1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.lang.ref.*;
  28 import java.util.Objects;
  29 import java.util.concurrent.atomic.AtomicInteger;
  30 import java.util.function.Supplier;
  31 
  32 /**
  33  * This class provides thread-local variables.  These variables differ from
  34  * their normal counterparts in that each thread that accesses one (via its
  35  * {@code get} or {@code set} method) has its own, independently initialized
  36  * copy of the variable.  {@code ThreadLocal} instances are typically private
  37  * static fields in classes that wish to associate state with a thread (e.g.,
  38  * a user ID or Transaction ID).
  39  *
  40  * <p>For example, the class below generates unique identifiers local to each
  41  * thread.
  42  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
  43  * and remains unchanged on subsequent calls.
  44  * <pre>
  45  * import java.util.concurrent.atomic.AtomicInteger;
  46  *
  47  * public class ThreadId {
  48  *     // Atomic integer containing the next thread ID to be assigned
  49  *     private static final AtomicInteger nextId = new AtomicInteger(0);
  50  *
  51  *     // Thread local variable containing each thread's ID
  52  *     private static final ThreadLocal&lt;Integer&gt; threadId =
  53  *         new ThreadLocal&lt;Integer&gt;() {
  54  *             &#64;Override protected Integer initialValue() {
  55  *                 return nextId.getAndIncrement();
  56  *         }
  57  *     };
  58  *
  59  *     // Returns the current thread's unique ID, assigning it if necessary
  60  *     public static int get() {
  61  *         return threadId.get();
  62  *     }
  63  * }
  64  * </pre>
  65  * <p>Each thread holds an implicit reference to its copy of a thread-local
  66  * variable as long as the thread is alive and the {@code ThreadLocal}
  67  * instance is accessible; after a thread goes away, all of its copies of
  68  * thread-local instances are subject to garbage collection (unless other
  69  * references to these copies exist).
  70  *
  71  * The initial value of the variable is set by (1) calling the
  72  * {@code initialValue method}, (2) obtaining it from  a {@code Supplier<T>}
  73  * which has been provided via the
  74  * constructor, or (3) by calling the {@code set} method.
  75  *
  76  * If (1) is used and an initial value other than the default of null is required,
  77  * the {@code initialValue} method is typically overridden with an
  78  * anonymous-inner class.
  79  *
  80  * @author  Josh Bloch and Doug Lea
  81  * @since   1.2
  82  */
  83 public class ThreadLocal<T> {
  84     /**
  85      * ThreadLocals rely on per-thread linear-probe hash maps attached
  86      * to each thread (Thread.threadLocals and
  87      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
  88      * searched via threadLocalHashCode.  This is a custom hash code
  89      * (useful only within ThreadLocalMaps) that eliminates collisions
  90      * in the common case where consecutively constructed ThreadLocals
  91      * are used by the same threads, while remaining well-behaved in
  92      * less common cases.
  93      */
  94     private final int threadLocalHashCode = nextHashCode();
  95 
  96     /**
  97      * The next hash code to be given out. Updated atomically. Starts at
  98      * zero.
  99      */
 100     private static AtomicInteger nextHashCode =
 101         new AtomicInteger();
 102 
 103     /**
 104      * The difference between successively generated hash codes - turns
 105      * implicit sequential thread-local IDs into near-optimally spread
 106      * multiplicative hash values for power-of-two-sized tables.
 107      */
 108     private static final int HASH_INCREMENT = 0x61c88647;
 109 
 110     /**
 111      * Supplied by the invoker of the constructor to set the initial value
 112      */
 113     private final Supplier<T> supplier;
 114 
 115     /**
 116      * Returns the next hash code.
 117      */
 118     private static int nextHashCode() {
 119         return nextHashCode.getAndAdd(HASH_INCREMENT);
 120     }
 121 
 122     /**
 123      * Returns the current thread's "initial value" for this
 124      * thread-local variable unless a {@code Supplier<T>} has been passed
 125      * to the constructor, in which case the Supplier is consulted in
 126      * preference to this method.  This method will be invoked the first
 127      * time a thread accesses the variable with the {@link #get}
 128      * method, unless the thread previously invoked the {@link #set}
 129      * method, in which case the {@code initialValue} method will not
 130      * be invoked for the thread.  Normally, this method is invoked at
 131      * most once per thread, but it may be invoked again in case of
 132      * subsequent invocations of {@link #remove} followed by {@link #get}.
 133      *
 134      * <p>This implementation simply returns {@code null}
 135      *
 136      * @return the initial value for this thread-local
 137      */
 138     protected T initialValue() {
 139         return null;
 140     }
 141 
 142     /**
 143      * Creates a thread local variable. The initial value of the variable is
 144      * provided by calling the {@code intialValue} method.
 145      */
 146     public ThreadLocal() {
 147       supplier = null;
 148     }
 149 
 150     /**
 151      * Creates a thread local variable. The initial value of the variable is
 152      * determined by invoking the {@code get} method on the supplier.
 153      *
 154      * @param supplier the supplier to be used to determine the initial value
 155      */
 156     public ThreadLocal(Supplier<T> supplier) {
 157         this.supplier = Objects.requireNonNull(supplier);
 158     }
 159 
 160     /**
 161      * Returns the value in the current thread's copy of this
 162      * thread-local variable.  If the variable has no value for the
 163      * current thread, it is first initialized to the value returned
 164      * by an invocation of the {@link #initialValue} method.
 165      *
 166      * @return the current thread's value of this thread-local
 167      */
 168     public T get() {
 169         Thread t = Thread.currentThread();
 170         ThreadLocalMap map = getMap(t);
 171         if (map != null) {
 172             ThreadLocalMap.Entry e = map.getEntry(this);
 173             if (e != null) {
 174                 @SuppressWarnings("unchecked")
 175                 T result = (T)e.value;
 176                 return result;
 177             }
 178         }
 179         return setInitialValue();
 180     }
 181 
 182     /**
 183      * Variant of set() to establish initialValue. Used instead
 184      * of set() in case user has overridden the set() method.
 185      *
 186      * @return the initial value
 187      */
 188     private T setInitialValue() {
 189         T value = (supplier != null ? supplier.get() : initialValue());
 190         Thread t = Thread.currentThread();
 191         ThreadLocalMap map = getMap(t);
 192         if (map != null)
 193             map.set(this, value);
 194         else
 195             createMap(t, value);
 196         return value;
 197     }
 198 
 199     /**
 200      * Sets the current thread's copy of this thread-local variable
 201      * to the specified value.  Most subclasses will have no need to
 202      * override this method, relying solely on the {@link #initialValue}
 203      * method to set the values of thread-locals.
 204      *
 205      * @param value the value to be stored in the current thread's copy of
 206      *        this thread-local.
 207      */
 208     public void set(T value) {
 209         Thread t = Thread.currentThread();
 210         ThreadLocalMap map = getMap(t);
 211         if (map != null)
 212             map.set(this, value);
 213         else
 214             createMap(t, value);
 215     }
 216 
 217     /**
 218      * Removes the current thread's value for this thread-local
 219      * variable.  If this thread-local variable is subsequently
 220      * {@linkplain #get read} by the current thread, its value will be
 221      * reinitialized by invoking its {@link #initialValue} method,
 222      * unless its value is {@linkplain #set set} by the current thread
 223      * in the interim.  This may result in multiple invocations of the
 224      * {@code initialValue} method in the current thread.
 225      *
 226      * @since 1.5
 227      */
 228      public void remove() {
 229          ThreadLocalMap m = getMap(Thread.currentThread());
 230          if (m != null)
 231              m.remove(this);
 232      }
 233 
 234     /**
 235      * Get the map associated with a ThreadLocal. Overridden in
 236      * InheritableThreadLocal.
 237      *
 238      * @param  t the current thread
 239      * @return the map
 240      */
 241     ThreadLocalMap getMap(Thread t) {
 242         return t.threadLocals;
 243     }
 244 
 245     /**
 246      * Create the map associated with a ThreadLocal. Overridden in
 247      * InheritableThreadLocal.
 248      *
 249      * @param t the current thread
 250      * @param firstValue value for the initial entry of the map
 251      */
 252     void createMap(Thread t, T firstValue) {
 253         t.threadLocals = new ThreadLocalMap(this, firstValue);
 254     }
 255 
 256     /**
 257      * Factory  method to create map of inherited thread locals.
 258      * Designed to be called only from Thread constructor.
 259      *
 260      * @param  parentMap the map associated with parent thread
 261      * @return a map containing the parent's inheritable bindings
 262      */
 263     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
 264         return new ThreadLocalMap(parentMap);
 265     }
 266 
 267     /**
 268      * Method childValue is visibly defined in subclass
 269      * InheritableThreadLocal, but is internally defined here for the
 270      * sake of providing createInheritedMap factory method without
 271      * needing to subclass the map class in InheritableThreadLocal.
 272      * This technique is preferable to the alternative of embedding
 273      * instanceof tests in methods.
 274      */
 275     T childValue(T parentValue) {
 276         throw new UnsupportedOperationException();
 277     }
 278 
 279     /**
 280      * ThreadLocalMap is a customized hash map suitable only for
 281      * maintaining thread local values. No operations are exported
 282      * outside of the ThreadLocal class. The class is package private to
 283      * allow declaration of fields in class Thread.  To help deal with
 284      * very large and long-lived usages, the hash table entries use
 285      * WeakReferences for keys. However, since reference queues are not
 286      * used, stale entries are guaranteed to be removed only when
 287      * the table starts running out of space.
 288      */
 289     static class ThreadLocalMap {
 290 
 291         /**
 292          * The entries in this hash map extend WeakReference, using
 293          * its main ref field as the key (which is always a
 294          * ThreadLocal object).  Note that null keys (i.e. entry.get()
 295          * == null) mean that the key is no longer referenced, so the
 296          * entry can be expunged from table.  Such entries are referred to
 297          * as "stale entries" in the code that follows.
 298          */
 299         static class Entry extends WeakReference<ThreadLocal<?>> {
 300             /** The value associated with this ThreadLocal. */
 301             Object value;
 302 
 303             Entry(ThreadLocal<?> k, Object v) {
 304                 super(k);
 305                 value = v;
 306             }
 307         }
 308 
 309         /**
 310          * The initial capacity -- MUST be a power of two.
 311          */
 312         private static final int INITIAL_CAPACITY = 16;
 313 
 314         /**
 315          * The table, resized as necessary.
 316          * table.length MUST always be a power of two.
 317          */
 318         private Entry[] table;
 319 
 320         /**
 321          * The number of entries in the table.
 322          */
 323         private int size = 0;
 324 
 325         /**
 326          * The next size value at which to resize.
 327          */
 328         private int threshold; // Default to 0
 329 
 330         /**
 331          * Set the resize threshold to maintain at worst a 2/3 load factor.
 332          */
 333         private void setThreshold(int len) {
 334             threshold = len * 2 / 3;
 335         }
 336 
 337         /**
 338          * Increment i modulo len.
 339          */
 340         private static int nextIndex(int i, int len) {
 341             return ((i + 1 < len) ? i + 1 : 0);
 342         }
 343 
 344         /**
 345          * Decrement i modulo len.
 346          */
 347         private static int prevIndex(int i, int len) {
 348             return ((i - 1 >= 0) ? i - 1 : len - 1);
 349         }
 350 
 351         /**
 352          * Construct a new map initially containing (firstKey, firstValue).
 353          * ThreadLocalMaps are constructed lazily, so we only create
 354          * one when we have at least one entry to put in it.
 355          */
 356         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
 357             table = new Entry[INITIAL_CAPACITY];
 358             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
 359             table[i] = new Entry(firstKey, firstValue);
 360             size = 1;
 361             setThreshold(INITIAL_CAPACITY);
 362         }
 363 
 364         /**
 365          * Construct a new map including all Inheritable ThreadLocals
 366          * from given parent map. Called only by createInheritedMap.
 367          *
 368          * @param parentMap the map associated with parent thread.
 369          */
 370         private ThreadLocalMap(ThreadLocalMap parentMap) {
 371             Entry[] parentTable = parentMap.table;
 372             int len = parentTable.length;
 373             setThreshold(len);
 374             table = new Entry[len];
 375 
 376             for (int j = 0; j < len; j++) {
 377                 Entry e = parentTable[j];
 378                 if (e != null) {
 379                     @SuppressWarnings("unchecked")
 380                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
 381                     if (key != null) {
 382                         Object value = key.childValue(e.value);
 383                         Entry c = new Entry(key, value);
 384                         int h = key.threadLocalHashCode & (len - 1);
 385                         while (table[h] != null)
 386                             h = nextIndex(h, len);
 387                         table[h] = c;
 388                         size++;
 389                     }
 390                 }
 391             }
 392         }
 393 
 394         /**
 395          * Get the entry associated with key.  This method
 396          * itself handles only the fast path: a direct hit of existing
 397          * key. It otherwise relays to getEntryAfterMiss.  This is
 398          * designed to maximize performance for direct hits, in part
 399          * by making this method readily inlinable.
 400          *
 401          * @param  key the thread local object
 402          * @return the entry associated with key, or null if no such
 403          */
 404         private Entry getEntry(ThreadLocal<?> key) {
 405             int i = key.threadLocalHashCode & (table.length - 1);
 406             Entry e = table[i];
 407             if (e != null && e.get() == key)
 408                 return e;
 409             else
 410                 return getEntryAfterMiss(key, i, e);
 411         }
 412 
 413         /**
 414          * Version of getEntry method for use when key is not found in
 415          * its direct hash slot.
 416          *
 417          * @param  key the thread local object
 418          * @param  i the table index for key's hash code
 419          * @param  e the entry at table[i]
 420          * @return the entry associated with key, or null if no such
 421          */
 422         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
 423             Entry[] tab = table;
 424             int len = tab.length;
 425 
 426             while (e != null) {
 427                 ThreadLocal<?> k = e.get();
 428                 if (k == key)
 429                     return e;
 430                 if (k == null)
 431                     expungeStaleEntry(i);
 432                 else
 433                     i = nextIndex(i, len);
 434                 e = tab[i];
 435             }
 436             return null;
 437         }
 438 
 439         /**
 440          * Set the value associated with key.
 441          *
 442          * @param key the thread local object
 443          * @param value the value to be set
 444          */
 445         private void set(ThreadLocal<?> key, Object value) {
 446 
 447             // We don't use a fast path as with get() because it is at
 448             // least as common to use set() to create new entries as
 449             // it is to replace existing ones, in which case, a fast
 450             // path would fail more often than not.
 451 
 452             Entry[] tab = table;
 453             int len = tab.length;
 454             int i = key.threadLocalHashCode & (len-1);
 455 
 456             for (Entry e = tab[i];
 457                  e != null;
 458                  e = tab[i = nextIndex(i, len)]) {
 459                 ThreadLocal<?> k = e.get();
 460 
 461                 if (k == key) {
 462                     e.value = value;
 463                     return;
 464                 }
 465 
 466                 if (k == null) {
 467                     replaceStaleEntry(key, value, i);
 468                     return;
 469                 }
 470             }
 471 
 472             tab[i] = new Entry(key, value);
 473             int sz = ++size;
 474             if (!cleanSomeSlots(i, sz) && sz >= threshold)
 475                 rehash();
 476         }
 477 
 478         /**
 479          * Remove the entry for key.
 480          */
 481         private void remove(ThreadLocal<?> key) {
 482             Entry[] tab = table;
 483             int len = tab.length;
 484             int i = key.threadLocalHashCode & (len-1);
 485             for (Entry e = tab[i];
 486                  e != null;
 487                  e = tab[i = nextIndex(i, len)]) {
 488                 if (e.get() == key) {
 489                     e.clear();
 490                     expungeStaleEntry(i);
 491                     return;
 492                 }
 493             }
 494         }
 495 
 496         /**
 497          * Replace a stale entry encountered during a set operation
 498          * with an entry for the specified key.  The value passed in
 499          * the value parameter is stored in the entry, whether or not
 500          * an entry already exists for the specified key.
 501          *
 502          * As a side effect, this method expunges all stale entries in the
 503          * "run" containing the stale entry.  (A run is a sequence of entries
 504          * between two null slots.)
 505          *
 506          * @param  key the key
 507          * @param  value the value to be associated with key
 508          * @param  staleSlot index of the first stale entry encountered while
 509          *         searching for key.
 510          */
 511         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
 512                                        int staleSlot) {
 513             Entry[] tab = table;
 514             int len = tab.length;
 515             Entry e;
 516 
 517             // Back up to check for prior stale entry in current run.
 518             // We clean out whole runs at a time to avoid continual
 519             // incremental rehashing due to garbage collector freeing
 520             // up refs in bunches (i.e., whenever the collector runs).
 521             int slotToExpunge = staleSlot;
 522             for (int i = prevIndex(staleSlot, len);
 523                  (e = tab[i]) != null;
 524                  i = prevIndex(i, len))
 525                 if (e.get() == null)
 526                     slotToExpunge = i;
 527 
 528             // Find either the key or trailing null slot of run, whichever
 529             // occurs first
 530             for (int i = nextIndex(staleSlot, len);
 531                  (e = tab[i]) != null;
 532                  i = nextIndex(i, len)) {
 533                 ThreadLocal<?> k = e.get();
 534 
 535                 // If we find key, then we need to swap it
 536                 // with the stale entry to maintain hash table order.
 537                 // The newly stale slot, or any other stale slot
 538                 // encountered above it, can then be sent to expungeStaleEntry
 539                 // to remove or rehash all of the other entries in run.
 540                 if (k == key) {
 541                     e.value = value;
 542 
 543                     tab[i] = tab[staleSlot];
 544                     tab[staleSlot] = e;
 545 
 546                     // Start expunge at preceding stale entry if it exists
 547                     if (slotToExpunge == staleSlot)
 548                         slotToExpunge = i;
 549                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 550                     return;
 551                 }
 552 
 553                 // If we didn't find stale entry on backward scan, the
 554                 // first stale entry seen while scanning for key is the
 555                 // first still present in the run.
 556                 if (k == null && slotToExpunge == staleSlot)
 557                     slotToExpunge = i;
 558             }
 559 
 560             // If key not found, put new entry in stale slot
 561             tab[staleSlot].value = null;
 562             tab[staleSlot] = new Entry(key, value);
 563 
 564             // If there are any other stale entries in run, expunge them
 565             if (slotToExpunge != staleSlot)
 566                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 567         }
 568 
 569         /**
 570          * Expunge a stale entry by rehashing any possibly colliding entries
 571          * lying between staleSlot and the next null slot.  This also expunges
 572          * any other stale entries encountered before the trailing null.  See
 573          * Knuth, Section 6.4
 574          *
 575          * @param staleSlot index of slot known to have null key
 576          * @return the index of the next null slot after staleSlot
 577          * (all between staleSlot and this slot will have been checked
 578          * for expunging).
 579          */
 580         private int expungeStaleEntry(int staleSlot) {
 581             Entry[] tab = table;
 582             int len = tab.length;
 583 
 584             // expunge entry at staleSlot
 585             tab[staleSlot].value = null;
 586             tab[staleSlot] = null;
 587             size--;
 588 
 589             // Rehash until we encounter null
 590             Entry e;
 591             int i;
 592             for (i = nextIndex(staleSlot, len);
 593                  (e = tab[i]) != null;
 594                  i = nextIndex(i, len)) {
 595                 ThreadLocal<?> k = e.get();
 596                 if (k == null) {
 597                     e.value = null;
 598                     tab[i] = null;
 599                     size--;
 600                 } else {
 601                     int h = k.threadLocalHashCode & (len - 1);
 602                     if (h != i) {
 603                         tab[i] = null;
 604 
 605                         // Unlike Knuth 6.4 Algorithm R, we must scan until
 606                         // null because multiple entries could have been stale.
 607                         while (tab[h] != null)
 608                             h = nextIndex(h, len);
 609                         tab[h] = e;
 610                     }
 611                 }
 612             }
 613             return i;
 614         }
 615 
 616         /**
 617          * Heuristically scan some cells looking for stale entries.
 618          * This is invoked when either a new element is added, or
 619          * another stale one has been expunged. It performs a
 620          * logarithmic number of scans, as a balance between no
 621          * scanning (fast but retains garbage) and a number of scans
 622          * proportional to number of elements, that would find all
 623          * garbage but would cause some insertions to take O(n) time.
 624          *
 625          * @param i a position known NOT to hold a stale entry. The
 626          * scan starts at the element after i.
 627          *
 628          * @param n scan control: {@code log2(n)} cells are scanned,
 629          * unless a stale entry is found, in which case
 630          * {@code log2(table.length)-1} additional cells are scanned.
 631          * When called from insertions, this parameter is the number
 632          * of elements, but when from replaceStaleEntry, it is the
 633          * table length. (Note: all this could be changed to be either
 634          * more or less aggressive by weighting n instead of just
 635          * using straight log n. But this version is simple, fast, and
 636          * seems to work well.)
 637          *
 638          * @return true if any stale entries have been removed.
 639          */
 640         private boolean cleanSomeSlots(int i, int n) {
 641             boolean removed = false;
 642             Entry[] tab = table;
 643             int len = tab.length;
 644             do {
 645                 i = nextIndex(i, len);
 646                 Entry e = tab[i];
 647                 if (e != null && e.get() == null) {
 648                     n = len;
 649                     removed = true;
 650                     i = expungeStaleEntry(i);
 651                 }
 652             } while ( (n >>>= 1) != 0);
 653             return removed;
 654         }
 655 
 656         /**
 657          * Re-pack and/or re-size the table. First scan the entire
 658          * table removing stale entries. If this doesn't sufficiently
 659          * shrink the size of the table, double the table size.
 660          */
 661         private void rehash() {
 662             expungeStaleEntries();
 663 
 664             // Use lower threshold for doubling to avoid hysteresis
 665             if (size >= threshold - threshold / 4)
 666                 resize();
 667         }
 668 
 669         /**
 670          * Double the capacity of the table.
 671          */
 672         private void resize() {
 673             Entry[] oldTab = table;
 674             int oldLen = oldTab.length;
 675             int newLen = oldLen * 2;
 676             Entry[] newTab = new Entry[newLen];
 677             int count = 0;
 678 
 679             for (int j = 0; j < oldLen; ++j) {
 680                 Entry e = oldTab[j];
 681                 if (e != null) {
 682                     ThreadLocal<?> k = e.get();
 683                     if (k == null) {
 684                         e.value = null; // Help the GC
 685                     } else {
 686                         int h = k.threadLocalHashCode & (newLen - 1);
 687                         while (newTab[h] != null)
 688                             h = nextIndex(h, newLen);
 689                         newTab[h] = e;
 690                         count++;
 691                     }
 692                 }
 693             }
 694 
 695             setThreshold(newLen);
 696             size = count;
 697             table = newTab;
 698         }
 699 
 700         /**
 701          * Expunge all stale entries in the table.
 702          */
 703         private void expungeStaleEntries() {
 704             Entry[] tab = table;
 705             int len = tab.length;
 706             for (int j = 0; j < len; j++) {
 707                 Entry e = tab[j];
 708                 if (e != null && e.get() == null)
 709                     expungeStaleEntry(j);
 710             }
 711         }
 712     }
 713 }