1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/g1/suspendibleThreadSet.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/vmGCOperations.hpp"
  51 #include "logging/log.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 #include "utilities/growableArray.hpp"
  61 
  62 // Concurrent marking bit map wrapper
  63 
  64 G1CMBitMapRO::G1CMBitMapRO(int shifter) :
  65   _bm(),
  66   _shifter(shifter) {
  67   _bmStartWord = 0;
  68   _bmWordSize = 0;
  69 }
  70 
  71 HeapWord* G1CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  72                                                  const HeapWord* limit) const {
  73   // First we must round addr *up* to a possible object boundary.
  74   addr = (HeapWord*)align_size_up((intptr_t)addr,
  75                                   HeapWordSize << _shifter);
  76   size_t addrOffset = heapWordToOffset(addr);
  77   assert(limit != NULL, "limit must not be NULL");
  78   size_t limitOffset = heapWordToOffset(limit);
  79   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  80   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  81   assert(nextAddr >= addr, "get_next_one postcondition");
  82   assert(nextAddr == limit || isMarked(nextAddr),
  83          "get_next_one postcondition");
  84   return nextAddr;
  85 }
  86 
  87 #ifndef PRODUCT
  88 bool G1CMBitMapRO::covers(MemRegion heap_rs) const {
  89   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  90   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  91          "size inconsistency");
  92   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  93          _bmWordSize  == heap_rs.word_size();
  94 }
  95 #endif
  96 
  97 void G1CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  98   _bm.print_on_error(st, prefix);
  99 }
 100 
 101 size_t G1CMBitMap::compute_size(size_t heap_size) {
 102   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 103 }
 104 
 105 size_t G1CMBitMap::mark_distance() {
 106   return MinObjAlignmentInBytes * BitsPerByte;
 107 }
 108 
 109 void G1CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 110   _bmStartWord = heap.start();
 111   _bmWordSize = heap.word_size();
 112 
 113   _bm = BitMapView((BitMap::bm_word_t*) storage->reserved().start(), _bmWordSize >> _shifter);
 114 
 115   storage->set_mapping_changed_listener(&_listener);
 116 }
 117 
 118 void G1CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 119   if (zero_filled) {
 120     return;
 121   }
 122   // We need to clear the bitmap on commit, removing any existing information.
 123   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 124   _bm->clear_range(mr);
 125 }
 126 
 127 void G1CMBitMap::clear_range(MemRegion mr) {
 128   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 129   assert(!mr.is_empty(), "unexpected empty region");
 130   // convert address range into offset range
 131   _bm.at_put_range(heapWordToOffset(mr.start()),
 132                    heapWordToOffset(mr.end()), false);
 133 }
 134 
 135 G1CMMarkStack::G1CMMarkStack() :
 136   _max_chunk_capacity(0),
 137   _base(NULL),
 138   _chunk_capacity(0),
 139   _should_expand(false) {
 140   set_empty();
 141 }
 142 
 143 bool G1CMMarkStack::resize(size_t new_capacity) {
 144   assert(is_empty(), "Only resize when stack is empty.");
 145   assert(new_capacity <= _max_chunk_capacity,
 146          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
 147 
 148   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::allocate_or_null(new_capacity);
 149 
 150   if (new_base == NULL) {
 151     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 152     return false;
 153   }
 154   // Release old mapping.
 155   if (_base != NULL) {
 156     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 157   }
 158 
 159   _base = new_base;
 160   _chunk_capacity = new_capacity;
 161   set_empty();
 162   _should_expand = false;
 163 
 164   return true;
 165 }
 166 
 167 size_t G1CMMarkStack::capacity_alignment() {
 168   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 169 }
 170 
 171 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 172   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 173 
 174   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 175 
 176   _max_chunk_capacity = (size_t)align_size_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 177   size_t initial_chunk_capacity = (size_t)align_size_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 178 
 179   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 180             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 181             _max_chunk_capacity,
 182             initial_chunk_capacity);
 183 
 184   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 185                 initial_chunk_capacity, _max_chunk_capacity);
 186 
 187   return resize(initial_chunk_capacity);
 188 }
 189 
 190 void G1CMMarkStack::expand() {
 191   // Clear expansion flag
 192   _should_expand = false;
 193 
 194   if (_chunk_capacity == _max_chunk_capacity) {
 195     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 196     return;
 197   }
 198   size_t old_capacity = _chunk_capacity;
 199   // Double capacity if possible
 200   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 201 
 202   if (resize(new_capacity)) {
 203     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 204                   old_capacity, new_capacity);
 205   } else {
 206     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 207                     old_capacity, new_capacity);
 208   }
 209 }
 210 
 211 G1CMMarkStack::~G1CMMarkStack() {
 212   if (_base != NULL) {
 213     MmapArrayAllocator<TaskQueueEntryChunk, mtGC>::free(_base, _chunk_capacity);
 214   }
 215 }
 216 
 217 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 218   elem->next = *list;
 219   *list = elem;
 220 }
 221 
 222 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 223   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 224   add_chunk_to_list(&_chunk_list, elem);
 225   _chunks_in_chunk_list++;
 226 }
 227 
 228 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 229   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 230   add_chunk_to_list(&_free_list, elem);
 231 }
 232 
 233 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 234   TaskQueueEntryChunk* result = *list;
 235   if (result != NULL) {
 236     *list = (*list)->next;
 237   }
 238   return result;
 239 }
 240 
 241 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 242   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 243   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 244   if (result != NULL) {
 245     _chunks_in_chunk_list--;
 246   }
 247   return result;
 248 }
 249 
 250 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 251   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 252   return remove_chunk_from_list(&_free_list);
 253 }
 254 
 255 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 256   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 257   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 258   // wraparound of _hwm.
 259   if (_hwm >= _chunk_capacity) {
 260     return NULL;
 261   }
 262 
 263   size_t cur_idx = Atomic::add(1, &_hwm) - 1;
 264   if (cur_idx >= _chunk_capacity) {
 265     return NULL;
 266   }
 267 
 268   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 269   result->next = NULL;
 270   return result;
 271 }
 272 
 273 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 274   // Get a new chunk.
 275   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 276 
 277   if (new_chunk == NULL) {
 278     // Did not get a chunk from the free list. Allocate from backing memory.
 279     new_chunk = allocate_new_chunk();
 280 
 281     if (new_chunk == NULL) {
 282       return false;
 283     }
 284   }
 285 
 286   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 287 
 288   add_chunk_to_chunk_list(new_chunk);
 289 
 290   return true;
 291 }
 292 
 293 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 294   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 295 
 296   if (cur == NULL) {
 297     return false;
 298   }
 299 
 300   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 301 
 302   add_chunk_to_free_list(cur);
 303   return true;
 304 }
 305 
 306 void G1CMMarkStack::set_empty() {
 307   _chunks_in_chunk_list = 0;
 308   _hwm = 0;
 309   _chunk_list = NULL;
 310   _free_list = NULL;
 311 }
 312 
 313 G1CMRootRegions::G1CMRootRegions() :
 314   _cm(NULL), _scan_in_progress(false),
 315   _should_abort(false), _claimed_survivor_index(0) { }
 316 
 317 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 318   _survivors = survivors;
 319   _cm = cm;
 320 }
 321 
 322 void G1CMRootRegions::prepare_for_scan() {
 323   assert(!scan_in_progress(), "pre-condition");
 324 
 325   // Currently, only survivors can be root regions.
 326   _claimed_survivor_index = 0;
 327   _scan_in_progress = _survivors->regions()->is_nonempty();
 328   _should_abort = false;
 329 }
 330 
 331 HeapRegion* G1CMRootRegions::claim_next() {
 332   if (_should_abort) {
 333     // If someone has set the should_abort flag, we return NULL to
 334     // force the caller to bail out of their loop.
 335     return NULL;
 336   }
 337 
 338   // Currently, only survivors can be root regions.
 339   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 340 
 341   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 342   if (claimed_index < survivor_regions->length()) {
 343     return survivor_regions->at(claimed_index);
 344   }
 345   return NULL;
 346 }
 347 
 348 uint G1CMRootRegions::num_root_regions() const {
 349   return (uint)_survivors->regions()->length();
 350 }
 351 
 352 void G1CMRootRegions::notify_scan_done() {
 353   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 354   _scan_in_progress = false;
 355   RootRegionScan_lock->notify_all();
 356 }
 357 
 358 void G1CMRootRegions::cancel_scan() {
 359   notify_scan_done();
 360 }
 361 
 362 void G1CMRootRegions::scan_finished() {
 363   assert(scan_in_progress(), "pre-condition");
 364 
 365   // Currently, only survivors can be root regions.
 366   if (!_should_abort) {
 367     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 368     assert((uint)_claimed_survivor_index >= _survivors->length(),
 369            "we should have claimed all survivors, claimed index = %u, length = %u",
 370            (uint)_claimed_survivor_index, _survivors->length());
 371   }
 372 
 373   notify_scan_done();
 374 }
 375 
 376 bool G1CMRootRegions::wait_until_scan_finished() {
 377   if (!scan_in_progress()) return false;
 378 
 379   {
 380     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 381     while (scan_in_progress()) {
 382       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 383     }
 384   }
 385   return true;
 386 }
 387 
 388 uint G1ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 389   return MAX2((n_par_threads + 2) / 4, 1U);
 390 }
 391 
 392 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 393   _g1h(g1h),
 394   _markBitMap1(),
 395   _markBitMap2(),
 396   _parallel_marking_threads(0),
 397   _max_parallel_marking_threads(0),
 398   _sleep_factor(0.0),
 399   _marking_task_overhead(1.0),
 400   _cleanup_list("Cleanup List"),
 401 
 402   _prevMarkBitMap(&_markBitMap1),
 403   _nextMarkBitMap(&_markBitMap2),
 404 
 405   _global_mark_stack(),
 406   // _finger set in set_non_marking_state
 407 
 408   _max_worker_id(ParallelGCThreads),
 409   // _active_tasks set in set_non_marking_state
 410   // _tasks set inside the constructor
 411   _task_queues(new G1CMTaskQueueSet((int) _max_worker_id)),
 412   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 413 
 414   _has_overflown(false),
 415   _concurrent(false),
 416   _has_aborted(false),
 417   _restart_for_overflow(false),
 418   _concurrent_marking_in_progress(false),
 419   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 420   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 421 
 422   // _verbose_level set below
 423 
 424   _init_times(),
 425   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 426   _cleanup_times(),
 427   _total_counting_time(0.0),
 428   _total_rs_scrub_time(0.0),
 429 
 430   _parallel_workers(NULL),
 431 
 432   _completed_initialization(false) {
 433 
 434   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 435   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 436 
 437   // Create & start a ConcurrentMark thread.
 438   _cmThread = new ConcurrentMarkThread(this);
 439   assert(cmThread() != NULL, "CM Thread should have been created");
 440   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 441   if (_cmThread->osthread() == NULL) {
 442       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 443   }
 444 
 445   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 446   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 447   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 448 
 449   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 450   satb_qs.set_buffer_size(G1SATBBufferSize);
 451 
 452   _root_regions.init(_g1h->survivor(), this);
 453 
 454   if (ConcGCThreads > ParallelGCThreads) {
 455     log_warning(gc)("Can't have more ConcGCThreads (%u) than ParallelGCThreads (%u).",
 456                     ConcGCThreads, ParallelGCThreads);
 457     return;
 458   }
 459   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 460     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 461     // if both are set
 462     _sleep_factor             = 0.0;
 463     _marking_task_overhead    = 1.0;
 464   } else if (G1MarkingOverheadPercent > 0) {
 465     // We will calculate the number of parallel marking threads based
 466     // on a target overhead with respect to the soft real-time goal
 467     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 468     double overall_cm_overhead =
 469       (double) MaxGCPauseMillis * marking_overhead /
 470       (double) GCPauseIntervalMillis;
 471     double cpu_ratio = 1.0 / os::initial_active_processor_count();
 472     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 473     double marking_task_overhead =
 474       overall_cm_overhead / marking_thread_num * os::initial_active_processor_count();
 475     double sleep_factor =
 476                        (1.0 - marking_task_overhead) / marking_task_overhead;
 477 
 478     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 479     _sleep_factor             = sleep_factor;
 480     _marking_task_overhead    = marking_task_overhead;
 481   } else {
 482     // Calculate the number of parallel marking threads by scaling
 483     // the number of parallel GC threads.
 484     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 485     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 486     _sleep_factor             = 0.0;
 487     _marking_task_overhead    = 1.0;
 488   }
 489 
 490   assert(ConcGCThreads > 0, "Should have been set");
 491   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 492   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 493   _parallel_marking_threads = ConcGCThreads;
 494   _max_parallel_marking_threads = _parallel_marking_threads;
 495 
 496   _parallel_workers = new WorkGang("G1 Marker",
 497        _max_parallel_marking_threads, false, true);
 498   if (_parallel_workers == NULL) {
 499     vm_exit_during_initialization("Failed necessary allocation.");
 500   } else {
 501     _parallel_workers->initialize_workers();
 502   }
 503 
 504   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 505     size_t mark_stack_size =
 506       MIN2(MarkStackSizeMax,
 507           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 508     // Verify that the calculated value for MarkStackSize is in range.
 509     // It would be nice to use the private utility routine from Arguments.
 510     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 511       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 512                       "must be between 1 and " SIZE_FORMAT,
 513                       mark_stack_size, MarkStackSizeMax);
 514       return;
 515     }
 516     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 517   } else {
 518     // Verify MarkStackSize is in range.
 519     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 520       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 521         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 522           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 523                           "must be between 1 and " SIZE_FORMAT,
 524                           MarkStackSize, MarkStackSizeMax);
 525           return;
 526         }
 527       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 528         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 529           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 530                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 531                           MarkStackSize, MarkStackSizeMax);
 532           return;
 533         }
 534       }
 535     }
 536   }
 537 
 538   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 539     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 540   }
 541 
 542   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_worker_id, mtGC);
 543   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 544 
 545   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 546   _active_tasks = _max_worker_id;
 547 
 548   for (uint i = 0; i < _max_worker_id; ++i) {
 549     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 550     task_queue->initialize();
 551     _task_queues->register_queue(i, task_queue);
 552 
 553     _tasks[i] = new G1CMTask(i, this, task_queue, _task_queues);
 554 
 555     _accum_task_vtime[i] = 0.0;
 556   }
 557 
 558   // so that the call below can read a sensible value
 559   _heap_start = g1h->reserved_region().start();
 560   set_non_marking_state();
 561   _completed_initialization = true;
 562 }
 563 
 564 void G1ConcurrentMark::reset() {
 565   // Starting values for these two. This should be called in a STW
 566   // phase.
 567   MemRegion reserved = _g1h->g1_reserved();
 568   _heap_start = reserved.start();
 569   _heap_end   = reserved.end();
 570 
 571   // Separated the asserts so that we know which one fires.
 572   assert(_heap_start != NULL, "heap bounds should look ok");
 573   assert(_heap_end != NULL, "heap bounds should look ok");
 574   assert(_heap_start < _heap_end, "heap bounds should look ok");
 575 
 576   // Reset all the marking data structures and any necessary flags
 577   reset_marking_state();
 578 
 579   // We do reset all of them, since different phases will use
 580   // different number of active threads. So, it's easiest to have all
 581   // of them ready.
 582   for (uint i = 0; i < _max_worker_id; ++i) {
 583     _tasks[i]->reset(_nextMarkBitMap);
 584   }
 585 
 586   // we need this to make sure that the flag is on during the evac
 587   // pause with initial mark piggy-backed
 588   set_concurrent_marking_in_progress();
 589 }
 590 
 591 
 592 void G1ConcurrentMark::reset_marking_state() {
 593   _global_mark_stack.set_should_expand(has_overflown());
 594   _global_mark_stack.set_empty();
 595   clear_has_overflown();
 596   _finger = _heap_start;
 597 
 598   for (uint i = 0; i < _max_worker_id; ++i) {
 599     G1CMTaskQueue* queue = _task_queues->queue(i);
 600     queue->set_empty();
 601   }
 602 }
 603 
 604 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 605   assert(active_tasks <= _max_worker_id, "we should not have more");
 606 
 607   _active_tasks = active_tasks;
 608   // Need to update the three data structures below according to the
 609   // number of active threads for this phase.
 610   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 611   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 612   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 613 }
 614 
 615 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 616   set_concurrency(active_tasks);
 617 
 618   _concurrent = concurrent;
 619   // We propagate this to all tasks, not just the active ones.
 620   for (uint i = 0; i < _max_worker_id; ++i)
 621     _tasks[i]->set_concurrent(concurrent);
 622 
 623   if (concurrent) {
 624     set_concurrent_marking_in_progress();
 625   } else {
 626     // We currently assume that the concurrent flag has been set to
 627     // false before we start remark. At this point we should also be
 628     // in a STW phase.
 629     assert(!concurrent_marking_in_progress(), "invariant");
 630     assert(out_of_regions(),
 631            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 632            p2i(_finger), p2i(_heap_end));
 633   }
 634 }
 635 
 636 void G1ConcurrentMark::set_non_marking_state() {
 637   // We set the global marking state to some default values when we're
 638   // not doing marking.
 639   reset_marking_state();
 640   _active_tasks = 0;
 641   clear_concurrent_marking_in_progress();
 642 }
 643 
 644 G1ConcurrentMark::~G1ConcurrentMark() {
 645   // The G1ConcurrentMark instance is never freed.
 646   ShouldNotReachHere();
 647 }
 648 
 649 class G1ClearBitMapTask : public AbstractGangTask {
 650 public:
 651   static size_t chunk_size() { return M; }
 652 
 653 private:
 654   // Heap region closure used for clearing the given mark bitmap.
 655   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 656   private:
 657     G1CMBitMap* _bitmap;
 658     G1ConcurrentMark* _cm;
 659   public:
 660     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 661     }
 662 
 663     virtual bool doHeapRegion(HeapRegion* r) {
 664       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 665 
 666       HeapWord* cur = r->bottom();
 667       HeapWord* const end = r->end();
 668 
 669       while (cur < end) {
 670         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 671         _bitmap->clear_range(mr);
 672 
 673         cur += chunk_size_in_words;
 674 
 675         // Abort iteration if after yielding the marking has been aborted.
 676         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 677           return true;
 678         }
 679         // Repeat the asserts from before the start of the closure. We will do them
 680         // as asserts here to minimize their overhead on the product. However, we
 681         // will have them as guarantees at the beginning / end of the bitmap
 682         // clearing to get some checking in the product.
 683         assert(_cm == NULL || _cm->cmThread()->during_cycle(), "invariant");
 684         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 685       }
 686       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 687 
 688       return false;
 689     }
 690   };
 691 
 692   G1ClearBitmapHRClosure _cl;
 693   HeapRegionClaimer _hr_claimer;
 694   bool _suspendible; // If the task is suspendible, workers must join the STS.
 695 
 696 public:
 697   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 698     AbstractGangTask("G1 Clear Bitmap"),
 699     _cl(bitmap, suspendible ? cm : NULL),
 700     _hr_claimer(n_workers),
 701     _suspendible(suspendible)
 702   { }
 703 
 704   void work(uint worker_id) {
 705     SuspendibleThreadSetJoiner sts_join(_suspendible);
 706     G1CollectedHeap::heap()->heap_region_par_iterate(&_cl, worker_id, &_hr_claimer, true);
 707   }
 708 
 709   bool is_complete() {
 710     return _cl.complete();
 711   }
 712 };
 713 
 714 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 715   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 716 
 717   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 718   size_t const num_chunks = align_size_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 719 
 720   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 721 
 722   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 723 
 724   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 725   workers->run_task(&cl, num_workers);
 726   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 727 }
 728 
 729 void G1ConcurrentMark::cleanup_for_next_mark() {
 730   // Make sure that the concurrent mark thread looks to still be in
 731   // the current cycle.
 732   guarantee(cmThread()->during_cycle(), "invariant");
 733 
 734   // We are finishing up the current cycle by clearing the next
 735   // marking bitmap and getting it ready for the next cycle. During
 736   // this time no other cycle can start. So, let's make sure that this
 737   // is the case.
 738   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 739 
 740   clear_bitmap(_nextMarkBitMap, _parallel_workers, true);
 741 
 742   // Clear the live count data. If the marking has been aborted, the abort()
 743   // call already did that.
 744   if (!has_aborted()) {
 745     clear_live_data(_parallel_workers);
 746     DEBUG_ONLY(verify_live_data_clear());
 747   }
 748 
 749   // Repeat the asserts from above.
 750   guarantee(cmThread()->during_cycle(), "invariant");
 751   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 752 }
 753 
 754 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 755   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 756   clear_bitmap((G1CMBitMap*)_prevMarkBitMap, workers, false);
 757 }
 758 
 759 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 760   G1CMBitMap* _bitmap;
 761   bool _error;
 762  public:
 763   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 764   }
 765 
 766   virtual bool doHeapRegion(HeapRegion* r) {
 767     // This closure can be called concurrently to the mutator, so we must make sure
 768     // that the result of the getNextMarkedWordAddress() call is compared to the
 769     // value passed to it as limit to detect any found bits.
 770     // end never changes in G1.
 771     HeapWord* end = r->end();
 772     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 773   }
 774 };
 775 
 776 bool G1ConcurrentMark::nextMarkBitmapIsClear() {
 777   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 778   _g1h->heap_region_iterate(&cl);
 779   return cl.complete();
 780 }
 781 
 782 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 783 public:
 784   bool doHeapRegion(HeapRegion* r) {
 785     r->note_start_of_marking();
 786     return false;
 787   }
 788 };
 789 
 790 void G1ConcurrentMark::checkpointRootsInitialPre() {
 791   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 792   G1Policy* g1p = g1h->g1_policy();
 793 
 794   _has_aborted = false;
 795 
 796   // Initialize marking structures. This has to be done in a STW phase.
 797   reset();
 798 
 799   // For each region note start of marking.
 800   NoteStartOfMarkHRClosure startcl;
 801   g1h->heap_region_iterate(&startcl);
 802 }
 803 
 804 
 805 void G1ConcurrentMark::checkpointRootsInitialPost() {
 806   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 807 
 808   // Start Concurrent Marking weak-reference discovery.
 809   ReferenceProcessor* rp = g1h->ref_processor_cm();
 810   // enable ("weak") refs discovery
 811   rp->enable_discovery();
 812   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 813 
 814   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 815   // This is the start of  the marking cycle, we're expected all
 816   // threads to have SATB queues with active set to false.
 817   satb_mq_set.set_active_all_threads(true, /* new active value */
 818                                      false /* expected_active */);
 819 
 820   _root_regions.prepare_for_scan();
 821 
 822   // update_g1_committed() will be called at the end of an evac pause
 823   // when marking is on. So, it's also called at the end of the
 824   // initial-mark pause to update the heap end, if the heap expands
 825   // during it. No need to call it here.
 826 }
 827 
 828 /*
 829  * Notice that in the next two methods, we actually leave the STS
 830  * during the barrier sync and join it immediately afterwards. If we
 831  * do not do this, the following deadlock can occur: one thread could
 832  * be in the barrier sync code, waiting for the other thread to also
 833  * sync up, whereas another one could be trying to yield, while also
 834  * waiting for the other threads to sync up too.
 835  *
 836  * Note, however, that this code is also used during remark and in
 837  * this case we should not attempt to leave / enter the STS, otherwise
 838  * we'll either hit an assert (debug / fastdebug) or deadlock
 839  * (product). So we should only leave / enter the STS if we are
 840  * operating concurrently.
 841  *
 842  * Because the thread that does the sync barrier has left the STS, it
 843  * is possible to be suspended for a Full GC or an evacuation pause
 844  * could occur. This is actually safe, since the entering the sync
 845  * barrier is one of the last things do_marking_step() does, and it
 846  * doesn't manipulate any data structures afterwards.
 847  */
 848 
 849 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 850   bool barrier_aborted;
 851   {
 852     SuspendibleThreadSetLeaver sts_leave(concurrent());
 853     barrier_aborted = !_first_overflow_barrier_sync.enter();
 854   }
 855 
 856   // at this point everyone should have synced up and not be doing any
 857   // more work
 858 
 859   if (barrier_aborted) {
 860     // If the barrier aborted we ignore the overflow condition and
 861     // just abort the whole marking phase as quickly as possible.
 862     return;
 863   }
 864 
 865   // If we're executing the concurrent phase of marking, reset the marking
 866   // state; otherwise the marking state is reset after reference processing,
 867   // during the remark pause.
 868   // If we reset here as a result of an overflow during the remark we will
 869   // see assertion failures from any subsequent set_concurrency_and_phase()
 870   // calls.
 871   if (concurrent()) {
 872     // let the task associated with with worker 0 do this
 873     if (worker_id == 0) {
 874       // task 0 is responsible for clearing the global data structures
 875       // We should be here because of an overflow. During STW we should
 876       // not clear the overflow flag since we rely on it being true when
 877       // we exit this method to abort the pause and restart concurrent
 878       // marking.
 879       reset_marking_state();
 880 
 881       log_info(gc, marking)("Concurrent Mark reset for overflow");
 882     }
 883   }
 884 
 885   // after this, each task should reset its own data structures then
 886   // then go into the second barrier
 887 }
 888 
 889 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 890   SuspendibleThreadSetLeaver sts_leave(concurrent());
 891   _second_overflow_barrier_sync.enter();
 892 
 893   // at this point everything should be re-initialized and ready to go
 894 }
 895 
 896 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 897 private:
 898   G1ConcurrentMark*     _cm;
 899   ConcurrentMarkThread* _cmt;
 900 
 901 public:
 902   void work(uint worker_id) {
 903     assert(Thread::current()->is_ConcurrentGC_thread(),
 904            "this should only be done by a conc GC thread");
 905     ResourceMark rm;
 906 
 907     double start_vtime = os::elapsedVTime();
 908 
 909     {
 910       SuspendibleThreadSetJoiner sts_join;
 911 
 912       assert(worker_id < _cm->active_tasks(), "invariant");
 913       G1CMTask* the_task = _cm->task(worker_id);
 914       the_task->record_start_time();
 915       if (!_cm->has_aborted()) {
 916         do {
 917           double start_vtime_sec = os::elapsedVTime();
 918           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 919 
 920           the_task->do_marking_step(mark_step_duration_ms,
 921                                     true  /* do_termination */,
 922                                     false /* is_serial*/);
 923 
 924           double end_vtime_sec = os::elapsedVTime();
 925           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 926           _cm->do_yield_check();
 927 
 928           jlong sleep_time_ms;
 929           if (!_cm->has_aborted() && the_task->has_aborted()) {
 930             sleep_time_ms =
 931               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 932             {
 933               SuspendibleThreadSetLeaver sts_leave;
 934               os::sleep(Thread::current(), sleep_time_ms, false);
 935             }
 936           }
 937         } while (!_cm->has_aborted() && the_task->has_aborted());
 938       }
 939       the_task->record_end_time();
 940       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 941     }
 942 
 943     double end_vtime = os::elapsedVTime();
 944     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 945   }
 946 
 947   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 948                             ConcurrentMarkThread* cmt) :
 949       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 950 
 951   ~G1CMConcurrentMarkingTask() { }
 952 };
 953 
 954 // Calculates the number of active workers for a concurrent
 955 // phase.
 956 uint G1ConcurrentMark::calc_parallel_marking_threads() {
 957   uint n_conc_workers = 0;
 958   if (!UseDynamicNumberOfGCThreads ||
 959       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 960        !ForceDynamicNumberOfGCThreads)) {
 961     n_conc_workers = max_parallel_marking_threads();
 962   } else {
 963     n_conc_workers =
 964       AdaptiveSizePolicy::calc_default_active_workers(max_parallel_marking_threads(),
 965                                                       1, /* Minimum workers */
 966                                                       parallel_marking_threads(),
 967                                                       Threads::number_of_non_daemon_threads());
 968     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 969     // that scaling has already gone into "_max_parallel_marking_threads".
 970   }
 971   assert(n_conc_workers > 0 && n_conc_workers <= max_parallel_marking_threads(),
 972          "Calculated number of workers must be larger than zero and at most the maximum %u, but is %u",
 973          max_parallel_marking_threads(), n_conc_workers);
 974   return n_conc_workers;
 975 }
 976 
 977 void G1ConcurrentMark::scanRootRegion(HeapRegion* hr) {
 978   // Currently, only survivors can be root regions.
 979   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 980   G1RootRegionScanClosure cl(_g1h, this);
 981 
 982   const uintx interval = PrefetchScanIntervalInBytes;
 983   HeapWord* curr = hr->bottom();
 984   const HeapWord* end = hr->top();
 985   while (curr < end) {
 986     Prefetch::read(curr, interval);
 987     oop obj = oop(curr);
 988     int size = obj->oop_iterate_size(&cl);
 989     assert(size == obj->size(), "sanity");
 990     curr += size;
 991   }
 992 }
 993 
 994 class G1CMRootRegionScanTask : public AbstractGangTask {
 995 private:
 996   G1ConcurrentMark* _cm;
 997 
 998 public:
 999   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
1000     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
1001 
1002   void work(uint worker_id) {
1003     assert(Thread::current()->is_ConcurrentGC_thread(),
1004            "this should only be done by a conc GC thread");
1005 
1006     G1CMRootRegions* root_regions = _cm->root_regions();
1007     HeapRegion* hr = root_regions->claim_next();
1008     while (hr != NULL) {
1009       _cm->scanRootRegion(hr);
1010       hr = root_regions->claim_next();
1011     }
1012   }
1013 };
1014 
1015 void G1ConcurrentMark::scan_root_regions() {
1016   // scan_in_progress() will have been set to true only if there was
1017   // at least one root region to scan. So, if it's false, we
1018   // should not attempt to do any further work.
1019   if (root_regions()->scan_in_progress()) {
1020     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
1021 
1022     _parallel_marking_threads = MIN2(calc_parallel_marking_threads(),
1023                                      // We distribute work on a per-region basis, so starting
1024                                      // more threads than that is useless.
1025                                      root_regions()->num_root_regions());
1026     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1027            "Maximum number of marking threads exceeded");
1028 
1029     G1CMRootRegionScanTask task(this);
1030     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
1031                         task.name(), _parallel_marking_threads, root_regions()->num_root_regions());
1032     _parallel_workers->run_task(&task, _parallel_marking_threads);
1033 
1034     // It's possible that has_aborted() is true here without actually
1035     // aborting the survivor scan earlier. This is OK as it's
1036     // mainly used for sanity checking.
1037     root_regions()->scan_finished();
1038   }
1039 }
1040 
1041 void G1ConcurrentMark::concurrent_cycle_start() {
1042   _gc_timer_cm->register_gc_start();
1043 
1044   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
1045 
1046   _g1h->trace_heap_before_gc(_gc_tracer_cm);
1047 }
1048 
1049 void G1ConcurrentMark::concurrent_cycle_end() {
1050   _g1h->trace_heap_after_gc(_gc_tracer_cm);
1051 
1052   if (has_aborted()) {
1053     _gc_tracer_cm->report_concurrent_mode_failure();
1054   }
1055 
1056   _gc_timer_cm->register_gc_end();
1057 
1058   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1059 }
1060 
1061 void G1ConcurrentMark::mark_from_roots() {
1062   // we might be tempted to assert that:
1063   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1064   //        "inconsistent argument?");
1065   // However that wouldn't be right, because it's possible that
1066   // a safepoint is indeed in progress as a younger generation
1067   // stop-the-world GC happens even as we mark in this generation.
1068 
1069   _restart_for_overflow = false;
1070 
1071   // _g1h has _n_par_threads
1072   _parallel_marking_threads = calc_parallel_marking_threads();
1073   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1074     "Maximum number of marking threads exceeded");
1075 
1076   uint active_workers = MAX2(1U, parallel_marking_threads());
1077   assert(active_workers > 0, "Should have been set");
1078 
1079   // Setting active workers is not guaranteed since fewer
1080   // worker threads may currently exist and more may not be
1081   // available.
1082   active_workers = _parallel_workers->update_active_workers(active_workers);
1083   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _parallel_workers->total_workers());
1084 
1085   // Parallel task terminator is set in "set_concurrency_and_phase()"
1086   set_concurrency_and_phase(active_workers, true /* concurrent */);
1087 
1088   G1CMConcurrentMarkingTask markingTask(this, cmThread());
1089   _parallel_workers->run_task(&markingTask);
1090   print_stats();
1091 }
1092 
1093 void G1ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1094   // world is stopped at this checkpoint
1095   assert(SafepointSynchronize::is_at_safepoint(),
1096          "world should be stopped");
1097 
1098   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1099 
1100   // If a full collection has happened, we shouldn't do this.
1101   if (has_aborted()) {
1102     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1103     return;
1104   }
1105 
1106   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1107 
1108   if (VerifyDuringGC) {
1109     HandleMark hm;  // handle scope
1110     g1h->prepare_for_verify();
1111     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1112   }
1113   g1h->verifier()->check_bitmaps("Remark Start");
1114 
1115   G1Policy* g1p = g1h->g1_policy();
1116   g1p->record_concurrent_mark_remark_start();
1117 
1118   double start = os::elapsedTime();
1119 
1120   checkpointRootsFinalWork();
1121 
1122   double mark_work_end = os::elapsedTime();
1123 
1124   weakRefsWork(clear_all_soft_refs);
1125 
1126   if (has_overflown()) {
1127     // We overflowed.  Restart concurrent marking.
1128     _restart_for_overflow = true;
1129 
1130     // Verify the heap w.r.t. the previous marking bitmap.
1131     if (VerifyDuringGC) {
1132       HandleMark hm;  // handle scope
1133       g1h->prepare_for_verify();
1134       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1135     }
1136 
1137     // Clear the marking state because we will be restarting
1138     // marking due to overflowing the global mark stack.
1139     reset_marking_state();
1140   } else {
1141     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1142     // We're done with marking.
1143     // This is the end of  the marking cycle, we're expected all
1144     // threads to have SATB queues with active set to true.
1145     satb_mq_set.set_active_all_threads(false, /* new active value */
1146                                        true /* expected_active */);
1147 
1148     if (VerifyDuringGC) {
1149       HandleMark hm;  // handle scope
1150       g1h->prepare_for_verify();
1151       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1152     }
1153     g1h->verifier()->check_bitmaps("Remark End");
1154     assert(!restart_for_overflow(), "sanity");
1155     // Completely reset the marking state since marking completed
1156     set_non_marking_state();
1157   }
1158 
1159   // Expand the marking stack, if we have to and if we can.
1160   if (_global_mark_stack.should_expand()) {
1161     _global_mark_stack.expand();
1162   }
1163 
1164   // Statistics
1165   double now = os::elapsedTime();
1166   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1167   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1168   _remark_times.add((now - start) * 1000.0);
1169 
1170   g1p->record_concurrent_mark_remark_end();
1171 
1172   G1CMIsAliveClosure is_alive(g1h);
1173   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1174 }
1175 
1176 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1177   G1CollectedHeap* _g1;
1178   size_t _freed_bytes;
1179   FreeRegionList* _local_cleanup_list;
1180   uint _old_regions_removed;
1181   uint _humongous_regions_removed;
1182   HRRSCleanupTask* _hrrs_cleanup_task;
1183 
1184 public:
1185   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1186                              FreeRegionList* local_cleanup_list,
1187                              HRRSCleanupTask* hrrs_cleanup_task) :
1188     _g1(g1),
1189     _freed_bytes(0),
1190     _local_cleanup_list(local_cleanup_list),
1191     _old_regions_removed(0),
1192     _humongous_regions_removed(0),
1193     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1194 
1195   size_t freed_bytes() { return _freed_bytes; }
1196   const uint old_regions_removed() { return _old_regions_removed; }
1197   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1198 
1199   bool doHeapRegion(HeapRegion *hr) {
1200     if (hr->is_archive()) {
1201       return false;
1202     }
1203     _g1->reset_gc_time_stamps(hr);
1204     hr->note_end_of_marking();
1205 
1206     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1207       _freed_bytes += hr->used();
1208       hr->set_containing_set(NULL);
1209       if (hr->is_humongous()) {
1210         _humongous_regions_removed++;
1211         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1212       } else {
1213         _old_regions_removed++;
1214         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1215       }
1216     } else {
1217       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1218     }
1219 
1220     return false;
1221   }
1222 };
1223 
1224 class G1ParNoteEndTask: public AbstractGangTask {
1225   friend class G1NoteEndOfConcMarkClosure;
1226 
1227 protected:
1228   G1CollectedHeap* _g1h;
1229   FreeRegionList* _cleanup_list;
1230   HeapRegionClaimer _hrclaimer;
1231 
1232 public:
1233   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1234       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1235   }
1236 
1237   void work(uint worker_id) {
1238     FreeRegionList local_cleanup_list("Local Cleanup List");
1239     HRRSCleanupTask hrrs_cleanup_task;
1240     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1241                                            &hrrs_cleanup_task);
1242     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1243     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1244 
1245     // Now update the lists
1246     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1247     {
1248       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1249       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1250 
1251       // If we iterate over the global cleanup list at the end of
1252       // cleanup to do this printing we will not guarantee to only
1253       // generate output for the newly-reclaimed regions (the list
1254       // might not be empty at the beginning of cleanup; we might
1255       // still be working on its previous contents). So we do the
1256       // printing here, before we append the new regions to the global
1257       // cleanup list.
1258 
1259       G1HRPrinter* hr_printer = _g1h->hr_printer();
1260       if (hr_printer->is_active()) {
1261         FreeRegionListIterator iter(&local_cleanup_list);
1262         while (iter.more_available()) {
1263           HeapRegion* hr = iter.get_next();
1264           hr_printer->cleanup(hr);
1265         }
1266       }
1267 
1268       _cleanup_list->add_ordered(&local_cleanup_list);
1269       assert(local_cleanup_list.is_empty(), "post-condition");
1270 
1271       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1272     }
1273   }
1274 };
1275 
1276 void G1ConcurrentMark::cleanup() {
1277   // world is stopped at this checkpoint
1278   assert(SafepointSynchronize::is_at_safepoint(),
1279          "world should be stopped");
1280   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1281 
1282   // If a full collection has happened, we shouldn't do this.
1283   if (has_aborted()) {
1284     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1285     return;
1286   }
1287 
1288   g1h->verifier()->verify_region_sets_optional();
1289 
1290   if (VerifyDuringGC) {
1291     HandleMark hm;  // handle scope
1292     g1h->prepare_for_verify();
1293     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1294   }
1295   g1h->verifier()->check_bitmaps("Cleanup Start");
1296 
1297   G1Policy* g1p = g1h->g1_policy();
1298   g1p->record_concurrent_mark_cleanup_start();
1299 
1300   double start = os::elapsedTime();
1301 
1302   HeapRegionRemSet::reset_for_cleanup_tasks();
1303 
1304   {
1305     GCTraceTime(Debug, gc)("Finalize Live Data");
1306     finalize_live_data();
1307   }
1308 
1309   if (VerifyDuringGC) {
1310     GCTraceTime(Debug, gc)("Verify Live Data");
1311     verify_live_data();
1312   }
1313 
1314   g1h->collector_state()->set_mark_in_progress(false);
1315 
1316   double count_end = os::elapsedTime();
1317   double this_final_counting_time = (count_end - start);
1318   _total_counting_time += this_final_counting_time;
1319 
1320   if (log_is_enabled(Trace, gc, liveness)) {
1321     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1322     _g1h->heap_region_iterate(&cl);
1323   }
1324 
1325   // Install newly created mark bitMap as "prev".
1326   swapMarkBitMaps();
1327 
1328   g1h->reset_gc_time_stamp();
1329 
1330   uint n_workers = _g1h->workers()->active_workers();
1331 
1332   // Note end of marking in all heap regions.
1333   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1334   g1h->workers()->run_task(&g1_par_note_end_task);
1335   g1h->check_gc_time_stamps();
1336 
1337   if (!cleanup_list_is_empty()) {
1338     // The cleanup list is not empty, so we'll have to process it
1339     // concurrently. Notify anyone else that might be wanting free
1340     // regions that there will be more free regions coming soon.
1341     g1h->set_free_regions_coming();
1342   }
1343 
1344   // call below, since it affects the metric by which we sort the heap
1345   // regions.
1346   if (G1ScrubRemSets) {
1347     double rs_scrub_start = os::elapsedTime();
1348     g1h->scrub_rem_set();
1349     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1350   }
1351 
1352   // this will also free any regions totally full of garbage objects,
1353   // and sort the regions.
1354   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1355 
1356   // Statistics.
1357   double end = os::elapsedTime();
1358   _cleanup_times.add((end - start) * 1000.0);
1359 
1360   // Clean up will have freed any regions completely full of garbage.
1361   // Update the soft reference policy with the new heap occupancy.
1362   Universe::update_heap_info_at_gc();
1363 
1364   if (VerifyDuringGC) {
1365     HandleMark hm;  // handle scope
1366     g1h->prepare_for_verify();
1367     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1368   }
1369 
1370   g1h->verifier()->check_bitmaps("Cleanup End");
1371 
1372   g1h->verifier()->verify_region_sets_optional();
1373 
1374   // We need to make this be a "collection" so any collection pause that
1375   // races with it goes around and waits for completeCleanup to finish.
1376   g1h->increment_total_collections();
1377 
1378   // Clean out dead classes and update Metaspace sizes.
1379   if (ClassUnloadingWithConcurrentMark) {
1380     ClassLoaderDataGraph::purge();
1381   }
1382   MetaspaceGC::compute_new_size();
1383 
1384   // We reclaimed old regions so we should calculate the sizes to make
1385   // sure we update the old gen/space data.
1386   g1h->g1mm()->update_sizes();
1387   g1h->allocation_context_stats().update_after_mark();
1388 }
1389 
1390 void G1ConcurrentMark::complete_cleanup() {
1391   if (has_aborted()) return;
1392 
1393   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1394 
1395   _cleanup_list.verify_optional();
1396   FreeRegionList tmp_free_list("Tmp Free List");
1397 
1398   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1399                                   "cleanup list has %u entries",
1400                                   _cleanup_list.length());
1401 
1402   // No one else should be accessing the _cleanup_list at this point,
1403   // so it is not necessary to take any locks
1404   while (!_cleanup_list.is_empty()) {
1405     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1406     assert(hr != NULL, "Got NULL from a non-empty list");
1407     hr->par_clear();
1408     tmp_free_list.add_ordered(hr);
1409 
1410     // Instead of adding one region at a time to the secondary_free_list,
1411     // we accumulate them in the local list and move them a few at a
1412     // time. This also cuts down on the number of notify_all() calls
1413     // we do during this process. We'll also append the local list when
1414     // _cleanup_list is empty (which means we just removed the last
1415     // region from the _cleanup_list).
1416     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1417         _cleanup_list.is_empty()) {
1418       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1419                                       "appending %u entries to the secondary_free_list, "
1420                                       "cleanup list still has %u entries",
1421                                       tmp_free_list.length(),
1422                                       _cleanup_list.length());
1423 
1424       {
1425         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1426         g1h->secondary_free_list_add(&tmp_free_list);
1427         SecondaryFreeList_lock->notify_all();
1428       }
1429 #ifndef PRODUCT
1430       if (G1StressConcRegionFreeing) {
1431         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1432           os::sleep(Thread::current(), (jlong) 1, false);
1433         }
1434       }
1435 #endif
1436     }
1437   }
1438   assert(tmp_free_list.is_empty(), "post-condition");
1439 }
1440 
1441 // Supporting Object and Oop closures for reference discovery
1442 // and processing in during marking
1443 
1444 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1445   HeapWord* addr = (HeapWord*)obj;
1446   return addr != NULL &&
1447          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1448 }
1449 
1450 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1451 // Uses the G1CMTask associated with a worker thread (for serial reference
1452 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1453 // trace referent objects.
1454 //
1455 // Using the G1CMTask and embedded local queues avoids having the worker
1456 // threads operating on the global mark stack. This reduces the risk
1457 // of overflowing the stack - which we would rather avoid at this late
1458 // state. Also using the tasks' local queues removes the potential
1459 // of the workers interfering with each other that could occur if
1460 // operating on the global stack.
1461 
1462 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1463   G1ConcurrentMark* _cm;
1464   G1CMTask*         _task;
1465   int               _ref_counter_limit;
1466   int               _ref_counter;
1467   bool              _is_serial;
1468  public:
1469   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1470     _cm(cm), _task(task), _is_serial(is_serial),
1471     _ref_counter_limit(G1RefProcDrainInterval) {
1472     assert(_ref_counter_limit > 0, "sanity");
1473     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1474     _ref_counter = _ref_counter_limit;
1475   }
1476 
1477   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1478   virtual void do_oop(      oop* p) { do_oop_work(p); }
1479 
1480   template <class T> void do_oop_work(T* p) {
1481     if (!_cm->has_overflown()) {
1482       oop obj = oopDesc::load_decode_heap_oop(p);
1483       _task->deal_with_reference(obj);
1484       _ref_counter--;
1485 
1486       if (_ref_counter == 0) {
1487         // We have dealt with _ref_counter_limit references, pushing them
1488         // and objects reachable from them on to the local stack (and
1489         // possibly the global stack). Call G1CMTask::do_marking_step() to
1490         // process these entries.
1491         //
1492         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1493         // there's nothing more to do (i.e. we're done with the entries that
1494         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1495         // above) or we overflow.
1496         //
1497         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1498         // flag while there may still be some work to do. (See the comment at
1499         // the beginning of G1CMTask::do_marking_step() for those conditions -
1500         // one of which is reaching the specified time target.) It is only
1501         // when G1CMTask::do_marking_step() returns without setting the
1502         // has_aborted() flag that the marking step has completed.
1503         do {
1504           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1505           _task->do_marking_step(mark_step_duration_ms,
1506                                  false      /* do_termination */,
1507                                  _is_serial);
1508         } while (_task->has_aborted() && !_cm->has_overflown());
1509         _ref_counter = _ref_counter_limit;
1510       }
1511     }
1512   }
1513 };
1514 
1515 // 'Drain' oop closure used by both serial and parallel reference processing.
1516 // Uses the G1CMTask associated with a given worker thread (for serial
1517 // reference processing the G1CMtask for worker 0 is used). Calls the
1518 // do_marking_step routine, with an unbelievably large timeout value,
1519 // to drain the marking data structures of the remaining entries
1520 // added by the 'keep alive' oop closure above.
1521 
1522 class G1CMDrainMarkingStackClosure: public VoidClosure {
1523   G1ConcurrentMark* _cm;
1524   G1CMTask*         _task;
1525   bool              _is_serial;
1526  public:
1527   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1528     _cm(cm), _task(task), _is_serial(is_serial) {
1529     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1530   }
1531 
1532   void do_void() {
1533     do {
1534       // We call G1CMTask::do_marking_step() to completely drain the local
1535       // and global marking stacks of entries pushed by the 'keep alive'
1536       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1537       //
1538       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1539       // if there's nothing more to do (i.e. we've completely drained the
1540       // entries that were pushed as a a result of applying the 'keep alive'
1541       // closure to the entries on the discovered ref lists) or we overflow
1542       // the global marking stack.
1543       //
1544       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1545       // flag while there may still be some work to do. (See the comment at
1546       // the beginning of G1CMTask::do_marking_step() for those conditions -
1547       // one of which is reaching the specified time target.) It is only
1548       // when G1CMTask::do_marking_step() returns without setting the
1549       // has_aborted() flag that the marking step has completed.
1550 
1551       _task->do_marking_step(1000000000.0 /* something very large */,
1552                              true         /* do_termination */,
1553                              _is_serial);
1554     } while (_task->has_aborted() && !_cm->has_overflown());
1555   }
1556 };
1557 
1558 // Implementation of AbstractRefProcTaskExecutor for parallel
1559 // reference processing at the end of G1 concurrent marking
1560 
1561 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1562 private:
1563   G1CollectedHeap*  _g1h;
1564   G1ConcurrentMark* _cm;
1565   WorkGang*         _workers;
1566   uint              _active_workers;
1567 
1568 public:
1569   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1570                           G1ConcurrentMark* cm,
1571                           WorkGang* workers,
1572                           uint n_workers) :
1573     _g1h(g1h), _cm(cm),
1574     _workers(workers), _active_workers(n_workers) { }
1575 
1576   // Executes the given task using concurrent marking worker threads.
1577   virtual void execute(ProcessTask& task);
1578   virtual void execute(EnqueueTask& task);
1579 };
1580 
1581 class G1CMRefProcTaskProxy: public AbstractGangTask {
1582   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1583   ProcessTask&      _proc_task;
1584   G1CollectedHeap*  _g1h;
1585   G1ConcurrentMark* _cm;
1586 
1587 public:
1588   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1589                        G1CollectedHeap* g1h,
1590                        G1ConcurrentMark* cm) :
1591     AbstractGangTask("Process reference objects in parallel"),
1592     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1593     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1594     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1595   }
1596 
1597   virtual void work(uint worker_id) {
1598     ResourceMark rm;
1599     HandleMark hm;
1600     G1CMTask* task = _cm->task(worker_id);
1601     G1CMIsAliveClosure g1_is_alive(_g1h);
1602     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1603     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1604 
1605     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1606   }
1607 };
1608 
1609 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1610   assert(_workers != NULL, "Need parallel worker threads.");
1611   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1612 
1613   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1614 
1615   // We need to reset the concurrency level before each
1616   // proxy task execution, so that the termination protocol
1617   // and overflow handling in G1CMTask::do_marking_step() knows
1618   // how many workers to wait for.
1619   _cm->set_concurrency(_active_workers);
1620   _workers->run_task(&proc_task_proxy);
1621 }
1622 
1623 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1624   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1625   EnqueueTask& _enq_task;
1626 
1627 public:
1628   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1629     AbstractGangTask("Enqueue reference objects in parallel"),
1630     _enq_task(enq_task) { }
1631 
1632   virtual void work(uint worker_id) {
1633     _enq_task.work(worker_id);
1634   }
1635 };
1636 
1637 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1638   assert(_workers != NULL, "Need parallel worker threads.");
1639   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1640 
1641   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1642 
1643   // Not strictly necessary but...
1644   //
1645   // We need to reset the concurrency level before each
1646   // proxy task execution, so that the termination protocol
1647   // and overflow handling in G1CMTask::do_marking_step() knows
1648   // how many workers to wait for.
1649   _cm->set_concurrency(_active_workers);
1650   _workers->run_task(&enq_task_proxy);
1651 }
1652 
1653 void G1ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
1654   if (has_overflown()) {
1655     // Skip processing the discovered references if we have
1656     // overflown the global marking stack. Reference objects
1657     // only get discovered once so it is OK to not
1658     // de-populate the discovered reference lists. We could have,
1659     // but the only benefit would be that, when marking restarts,
1660     // less reference objects are discovered.
1661     return;
1662   }
1663 
1664   ResourceMark rm;
1665   HandleMark   hm;
1666 
1667   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1668 
1669   // Is alive closure.
1670   G1CMIsAliveClosure g1_is_alive(g1h);
1671 
1672   // Inner scope to exclude the cleaning of the string and symbol
1673   // tables from the displayed time.
1674   {
1675     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1676 
1677     ReferenceProcessor* rp = g1h->ref_processor_cm();
1678 
1679     // See the comment in G1CollectedHeap::ref_processing_init()
1680     // about how reference processing currently works in G1.
1681 
1682     // Set the soft reference policy
1683     rp->setup_policy(clear_all_soft_refs);
1684     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1685 
1686     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1687     // in serial reference processing. Note these closures are also
1688     // used for serially processing (by the the current thread) the
1689     // JNI references during parallel reference processing.
1690     //
1691     // These closures do not need to synchronize with the worker
1692     // threads involved in parallel reference processing as these
1693     // instances are executed serially by the current thread (e.g.
1694     // reference processing is not multi-threaded and is thus
1695     // performed by the current thread instead of a gang worker).
1696     //
1697     // The gang tasks involved in parallel reference processing create
1698     // their own instances of these closures, which do their own
1699     // synchronization among themselves.
1700     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1701     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1702 
1703     // We need at least one active thread. If reference processing
1704     // is not multi-threaded we use the current (VMThread) thread,
1705     // otherwise we use the work gang from the G1CollectedHeap and
1706     // we utilize all the worker threads we can.
1707     bool processing_is_mt = rp->processing_is_mt();
1708     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1709     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
1710 
1711     // Parallel processing task executor.
1712     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1713                                               g1h->workers(), active_workers);
1714     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1715 
1716     // Set the concurrency level. The phase was already set prior to
1717     // executing the remark task.
1718     set_concurrency(active_workers);
1719 
1720     // Set the degree of MT processing here.  If the discovery was done MT,
1721     // the number of threads involved during discovery could differ from
1722     // the number of active workers.  This is OK as long as the discovered
1723     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1724     rp->set_active_mt_degree(active_workers);
1725 
1726     // Process the weak references.
1727     const ReferenceProcessorStats& stats =
1728         rp->process_discovered_references(&g1_is_alive,
1729                                           &g1_keep_alive,
1730                                           &g1_drain_mark_stack,
1731                                           executor,
1732                                           _gc_timer_cm);
1733     _gc_tracer_cm->report_gc_reference_stats(stats);
1734 
1735     // The do_oop work routines of the keep_alive and drain_marking_stack
1736     // oop closures will set the has_overflown flag if we overflow the
1737     // global marking stack.
1738 
1739     assert(has_overflown() || _global_mark_stack.is_empty(),
1740             "Mark stack should be empty (unless it has overflown)");
1741 
1742     assert(rp->num_q() == active_workers, "why not");
1743 
1744     rp->enqueue_discovered_references(executor);
1745 
1746     rp->verify_no_references_recorded();
1747     assert(!rp->discovery_enabled(), "Post condition");
1748   }
1749 
1750   if (has_overflown()) {
1751     // We can not trust g1_is_alive if the marking stack overflowed
1752     return;
1753   }
1754 
1755   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1756 
1757   // Unload Klasses, String, Symbols, Code Cache, etc.
1758   if (ClassUnloadingWithConcurrentMark) {
1759     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1760     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
1761     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1762   } else {
1763     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1764     // No need to clean string table and symbol table as they are treated as strong roots when
1765     // class unloading is disabled.
1766     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1767 
1768   }
1769 }
1770 
1771 void G1ConcurrentMark::swapMarkBitMaps() {
1772   G1CMBitMapRO* temp = _prevMarkBitMap;
1773   _prevMarkBitMap    = (G1CMBitMapRO*)_nextMarkBitMap;
1774   _nextMarkBitMap    = (G1CMBitMap*)  temp;
1775 }
1776 
1777 // Closure for marking entries in SATB buffers.
1778 class G1CMSATBBufferClosure : public SATBBufferClosure {
1779 private:
1780   G1CMTask* _task;
1781   G1CollectedHeap* _g1h;
1782 
1783   // This is very similar to G1CMTask::deal_with_reference, but with
1784   // more relaxed requirements for the argument, so this must be more
1785   // circumspect about treating the argument as an object.
1786   void do_entry(void* entry) const {
1787     _task->increment_refs_reached();
1788     HeapRegion* hr = _g1h->heap_region_containing(entry);
1789     if (entry < hr->next_top_at_mark_start()) {
1790       // Until we get here, we don't know whether entry refers to a valid
1791       // object; it could instead have been a stale reference.
1792       oop obj = static_cast<oop>(entry);
1793       assert(obj->is_oop(true /* ignore mark word */),
1794              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
1795       _task->make_reference_grey(obj);
1796     }
1797   }
1798 
1799 public:
1800   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1801     : _task(task), _g1h(g1h) { }
1802 
1803   virtual void do_buffer(void** buffer, size_t size) {
1804     for (size_t i = 0; i < size; ++i) {
1805       do_entry(buffer[i]);
1806     }
1807   }
1808 };
1809 
1810 class G1RemarkThreadsClosure : public ThreadClosure {
1811   G1CMSATBBufferClosure _cm_satb_cl;
1812   G1CMOopClosure _cm_cl;
1813   MarkingCodeBlobClosure _code_cl;
1814   int _thread_parity;
1815 
1816  public:
1817   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1818     _cm_satb_cl(task, g1h),
1819     _cm_cl(g1h, g1h->concurrent_mark(), task),
1820     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1821     _thread_parity(Threads::thread_claim_parity()) {}
1822 
1823   void do_thread(Thread* thread) {
1824     if (thread->is_Java_thread()) {
1825       if (thread->claim_oops_do(true, _thread_parity)) {
1826         JavaThread* jt = (JavaThread*)thread;
1827 
1828         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1829         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1830         // * Alive if on the stack of an executing method
1831         // * Weakly reachable otherwise
1832         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1833         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1834         jt->nmethods_do(&_code_cl);
1835 
1836         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1837       }
1838     } else if (thread->is_VM_thread()) {
1839       if (thread->claim_oops_do(true, _thread_parity)) {
1840         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1841       }
1842     }
1843   }
1844 };
1845 
1846 class G1CMRemarkTask: public AbstractGangTask {
1847 private:
1848   G1ConcurrentMark* _cm;
1849 public:
1850   void work(uint worker_id) {
1851     // Since all available tasks are actually started, we should
1852     // only proceed if we're supposed to be active.
1853     if (worker_id < _cm->active_tasks()) {
1854       G1CMTask* task = _cm->task(worker_id);
1855       task->record_start_time();
1856       {
1857         ResourceMark rm;
1858         HandleMark hm;
1859 
1860         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1861         Threads::threads_do(&threads_f);
1862       }
1863 
1864       do {
1865         task->do_marking_step(1000000000.0 /* something very large */,
1866                               true         /* do_termination       */,
1867                               false        /* is_serial            */);
1868       } while (task->has_aborted() && !_cm->has_overflown());
1869       // If we overflow, then we do not want to restart. We instead
1870       // want to abort remark and do concurrent marking again.
1871       task->record_end_time();
1872     }
1873   }
1874 
1875   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1876     AbstractGangTask("Par Remark"), _cm(cm) {
1877     _cm->terminator()->reset_for_reuse(active_workers);
1878   }
1879 };
1880 
1881 void G1ConcurrentMark::checkpointRootsFinalWork() {
1882   ResourceMark rm;
1883   HandleMark   hm;
1884   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1885 
1886   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1887 
1888   g1h->ensure_parsability(false);
1889 
1890   // this is remark, so we'll use up all active threads
1891   uint active_workers = g1h->workers()->active_workers();
1892   set_concurrency_and_phase(active_workers, false /* concurrent */);
1893   // Leave _parallel_marking_threads at it's
1894   // value originally calculated in the G1ConcurrentMark
1895   // constructor and pass values of the active workers
1896   // through the gang in the task.
1897 
1898   {
1899     StrongRootsScope srs(active_workers);
1900 
1901     G1CMRemarkTask remarkTask(this, active_workers);
1902     // We will start all available threads, even if we decide that the
1903     // active_workers will be fewer. The extra ones will just bail out
1904     // immediately.
1905     g1h->workers()->run_task(&remarkTask);
1906   }
1907 
1908   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1909   guarantee(has_overflown() ||
1910             satb_mq_set.completed_buffers_num() == 0,
1911             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1912             BOOL_TO_STR(has_overflown()),
1913             satb_mq_set.completed_buffers_num());
1914 
1915   print_stats();
1916 }
1917 
1918 void G1ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
1919   // Note we are overriding the read-only view of the prev map here, via
1920   // the cast.
1921   ((G1CMBitMap*)_prevMarkBitMap)->clear_range(mr);
1922 }
1923 
1924 HeapRegion*
1925 G1ConcurrentMark::claim_region(uint worker_id) {
1926   // "checkpoint" the finger
1927   HeapWord* finger = _finger;
1928 
1929   // _heap_end will not change underneath our feet; it only changes at
1930   // yield points.
1931   while (finger < _heap_end) {
1932     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1933 
1934     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1935     // Make sure that the reads below do not float before loading curr_region.
1936     OrderAccess::loadload();
1937     // Above heap_region_containing may return NULL as we always scan claim
1938     // until the end of the heap. In this case, just jump to the next region.
1939     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1940 
1941     // Is the gap between reading the finger and doing the CAS too long?
1942     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
1943     if (res == finger && curr_region != NULL) {
1944       // we succeeded
1945       HeapWord*   bottom        = curr_region->bottom();
1946       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1947 
1948       // notice that _finger == end cannot be guaranteed here since,
1949       // someone else might have moved the finger even further
1950       assert(_finger >= end, "the finger should have moved forward");
1951 
1952       if (limit > bottom) {
1953         return curr_region;
1954       } else {
1955         assert(limit == bottom,
1956                "the region limit should be at bottom");
1957         // we return NULL and the caller should try calling
1958         // claim_region() again.
1959         return NULL;
1960       }
1961     } else {
1962       assert(_finger > finger, "the finger should have moved forward");
1963       // read it again
1964       finger = _finger;
1965     }
1966   }
1967 
1968   return NULL;
1969 }
1970 
1971 #ifndef PRODUCT
1972 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1973 private:
1974   G1CollectedHeap* _g1h;
1975   const char* _phase;
1976   int _info;
1977 
1978 public:
1979   VerifyNoCSetOops(const char* phase, int info = -1) :
1980     _g1h(G1CollectedHeap::heap()),
1981     _phase(phase),
1982     _info(info)
1983   { }
1984 
1985   void operator()(G1TaskQueueEntry task_entry) const {
1986     if (task_entry.is_array_slice()) {
1987       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1988       return;
1989     }
1990     guarantee(task_entry.obj()->is_oop(),
1991               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1992               p2i(task_entry.obj()), _phase, _info);
1993     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1994               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1995               p2i(task_entry.obj()), _phase, _info);
1996   }
1997 };
1998 
1999 void G1ConcurrentMark::verify_no_cset_oops() {
2000   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2001   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2002     return;
2003   }
2004 
2005   // Verify entries on the global mark stack
2006   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
2007 
2008   // Verify entries on the task queues
2009   for (uint i = 0; i < _max_worker_id; ++i) {
2010     G1CMTaskQueue* queue = _task_queues->queue(i);
2011     queue->iterate(VerifyNoCSetOops("Queue", i));
2012   }
2013 
2014   // Verify the global finger
2015   HeapWord* global_finger = finger();
2016   if (global_finger != NULL && global_finger < _heap_end) {
2017     // Since we always iterate over all regions, we might get a NULL HeapRegion
2018     // here.
2019     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2020     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2021               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2022               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2023   }
2024 
2025   // Verify the task fingers
2026   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2027   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2028     G1CMTask* task = _tasks[i];
2029     HeapWord* task_finger = task->finger();
2030     if (task_finger != NULL && task_finger < _heap_end) {
2031       // See above note on the global finger verification.
2032       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2033       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2034                 !task_hr->in_collection_set(),
2035                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2036                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2037     }
2038   }
2039 }
2040 #endif // PRODUCT
2041 void G1ConcurrentMark::create_live_data() {
2042   _g1h->g1_rem_set()->create_card_live_data(_parallel_workers, _nextMarkBitMap);
2043 }
2044 
2045 void G1ConcurrentMark::finalize_live_data() {
2046   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _nextMarkBitMap);
2047 }
2048 
2049 void G1ConcurrentMark::verify_live_data() {
2050   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _nextMarkBitMap);
2051 }
2052 
2053 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
2054   _g1h->g1_rem_set()->clear_card_live_data(workers);
2055 }
2056 
2057 #ifdef ASSERT
2058 void G1ConcurrentMark::verify_live_data_clear() {
2059   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
2060 }
2061 #endif
2062 
2063 void G1ConcurrentMark::print_stats() {
2064   if (!log_is_enabled(Debug, gc, stats)) {
2065     return;
2066   }
2067   log_debug(gc, stats)("---------------------------------------------------------------------");
2068   for (size_t i = 0; i < _active_tasks; ++i) {
2069     _tasks[i]->print_stats();
2070     log_debug(gc, stats)("---------------------------------------------------------------------");
2071   }
2072 }
2073 
2074 void G1ConcurrentMark::abort() {
2075   if (!cmThread()->during_cycle() || _has_aborted) {
2076     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2077     return;
2078   }
2079 
2080   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2081   // concurrent bitmap clearing.
2082   {
2083     GCTraceTime(Debug, gc)("Clear Next Bitmap");
2084     clear_bitmap(_nextMarkBitMap, _g1h->workers(), false);
2085   }
2086   // Note we cannot clear the previous marking bitmap here
2087   // since VerifyDuringGC verifies the objects marked during
2088   // a full GC against the previous bitmap.
2089 
2090   {
2091     GCTraceTime(Debug, gc)("Clear Live Data");
2092     clear_live_data(_g1h->workers());
2093   }
2094   DEBUG_ONLY({
2095     GCTraceTime(Debug, gc)("Verify Live Data Clear");
2096     verify_live_data_clear();
2097   })
2098   // Empty mark stack
2099   reset_marking_state();
2100   for (uint i = 0; i < _max_worker_id; ++i) {
2101     _tasks[i]->clear_region_fields();
2102   }
2103   _first_overflow_barrier_sync.abort();
2104   _second_overflow_barrier_sync.abort();
2105   _has_aborted = true;
2106 
2107   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2108   satb_mq_set.abandon_partial_marking();
2109   // This can be called either during or outside marking, we'll read
2110   // the expected_active value from the SATB queue set.
2111   satb_mq_set.set_active_all_threads(
2112                                  false, /* new active value */
2113                                  satb_mq_set.is_active() /* expected_active */);
2114 }
2115 
2116 static void print_ms_time_info(const char* prefix, const char* name,
2117                                NumberSeq& ns) {
2118   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2119                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2120   if (ns.num() > 0) {
2121     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2122                            prefix, ns.sd(), ns.maximum());
2123   }
2124 }
2125 
2126 void G1ConcurrentMark::print_summary_info() {
2127   Log(gc, marking) log;
2128   if (!log.is_trace()) {
2129     return;
2130   }
2131 
2132   log.trace(" Concurrent marking:");
2133   print_ms_time_info("  ", "init marks", _init_times);
2134   print_ms_time_info("  ", "remarks", _remark_times);
2135   {
2136     print_ms_time_info("     ", "final marks", _remark_mark_times);
2137     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2138 
2139   }
2140   print_ms_time_info("  ", "cleanups", _cleanup_times);
2141   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2142             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2143   if (G1ScrubRemSets) {
2144     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2145               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2146   }
2147   log.trace("  Total stop_world time = %8.2f s.",
2148             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2149   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2150             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2151 }
2152 
2153 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2154   _parallel_workers->print_worker_threads_on(st);
2155 }
2156 
2157 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2158   _parallel_workers->threads_do(tc);
2159 }
2160 
2161 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2162   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2163       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2164   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2165   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2166 }
2167 
2168 // Closure for iteration over bitmaps
2169 class G1CMBitMapClosure : public BitMapClosure {
2170 private:
2171   // the bitmap that is being iterated over
2172   G1CMBitMap*                 _nextMarkBitMap;
2173   G1ConcurrentMark*           _cm;
2174   G1CMTask*                   _task;
2175 
2176 public:
2177   G1CMBitMapClosure(G1CMTask *task, G1ConcurrentMark* cm, G1CMBitMap* nextMarkBitMap) :
2178     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2179 
2180   bool do_bit(size_t offset) {
2181     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2182     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2183     assert( addr < _cm->finger(), "invariant");
2184     assert(addr >= _task->finger(), "invariant");
2185 
2186     // We move that task's local finger along.
2187     _task->move_finger_to(addr);
2188 
2189     _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
2190     // we only partially drain the local queue and global stack
2191     _task->drain_local_queue(true);
2192     _task->drain_global_stack(true);
2193 
2194     // if the has_aborted flag has been raised, we need to bail out of
2195     // the iteration
2196     return !_task->has_aborted();
2197   }
2198 };
2199 
2200 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2201   ReferenceProcessor* result = g1h->ref_processor_cm();
2202   assert(result != NULL, "CM reference processor should not be NULL");
2203   return result;
2204 }
2205 
2206 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2207                                G1ConcurrentMark* cm,
2208                                G1CMTask* task)
2209   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2210     _g1h(g1h), _cm(cm), _task(task)
2211 { }
2212 
2213 void G1CMTask::setup_for_region(HeapRegion* hr) {
2214   assert(hr != NULL,
2215         "claim_region() should have filtered out NULL regions");
2216   _curr_region  = hr;
2217   _finger       = hr->bottom();
2218   update_region_limit();
2219 }
2220 
2221 void G1CMTask::update_region_limit() {
2222   HeapRegion* hr            = _curr_region;
2223   HeapWord* bottom          = hr->bottom();
2224   HeapWord* limit           = hr->next_top_at_mark_start();
2225 
2226   if (limit == bottom) {
2227     // The region was collected underneath our feet.
2228     // We set the finger to bottom to ensure that the bitmap
2229     // iteration that will follow this will not do anything.
2230     // (this is not a condition that holds when we set the region up,
2231     // as the region is not supposed to be empty in the first place)
2232     _finger = bottom;
2233   } else if (limit >= _region_limit) {
2234     assert(limit >= _finger, "peace of mind");
2235   } else {
2236     assert(limit < _region_limit, "only way to get here");
2237     // This can happen under some pretty unusual circumstances.  An
2238     // evacuation pause empties the region underneath our feet (NTAMS
2239     // at bottom). We then do some allocation in the region (NTAMS
2240     // stays at bottom), followed by the region being used as a GC
2241     // alloc region (NTAMS will move to top() and the objects
2242     // originally below it will be grayed). All objects now marked in
2243     // the region are explicitly grayed, if below the global finger,
2244     // and we do not need in fact to scan anything else. So, we simply
2245     // set _finger to be limit to ensure that the bitmap iteration
2246     // doesn't do anything.
2247     _finger = limit;
2248   }
2249 
2250   _region_limit = limit;
2251 }
2252 
2253 void G1CMTask::giveup_current_region() {
2254   assert(_curr_region != NULL, "invariant");
2255   clear_region_fields();
2256 }
2257 
2258 void G1CMTask::clear_region_fields() {
2259   // Values for these three fields that indicate that we're not
2260   // holding on to a region.
2261   _curr_region   = NULL;
2262   _finger        = NULL;
2263   _region_limit  = NULL;
2264 }
2265 
2266 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2267   if (cm_oop_closure == NULL) {
2268     assert(_cm_oop_closure != NULL, "invariant");
2269   } else {
2270     assert(_cm_oop_closure == NULL, "invariant");
2271   }
2272   _cm_oop_closure = cm_oop_closure;
2273 }
2274 
2275 void G1CMTask::reset(G1CMBitMap* nextMarkBitMap) {
2276   guarantee(nextMarkBitMap != NULL, "invariant");
2277   _nextMarkBitMap                = nextMarkBitMap;
2278   clear_region_fields();
2279 
2280   _calls                         = 0;
2281   _elapsed_time_ms               = 0.0;
2282   _termination_time_ms           = 0.0;
2283   _termination_start_time_ms     = 0.0;
2284 }
2285 
2286 bool G1CMTask::should_exit_termination() {
2287   regular_clock_call();
2288   // This is called when we are in the termination protocol. We should
2289   // quit if, for some reason, this task wants to abort or the global
2290   // stack is not empty (this means that we can get work from it).
2291   return !_cm->mark_stack_empty() || has_aborted();
2292 }
2293 
2294 void G1CMTask::reached_limit() {
2295   assert(_words_scanned >= _words_scanned_limit ||
2296          _refs_reached >= _refs_reached_limit ,
2297          "shouldn't have been called otherwise");
2298   regular_clock_call();
2299 }
2300 
2301 void G1CMTask::regular_clock_call() {
2302   if (has_aborted()) return;
2303 
2304   // First, we need to recalculate the words scanned and refs reached
2305   // limits for the next clock call.
2306   recalculate_limits();
2307 
2308   // During the regular clock call we do the following
2309 
2310   // (1) If an overflow has been flagged, then we abort.
2311   if (_cm->has_overflown()) {
2312     set_has_aborted();
2313     return;
2314   }
2315 
2316   // If we are not concurrent (i.e. we're doing remark) we don't need
2317   // to check anything else. The other steps are only needed during
2318   // the concurrent marking phase.
2319   if (!concurrent()) return;
2320 
2321   // (2) If marking has been aborted for Full GC, then we also abort.
2322   if (_cm->has_aborted()) {
2323     set_has_aborted();
2324     return;
2325   }
2326 
2327   double curr_time_ms = os::elapsedVTime() * 1000.0;
2328 
2329   // (4) We check whether we should yield. If we have to, then we abort.
2330   if (SuspendibleThreadSet::should_yield()) {
2331     // We should yield. To do this we abort the task. The caller is
2332     // responsible for yielding.
2333     set_has_aborted();
2334     return;
2335   }
2336 
2337   // (5) We check whether we've reached our time quota. If we have,
2338   // then we abort.
2339   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2340   if (elapsed_time_ms > _time_target_ms) {
2341     set_has_aborted();
2342     _has_timed_out = true;
2343     return;
2344   }
2345 
2346   // (6) Finally, we check whether there are enough completed STAB
2347   // buffers available for processing. If there are, we abort.
2348   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2349   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2350     // we do need to process SATB buffers, we'll abort and restart
2351     // the marking task to do so
2352     set_has_aborted();
2353     return;
2354   }
2355 }
2356 
2357 void G1CMTask::recalculate_limits() {
2358   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2359   _words_scanned_limit      = _real_words_scanned_limit;
2360 
2361   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2362   _refs_reached_limit       = _real_refs_reached_limit;
2363 }
2364 
2365 void G1CMTask::decrease_limits() {
2366   // This is called when we believe that we're going to do an infrequent
2367   // operation which will increase the per byte scanned cost (i.e. move
2368   // entries to/from the global stack). It basically tries to decrease the
2369   // scanning limit so that the clock is called earlier.
2370 
2371   _words_scanned_limit = _real_words_scanned_limit -
2372     3 * words_scanned_period / 4;
2373   _refs_reached_limit  = _real_refs_reached_limit -
2374     3 * refs_reached_period / 4;
2375 }
2376 
2377 void G1CMTask::move_entries_to_global_stack() {
2378   // Local array where we'll store the entries that will be popped
2379   // from the local queue.
2380   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2381 
2382   size_t n = 0;
2383   G1TaskQueueEntry task_entry;
2384   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2385     buffer[n] = task_entry;
2386     ++n;
2387   }
2388   if (n < G1CMMarkStack::EntriesPerChunk) {
2389     buffer[n] = G1TaskQueueEntry();
2390   }
2391 
2392   if (n > 0) {
2393     if (!_cm->mark_stack_push(buffer)) {
2394       set_has_aborted();
2395     }
2396   }
2397 
2398   // This operation was quite expensive, so decrease the limits.
2399   decrease_limits();
2400 }
2401 
2402 bool G1CMTask::get_entries_from_global_stack() {
2403   // Local array where we'll store the entries that will be popped
2404   // from the global stack.
2405   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2406 
2407   if (!_cm->mark_stack_pop(buffer)) {
2408     return false;
2409   }
2410 
2411   // We did actually pop at least one entry.
2412   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2413     G1TaskQueueEntry task_entry = buffer[i];
2414     if (task_entry.is_null()) {
2415       break;
2416     }
2417     assert(task_entry.is_array_slice() || task_entry.obj()->is_oop(), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2418     bool success = _task_queue->push(task_entry);
2419     // We only call this when the local queue is empty or under a
2420     // given target limit. So, we do not expect this push to fail.
2421     assert(success, "invariant");
2422   }
2423 
2424   // This operation was quite expensive, so decrease the limits
2425   decrease_limits();
2426   return true;
2427 }
2428 
2429 void G1CMTask::drain_local_queue(bool partially) {
2430   if (has_aborted()) {
2431     return;
2432   }
2433 
2434   // Decide what the target size is, depending whether we're going to
2435   // drain it partially (so that other tasks can steal if they run out
2436   // of things to do) or totally (at the very end).
2437   size_t target_size;
2438   if (partially) {
2439     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2440   } else {
2441     target_size = 0;
2442   }
2443 
2444   if (_task_queue->size() > target_size) {
2445     G1TaskQueueEntry entry;
2446     bool ret = _task_queue->pop_local(entry);
2447     while (ret) {
2448       scan_task_entry(entry);
2449       if (_task_queue->size() <= target_size || has_aborted()) {
2450         ret = false;
2451       } else {
2452         ret = _task_queue->pop_local(entry);
2453       }
2454     }
2455   }
2456 }
2457 
2458 void G1CMTask::drain_global_stack(bool partially) {
2459   if (has_aborted()) return;
2460 
2461   // We have a policy to drain the local queue before we attempt to
2462   // drain the global stack.
2463   assert(partially || _task_queue->size() == 0, "invariant");
2464 
2465   // Decide what the target size is, depending whether we're going to
2466   // drain it partially (so that other tasks can steal if they run out
2467   // of things to do) or totally (at the very end).
2468   // Notice that when draining the global mark stack partially, due to the racyness
2469   // of the mark stack size update we might in fact drop below the target. But,
2470   // this is not a problem.
2471   // In case of total draining, we simply process until the global mark stack is
2472   // totally empty, disregarding the size counter.
2473   if (partially) {
2474     size_t const target_size = _cm->partial_mark_stack_size_target();
2475     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2476       if (get_entries_from_global_stack()) {
2477         drain_local_queue(partially);
2478       }
2479     }
2480   } else {
2481     while (!has_aborted() && get_entries_from_global_stack()) {
2482       drain_local_queue(partially);
2483     }
2484   }
2485 }
2486 
2487 // SATB Queue has several assumptions on whether to call the par or
2488 // non-par versions of the methods. this is why some of the code is
2489 // replicated. We should really get rid of the single-threaded version
2490 // of the code to simplify things.
2491 void G1CMTask::drain_satb_buffers() {
2492   if (has_aborted()) return;
2493 
2494   // We set this so that the regular clock knows that we're in the
2495   // middle of draining buffers and doesn't set the abort flag when it
2496   // notices that SATB buffers are available for draining. It'd be
2497   // very counter productive if it did that. :-)
2498   _draining_satb_buffers = true;
2499 
2500   G1CMSATBBufferClosure satb_cl(this, _g1h);
2501   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2502 
2503   // This keeps claiming and applying the closure to completed buffers
2504   // until we run out of buffers or we need to abort.
2505   while (!has_aborted() &&
2506          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2507     regular_clock_call();
2508   }
2509 
2510   _draining_satb_buffers = false;
2511 
2512   assert(has_aborted() ||
2513          concurrent() ||
2514          satb_mq_set.completed_buffers_num() == 0, "invariant");
2515 
2516   // again, this was a potentially expensive operation, decrease the
2517   // limits to get the regular clock call early
2518   decrease_limits();
2519 }
2520 
2521 void G1CMTask::print_stats() {
2522   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
2523                        _worker_id, _calls);
2524   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2525                        _elapsed_time_ms, _termination_time_ms);
2526   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2527                        _step_times_ms.num(), _step_times_ms.avg(),
2528                        _step_times_ms.sd());
2529   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2530                        _step_times_ms.maximum(), _step_times_ms.sum());
2531 }
2532 
2533 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2534   return _task_queues->steal(worker_id, hash_seed, task_entry);
2535 }
2536 
2537 /*****************************************************************************
2538 
2539     The do_marking_step(time_target_ms, ...) method is the building
2540     block of the parallel marking framework. It can be called in parallel
2541     with other invocations of do_marking_step() on different tasks
2542     (but only one per task, obviously) and concurrently with the
2543     mutator threads, or during remark, hence it eliminates the need
2544     for two versions of the code. When called during remark, it will
2545     pick up from where the task left off during the concurrent marking
2546     phase. Interestingly, tasks are also claimable during evacuation
2547     pauses too, since do_marking_step() ensures that it aborts before
2548     it needs to yield.
2549 
2550     The data structures that it uses to do marking work are the
2551     following:
2552 
2553       (1) Marking Bitmap. If there are gray objects that appear only
2554       on the bitmap (this happens either when dealing with an overflow
2555       or when the initial marking phase has simply marked the roots
2556       and didn't push them on the stack), then tasks claim heap
2557       regions whose bitmap they then scan to find gray objects. A
2558       global finger indicates where the end of the last claimed region
2559       is. A local finger indicates how far into the region a task has
2560       scanned. The two fingers are used to determine how to gray an
2561       object (i.e. whether simply marking it is OK, as it will be
2562       visited by a task in the future, or whether it needs to be also
2563       pushed on a stack).
2564 
2565       (2) Local Queue. The local queue of the task which is accessed
2566       reasonably efficiently by the task. Other tasks can steal from
2567       it when they run out of work. Throughout the marking phase, a
2568       task attempts to keep its local queue short but not totally
2569       empty, so that entries are available for stealing by other
2570       tasks. Only when there is no more work, a task will totally
2571       drain its local queue.
2572 
2573       (3) Global Mark Stack. This handles local queue overflow. During
2574       marking only sets of entries are moved between it and the local
2575       queues, as access to it requires a mutex and more fine-grain
2576       interaction with it which might cause contention. If it
2577       overflows, then the marking phase should restart and iterate
2578       over the bitmap to identify gray objects. Throughout the marking
2579       phase, tasks attempt to keep the global mark stack at a small
2580       length but not totally empty, so that entries are available for
2581       popping by other tasks. Only when there is no more work, tasks
2582       will totally drain the global mark stack.
2583 
2584       (4) SATB Buffer Queue. This is where completed SATB buffers are
2585       made available. Buffers are regularly removed from this queue
2586       and scanned for roots, so that the queue doesn't get too
2587       long. During remark, all completed buffers are processed, as
2588       well as the filled in parts of any uncompleted buffers.
2589 
2590     The do_marking_step() method tries to abort when the time target
2591     has been reached. There are a few other cases when the
2592     do_marking_step() method also aborts:
2593 
2594       (1) When the marking phase has been aborted (after a Full GC).
2595 
2596       (2) When a global overflow (on the global stack) has been
2597       triggered. Before the task aborts, it will actually sync up with
2598       the other tasks to ensure that all the marking data structures
2599       (local queues, stacks, fingers etc.)  are re-initialized so that
2600       when do_marking_step() completes, the marking phase can
2601       immediately restart.
2602 
2603       (3) When enough completed SATB buffers are available. The
2604       do_marking_step() method only tries to drain SATB buffers right
2605       at the beginning. So, if enough buffers are available, the
2606       marking step aborts and the SATB buffers are processed at
2607       the beginning of the next invocation.
2608 
2609       (4) To yield. when we have to yield then we abort and yield
2610       right at the end of do_marking_step(). This saves us from a lot
2611       of hassle as, by yielding we might allow a Full GC. If this
2612       happens then objects will be compacted underneath our feet, the
2613       heap might shrink, etc. We save checking for this by just
2614       aborting and doing the yield right at the end.
2615 
2616     From the above it follows that the do_marking_step() method should
2617     be called in a loop (or, otherwise, regularly) until it completes.
2618 
2619     If a marking step completes without its has_aborted() flag being
2620     true, it means it has completed the current marking phase (and
2621     also all other marking tasks have done so and have all synced up).
2622 
2623     A method called regular_clock_call() is invoked "regularly" (in
2624     sub ms intervals) throughout marking. It is this clock method that
2625     checks all the abort conditions which were mentioned above and
2626     decides when the task should abort. A work-based scheme is used to
2627     trigger this clock method: when the number of object words the
2628     marking phase has scanned or the number of references the marking
2629     phase has visited reach a given limit. Additional invocations to
2630     the method clock have been planted in a few other strategic places
2631     too. The initial reason for the clock method was to avoid calling
2632     vtime too regularly, as it is quite expensive. So, once it was in
2633     place, it was natural to piggy-back all the other conditions on it
2634     too and not constantly check them throughout the code.
2635 
2636     If do_termination is true then do_marking_step will enter its
2637     termination protocol.
2638 
2639     The value of is_serial must be true when do_marking_step is being
2640     called serially (i.e. by the VMThread) and do_marking_step should
2641     skip any synchronization in the termination and overflow code.
2642     Examples include the serial remark code and the serial reference
2643     processing closures.
2644 
2645     The value of is_serial must be false when do_marking_step is
2646     being called by any of the worker threads in a work gang.
2647     Examples include the concurrent marking code (CMMarkingTask),
2648     the MT remark code, and the MT reference processing closures.
2649 
2650  *****************************************************************************/
2651 
2652 void G1CMTask::do_marking_step(double time_target_ms,
2653                                bool do_termination,
2654                                bool is_serial) {
2655   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2656   assert(concurrent() == _cm->concurrent(), "they should be the same");
2657 
2658   G1Policy* g1_policy = _g1h->g1_policy();
2659   assert(_task_queues != NULL, "invariant");
2660   assert(_task_queue != NULL, "invariant");
2661   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
2662 
2663   assert(!_claimed,
2664          "only one thread should claim this task at any one time");
2665 
2666   // OK, this doesn't safeguard again all possible scenarios, as it is
2667   // possible for two threads to set the _claimed flag at the same
2668   // time. But it is only for debugging purposes anyway and it will
2669   // catch most problems.
2670   _claimed = true;
2671 
2672   _start_time_ms = os::elapsedVTime() * 1000.0;
2673 
2674   // If do_stealing is true then do_marking_step will attempt to
2675   // steal work from the other G1CMTasks. It only makes sense to
2676   // enable stealing when the termination protocol is enabled
2677   // and do_marking_step() is not being called serially.
2678   bool do_stealing = do_termination && !is_serial;
2679 
2680   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2681   _time_target_ms = time_target_ms - diff_prediction_ms;
2682 
2683   // set up the variables that are used in the work-based scheme to
2684   // call the regular clock method
2685   _words_scanned = 0;
2686   _refs_reached  = 0;
2687   recalculate_limits();
2688 
2689   // clear all flags
2690   clear_has_aborted();
2691   _has_timed_out = false;
2692   _draining_satb_buffers = false;
2693 
2694   ++_calls;
2695 
2696   // Set up the bitmap and oop closures. Anything that uses them is
2697   // eventually called from this method, so it is OK to allocate these
2698   // statically.
2699   G1CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
2700   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2701   set_cm_oop_closure(&cm_oop_closure);
2702 
2703   if (_cm->has_overflown()) {
2704     // This can happen if the mark stack overflows during a GC pause
2705     // and this task, after a yield point, restarts. We have to abort
2706     // as we need to get into the overflow protocol which happens
2707     // right at the end of this task.
2708     set_has_aborted();
2709   }
2710 
2711   // First drain any available SATB buffers. After this, we will not
2712   // look at SATB buffers before the next invocation of this method.
2713   // If enough completed SATB buffers are queued up, the regular clock
2714   // will abort this task so that it restarts.
2715   drain_satb_buffers();
2716   // ...then partially drain the local queue and the global stack
2717   drain_local_queue(true);
2718   drain_global_stack(true);
2719 
2720   do {
2721     if (!has_aborted() && _curr_region != NULL) {
2722       // This means that we're already holding on to a region.
2723       assert(_finger != NULL, "if region is not NULL, then the finger "
2724              "should not be NULL either");
2725 
2726       // We might have restarted this task after an evacuation pause
2727       // which might have evacuated the region we're holding on to
2728       // underneath our feet. Let's read its limit again to make sure
2729       // that we do not iterate over a region of the heap that
2730       // contains garbage (update_region_limit() will also move
2731       // _finger to the start of the region if it is found empty).
2732       update_region_limit();
2733       // We will start from _finger not from the start of the region,
2734       // as we might be restarting this task after aborting half-way
2735       // through scanning this region. In this case, _finger points to
2736       // the address where we last found a marked object. If this is a
2737       // fresh region, _finger points to start().
2738       MemRegion mr = MemRegion(_finger, _region_limit);
2739 
2740       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2741              "humongous regions should go around loop once only");
2742 
2743       // Some special cases:
2744       // If the memory region is empty, we can just give up the region.
2745       // If the current region is humongous then we only need to check
2746       // the bitmap for the bit associated with the start of the object,
2747       // scan the object if it's live, and give up the region.
2748       // Otherwise, let's iterate over the bitmap of the part of the region
2749       // that is left.
2750       // If the iteration is successful, give up the region.
2751       if (mr.is_empty()) {
2752         giveup_current_region();
2753         regular_clock_call();
2754       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2755         if (_nextMarkBitMap->isMarked(mr.start())) {
2756           // The object is marked - apply the closure
2757           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
2758           bitmap_closure.do_bit(offset);
2759         }
2760         // Even if this task aborted while scanning the humongous object
2761         // we can (and should) give up the current region.
2762         giveup_current_region();
2763         regular_clock_call();
2764       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
2765         giveup_current_region();
2766         regular_clock_call();
2767       } else {
2768         assert(has_aborted(), "currently the only way to do so");
2769         // The only way to abort the bitmap iteration is to return
2770         // false from the do_bit() method. However, inside the
2771         // do_bit() method we move the _finger to point to the
2772         // object currently being looked at. So, if we bail out, we
2773         // have definitely set _finger to something non-null.
2774         assert(_finger != NULL, "invariant");
2775 
2776         // Region iteration was actually aborted. So now _finger
2777         // points to the address of the object we last scanned. If we
2778         // leave it there, when we restart this task, we will rescan
2779         // the object. It is easy to avoid this. We move the finger by
2780         // enough to point to the next possible object header (the
2781         // bitmap knows by how much we need to move it as it knows its
2782         // granularity).
2783         assert(_finger < _region_limit, "invariant");
2784         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
2785         // Check if bitmap iteration was aborted while scanning the last object
2786         if (new_finger >= _region_limit) {
2787           giveup_current_region();
2788         } else {
2789           move_finger_to(new_finger);
2790         }
2791       }
2792     }
2793     // At this point we have either completed iterating over the
2794     // region we were holding on to, or we have aborted.
2795 
2796     // We then partially drain the local queue and the global stack.
2797     // (Do we really need this?)
2798     drain_local_queue(true);
2799     drain_global_stack(true);
2800 
2801     // Read the note on the claim_region() method on why it might
2802     // return NULL with potentially more regions available for
2803     // claiming and why we have to check out_of_regions() to determine
2804     // whether we're done or not.
2805     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2806       // We are going to try to claim a new region. We should have
2807       // given up on the previous one.
2808       // Separated the asserts so that we know which one fires.
2809       assert(_curr_region  == NULL, "invariant");
2810       assert(_finger       == NULL, "invariant");
2811       assert(_region_limit == NULL, "invariant");
2812       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2813       if (claimed_region != NULL) {
2814         // Yes, we managed to claim one
2815         setup_for_region(claimed_region);
2816         assert(_curr_region == claimed_region, "invariant");
2817       }
2818       // It is important to call the regular clock here. It might take
2819       // a while to claim a region if, for example, we hit a large
2820       // block of empty regions. So we need to call the regular clock
2821       // method once round the loop to make sure it's called
2822       // frequently enough.
2823       regular_clock_call();
2824     }
2825 
2826     if (!has_aborted() && _curr_region == NULL) {
2827       assert(_cm->out_of_regions(),
2828              "at this point we should be out of regions");
2829     }
2830   } while ( _curr_region != NULL && !has_aborted());
2831 
2832   if (!has_aborted()) {
2833     // We cannot check whether the global stack is empty, since other
2834     // tasks might be pushing objects to it concurrently.
2835     assert(_cm->out_of_regions(),
2836            "at this point we should be out of regions");
2837     // Try to reduce the number of available SATB buffers so that
2838     // remark has less work to do.
2839     drain_satb_buffers();
2840   }
2841 
2842   // Since we've done everything else, we can now totally drain the
2843   // local queue and global stack.
2844   drain_local_queue(false);
2845   drain_global_stack(false);
2846 
2847   // Attempt at work stealing from other task's queues.
2848   if (do_stealing && !has_aborted()) {
2849     // We have not aborted. This means that we have finished all that
2850     // we could. Let's try to do some stealing...
2851 
2852     // We cannot check whether the global stack is empty, since other
2853     // tasks might be pushing objects to it concurrently.
2854     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2855            "only way to reach here");
2856     while (!has_aborted()) {
2857       G1TaskQueueEntry entry;
2858       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2859         scan_task_entry(entry);
2860 
2861         // And since we're towards the end, let's totally drain the
2862         // local queue and global stack.
2863         drain_local_queue(false);
2864         drain_global_stack(false);
2865       } else {
2866         break;
2867       }
2868     }
2869   }
2870 
2871   // We still haven't aborted. Now, let's try to get into the
2872   // termination protocol.
2873   if (do_termination && !has_aborted()) {
2874     // We cannot check whether the global stack is empty, since other
2875     // tasks might be concurrently pushing objects on it.
2876     // Separated the asserts so that we know which one fires.
2877     assert(_cm->out_of_regions(), "only way to reach here");
2878     assert(_task_queue->size() == 0, "only way to reach here");
2879     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2880 
2881     // The G1CMTask class also extends the TerminatorTerminator class,
2882     // hence its should_exit_termination() method will also decide
2883     // whether to exit the termination protocol or not.
2884     bool finished = (is_serial ||
2885                      _cm->terminator()->offer_termination(this));
2886     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2887     _termination_time_ms +=
2888       termination_end_time_ms - _termination_start_time_ms;
2889 
2890     if (finished) {
2891       // We're all done.
2892 
2893       if (_worker_id == 0) {
2894         // let's allow task 0 to do this
2895         if (concurrent()) {
2896           assert(_cm->concurrent_marking_in_progress(), "invariant");
2897           // we need to set this to false before the next
2898           // safepoint. This way we ensure that the marking phase
2899           // doesn't observe any more heap expansions.
2900           _cm->clear_concurrent_marking_in_progress();
2901         }
2902       }
2903 
2904       // We can now guarantee that the global stack is empty, since
2905       // all other tasks have finished. We separated the guarantees so
2906       // that, if a condition is false, we can immediately find out
2907       // which one.
2908       guarantee(_cm->out_of_regions(), "only way to reach here");
2909       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2910       guarantee(_task_queue->size() == 0, "only way to reach here");
2911       guarantee(!_cm->has_overflown(), "only way to reach here");
2912     } else {
2913       // Apparently there's more work to do. Let's abort this task. It
2914       // will restart it and we can hopefully find more things to do.
2915       set_has_aborted();
2916     }
2917   }
2918 
2919   // Mainly for debugging purposes to make sure that a pointer to the
2920   // closure which was statically allocated in this frame doesn't
2921   // escape it by accident.
2922   set_cm_oop_closure(NULL);
2923   double end_time_ms = os::elapsedVTime() * 1000.0;
2924   double elapsed_time_ms = end_time_ms - _start_time_ms;
2925   // Update the step history.
2926   _step_times_ms.add(elapsed_time_ms);
2927 
2928   if (has_aborted()) {
2929     // The task was aborted for some reason.
2930     if (_has_timed_out) {
2931       double diff_ms = elapsed_time_ms - _time_target_ms;
2932       // Keep statistics of how well we did with respect to hitting
2933       // our target only if we actually timed out (if we aborted for
2934       // other reasons, then the results might get skewed).
2935       _marking_step_diffs_ms.add(diff_ms);
2936     }
2937 
2938     if (_cm->has_overflown()) {
2939       // This is the interesting one. We aborted because a global
2940       // overflow was raised. This means we have to restart the
2941       // marking phase and start iterating over regions. However, in
2942       // order to do this we have to make sure that all tasks stop
2943       // what they are doing and re-initialize in a safe manner. We
2944       // will achieve this with the use of two barrier sync points.
2945 
2946       if (!is_serial) {
2947         // We only need to enter the sync barrier if being called
2948         // from a parallel context
2949         _cm->enter_first_sync_barrier(_worker_id);
2950 
2951         // When we exit this sync barrier we know that all tasks have
2952         // stopped doing marking work. So, it's now safe to
2953         // re-initialize our data structures. At the end of this method,
2954         // task 0 will clear the global data structures.
2955       }
2956 
2957       // We clear the local state of this task...
2958       clear_region_fields();
2959 
2960       if (!is_serial) {
2961         // ...and enter the second barrier.
2962         _cm->enter_second_sync_barrier(_worker_id);
2963       }
2964       // At this point, if we're during the concurrent phase of
2965       // marking, everything has been re-initialized and we're
2966       // ready to restart.
2967     }
2968   }
2969 
2970   _claimed = false;
2971 }
2972 
2973 G1CMTask::G1CMTask(uint worker_id,
2974                    G1ConcurrentMark* cm,
2975                    G1CMTaskQueue* task_queue,
2976                    G1CMTaskQueueSet* task_queues)
2977   : _g1h(G1CollectedHeap::heap()),
2978     _worker_id(worker_id), _cm(cm),
2979     _objArray_processor(this),
2980     _claimed(false),
2981     _nextMarkBitMap(NULL), _hash_seed(17),
2982     _task_queue(task_queue),
2983     _task_queues(task_queues),
2984     _cm_oop_closure(NULL) {
2985   guarantee(task_queue != NULL, "invariant");
2986   guarantee(task_queues != NULL, "invariant");
2987 
2988   _marking_step_diffs_ms.add(0.5);
2989 }
2990 
2991 // These are formatting macros that are used below to ensure
2992 // consistent formatting. The *_H_* versions are used to format the
2993 // header for a particular value and they should be kept consistent
2994 // with the corresponding macro. Also note that most of the macros add
2995 // the necessary white space (as a prefix) which makes them a bit
2996 // easier to compose.
2997 
2998 // All the output lines are prefixed with this string to be able to
2999 // identify them easily in a large log file.
3000 #define G1PPRL_LINE_PREFIX            "###"
3001 
3002 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3003 #ifdef _LP64
3004 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3005 #else // _LP64
3006 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3007 #endif // _LP64
3008 
3009 // For per-region info
3010 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3011 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3012 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3013 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3014 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3015 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3016 
3017 // For summary info
3018 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3019 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3020 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3021 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3022 
3023 G1PrintRegionLivenessInfoClosure::
3024 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3025   : _total_used_bytes(0), _total_capacity_bytes(0),
3026     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3027     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3028   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3029   MemRegion g1_reserved = g1h->g1_reserved();
3030   double now = os::elapsedTime();
3031 
3032   // Print the header of the output.
3033   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3034   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3035                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3036                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3037                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3038                           HeapRegion::GrainBytes);
3039   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3040   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3041                           G1PPRL_TYPE_H_FORMAT
3042                           G1PPRL_ADDR_BASE_H_FORMAT
3043                           G1PPRL_BYTE_H_FORMAT
3044                           G1PPRL_BYTE_H_FORMAT
3045                           G1PPRL_BYTE_H_FORMAT
3046                           G1PPRL_DOUBLE_H_FORMAT
3047                           G1PPRL_BYTE_H_FORMAT
3048                           G1PPRL_BYTE_H_FORMAT,
3049                           "type", "address-range",
3050                           "used", "prev-live", "next-live", "gc-eff",
3051                           "remset", "code-roots");
3052   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3053                           G1PPRL_TYPE_H_FORMAT
3054                           G1PPRL_ADDR_BASE_H_FORMAT
3055                           G1PPRL_BYTE_H_FORMAT
3056                           G1PPRL_BYTE_H_FORMAT
3057                           G1PPRL_BYTE_H_FORMAT
3058                           G1PPRL_DOUBLE_H_FORMAT
3059                           G1PPRL_BYTE_H_FORMAT
3060                           G1PPRL_BYTE_H_FORMAT,
3061                           "", "",
3062                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3063                           "(bytes)", "(bytes)");
3064 }
3065 
3066 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3067   const char* type       = r->get_type_str();
3068   HeapWord* bottom       = r->bottom();
3069   HeapWord* end          = r->end();
3070   size_t capacity_bytes  = r->capacity();
3071   size_t used_bytes      = r->used();
3072   size_t prev_live_bytes = r->live_bytes();
3073   size_t next_live_bytes = r->next_live_bytes();
3074   double gc_eff          = r->gc_efficiency();
3075   size_t remset_bytes    = r->rem_set()->mem_size();
3076   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3077 
3078   _total_used_bytes      += used_bytes;
3079   _total_capacity_bytes  += capacity_bytes;
3080   _total_prev_live_bytes += prev_live_bytes;
3081   _total_next_live_bytes += next_live_bytes;
3082   _total_remset_bytes    += remset_bytes;
3083   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3084 
3085   // Print a line for this particular region.
3086   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3087                           G1PPRL_TYPE_FORMAT
3088                           G1PPRL_ADDR_BASE_FORMAT
3089                           G1PPRL_BYTE_FORMAT
3090                           G1PPRL_BYTE_FORMAT
3091                           G1PPRL_BYTE_FORMAT
3092                           G1PPRL_DOUBLE_FORMAT
3093                           G1PPRL_BYTE_FORMAT
3094                           G1PPRL_BYTE_FORMAT,
3095                           type, p2i(bottom), p2i(end),
3096                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3097                           remset_bytes, strong_code_roots_bytes);
3098 
3099   return false;
3100 }
3101 
3102 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3103   // add static memory usages to remembered set sizes
3104   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3105   // Print the footer of the output.
3106   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3107   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3108                          " SUMMARY"
3109                          G1PPRL_SUM_MB_FORMAT("capacity")
3110                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3111                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3112                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3113                          G1PPRL_SUM_MB_FORMAT("remset")
3114                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3115                          bytes_to_mb(_total_capacity_bytes),
3116                          bytes_to_mb(_total_used_bytes),
3117                          perc(_total_used_bytes, _total_capacity_bytes),
3118                          bytes_to_mb(_total_prev_live_bytes),
3119                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3120                          bytes_to_mb(_total_next_live_bytes),
3121                          perc(_total_next_live_bytes, _total_capacity_bytes),
3122                          bytes_to_mb(_total_remset_bytes),
3123                          bytes_to_mb(_total_strong_code_roots_bytes));
3124 }