjects ||
6134       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6135     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6136     return;
6137   }
6138 
6139   double start_time = os::elapsedTime();
6140 
6141   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6142 
6143   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6144   heap_region_iterate(&cl);
6145 
6146   HeapRegionSetCount empty_set;
6147   remove_from_old_sets(empty_set, cl.humongous_free_count());
6148 
6149   G1HRPrinter* hrp = hr_printer();
6150   if (hrp->is_active()) {
6151     FreeRegionListIterator iter(&local_cleanup_list);
6152     while (iter.more_available()) {
6153       HeapRegion* hr = iter.get_next();
6154       hrp->cleanup(hr);
6155     }
6156   }
6157 
6158   prepend_to_freelist(&local_cleanup_list);
6159   decrement_summary_bytes(cl.bytes_freed());
6160 
6161   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6162                                                                     cl.humongous_reclaimed());
6163 }
6164 
6165 // This routine is similar to the above but does not record
6166 // any policy statistics or update free lists; we are abandoning
6167 // the current incremental collection set in preparation of a
6168 // full collection. After the full GC we will start to build up
6169 // the incremental collection set again.
6170 // This is only called when we're doing a full collection
6171 // and is immediately followed by the tearing down of the young list.
6172 
6173 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6174   HeapRegion* cur = cs_head;
6175 
6176   while (cur != NULL) {
6177     HeapRegion* next = cur->next_in_collection_set();
6178     assert(cur->in_collection_set(), "bad CS");
6179     cur->set_next_in_collection_set(NULL);
6180     clear_in_cset(cur);
6181     cur->set_young_index_in_cset(-1);
6182     cur = next;
6183   }
6184 }
6185 
6186 void G1CollectedHeap::set_free_regions_coming() {
6187   if (G1ConcRegionFreeingVerbose) {
6188     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6189                            "setting free regions coming");
6190   }
6191 
6192   assert(!free_regions_coming(), "pre-condition");
6193   _free_regions_coming = true;
6194 }
6195 
6196 void G1CollectedHeap::reset_free_regions_coming() {
6197   assert(free_regions_coming(), "pre-condition");
6198 
6199   {
6200     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6201     _free_regions_coming = false;
6202     SecondaryFreeList_lock->notify_all();
6203   }
6204 
6205   if (G1ConcRegionFreeingVerbose) {
6206     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6207                            "reset free regions coming");
6208   }
6209 }
6210 
6211 void G1CollectedHeap::wait_while_free_regions_coming() {
6212   // Most of the time we won't have to wait, so let's do a quick test
6213   // first before we take the lock.
6214   if (!free_regions_coming()) {
6215     return;
6216   }
6217 
6218   if (G1ConcRegionFreeingVerbose) {
6219     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6220                            "waiting for free regions");
6221   }
6222 
6223   {
6224     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6225     while (free_regions_coming()) {
6226       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6227     }
6228   }
6229 
6230   if (G1ConcRegionFreeingVerbose) {
6231     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6232                            "done waiting for free regions");
6233   }
6234 }
6235 
6236 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6237   _young_list->push_region(hr);
6238 }
6239 
6240 class NoYoungRegionsClosure: public HeapRegionClosure {
6241 private:
6242   bool _success;
6243 public:
6244   NoYoungRegionsClosure() : _success(true) { }
6245   bool doHeapRegion(HeapRegion* r) {
6246     if (r->is_young()) {
6247       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6248                              p2i(r->bottom()), p2i(r->end()));
6249       _success = false;
6250     }
6251     return false;
6252   }
6253   bool success() { return _success; }
6254 };
6255 
6256 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6257   bool ret = _young_list->check_list_empty(check_sample);
6258 
6259   if (check_heap) {
6260     NoYoungRegionsClosure closure;
6261     heap_region_iterate(&closure);
6262     ret = ret && closure.success();
6263   }
6264 
6265   return ret;
6266 }
6267 
6268 class TearDownRegionSetsClosure : public HeapRegionClosure {
6269 private:
6270   HeapRegionSet *_old_set;
6271 
6272 public:
6273   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6274 
6275   bool doHeapRegion(HeapRegion* r) {
6276     if (r->is_old()) {
6277       _old_set->remove(r);
6278     } else {
6279       // We ignore free regions, we'll empty the free list afterwards.
6280       // We ignore young regions, we'll empty the young list afterwards.
6281       // We ignore humongous regions, we're not tearing down the
6282       // humongous regions set.
6283       assert(r->is_free() || r->is_young() || r->is_humongous(),
6284              "it cannot be another type");
6285     }
6286     return false;
6287   }
6288 
6289   ~TearDownRegionSetsClosure() {
6290     assert(_old_set->is_empty(), "post-condition");
6291   }
6292 };
6293 
6294 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6295   assert_at_safepoint(true /* should_be_vm_thread */);
6296 
6297   if (!free_list_only) {
6298     TearDownRegionSetsClosure cl(&_old_set);
6299     heap_region_iterate(&cl);
6300 
6301     // Note that emptying the _young_list is postponed and instead done as
6302     // the first step when rebuilding the regions sets again. The reason for
6303     // this is that during a full GC string deduplication needs to know if
6304     // a collected region was young or old when the full GC was initiated.
6305   }
6306   _hrm.remove_all_free_regions();
6307 }
6308 
6309 void G1CollectedHeap::increase_used(size_t bytes) {
6310   _summary_bytes_used += bytes;
6311 }
6312 
6313 void G1CollectedHeap::decrease_used(size_t bytes) {
6314   assert(_summary_bytes_used >= bytes,
6315          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6316                  _summary_bytes_used, bytes));
6317   _summary_bytes_used -= bytes;
6318 }
6319 
6320 void G1CollectedHeap::set_used(size_t bytes) {
6321   _summary_bytes_used = bytes;
6322 }
6323 
6324 class RebuildRegionSetsClosure : public HeapRegionClosure {
6325 private:
6326   bool            _free_list_only;
6327   HeapRegionSet*   _old_set;
6328   HeapRegionManager*   _hrm;
6329   size_t          _total_used;
6330 
6331 public:
6332   RebuildRegionSetsClosure(bool free_list_only,
6333                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6334     _free_list_only(free_list_only),
6335     _old_set(old_set), _hrm(hrm), _total_used(0) {
6336     assert(_hrm->num_free_regions() == 0, "pre-condition");
6337     if (!free_list_only) {
6338       assert(_old_set->is_empty(), "pre-condition");
6339     }
6340   }
6341 
6342   bool doHeapRegion(HeapRegion* r) {
6343     if (r->is_continues_humongous()) {
6344       return false;
6345     }
6346 
6347     if (r->is_empty()) {
6348       // Add free regions to the free list
6349       r->set_free();
6350       r->set_allocation_context(AllocationContext::system());
6351       _hrm->insert_into_free_list(r);
6352     } else if (!_free_list_only) {
6353       assert(!r->is_young(), "we should not come across young regions");
6354 
6355       if (r->is_humongous()) {
6356         // We ignore humongous regions. We left the humongous set unchanged.
6357       } else {
6358         // Objects that were compacted would have ended up on regions
6359         // that were previously old or free.  Archive regions (which are
6360         // old) will not have been touched.
6361         assert(r->is_free() || r->is_old(), "invariant");
6362         // We now consider them old, so register as such. Leave
6363         // archive regions set that way, however, while still adding
6364         // them to the old set.
6365         if (!r->is_archive()) {
6366           r->set_old();
6367         }
6368         _old_set->add(r);
6369       }
6370       _total_used += r->used();
6371     }
6372 
6373     return false;
6374   }
6375 
6376   size_t total_used() {
6377     return _total_used;
6378   }
6379 };
6380 
6381 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6382   assert_at_safepoint(true /* should_be_vm_thread */);
6383 
6384   if (!free_list_only) {
6385     _young_list->empty_list();
6386   }
6387 
6388   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6389   heap_region_iterate(&cl);
6390 
6391   if (!free_list_only) {
6392     set_used(cl.total_used());
6393     if (_archive_allocator != NULL) {
6394       _archive_allocator->clear_used();
6395     }
6396   }
6397   assert(used_unlocked() == recalculate_used(),
6398          err_msg("inconsistent used_unlocked(), "
6399                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6400                  used_unlocked(), recalculate_used()));
6401 }
6402 
6403 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6404   _refine_cte_cl->set_concurrent(concurrent);
6405 }
6406 
6407 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6408   HeapRegion* hr = heap_region_containing(p);
6409   return hr->is_in(p);
6410 }
6411 
6412 // Methods for the mutator alloc region
6413 
6414 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6415                                                       bool force) {
6416   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6417   assert(!force || g1_policy()->can_expand_young_list(),
6418          "if force is true we should be able to expand the young list");
6419   bool young_list_full = g1_policy()->is_young_list_full();
6420   if (force || !young_list_full) {
6421     HeapRegion* new_alloc_region = new_region(word_size,
6422                                               false /* is_old */,
6423                                               false /* do_expand */);
6424     if (new_alloc_region != NULL) {
6425       set_region_short_lived_locked(new_alloc_region);
6426       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6427       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6428       return new_alloc_region;
6429     }
6430   }
6431   return NULL;
6432 }
6433 
6434 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6435                                                   size_t allocated_bytes) {
6436   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6437   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6438 
6439   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6440   increase_used(allocated_bytes);
6441   _hr_printer.retire(alloc_region);
6442   // We update the eden sizes here, when the region is retired,
6443   // instead of when it's allocated, since this is the point that its
6444   // used space has been recored in _summary_bytes_used.
6445   g1mm()->update_eden_size();
6446 }
6447 
6448 // Methods for the GC alloc regions
6449 
6450 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6451                                                  uint count,
6452                                                  InCSetState dest) {
6453   assert(FreeList_lock->owned_by_self(), "pre-condition");
6454 
6455   if (count < g1_policy()->max_regions(dest)) {
6456     const bool is_survivor = (dest.is_young());
6457     HeapRegion* new_alloc_region = new_region(word_size,
6458                                               !is_survivor,
6459                                               true /* do_expand */);
6460     if (new_alloc_region != NULL) {
6461       // We really only need to do this for old regions given that we
6462       // should never scan survivors. But it doesn't hurt to do it
6463       // for survivors too.
6464       new_alloc_region->record_timestamp();
6465       if (is_survivor) {
6466         new_alloc_region->set_survivor();
6467         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6468         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6469       } else {
6470         new_alloc_region->set_old();
6471         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6472         check_bitmaps("Old Region Allocation", new_alloc_region);
6473       }
6474       bool during_im = collector_state()->during_initial_mark_pause();
6475       new_alloc_region->note_start_of_copying(during_im);
6476       return new_alloc_region;
6477     }
6478   }
6479   return NULL;
6480 }
6481 
6482 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6483                                              size_t allocated_bytes,
6484                                              InCSetState dest) {
6485   bool during_im = collector_state()->during_initial_mark_pause();
6486   alloc_region->note_end_of_copying(during_im);
6487   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6488   if (dest.is_young()) {
6489     young_list()->add_survivor_region(alloc_region);
6490   } else {
6491     _old_set.add(alloc_region);
6492   }
6493   _hr_printer.retire(alloc_region);
6494 }
6495 
6496 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6497   bool expanded = false;
6498   uint index = _hrm.find_highest_free(&expanded);
6499 
6500   if (index != G1_NO_HRM_INDEX) {
6501     if (expanded) {
6502       ergo_verbose1(ErgoHeapSizing,
6503                     "attempt heap expansion",
6504                     ergo_format_reason("requested address range outside heap bounds")
6505                     ergo_format_byte("region size"),
6506                     HeapRegion::GrainWords * HeapWordSize);
6507     }
6508     _hrm.allocate_free_regions_starting_at(index, 1);
6509     return region_at(index);
6510   }
6511   return NULL;
6512 }
6513 
6514 // Heap region set verification
6515 
6516 class VerifyRegionListsClosure : public HeapRegionClosure {
6517 private:
6518   HeapRegionSet*   _old_set;
6519   HeapRegionSet*   _humongous_set;
6520   HeapRegionManager*   _hrm;
6521 
6522 public:
6523   HeapRegionSetCount _old_count;
6524   HeapRegionSetCount _humongous_count;
6525   HeapRegionSetCount _free_count;
6526 
6527   VerifyRegionListsClosure(HeapRegionSet* old_set,
6528                            HeapRegionSet* humongous_set,
6529                            HeapRegionManager* hrm) :
6530     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6531     _old_count(), _humongous_count(), _free_count(){ }
6532 
6533   bool doHeapRegion(HeapRegion* hr) {
6534     if (hr->is_continues_humongous()) {
6535       return false;
6536     }
6537 
6538     if (hr->is_young()) {
6539       // TODO
6540     } else if (hr->is_starts_humongous()) {
6541       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6542       _humongous_count.increment(1u, hr->capacity());
6543     } else if (hr->is_empty()) {
6544       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6545       _free_count.increment(1u, hr->capacity());
6546     } else if (hr->is_old()) {
6547       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6548       _old_count.increment(1u, hr->capacity());
6549     } else {
6550       // There are no other valid region types. Check for one invalid
6551       // one we can identify: pinned without old or humongous set.
6552       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6553       ShouldNotReachHere();
6554     }
6555     return false;
6556   }
6557 
6558   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6559     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6560     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6561         old_set->total_capacity_bytes(), _old_count.capacity()));
6562 
6563     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6564     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6565         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6566 
6567     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6568     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6569         free_list->total_capacity_bytes(), _free_count.capacity()));
6570   }
6571 };
6572 
6573 void G1CollectedHeap::verify_region_sets() {
6574   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6575 
6576   // First, check the explicit lists.
6577   _hrm.verify();
6578   {
6579     // Given that a concurrent operation might be adding regions to
6580     // the secondary free list we have to take the lock before
6581     // verifying it.
6582     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6583     _secondary_free_list.verify_list();
6584   }
6585 
6586   // If a concurrent region freeing operation is in progress it will
6587   // be difficult to correctly attributed any free regions we come
6588   // across to the correct free list given that they might belong to
6589   // one of several (free_list, secondary_free_list, any local lists,
6590   // etc.). So, if that's the case we will skip the rest of the
6591   // verification operation. Alternatively, waiting for the concurrent
6592   // operation to complete will have a non-trivial effect on the GC's
6593   // operation (no concurrent operation will last longer than the
6594   // interval between two calls to verification) and it might hide
6595   // any issues that we would like to catch during testing.
6596   if (free_regions_coming()) {
6597     return;
6598   }
6599 
6600   // Make sure we append the secondary_free_list on the free_list so
6601   // that all free regions we will come across can be safely
6602   // attributed to the free_list.
6603   append_secondary_free_list_if_not_empty_with_lock();
6604 
6605   // Finally, make sure that the region accounting in the lists is
6606   // consistent with what we see in the heap.
6607 
6608   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6609   heap_region_iterate(&cl);
6610   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6611 }
6612 
6613 // Optimized nmethod scanning
6614 
6615 class RegisterNMethodOopClosure: public OopClosure {
6616   G1CollectedHeap* _g1h;
6617   nmethod* _nm;
6618 
6619   template <class T> void do_oop_work(T* p) {
6620     T heap_oop = oopDesc::load_heap_oop(p);
6621     if (!oopDesc::is_null(heap_oop)) {
6622       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6623       HeapRegion* hr = _g1h->heap_region_containing(obj);
6624       assert(!hr->is_continues_humongous(),
6625              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6626                      " starting at " HR_FORMAT,
6627                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6628 
6629       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6630       hr->add_strong_code_root_locked(_nm);
6631     }
6632   }
6633 
6634 public:
6635   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6636     _g1h(g1h), _nm(nm) {}
6637 
6638   void do_oop(oop* p)       { do_oop_work(p); }
6639   void do_oop(narrowOop* p) { do_oop_work(p); }
6640 };
6641 
6642 class UnregisterNMethodOopClosure: public OopClosure {
6643   G1CollectedHeap* _g1h;
6644   nmethod* _nm;
6645 
6646   template <class T> void do_oop_work(T* p) {
6647     T heap_oop = oopDesc::load_heap_oop(p);
6648     if (!oopDesc::is_null(heap_oop)) {
6649       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6650       HeapRegion* hr = _g1h->heap_region_containing(obj);
6651       assert(!hr->is_continues_humongous(),
6652              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6653                      " starting at " HR_FORMAT,
6654                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6655 
6656       hr->remove_strong_code_root(_nm);
6657     }
6658   }
6659 
6660 public:
6661   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6662     _g1h(g1h), _nm(nm) {}
6663 
6664   void do_oop(oop* p)       { do_oop_work(p); }
6665   void do_oop(narrowOop* p) { do_oop_work(p); }
6666 };
6667 
6668 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6669   CollectedHeap::register_nmethod(nm);
6670 
6671   guarantee(nm != NULL, "sanity");
6672   RegisterNMethodOopClosure reg_cl(this, nm);
6673   nm->oops_do(&reg_cl);
6674 }
6675 
6676 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6677   CollectedHeap::unregister_nmethod(nm);
6678 
6679   guarantee(nm != NULL, "sanity");
6680   UnregisterNMethodOopClosure reg_cl(this, nm);
6681   nm->oops_do(&reg_cl, true);
6682 }
6683 
6684 void G1CollectedHeap::purge_code_root_memory() {
6685   double purge_start = os::elapsedTime();
6686   G1CodeRootSet::purge();
6687   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6688   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6689 }
6690 
6691 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6692   G1CollectedHeap* _g1h;
6693 
6694 public:
6695   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6696     _g1h(g1h) {}
6697 
6698   void do_code_blob(CodeBlob* cb) {
6699     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6700     if (nm == NULL) {
6701       return;
6702     }
6703 
6704     if (ScavengeRootsInCode) {
6705       _g1h->register_nmethod(nm);
6706     }
6707   }
6708 };
6709 
6710 void G1CollectedHeap::rebuild_strong_code_roots() {
6711   RebuildStrongCodeRootClosure blob_cl(this);
6712   CodeCache::blobs_do(&blob_cl);
6713 }