1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 #include "utilities/growableArray.hpp"
  61 
  62 // Concurrent marking bit map wrapper
  63 
  64 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  65   _bm(),
  66   _shifter(shifter) {
  67   _bmStartWord = 0;
  68   _bmWordSize = 0;
  69 }
  70 
  71 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  72                                                  const HeapWord* limit) const {
  73   // First we must round addr *up* to a possible object boundary.
  74   addr = (HeapWord*)align_size_up((intptr_t)addr,
  75                                   HeapWordSize << _shifter);
  76   size_t addrOffset = heapWordToOffset(addr);
  77   assert(limit != NULL, "limit must not be NULL");
  78   size_t limitOffset = heapWordToOffset(limit);
  79   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  80   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  81   assert(nextAddr >= addr, "get_next_one postcondition");
  82   assert(nextAddr == limit || isMarked(nextAddr),
  83          "get_next_one postcondition");
  84   return nextAddr;
  85 }
  86 
  87 #ifndef PRODUCT
  88 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  89   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  90   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  91          "size inconsistency");
  92   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  93          _bmWordSize  == heap_rs.word_size();
  94 }
  95 #endif
  96 
  97 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  98   _bm.print_on_error(st, prefix);
  99 }
 100 
 101 size_t G1CMBitMap::compute_size(size_t heap_size) {
 102   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 103 }
 104 
 105 size_t G1CMBitMap::mark_distance() {
 106   return MinObjAlignmentInBytes * BitsPerByte;
 107 }
 108 
 109 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 110   _bmStartWord = heap.start();
 111   _bmWordSize = heap.word_size();
 112 
 113   _bm = BitMapView((BitMap::bm_word_t*) storage->reserved().start(), _bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clear_range(mr);
 125 }
 126 
 127 void G1CMBitMap::clear_range(MemRegion mr) {
 128   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 129   assert(!mr.is_empty(), "unexpected empty region");
 130   // convert address range into offset range
 131   _bm.at_put_range(heapWordToOffset(mr.start()),
 132                    heapWordToOffset(mr.end()), false);
 133 }
 134 
 135 G1CMMarkStack::G1CMMarkStack() :
 136   _max_chunk_capacity(0),
 137   _base(NULL),
 138   _chunk_capacity(0),
 139   _should_expand(false) {
 140   set_empty();
 141 }
 142 
 143 bool G1CMMarkStack::resize(size_t new_capacity) {
 144   assert(is_empty(), "Only resize when stack is empty.");
 145   assert(new_capacity <= _max_chunk_capacity,
 146          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 147 
 148   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::allocate_or_null(new_capacity);
 149 
 150   if (new_base == NULL) {
 151     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 152     return false;
 153   }
 154   // Release old mapping.
 155   if (_base != NULL) {
 156     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 157   }
 158 
 159   _base = new_base;
 160   _chunk_capacity = new_capacity;
 161   set_empty();
 162   _should_expand = false;
 163 
 164   return true;
 165 }
 166 
 167 size_t G1CMMarkStack::capacity_alignment() {
 168   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 169 }
 170 
 171 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 172   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 173 
 174   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 175 
 176   _max_chunk_capacity = (size_t)align_size_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 177   size_t initial_chunk_capacity = (size_t)align_size_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 178 
 179   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 180             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 181             _max_chunk_capacity,
 182             initial_chunk_capacity);
 183 
 184   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 185                 initial_chunk_capacity, _max_chunk_capacity);
 186 
 187   return resize(initial_chunk_capacity);
 188 }
 189 
 190 void G1CMMarkStack::expand() {
 191   // Clear expansion flag
 192   _should_expand = false;
 193 
 194   if (_chunk_capacity == _max_chunk_capacity) {
 195     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 196     return;
 197   }
 198   size_t old_capacity = _chunk_capacity;
 199   // Double capacity if possible
 200   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 201 
 202   if (resize(new_capacity)) {
 203     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 204                   old_capacity, new_capacity);
 205   } else {
 206     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 207                     old_capacity, new_capacity);
 208   }
 209 }
 210 
 211 G1CMMarkStack::~G1CMMarkStack() {
 212   if (_base != NULL) {
 213     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 214   }
 215 }
 216 
 217 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 218   elem->next = *list;
 219   *list = elem;
 220 }
 221 
 222 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 223   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 224   add_chunk_to_list(&_chunk_list, elem);
 225   _chunks_in_chunk_list++;
 226 }
 227 
 228 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 229   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 230   add_chunk_to_list(&_free_list, elem);
 231 }
 232 
 233 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 234   TaskQueueEntryChunk* result = *list;
 235   if (result != NULL) {
 236     *list = (*list)->next;
 237   }
 238   return result;
 239 }
 240 
 241 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 242   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 243   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 244   if (result != NULL) {
 245     _chunks_in_chunk_list--;
 246   }
 247   return result;
 248 }
 249 
 250 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 251   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 252   return remove_chunk_from_list(&_free_list);
 253 }
 254 
 255 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 256   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 257   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 258   // wraparound of _hwm.
 259   if (_hwm >= _chunk_capacity) {
 260     return NULL;
 261   }
 262 
 263   size_t cur_idx = Atomic::add(1, &_hwm) - 1;
 264   if (cur_idx >= _chunk_capacity) {
 265     return NULL;
 266   }
 267 
 268   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 269   result->next = NULL;
 270   return result;
 271 }
 272 
 273 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 274   // Get a new chunk.
 275   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 276 
 277   if (new_chunk == NULL) {
 278     // Did not get a chunk from the free list. Allocate from backing memory.
 279     new_chunk = allocate_new_chunk();
 280 
 281     if (new_chunk == NULL) {
 282       return false;
 283     }
 284   }
 285 
 286   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 287 
 288   add_chunk_to_chunk_list(new_chunk);
 289 
 290   return true;
 291 }
 292 
 293 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 294   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 295 
 296   if (cur == NULL) {
 297     return false;
 298   }
 299 
 300   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 301 
 302   add_chunk_to_free_list(cur);
 303   return true;
 304 }
 305 
 306 void G1CMMarkStack::set_empty() {
 307   _chunks_in_chunk_list = 0;
 308   _hwm = 0;
 309   _chunk_list = NULL;
 310   _free_list = NULL;
 311 }
 312 
 313 G1CMRootRegions::G1CMRootRegions() :
 314   _cm(NULL), _scan_in_progress(false),
 315   _should_abort(false), _claimed_survivor_index(0) { }
 316 
 317 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 318   _survivors = survivors;
 319   _cm = cm;
 320 }
 321 
 322 void G1CMRootRegions::prepare_for_scan() {
 323   assert(!scan_in_progress(), "pre-condition");
 324 
 325   // Currently, only survivors can be root regions.
 326   _claimed_survivor_index = 0;
 327   _scan_in_progress = _survivors->regions()->is_nonempty();
 328   _should_abort = false;
 329 }
 330 
 331 HeapRegion* G1CMRootRegions::claim_next() {
 332   if (_should_abort) {
 333     // If someone has set the should_abort flag, we return NULL to
 334     // force the caller to bail out of their loop.
 335     return NULL;
 336   }
 337 
 338   // Currently, only survivors can be root regions.
 339   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 340 
 341   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 342   if (claimed_index < survivor_regions->length()) {
 343     return survivor_regions->at(claimed_index);
 344   }
 345   return NULL;
 346 }
 347 
 348 uint G1CMRootRegions::num_root_regions() const {
 349   return (uint)_survivors->regions()->length();
 350 }
 351 
 352 void G1CMRootRegions::notify_scan_done() {
 353   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 354   _scan_in_progress = false;
 355   RootRegionScan_lock->notify_all();
 356 }
 357 
 358 void G1CMRootRegions::cancel_scan() {
 359   notify_scan_done();
 360 }
 361 
 362 void G1CMRootRegions::scan_finished() {
 363   assert(scan_in_progress(), "pre-condition");
 364 
 365   // Currently, only survivors can be root regions.
 366   if (!_should_abort) {
 367     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 368     assert((uint)_claimed_survivor_index >= _survivors->length(),
 369            "we should have claimed all survivors, claimed index = %u, length = %u",
 370            (uint)_claimed_survivor_index, _survivors->length());
 371   }
 372 
 373   notify_scan_done();
 374 }
 375 
 376 bool G1CMRootRegions::wait_until_scan_finished() {
 377   if (!scan_in_progress()) return false;
 378 
 379   {
 380     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 381     while (scan_in_progress()) {
 382       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 383     }
 384   }
 385   return true;
 386 }
 387 
 388 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 389   return MAX2((n_par_threads + 2) / 4, 1U);
 390 }
 391 
 392 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 393   _g1h(g1h),
 394   _markBitMap1(),
 395   _markBitMap2(),
 396   _parallel_marking_threads(0),
 397   _max_parallel_marking_threads(0),
 398   _sleep_factor(0.0),
 399   _marking_task_overhead(1.0),
 400   _cleanup_list("Cleanup List"),
 401 
 402   _prevMarkBitMap(&_markBitMap1),
 403   _nextMarkBitMap(&_markBitMap2),
 404 
 405   _global_mark_stack(),
 406   // _finger set in set_non_marking_state
 407 
 408   _max_worker_id(ParallelGCThreads),
 409   // _active_tasks set in set_non_marking_state
 410   // _tasks set inside the constructor
 411   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 412   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 413 
 414   _has_overflown(false),
 415   _concurrent(false),
 416   _has_aborted(false),
 417   _restart_for_overflow(false),
 418   _concurrent_marking_in_progress(false),
 419   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 420   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 421 
 422   // _verbose_level set below
 423 
 424   _init_times(),
 425   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 426   _cleanup_times(),
 427   _total_counting_time(0.0),
 428   _total_rs_scrub_time(0.0),
 429 
 430   _parallel_workers(NULL),
 431 
 432   _completed_initialization(false) {
 433 
 434   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 435   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 436 
 437   // Create & start a ConcurrentMark thread.
 438   _cmThread = new ConcurrentMarkThread(this);
 439   assert(cmThread() != NULL, "CM Thread should have been created");
 440   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 441   if (_cmThread->osthread() == NULL) {
 442       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 443   }
 444 
 445   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 446   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 447   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 448 
 449   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 450   satb_qs.set_buffer_size(G1SATBBufferSize);
 451 
 452   _root_regions.init(_g1h->survivor(), this);
 453 
 454   if (ConcGCThreads > ParallelGCThreads) {
 455     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 456                     ConcGCThreads, ParallelGCThreads);
 457     return;
 458   }
 459   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 460     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 461     // if both are set
 462     _sleep_factor             = 0.0;
 463     _marking_task_overhead    = 1.0;
 464   } else if (G1MarkingOverheadPercent > 0) {
 465     // We will calculate the number of parallel marking threads based
 466     // on a target overhead with respect to the soft real-time goal
 467     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 468     double overall_cm_overhead =
 469       (double) MaxGCPauseMillis * marking_overhead /
 470       (double) GCPauseIntervalMillis;
 471     double cpu_ratio = 1.0 / os::initial_active_processor_count();
 472     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 473     double marking_task_overhead =
 474       overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
 475     double sleep_factor =
 476                        (1.0 - marking_task_overhead) / marking_task_overhead;
 477 
 478     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 479     _sleep_factor             = sleep_factor;
 480     _marking_task_overhead    = marking_task_overhead;
 481   } else {
 482     // Calculate the number of parallel marking threads by scaling
 483     // the number of parallel GC threads.
 484     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 485     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 486     _sleep_factor             = 0.0;
 487     _marking_task_overhead    = 1.0;
 488   }
 489 
 490   assert(ConcGCThreads > 0, "Should have been set");
 491   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 492   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 493   _parallel_marking_threads = ConcGCThreads;
 494   _max_parallel_marking_threads = _parallel_marking_threads;
 495 
 496   _parallel_workers = new WorkGang("G1 Marker",
 497        _max_parallel_marking_threads, false, true);
 498   if (_parallel_workers == NULL) {
 499     vm_exit_during_initialization("Failed necessary allocation.");
 500   } else {
 501     _parallel_workers->initialize_workers();
 502   }
 503 
 504   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 505     size_t mark_stack_size =
 506       MIN2(MarkStackSizeMax,
 507           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 508     // Verify that the calculated value for MarkStackSize is in range.
 509     // It would be nice to use the private utility routine from Arguments.
 510     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 511       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 512                       "must be between 1 and " SIZE_FORMAT,
 513                       mark_stack_size, MarkStackSizeMax);
 514       return;
 515     }
 516     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 517   } else {
 518     // Verify MarkStackSize is in range.
 519     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 520       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 521         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 522           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 523                           "must be between 1 and " SIZE_FORMAT,
 524                           MarkStackSize, MarkStackSizeMax);
 525           return;
 526         }
 527       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 528         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 529           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 530                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 531                           MarkStackSize, MarkStackSizeMax);
 532           return;
 533         }
 534       }
 535     }
 536   }
 537 
 538   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 539     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 540   }
 541 
 542   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 543   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 544 
 545   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 546   _active_tasks = _max_worker_id;
 547 
 548   for (uint i = 0; i < _max_worker_id; ++i) {
 549     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 550     task_queue->initialize();
 551     _task_queues->register_queue(i, task_queue);
 552 
 553     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 554 
 555     _accum_task_vtime[i] = 0.0;
 556   }
 557 
 558   // so that the call below can read a sensible value
 559   _heap_start = g1h->reserved_region().start();
 560   set_non_marking_state();
 561   _completed_initialization = true;
 562 }
 563 
 564 void G1ConcurrentMark::reset() {
 565   // Starting values for these two. This should be called in a STW
 566   // phase.
 567   MemRegion reserved = _g1h->g1_reserved();
 568   _heap_start = reserved.start();
 569   _heap_end   = reserved.end();
 570 
 571   // Separated the asserts so that we know which one fires.
 572   assert(_heap_start != NULL, "heap bounds should look ok");
 573   assert(_heap_end != NULL, "heap bounds should look ok");
 574   assert(_heap_start < _heap_end, "heap bounds should look ok");
 575 
 576   // Reset all the marking data structures and any necessary flags
 577   reset_marking_state();
 578 
 579   // We do reset all of them, since different phases will use
 580   // different number of active threads. So, it's easiest to have all
 581   // of them ready.
 582   for (uint i = 0; i < _max_worker_id; ++i) {
 583     _tasks[i]->reset(_nextMarkBitMap);
 584   }
 585 
 586   // we need this to make sure that the flag is on during the evac
 587   // pause with initial mark piggy-backed
 588   set_concurrent_marking_in_progress();
 589 }
 590 
 591 
 592 void G1ConcurrentMark::reset_marking_state() {
 593   _global_mark_stack.set_should_expand(has_overflown());
 594   _global_mark_stack.set_empty();
 595   clear_has_overflown();
 596   _finger = _heap_start;
 597 
 598   for (uint i = 0; i < _max_worker_id; ++i) {
 599     G1CMTaskQueue* queue = _task_queues->queue(i);
 600     queue->set_empty();
 601   }
 602 }
 603 
 604 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 605   assert(active_tasks <= _max_worker_id, "we should not have more");
 606 
 607   _active_tasks = active_tasks;
 608   // Need to update the three data structures below according to the
 609   // number of active threads for this phase.
 610   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 611   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 612   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 613 }
 614 
 615 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 616   set_concurrency(active_tasks);
 617 
 618   _concurrent = concurrent;
 619   // We propagate this to all tasks, not just the active ones.
 620   for (uint i = 0; i < _max_worker_id; ++i)
 621     _tasks[i]->set_concurrent(concurrent);
 622 
 623   if (concurrent) {
 624     set_concurrent_marking_in_progress();
 625   } else {
 626     // We currently assume that the concurrent flag has been set to
 627     // false before we start remark. At this point we should also be
 628     // in a STW phase.
 629     assert(!concurrent_marking_in_progress(), "invariant");
 630     assert(out_of_regions(),
 631            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 632            p2i(_finger), p2i(_heap_end));
 633   }
 634 }
 635 
 636 void G1ConcurrentMark::set_non_marking_state() {
 637   // We set the global marking state to some default values when we're
 638   // not doing marking.
 639   reset_marking_state();
 640   _active_tasks = 0;
 641   clear_concurrent_marking_in_progress();
 642 }
 643 
 644 G1ConcurrentMark::~G1ConcurrentMark() {
 645   // The G1ConcurrentMark instance is never freed.
 646   ShouldNotReachHere();
 647 }
 648 
 649 class G1ClearBitMapTask : public AbstractGangTask {
 650 public:
 651   static size_t chunk_size() { return M; }
 652 
 653 private:
 654   // Heap region closure used for clearing the given mark bitmap.
 655   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 656   private:
 657     G1CMBitMap* _bitmap;
 658     G1ConcurrentMark* _cm;
 659   public:
 660     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 661     }
 662 
 663     virtual bool doHeapRegion(HeapRegion* r) {
 664       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 665 
 666       HeapWord* cur = r->bottom();
 667       HeapWord* const end = r->end();
 668 
 669       while (cur < end) {
 670         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 671         _bitmap->clear_range(mr);
 672 
 673         cur += chunk_size_in_words;
 674 
 675         // Abort iteration if after yielding the marking has been aborted.
 676         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 677           return true;
 678         }
 679         // Repeat the asserts from before the start of the closure. We will do them
 680         // as asserts here to minimize their overhead on the product. However, we
 681         // will have them as guarantees at the beginning / end of the bitmap
 682         // clearing to get some checking in the product.
 683         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 684         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 685       }
 686       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 687 
 688       return false;
 689     }
 690   };
 691 
 692   G1ClearBitmapHRClosure _cl;
 693   HeapRegionClaimer _hr_claimer;
 694   bool _suspendible; // If the task is suspendible, workers must join the STS.
 695 
 696 public:
 697   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 698     AbstractGangTask("G1 Clear Bitmap"),
 699     _cl(bitmap, suspendible ? cm : NULL),
 700     _hr_claimer(n_workers),
 701     _suspendible(suspendible)
 702   { }
 703 
 704   void work(uint worker_id) {
 705     SuspendibleThreadSetJoiner sts_join(_suspendible);
 706     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 707   }
 708 
 709   bool is_complete() {
 710     return _cl.complete();
 711   }
 712 };
 713 
 714 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 715   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 716 
 717   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 718   size_t const num_chunks = align_size_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 719 
 720   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 721 
 722   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 723 
 724   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 725   workers->run_task(&cl, num_workers);
 726   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 727 }
 728 
 729 void G1ConcurrentMark::cleanup_for_next_mark() {
 730   // Make sure that the concurrent mark thread looks to still be in
 731   // the current cycle.
 732   guarantee(cmThread()->during_cycle(), "invariant");
 733 
 734   // We are finishing up the current cycle by clearing the next
 735   // marking bitmap and getting it ready for the next cycle. During
 736   // this time no other cycle can start. So, let's make sure that this
 737   // is the case.
 738   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 739 
 740   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 741 
 742   // Clear the live count data. If the marking has been aborted, the abort()
 743   // call already did that.
 744   if (!has_aborted()) {
 745     clear_live_data(_parallel_workers);
 746     DEBUG_ONLY(verify_live_data_clear());
 747   }
 748 
 749   // Repeat the asserts from above.
 750   guarantee(cmThread()->during_cycle(), "invariant");
 751   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 752 }
 753 
 754 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 755   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 756   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 757 }
 758 
 759 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 760   G1CMBitMap* _bitmap;
 761   bool _error;
 762  public:
 763   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 764   }
 765 
 766   virtual bool doHeapRegion(HeapRegion* r) {
 767     // This closure can be called concurrently to the mutator, so we must make sure
 768     // that the result of the getNextMarkedWordAddress() call is compared to the
 769     // value passed to it as limit to detect any found bits.
 770     // end never changes in G1.
 771     HeapWord* end = r->end();
 772     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 773   }
 774 };
 775 
 776 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 777   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 778   _g1h->heap_region_iterate(&cl);
 779   return cl.complete();
 780 }
 781 
 782 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 783 public:
 784   bool doHeapRegion(HeapRegion* r) {
 785     r->note_start_of_marking();
 786     return false;
 787   }
 788 };
 789 
 790 void G1ConcurrentMark::checkpointRootsInitialPre() {
 791   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 792   G1Policy* g1p = g1h->g1_policy();
 793 
 794   _has_aborted = false;
 795 
 796   // Initialize marking structures. This has to be done in a STW phase.
 797   reset();
 798 
 799   // For each region note start of marking.
 800   NoteStartOfMarkHRClosure startcl;
 801   g1h->heap_region_iterate(&startcl);
 802 }
 803 
 804 
 805 void G1ConcurrentMark::checkpointRootsInitialPost() {
 806   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 807 
 808   // Start Concurrent Marking weak-reference discovery.
 809   ReferenceProcessor* rp = g1h->ref_processor_cm();
 810   // enable ("weak") refs discovery
 811   rp->enable_discovery();
 812   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 813 
 814   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 815   // This is the start of  the marking cycle, we're expected all
 816   // threads to have SATB queues with active set to false.
 817   satb_mq_set.set_active_all_threads(true, /* new active value */
 818                                      false /* expected_active */);
 819 
 820   _root_regions.prepare_for_scan();
 821 
 822   // update_g1_committed() will be called at the end of an evac pause
 823   // when marking is on. So, it's also called at the end of the
 824   // initial-mark pause to update the heap end, if the heap expands
 825   // during it. No need to call it here.
 826 }
 827 
 828 /*
 829  * Notice that in the next two methods, we actually leave the STS
 830  * during the barrier sync and join it immediately afterwards. If we
 831  * do not do this, the following deadlock can occur: one thread could
 832  * be in the barrier sync code, waiting for the other thread to also
 833  * sync up, whereas another one could be trying to yield, while also
 834  * waiting for the other threads to sync up too.
 835  *
 836  * Note, however, that this code is also used during remark and in
 837  * this case we should not attempt to leave / enter the STS, otherwise
 838  * we'll either hit an assert (debug / fastdebug) or deadlock
 839  * (product). So we should only leave / enter the STS if we are
 840  * operating concurrently.
 841  *
 842  * Because the thread that does the sync barrier has left the STS, it
 843  * is possible to be suspended for a Full GC or an evacuation pause
 844  * could occur. This is actually safe, since the entering the sync
 845  * barrier is one of the last things do_marking_step() does, and it
 846  * doesn't manipulate any data structures afterwards.
 847  */
 848 
 849 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 850   bool barrier_aborted;
 851   {
 852     SuspendibleThreadSetLeaver sts_leave(concurrent());
 853     barrier_aborted = !_first_overflow_barrier_sync.enter();
 854   }
 855 
 856   // at this point everyone should have synced up and not be doing any
 857   // more work
 858 
 859   if (barrier_aborted) {
 860     // If the barrier aborted we ignore the overflow condition and
 861     // just abort the whole marking phase as quickly as possible.
 862     return;
 863   }
 864 
 865   // If we're executing the concurrent phase of marking, reset the marking
 866   // state; otherwise the marking state is reset after reference processing,
 867   // during the remark pause.
 868   // If we reset here as a result of an overflow during the remark we will
 869   // see assertion failures from any subsequent set_concurrency_and_phase()
 870   // calls.
 871   if (concurrent()) {
 872     // let the task associated with with worker 0 do this
 873     if (worker_id == 0) {
 874       // task 0 is responsible for clearing the global data structures
 875       // We should be here because of an overflow. During STW we should
 876       // not clear the overflow flag since we rely on it being true when
 877       // we exit this method to abort the pause and restart concurrent
 878       // marking.
 879       reset_marking_state();
 880 
 881       log_info(gc, marking)("Concurrent Mark reset for overflow");
 882     }
 883   }
 884 
 885   // after this, each task should reset its own data structures then
 886   // then go into the second barrier
 887 }
 888 
 889 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 890   SuspendibleThreadSetLeaver sts_leave(concurrent());
 891   _second_overflow_barrier_sync.enter();
 892 
 893   // at this point everything should be re-initialized and ready to go
 894 }
 895 
 896 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 897 private:
 898   G1ConcurrentMark*     _cm;
 899   ConcurrentMarkThread* _cmt;
 900 
 901 public:
 902   void work(uint worker_id) {
 903     assert(Thread::current()->is_ConcurrentGC_thread(),
 904            "this should only be done by a conc GC thread");
 905     ResourceMark rm;
 906 
 907     double start_vtime = os::elapsedVTime();
 908 
 909     {
 910       SuspendibleThreadSetJoiner sts_join;
 911 
 912       assert(worker_id < _cm->active_tasks(), "invariant");
 913       G1CMTask* the_task = _cm->task(worker_id);
 914       the_task->record_start_time();
 915       if (!_cm->has_aborted()) {
 916         do {
 917           double start_vtime_sec = os::elapsedVTime();
 918           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 919 
 920           the_task->do_marking_step(mark_step_duration_ms,
 921                                     true  /* do_termination */,
 922                                     false /* is_serial*/);
 923 
 924           double end_vtime_sec = os::elapsedVTime();
 925           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 926           _cm->clear_has_overflown();
 927 
 928           _cm->do_yield_check();
 929 
 930           jlong sleep_time_ms;
 931           if (!_cm->has_aborted() && the_task->has_aborted()) {
 932             sleep_time_ms =
 933               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 934             {
 935               SuspendibleThreadSetLeaver sts_leave;
 936               os::sleep(Thread::current(), sleep_time_ms, false);
 937             }
 938           }
 939         } while (!_cm->has_aborted() && the_task->has_aborted());
 940       }
 941       the_task->record_end_time();
 942       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 943     }
 944 
 945     double end_vtime = os::elapsedVTime();
 946     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 947   }
 948 
 949   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 950                             ConcurrentMarkThread* cmt) :
 951       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 952 
 953   ~G1CMConcurrentMarkingTask() { }
 954 };
 955 
 956 // Calculates the number of active workers for a concurrent
 957 // phase.
 958 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 959   uint n_conc_workers = 0;
 960   if (!UseDynamicNumberOfGCThreads ||
 961       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 962        !ForceDynamicNumberOfGCThreads)) {
 963     n_conc_workers = max_parallel_marking_threads();
 964   } else {
 965     n_conc_workers =
 966       AdaptiveSizePolicy::calc_default_active_workers(max_parallel_marking_threads(),
 967                                                       1, /* Minimum workers */
 968                                                       parallel_marking_threads(),
 969                                                       Threads::number_of_non_daemon_threads());
 970     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 971     // that scaling has already gone into "_max_parallel_marking_threads".
 972   }
 973   assert(n_conc_workers > 0 && n_conc_workers <= max_parallel_marking_threads(),
 974          "Calculated number of workers must be larger than zero and at most the maximum %u, but is %u",
 975          max_parallel_marking_threads(), n_conc_workers);
 976   return n_conc_workers;
 977 }
 978 
 979 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 980   // Currently, only survivors can be root regions.
 981   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 982   G1RootRegionScanClosure cl(_g1h, this);
 983 
 984   const uintx interval = PrefetchScanIntervalInBytes;
 985   HeapWord* curr = hr->bottom();
 986   const HeapWord* end = hr->top();
 987   while (curr < end) {
 988     Prefetch::read(curr, interval);
 989     oop obj = oop(curr);
 990     int size = obj->oop_iterate_size(&cl);
 991     assert(size == obj->size(), "sanity");
 992     curr += size;
 993   }
 994 }
 995 
 996 class G1CMRootRegionScanTask : public AbstractGangTask {
 997 private:
 998   G1ConcurrentMark* _cm;
 999 
1000 public:
1001   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
1002     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
1003 
1004   void work(uint worker_id) {
1005     assert(Thread::current()->is_ConcurrentGC_thread(),
1006            "this should only be done by a conc GC thread");
1007 
1008     G1CMRootRegions* root_regions = _cm->root_regions();
1009     HeapRegion* hr = root_regions->claim_next();
1010     while (hr != NULL) {
1011       _cm->scanRootRegion(hr);
1012       hr = root_regions->claim_next();
1013     }
1014   }
1015 };
1016 
1017 void G1ConcurrentMark::scan_root_regions() {
1018   // scan_in_progress() will have been set to true only if there was
1019   // at least one root region to scan. So, if it's false, we
1020   // should not attempt to do any further work.
1021   if (root_regions()->scan_in_progress()) {
1022     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
1023 
1024     _parallel_marking_threads = MIN2(calc_parallel_marking_threads(),
1025                                      // We distribute work on a per-region basis, so starting
1026                                      // more threads than that is useless.
1027                                      root_regions()->num_root_regions());
1028     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1029            "Maximum number of marking threads exceeded");
1030 
1031     G1CMRootRegionScanTask task(this);
1032     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
1033                         task.name(), _parallel_marking_threads, root_regions()->num_root_regions());
1034     _parallel_workers->run_task(&task, _parallel_marking_threads);
1035 
1036     // It's possible that has_aborted() is true here without actually
1037     // aborting the survivor scan earlier. This is OK as it's
1038     // mainly used for sanity checking.
1039     root_regions()->scan_finished();
1040   }
1041 }
1042 
1043 void G1ConcurrentMark::concurrent_cycle_start() {
1044   _gc_timer_cm->register_gc_start();
1045 
1046   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
1047 
1048   _g1h->trace_heap_before_gc(_gc_tracer_cm);
1049 }
1050 
1051 void G1ConcurrentMark::concurrent_cycle_end() {
1052   _g1h->trace_heap_after_gc(_gc_tracer_cm);
1053 
1054   if (has_aborted()) {
1055     _gc_tracer_cm->report_concurrent_mode_failure();
1056   }
1057 
1058   _gc_timer_cm->register_gc_end();
1059 
1060   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1061 }
1062 
1063 void G1ConcurrentMark::mark_from_roots() {
1064   // we might be tempted to assert that:
1065   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1066   //        "inconsistent argument?");
1067   // However that wouldn't be right, because it's possible that
1068   // a safepoint is indeed in progress as a younger generation
1069   // stop-the-world GC happens even as we mark in this generation.
1070 
1071   _restart_for_overflow = false;
1072 
1073   // _g1h has _n_par_threads
1074   _parallel_marking_threads = calc_parallel_marking_threads();
1075   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1076     "Maximum number of marking threads exceeded");
1077 
1078   uint active_workers = MAX2(1U, parallel_marking_threads());
1079   assert(active_workers > 0, "Should have been set");
1080 
1081   // Setting active workers is not guaranteed since fewer
1082   // worker threads may currently exist and more may not be
1083   // available.
1084   active_workers = _parallel_workers->update_active_workers(active_workers);
1085   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _parallel_workers->total_workers());
1086 
1087   // Parallel task terminator is set in "set_concurrency_and_phase()"
1088   set_concurrency_and_phase(active_workers, true /* concurrent */);
1089 
1090   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1091   _parallel_workers->run_task(&markingTask);
1092   print_stats();
1093 }
1094 
1095 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1096   // world is stopped at this checkpoint
1097   assert(SafepointSynchronize::is_at_safepoint(),
1098          "world should be stopped");
1099 
1100   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1101 
1102   // If a full collection has happened, we shouldn't do this.
1103   if (has_aborted()) {
1104     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1105     return;
1106   }
1107 
1108   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1109 
1110   if (VerifyDuringGC) {
1111     HandleMark hm;  // handle scope
1112     g1h->prepare_for_verify();
1113     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1114   }
1115   g1h->verifier()->check_bitmaps("Remark Start");
1116 
1117   G1Policy* g1p = g1h->g1_policy();
1118   g1p->record_concurrent_mark_remark_start();
1119 
1120   double start = os::elapsedTime();
1121 
1122   checkpointRootsFinalWork();
1123 
1124   double mark_work_end = os::elapsedTime();
1125 
1126   weakRefsWork(clear_all_soft_refs);
1127 
1128   if (has_overflown()) {
1129     // We overflowed.  Restart concurrent marking.
1130     _restart_for_overflow = true;
1131 
1132     // Verify the heap w.r.t. the previous marking bitmap.
1133     if (VerifyDuringGC) {
1134       HandleMark hm;  // handle scope
1135       g1h->prepare_for_verify();
1136       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1137     }
1138 
1139     // Clear the marking state because we will be restarting
1140     // marking due to overflowing the global mark stack.
1141     reset_marking_state();
1142   } else {
1143     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1144     // We're done with marking.
1145     // This is the end of  the marking cycle, we're expected all
1146     // threads to have SATB queues with active set to true.
1147     satb_mq_set.set_active_all_threads(false, /* new active value */
1148                                        true /* expected_active */);
1149 
1150     if (VerifyDuringGC) {
1151       HandleMark hm;  // handle scope
1152       g1h->prepare_for_verify();
1153       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1154     }
1155     g1h->verifier()->check_bitmaps("Remark End");
1156     assert(!restart_for_overflow(), "sanity");
1157     // Completely reset the marking state since marking completed
1158     set_non_marking_state();
1159   }
1160 
1161   // Expand the marking stack, if we have to and if we can.
1162   if (_global_mark_stack.should_expand()) {
1163     _global_mark_stack.expand();
1164   }
1165 
1166   // Statistics
1167   double now = os::elapsedTime();
1168   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1169   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1170   _remark_times.add((now - start) * 1000.0);
1171 
1172   g1p->record_concurrent_mark_remark_end();
1173 
1174   G1CMIsAliveClosure is_alive(g1h);
1175   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1176 }
1177 
1178 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1179   G1CollectedHeap* _g1;
1180   size_t _freed_bytes;
1181   FreeRegionList* _local_cleanup_list;
1182   uint _old_regions_removed;
1183   uint _humongous_regions_removed;
1184   HRRSCleanupTask* _hrrs_cleanup_task;
1185 
1186 public:
1187   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1188                              FreeRegionList* local_cleanup_list,
1189                              HRRSCleanupTask* hrrs_cleanup_task) :
1190     _g1(g1),
1191     _freed_bytes(0),
1192     _local_cleanup_list(local_cleanup_list),
1193     _old_regions_removed(0),
1194     _humongous_regions_removed(0),
1195     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1196 
1197   size_t freed_bytes() { return _freed_bytes; }
1198   const uint old_regions_removed() { return _old_regions_removed; }
1199   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1200 
1201   bool doHeapRegion(HeapRegion *hr) {
1202     if (hr->is_archive()) {
1203       return false;
1204     }
1205     _g1->reset_gc_time_stamps(hr);
1206     hr->note_end_of_marking();
1207 
1208     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1209       _freed_bytes += hr->used();
1210       hr->set_containing_set(NULL);
1211       if (hr->is_humongous()) {
1212         _humongous_regions_removed++;
1213         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1214       } else {
1215         _old_regions_removed++;
1216         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1217       }
1218     } else {
1219       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1220     }
1221 
1222     return false;
1223   }
1224 };
1225 
1226 class G1ParNoteEndTask: public AbstractGangTask {
1227   friend class G1NoteEndOfConcMarkClosure;
1228 
1229 protected:
1230   G1CollectedHeap* _g1h;
1231   FreeRegionList* _cleanup_list;
1232   HeapRegionClaimer _hrclaimer;
1233 
1234 public:
1235   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1236       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1237   }
1238 
1239   void work(uint worker_id) {
1240     FreeRegionList local_cleanup_list("Local Cleanup List");
1241     HRRSCleanupTask hrrs_cleanup_task;
1242     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1243                                            &hrrs_cleanup_task);
1244     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1245     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1246 
1247     // Now update the lists
1248     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1249     {
1250       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1251       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1252 
1253       // If we iterate over the global cleanup list at the end of
1254       // cleanup to do this printing we will not guarantee to only
1255       // generate output for the newly-reclaimed regions (the list
1256       // might not be empty at the beginning of cleanup; we might
1257       // still be working on its previous contents). So we do the
1258       // printing here, before we append the new regions to the global
1259       // cleanup list.
1260 
1261       G1HRPrinter* hr_printer = _g1h->hr_printer();
1262       if (hr_printer->is_active()) {
1263         FreeRegionListIterator iter(&local_cleanup_list);
1264         while (iter.more_available()) {
1265           HeapRegion* hr = iter.get_next();
1266           hr_printer->cleanup(hr);
1267         }
1268       }
1269 
1270       _cleanup_list->add_ordered(&local_cleanup_list);
1271       assert(local_cleanup_list.is_empty(), "post-condition");
1272 
1273       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1274     }
1275   }
1276 };
1277 
1278 void G1ConcurrentMark::cleanup() {
1279   // world is stopped at this checkpoint
1280   assert(SafepointSynchronize::is_at_safepoint(),
1281          "world should be stopped");
1282   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1283 
1284   // If a full collection has happened, we shouldn't do this.
1285   if (has_aborted()) {
1286     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1287     return;
1288   }
1289 
1290   g1h->verifier()->verify_region_sets_optional();
1291 
1292   if (VerifyDuringGC) {
1293     HandleMark hm;  // handle scope
1294     g1h->prepare_for_verify();
1295     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1296   }
1297   g1h->verifier()->check_bitmaps("Cleanup Start");
1298 
1299   G1Policy* g1p = g1h->g1_policy();
1300   g1p->record_concurrent_mark_cleanup_start();
1301 
1302   double start = os::elapsedTime();
1303 
1304   HeapRegionRemSet::reset_for_cleanup_tasks();
1305 
1306   {
1307     GCTraceTime(Debug, gc)("Finalize Live Data");
1308     finalize_live_data();
1309   }
1310 
1311   if (VerifyDuringGC) {
1312     GCTraceTime(Debug, gc)("Verify Live Data");
1313     verify_live_data();
1314   }
1315 
1316   g1h->collector_state()->set_mark_in_progress(false);
1317 
1318   double count_end = os::elapsedTime();
1319   double this_final_counting_time = (count_end - start);
1320   _total_counting_time += this_final_counting_time;
1321 
1322   if (log_is_enabled(Trace, gc, liveness)) {
1323     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1324     _g1h->heap_region_iterate(&cl);
1325   }
1326 
1327   // Install newly created mark bitMap as "prev".
1328   swapMarkBitMaps();
1329 
1330   g1h->reset_gc_time_stamp();
1331 
1332   uint n_workers = _g1h->workers()->active_workers();
1333 
1334   // Note end of marking in all heap regions.
1335   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1336   g1h->workers()->run_task(&g1_par_note_end_task);
1337   g1h->check_gc_time_stamps();
1338 
1339   if (!cleanup_list_is_empty()) {
1340     // The cleanup list is not empty, so we'll have to process it
1341     // concurrently. Notify anyone else that might be wanting free
1342     // regions that there will be more free regions coming soon.
1343     g1h->set_free_regions_coming();
1344   }
1345 
1346   // call below, since it affects the metric by which we sort the heap
1347   // regions.
1348   if (G1ScrubRemSets) {
1349     double rs_scrub_start = os::elapsedTime();
1350     g1h->scrub_rem_set();
1351     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1352   }
1353 
1354   // this will also free any regions totally full of garbage objects,
1355   // and sort the regions.
1356   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1357 
1358   // Statistics.
1359   double end = os::elapsedTime();
1360   _cleanup_times.add((end - start) * 1000.0);
1361 
1362   // Clean up will have freed any regions completely full of garbage.
1363   // Update the soft reference policy with the new heap occupancy.
1364   Universe::update_heap_info_at_gc();
1365 
1366   if (VerifyDuringGC) {
1367     HandleMark hm;  // handle scope
1368     g1h->prepare_for_verify();
1369     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1370   }
1371 
1372   g1h->verifier()->check_bitmaps("Cleanup End");
1373 
1374   g1h->verifier()->verify_region_sets_optional();
1375 
1376   // We need to make this be a "collection" so any collection pause that
1377   // races with it goes around and waits for completeCleanup to finish.
1378   g1h->increment_total_collections();
1379 
1380   // Clean out dead classes and update Metaspace sizes.
1381   if (ClassUnloadingWithConcurrentMark) {
1382     ClassLoaderDataGraph::purge();
1383   }
1384   MetaspaceGC::compute_new_size();
1385 
1386   // We reclaimed old regions so we should calculate the sizes to make
1387   // sure we update the old gen/space data.
1388   g1h->g1mm()->update_sizes();
1389   g1h->allocation_context_stats().update_after_mark();
1390 }
1391 
1392 void G1ConcurrentMark::complete_cleanup() {
1393   if (has_aborted()) return;
1394 
1395   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1396 
1397   _cleanup_list.verify_optional();
1398   FreeRegionList tmp_free_list("Tmp Free List");
1399 
1400   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1401                                   "cleanup list has %u entries",
1402                                   _cleanup_list.length());
1403 
1404   // No one else should be accessing the _cleanup_list at this point,
1405   // so it is not necessary to take any locks
1406   while (!_cleanup_list.is_empty()) {
1407     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1408     assert(hr != NULL, "Got NULL from a non-empty list");
1409     hr->par_clear();
1410     tmp_free_list.add_ordered(hr);
1411 
1412     // Instead of adding one region at a time to the secondary_free_list,
1413     // we accumulate them in the local list and move them a few at a
1414     // time. This also cuts down on the number of notify_all() calls
1415     // we do during this process. We'll also append the local list when
1416     // _cleanup_list is empty (which means we just removed the last
1417     // region from the _cleanup_list).
1418     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1419         _cleanup_list.is_empty()) {
1420       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1421                                       "appending %u entries to the secondary_free_list, "
1422                                       "cleanup list still has %u entries",
1423                                       tmp_free_list.length(),
1424                                       _cleanup_list.length());
1425 
1426       {
1427         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1428         g1h->secondary_free_list_add(&tmp_free_list);
1429         SecondaryFreeList_lock->notify_all();
1430       }
1431 #ifndef PRODUCT
1432       if (G1StressConcRegionFreeing) {
1433         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1434           os::sleep(Thread::current(), (jlong) 1, false);
1435         }
1436       }
1437 #endif
1438     }
1439   }
1440   assert(tmp_free_list.is_empty(), "post-condition");
1441 }
1442 
1443 // Supporting Object and Oop closures for reference discovery
1444 // and processing in during marking
1445 
1446 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1447   HeapWord* addr = (HeapWord*)obj;
1448   return addr != NULL &&
1449          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1450 }
1451 
1452 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1453 // Uses the G1CMTask associated with a worker thread (for serial reference
1454 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1455 // trace referent objects.
1456 //
1457 // Using the G1CMTask and embedded local queues avoids having the worker
1458 // threads operating on the global mark stack. This reduces the risk
1459 // of overflowing the stack - which we would rather avoid at this late
1460 // state. Also using the tasks' local queues removes the potential
1461 // of the workers interfering with each other that could occur if
1462 // operating on the global stack.
1463 
1464 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1465   G1ConcurrentMark* _cm;
1466   G1CMTask*         _task;
1467   int               _ref_counter_limit;
1468   int               _ref_counter;
1469   bool              _is_serial;
1470  public:
1471   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1472     _cm(cm), _task(task), _is_serial(is_serial),
1473     _ref_counter_limit(G1RefProcDrainInterval) {
1474     assert(_ref_counter_limit > 0, "sanity");
1475     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1476     _ref_counter = _ref_counter_limit;
1477   }
1478 
1479   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1480   virtual void do_oop(      oop* p) { do_oop_work(p); }
1481 
1482   template <class T> void do_oop_work(T* p) {
1483     if (!_cm->has_overflown()) {
1484       oop obj = oopDesc::load_decode_heap_oop(p);
1485       _task->deal_with_reference(obj);
1486       _ref_counter--;
1487 
1488       if (_ref_counter == 0) {
1489         // We have dealt with _ref_counter_limit references, pushing them
1490         // and objects reachable from them on to the local stack (and
1491         // possibly the global stack). Call G1CMTask::do_marking_step() to
1492         // process these entries.
1493         //
1494         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1495         // there's nothing more to do (i.e. we're done with the entries that
1496         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1497         // above) or we overflow.
1498         //
1499         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1500         // flag while there may still be some work to do. (See the comment at
1501         // the beginning of G1CMTask::do_marking_step() for those conditions -
1502         // one of which is reaching the specified time target.) It is only
1503         // when G1CMTask::do_marking_step() returns without setting the
1504         // has_aborted() flag that the marking step has completed.
1505         do {
1506           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1507           _task->do_marking_step(mark_step_duration_ms,
1508                                  false      /* do_termination */,
1509                                  _is_serial);
1510         } while (_task->has_aborted() && !_cm->has_overflown());
1511         _ref_counter = _ref_counter_limit;
1512       }
1513     }
1514   }
1515 };
1516 
1517 // 'Drain' oop closure used by both serial and parallel reference processing.
1518 // Uses the G1CMTask associated with a given worker thread (for serial
1519 // reference processing the G1CMtask for worker 0 is used). Calls the
1520 // do_marking_step routine, with an unbelievably large timeout value,
1521 // to drain the marking data structures of the remaining entries
1522 // added by the 'keep alive' oop closure above.
1523 
1524 class G1CMDrainMarkingStackClosure: public VoidClosure {
1525   G1ConcurrentMark* _cm;
1526   G1CMTask*         _task;
1527   bool              _is_serial;
1528  public:
1529   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1530     _cm(cm), _task(task), _is_serial(is_serial) {
1531     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1532   }
1533 
1534   void do_void() {
1535     do {
1536       // We call G1CMTask::do_marking_step() to completely drain the local
1537       // and global marking stacks of entries pushed by the 'keep alive'
1538       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1539       //
1540       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1541       // if there's nothing more to do (i.e. we've completely drained the
1542       // entries that were pushed as a a result of applying the 'keep alive'
1543       // closure to the entries on the discovered ref lists) or we overflow
1544       // the global marking stack.
1545       //
1546       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1547       // flag while there may still be some work to do. (See the comment at
1548       // the beginning of G1CMTask::do_marking_step() for those conditions -
1549       // one of which is reaching the specified time target.) It is only
1550       // when G1CMTask::do_marking_step() returns without setting the
1551       // has_aborted() flag that the marking step has completed.
1552 
1553       _task->do_marking_step(1000000000.0 /* something very large */,
1554                              true         /* do_termination */,
1555                              _is_serial);
1556     } while (_task->has_aborted() && !_cm->has_overflown());
1557   }
1558 };
1559 
1560 // Implementation of AbstractRefProcTaskExecutor for parallel
1561 // reference processing at the end of G1 concurrent marking
1562 
1563 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1564 private:
1565   G1CollectedHeap*  _g1h;
1566   G1ConcurrentMark* _cm;
1567   WorkGang*         _workers;
1568   uint              _active_workers;
1569 
1570 public:
1571   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1572                           G1ConcurrentMark* cm,
1573                           WorkGang* workers,
1574                           uint n_workers) :
1575     _g1h(g1h), _cm(cm),
1576     _workers(workers), _active_workers(n_workers) { }
1577 
1578   // Executes the given task using concurrent marking worker threads.
1579   virtual void execute(ProcessTask& task);
1580   virtual void execute(EnqueueTask& task);
1581 };
1582 
1583 class G1CMRefProcTaskProxy: public AbstractGangTask {
1584   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1585   ProcessTask&      _proc_task;
1586   G1CollectedHeap*  _g1h;
1587   G1ConcurrentMark* _cm;
1588 
1589 public:
1590   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1591                        G1CollectedHeap* g1h,
1592                        G1ConcurrentMark* cm) :
1593     AbstractGangTask("Process reference objects in parallel"),
1594     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1595     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1596     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1597   }
1598 
1599   virtual void work(uint worker_id) {
1600     ResourceMark rm;
1601     HandleMark hm;
1602     G1CMTask* task = _cm->task(worker_id);
1603     G1CMIsAliveClosure g1_is_alive(_g1h);
1604     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1605     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1606 
1607     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1608   }
1609 };
1610 
1611 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1612   assert(_workers != NULL, "Need parallel worker threads.");
1613   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1614 
1615   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1616 
1617   // We need to reset the concurrency level before each
1618   // proxy task execution, so that the termination protocol
1619   // and overflow handling in G1CMTask::do_marking_step() knows
1620   // how many workers to wait for.
1621   _cm->set_concurrency(_active_workers);
1622   _workers->run_task(&proc_task_proxy);
1623 }
1624 
1625 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1626   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1627   EnqueueTask& _enq_task;
1628 
1629 public:
1630   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1631     AbstractGangTask("Enqueue reference objects in parallel"),
1632     _enq_task(enq_task) { }
1633 
1634   virtual void work(uint worker_id) {
1635     _enq_task.work(worker_id);
1636   }
1637 };
1638 
1639 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1640   assert(_workers != NULL, "Need parallel worker threads.");
1641   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1642 
1643   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1644 
1645   // Not strictly necessary but...
1646   //
1647   // We need to reset the concurrency level before each
1648   // proxy task execution, so that the termination protocol
1649   // and overflow handling in G1CMTask::do_marking_step() knows
1650   // how many workers to wait for.
1651   _cm->set_concurrency(_active_workers);
1652   _workers->run_task(&enq_task_proxy);
1653 }
1654 
1655 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1656   if (has_overflown()) {
1657     // Skip processing the discovered references if we have
1658     // overflown the global marking stack. Reference objects
1659     // only get discovered once so it is OK to not
1660     // de-populate the discovered reference lists. We could have,
1661     // but the only benefit would be that, when marking restarts,
1662     // less reference objects are discovered.
1663     return;
1664   }
1665 
1666   ResourceMark rm;
1667   HandleMark   hm;
1668 
1669   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1670 
1671   // Is alive closure.
1672   G1CMIsAliveClosure g1_is_alive(g1h);
1673 
1674   // Inner scope to exclude the cleaning of the string and symbol
1675   // tables from the displayed time.
1676   {
1677     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1678 
1679     ReferenceProcessor* rp = g1h->ref_processor_cm();
1680 
1681     // See the comment in G1CollectedHeap::ref_processing_init()
1682     // about how reference processing currently works in G1.
1683 
1684     // Set the soft reference policy
1685     rp->setup_policy(clear_all_soft_refs);
1686     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1687 
1688     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1689     // in serial reference processing. Note these closures are also
1690     // used for serially processing (by the the current thread) the
1691     // JNI references during parallel reference processing.
1692     //
1693     // These closures do not need to synchronize with the worker
1694     // threads involved in parallel reference processing as these
1695     // instances are executed serially by the current thread (e.g.
1696     // reference processing is not multi-threaded and is thus
1697     // performed by the current thread instead of a gang worker).
1698     //
1699     // The gang tasks involved in parallel reference processing create
1700     // their own instances of these closures, which do their own
1701     // synchronization among themselves.
1702     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1703     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1704 
1705     // We need at least one active thread. If reference processing
1706     // is not multi-threaded we use the current (VMThread) thread,
1707     // otherwise we use the work gang from the G1CollectedHeap and
1708     // we utilize all the worker threads we can.
1709     bool processing_is_mt = rp->processing_is_mt();
1710     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1711     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1712 
1713     // Parallel processing task executor.
1714     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1715                                               g1h->workers(), active_workers);
1716     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1717 
1718     // Set the concurrency level. The phase was already set prior to
1719     // executing the remark task.
1720     set_concurrency(active_workers);
1721 
1722     // Set the degree of MT processing here.  If the discovery was done MT,
1723     // the number of threads involved during discovery could differ from
1724     // the number of active workers.  This is OK as long as the discovered
1725     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1726     rp->set_active_mt_degree(active_workers);
1727 
1728     // Process the weak references.
1729     const ReferenceProcessorStats& stats =
1730         rp->process_discovered_references(&g1_is_alive,
1731                                           &g1_keep_alive,
1732                                           &g1_drain_mark_stack,
1733                                           executor,
1734                                           _gc_timer_cm);
1735     _gc_tracer_cm->report_gc_reference_stats(stats);
1736 
1737     // The do_oop work routines of the keep_alive and drain_marking_stack
1738     // oop closures will set the has_overflown flag if we overflow the
1739     // global marking stack.
1740 
1741     assert(has_overflown() || _global_mark_stack.is_empty(),
1742             "Mark stack should be empty (unless it has overflown)");
1743 
1744     assert(rp->num_q() == active_workers, "why not");
1745 
1746     rp->enqueue_discovered_references(executor);
1747 
1748     rp->verify_no_references_recorded();
1749     assert(!rp->discovery_enabled(), "Post condition");
1750   }
1751 
1752   if (has_overflown()) {
1753     // We can not trust g1_is_alive if the marking stack overflowed
1754     return;
1755   }
1756 
1757   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1758 
1759   // Unload Klasses, String, Symbols, Code Cache, etc.
1760   if (ClassUnloadingWithConcurrentMark) {
1761     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1762     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
1763     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1764   } else {
1765     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1766     // No need to clean string table and symbol table as they are treated as strong roots when
1767     // class unloading is disabled.
1768     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1769 
1770   }
1771 }
1772 
1773 void G1ConcurrentMark::swapMarkBitMaps() {
1774   G1CMBitMapRO* temp = _prevMarkBitMap;
1775   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
1776   _nextMarkBitMap    = (G1CMBitMap*)  temp;
1777 }
1778 
1779 // Closure for marking entries in SATB buffers.
1780 class G1CMSATBBufferClosure : public SATBBufferClosure {
1781 private:
1782   G1CMTask* _task;
1783   G1CollectedHeap* _g1h;
1784 
1785   // This is very similar to G1CMTask::deal_with_reference, but with
1786   // more relaxed requirements for the argument, so this must be more
1787   // circumspect about treating the argument as an object.
1788   void do_entry(void* entry) const {
1789     _task->increment_refs_reached();
1790     HeapRegion* hr = _g1h->heap_region_containing(entry);
1791     if (entry < hr->next_top_at_mark_start()) {
1792       // Until we get here, we don't know whether entry refers to a valid
1793       // object; it could instead have been a stale reference.
1794       oop obj = static_cast<oop>(entry);
1795       assert(obj->is_oop(true /* ignore mark word */),
1796              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
1797       _task->make_reference_grey(obj);
1798     }
1799   }
1800 
1801 public:
1802   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1803     : _task(task), _g1h(g1h) { }
1804 
1805   virtual void do_buffer(void** buffer, size_t size) {
1806     for (size_t i = 0; i < size; ++i) {
1807       do_entry(buffer[i]);
1808     }
1809   }
1810 };
1811 
1812 class G1RemarkThreadsClosure : public ThreadClosure {
1813   G1CMSATBBufferClosure _cm_satb_cl;
1814   G1CMOopClosure _cm_cl;
1815   MarkingCodeBlobClosure _code_cl;
1816   int _thread_parity;
1817 
1818  public:
1819   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1820     _cm_satb_cl(task, g1h),
1821     _cm_cl(g1h, g1h->concurrent_mark(), task),
1822     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1823     _thread_parity(Threads::thread_claim_parity()) {}
1824 
1825   void do_thread(Thread* thread) {
1826     if (thread->is_Java_thread()) {
1827       if (thread->claim_oops_do(true, _thread_parity)) {
1828         JavaThread* jt = (JavaThread*)thread;
1829 
1830         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1831         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1832         // * Alive if on the stack of an executing method
1833         // * Weakly reachable otherwise
1834         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1835         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1836         jt->nmethods_do(&_code_cl);
1837 
1838         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1839       }
1840     } else if (thread->is_VM_thread()) {
1841       if (thread->claim_oops_do(true, _thread_parity)) {
1842         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1843       }
1844     }
1845   }
1846 };
1847 
1848 class G1CMRemarkTask: public AbstractGangTask {
1849 private:
1850   G1ConcurrentMark* _cm;
1851 public:
1852   void work(uint worker_id) {
1853     // Since all available tasks are actually started, we should
1854     // only proceed if we're supposed to be active.
1855     if (worker_id < _cm->active_tasks()) {
1856       G1CMTask* task = _cm->task(worker_id);
1857       task->record_start_time();
1858       {
1859         ResourceMark rm;
1860         HandleMark hm;
1861 
1862         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1863         Threads::threads_do(&threads_f);
1864       }
1865 
1866       do {
1867         task->do_marking_step(1000000000.0 /* something very large */,
1868                               true         /* do_termination       */,
1869                               false        /* is_serial            */);
1870       } while (task->has_aborted() && !_cm->has_overflown());
1871       // If we overflow, then we do not want to restart. We instead
1872       // want to abort remark and do concurrent marking again.
1873       task->record_end_time();
1874     }
1875   }
1876 
1877   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1878     AbstractGangTask("Par Remark"), _cm(cm) {
1879     _cm->terminator()->reset_for_reuse(active_workers);
1880   }
1881 };
1882 
1883 void G1ConcurrentMark::checkpointRootsFinalWork() {
1884   ResourceMark rm;
1885   HandleMark   hm;
1886   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1887 
1888   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1889 
1890   g1h->ensure_parsability(false);
1891 
1892   // this is remark, so we'll use up all active threads
1893   uint active_workers = g1h->workers()->active_workers();
1894   set_concurrency_and_phase(active_workers, false /* concurrent */);
1895   // Leave _parallel_marking_threads at it's
1896   // value originally calculated in the G1ConcurrentMark
1897   // constructor and pass values of the active workers
1898   // through the gang in the task.
1899 
1900   {
1901     StrongRootsScope srs(active_workers);
1902 
1903     G1CMRemarkTask remarkTask(this, active_workers);
1904     // We will start all available threads, even if we decide that the
1905     // active_workers will be fewer. The extra ones will just bail out
1906     // immediately.
1907     g1h->workers()->run_task(&remarkTask);
1908   }
1909 
1910   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1911   guarantee(has_overflown() ||
1912             satb_mq_set.completed_buffers_num() == 0,
1913             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1914             BOOL_TO_STR(has_overflown()),
1915             satb_mq_set.completed_buffers_num());
1916 
1917   print_stats();
1918 }
1919 
1920 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1921   // Note we are overriding the read-only view of the prev map here, via
1922   // the cast.
1923   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
1924 }
1925 
1926 HeapRegion*
1927 G1ConcurrentMark::claim_region(uint worker_id) {
1928   // "checkpoint" the finger
1929   HeapWord* finger = _finger;
1930 
1931   // _heap_end will not change underneath our feet; it only changes at
1932   // yield points.
1933   while (finger < _heap_end) {
1934     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1935 
1936     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1937     // Make sure that the reads below do not float before loading curr_region.
1938     OrderAccess::loadload();
1939     // Above heap_region_containing may return NULL as we always scan claim
1940     // until the end of the heap. In this case, just jump to the next region.
1941     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1942 
1943     // Is the gap between reading the finger and doing the CAS too long?
1944     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1945     if (res == finger && curr_region != NULL) {
1946       // we succeeded
1947       HeapWord*   bottom        = curr_region->bottom();
1948       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1949 
1950       // notice that _finger == end cannot be guaranteed here since,
1951       // someone else might have moved the finger even further
1952       assert(_finger >= end, "the finger should have moved forward");
1953 
1954       if (limit > bottom) {
1955         return curr_region;
1956       } else {
1957         assert(limit == bottom,
1958                "the region limit should be at bottom");
1959         // we return NULL and the caller should try calling
1960         // claim_region() again.
1961         return NULL;
1962       }
1963     } else {
1964       assert(_finger > finger, "the finger should have moved forward");
1965       // read it again
1966       finger = _finger;
1967     }
1968   }
1969 
1970   return NULL;
1971 }
1972 
1973 #ifndef PRODUCT
1974 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1975 private:
1976   G1CollectedHeap* _g1h;
1977   const char* _phase;
1978   int _info;
1979 
1980 public:
1981   VerifyNoCSetOops(const char* phase, int info = -1) :
1982     _g1h(G1CollectedHeap::heap()),
1983     _phase(phase),
1984     _info(info)
1985   { }
1986 
1987   void operator()(G1TaskQueueEntry task_entry) const {
1988     if (task_entry.is_array_slice()) {
1989       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1990       return;
1991     }
1992     guarantee(task_entry.obj()->is_oop(),
1993               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1994               p2i(task_entry.obj()), _phase, _info);
1995     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1996               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1997               p2i(task_entry.obj()), _phase, _info);
1998   }
1999 };
2000 
2001 void G1ConcurrentMark::verify_no_cset_oops() {
2002   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2003   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2004     return;
2005   }
2006 
2007   // Verify entries on the global mark stack
2008   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
2009 
2010   // Verify entries on the task queues
2011   for (uint i = 0; i < _max_worker_id; ++i) {
2012     G1CMTaskQueue* queue = _task_queues->queue(i);
2013     queue->iterate(VerifyNoCSetOops("Queue", i));
2014   }
2015 
2016   // Verify the global finger
2017   HeapWord* global_finger = finger();
2018   if (global_finger != NULL && global_finger < _heap_end) {
2019     // Since we always iterate over all regions, we might get a NULL HeapRegion
2020     // here.
2021     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2022     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2023               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2024               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2025   }
2026 
2027   // Verify the task fingers
2028   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2029   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2030     G1CMTask* task = _tasks[i];
2031     HeapWord* task_finger = task->finger();
2032     if (task_finger != NULL && task_finger < _heap_end) {
2033       // See above note on the global finger verification.
2034       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2035       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2036                 !task_hr->in_collection_set(),
2037                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2038                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2039     }
2040   }
2041 }
2042 #endif // PRODUCT
2043 void G1ConcurrentMark::create_live_data() {
2044   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
2045 }
2046 
2047 void G1ConcurrentMark::finalize_live_data() {
2048   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
2049 }
2050 
2051 void G1ConcurrentMark::verify_live_data() {
2052   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
2053 }
2054 
2055 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
2056   _g1h->g1_rem_set()->clear_card_live_data(workers);
2057 }
2058 
2059 #ifdef ASSERT
2060 void G1ConcurrentMark::verify_live_data_clear() {
2061   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
2062 }
2063 #endif
2064 
2065 void G1ConcurrentMark::print_stats() {
2066   if (!log_is_enabled(Debug, gc, stats)) {
2067     return;
2068   }
2069   log_debug(gc, stats)("---------------------------------------------------------------------");
2070   for (size_t i = 0; i < _active_tasks; ++i) {
2071     _tasks[i]->print_stats();
2072     log_debug(gc, stats)("---------------------------------------------------------------------");
2073   }
2074 }
2075 
2076 void G1ConcurrentMark::abort() {
2077   if (!cmThread()->during_cycle() || _has_aborted) {
2078     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2079     return;
2080   }
2081 
2082   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2083   // concurrent bitmap clearing.
2084   {
2085     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2086     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2087   }
2088   // Note we cannot clear the previous marking bitmap here
2089   // since VerifyDuringGC verifies the objects marked during
2090   // a full GC against the previous bitmap.
2091 
2092   {
2093     GCTraceTime(Debug, gc)("Clear Live Data");
2094     clear_live_data(_g1h->workers());
2095   }
2096   DEBUG_ONLY({
2097     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2098     verify_live_data_clear();
2099   })
2100   // Empty mark stack
2101   reset_marking_state();
2102   for (uint i = 0; i < _max_worker_id; ++i) {
2103     _tasks[i]->clear_region_fields();
2104   }
2105   _first_overflow_barrier_sync.abort();
2106   _second_overflow_barrier_sync.abort();
2107   _has_aborted = true;
2108 
2109   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2110   satb_mq_set.abandon_partial_marking();
2111   // This can be called either during or outside marking, we'll read
2112   // the expected_active value from the SATB queue set.
2113   satb_mq_set.set_active_all_threads(
2114                                  false, /* new active value */
2115                                  satb_mq_set.is_active() /* expected_active */);
2116 }
2117 
2118 static void print_ms_time_info(const char* prefix, const char* name,
2119                                NumberSeq& ns) {
2120   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2121                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2122   if (ns.num() > 0) {
2123     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2124                            prefix, ns.sd(), ns.maximum());
2125   }
2126 }
2127 
2128 void G1ConcurrentMark::print_summary_info() {
2129   Log(gc, marking) log;
2130   if (!log.is_trace()) {
2131     return;
2132   }
2133 
2134   log.trace(" Concurrent marking:");
2135   print_ms_time_info("  ", "init marks", _init_times);
2136   print_ms_time_info("  ", "remarks", _remark_times);
2137   {
2138     print_ms_time_info("     ", "final marks", _remark_mark_times);
2139     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2140 
2141   }
2142   print_ms_time_info("  ", "cleanups", _cleanup_times);
2143   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2144             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2145   if (G1ScrubRemSets) {
2146     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2147               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2148   }
2149   log.trace("  Total stop_world time = %8.2f s.",
2150             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2151   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2152             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2153 }
2154 
2155 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2156   _parallel_workers->print_worker_threads_on(st);
2157 }
2158 
2159 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2160   _parallel_workers->threads_do(tc);
2161 }
2162 
2163 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2164   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2165       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2166   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2167   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2168 }
2169 
2170 // Closure for iteration over bitmaps
2171 class G1CMBitMapClosure : public BitMapClosure {
2172 private:
2173   // the bitmap that is being iterated over
2174   G1CMBitMap*                 _nextMarkBitMap;
2175   G1ConcurrentMark*           _cm;
2176   G1CMTask*                   _task;
2177 
2178 public:
2179   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2180     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2181 
2182   bool do_bit(size_t offset) {
2183     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2184     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2185     assert( addr < _cm->finger(), "invariant");
2186     assert(addr >= _task->finger(), "invariant");
2187 
2188     // We move that task's local finger along.
2189     _task->move_finger_to(addr);
2190 
2191     _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
2192     // we only partially drain the local queue and global stack
2193     _task->drain_local_queue(true);
2194     _task->drain_global_stack(true);
2195 
2196     // if the has_aborted flag has been raised, we need to bail out of
2197     // the iteration
2198     return !_task->has_aborted();
2199   }
2200 };
2201 
2202 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2203   ReferenceProcessor* result = g1h->ref_processor_cm();
2204   assert(result != NULL, "CM reference processor should not be NULL");
2205   return result;
2206 }
2207 
2208 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2209                                G1ConcurrentMark* cm,
2210                                G1CMTask* task)
2211   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2212     _g1h(g1h), _cm(cm), _task(task)
2213 { }
2214 
2215 void G1CMTask::setup_for_region(HeapRegion* hr) {
2216   assert(hr != NULL,
2217         "claim_region() should have filtered out NULL regions");
2218   _curr_region  = hr;
2219   _finger       = hr->bottom();
2220   update_region_limit();
2221 }
2222 
2223 void G1CMTask::update_region_limit() {
2224   HeapRegion* hr            = _curr_region;
2225   HeapWord* bottom          = hr->bottom();
2226   HeapWord* limit           = hr->next_top_at_mark_start();
2227 
2228   if (limit == bottom) {
2229     // The region was collected underneath our feet.
2230     // We set the finger to bottom to ensure that the bitmap
2231     // iteration that will follow this will not do anything.
2232     // (this is not a condition that holds when we set the region up,
2233     // as the region is not supposed to be empty in the first place)
2234     _finger = bottom;
2235   } else if (limit >= _region_limit) {
2236     assert(limit >= _finger, "peace of mind");
2237   } else {
2238     assert(limit < _region_limit, "only way to get here");
2239     // This can happen under some pretty unusual circumstances.  An
2240     // evacuation pause empties the region underneath our feet (NTAMS
2241     // at bottom). We then do some allocation in the region (NTAMS
2242     // stays at bottom), followed by the region being used as a GC
2243     // alloc region (NTAMS will move to top() and the objects
2244     // originally below it will be grayed). All objects now marked in
2245     // the region are explicitly grayed, if below the global finger,
2246     // and we do not need in fact to scan anything else. So, we simply
2247     // set _finger to be limit to ensure that the bitmap iteration
2248     // doesn't do anything.
2249     _finger = limit;
2250   }
2251 
2252   _region_limit = limit;
2253 }
2254 
2255 void G1CMTask::giveup_current_region() {
2256   assert(_curr_region != NULL, "invariant");
2257   clear_region_fields();
2258 }
2259 
2260 void G1CMTask::clear_region_fields() {
2261   // Values for these three fields that indicate that we're not
2262   // holding on to a region.
2263   _curr_region   = NULL;
2264   _finger        = NULL;
2265   _region_limit  = NULL;
2266 }
2267 
2268 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2269   if (cm_oop_closure == NULL) {
2270     assert(_cm_oop_closure != NULL, "invariant");
2271   } else {
2272     assert(_cm_oop_closure == NULL, "invariant");
2273   }
2274   _cm_oop_closure = cm_oop_closure;
2275 }
2276 
2277 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2278   guarantee(nextMarkBitMap != NULL, "invariant");
2279   _nextMarkBitMap                = nextMarkBitMap;
2280   clear_region_fields();
2281 
2282   _calls                         = 0;
2283   _elapsed_time_ms               = 0.0;
2284   _termination_time_ms           = 0.0;
2285   _termination_start_time_ms     = 0.0;
2286 }
2287 
2288 bool G1CMTask::should_exit_termination() {
2289   regular_clock_call();
2290   // This is called when we are in the termination protocol. We should
2291   // quit if, for some reason, this task wants to abort or the global
2292   // stack is not empty (this means that we can get work from it).
2293   return !_cm->mark_stack_empty() || has_aborted();
2294 }
2295 
2296 void G1CMTask::reached_limit() {
2297   assert(_words_scanned >= _words_scanned_limit ||
2298          _refs_reached >= _refs_reached_limit ,
2299          "shouldn't have been called otherwise");
2300   regular_clock_call();
2301 }
2302 
2303 void G1CMTask::regular_clock_call() {
2304   if (has_aborted()) return;
2305 
2306   // First, we need to recalculate the words scanned and refs reached
2307   // limits for the next clock call.
2308   recalculate_limits();
2309 
2310   // During the regular clock call we do the following
2311 
2312   // (1) If an overflow has been flagged, then we abort.
2313   if (_cm->has_overflown()) {
2314     set_has_aborted();
2315     return;
2316   }
2317 
2318   // If we are not concurrent (i.e. we're doing remark) we don't need
2319   // to check anything else. The other steps are only needed during
2320   // the concurrent marking phase.
2321   if (!concurrent()) return;
2322 
2323   // (2) If marking has been aborted for Full GC, then we also abort.
2324   if (_cm->has_aborted()) {
2325     set_has_aborted();
2326     return;
2327   }
2328 
2329   double curr_time_ms = os::elapsedVTime() * 1000.0;
2330 
2331   // (4) We check whether we should yield. If we have to, then we abort.
2332   if (SuspendibleThreadSet::should_yield()) {
2333     // We should yield. To do this we abort the task. The caller is
2334     // responsible for yielding.
2335     set_has_aborted();
2336     return;
2337   }
2338 
2339   // (5) We check whether we've reached our time quota. If we have,
2340   // then we abort.
2341   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2342   if (elapsed_time_ms > _time_target_ms) {
2343     set_has_aborted();
2344     _has_timed_out = true;
2345     return;
2346   }
2347 
2348   // (6) Finally, we check whether there are enough completed STAB
2349   // buffers available for processing. If there are, we abort.
2350   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2351   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2352     // we do need to process SATB buffers, we'll abort and restart
2353     // the marking task to do so
2354     set_has_aborted();
2355     return;
2356   }
2357 }
2358 
2359 void G1CMTask::recalculate_limits() {
2360   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2361   _words_scanned_limit      = _real_words_scanned_limit;
2362 
2363   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2364   _refs_reached_limit       = _real_refs_reached_limit;
2365 }
2366 
2367 void G1CMTask::decrease_limits() {
2368   // This is called when we believe that we're going to do an infrequent
2369   // operation which will increase the per byte scanned cost (i.e. move
2370   // entries to/from the global stack). It basically tries to decrease the
2371   // scanning limit so that the clock is called earlier.
2372 
2373   _words_scanned_limit = _real_words_scanned_limit -
2374     3 * words_scanned_period / 4;
2375   _refs_reached_limit  = _real_refs_reached_limit -
2376     3 * refs_reached_period / 4;
2377 }
2378 
2379 void G1CMTask::move_entries_to_global_stack() {
2380   // Local array where we'll store the entries that will be popped
2381   // from the local queue.
2382   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2383 
2384   size_t n = 0;
2385   G1TaskQueueEntry task_entry;
2386   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2387     buffer[n] = task_entry;
2388     ++n;
2389   }
2390   if (n < G1CMMarkStack::EntriesPerChunk) {
2391     buffer[n] = G1TaskQueueEntry();
2392   }
2393 
2394   if (n > 0) {
2395     if (!_cm->mark_stack_push(buffer)) {
2396       set_has_aborted();
2397     }
2398   }
2399 
2400   // This operation was quite expensive, so decrease the limits.
2401   decrease_limits();
2402 }
2403 
2404 bool G1CMTask::get_entries_from_global_stack() {
2405   // Local array where we'll store the entries that will be popped
2406   // from the global stack.
2407   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2408 
2409   if (!_cm->mark_stack_pop(buffer)) {
2410     return false;
2411   }
2412 
2413   // We did actually pop at least one entry.
2414   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2415     G1TaskQueueEntry task_entry = buffer[i];
2416     if (task_entry.is_null()) {
2417       break;
2418     }
2419     assert(task_entry.is_array_slice() || task_entry.obj()->is_oop(), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2420     bool success = _task_queue->push(task_entry);
2421     // We only call this when the local queue is empty or under a
2422     // given target limit. So, we do not expect this push to fail.
2423     assert(success, "invariant");
2424   }
2425 
2426   // This operation was quite expensive, so decrease the limits
2427   decrease_limits();
2428   return true;
2429 }
2430 
2431 void G1CMTask::drain_local_queue(bool partially) {
2432   if (has_aborted()) {
2433     return;
2434   }
2435 
2436   // Decide what the target size is, depending whether we're going to
2437   // drain it partially (so that other tasks can steal if they run out
2438   // of things to do) or totally (at the very end).
2439   size_t target_size;
2440   if (partially) {
2441     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2442   } else {
2443     target_size = 0;
2444   }
2445 
2446   if (_task_queue->size() > target_size) {
2447     G1TaskQueueEntry entry;
2448     bool ret = _task_queue->pop_local(entry);
2449     while (ret) {
2450       scan_task_entry(entry);
2451       if (_task_queue->size() <= target_size || has_aborted()) {
2452         ret = false;
2453       } else {
2454         ret = _task_queue->pop_local(entry);
2455       }
2456     }
2457   }
2458 }
2459 
2460 void G1CMTask::drain_global_stack(bool partially) {
2461   if (has_aborted()) return;
2462 
2463   // We have a policy to drain the local queue before we attempt to
2464   // drain the global stack.
2465   assert(partially || _task_queue->size() == 0, "invariant");
2466 
2467   // Decide what the target size is, depending whether we're going to
2468   // drain it partially (so that other tasks can steal if they run out
2469   // of things to do) or totally (at the very end).
2470   // Notice that when draining the global mark stack partially, due to the racyness
2471   // of the mark stack size update we might in fact drop below the target. But,
2472   // this is not a problem.
2473   // In case of total draining, we simply process until the global mark stack is
2474   // totally empty, disregarding the size counter.
2475   if (partially) {
2476     size_t const target_size = _cm->partial_mark_stack_size_target();
2477     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2478       if (get_entries_from_global_stack()) {
2479         drain_local_queue(partially);
2480       }
2481     }
2482   } else {
2483     while (!has_aborted() && get_entries_from_global_stack()) {
2484       drain_local_queue(partially);
2485     }
2486   }
2487 }
2488 
2489 // SATB Queue has several assumptions on whether to call the par or
2490 // non-par versions of the methods. this is why some of the code is
2491 // replicated. We should really get rid of the single-threaded version
2492 // of the code to simplify things.
2493 void G1CMTask::drain_satb_buffers() {
2494   if (has_aborted()) return;
2495 
2496   // We set this so that the regular clock knows that we're in the
2497   // middle of draining buffers and doesn't set the abort flag when it
2498   // notices that SATB buffers are available for draining. It'd be
2499   // very counter productive if it did that. :-)
2500   _draining_satb_buffers = true;
2501 
2502   G1CMSATBBufferClosure satb_cl(this, _g1h);
2503   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2504 
2505   // This keeps claiming and applying the closure to completed buffers
2506   // until we run out of buffers or we need to abort.
2507   while (!has_aborted() &&
2508          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2509     regular_clock_call();
2510   }
2511 
2512   _draining_satb_buffers = false;
2513 
2514   assert(has_aborted() ||
2515          concurrent() ||
2516          satb_mq_set.completed_buffers_num() == 0, "invariant");
2517 
2518   // again, this was a potentially expensive operation, decrease the
2519   // limits to get the regular clock call early
2520   decrease_limits();
2521 }
2522 
2523 void G1CMTask::print_stats() {
2524   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2525                        _worker_id, _calls);
2526   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2527                        _elapsed_time_ms, _termination_time_ms);
2528   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2529                        _step_times_ms.num(), _step_times_ms.avg(),
2530                        _step_times_ms.sd());
2531   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2532                        _step_times_ms.maximum(), _step_times_ms.sum());
2533 }
2534 
2535 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2536   return _task_queues->steal(worker_id, hash_seed, task_entry);
2537 }
2538 
2539 /*****************************************************************************
2540 
2541     The do_marking_step(time_target_ms, ...) method is the building
2542     block of the parallel marking framework. It can be called in parallel
2543     with other invocations of do_marking_step() on different tasks
2544     (but only one per task, obviously) and concurrently with the
2545     mutator threads, or during remark, hence it eliminates the need
2546     for two versions of the code. When called during remark, it will
2547     pick up from where the task left off during the concurrent marking
2548     phase. Interestingly, tasks are also claimable during evacuation
2549     pauses too, since do_marking_step() ensures that it aborts before
2550     it needs to yield.
2551 
2552     The data structures that it uses to do marking work are the
2553     following:
2554 
2555       (1) Marking Bitmap. If there are gray objects that appear only
2556       on the bitmap (this happens either when dealing with an overflow
2557       or when the initial marking phase has simply marked the roots
2558       and didn't push them on the stack), then tasks claim heap
2559       regions whose bitmap they then scan to find gray objects. A
2560       global finger indicates where the end of the last claimed region
2561       is. A local finger indicates how far into the region a task has
2562       scanned. The two fingers are used to determine how to gray an
2563       object (i.e. whether simply marking it is OK, as it will be
2564       visited by a task in the future, or whether it needs to be also
2565       pushed on a stack).
2566 
2567       (2) Local Queue. The local queue of the task which is accessed
2568       reasonably efficiently by the task. Other tasks can steal from
2569       it when they run out of work. Throughout the marking phase, a
2570       task attempts to keep its local queue short but not totally
2571       empty, so that entries are available for stealing by other
2572       tasks. Only when there is no more work, a task will totally
2573       drain its local queue.
2574 
2575       (3) Global Mark Stack. This handles local queue overflow. During
2576       marking only sets of entries are moved between it and the local
2577       queues, as access to it requires a mutex and more fine-grain
2578       interaction with it which might cause contention. If it
2579       overflows, then the marking phase should restart and iterate
2580       over the bitmap to identify gray objects. Throughout the marking
2581       phase, tasks attempt to keep the global mark stack at a small
2582       length but not totally empty, so that entries are available for
2583       popping by other tasks. Only when there is no more work, tasks
2584       will totally drain the global mark stack.
2585 
2586       (4) SATB Buffer Queue. This is where completed SATB buffers are
2587       made available. Buffers are regularly removed from this queue
2588       and scanned for roots, so that the queue doesn't get too
2589       long. During remark, all completed buffers are processed, as
2590       well as the filled in parts of any uncompleted buffers.
2591 
2592     The do_marking_step() method tries to abort when the time target
2593     has been reached. There are a few other cases when the
2594     do_marking_step() method also aborts:
2595 
2596       (1) When the marking phase has been aborted (after a Full GC).
2597 
2598       (2) When a global overflow (on the global stack) has been
2599       triggered. Before the task aborts, it will actually sync up with
2600       the other tasks to ensure that all the marking data structures
2601       (local queues, stacks, fingers etc.)  are re-initialized so that
2602       when do_marking_step() completes, the marking phase can
2603       immediately restart.
2604 
2605       (3) When enough completed SATB buffers are available. The
2606       do_marking_step() method only tries to drain SATB buffers right
2607       at the beginning. So, if enough buffers are available, the
2608       marking step aborts and the SATB buffers are processed at
2609       the beginning of the next invocation.
2610 
2611       (4) To yield. when we have to yield then we abort and yield
2612       right at the end of do_marking_step(). This saves us from a lot
2613       of hassle as, by yielding we might allow a Full GC. If this
2614       happens then objects will be compacted underneath our feet, the
2615       heap might shrink, etc. We save checking for this by just
2616       aborting and doing the yield right at the end.
2617 
2618     From the above it follows that the do_marking_step() method should
2619     be called in a loop (or, otherwise, regularly) until it completes.
2620 
2621     If a marking step completes without its has_aborted() flag being
2622     true, it means it has completed the current marking phase (and
2623     also all other marking tasks have done so and have all synced up).
2624 
2625     A method called regular_clock_call() is invoked "regularly" (in
2626     sub ms intervals) throughout marking. It is this clock method that
2627     checks all the abort conditions which were mentioned above and
2628     decides when the task should abort. A work-based scheme is used to
2629     trigger this clock method: when the number of object words the
2630     marking phase has scanned or the number of references the marking
2631     phase has visited reach a given limit. Additional invocations to
2632     the method clock have been planted in a few other strategic places
2633     too. The initial reason for the clock method was to avoid calling
2634     vtime too regularly, as it is quite expensive. So, once it was in
2635     place, it was natural to piggy-back all the other conditions on it
2636     too and not constantly check them throughout the code.
2637 
2638     If do_termination is true then do_marking_step will enter its
2639     termination protocol.
2640 
2641     The value of is_serial must be true when do_marking_step is being
2642     called serially (i.e. by the VMThread) and do_marking_step should
2643     skip any synchronization in the termination and overflow code.
2644     Examples include the serial remark code and the serial reference
2645     processing closures.
2646 
2647     The value of is_serial must be false when do_marking_step is
2648     being called by any of the worker threads in a work gang.
2649     Examples include the concurrent marking code (CMMarkingTask),
2650     the MT remark code, and the MT reference processing closures.
2651 
2652  *****************************************************************************/
2653 
2654 void G1CMTask::do_marking_step(double time_target_ms,
2655                                bool do_termination,
2656                                bool is_serial) {
2657   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2658   assert(concurrent() == _cm->concurrent(), "they should be the same");
2659 
2660   G1Policy* g1_policy = _g1h->g1_policy();
2661   assert(_task_queues != NULL, "invariant");
2662   assert(_task_queue != NULL, "invariant");
2663   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2664 
2665   assert(!_claimed,
2666          "only one thread should claim this task at any one time");
2667 
2668   // OK, this doesn't safeguard again all possible scenarios, as it is
2669   // possible for two threads to set the _claimed flag at the same
2670   // time. But it is only for debugging purposes anyway and it will
2671   // catch most problems.
2672   _claimed = true;
2673 
2674   _start_time_ms = os::elapsedVTime() * 1000.0;
2675 
2676   // If do_stealing is true then do_marking_step will attempt to
2677   // steal work from the other G1CMTasks. It only makes sense to
2678   // enable stealing when the termination protocol is enabled
2679   // and do_marking_step() is not being called serially.
2680   bool do_stealing = do_termination && !is_serial;
2681 
2682   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2683   _time_target_ms = time_target_ms - diff_prediction_ms;
2684 
2685   // set up the variables that are used in the work-based scheme to
2686   // call the regular clock method
2687   _words_scanned = 0;
2688   _refs_reached  = 0;
2689   recalculate_limits();
2690 
2691   // clear all flags
2692   clear_has_aborted();
2693   _has_timed_out = false;
2694   _draining_satb_buffers = false;
2695 
2696   ++_calls;
2697 
2698   // Set up the bitmap and oop closures. Anything that uses them is
2699   // eventually called from this method, so it is OK to allocate these
2700   // statically.
2701   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
2702   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2703   set_cm_oop_closure(&cm_oop_closure);
2704 
2705   if (_cm->has_overflown()) {
2706     // This can happen if the mark stack overflows during a GC pause
2707     // and this task, after a yield point, restarts. We have to abort
2708     // as we need to get into the overflow protocol which happens
2709     // right at the end of this task.
2710     set_has_aborted();
2711   }
2712 
2713   // First drain any available SATB buffers. After this, we will not
2714   // look at SATB buffers before the next invocation of this method.
2715   // If enough completed SATB buffers are queued up, the regular clock
2716   // will abort this task so that it restarts.
2717   drain_satb_buffers();
2718   // ...then partially drain the local queue and the global stack
2719   drain_local_queue(true);
2720   drain_global_stack(true);
2721 
2722   do {
2723     if (!has_aborted() && _curr_region != NULL) {
2724       // This means that we're already holding on to a region.
2725       assert(_finger != NULL, "if region is not NULL, then the finger "
2726              "should not be NULL either");
2727 
2728       // We might have restarted this task after an evacuation pause
2729       // which might have evacuated the region we're holding on to
2730       // underneath our feet. Let's read its limit again to make sure
2731       // that we do not iterate over a region of the heap that
2732       // contains garbage (update_region_limit() will also move
2733       // _finger to the start of the region if it is found empty).
2734       update_region_limit();
2735       // We will start from _finger not from the start of the region,
2736       // as we might be restarting this task after aborting half-way
2737       // through scanning this region. In this case, _finger points to
2738       // the address where we last found a marked object. If this is a
2739       // fresh region, _finger points to start().
2740       MemRegion mr = MemRegion(_finger, _region_limit);
2741 
2742       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2743              "humongous regions should go around loop once only");
2744 
2745       // Some special cases:
2746       // If the memory region is empty, we can just give up the region.
2747       // If the current region is humongous then we only need to check
2748       // the bitmap for the bit associated with the start of the object,
2749       // scan the object if it's live, and give up the region.
2750       // Otherwise, let's iterate over the bitmap of the part of the region
2751       // that is left.
2752       // If the iteration is successful, give up the region.
2753       if (mr.is_empty()) {
2754         giveup_current_region();
2755         regular_clock_call();
2756       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2757         if (_nextMarkBitMap->isMarked(mr.start())) {
2758           // The object is marked - apply the closure
2759           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
2760           bitmap_closure.do_bit(offset);
2761         }
2762         // Even if this task aborted while scanning the humongous object
2763         // we can (and should) give up the current region.
2764         giveup_current_region();
2765         regular_clock_call();
2766       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2767         giveup_current_region();
2768         regular_clock_call();
2769       } else {
2770         assert(has_aborted(), "currently the only way to do so");
2771         // The only way to abort the bitmap iteration is to return
2772         // false from the do_bit() method. However, inside the
2773         // do_bit() method we move the _finger to point to the
2774         // object currently being looked at. So, if we bail out, we
2775         // have definitely set _finger to something non-null.
2776         assert(_finger != NULL, "invariant");
2777 
2778         // Region iteration was actually aborted. So now _finger
2779         // points to the address of the object we last scanned. If we
2780         // leave it there, when we restart this task, we will rescan
2781         // the object. It is easy to avoid this. We move the finger by
2782         // enough to point to the next possible object header (the
2783         // bitmap knows by how much we need to move it as it knows its
2784         // granularity).
2785         assert(_finger < _region_limit, "invariant");
2786         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
2787         // Check if bitmap iteration was aborted while scanning the last object
2788         if (new_finger >= _region_limit) {
2789           giveup_current_region();
2790         } else {
2791           move_finger_to(new_finger);
2792         }
2793       }
2794     }
2795     // At this point we have either completed iterating over the
2796     // region we were holding on to, or we have aborted.
2797 
2798     // We then partially drain the local queue and the global stack.
2799     // (Do we really need this?)
2800     drain_local_queue(true);
2801     drain_global_stack(true);
2802 
2803     // Read the note on the claim_region() method on why it might
2804     // return NULL with potentially more regions available for
2805     // claiming and why we have to check out_of_regions() to determine
2806     // whether we're done or not.
2807     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2808       // We are going to try to claim a new region. We should have
2809       // given up on the previous one.
2810       // Separated the asserts so that we know which one fires.
2811       assert(_curr_region  == NULL, "invariant");
2812       assert(_finger       == NULL, "invariant");
2813       assert(_region_limit == NULL, "invariant");
2814       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2815       if (claimed_region != NULL) {
2816         // Yes, we managed to claim one
2817         setup_for_region(claimed_region);
2818         assert(_curr_region == claimed_region, "invariant");
2819       }
2820       // It is important to call the regular clock here. It might take
2821       // a while to claim a region if, for example, we hit a large
2822       // block of empty regions. So we need to call the regular clock
2823       // method once round the loop to make sure it's called
2824       // frequently enough.
2825       regular_clock_call();
2826     }
2827 
2828     if (!has_aborted() && _curr_region == NULL) {
2829       assert(_cm->out_of_regions(),
2830              "at this point we should be out of regions");
2831     }
2832   } while ( _curr_region != NULL && !has_aborted());
2833 
2834   if (!has_aborted()) {
2835     // We cannot check whether the global stack is empty, since other
2836     // tasks might be pushing objects to it concurrently.
2837     assert(_cm->out_of_regions(),
2838            "at this point we should be out of regions");
2839     // Try to reduce the number of available SATB buffers so that
2840     // remark has less work to do.
2841     drain_satb_buffers();
2842   }
2843 
2844   // Since we've done everything else, we can now totally drain the
2845   // local queue and global stack.
2846   drain_local_queue(false);
2847   drain_global_stack(false);
2848 
2849   // Attempt at work stealing from other task's queues.
2850   if (do_stealing && !has_aborted()) {
2851     // We have not aborted. This means that we have finished all that
2852     // we could. Let's try to do some stealing...
2853 
2854     // We cannot check whether the global stack is empty, since other
2855     // tasks might be pushing objects to it concurrently.
2856     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2857            "only way to reach here");
2858     while (!has_aborted()) {
2859       G1TaskQueueEntry entry;
2860       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2861         scan_task_entry(entry);
2862 
2863         // And since we're towards the end, let's totally drain the
2864         // local queue and global stack.
2865         drain_local_queue(false);
2866         drain_global_stack(false);
2867       } else {
2868         break;
2869       }
2870     }
2871   }
2872 
2873   // We still haven't aborted. Now, let's try to get into the
2874   // termination protocol.
2875   if (do_termination && !has_aborted()) {
2876     // We cannot check whether the global stack is empty, since other
2877     // tasks might be concurrently pushing objects on it.
2878     // Separated the asserts so that we know which one fires.
2879     assert(_cm->out_of_regions(), "only way to reach here");
2880     assert(_task_queue->size() == 0, "only way to reach here");
2881     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2882 
2883     // The G1CMTask class also extends the TerminatorTerminator class,
2884     // hence its should_exit_termination() method will also decide
2885     // whether to exit the termination protocol or not.
2886     bool finished = (is_serial ||
2887                      _cm->terminator()->offer_termination(this));
2888     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2889     _termination_time_ms +=
2890       termination_end_time_ms - _termination_start_time_ms;
2891 
2892     if (finished) {
2893       // We're all done.
2894 
2895       if (_worker_id == 0) {
2896         // let's allow task 0 to do this
2897         if (concurrent()) {
2898           assert(_cm->concurrent_marking_in_progress(), "invariant");
2899           // we need to set this to false before the next
2900           // safepoint. This way we ensure that the marking phase
2901           // doesn't observe any more heap expansions.
2902           _cm->clear_concurrent_marking_in_progress();
2903         }
2904       }
2905 
2906       // We can now guarantee that the global stack is empty, since
2907       // all other tasks have finished. We separated the guarantees so
2908       // that, if a condition is false, we can immediately find out
2909       // which one.
2910       guarantee(_cm->out_of_regions(), "only way to reach here");
2911       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2912       guarantee(_task_queue->size() == 0, "only way to reach here");
2913       guarantee(!_cm->has_overflown(), "only way to reach here");
2914     } else {
2915       // Apparently there's more work to do. Let's abort this task. It
2916       // will restart it and we can hopefully find more things to do.
2917       set_has_aborted();
2918     }
2919   }
2920 
2921   // Mainly for debugging purposes to make sure that a pointer to the
2922   // closure which was statically allocated in this frame doesn't
2923   // escape it by accident.
2924   set_cm_oop_closure(NULL);
2925   double end_time_ms = os::elapsedVTime() * 1000.0;
2926   double elapsed_time_ms = end_time_ms - _start_time_ms;
2927   // Update the step history.
2928   _step_times_ms.add(elapsed_time_ms);
2929 
2930   if (has_aborted()) {
2931     // The task was aborted for some reason.
2932     if (_has_timed_out) {
2933       double diff_ms = elapsed_time_ms - _time_target_ms;
2934       // Keep statistics of how well we did with respect to hitting
2935       // our target only if we actually timed out (if we aborted for
2936       // other reasons, then the results might get skewed).
2937       _marking_step_diffs_ms.add(diff_ms);
2938     }
2939 
2940     if (_cm->has_overflown()) {
2941       // This is the interesting one. We aborted because a global
2942       // overflow was raised. This means we have to restart the
2943       // marking phase and start iterating over regions. However, in
2944       // order to do this we have to make sure that all tasks stop
2945       // what they are doing and re-initialize in a safe manner. We
2946       // will achieve this with the use of two barrier sync points.
2947 
2948       if (!is_serial) {
2949         // We only need to enter the sync barrier if being called
2950         // from a parallel context
2951         _cm->enter_first_sync_barrier(_worker_id);
2952 
2953         // When we exit this sync barrier we know that all tasks have
2954         // stopped doing marking work. So, it's now safe to
2955         // re-initialize our data structures. At the end of this method,
2956         // task 0 will clear the global data structures.
2957       }
2958 
2959       // We clear the local state of this task...
2960       clear_region_fields();
2961 
2962       if (!is_serial) {
2963         // ...and enter the second barrier.
2964         _cm->enter_second_sync_barrier(_worker_id);
2965       }
2966       // At this point, if we're during the concurrent phase of
2967       // marking, everything has been re-initialized and we're
2968       // ready to restart.
2969     }
2970   }
2971 
2972   _claimed = false;
2973 }
2974 
2975 G1CMTask::G1CMTask(uint worker_id,
2976                    G1ConcurrentMark* cm,
2977                    G1CMTaskQueue* task_queue,
2978                    G1CMTaskQueueSet* task_queues)
2979   : _g1h(G1CollectedHeap::heap()),
2980     _worker_id(worker_id), _cm(cm),
2981     _objArray_processor(this),
2982     _claimed(false),
2983     _nextMarkBitMap(NULL), _hash_seed(17),
2984     _task_queue(task_queue),
2985     _task_queues(task_queues),
2986     _cm_oop_closure(NULL) {
2987   guarantee(task_queue != NULL, "invariant");
2988   guarantee(task_queues != NULL, "invariant");
2989 
2990   _marking_step_diffs_ms.add(0.5);
2991 }
2992 
2993 // These are formatting macros that are used below to ensure
2994 // consistent formatting. The *_H_* versions are used to format the
2995 // header for a particular value and they should be kept consistent
2996 // with the corresponding macro. Also note that most of the macros add
2997 // the necessary white space (as a prefix) which makes them a bit
2998 // easier to compose.
2999 
3000 // All the output lines are prefixed with this string to be able to
3001 // identify them easily in a large log file.
3002 #define G1PPRL_LINE_PREFIX            "###"
3003 
3004 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3005 #ifdef _LP64
3006 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3007 #else // _LP64
3008 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3009 #endif // _LP64
3010 
3011 // For per-region info
3012 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3013 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3014 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3015 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3016 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3017 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3018 
3019 // For summary info
3020 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3021 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3022 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3023 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3024 
3025 G1PrintRegionLivenessInfoClosure::
3026 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3027   : _total_used_bytes(0), _total_capacity_bytes(0),
3028     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3029     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3030   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3031   MemRegion g1_reserved = g1h->g1_reserved();
3032   double now = os::elapsedTime();
3033 
3034   // Print the header of the output.
3035   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3036   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3037                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3038                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3039                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3040                           HeapRegion::GrainBytes);
3041   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3042   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3043                           G1PPRL_TYPE_H_FORMAT
3044                           G1PPRL_ADDR_BASE_H_FORMAT
3045                           G1PPRL_BYTE_H_FORMAT
3046                           G1PPRL_BYTE_H_FORMAT
3047                           G1PPRL_BYTE_H_FORMAT
3048                           G1PPRL_DOUBLE_H_FORMAT
3049                           G1PPRL_BYTE_H_FORMAT
3050                           G1PPRL_BYTE_H_FORMAT,
3051                           "type", "address-range",
3052                           "used", "prev-live", "next-live", "gc-eff",
3053                           "remset", "code-roots");
3054   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3055                           G1PPRL_TYPE_H_FORMAT
3056                           G1PPRL_ADDR_BASE_H_FORMAT
3057                           G1PPRL_BYTE_H_FORMAT
3058                           G1PPRL_BYTE_H_FORMAT
3059                           G1PPRL_BYTE_H_FORMAT
3060                           G1PPRL_DOUBLE_H_FORMAT
3061                           G1PPRL_BYTE_H_FORMAT
3062                           G1PPRL_BYTE_H_FORMAT,
3063                           "", "",
3064                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3065                           "(bytes)", "(bytes)");
3066 }
3067 
3068 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3069   const char* type       = r->get_type_str();
3070   HeapWord* bottom       = r->bottom();
3071   HeapWord* end          = r->end();
3072   size_t capacity_bytes  = r->capacity();
3073   size_t used_bytes      = r->used();
3074   size_t prev_live_bytes = r->live_bytes();
3075   size_t next_live_bytes = r->next_live_bytes();
3076   double gc_eff          = r->gc_efficiency();
3077   size_t remset_bytes    = r->rem_set()->mem_size();
3078   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3079 
3080   _total_used_bytes      += used_bytes;
3081   _total_capacity_bytes  += capacity_bytes;
3082   _total_prev_live_bytes += prev_live_bytes;
3083   _total_next_live_bytes += next_live_bytes;
3084   _total_remset_bytes    += remset_bytes;
3085   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3086 
3087   // Print a line for this particular region.
3088   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3089                           G1PPRL_TYPE_FORMAT
3090                           G1PPRL_ADDR_BASE_FORMAT
3091                           G1PPRL_BYTE_FORMAT
3092                           G1PPRL_BYTE_FORMAT
3093                           G1PPRL_BYTE_FORMAT
3094                           G1PPRL_DOUBLE_FORMAT
3095                           G1PPRL_BYTE_FORMAT
3096                           G1PPRL_BYTE_FORMAT,
3097                           type, p2i(bottom), p2i(end),
3098                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3099                           remset_bytes, strong_code_roots_bytes);
3100 
3101   return false;
3102 }
3103 
3104 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3105   // add static memory usages to remembered set sizes
3106   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3107   // Print the footer of the output.
3108   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3109   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3110                          " SUMMARY"
3111                          G1PPRL_SUM_MB_FORMAT("capacity")
3112                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3113                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3114                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3115                          G1PPRL_SUM_MB_FORMAT("remset")
3116                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3117                          bytes_to_mb(_total_capacity_bytes),
3118                          bytes_to_mb(_total_used_bytes),
3119                          perc(_total_used_bytes, _total_capacity_bytes),
3120                          bytes_to_mb(_total_prev_live_bytes),
3121                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3122                          bytes_to_mb(_total_next_live_bytes),
3123                          perc(_total_next_live_bytes, _total_capacity_bytes),
3124                          bytes_to_mb(_total_remset_bytes),
3125                          bytes_to_mb(_total_strong_code_roots_bytes));
3126 }