1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.lang.ref.*;
  28 import java.util.Objects;
  29 import java.util.concurrent.atomic.AtomicInteger;
  30 import java.util.function.Supplier;
  31 
  32 /**
  33  * This class provides thread-local variables.  These variables differ from
  34  * their normal counterparts in that each thread that accesses one (via its
  35  * {@code get} or {@code set} method) has its own, independently initialized
  36  * copy of the variable.  {@code ThreadLocal} instances are typically private
  37  * static fields in classes that wish to associate state with a thread (e.g.,
  38  * a user ID or Transaction ID).
  39  *
  40  * <p>For example, the class below generates unique identifiers local to each
  41  * thread.
  42  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
  43  * and remains unchanged on subsequent calls.
  44  * <pre>
  45  * import java.util.concurrent.atomic.AtomicInteger;
  46  *
  47  * public class ThreadId {
  48  *     // Atomic integer containing the next thread ID to be assigned
  49  *     private static final AtomicInteger nextId = new AtomicInteger(0);
  50  *
  51  *     // Thread local variable containing each thread's ID
  52  *     private static final ThreadLocal&lt;Integer&gt; threadId =
  53  *         new ThreadLocal&lt;Integer&gt;() {
  54  *             &#64;Override protected Integer initialValue() {
  55  *                 return nextId.getAndIncrement();
  56  *         }
  57  *     };
  58  *
  59  *     // Returns the current thread's unique ID, assigning it if necessary
  60  *     public static int get() {
  61  *         return threadId.get();
  62  *     }
  63  * }
  64  * </pre>
  65  * <p>Each thread holds an implicit reference to its copy of a thread-local
  66  * variable as long as the thread is alive and the {@code ThreadLocal}
  67  * instance is accessible; after a thread goes away, all of its copies of
  68  * thread-local instances are subject to garbage collection (unless other
  69  * references to these copies exist).
  70  *
  71  * @author  Josh Bloch and Doug Lea
  72  * @since   1.2
  73  */
  74 public class ThreadLocal<T> {
  75     /**
  76      * ThreadLocals rely on per-thread linear-probe hash maps attached
  77      * to each thread (Thread.threadLocals and
  78      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
  79      * searched via threadLocalHashCode.  This is a custom hash code
  80      * (useful only within ThreadLocalMaps) that eliminates collisions
  81      * in the common case where consecutively constructed ThreadLocals
  82      * are used by the same threads, while remaining well-behaved in
  83      * less common cases.
  84      */
  85     private final int threadLocalHashCode = nextHashCode();
  86 
  87     /**
  88      * The next hash code to be given out. Updated atomically. Starts at
  89      * zero.
  90      */
  91     private static AtomicInteger nextHashCode =
  92         new AtomicInteger();
  93 
  94     /**
  95      * The difference between successively generated hash codes - turns
  96      * implicit sequential thread-local IDs into near-optimally spread
  97      * multiplicative hash values for power-of-two-sized tables.
  98      */
  99     private static final int HASH_INCREMENT = 0x61c88647;
 100 
 101     /**
 102      * Returns the next hash code.
 103      */
 104     private static int nextHashCode() {
 105         return nextHashCode.getAndAdd(HASH_INCREMENT);
 106     }
 107 
 108     /**
 109      * Returns the current thread's "initial value" for this
 110      * thread-local variable.  This method will be invoked the first
 111      * time a thread accesses the variable with the {@link #get}
 112      * method, unless the thread previously invoked the {@link #set}
 113      * method, in which case the {@code initialValue} method will not
 114      * be invoked for the thread.  Normally, this method is invoked at
 115      * most once per thread, but it may be invoked again in case of
 116      * subsequent invocations of {@link #remove} followed by {@link #get}.
 117      *
 118      * <p>This implementation simply returns {@code null}; if the
 119      * programmer desires thread-local variables to have an initial
 120      * value other than {@code null}, {@code ThreadLocal} must be
 121      * subclassed, and this method overridden.  Typically, an
 122      * anonymous inner class will be used.
 123      *
 124      * @return the initial value for this thread-local
 125      */
 126     protected T initialValue() {
 127         return null;
 128     }
 129 
 130     /**
 131      * Creates a thread local variable. The initial value of the variable is
 132      * determined by invoking the {@code get} method on the {@code Supplier}.
 133      *
 134      * @param supplier the supplier to be used to determine the initial value
 135      * @return a new thread local variable
 136      * @since 1.8
 137      */
 138     public static <T> ThreadLocal<T> withInitial(Supplier<? extends T> supplier) {
 139         return new SuppliedThreadLocal<>(supplier);
 140     }
 141 
 142     /**
 143      * Creates a thread local variable.
 144      * @see #withInitial(java.util.function.Supplier)
 145      */
 146     public ThreadLocal() {
 147     }
 148 
 149     /**
 150      * Returns the value in the current thread's copy of this
 151      * thread-local variable.  If the variable has no value for the
 152      * current thread, it is first initialized to the value returned
 153      * by an invocation of the {@link #initialValue} method.
 154      *
 155      * @return the current thread's value of this thread-local
 156      */
 157     public T get() {
 158         Thread t = Thread.currentThread();
 159         ThreadLocalMap map = getMap(t);
 160         if (map != null) {
 161             ThreadLocalMap.Entry e = map.getEntry(this);
 162             if (e != null) {
 163                 @SuppressWarnings("unchecked")
 164                 T result = (T)e.value;
 165                 return result;
 166             }
 167         }
 168         return setInitialValue();
 169     }
 170 
 171     /**
 172      * Variant of set() to establish initialValue. Used instead
 173      * of set() in case user has overridden the set() method.
 174      *
 175      * @return the initial value
 176      */
 177     private T setInitialValue() {
 178         T value = initialValue();
 179         Thread t = Thread.currentThread();
 180         ThreadLocalMap map = getMap(t);
 181         if (map != null)
 182             map.set(this, value);
 183         else
 184             createMap(t, value);
 185         return value;
 186     }
 187 
 188     /**
 189      * Sets the current thread's copy of this thread-local variable
 190      * to the specified value.  Most subclasses will have no need to
 191      * override this method, relying solely on the {@link #initialValue}
 192      * method to set the values of thread-locals.
 193      *
 194      * @param value the value to be stored in the current thread's copy of
 195      *        this thread-local.
 196      */
 197     public void set(T value) {
 198         Thread t = Thread.currentThread();
 199         ThreadLocalMap map = getMap(t);
 200         if (map != null)
 201             map.set(this, value);
 202         else
 203             createMap(t, value);
 204     }
 205 
 206     /**
 207      * Removes the current thread's value for this thread-local
 208      * variable.  If this thread-local variable is subsequently
 209      * {@linkplain #get read} by the current thread, its value will be
 210      * reinitialized by invoking its {@link #initialValue} method,
 211      * unless its value is {@linkplain #set set} by the current thread
 212      * in the interim.  This may result in multiple invocations of the
 213      * {@code initialValue} method in the current thread.
 214      *
 215      * @since 1.5
 216      */
 217      public void remove() {
 218          ThreadLocalMap m = getMap(Thread.currentThread());
 219          if (m != null)
 220              m.remove(this);
 221      }
 222 
 223     /**
 224      * Get the map associated with a ThreadLocal. Overridden in
 225      * InheritableThreadLocal.
 226      *
 227      * @param  t the current thread
 228      * @return the map
 229      */
 230     ThreadLocalMap getMap(Thread t) {
 231         return t.threadLocals;
 232     }
 233 
 234     /**
 235      * Create the map associated with a ThreadLocal. Overridden in
 236      * InheritableThreadLocal.
 237      *
 238      * @param t the current thread
 239      * @param firstValue value for the initial entry of the map
 240      */
 241     void createMap(Thread t, T firstValue) {
 242         t.threadLocals = new ThreadLocalMap(this, firstValue);
 243     }
 244 
 245     /**
 246      * Factory method to create map of inherited thread locals.
 247      * Designed to be called only from Thread constructor.
 248      *
 249      * @param  parentMap the map associated with parent thread
 250      * @return a map containing the parent's inheritable bindings
 251      */
 252     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
 253         return new ThreadLocalMap(parentMap);
 254     }
 255 
 256     /**
 257      * Method childValue is visibly defined in subclass
 258      * InheritableThreadLocal, but is internally defined here for the
 259      * sake of providing createInheritedMap factory method without
 260      * needing to subclass the map class in InheritableThreadLocal.
 261      * This technique is preferable to the alternative of embedding
 262      * instanceof tests in methods.
 263      */
 264     T childValue(T parentValue) {
 265         throw new UnsupportedOperationException();
 266     }
 267 
 268     /**
 269      * An extension of ThreadLocal that obtains its initial value from
 270      * the specified {@code Supplier}.
 271      */
 272     static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
 273 
 274         private final Supplier<? extends T> supplier;
 275 
 276         SuppliedThreadLocal(Supplier<? extends T> supplier) {
 277             this.supplier = Objects.requireNonNull(supplier);
 278         }
 279 
 280         @Override
 281         protected T initialValue() {
 282             return supplier.get();
 283         }
 284     }
 285 
 286     /**
 287      * ThreadLocalMap is a customized hash map suitable only for
 288      * maintaining thread local values. No operations are exported
 289      * outside of the ThreadLocal class. The class is package private to
 290      * allow declaration of fields in class Thread.  To help deal with
 291      * very large and long-lived usages, the hash table entries use
 292      * WeakReferences for keys. However, since reference queues are not
 293      * used, stale entries are guaranteed to be removed only when
 294      * the table starts running out of space.
 295      */
 296     static class ThreadLocalMap {
 297 
 298         /**
 299          * The entries in this hash map extend WeakReference, using
 300          * its main ref field as the key (which is always a
 301          * ThreadLocal object).  Note that null keys (i.e. entry.get()
 302          * == null) mean that the key is no longer referenced, so the
 303          * entry can be expunged from table.  Such entries are referred to
 304          * as "stale entries" in the code that follows.
 305          */
 306         static class Entry extends WeakReference<ThreadLocal<?>> {
 307             /** The value associated with this ThreadLocal. */
 308             Object value;
 309 
 310             Entry(ThreadLocal<?> k, Object v) {
 311                 super(k);
 312                 value = v;
 313             }
 314         }
 315 
 316         /**
 317          * The initial capacity -- MUST be a power of two.
 318          */
 319         private static final int INITIAL_CAPACITY = 16;
 320 
 321         /**
 322          * The table, resized as necessary.
 323          * table.length MUST always be a power of two.
 324          */
 325         private Entry[] table;
 326 
 327         /**
 328          * The number of entries in the table.
 329          */
 330         private int size = 0;
 331 
 332         /**
 333          * The next size value at which to resize.
 334          */
 335         private int threshold; // Default to 0
 336 
 337         /**
 338          * Set the resize threshold to maintain at worst a 2/3 load factor.
 339          */
 340         private void setThreshold(int len) {
 341             threshold = len * 2 / 3;
 342         }
 343 
 344         /**
 345          * Increment i modulo len.
 346          */
 347         private static int nextIndex(int i, int len) {
 348             return ((i + 1 < len) ? i + 1 : 0);
 349         }
 350 
 351         /**
 352          * Decrement i modulo len.
 353          */
 354         private static int prevIndex(int i, int len) {
 355             return ((i - 1 >= 0) ? i - 1 : len - 1);
 356         }
 357 
 358         /**
 359          * Construct a new map initially containing (firstKey, firstValue).
 360          * ThreadLocalMaps are constructed lazily, so we only create
 361          * one when we have at least one entry to put in it.
 362          */
 363         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
 364             table = new Entry[INITIAL_CAPACITY];
 365             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
 366             table[i] = new Entry(firstKey, firstValue);
 367             size = 1;
 368             setThreshold(INITIAL_CAPACITY);
 369         }
 370 
 371         /**
 372          * Construct a new map including all Inheritable ThreadLocals
 373          * from given parent map. Called only by createInheritedMap.
 374          *
 375          * @param parentMap the map associated with parent thread.
 376          */
 377         private ThreadLocalMap(ThreadLocalMap parentMap) {
 378             Entry[] parentTable = parentMap.table;
 379             int len = parentTable.length;
 380             setThreshold(len);
 381             table = new Entry[len];
 382 
 383             for (int j = 0; j < len; j++) {
 384                 Entry e = parentTable[j];
 385                 if (e != null) {
 386                     @SuppressWarnings("unchecked")
 387                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
 388                     if (key != null) {
 389                         Object value = key.childValue(e.value);
 390                         Entry c = new Entry(key, value);
 391                         int h = key.threadLocalHashCode & (len - 1);
 392                         while (table[h] != null)
 393                             h = nextIndex(h, len);
 394                         table[h] = c;
 395                         size++;
 396                     }
 397                 }
 398             }
 399         }
 400 
 401         /**
 402          * Get the entry associated with key.  This method
 403          * itself handles only the fast path: a direct hit of existing
 404          * key. It otherwise relays to getEntryAfterMiss.  This is
 405          * designed to maximize performance for direct hits, in part
 406          * by making this method readily inlinable.
 407          *
 408          * @param  key the thread local object
 409          * @return the entry associated with key, or null if no such
 410          */
 411         private Entry getEntry(ThreadLocal<?> key) {
 412             int i = key.threadLocalHashCode & (table.length - 1);
 413             Entry e = table[i];
 414             if (e != null && e.get() == key)
 415                 return e;
 416             else
 417                 return getEntryAfterMiss(key, i, e);
 418         }
 419 
 420         /**
 421          * Version of getEntry method for use when key is not found in
 422          * its direct hash slot.
 423          *
 424          * @param  key the thread local object
 425          * @param  i the table index for key's hash code
 426          * @param  e the entry at table[i]
 427          * @return the entry associated with key, or null if no such
 428          */
 429         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
 430             Entry[] tab = table;
 431             int len = tab.length;
 432 
 433             while (e != null) {
 434                 ThreadLocal<?> k = e.get();
 435                 if (k == key)
 436                     return e;
 437                 if (k == null)
 438                     expungeStaleEntry(i);
 439                 else
 440                     i = nextIndex(i, len);
 441                 e = tab[i];
 442             }
 443             return null;
 444         }
 445 
 446         /**
 447          * Set the value associated with key.
 448          *
 449          * @param key the thread local object
 450          * @param value the value to be set
 451          */
 452         private void set(ThreadLocal<?> key, Object value) {
 453 
 454             // We don't use a fast path as with get() because it is at
 455             // least as common to use set() to create new entries as
 456             // it is to replace existing ones, in which case, a fast
 457             // path would fail more often than not.
 458 
 459             Entry[] tab = table;
 460             int len = tab.length;
 461             int i = key.threadLocalHashCode & (len-1);
 462 
 463             for (Entry e = tab[i];
 464                  e != null;
 465                  e = tab[i = nextIndex(i, len)]) {
 466                 ThreadLocal<?> k = e.get();
 467 
 468                 if (k == key) {
 469                     e.value = value;
 470                     return;
 471                 }
 472 
 473                 if (k == null) {
 474                     replaceStaleEntry(key, value, i);
 475                     return;
 476                 }
 477             }
 478 
 479             tab[i] = new Entry(key, value);
 480             int sz = ++size;
 481             if (!cleanSomeSlots(i, sz) && sz >= threshold)
 482                 rehash();
 483         }
 484 
 485         /**
 486          * Remove the entry for key.
 487          */
 488         private void remove(ThreadLocal<?> key) {
 489             Entry[] tab = table;
 490             int len = tab.length;
 491             int i = key.threadLocalHashCode & (len-1);
 492             for (Entry e = tab[i];
 493                  e != null;
 494                  e = tab[i = nextIndex(i, len)]) {
 495                 if (e.get() == key) {
 496                     e.clear();
 497                     expungeStaleEntry(i);
 498                     return;
 499                 }
 500             }
 501         }
 502 
 503         /**
 504          * Replace a stale entry encountered during a set operation
 505          * with an entry for the specified key.  The value passed in
 506          * the value parameter is stored in the entry, whether or not
 507          * an entry already exists for the specified key.
 508          *
 509          * As a side effect, this method expunges all stale entries in the
 510          * "run" containing the stale entry.  (A run is a sequence of entries
 511          * between two null slots.)
 512          *
 513          * @param  key the key
 514          * @param  value the value to be associated with key
 515          * @param  staleSlot index of the first stale entry encountered while
 516          *         searching for key.
 517          */
 518         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
 519                                        int staleSlot) {
 520             Entry[] tab = table;
 521             int len = tab.length;
 522             Entry e;
 523 
 524             // Back up to check for prior stale entry in current run.
 525             // We clean out whole runs at a time to avoid continual
 526             // incremental rehashing due to garbage collector freeing
 527             // up refs in bunches (i.e., whenever the collector runs).
 528             int slotToExpunge = staleSlot;
 529             for (int i = prevIndex(staleSlot, len);
 530                  (e = tab[i]) != null;
 531                  i = prevIndex(i, len))
 532                 if (e.get() == null)
 533                     slotToExpunge = i;
 534 
 535             // Find either the key or trailing null slot of run, whichever
 536             // occurs first
 537             for (int i = nextIndex(staleSlot, len);
 538                  (e = tab[i]) != null;
 539                  i = nextIndex(i, len)) {
 540                 ThreadLocal<?> k = e.get();
 541 
 542                 // If we find key, then we need to swap it
 543                 // with the stale entry to maintain hash table order.
 544                 // The newly stale slot, or any other stale slot
 545                 // encountered above it, can then be sent to expungeStaleEntry
 546                 // to remove or rehash all of the other entries in run.
 547                 if (k == key) {
 548                     e.value = value;
 549 
 550                     tab[i] = tab[staleSlot];
 551                     tab[staleSlot] = e;
 552 
 553                     // Start expunge at preceding stale entry if it exists
 554                     if (slotToExpunge == staleSlot)
 555                         slotToExpunge = i;
 556                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 557                     return;
 558                 }
 559 
 560                 // If we didn't find stale entry on backward scan, the
 561                 // first stale entry seen while scanning for key is the
 562                 // first still present in the run.
 563                 if (k == null && slotToExpunge == staleSlot)
 564                     slotToExpunge = i;
 565             }
 566 
 567             // If key not found, put new entry in stale slot
 568             tab[staleSlot].value = null;
 569             tab[staleSlot] = new Entry(key, value);
 570 
 571             // If there are any other stale entries in run, expunge them
 572             if (slotToExpunge != staleSlot)
 573                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 574         }
 575 
 576         /**
 577          * Expunge a stale entry by rehashing any possibly colliding entries
 578          * lying between staleSlot and the next null slot.  This also expunges
 579          * any other stale entries encountered before the trailing null.  See
 580          * Knuth, Section 6.4
 581          *
 582          * @param staleSlot index of slot known to have null key
 583          * @return the index of the next null slot after staleSlot
 584          * (all between staleSlot and this slot will have been checked
 585          * for expunging).
 586          */
 587         private int expungeStaleEntry(int staleSlot) {
 588             Entry[] tab = table;
 589             int len = tab.length;
 590 
 591             // expunge entry at staleSlot
 592             tab[staleSlot].value = null;
 593             tab[staleSlot] = null;
 594             size--;
 595 
 596             // Rehash until we encounter null
 597             Entry e;
 598             int i;
 599             for (i = nextIndex(staleSlot, len);
 600                  (e = tab[i]) != null;
 601                  i = nextIndex(i, len)) {
 602                 ThreadLocal<?> k = e.get();
 603                 if (k == null) {
 604                     e.value = null;
 605                     tab[i] = null;
 606                     size--;
 607                 } else {
 608                     int h = k.threadLocalHashCode & (len - 1);
 609                     if (h != i) {
 610                         tab[i] = null;
 611 
 612                         // Unlike Knuth 6.4 Algorithm R, we must scan until
 613                         // null because multiple entries could have been stale.
 614                         while (tab[h] != null)
 615                             h = nextIndex(h, len);
 616                         tab[h] = e;
 617                     }
 618                 }
 619             }
 620             return i;
 621         }
 622 
 623         /**
 624          * Heuristically scan some cells looking for stale entries.
 625          * This is invoked when either a new element is added, or
 626          * another stale one has been expunged. It performs a
 627          * logarithmic number of scans, as a balance between no
 628          * scanning (fast but retains garbage) and a number of scans
 629          * proportional to number of elements, that would find all
 630          * garbage but would cause some insertions to take O(n) time.
 631          *
 632          * @param i a position known NOT to hold a stale entry. The
 633          * scan starts at the element after i.
 634          *
 635          * @param n scan control: {@code log2(n)} cells are scanned,
 636          * unless a stale entry is found, in which case
 637          * {@code log2(table.length)-1} additional cells are scanned.
 638          * When called from insertions, this parameter is the number
 639          * of elements, but when from replaceStaleEntry, it is the
 640          * table length. (Note: all this could be changed to be either
 641          * more or less aggressive by weighting n instead of just
 642          * using straight log n. But this version is simple, fast, and
 643          * seems to work well.)
 644          *
 645          * @return true if any stale entries have been removed.
 646          */
 647         private boolean cleanSomeSlots(int i, int n) {
 648             boolean removed = false;
 649             Entry[] tab = table;
 650             int len = tab.length;
 651             do {
 652                 i = nextIndex(i, len);
 653                 Entry e = tab[i];
 654                 if (e != null && e.get() == null) {
 655                     n = len;
 656                     removed = true;
 657                     i = expungeStaleEntry(i);
 658                 }
 659             } while ( (n >>>= 1) != 0);
 660             return removed;
 661         }
 662 
 663         /**
 664          * Re-pack and/or re-size the table. First scan the entire
 665          * table removing stale entries. If this doesn't sufficiently
 666          * shrink the size of the table, double the table size.
 667          */
 668         private void rehash() {
 669             expungeStaleEntries();
 670 
 671             // Use lower threshold for doubling to avoid hysteresis
 672             if (size >= threshold - threshold / 4)
 673                 resize();
 674         }
 675 
 676         /**
 677          * Double the capacity of the table.
 678          */
 679         private void resize() {
 680             Entry[] oldTab = table;
 681             int oldLen = oldTab.length;
 682             int newLen = oldLen * 2;
 683             Entry[] newTab = new Entry[newLen];
 684             int count = 0;
 685 
 686             for (int j = 0; j < oldLen; ++j) {
 687                 Entry e = oldTab[j];
 688                 if (e != null) {
 689                     ThreadLocal<?> k = e.get();
 690                     if (k == null) {
 691                         e.value = null; // Help the GC
 692                     } else {
 693                         int h = k.threadLocalHashCode & (newLen - 1);
 694                         while (newTab[h] != null)
 695                             h = nextIndex(h, newLen);
 696                         newTab[h] = e;
 697                         count++;
 698                     }
 699                 }
 700             }
 701 
 702             setThreshold(newLen);
 703             size = count;
 704             table = newTab;
 705         }
 706 
 707         /**
 708          * Expunge all stale entries in the table.
 709          */
 710         private void expungeStaleEntries() {
 711             Entry[] tab = table;
 712             int len = tab.length;
 713             for (int j = 0; j < len; j++) {
 714                 Entry e = tab[j];
 715                 if (e != null && e.get() == null)
 716                     expungeStaleEntry(j);
 717             }
 718         }
 719     }
 720 }