1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/oopStorage.hpp"
  41 #include "gc/shared/oopStorageSet.hpp"
  42 #include "gc/shared/workgroup.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "interpreter/oopMapCache.hpp"
  46 #include "jfr/jfrEvents.hpp"
  47 #include "jvmtifiles/jvmtiEnv.hpp"
  48 #include "logging/log.hpp"
  49 #include "logging/logConfiguration.hpp"
  50 #include "logging/logStream.hpp"
  51 #include "memory/allocation.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/metaspaceShared.hpp"
  54 #include "memory/oopFactory.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/universe.hpp"
  57 #include "oops/access.inline.hpp"
  58 #include "oops/instanceKlass.hpp"
  59 #include "oops/objArrayOop.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "oops/symbol.hpp"
  62 #include "oops/typeArrayOop.inline.hpp"
  63 #include "oops/verifyOopClosure.hpp"
  64 #include "prims/jvm_misc.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "prims/jvmtiThreadState.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/atomic.hpp"
  69 #include "runtime/biasedLocking.hpp"
  70 #include "runtime/fieldDescriptor.inline.hpp"
  71 #include "runtime/flags/jvmFlagConstraintList.hpp"
  72 #include "runtime/flags/jvmFlagRangeList.hpp"
  73 #include "runtime/deoptimization.hpp"
  74 #include "runtime/frame.inline.hpp"
  75 #include "runtime/handles.inline.hpp"
  76 #include "runtime/handshake.hpp"
  77 #include "runtime/init.hpp"
  78 #include "runtime/interfaceSupport.inline.hpp"
  79 #include "runtime/java.hpp"
  80 #include "runtime/javaCalls.hpp"
  81 #include "runtime/jniHandles.inline.hpp"
  82 #include "runtime/jniPeriodicChecker.hpp"
  83 #include "runtime/memprofiler.hpp"
  84 #include "runtime/mutexLocker.hpp"
  85 #include "runtime/objectMonitor.hpp"
  86 #include "runtime/orderAccess.hpp"
  87 #include "runtime/osThread.hpp"
  88 #include "runtime/prefetch.inline.hpp"
  89 #include "runtime/safepoint.hpp"
  90 #include "runtime/safepointMechanism.inline.hpp"
  91 #include "runtime/safepointVerifiers.hpp"
  92 #include "runtime/serviceThread.hpp"
  93 #include "runtime/sharedRuntime.hpp"
  94 #include "runtime/statSampler.hpp"
  95 #include "runtime/stubRoutines.hpp"
  96 #include "runtime/sweeper.hpp"
  97 #include "runtime/task.hpp"
  98 #include "runtime/thread.inline.hpp"
  99 #include "runtime/threadCritical.hpp"
 100 #include "runtime/threadSMR.inline.hpp"
 101 #include "runtime/threadStatisticalInfo.hpp"
 102 #include "runtime/timer.hpp"
 103 #include "runtime/timerTrace.hpp"
 104 #include "runtime/vframe.inline.hpp"
 105 #include "runtime/vframeArray.hpp"
 106 #include "runtime/vframe_hp.hpp"
 107 #include "runtime/vmThread.hpp"
 108 #include "runtime/vmOperations.hpp"
 109 #include "runtime/vm_version.hpp"
 110 #include "services/attachListener.hpp"
 111 #include "services/management.hpp"
 112 #include "services/memTracker.hpp"
 113 #include "services/threadService.hpp"
 114 #include "utilities/align.hpp"
 115 #include "utilities/copy.hpp"
 116 #include "utilities/defaultStream.hpp"
 117 #include "utilities/dtrace.hpp"
 118 #include "utilities/events.hpp"
 119 #include "utilities/macros.hpp"
 120 #include "utilities/preserveException.hpp"
 121 #include "utilities/singleWriterSynchronizer.hpp"
 122 #include "utilities/vmError.hpp"
 123 #if INCLUDE_JVMCI
 124 #include "jvmci/jvmci.hpp"
 125 #include "jvmci/jvmciEnv.hpp"
 126 #endif
 127 #ifdef COMPILER1
 128 #include "c1/c1_Compiler.hpp"
 129 #endif
 130 #ifdef COMPILER2
 131 #include "opto/c2compiler.hpp"
 132 #include "opto/idealGraphPrinter.hpp"
 133 #endif
 134 #if INCLUDE_RTM_OPT
 135 #include "runtime/rtmLocking.hpp"
 136 #endif
 137 #if INCLUDE_JFR
 138 #include "jfr/jfr.hpp"
 139 #endif
 140 
 141 // Initialization after module runtime initialization
 142 void universe_post_module_init();  // must happen after call_initPhase2
 143 
 144 #ifdef DTRACE_ENABLED
 145 
 146 // Only bother with this argument setup if dtrace is available
 147 
 148   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 149   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 150 
 151   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 152     {                                                                      \
 153       ResourceMark rm(this);                                               \
 154       int len = 0;                                                         \
 155       const char* name = (javathread)->get_thread_name();                  \
 156       len = strlen(name);                                                  \
 157       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 158         (char *) name, len,                                                \
 159         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 160         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 161         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 162     }
 163 
 164 #else //  ndef DTRACE_ENABLED
 165 
 166   #define DTRACE_THREAD_PROBE(probe, javathread)
 167 
 168 #endif // ndef DTRACE_ENABLED
 169 
 170 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 171 // Current thread is maintained as a thread-local variable
 172 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 173 #endif
 174 
 175 // ======= Thread ========
 176 // Support for forcing alignment of thread objects for biased locking
 177 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 178   if (UseBiasedLocking) {
 179     const size_t alignment = markWord::biased_lock_alignment;
 180     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 181     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 182                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 183                                                          AllocFailStrategy::RETURN_NULL);
 184     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 185     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 186            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 187            "JavaThread alignment code overflowed allocated storage");
 188     if (aligned_addr != real_malloc_addr) {
 189       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 190                               p2i(real_malloc_addr),
 191                               p2i(aligned_addr));
 192     }
 193     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 194     return aligned_addr;
 195   } else {
 196     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 197                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 198   }
 199 }
 200 
 201 void Thread::operator delete(void* p) {
 202   if (UseBiasedLocking) {
 203     FreeHeap(((Thread*) p)->_real_malloc_address);
 204   } else {
 205     FreeHeap(p);
 206   }
 207 }
 208 
 209 void JavaThread::smr_delete() {
 210   if (_on_thread_list) {
 211     ThreadsSMRSupport::smr_delete(this);
 212   } else {
 213     delete this;
 214   }
 215 }
 216 
 217 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 218 // JavaThread
 219 
 220 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 221 
 222 Thread::Thread() {
 223 
 224   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 225 
 226   // stack and get_thread
 227   set_stack_base(NULL);
 228   set_stack_size(0);
 229   set_lgrp_id(-1);
 230   DEBUG_ONLY(clear_suspendible_thread();)
 231 
 232   // allocated data structures
 233   set_osthread(NULL);
 234   set_resource_area(new (mtThread)ResourceArea());
 235   DEBUG_ONLY(_current_resource_mark = NULL;)
 236   set_handle_area(new (mtThread) HandleArea(NULL));
 237   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, mtClass));
 238   set_active_handles(NULL);
 239   set_free_handle_block(NULL);
 240   set_last_handle_mark(NULL);
 241   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 242 
 243   // Initial value of zero ==> never claimed.
 244   _threads_do_token = 0;
 245   _threads_hazard_ptr = NULL;
 246   _threads_list_ptr = NULL;
 247   _nested_threads_hazard_ptr_cnt = 0;
 248   _rcu_counter = 0;
 249 
 250   // the handle mark links itself to last_handle_mark
 251   new HandleMark(this);
 252 
 253   // plain initialization
 254   debug_only(_owned_locks = NULL;)
 255   NOT_PRODUCT(_no_safepoint_count = 0;)
 256   NOT_PRODUCT(_skip_gcalot = false;)
 257   _jvmti_env_iteration_count = 0;
 258   set_allocated_bytes(0);
 259   _vm_operation_started_count = 0;
 260   _vm_operation_completed_count = 0;
 261   _current_pending_monitor = NULL;
 262   _current_pending_monitor_is_from_java = true;
 263   _current_waiting_monitor = NULL;
 264   _current_pending_raw_monitor = NULL;
 265   _num_nested_signal = 0;
 266   om_free_list = NULL;
 267   om_free_count = 0;
 268   om_free_provision = 32;
 269   om_in_use_list = NULL;
 270   om_in_use_count = 0;
 271 
 272 #ifdef ASSERT
 273   _visited_for_critical_count = false;
 274 #endif
 275 
 276   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 277                          Monitor::_safepoint_check_sometimes);
 278   _suspend_flags = 0;
 279 
 280   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 281   _hashStateX = os::random();
 282   _hashStateY = 842502087;
 283   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 284   _hashStateW = 273326509;
 285 
 286   _OnTrap   = 0;
 287   _Stalled  = 0;
 288   _TypeTag  = 0x2BAD;
 289 
 290   // Many of the following fields are effectively final - immutable
 291   // Note that nascent threads can't use the Native Monitor-Mutex
 292   // construct until the _MutexEvent is initialized ...
 293   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 294   // we might instead use a stack of ParkEvents that we could provision on-demand.
 295   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 296   // and ::Release()
 297   _ParkEvent   = ParkEvent::Allocate(this);
 298   _MuxEvent    = ParkEvent::Allocate(this);
 299 
 300 #ifdef CHECK_UNHANDLED_OOPS
 301   if (CheckUnhandledOops) {
 302     _unhandled_oops = new UnhandledOops(this);
 303   }
 304 #endif // CHECK_UNHANDLED_OOPS
 305 #ifdef ASSERT
 306   if (UseBiasedLocking) {
 307     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 308     assert(this == _real_malloc_address ||
 309            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 310            "bug in forced alignment of thread objects");
 311   }
 312 #endif // ASSERT
 313 
 314   // Notify the barrier set that a thread is being created. The initial
 315   // thread is created before the barrier set is available.  The call to
 316   // BarrierSet::on_thread_create() for this thread is therefore deferred
 317   // to BarrierSet::set_barrier_set().
 318   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 319   if (barrier_set != NULL) {
 320     barrier_set->on_thread_create(this);
 321   } else {
 322     // Only the main thread should be created before the barrier set
 323     // and that happens just before Thread::current is set. No other thread
 324     // can attach as the VM is not created yet, so they can't execute this code.
 325     // If the main thread creates other threads before the barrier set that is an error.
 326     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 327   }
 328 }
 329 
 330 void Thread::initialize_thread_current() {
 331 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 332   assert(_thr_current == NULL, "Thread::current already initialized");
 333   _thr_current = this;
 334 #endif
 335   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 336   ThreadLocalStorage::set_thread(this);
 337   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 338 }
 339 
 340 void Thread::clear_thread_current() {
 341   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 342 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 343   _thr_current = NULL;
 344 #endif
 345   ThreadLocalStorage::set_thread(NULL);
 346 }
 347 
 348 void Thread::record_stack_base_and_size() {
 349   // Note: at this point, Thread object is not yet initialized. Do not rely on
 350   // any members being initialized. Do not rely on Thread::current() being set.
 351   // If possible, refrain from doing anything which may crash or assert since
 352   // quite probably those crash dumps will be useless.
 353   set_stack_base(os::current_stack_base());
 354   set_stack_size(os::current_stack_size());
 355 
 356   // Set stack limits after thread is initialized.
 357   if (is_Java_thread()) {
 358     ((JavaThread*) this)->set_stack_overflow_limit();
 359     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 360   }
 361 }
 362 
 363 #if INCLUDE_NMT
 364 void Thread::register_thread_stack_with_NMT() {
 365   MemTracker::record_thread_stack(stack_end(), stack_size());
 366 }
 367 #endif // INCLUDE_NMT
 368 
 369 void Thread::call_run() {
 370   DEBUG_ONLY(_run_state = CALL_RUN;)
 371 
 372   // At this point, Thread object should be fully initialized and
 373   // Thread::current() should be set.
 374 
 375   assert(Thread::current_or_null() != NULL, "current thread is unset");
 376   assert(Thread::current_or_null() == this, "current thread is wrong");
 377 
 378   // Perform common initialization actions
 379 
 380   register_thread_stack_with_NMT();
 381 
 382   JFR_ONLY(Jfr::on_thread_start(this);)
 383 
 384   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 385     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 386     os::current_thread_id(), p2i(stack_end()),
 387     p2i(stack_base()), stack_size()/1024);
 388 
 389   // Perform <ChildClass> initialization actions
 390   DEBUG_ONLY(_run_state = PRE_RUN;)
 391   this->pre_run();
 392 
 393   // Invoke <ChildClass>::run()
 394   DEBUG_ONLY(_run_state = RUN;)
 395   this->run();
 396   // Returned from <ChildClass>::run(). Thread finished.
 397 
 398   // Perform common tear-down actions
 399 
 400   assert(Thread::current_or_null() != NULL, "current thread is unset");
 401   assert(Thread::current_or_null() == this, "current thread is wrong");
 402 
 403   // Perform <ChildClass> tear-down actions
 404   DEBUG_ONLY(_run_state = POST_RUN;)
 405   this->post_run();
 406 
 407   // Note: at this point the thread object may already have deleted itself,
 408   // so from here on do not dereference *this*. Not all thread types currently
 409   // delete themselves when they terminate. But no thread should ever be deleted
 410   // asynchronously with respect to its termination - that is what _run_state can
 411   // be used to check.
 412 
 413   assert(Thread::current_or_null() == NULL, "current thread still present");
 414 }
 415 
 416 Thread::~Thread() {
 417 
 418   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 419   // get started due to errors etc. Any active thread should at least reach post_run
 420   // before it is deleted (usually in post_run()).
 421   assert(_run_state == PRE_CALL_RUN ||
 422          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 423          "_run_state=%d", (int)_run_state);
 424 
 425   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 426   // set might not be available if we encountered errors during bootstrapping.
 427   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 428   if (barrier_set != NULL) {
 429     barrier_set->on_thread_destroy(this);
 430   }
 431 
 432   // stack_base can be NULL if the thread is never started or exited before
 433   // record_stack_base_and_size called. Although, we would like to ensure
 434   // that all started threads do call record_stack_base_and_size(), there is
 435   // not proper way to enforce that.
 436 #if INCLUDE_NMT
 437   if (_stack_base != NULL) {
 438     MemTracker::release_thread_stack(stack_end(), stack_size());
 439 #ifdef ASSERT
 440     set_stack_base(NULL);
 441 #endif
 442   }
 443 #endif // INCLUDE_NMT
 444 
 445   // deallocate data structures
 446   delete resource_area();
 447   // since the handle marks are using the handle area, we have to deallocated the root
 448   // handle mark before deallocating the thread's handle area,
 449   assert(last_handle_mark() != NULL, "check we have an element");
 450   delete last_handle_mark();
 451   assert(last_handle_mark() == NULL, "check we have reached the end");
 452 
 453   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 454   // We NULL out the fields for good hygiene.
 455   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 456   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 457 
 458   delete handle_area();
 459   delete metadata_handles();
 460 
 461   // SR_handler uses this as a termination indicator -
 462   // needs to happen before os::free_thread()
 463   delete _SR_lock;
 464   _SR_lock = NULL;
 465 
 466   // osthread() can be NULL, if creation of thread failed.
 467   if (osthread() != NULL) os::free_thread(osthread());
 468 
 469   // Clear Thread::current if thread is deleting itself and it has not
 470   // already been done. This must be done before the memory is deallocated.
 471   // Needed to ensure JNI correctly detects non-attached threads.
 472   if (this == Thread::current_or_null()) {
 473     Thread::clear_thread_current();
 474   }
 475 
 476   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 477 }
 478 
 479 #ifdef ASSERT
 480 // A JavaThread is considered "dangling" if it is not the current
 481 // thread, has been added the Threads list, the system is not at a
 482 // safepoint and the Thread is not "protected".
 483 //
 484 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 485   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 486          !((JavaThread *) thread)->on_thread_list() ||
 487          SafepointSynchronize::is_at_safepoint() ||
 488          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 489          "possibility of dangling Thread pointer");
 490 }
 491 #endif
 492 
 493 ThreadPriority Thread::get_priority(const Thread* const thread) {
 494   ThreadPriority priority;
 495   // Can return an error!
 496   (void)os::get_priority(thread, priority);
 497   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 498   return priority;
 499 }
 500 
 501 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 502   debug_only(check_for_dangling_thread_pointer(thread);)
 503   // Can return an error!
 504   (void)os::set_priority(thread, priority);
 505 }
 506 
 507 
 508 void Thread::start(Thread* thread) {
 509   // Start is different from resume in that its safety is guaranteed by context or
 510   // being called from a Java method synchronized on the Thread object.
 511   if (!DisableStartThread) {
 512     if (thread->is_Java_thread()) {
 513       // Initialize the thread state to RUNNABLE before starting this thread.
 514       // Can not set it after the thread started because we do not know the
 515       // exact thread state at that time. It could be in MONITOR_WAIT or
 516       // in SLEEPING or some other state.
 517       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 518                                           java_lang_Thread::RUNNABLE);
 519     }
 520     os::start_thread(thread);
 521   }
 522 }
 523 
 524 class InstallAsyncExceptionClosure : public HandshakeClosure {
 525   Handle _throwable; // The Throwable thrown at the target Thread
 526 public:
 527   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
 528 
 529   void do_thread(Thread* thr) {
 530     JavaThread* target = (JavaThread*)thr;
 531     // Note that this now allows multiple ThreadDeath exceptions to be
 532     // thrown at a thread.
 533     // The target thread has run and has not exited yet.
 534     target->send_thread_stop(_throwable());
 535   }
 536 };
 537 
 538 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 539   Handle throwable(Thread::current(), java_throwable);
 540   JavaThread* target = java_lang_Thread::thread(java_thread);
 541   InstallAsyncExceptionClosure vm_stop(throwable);
 542   Handshake::execute(&vm_stop, target);
 543 }
 544 
 545 
 546 // Check if an external suspend request has completed (or has been
 547 // cancelled). Returns true if the thread is externally suspended and
 548 // false otherwise.
 549 //
 550 // The bits parameter returns information about the code path through
 551 // the routine. Useful for debugging:
 552 //
 553 // set in is_ext_suspend_completed():
 554 // 0x00000001 - routine was entered
 555 // 0x00000010 - routine return false at end
 556 // 0x00000100 - thread exited (return false)
 557 // 0x00000200 - suspend request cancelled (return false)
 558 // 0x00000400 - thread suspended (return true)
 559 // 0x00001000 - thread is in a suspend equivalent state (return true)
 560 // 0x00002000 - thread is native and walkable (return true)
 561 // 0x00004000 - thread is native_trans and walkable (needed retry)
 562 //
 563 // set in wait_for_ext_suspend_completion():
 564 // 0x00010000 - routine was entered
 565 // 0x00020000 - suspend request cancelled before loop (return false)
 566 // 0x00040000 - thread suspended before loop (return true)
 567 // 0x00080000 - suspend request cancelled in loop (return false)
 568 // 0x00100000 - thread suspended in loop (return true)
 569 // 0x00200000 - suspend not completed during retry loop (return false)
 570 
 571 // Helper class for tracing suspend wait debug bits.
 572 //
 573 // 0x00000100 indicates that the target thread exited before it could
 574 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 575 // 0x00080000 each indicate a cancelled suspend request so they don't
 576 // count as wait failures either.
 577 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 578 
 579 class TraceSuspendDebugBits : public StackObj {
 580  private:
 581   JavaThread * jt;
 582   bool         is_wait;
 583   bool         called_by_wait;  // meaningful when !is_wait
 584   uint32_t *   bits;
 585 
 586  public:
 587   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 588                         uint32_t *_bits) {
 589     jt             = _jt;
 590     is_wait        = _is_wait;
 591     called_by_wait = _called_by_wait;
 592     bits           = _bits;
 593   }
 594 
 595   ~TraceSuspendDebugBits() {
 596     if (!is_wait) {
 597 #if 1
 598       // By default, don't trace bits for is_ext_suspend_completed() calls.
 599       // That trace is very chatty.
 600       return;
 601 #else
 602       if (!called_by_wait) {
 603         // If tracing for is_ext_suspend_completed() is enabled, then only
 604         // trace calls to it from wait_for_ext_suspend_completion()
 605         return;
 606       }
 607 #endif
 608     }
 609 
 610     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 611       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 612         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 613         ResourceMark rm;
 614 
 615         tty->print_cr(
 616                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 617                       jt->get_thread_name(), *bits);
 618 
 619         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 620       }
 621     }
 622   }
 623 };
 624 #undef DEBUG_FALSE_BITS
 625 
 626 
 627 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 628                                           uint32_t *bits) {
 629   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 630 
 631   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 632   bool do_trans_retry;           // flag to force the retry
 633 
 634   *bits |= 0x00000001;
 635 
 636   do {
 637     do_trans_retry = false;
 638 
 639     if (is_exiting()) {
 640       // Thread is in the process of exiting. This is always checked
 641       // first to reduce the risk of dereferencing a freed JavaThread.
 642       *bits |= 0x00000100;
 643       return false;
 644     }
 645 
 646     if (!is_external_suspend()) {
 647       // Suspend request is cancelled. This is always checked before
 648       // is_ext_suspended() to reduce the risk of a rogue resume
 649       // confusing the thread that made the suspend request.
 650       *bits |= 0x00000200;
 651       return false;
 652     }
 653 
 654     if (is_ext_suspended()) {
 655       // thread is suspended
 656       *bits |= 0x00000400;
 657       return true;
 658     }
 659 
 660     // Now that we no longer do hard suspends of threads running
 661     // native code, the target thread can be changing thread state
 662     // while we are in this routine:
 663     //
 664     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 665     //
 666     // We save a copy of the thread state as observed at this moment
 667     // and make our decision about suspend completeness based on the
 668     // copy. This closes the race where the thread state is seen as
 669     // _thread_in_native_trans in the if-thread_blocked check, but is
 670     // seen as _thread_blocked in if-thread_in_native_trans check.
 671     JavaThreadState save_state = thread_state();
 672 
 673     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 674       // If the thread's state is _thread_blocked and this blocking
 675       // condition is known to be equivalent to a suspend, then we can
 676       // consider the thread to be externally suspended. This means that
 677       // the code that sets _thread_blocked has been modified to do
 678       // self-suspension if the blocking condition releases. We also
 679       // used to check for CONDVAR_WAIT here, but that is now covered by
 680       // the _thread_blocked with self-suspension check.
 681       //
 682       // Return true since we wouldn't be here unless there was still an
 683       // external suspend request.
 684       *bits |= 0x00001000;
 685       return true;
 686     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 687       // Threads running native code will self-suspend on native==>VM/Java
 688       // transitions. If its stack is walkable (should always be the case
 689       // unless this function is called before the actual java_suspend()
 690       // call), then the wait is done.
 691       *bits |= 0x00002000;
 692       return true;
 693     } else if (!called_by_wait && !did_trans_retry &&
 694                save_state == _thread_in_native_trans &&
 695                frame_anchor()->walkable()) {
 696       // The thread is transitioning from thread_in_native to another
 697       // thread state. check_safepoint_and_suspend_for_native_trans()
 698       // will force the thread to self-suspend. If it hasn't gotten
 699       // there yet we may have caught the thread in-between the native
 700       // code check above and the self-suspend. Lucky us. If we were
 701       // called by wait_for_ext_suspend_completion(), then it
 702       // will be doing the retries so we don't have to.
 703       //
 704       // Since we use the saved thread state in the if-statement above,
 705       // there is a chance that the thread has already transitioned to
 706       // _thread_blocked by the time we get here. In that case, we will
 707       // make a single unnecessary pass through the logic below. This
 708       // doesn't hurt anything since we still do the trans retry.
 709 
 710       *bits |= 0x00004000;
 711 
 712       // Once the thread leaves thread_in_native_trans for another
 713       // thread state, we break out of this retry loop. We shouldn't
 714       // need this flag to prevent us from getting back here, but
 715       // sometimes paranoia is good.
 716       did_trans_retry = true;
 717 
 718       // We wait for the thread to transition to a more usable state.
 719       for (int i = 1; i <= SuspendRetryCount; i++) {
 720         // We used to do an "os::yield_all(i)" call here with the intention
 721         // that yielding would increase on each retry. However, the parameter
 722         // is ignored on Linux which means the yield didn't scale up. Waiting
 723         // on the SR_lock below provides a much more predictable scale up for
 724         // the delay. It also provides a simple/direct point to check for any
 725         // safepoint requests from the VMThread
 726 
 727         // temporarily drops SR_lock while doing wait with safepoint check
 728         // (if we're a JavaThread - the WatcherThread can also call this)
 729         // and increase delay with each retry
 730         if (Thread::current()->is_Java_thread()) {
 731           SR_lock()->wait(i * delay);
 732         } else {
 733           SR_lock()->wait_without_safepoint_check(i * delay);
 734         }
 735 
 736         // check the actual thread state instead of what we saved above
 737         if (thread_state() != _thread_in_native_trans) {
 738           // the thread has transitioned to another thread state so
 739           // try all the checks (except this one) one more time.
 740           do_trans_retry = true;
 741           break;
 742         }
 743       } // end retry loop
 744 
 745 
 746     }
 747   } while (do_trans_retry);
 748 
 749   *bits |= 0x00000010;
 750   return false;
 751 }
 752 
 753 // Wait for an external suspend request to complete (or be cancelled).
 754 // Returns true if the thread is externally suspended and false otherwise.
 755 //
 756 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 757                                                  uint32_t *bits) {
 758   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 759                              false /* !called_by_wait */, bits);
 760 
 761   // local flag copies to minimize SR_lock hold time
 762   bool is_suspended;
 763   bool pending;
 764   uint32_t reset_bits;
 765 
 766   // set a marker so is_ext_suspend_completed() knows we are the caller
 767   *bits |= 0x00010000;
 768 
 769   // We use reset_bits to reinitialize the bits value at the top of
 770   // each retry loop. This allows the caller to make use of any
 771   // unused bits for their own marking purposes.
 772   reset_bits = *bits;
 773 
 774   {
 775     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 776     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 777                                             delay, bits);
 778     pending = is_external_suspend();
 779   }
 780   // must release SR_lock to allow suspension to complete
 781 
 782   if (!pending) {
 783     // A cancelled suspend request is the only false return from
 784     // is_ext_suspend_completed() that keeps us from entering the
 785     // retry loop.
 786     *bits |= 0x00020000;
 787     return false;
 788   }
 789 
 790   if (is_suspended) {
 791     *bits |= 0x00040000;
 792     return true;
 793   }
 794 
 795   for (int i = 1; i <= retries; i++) {
 796     *bits = reset_bits;  // reinit to only track last retry
 797 
 798     // We used to do an "os::yield_all(i)" call here with the intention
 799     // that yielding would increase on each retry. However, the parameter
 800     // is ignored on Linux which means the yield didn't scale up. Waiting
 801     // on the SR_lock below provides a much more predictable scale up for
 802     // the delay. It also provides a simple/direct point to check for any
 803     // safepoint requests from the VMThread
 804 
 805     {
 806       Thread* t = Thread::current();
 807       MonitorLocker ml(SR_lock(),
 808                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 809       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 810       // can also call this)  and increase delay with each retry
 811       ml.wait(i * delay);
 812 
 813       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 814                                               delay, bits);
 815 
 816       // It is possible for the external suspend request to be cancelled
 817       // (by a resume) before the actual suspend operation is completed.
 818       // Refresh our local copy to see if we still need to wait.
 819       pending = is_external_suspend();
 820     }
 821 
 822     if (!pending) {
 823       // A cancelled suspend request is the only false return from
 824       // is_ext_suspend_completed() that keeps us from staying in the
 825       // retry loop.
 826       *bits |= 0x00080000;
 827       return false;
 828     }
 829 
 830     if (is_suspended) {
 831       *bits |= 0x00100000;
 832       return true;
 833     }
 834   } // end retry loop
 835 
 836   // thread did not suspend after all our retries
 837   *bits |= 0x00200000;
 838   return false;
 839 }
 840 
 841 // Called from API entry points which perform stack walking. If the
 842 // associated JavaThread is the current thread, then wait_for_suspend
 843 // is not used. Otherwise, it determines if we should wait for the
 844 // "other" thread to complete external suspension. (NOTE: in future
 845 // releases the suspension mechanism should be reimplemented so this
 846 // is not necessary.)
 847 //
 848 bool
 849 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 850   if (this != JavaThread::current()) {
 851     // "other" threads require special handling.
 852     if (wait_for_suspend) {
 853       // We are allowed to wait for the external suspend to complete
 854       // so give the other thread a chance to get suspended.
 855       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 856                                            SuspendRetryDelay, bits)) {
 857         // Didn't make it so let the caller know.
 858         return false;
 859       }
 860     }
 861     // We aren't allowed to wait for the external suspend to complete
 862     // so if the other thread isn't externally suspended we need to
 863     // let the caller know.
 864     else if (!is_ext_suspend_completed_with_lock(bits)) {
 865       return false;
 866     }
 867   }
 868 
 869   return true;
 870 }
 871 
 872 // GC Support
 873 bool Thread::claim_par_threads_do(uintx claim_token) {
 874   uintx token = _threads_do_token;
 875   if (token != claim_token) {
 876     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 877     if (res == token) {
 878       return true;
 879     }
 880     guarantee(res == claim_token, "invariant");
 881   }
 882   return false;
 883 }
 884 
 885 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 886   if (active_handles() != NULL) {
 887     active_handles()->oops_do(f);
 888   }
 889   // Do oop for ThreadShadow
 890   f->do_oop((oop*)&_pending_exception);
 891   handle_area()->oops_do(f);
 892 
 893   // We scan thread local monitor lists here, and the remaining global
 894   // monitors in ObjectSynchronizer::oops_do().
 895   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 896 }
 897 
 898 void Thread::metadata_handles_do(void f(Metadata*)) {
 899   // Only walk the Handles in Thread.
 900   if (metadata_handles() != NULL) {
 901     for (int i = 0; i< metadata_handles()->length(); i++) {
 902       f(metadata_handles()->at(i));
 903     }
 904   }
 905 }
 906 
 907 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 908   // get_priority assumes osthread initialized
 909   if (osthread() != NULL) {
 910     int os_prio;
 911     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 912       st->print("os_prio=%d ", os_prio);
 913     }
 914 
 915     st->print("cpu=%.2fms ",
 916               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 917               );
 918     st->print("elapsed=%.2fs ",
 919               _statistical_info.getElapsedTime() / 1000.0
 920               );
 921     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 922       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 923       st->print("allocated=" SIZE_FORMAT "%s ",
 924                 byte_size_in_proper_unit(allocated_bytes),
 925                 proper_unit_for_byte_size(allocated_bytes)
 926                 );
 927       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 928     }
 929 
 930     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 931     osthread()->print_on(st);
 932   }
 933   ThreadsSMRSupport::print_info_on(this, st);
 934   st->print(" ");
 935   debug_only(if (WizardMode) print_owned_locks_on(st);)
 936 }
 937 
 938 void Thread::print() const { print_on(tty); }
 939 
 940 // Thread::print_on_error() is called by fatal error handler. Don't use
 941 // any lock or allocate memory.
 942 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 943   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 944 
 945   if (is_VM_thread())                 { st->print("VMThread"); }
 946   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 947   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 948   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 949   else                                { st->print("Thread"); }
 950 
 951   if (is_Named_thread()) {
 952     st->print(" \"%s\"", name());
 953   }
 954 
 955   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 956             p2i(stack_end()), p2i(stack_base()));
 957 
 958   if (osthread()) {
 959     st->print(" [id=%d]", osthread()->thread_id());
 960   }
 961 
 962   ThreadsSMRSupport::print_info_on(this, st);
 963 }
 964 
 965 void Thread::print_value_on(outputStream* st) const {
 966   if (is_Named_thread()) {
 967     st->print(" \"%s\" ", name());
 968   }
 969   st->print(INTPTR_FORMAT, p2i(this));   // print address
 970 }
 971 
 972 #ifdef ASSERT
 973 void Thread::print_owned_locks_on(outputStream* st) const {
 974   Mutex* cur = _owned_locks;
 975   if (cur == NULL) {
 976     st->print(" (no locks) ");
 977   } else {
 978     st->print_cr(" Locks owned:");
 979     while (cur) {
 980       cur->print_on(st);
 981       cur = cur->next();
 982     }
 983   }
 984 }
 985 
 986 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 987 void Thread::check_possible_safepoint() {
 988   if (!is_Java_thread()) return;
 989 
 990   if (_no_safepoint_count > 0) {
 991     print_owned_locks();
 992     assert(false, "Possible safepoint reached by thread that does not allow it");
 993   }
 994 #ifdef CHECK_UNHANDLED_OOPS
 995   // Clear unhandled oops in JavaThreads so we get a crash right away.
 996   clear_unhandled_oops();
 997 #endif // CHECK_UNHANDLED_OOPS
 998 }
 999 
1000 void Thread::check_for_valid_safepoint_state() {
1001   if (!is_Java_thread()) return;
1002 
1003   // Check NoSafepointVerifier, which is implied by locks taken that can be
1004   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1005   // are held.
1006   check_possible_safepoint();
1007 
1008   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1009     fatal("LEAF method calling lock?");
1010   }
1011 
1012   if (GCALotAtAllSafepoints) {
1013     // We could enter a safepoint here and thus have a gc
1014     InterfaceSupport::check_gc_alot();
1015   }
1016 }
1017 #endif // ASSERT
1018 
1019 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1020 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1021 // used for compilation in the future. If that change is made, the need for these methods
1022 // should be revisited, and they should be removed if possible.
1023 
1024 bool Thread::is_lock_owned(address adr) const {
1025   return is_in_full_stack(adr);
1026 }
1027 
1028 bool Thread::set_as_starting_thread() {
1029   assert(_starting_thread == NULL, "already initialized: "
1030          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1031   // NOTE: this must be called inside the main thread.
1032   DEBUG_ONLY(_starting_thread = this;)
1033   return os::create_main_thread((JavaThread*)this);
1034 }
1035 
1036 static void initialize_class(Symbol* class_name, TRAPS) {
1037   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1038   InstanceKlass::cast(klass)->initialize(CHECK);
1039 }
1040 
1041 
1042 // Creates the initial ThreadGroup
1043 static Handle create_initial_thread_group(TRAPS) {
1044   Handle system_instance = JavaCalls::construct_new_instance(
1045                             SystemDictionary::ThreadGroup_klass(),
1046                             vmSymbols::void_method_signature(),
1047                             CHECK_NH);
1048   Universe::set_system_thread_group(system_instance());
1049 
1050   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1051   Handle main_instance = JavaCalls::construct_new_instance(
1052                             SystemDictionary::ThreadGroup_klass(),
1053                             vmSymbols::threadgroup_string_void_signature(),
1054                             system_instance,
1055                             string,
1056                             CHECK_NH);
1057   return main_instance;
1058 }
1059 
1060 // Creates the initial Thread, and sets it to running.
1061 static void create_initial_thread(Handle thread_group, JavaThread* thread,
1062                                  TRAPS) {
1063   InstanceKlass* ik = SystemDictionary::Thread_klass();
1064   assert(ik->is_initialized(), "must be");
1065   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1066 
1067   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1068   // constructor calls Thread.current(), which must be set here for the
1069   // initial thread.
1070   java_lang_Thread::set_thread(thread_oop(), thread);
1071   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1072   thread->set_threadObj(thread_oop());
1073 
1074   Handle string = java_lang_String::create_from_str("main", CHECK);
1075 
1076   JavaValue result(T_VOID);
1077   JavaCalls::call_special(&result, thread_oop,
1078                           ik,
1079                           vmSymbols::object_initializer_name(),
1080                           vmSymbols::threadgroup_string_void_signature(),
1081                           thread_group,
1082                           string,
1083                           CHECK);
1084 
1085   // Set thread status to running since main thread has
1086   // been started and running.
1087   java_lang_Thread::set_thread_status(thread_oop(),
1088                                       java_lang_Thread::RUNNABLE);
1089 }
1090 
1091 char java_runtime_name[128] = "";
1092 char java_runtime_version[128] = "";
1093 char java_runtime_vendor_version[128] = "";
1094 char java_runtime_vendor_vm_bug_url[128] = "";
1095 
1096 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1097 static const char* get_java_runtime_name(TRAPS) {
1098   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1099                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1100   fieldDescriptor fd;
1101   bool found = k != NULL &&
1102                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1103                                                         vmSymbols::string_signature(), &fd);
1104   if (found) {
1105     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1106     if (name_oop == NULL) {
1107       return NULL;
1108     }
1109     const char* name = java_lang_String::as_utf8_string(name_oop,
1110                                                         java_runtime_name,
1111                                                         sizeof(java_runtime_name));
1112     return name;
1113   } else {
1114     return NULL;
1115   }
1116 }
1117 
1118 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1119 static const char* get_java_runtime_version(TRAPS) {
1120   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1121                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1122   fieldDescriptor fd;
1123   bool found = k != NULL &&
1124                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1125                                                         vmSymbols::string_signature(), &fd);
1126   if (found) {
1127     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1128     if (name_oop == NULL) {
1129       return NULL;
1130     }
1131     const char* name = java_lang_String::as_utf8_string(name_oop,
1132                                                         java_runtime_version,
1133                                                         sizeof(java_runtime_version));
1134     return name;
1135   } else {
1136     return NULL;
1137   }
1138 }
1139 
1140 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1141 static const char* get_java_runtime_vendor_version(TRAPS) {
1142   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1143                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1144   fieldDescriptor fd;
1145   bool found = k != NULL &&
1146                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1147                                                         vmSymbols::string_signature(), &fd);
1148   if (found) {
1149     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1150     if (name_oop == NULL) {
1151       return NULL;
1152     }
1153     const char* name = java_lang_String::as_utf8_string(name_oop,
1154                                                         java_runtime_vendor_version,
1155                                                         sizeof(java_runtime_vendor_version));
1156     return name;
1157   } else {
1158     return NULL;
1159   }
1160 }
1161 
1162 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1163 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1164   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1165                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1166   fieldDescriptor fd;
1167   bool found = k != NULL &&
1168                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1169                                                         vmSymbols::string_signature(), &fd);
1170   if (found) {
1171     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1172     if (name_oop == NULL) {
1173       return NULL;
1174     }
1175     const char* name = java_lang_String::as_utf8_string(name_oop,
1176                                                         java_runtime_vendor_vm_bug_url,
1177                                                         sizeof(java_runtime_vendor_vm_bug_url));
1178     return name;
1179   } else {
1180     return NULL;
1181   }
1182 }
1183 
1184 // General purpose hook into Java code, run once when the VM is initialized.
1185 // The Java library method itself may be changed independently from the VM.
1186 static void call_postVMInitHook(TRAPS) {
1187   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1188   if (klass != NULL) {
1189     JavaValue result(T_VOID);
1190     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1191                            vmSymbols::void_method_signature(),
1192                            CHECK);
1193   }
1194 }
1195 
1196 // Initialized by VMThread at vm_global_init
1197 static OopStorage* _thread_oop_storage = NULL;
1198 
1199 oop  JavaThread::threadObj() const    {
1200   return _threadObj.resolve();
1201 }
1202 
1203 void JavaThread::set_threadObj(oop p) {
1204   assert(_thread_oop_storage != NULL, "not yet initialized");
1205   _threadObj = OopHandle(_thread_oop_storage, p);
1206 }
1207 
1208 OopStorage* JavaThread::thread_oop_storage() {
1209   assert(_thread_oop_storage != NULL, "not yet initialized");
1210   return _thread_oop_storage;
1211 }
1212 
1213 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1214                                     bool daemon, TRAPS) {
1215   assert(thread_group.not_null(), "thread group should be specified");
1216   assert(threadObj() == NULL, "should only create Java thread object once");
1217 
1218   InstanceKlass* ik = SystemDictionary::Thread_klass();
1219   assert(ik->is_initialized(), "must be");
1220   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1221 
1222   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1223   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1224   // constructor calls Thread.current(), which must be set here.
1225   java_lang_Thread::set_thread(thread_oop(), this);
1226   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1227   set_threadObj(thread_oop());
1228 
1229   JavaValue result(T_VOID);
1230   if (thread_name != NULL) {
1231     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1232     // Thread gets assigned specified name and null target
1233     JavaCalls::call_special(&result,
1234                             thread_oop,
1235                             ik,
1236                             vmSymbols::object_initializer_name(),
1237                             vmSymbols::threadgroup_string_void_signature(),
1238                             thread_group,
1239                             name,
1240                             THREAD);
1241   } else {
1242     // Thread gets assigned name "Thread-nnn" and null target
1243     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1244     JavaCalls::call_special(&result,
1245                             thread_oop,
1246                             ik,
1247                             vmSymbols::object_initializer_name(),
1248                             vmSymbols::threadgroup_runnable_void_signature(),
1249                             thread_group,
1250                             Handle(),
1251                             THREAD);
1252   }
1253 
1254 
1255   if (daemon) {
1256     java_lang_Thread::set_daemon(thread_oop());
1257   }
1258 
1259   if (HAS_PENDING_EXCEPTION) {
1260     return;
1261   }
1262 
1263   Klass* group = SystemDictionary::ThreadGroup_klass();
1264   Handle threadObj(THREAD, this->threadObj());
1265 
1266   JavaCalls::call_special(&result,
1267                           thread_group,
1268                           group,
1269                           vmSymbols::add_method_name(),
1270                           vmSymbols::thread_void_signature(),
1271                           threadObj,          // Arg 1
1272                           THREAD);
1273 }
1274 
1275 // List of all NonJavaThreads and safe iteration over that list.
1276 
1277 class NonJavaThread::List {
1278 public:
1279   NonJavaThread* volatile _head;
1280   SingleWriterSynchronizer _protect;
1281 
1282   List() : _head(NULL), _protect() {}
1283 };
1284 
1285 NonJavaThread::List NonJavaThread::_the_list;
1286 
1287 NonJavaThread::Iterator::Iterator() :
1288   _protect_enter(_the_list._protect.enter()),
1289   _current(Atomic::load_acquire(&_the_list._head))
1290 {}
1291 
1292 NonJavaThread::Iterator::~Iterator() {
1293   _the_list._protect.exit(_protect_enter);
1294 }
1295 
1296 void NonJavaThread::Iterator::step() {
1297   assert(!end(), "precondition");
1298   _current = Atomic::load_acquire(&_current->_next);
1299 }
1300 
1301 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1302   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1303 }
1304 
1305 NonJavaThread::~NonJavaThread() { }
1306 
1307 void NonJavaThread::add_to_the_list() {
1308   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1309   // Initialize BarrierSet-related data before adding to list.
1310   BarrierSet::barrier_set()->on_thread_attach(this);
1311   Atomic::release_store(&_next, _the_list._head);
1312   Atomic::release_store(&_the_list._head, this);
1313 }
1314 
1315 void NonJavaThread::remove_from_the_list() {
1316   {
1317     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1318     // Cleanup BarrierSet-related data before removing from list.
1319     BarrierSet::barrier_set()->on_thread_detach(this);
1320     NonJavaThread* volatile* p = &_the_list._head;
1321     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1322       if (t == this) {
1323         *p = _next;
1324         break;
1325       }
1326     }
1327   }
1328   // Wait for any in-progress iterators.  Concurrent synchronize is not
1329   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1330   // from NJTList_lock in case an iteration attempts to lock it.
1331   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1332   _the_list._protect.synchronize();
1333   _next = NULL;                 // Safe to drop the link now.
1334 }
1335 
1336 void NonJavaThread::pre_run() {
1337   add_to_the_list();
1338 
1339   // This is slightly odd in that NamedThread is a subclass, but
1340   // in fact name() is defined in Thread
1341   assert(this->name() != NULL, "thread name was not set before it was started");
1342   this->set_native_thread_name(this->name());
1343 }
1344 
1345 void NonJavaThread::post_run() {
1346   JFR_ONLY(Jfr::on_thread_exit(this);)
1347   remove_from_the_list();
1348   // Ensure thread-local-storage is cleared before termination.
1349   Thread::clear_thread_current();
1350 }
1351 
1352 // NamedThread --  non-JavaThread subclasses with multiple
1353 // uniquely named instances should derive from this.
1354 NamedThread::NamedThread() :
1355   NonJavaThread(),
1356   _name(NULL),
1357   _processed_thread(NULL),
1358   _gc_id(GCId::undefined())
1359 {}
1360 
1361 NamedThread::~NamedThread() {
1362   FREE_C_HEAP_ARRAY(char, _name);
1363 }
1364 
1365 void NamedThread::set_name(const char* format, ...) {
1366   guarantee(_name == NULL, "Only get to set name once.");
1367   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1368   va_list ap;
1369   va_start(ap, format);
1370   jio_vsnprintf(_name, max_name_len, format, ap);
1371   va_end(ap);
1372 }
1373 
1374 void NamedThread::print_on(outputStream* st) const {
1375   st->print("\"%s\" ", name());
1376   Thread::print_on(st);
1377   st->cr();
1378 }
1379 
1380 
1381 // ======= WatcherThread ========
1382 
1383 // The watcher thread exists to simulate timer interrupts.  It should
1384 // be replaced by an abstraction over whatever native support for
1385 // timer interrupts exists on the platform.
1386 
1387 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1388 bool WatcherThread::_startable = false;
1389 volatile bool  WatcherThread::_should_terminate = false;
1390 
1391 WatcherThread::WatcherThread() : NonJavaThread() {
1392   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1393   if (os::create_thread(this, os::watcher_thread)) {
1394     _watcher_thread = this;
1395 
1396     // Set the watcher thread to the highest OS priority which should not be
1397     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1398     // is created. The only normal thread using this priority is the reference
1399     // handler thread, which runs for very short intervals only.
1400     // If the VMThread's priority is not lower than the WatcherThread profiling
1401     // will be inaccurate.
1402     os::set_priority(this, MaxPriority);
1403     if (!DisableStartThread) {
1404       os::start_thread(this);
1405     }
1406   }
1407 }
1408 
1409 int WatcherThread::sleep() const {
1410   // The WatcherThread does not participate in the safepoint protocol
1411   // for the PeriodicTask_lock because it is not a JavaThread.
1412   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1413 
1414   if (_should_terminate) {
1415     // check for termination before we do any housekeeping or wait
1416     return 0;  // we did not sleep.
1417   }
1418 
1419   // remaining will be zero if there are no tasks,
1420   // causing the WatcherThread to sleep until a task is
1421   // enrolled
1422   int remaining = PeriodicTask::time_to_wait();
1423   int time_slept = 0;
1424 
1425   // we expect this to timeout - we only ever get unparked when
1426   // we should terminate or when a new task has been enrolled
1427   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1428 
1429   jlong time_before_loop = os::javaTimeNanos();
1430 
1431   while (true) {
1432     bool timedout = ml.wait(remaining);
1433     jlong now = os::javaTimeNanos();
1434 
1435     if (remaining == 0) {
1436       // if we didn't have any tasks we could have waited for a long time
1437       // consider the time_slept zero and reset time_before_loop
1438       time_slept = 0;
1439       time_before_loop = now;
1440     } else {
1441       // need to recalculate since we might have new tasks in _tasks
1442       time_slept = (int) ((now - time_before_loop) / 1000000);
1443     }
1444 
1445     // Change to task list or spurious wakeup of some kind
1446     if (timedout || _should_terminate) {
1447       break;
1448     }
1449 
1450     remaining = PeriodicTask::time_to_wait();
1451     if (remaining == 0) {
1452       // Last task was just disenrolled so loop around and wait until
1453       // another task gets enrolled
1454       continue;
1455     }
1456 
1457     remaining -= time_slept;
1458     if (remaining <= 0) {
1459       break;
1460     }
1461   }
1462 
1463   return time_slept;
1464 }
1465 
1466 void WatcherThread::run() {
1467   assert(this == watcher_thread(), "just checking");
1468 
1469   this->set_active_handles(JNIHandleBlock::allocate_block());
1470   while (true) {
1471     assert(watcher_thread() == Thread::current(), "thread consistency check");
1472     assert(watcher_thread() == this, "thread consistency check");
1473 
1474     // Calculate how long it'll be until the next PeriodicTask work
1475     // should be done, and sleep that amount of time.
1476     int time_waited = sleep();
1477 
1478     if (VMError::is_error_reported()) {
1479       // A fatal error has happened, the error handler(VMError::report_and_die)
1480       // should abort JVM after creating an error log file. However in some
1481       // rare cases, the error handler itself might deadlock. Here periodically
1482       // check for error reporting timeouts, and if it happens, just proceed to
1483       // abort the VM.
1484 
1485       // This code is in WatcherThread because WatcherThread wakes up
1486       // periodically so the fatal error handler doesn't need to do anything;
1487       // also because the WatcherThread is less likely to crash than other
1488       // threads.
1489 
1490       for (;;) {
1491         // Note: we use naked sleep in this loop because we want to avoid using
1492         // any kind of VM infrastructure which may be broken at this point.
1493         if (VMError::check_timeout()) {
1494           // We hit error reporting timeout. Error reporting was interrupted and
1495           // will be wrapping things up now (closing files etc). Give it some more
1496           // time, then quit the VM.
1497           os::naked_short_sleep(200);
1498           // Print a message to stderr.
1499           fdStream err(defaultStream::output_fd());
1500           err.print_raw_cr("# [ timer expired, abort... ]");
1501           // skip atexit/vm_exit/vm_abort hooks
1502           os::die();
1503         }
1504 
1505         // Wait a second, then recheck for timeout.
1506         os::naked_short_sleep(999);
1507       }
1508     }
1509 
1510     if (_should_terminate) {
1511       // check for termination before posting the next tick
1512       break;
1513     }
1514 
1515     PeriodicTask::real_time_tick(time_waited);
1516   }
1517 
1518   // Signal that it is terminated
1519   {
1520     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1521     _watcher_thread = NULL;
1522     Terminator_lock->notify_all();
1523   }
1524 }
1525 
1526 void WatcherThread::start() {
1527   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1528 
1529   if (watcher_thread() == NULL && _startable) {
1530     _should_terminate = false;
1531     // Create the single instance of WatcherThread
1532     new WatcherThread();
1533   }
1534 }
1535 
1536 void WatcherThread::make_startable() {
1537   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1538   _startable = true;
1539 }
1540 
1541 void WatcherThread::stop() {
1542   {
1543     // Follow normal safepoint aware lock enter protocol since the
1544     // WatcherThread is stopped by another JavaThread.
1545     MutexLocker ml(PeriodicTask_lock);
1546     _should_terminate = true;
1547 
1548     WatcherThread* watcher = watcher_thread();
1549     if (watcher != NULL) {
1550       // unpark the WatcherThread so it can see that it should terminate
1551       watcher->unpark();
1552     }
1553   }
1554 
1555   MonitorLocker mu(Terminator_lock);
1556 
1557   while (watcher_thread() != NULL) {
1558     // This wait should make safepoint checks, wait without a timeout,
1559     // and wait as a suspend-equivalent condition.
1560     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1561   }
1562 }
1563 
1564 void WatcherThread::unpark() {
1565   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1566   PeriodicTask_lock->notify();
1567 }
1568 
1569 void WatcherThread::print_on(outputStream* st) const {
1570   st->print("\"%s\" ", name());
1571   Thread::print_on(st);
1572   st->cr();
1573 }
1574 
1575 // ======= JavaThread ========
1576 
1577 #if INCLUDE_JVMCI
1578 
1579 jlong* JavaThread::_jvmci_old_thread_counters;
1580 
1581 bool jvmci_counters_include(JavaThread* thread) {
1582   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1583 }
1584 
1585 void JavaThread::collect_counters(jlong* array, int length) {
1586   assert(length == JVMCICounterSize, "wrong value");
1587   for (int i = 0; i < length; i++) {
1588     array[i] = _jvmci_old_thread_counters[i];
1589   }
1590   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1591     if (jvmci_counters_include(tp)) {
1592       for (int i = 0; i < length; i++) {
1593         array[i] += tp->_jvmci_counters[i];
1594       }
1595     }
1596   }
1597 }
1598 
1599 // Attempt to enlarge the array for per thread counters.
1600 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1601   jlong* new_counters = NEW_C_HEAP_ARRAY_RETURN_NULL(jlong, new_size, mtJVMCI);
1602   if (new_counters == NULL) {
1603     return NULL;
1604   }
1605   if (old_counters == NULL) {
1606     old_counters = new_counters;
1607     memset(old_counters, 0, sizeof(jlong) * new_size);
1608   } else {
1609     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1610       new_counters[i] = old_counters[i];
1611     }
1612     if (new_size > current_size) {
1613       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1614     }
1615     FREE_C_HEAP_ARRAY(jlong, old_counters);
1616   }
1617   return new_counters;
1618 }
1619 
1620 // Attempt to enlarge the array for per thread counters.
1621 bool JavaThread::resize_counters(int current_size, int new_size) {
1622   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1623   if (new_counters == NULL) {
1624     return false;
1625   } else {
1626     _jvmci_counters = new_counters;
1627     return true;
1628   }
1629 }
1630 
1631 class VM_JVMCIResizeCounters : public VM_Operation {
1632  private:
1633   int _new_size;
1634   bool _failed;
1635 
1636  public:
1637   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
1638   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1639   bool allow_nested_vm_operations() const        { return true; }
1640   void doit() {
1641     // Resize the old thread counters array
1642     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1643     if (new_counters == NULL) {
1644       _failed = true;
1645       return;
1646     } else {
1647       JavaThread::_jvmci_old_thread_counters = new_counters;
1648     }
1649 
1650     // Now resize each threads array
1651     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1652       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
1653         _failed = true;
1654         break;
1655       }
1656     }
1657     if (!_failed) {
1658       JVMCICounterSize = _new_size;
1659     }
1660   }
1661 
1662   bool failed() { return _failed; }
1663 };
1664 
1665 bool JavaThread::resize_all_jvmci_counters(int new_size) {
1666   VM_JVMCIResizeCounters op(new_size);
1667   VMThread::execute(&op);
1668   return !op.failed();
1669 }
1670 
1671 #endif // INCLUDE_JVMCI
1672 
1673 // A JavaThread is a normal Java thread
1674 
1675 void JavaThread::initialize() {
1676   // Initialize fields
1677 
1678   set_saved_exception_pc(NULL);
1679   _anchor.clear();
1680   set_entry_point(NULL);
1681   set_jni_functions(jni_functions());
1682   set_callee_target(NULL);
1683   set_vm_result(NULL);
1684   set_vm_result_2(NULL);
1685   set_vframe_array_head(NULL);
1686   set_vframe_array_last(NULL);
1687   set_deferred_locals(NULL);
1688   set_deopt_mark(NULL);
1689   set_deopt_compiled_method(NULL);
1690   set_monitor_chunks(NULL);
1691   _on_thread_list = false;
1692   _thread_state = _thread_new;
1693   _terminated = _not_terminated;
1694   _array_for_gc = NULL;
1695   _suspend_equivalent = false;
1696   _in_deopt_handler = 0;
1697   _doing_unsafe_access = false;
1698   _stack_guard_state = stack_guard_unused;
1699 #if INCLUDE_JVMCI
1700   _pending_monitorenter = false;
1701   _pending_deoptimization = -1;
1702   _pending_failed_speculation = 0;
1703   _pending_transfer_to_interpreter = false;
1704   _in_retryable_allocation = false;
1705   _jvmci._alternate_call_target = NULL;
1706   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1707   _jvmci_counters = NULL;
1708   if (JVMCICounterSize > 0) {
1709     resize_counters(0, (int) JVMCICounterSize);
1710   }
1711 #endif // INCLUDE_JVMCI
1712   _reserved_stack_activation = NULL;  // stack base not known yet
1713   set_exception_oop(oop());
1714   _exception_pc  = 0;
1715   _exception_handler_pc = 0;
1716   _is_method_handle_return = 0;
1717   _jvmti_thread_state= NULL;
1718   _should_post_on_exceptions_flag = JNI_FALSE;
1719   _interp_only_mode    = 0;
1720   _special_runtime_exit_condition = _no_async_condition;
1721   _pending_async_exception = NULL;
1722   _thread_stat = NULL;
1723   _thread_stat = new ThreadStatistics();
1724   _jni_active_critical = 0;
1725   _pending_jni_exception_check_fn = NULL;
1726   _do_not_unlock_if_synchronized = false;
1727   _cached_monitor_info = NULL;
1728   _parker = Parker::Allocate(this);
1729   _SleepEvent = ParkEvent::Allocate(this);
1730   // Setup safepoint state info for this thread
1731   ThreadSafepointState::create(this);
1732   _handshake.set_handshakee(this);
1733 
1734   debug_only(_java_call_counter = 0);
1735 
1736   // JVMTI PopFrame support
1737   _popframe_condition = popframe_inactive;
1738   _popframe_preserved_args = NULL;
1739   _popframe_preserved_args_size = 0;
1740   _frames_to_pop_failed_realloc = 0;
1741 
1742   SafepointMechanism::initialize_header(this);
1743 
1744   _class_to_be_initialized = NULL;
1745 
1746   pd_initialize();
1747 }
1748 
1749 JavaThread::JavaThread(bool is_attaching_via_jni) :
1750                        Thread() {
1751   initialize();
1752   if (is_attaching_via_jni) {
1753     _jni_attach_state = _attaching_via_jni;
1754   } else {
1755     _jni_attach_state = _not_attaching_via_jni;
1756   }
1757   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1758 }
1759 
1760 
1761 // interrupt support
1762 
1763 void JavaThread::interrupt() {
1764   debug_only(check_for_dangling_thread_pointer(this);)
1765 
1766   // For Windows _interrupt_event
1767   osthread()->set_interrupted(true);
1768 
1769   // For Thread.sleep
1770   _SleepEvent->unpark();
1771 
1772   // For JSR166 LockSupport.park
1773   parker()->unpark();
1774 
1775   // For ObjectMonitor and JvmtiRawMonitor
1776   _ParkEvent->unpark();
1777 }
1778 
1779 
1780 bool JavaThread::is_interrupted(bool clear_interrupted) {
1781   debug_only(check_for_dangling_thread_pointer(this);)
1782 
1783   if (_threadObj.peek() == NULL) {
1784     // If there is no j.l.Thread then it is impossible to have
1785     // been interrupted. We can find NULL during VM initialization
1786     // or when a JNI thread is still in the process of attaching.
1787     // In such cases this must be the current thread.
1788     assert(this == Thread::current(), "invariant");
1789     return false;
1790   }
1791 
1792   bool interrupted = java_lang_Thread::interrupted(threadObj());
1793 
1794   // NOTE that since there is no "lock" around the interrupt and
1795   // is_interrupted operations, there is the possibility that the
1796   // interrupted flag will be "false" but that the
1797   // low-level events will be in the signaled state. This is
1798   // intentional. The effect of this is that Object.wait() and
1799   // LockSupport.park() will appear to have a spurious wakeup, which
1800   // is allowed and not harmful, and the possibility is so rare that
1801   // it is not worth the added complexity to add yet another lock.
1802   // For the sleep event an explicit reset is performed on entry
1803   // to JavaThread::sleep, so there is no early return. It has also been
1804   // recommended not to put the interrupted flag into the "event"
1805   // structure because it hides the issue.
1806   // Also, because there is no lock, we must only clear the interrupt
1807   // state if we are going to report that we were interrupted; otherwise
1808   // an interrupt that happens just after we read the field would be lost.
1809   if (interrupted && clear_interrupted) {
1810     assert(this == Thread::current(), "only the current thread can clear");
1811     java_lang_Thread::set_interrupted(threadObj(), false);
1812     osthread()->set_interrupted(false);
1813   }
1814 
1815   return interrupted;
1816 }
1817 
1818 bool JavaThread::reguard_stack(address cur_sp) {
1819   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1820       && _stack_guard_state != stack_guard_reserved_disabled) {
1821     return true; // Stack already guarded or guard pages not needed.
1822   }
1823 
1824   if (register_stack_overflow()) {
1825     // For those architectures which have separate register and
1826     // memory stacks, we must check the register stack to see if
1827     // it has overflowed.
1828     return false;
1829   }
1830 
1831   // Java code never executes within the yellow zone: the latter is only
1832   // there to provoke an exception during stack banging.  If java code
1833   // is executing there, either StackShadowPages should be larger, or
1834   // some exception code in c1, c2 or the interpreter isn't unwinding
1835   // when it should.
1836   guarantee(cur_sp > stack_reserved_zone_base(),
1837             "not enough space to reguard - increase StackShadowPages");
1838   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1839     enable_stack_yellow_reserved_zone();
1840     if (reserved_stack_activation() != stack_base()) {
1841       set_reserved_stack_activation(stack_base());
1842     }
1843   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1844     set_reserved_stack_activation(stack_base());
1845     enable_stack_reserved_zone();
1846   }
1847   return true;
1848 }
1849 
1850 bool JavaThread::reguard_stack(void) {
1851   return reguard_stack(os::current_stack_pointer());
1852 }
1853 
1854 void JavaThread::block_if_vm_exited() {
1855   if (_terminated == _vm_exited) {
1856     // _vm_exited is set at safepoint, and Threads_lock is never released
1857     // we will block here forever.
1858     // Here we can be doing a jump from a safe state to an unsafe state without
1859     // proper transition, but it happens after the final safepoint has begun.
1860     set_thread_state(_thread_in_vm);
1861     Threads_lock->lock();
1862     ShouldNotReachHere();
1863   }
1864 }
1865 
1866 
1867 // Remove this ifdef when C1 is ported to the compiler interface.
1868 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1869 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1870 
1871 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1872                        Thread() {
1873   initialize();
1874   _jni_attach_state = _not_attaching_via_jni;
1875   set_entry_point(entry_point);
1876   // Create the native thread itself.
1877   // %note runtime_23
1878   os::ThreadType thr_type = os::java_thread;
1879   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1880                                                      os::java_thread;
1881   os::create_thread(this, thr_type, stack_sz);
1882   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1883   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1884   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1885   // the exception consists of creating the exception object & initializing it, initialization
1886   // will leave the VM via a JavaCall and then all locks must be unlocked).
1887   //
1888   // The thread is still suspended when we reach here. Thread must be explicit started
1889   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1890   // by calling Threads:add. The reason why this is not done here, is because the thread
1891   // object must be fully initialized (take a look at JVM_Start)
1892 }
1893 
1894 JavaThread::~JavaThread() {
1895 
1896   // Ask ServiceThread to release the threadObj OopHandle
1897   ServiceThread::add_oop_handle_release(_threadObj);
1898 
1899   // JSR166 -- return the parker to the free list
1900   Parker::Release(_parker);
1901   _parker = NULL;
1902 
1903   // Return the sleep event to the free list
1904   ParkEvent::Release(_SleepEvent);
1905   _SleepEvent = NULL;
1906 
1907   // Free any remaining  previous UnrollBlock
1908   vframeArray* old_array = vframe_array_last();
1909 
1910   if (old_array != NULL) {
1911     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1912     old_array->set_unroll_block(NULL);
1913     delete old_info;
1914     delete old_array;
1915   }
1916 
1917   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1918   if (deferred != NULL) {
1919     // This can only happen if thread is destroyed before deoptimization occurs.
1920     assert(deferred->length() != 0, "empty array!");
1921     do {
1922       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1923       deferred->remove_at(0);
1924       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1925       delete dlv;
1926     } while (deferred->length() != 0);
1927     delete deferred;
1928   }
1929 
1930   // All Java related clean up happens in exit
1931   ThreadSafepointState::destroy(this);
1932   if (_thread_stat != NULL) delete _thread_stat;
1933 
1934 #if INCLUDE_JVMCI
1935   if (JVMCICounterSize > 0) {
1936     if (jvmci_counters_include(this)) {
1937       for (int i = 0; i < JVMCICounterSize; i++) {
1938         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1939       }
1940     }
1941     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1942   }
1943 #endif // INCLUDE_JVMCI
1944 }
1945 
1946 
1947 // First JavaThread specific code executed by a new Java thread.
1948 void JavaThread::pre_run() {
1949   // empty - see comments in run()
1950 }
1951 
1952 // The main routine called by a new Java thread. This isn't overridden
1953 // by subclasses, instead different subclasses define a different "entry_point"
1954 // which defines the actual logic for that kind of thread.
1955 void JavaThread::run() {
1956   // initialize thread-local alloc buffer related fields
1957   this->initialize_tlab();
1958 
1959   // Used to test validity of stack trace backs.
1960   // This can't be moved into pre_run() else we invalidate
1961   // the requirement that thread_main_inner is lower on
1962   // the stack. Consequently all the initialization logic
1963   // stays here in run() rather than pre_run().
1964   this->record_base_of_stack_pointer();
1965 
1966   this->create_stack_guard_pages();
1967 
1968   this->cache_global_variables();
1969 
1970   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1971   // in the VM. Change thread state from _thread_new to _thread_in_vm
1972   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1973   // Before a thread is on the threads list it is always safe, so after leaving the
1974   // _thread_new we should emit a instruction barrier. The distance to modified code
1975   // from here is probably far enough, but this is consistent and safe.
1976   OrderAccess::cross_modify_fence();
1977 
1978   assert(JavaThread::current() == this, "sanity check");
1979   assert(!Thread::current()->owns_locks(), "sanity check");
1980 
1981   DTRACE_THREAD_PROBE(start, this);
1982 
1983   // This operation might block. We call that after all safepoint checks for a new thread has
1984   // been completed.
1985   this->set_active_handles(JNIHandleBlock::allocate_block());
1986 
1987   if (JvmtiExport::should_post_thread_life()) {
1988     JvmtiExport::post_thread_start(this);
1989 
1990   }
1991 
1992   // We call another function to do the rest so we are sure that the stack addresses used
1993   // from there will be lower than the stack base just computed.
1994   thread_main_inner();
1995 }
1996 
1997 void JavaThread::thread_main_inner() {
1998   assert(JavaThread::current() == this, "sanity check");
1999   assert(_threadObj.peek() != NULL, "just checking");
2000 
2001   // Execute thread entry point unless this thread has a pending exception
2002   // or has been stopped before starting.
2003   // Note: Due to JVM_StopThread we can have pending exceptions already!
2004   if (!this->has_pending_exception() &&
2005       !java_lang_Thread::is_stillborn(this->threadObj())) {
2006     {
2007       ResourceMark rm(this);
2008       this->set_native_thread_name(this->get_thread_name());
2009     }
2010     HandleMark hm(this);
2011     this->entry_point()(this, this);
2012   }
2013 
2014   DTRACE_THREAD_PROBE(stop, this);
2015 
2016   // Cleanup is handled in post_run()
2017 }
2018 
2019 // Shared teardown for all JavaThreads
2020 void JavaThread::post_run() {
2021   this->exit(false);
2022   // Defer deletion to here to ensure 'this' is still referenceable in call_run
2023   // for any shared tear-down.
2024   this->smr_delete();
2025 }
2026 
2027 static void ensure_join(JavaThread* thread) {
2028   // We do not need to grab the Threads_lock, since we are operating on ourself.
2029   Handle threadObj(thread, thread->threadObj());
2030   assert(threadObj.not_null(), "java thread object must exist");
2031   ObjectLocker lock(threadObj, thread);
2032   // Ignore pending exception (ThreadDeath), since we are exiting anyway
2033   thread->clear_pending_exception();
2034   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
2035   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
2036   // Clear the native thread instance - this makes isAlive return false and allows the join()
2037   // to complete once we've done the notify_all below
2038   java_lang_Thread::set_thread(threadObj(), NULL);
2039   lock.notify_all(thread);
2040   // Ignore pending exception (ThreadDeath), since we are exiting anyway
2041   thread->clear_pending_exception();
2042 }
2043 
2044 static bool is_daemon(oop threadObj) {
2045   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
2046 }
2047 
2048 // For any new cleanup additions, please check to see if they need to be applied to
2049 // cleanup_failed_attach_current_thread as well.
2050 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2051   assert(this == JavaThread::current(), "thread consistency check");
2052 
2053   elapsedTimer _timer_exit_phase1;
2054   elapsedTimer _timer_exit_phase2;
2055   elapsedTimer _timer_exit_phase3;
2056   elapsedTimer _timer_exit_phase4;
2057 
2058   if (log_is_enabled(Debug, os, thread, timer)) {
2059     _timer_exit_phase1.start();
2060   }
2061 
2062   HandleMark hm(this);
2063   Handle uncaught_exception(this, this->pending_exception());
2064   this->clear_pending_exception();
2065   Handle threadObj(this, this->threadObj());
2066   assert(threadObj.not_null(), "Java thread object should be created");
2067 
2068   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2069   {
2070     EXCEPTION_MARK;
2071 
2072     CLEAR_PENDING_EXCEPTION;
2073   }
2074   if (!destroy_vm) {
2075     if (uncaught_exception.not_null()) {
2076       EXCEPTION_MARK;
2077       // Call method Thread.dispatchUncaughtException().
2078       Klass* thread_klass = SystemDictionary::Thread_klass();
2079       JavaValue result(T_VOID);
2080       JavaCalls::call_virtual(&result,
2081                               threadObj, thread_klass,
2082                               vmSymbols::dispatchUncaughtException_name(),
2083                               vmSymbols::throwable_void_signature(),
2084                               uncaught_exception,
2085                               THREAD);
2086       if (HAS_PENDING_EXCEPTION) {
2087         ResourceMark rm(this);
2088         jio_fprintf(defaultStream::error_stream(),
2089                     "\nException: %s thrown from the UncaughtExceptionHandler"
2090                     " in thread \"%s\"\n",
2091                     pending_exception()->klass()->external_name(),
2092                     get_thread_name());
2093         CLEAR_PENDING_EXCEPTION;
2094       }
2095     }
2096 
2097     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2098     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2099     // is deprecated anyhow.
2100     if (!is_Compiler_thread()) {
2101       int count = 3;
2102       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2103         EXCEPTION_MARK;
2104         JavaValue result(T_VOID);
2105         Klass* thread_klass = SystemDictionary::Thread_klass();
2106         JavaCalls::call_virtual(&result,
2107                                 threadObj, thread_klass,
2108                                 vmSymbols::exit_method_name(),
2109                                 vmSymbols::void_method_signature(),
2110                                 THREAD);
2111         CLEAR_PENDING_EXCEPTION;
2112       }
2113     }
2114     // notify JVMTI
2115     if (JvmtiExport::should_post_thread_life()) {
2116       JvmtiExport::post_thread_end(this);
2117     }
2118 
2119     // We have notified the agents that we are exiting, before we go on,
2120     // we must check for a pending external suspend request and honor it
2121     // in order to not surprise the thread that made the suspend request.
2122     while (true) {
2123       {
2124         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2125         if (!is_external_suspend()) {
2126           set_terminated(_thread_exiting);
2127           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2128           break;
2129         }
2130         // Implied else:
2131         // Things get a little tricky here. We have a pending external
2132         // suspend request, but we are holding the SR_lock so we
2133         // can't just self-suspend. So we temporarily drop the lock
2134         // and then self-suspend.
2135       }
2136 
2137       ThreadBlockInVM tbivm(this);
2138       java_suspend_self();
2139 
2140       // We're done with this suspend request, but we have to loop around
2141       // and check again. Eventually we will get SR_lock without a pending
2142       // external suspend request and will be able to mark ourselves as
2143       // exiting.
2144     }
2145     // no more external suspends are allowed at this point
2146   } else {
2147     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2148     // before_exit() has already posted JVMTI THREAD_END events
2149   }
2150 
2151   if (log_is_enabled(Debug, os, thread, timer)) {
2152     _timer_exit_phase1.stop();
2153     _timer_exit_phase2.start();
2154   }
2155 
2156   // Capture daemon status before the thread is marked as terminated.
2157   bool daemon = is_daemon(threadObj());
2158 
2159   // Notify waiters on thread object. This has to be done after exit() is called
2160   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2161   // group should have the destroyed bit set before waiters are notified).
2162   ensure_join(this);
2163   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2164 
2165   if (log_is_enabled(Debug, os, thread, timer)) {
2166     _timer_exit_phase2.stop();
2167     _timer_exit_phase3.start();
2168   }
2169   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2170   // held by this thread must be released. The spec does not distinguish
2171   // between JNI-acquired and regular Java monitors. We can only see
2172   // regular Java monitors here if monitor enter-exit matching is broken.
2173   //
2174   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2175   // ObjectSynchronizer::release_monitors_owned_by_thread().
2176   if (exit_type == jni_detach) {
2177     // Sanity check even though JNI DetachCurrentThread() would have
2178     // returned JNI_ERR if there was a Java frame. JavaThread exit
2179     // should be done executing Java code by the time we get here.
2180     assert(!this->has_last_Java_frame(),
2181            "should not have a Java frame when detaching or exiting");
2182     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2183     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2184   }
2185 
2186   // These things needs to be done while we are still a Java Thread. Make sure that thread
2187   // is in a consistent state, in case GC happens
2188   JFR_ONLY(Jfr::on_thread_exit(this);)
2189 
2190   if (active_handles() != NULL) {
2191     JNIHandleBlock* block = active_handles();
2192     set_active_handles(NULL);
2193     JNIHandleBlock::release_block(block);
2194   }
2195 
2196   if (free_handle_block() != NULL) {
2197     JNIHandleBlock* block = free_handle_block();
2198     set_free_handle_block(NULL);
2199     JNIHandleBlock::release_block(block);
2200   }
2201 
2202   // These have to be removed while this is still a valid thread.
2203   remove_stack_guard_pages();
2204 
2205   if (UseTLAB) {
2206     tlab().retire();
2207   }
2208 
2209   if (JvmtiEnv::environments_might_exist()) {
2210     JvmtiExport::cleanup_thread(this);
2211   }
2212 
2213   // We need to cache the thread name for logging purposes below as once
2214   // we have called on_thread_detach this thread must not access any oops.
2215   char* thread_name = NULL;
2216   if (log_is_enabled(Debug, os, thread, timer)) {
2217     ResourceMark rm(this);
2218     thread_name = os::strdup(get_thread_name());
2219   }
2220 
2221   // We must flush any deferred card marks and other various GC barrier
2222   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2223   // before removing a thread from the list of active threads.
2224   BarrierSet::barrier_set()->on_thread_detach(this);
2225 
2226   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2227     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2228     os::current_thread_id());
2229 
2230   if (log_is_enabled(Debug, os, thread, timer)) {
2231     _timer_exit_phase3.stop();
2232     _timer_exit_phase4.start();
2233   }
2234   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2235   Threads::remove(this, daemon);
2236 
2237   if (log_is_enabled(Debug, os, thread, timer)) {
2238     _timer_exit_phase4.stop();
2239     log_debug(os, thread, timer)("name='%s'"
2240                                  ", exit-phase1=" JLONG_FORMAT
2241                                  ", exit-phase2=" JLONG_FORMAT
2242                                  ", exit-phase3=" JLONG_FORMAT
2243                                  ", exit-phase4=" JLONG_FORMAT,
2244                                  thread_name,
2245                                  _timer_exit_phase1.milliseconds(),
2246                                  _timer_exit_phase2.milliseconds(),
2247                                  _timer_exit_phase3.milliseconds(),
2248                                  _timer_exit_phase4.milliseconds());
2249     os::free(thread_name);
2250   }
2251 }
2252 
2253 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2254   if (active_handles() != NULL) {
2255     JNIHandleBlock* block = active_handles();
2256     set_active_handles(NULL);
2257     JNIHandleBlock::release_block(block);
2258   }
2259 
2260   if (free_handle_block() != NULL) {
2261     JNIHandleBlock* block = free_handle_block();
2262     set_free_handle_block(NULL);
2263     JNIHandleBlock::release_block(block);
2264   }
2265 
2266   // These have to be removed while this is still a valid thread.
2267   remove_stack_guard_pages();
2268 
2269   if (UseTLAB) {
2270     tlab().retire();
2271   }
2272 
2273   BarrierSet::barrier_set()->on_thread_detach(this);
2274 
2275   Threads::remove(this, is_daemon);
2276   this->smr_delete();
2277 }
2278 
2279 JavaThread* JavaThread::active() {
2280   Thread* thread = Thread::current();
2281   if (thread->is_Java_thread()) {
2282     return (JavaThread*) thread;
2283   } else {
2284     assert(thread->is_VM_thread(), "this must be a vm thread");
2285     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2286     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2287     assert(ret->is_Java_thread(), "must be a Java thread");
2288     return ret;
2289   }
2290 }
2291 
2292 bool JavaThread::is_lock_owned(address adr) const {
2293   if (Thread::is_lock_owned(adr)) return true;
2294 
2295   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2296     if (chunk->contains(adr)) return true;
2297   }
2298 
2299   return false;
2300 }
2301 
2302 oop JavaThread::exception_oop() const {
2303   return Atomic::load(&_exception_oop);
2304 }
2305 
2306 void JavaThread::set_exception_oop(oop o) {
2307   Atomic::store(&_exception_oop, o);
2308 }
2309 
2310 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2311   chunk->set_next(monitor_chunks());
2312   set_monitor_chunks(chunk);
2313 }
2314 
2315 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2316   guarantee(monitor_chunks() != NULL, "must be non empty");
2317   if (monitor_chunks() == chunk) {
2318     set_monitor_chunks(chunk->next());
2319   } else {
2320     MonitorChunk* prev = monitor_chunks();
2321     while (prev->next() != chunk) prev = prev->next();
2322     prev->set_next(chunk->next());
2323   }
2324 }
2325 
2326 // JVM support.
2327 
2328 // Note: this function shouldn't block if it's called in
2329 // _thread_in_native_trans state (such as from
2330 // check_special_condition_for_native_trans()).
2331 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2332   // May be we are at method entry and requires to save do not unlock flag.
2333   UnlockFlagSaver fs(this);
2334   if (has_last_Java_frame() && has_async_condition()) {
2335     // If we are at a polling page safepoint (not a poll return)
2336     // then we must defer async exception because live registers
2337     // will be clobbered by the exception path. Poll return is
2338     // ok because the call we a returning from already collides
2339     // with exception handling registers and so there is no issue.
2340     // (The exception handling path kills call result registers but
2341     //  this is ok since the exception kills the result anyway).
2342 
2343     if (is_at_poll_safepoint()) {
2344       // if the code we are returning to has deoptimized we must defer
2345       // the exception otherwise live registers get clobbered on the
2346       // exception path before deoptimization is able to retrieve them.
2347       //
2348       RegisterMap map(this, false);
2349       frame caller_fr = last_frame().sender(&map);
2350       assert(caller_fr.is_compiled_frame(), "what?");
2351       if (caller_fr.is_deoptimized_frame()) {
2352         log_info(exceptions)("deferred async exception at compiled safepoint");
2353         return;
2354       }
2355     }
2356   }
2357 
2358   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2359   if (condition == _no_async_condition) {
2360     // Conditions have changed since has_special_runtime_exit_condition()
2361     // was called:
2362     // - if we were here only because of an external suspend request,
2363     //   then that was taken care of above (or cancelled) so we are done
2364     // - if we were here because of another async request, then it has
2365     //   been cleared between the has_special_runtime_exit_condition()
2366     //   and now so again we are done
2367     return;
2368   }
2369 
2370   // Check for pending async. exception
2371   if (_pending_async_exception != NULL) {
2372     // Only overwrite an already pending exception, if it is not a threadDeath.
2373     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2374 
2375       // We cannot call Exceptions::_throw(...) here because we cannot block
2376       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2377 
2378       LogTarget(Info, exceptions) lt;
2379       if (lt.is_enabled()) {
2380         ResourceMark rm;
2381         LogStream ls(lt);
2382         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2383           if (has_last_Java_frame()) {
2384             frame f = last_frame();
2385            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2386           }
2387         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2388       }
2389       _pending_async_exception = NULL;
2390       clear_has_async_exception();
2391     }
2392   }
2393 
2394   if (check_unsafe_error &&
2395       condition == _async_unsafe_access_error && !has_pending_exception()) {
2396     condition = _no_async_condition;  // done
2397     switch (thread_state()) {
2398     case _thread_in_vm: {
2399       JavaThread* THREAD = this;
2400       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2401     }
2402     case _thread_in_native: {
2403       ThreadInVMfromNative tiv(this);
2404       JavaThread* THREAD = this;
2405       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2406     }
2407     case _thread_in_Java: {
2408       ThreadInVMfromJava tiv(this);
2409       JavaThread* THREAD = this;
2410       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2411     }
2412     default:
2413       ShouldNotReachHere();
2414     }
2415   }
2416 
2417   assert(condition == _no_async_condition || has_pending_exception() ||
2418          (!check_unsafe_error && condition == _async_unsafe_access_error),
2419          "must have handled the async condition, if no exception");
2420 }
2421 
2422 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2423 
2424   // Check for pending external suspend.
2425   if (is_external_suspend_with_lock()) {
2426     frame_anchor()->make_walkable(this);
2427     java_suspend_self_with_safepoint_check();
2428   }
2429 
2430   // We might be here for reasons in addition to the self-suspend request
2431   // so check for other async requests.
2432   if (check_asyncs) {
2433     check_and_handle_async_exceptions();
2434   }
2435 
2436   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2437 }
2438 
2439 void JavaThread::send_thread_stop(oop java_throwable)  {
2440   ResourceMark rm;
2441   assert(Thread::current()->is_VM_thread() || Thread::current() == this, "should be in the vm thread");
2442 
2443   // Do not throw asynchronous exceptions against the compiler thread
2444   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2445   if (!can_call_java()) return;
2446 
2447   {
2448     // Actually throw the Throwable against the target Thread - however
2449     // only if there is no thread death exception installed already.
2450     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2451       // If the topmost frame is a runtime stub, then we are calling into
2452       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2453       // must deoptimize the caller before continuing, as the compiled  exception handler table
2454       // may not be valid
2455       if (has_last_Java_frame()) {
2456         frame f = last_frame();
2457         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2458           RegisterMap reg_map(this, false);
2459           frame compiled_frame = f.sender(&reg_map);
2460           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2461             Deoptimization::deoptimize(this, compiled_frame);
2462           }
2463         }
2464       }
2465 
2466       // Set async. pending exception in thread.
2467       set_pending_async_exception(java_throwable);
2468 
2469       if (log_is_enabled(Info, exceptions)) {
2470          ResourceMark rm;
2471         log_info(exceptions)("Pending Async. exception installed of type: %s",
2472                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2473       }
2474       // for AbortVMOnException flag
2475       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2476     }
2477   }
2478 
2479 
2480   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2481   java_lang_Thread::set_interrupted(threadObj(), true);
2482   this->interrupt();
2483 }
2484 
2485 // External suspension mechanism.
2486 //
2487 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2488 // to any VM_locks and it is at a transition
2489 // Self-suspension will happen on the transition out of the vm.
2490 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2491 //
2492 // Guarantees on return:
2493 //   + Target thread will not execute any new bytecode (that's why we need to
2494 //     force a safepoint)
2495 //   + Target thread will not enter any new monitors
2496 //
2497 void JavaThread::java_suspend() {
2498   ThreadsListHandle tlh;
2499   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2500     return;
2501   }
2502 
2503   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2504     if (!is_external_suspend()) {
2505       // a racing resume has cancelled us; bail out now
2506       return;
2507     }
2508 
2509     // suspend is done
2510     uint32_t debug_bits = 0;
2511     // Warning: is_ext_suspend_completed() may temporarily drop the
2512     // SR_lock to allow the thread to reach a stable thread state if
2513     // it is currently in a transient thread state.
2514     if (is_ext_suspend_completed(false /* !called_by_wait */,
2515                                  SuspendRetryDelay, &debug_bits)) {
2516       return;
2517     }
2518   }
2519 
2520   if (Thread::current() == this) {
2521     // Safely self-suspend.
2522     // If we don't do this explicitly it will implicitly happen
2523     // before we transition back to Java, and on some other thread-state
2524     // transition paths, but not as we exit a JVM TI SuspendThread call.
2525     // As SuspendThread(current) must not return (until resumed) we must
2526     // self-suspend here.
2527     ThreadBlockInVM tbivm(this);
2528     java_suspend_self();
2529   } else {
2530     VM_ThreadSuspend vm_suspend;
2531     VMThread::execute(&vm_suspend);
2532   }
2533 }
2534 
2535 // Part II of external suspension.
2536 // A JavaThread self suspends when it detects a pending external suspend
2537 // request. This is usually on transitions. It is also done in places
2538 // where continuing to the next transition would surprise the caller,
2539 // e.g., monitor entry.
2540 //
2541 // Returns the number of times that the thread self-suspended.
2542 //
2543 // Note: DO NOT call java_suspend_self() when you just want to block current
2544 //       thread. java_suspend_self() is the second stage of cooperative
2545 //       suspension for external suspend requests and should only be used
2546 //       to complete an external suspend request.
2547 //
2548 int JavaThread::java_suspend_self() {
2549   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2550   int ret = 0;
2551 
2552   // we are in the process of exiting so don't suspend
2553   if (is_exiting()) {
2554     clear_external_suspend();
2555     return ret;
2556   }
2557 
2558   assert(_anchor.walkable() ||
2559          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2560          "must have walkable stack");
2561 
2562   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2563 
2564   assert(!this->is_ext_suspended(),
2565          "a thread trying to self-suspend should not already be suspended");
2566 
2567   if (this->is_suspend_equivalent()) {
2568     // If we are self-suspending as a result of the lifting of a
2569     // suspend equivalent condition, then the suspend_equivalent
2570     // flag is not cleared until we set the ext_suspended flag so
2571     // that wait_for_ext_suspend_completion() returns consistent
2572     // results.
2573     this->clear_suspend_equivalent();
2574   }
2575 
2576   // A racing resume may have cancelled us before we grabbed SR_lock
2577   // above. Or another external suspend request could be waiting for us
2578   // by the time we return from SR_lock()->wait(). The thread
2579   // that requested the suspension may already be trying to walk our
2580   // stack and if we return now, we can change the stack out from under
2581   // it. This would be a "bad thing (TM)" and cause the stack walker
2582   // to crash. We stay self-suspended until there are no more pending
2583   // external suspend requests.
2584   while (is_external_suspend()) {
2585     ret++;
2586     this->set_ext_suspended();
2587 
2588     // _ext_suspended flag is cleared by java_resume()
2589     while (is_ext_suspended()) {
2590       ml.wait();
2591     }
2592   }
2593   return ret;
2594 }
2595 
2596 // Helper routine to set up the correct thread state before calling java_suspend_self.
2597 // This is called when regular thread-state transition helpers can't be used because
2598 // we can be in various states, in particular _thread_in_native_trans.
2599 // Because this thread is external suspended the safepoint code will count it as at
2600 // a safepoint, regardless of what its actual current thread-state is. But
2601 // is_ext_suspend_completed() may be waiting to see a thread transition from
2602 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2603 // to _thread_blocked. The problem with setting thread state directly is that a
2604 // safepoint could happen just after java_suspend_self() returns after being resumed,
2605 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2606 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2607 // However, not all initial-states are allowed when performing a safepoint check, as we
2608 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2609 // only _thread_in_native is possible when executing this code (based on our two callers).
2610 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2611 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2612 // and so we don't need the explicit safepoint check.
2613 
2614 void JavaThread::java_suspend_self_with_safepoint_check() {
2615   assert(this == Thread::current(), "invariant");
2616   JavaThreadState state = thread_state();
2617   set_thread_state(_thread_blocked);
2618   java_suspend_self();
2619   set_thread_state_fence(state);
2620   // Since we are not using a regular thread-state transition helper here,
2621   // we must manually emit the instruction barrier after leaving a safe state.
2622   OrderAccess::cross_modify_fence();
2623   if (state != _thread_in_native) {
2624     SafepointMechanism::block_if_requested(this);
2625   }
2626 }
2627 
2628 #ifdef ASSERT
2629 // Verify the JavaThread has not yet been published in the Threads::list, and
2630 // hence doesn't need protection from concurrent access at this stage.
2631 void JavaThread::verify_not_published() {
2632   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2633   // since an unpublished JavaThread doesn't participate in the
2634   // Thread-SMR protocol for keeping a ThreadsList alive.
2635   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2636 }
2637 #endif
2638 
2639 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2640 // progress or when _suspend_flags is non-zero.
2641 // Current thread needs to self-suspend if there is a suspend request and/or
2642 // block if a safepoint is in progress.
2643 // Async exception ISN'T checked.
2644 // Note only the ThreadInVMfromNative transition can call this function
2645 // directly and when thread state is _thread_in_native_trans
2646 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2647   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2648 
2649   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2650 
2651   if (thread->is_external_suspend()) {
2652     thread->java_suspend_self_with_safepoint_check();
2653   } else {
2654     SafepointMechanism::block_if_requested(thread);
2655   }
2656 
2657   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2658 }
2659 
2660 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2661 // progress or when _suspend_flags is non-zero.
2662 // Current thread needs to self-suspend if there is a suspend request and/or
2663 // block if a safepoint is in progress.
2664 // Also check for pending async exception (not including unsafe access error).
2665 // Note only the native==>VM/Java barriers can call this function and when
2666 // thread state is _thread_in_native_trans.
2667 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2668   check_safepoint_and_suspend_for_native_trans(thread);
2669 
2670   if (thread->has_async_exception()) {
2671     // We are in _thread_in_native_trans state, don't handle unsafe
2672     // access error since that may block.
2673     thread->check_and_handle_async_exceptions(false);
2674   }
2675 }
2676 
2677 // This is a variant of the normal
2678 // check_special_condition_for_native_trans with slightly different
2679 // semantics for use by critical native wrappers.  It does all the
2680 // normal checks but also performs the transition back into
2681 // thread_in_Java state.  This is required so that critical natives
2682 // can potentially block and perform a GC if they are the last thread
2683 // exiting the GCLocker.
2684 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2685   check_special_condition_for_native_trans(thread);
2686 
2687   // Finish the transition
2688   thread->set_thread_state(_thread_in_Java);
2689 
2690   if (thread->do_critical_native_unlock()) {
2691     ThreadInVMfromJavaNoAsyncException tiv(thread);
2692     GCLocker::unlock_critical(thread);
2693     thread->clear_critical_native_unlock();
2694   }
2695 }
2696 
2697 // We need to guarantee the Threads_lock here, since resumes are not
2698 // allowed during safepoint synchronization
2699 // Can only resume from an external suspension
2700 void JavaThread::java_resume() {
2701   assert_locked_or_safepoint(Threads_lock);
2702 
2703   // Sanity check: thread is gone, has started exiting or the thread
2704   // was not externally suspended.
2705   ThreadsListHandle tlh;
2706   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2707     return;
2708   }
2709 
2710   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2711 
2712   clear_external_suspend();
2713 
2714   if (is_ext_suspended()) {
2715     clear_ext_suspended();
2716     SR_lock()->notify_all();
2717   }
2718 }
2719 
2720 size_t JavaThread::_stack_red_zone_size = 0;
2721 size_t JavaThread::_stack_yellow_zone_size = 0;
2722 size_t JavaThread::_stack_reserved_zone_size = 0;
2723 size_t JavaThread::_stack_shadow_zone_size = 0;
2724 
2725 void JavaThread::create_stack_guard_pages() {
2726   if (!os::uses_stack_guard_pages() ||
2727       _stack_guard_state != stack_guard_unused ||
2728       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2729       log_info(os, thread)("Stack guard page creation for thread "
2730                            UINTX_FORMAT " disabled", os::current_thread_id());
2731     return;
2732   }
2733   address low_addr = stack_end();
2734   size_t len = stack_guard_zone_size();
2735 
2736   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2737   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2738 
2739   int must_commit = os::must_commit_stack_guard_pages();
2740   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2741 
2742   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2743     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2744     return;
2745   }
2746 
2747   if (os::guard_memory((char *) low_addr, len)) {
2748     _stack_guard_state = stack_guard_enabled;
2749   } else {
2750     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2751       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2752     if (os::uncommit_memory((char *) low_addr, len)) {
2753       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2754     }
2755     return;
2756   }
2757 
2758   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2759     PTR_FORMAT "-" PTR_FORMAT ".",
2760     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2761 }
2762 
2763 void JavaThread::remove_stack_guard_pages() {
2764   assert(Thread::current() == this, "from different thread");
2765   if (_stack_guard_state == stack_guard_unused) return;
2766   address low_addr = stack_end();
2767   size_t len = stack_guard_zone_size();
2768 
2769   if (os::must_commit_stack_guard_pages()) {
2770     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2771       _stack_guard_state = stack_guard_unused;
2772     } else {
2773       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2774         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2775       return;
2776     }
2777   } else {
2778     if (_stack_guard_state == stack_guard_unused) return;
2779     if (os::unguard_memory((char *) low_addr, len)) {
2780       _stack_guard_state = stack_guard_unused;
2781     } else {
2782       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2783         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2784       return;
2785     }
2786   }
2787 
2788   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2789     PTR_FORMAT "-" PTR_FORMAT ".",
2790     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2791 }
2792 
2793 void JavaThread::enable_stack_reserved_zone() {
2794   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2795 
2796   // The base notation is from the stack's point of view, growing downward.
2797   // We need to adjust it to work correctly with guard_memory()
2798   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2799 
2800   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2801   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2802 
2803   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2804     _stack_guard_state = stack_guard_enabled;
2805   } else {
2806     warning("Attempt to guard stack reserved zone failed.");
2807   }
2808   enable_register_stack_guard();
2809 }
2810 
2811 void JavaThread::disable_stack_reserved_zone() {
2812   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2813 
2814   // Simply return if called for a thread that does not use guard pages.
2815   if (_stack_guard_state != stack_guard_enabled) return;
2816 
2817   // The base notation is from the stack's point of view, growing downward.
2818   // We need to adjust it to work correctly with guard_memory()
2819   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2820 
2821   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2822     _stack_guard_state = stack_guard_reserved_disabled;
2823   } else {
2824     warning("Attempt to unguard stack reserved zone failed.");
2825   }
2826   disable_register_stack_guard();
2827 }
2828 
2829 void JavaThread::enable_stack_yellow_reserved_zone() {
2830   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2831   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2832 
2833   // The base notation is from the stacks point of view, growing downward.
2834   // We need to adjust it to work correctly with guard_memory()
2835   address base = stack_red_zone_base();
2836 
2837   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2838   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2839 
2840   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2841     _stack_guard_state = stack_guard_enabled;
2842   } else {
2843     warning("Attempt to guard stack yellow zone failed.");
2844   }
2845   enable_register_stack_guard();
2846 }
2847 
2848 void JavaThread::disable_stack_yellow_reserved_zone() {
2849   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2850   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2851 
2852   // Simply return if called for a thread that does not use guard pages.
2853   if (_stack_guard_state == stack_guard_unused) return;
2854 
2855   // The base notation is from the stacks point of view, growing downward.
2856   // We need to adjust it to work correctly with guard_memory()
2857   address base = stack_red_zone_base();
2858 
2859   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2860     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2861   } else {
2862     warning("Attempt to unguard stack yellow zone failed.");
2863   }
2864   disable_register_stack_guard();
2865 }
2866 
2867 void JavaThread::enable_stack_red_zone() {
2868   // The base notation is from the stacks point of view, growing downward.
2869   // We need to adjust it to work correctly with guard_memory()
2870   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2871   address base = stack_red_zone_base() - stack_red_zone_size();
2872 
2873   guarantee(base < stack_base(), "Error calculating stack red zone");
2874   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2875 
2876   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2877     warning("Attempt to guard stack red zone failed.");
2878   }
2879 }
2880 
2881 void JavaThread::disable_stack_red_zone() {
2882   // The base notation is from the stacks point of view, growing downward.
2883   // We need to adjust it to work correctly with guard_memory()
2884   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2885   address base = stack_red_zone_base() - stack_red_zone_size();
2886   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2887     warning("Attempt to unguard stack red zone failed.");
2888   }
2889 }
2890 
2891 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2892   // ignore is there is no stack
2893   if (!has_last_Java_frame()) return;
2894   // traverse the stack frames. Starts from top frame.
2895   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2896     frame* fr = fst.current();
2897     f(fr, fst.register_map());
2898   }
2899 }
2900 
2901 
2902 #ifndef PRODUCT
2903 // Deoptimization
2904 // Function for testing deoptimization
2905 void JavaThread::deoptimize() {
2906   StackFrameStream fst(this, false);
2907   bool deopt = false;           // Dump stack only if a deopt actually happens.
2908   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2909   // Iterate over all frames in the thread and deoptimize
2910   for (; !fst.is_done(); fst.next()) {
2911     if (fst.current()->can_be_deoptimized()) {
2912 
2913       if (only_at) {
2914         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2915         // consists of comma or carriage return separated numbers so
2916         // search for the current bci in that string.
2917         address pc = fst.current()->pc();
2918         nmethod* nm =  (nmethod*) fst.current()->cb();
2919         ScopeDesc* sd = nm->scope_desc_at(pc);
2920         char buffer[8];
2921         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2922         size_t len = strlen(buffer);
2923         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2924         while (found != NULL) {
2925           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2926               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2927             // Check that the bci found is bracketed by terminators.
2928             break;
2929           }
2930           found = strstr(found + 1, buffer);
2931         }
2932         if (!found) {
2933           continue;
2934         }
2935       }
2936 
2937       if (DebugDeoptimization && !deopt) {
2938         deopt = true; // One-time only print before deopt
2939         tty->print_cr("[BEFORE Deoptimization]");
2940         trace_frames();
2941         trace_stack();
2942       }
2943       Deoptimization::deoptimize(this, *fst.current());
2944     }
2945   }
2946 
2947   if (DebugDeoptimization && deopt) {
2948     tty->print_cr("[AFTER Deoptimization]");
2949     trace_frames();
2950   }
2951 }
2952 
2953 
2954 // Make zombies
2955 void JavaThread::make_zombies() {
2956   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2957     if (fst.current()->can_be_deoptimized()) {
2958       // it is a Java nmethod
2959       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2960       nm->make_not_entrant();
2961     }
2962   }
2963 }
2964 #endif // PRODUCT
2965 
2966 
2967 void JavaThread::deoptimize_marked_methods() {
2968   if (!has_last_Java_frame()) return;
2969   StackFrameStream fst(this, false);
2970   for (; !fst.is_done(); fst.next()) {
2971     if (fst.current()->should_be_deoptimized()) {
2972       Deoptimization::deoptimize(this, *fst.current());
2973     }
2974   }
2975 }
2976 
2977 // If the caller is a NamedThread, then remember, in the current scope,
2978 // the given JavaThread in its _processed_thread field.
2979 class RememberProcessedThread: public StackObj {
2980   NamedThread* _cur_thr;
2981  public:
2982   RememberProcessedThread(JavaThread* jthr) {
2983     Thread* thread = Thread::current();
2984     if (thread->is_Named_thread()) {
2985       _cur_thr = (NamedThread *)thread;
2986       _cur_thr->set_processed_thread(jthr);
2987     } else {
2988       _cur_thr = NULL;
2989     }
2990   }
2991 
2992   ~RememberProcessedThread() {
2993     if (_cur_thr) {
2994       _cur_thr->set_processed_thread(NULL);
2995     }
2996   }
2997 };
2998 
2999 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3000   // Verify that the deferred card marks have been flushed.
3001   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
3002 
3003   // Traverse the GCHandles
3004   Thread::oops_do(f, cf);
3005 
3006   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3007          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
3008 
3009   if (has_last_Java_frame()) {
3010     // Record JavaThread to GC thread
3011     RememberProcessedThread rpt(this);
3012 
3013     // traverse the registered growable array
3014     if (_array_for_gc != NULL) {
3015       for (int index = 0; index < _array_for_gc->length(); index++) {
3016         f->do_oop(_array_for_gc->adr_at(index));
3017       }
3018     }
3019 
3020     // Traverse the monitor chunks
3021     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
3022       chunk->oops_do(f);
3023     }
3024 
3025     // Traverse the execution stack
3026     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3027       fst.current()->oops_do(f, cf, fst.register_map());
3028     }
3029   }
3030 
3031   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
3032   // If we have deferred set_locals there might be oops waiting to be
3033   // written
3034   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
3035   if (list != NULL) {
3036     for (int i = 0; i < list->length(); i++) {
3037       list->at(i)->oops_do(f);
3038     }
3039   }
3040 
3041   // Traverse instance variables at the end since the GC may be moving things
3042   // around using this function
3043   f->do_oop((oop*) &_vm_result);
3044   f->do_oop((oop*) &_exception_oop);
3045   f->do_oop((oop*) &_pending_async_exception);
3046 
3047   if (jvmti_thread_state() != NULL) {
3048     jvmti_thread_state()->oops_do(f, cf);
3049   }
3050 }
3051 
3052 #ifdef ASSERT
3053 void JavaThread::verify_states_for_handshake() {
3054   // This checks that the thread has a correct frame state during a handshake.
3055   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3056          (has_last_Java_frame() && java_call_counter() > 0),
3057          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3058          has_last_Java_frame(), java_call_counter());
3059 }
3060 #endif
3061 
3062 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3063   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3064          (has_last_Java_frame() && java_call_counter() > 0),
3065          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3066          has_last_Java_frame(), java_call_counter());
3067 
3068   if (has_last_Java_frame()) {
3069     // Traverse the execution stack
3070     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3071       fst.current()->nmethods_do(cf);
3072     }
3073   }
3074 
3075   if (jvmti_thread_state() != NULL) {
3076     jvmti_thread_state()->nmethods_do(cf);
3077   }
3078 }
3079 
3080 void JavaThread::metadata_do(MetadataClosure* f) {
3081   if (has_last_Java_frame()) {
3082     // Traverse the execution stack to call f() on the methods in the stack
3083     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3084       fst.current()->metadata_do(f);
3085     }
3086   } else if (is_Compiler_thread()) {
3087     // need to walk ciMetadata in current compile tasks to keep alive.
3088     CompilerThread* ct = (CompilerThread*)this;
3089     if (ct->env() != NULL) {
3090       ct->env()->metadata_do(f);
3091     }
3092     CompileTask* task = ct->task();
3093     if (task != NULL) {
3094       task->metadata_do(f);
3095     }
3096   }
3097 }
3098 
3099 // Printing
3100 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3101   switch (_thread_state) {
3102   case _thread_uninitialized:     return "_thread_uninitialized";
3103   case _thread_new:               return "_thread_new";
3104   case _thread_new_trans:         return "_thread_new_trans";
3105   case _thread_in_native:         return "_thread_in_native";
3106   case _thread_in_native_trans:   return "_thread_in_native_trans";
3107   case _thread_in_vm:             return "_thread_in_vm";
3108   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3109   case _thread_in_Java:           return "_thread_in_Java";
3110   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3111   case _thread_blocked:           return "_thread_blocked";
3112   case _thread_blocked_trans:     return "_thread_blocked_trans";
3113   default:                        return "unknown thread state";
3114   }
3115 }
3116 
3117 #ifndef PRODUCT
3118 void JavaThread::print_thread_state_on(outputStream *st) const {
3119   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3120 };
3121 #endif // PRODUCT
3122 
3123 // Called by Threads::print() for VM_PrintThreads operation
3124 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3125   st->print_raw("\"");
3126   st->print_raw(get_thread_name());
3127   st->print_raw("\" ");
3128   oop thread_oop = threadObj();
3129   if (thread_oop != NULL) {
3130     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3131     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3132     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3133   }
3134   Thread::print_on(st, print_extended_info);
3135   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3136   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3137   if (thread_oop != NULL) {
3138     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3139   }
3140 #ifndef PRODUCT
3141   _safepoint_state->print_on(st);
3142 #endif // PRODUCT
3143   if (is_Compiler_thread()) {
3144     CompileTask *task = ((CompilerThread*)this)->task();
3145     if (task != NULL) {
3146       st->print("   Compiling: ");
3147       task->print(st, NULL, true, false);
3148     } else {
3149       st->print("   No compile task");
3150     }
3151     st->cr();
3152   }
3153 }
3154 
3155 void JavaThread::print() const { print_on(tty); }
3156 
3157 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3158   st->print("%s", get_thread_name_string(buf, buflen));
3159 }
3160 
3161 // Called by fatal error handler. The difference between this and
3162 // JavaThread::print() is that we can't grab lock or allocate memory.
3163 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3164   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3165   oop thread_obj = threadObj();
3166   if (thread_obj != NULL) {
3167     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3168   }
3169   st->print(" [");
3170   st->print("%s", _get_thread_state_name(_thread_state));
3171   if (osthread()) {
3172     st->print(", id=%d", osthread()->thread_id());
3173   }
3174   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3175             p2i(stack_end()), p2i(stack_base()));
3176   st->print("]");
3177 
3178   ThreadsSMRSupport::print_info_on(this, st);
3179   return;
3180 }
3181 
3182 // Verification
3183 
3184 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3185 
3186 void JavaThread::verify() {
3187   // Verify oops in the thread.
3188   oops_do(&VerifyOopClosure::verify_oop, NULL);
3189 
3190   // Verify the stack frames.
3191   frames_do(frame_verify);
3192 }
3193 
3194 // CR 6300358 (sub-CR 2137150)
3195 // Most callers of this method assume that it can't return NULL but a
3196 // thread may not have a name whilst it is in the process of attaching to
3197 // the VM - see CR 6412693, and there are places where a JavaThread can be
3198 // seen prior to having it's threadObj set (eg JNI attaching threads and
3199 // if vm exit occurs during initialization). These cases can all be accounted
3200 // for such that this method never returns NULL.
3201 const char* JavaThread::get_thread_name() const {
3202 #ifdef ASSERT
3203   // early safepoints can hit while current thread does not yet have TLS
3204   if (!SafepointSynchronize::is_at_safepoint()) {
3205     Thread *cur = Thread::current();
3206     if (!(cur->is_Java_thread() && cur == this)) {
3207       // Current JavaThreads are allowed to get their own name without
3208       // the Threads_lock.
3209       assert_locked_or_safepoint_or_handshake(Threads_lock, this);
3210     }
3211   }
3212 #endif // ASSERT
3213   return get_thread_name_string();
3214 }
3215 
3216 // Returns a non-NULL representation of this thread's name, or a suitable
3217 // descriptive string if there is no set name
3218 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3219   const char* name_str;
3220   oop thread_obj = threadObj();
3221   if (thread_obj != NULL) {
3222     oop name = java_lang_Thread::name(thread_obj);
3223     if (name != NULL) {
3224       if (buf == NULL) {
3225         name_str = java_lang_String::as_utf8_string(name);
3226       } else {
3227         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3228       }
3229     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3230       name_str = "<no-name - thread is attaching>";
3231     } else {
3232       name_str = Thread::name();
3233     }
3234   } else {
3235     name_str = Thread::name();
3236   }
3237   assert(name_str != NULL, "unexpected NULL thread name");
3238   return name_str;
3239 }
3240 
3241 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3242 
3243   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3244   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3245   // Link Java Thread object <-> C++ Thread
3246 
3247   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3248   // and put it into a new Handle.  The Handle "thread_oop" can then
3249   // be used to pass the C++ thread object to other methods.
3250 
3251   // Set the Java level thread object (jthread) field of the
3252   // new thread (a JavaThread *) to C++ thread object using the
3253   // "thread_oop" handle.
3254 
3255   // Set the thread field (a JavaThread *) of the
3256   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3257 
3258   Handle thread_oop(Thread::current(),
3259                     JNIHandles::resolve_non_null(jni_thread));
3260   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3261          "must be initialized");
3262   set_threadObj(thread_oop());
3263   java_lang_Thread::set_thread(thread_oop(), this);
3264 
3265   if (prio == NoPriority) {
3266     prio = java_lang_Thread::priority(thread_oop());
3267     assert(prio != NoPriority, "A valid priority should be present");
3268   }
3269 
3270   // Push the Java priority down to the native thread; needs Threads_lock
3271   Thread::set_priority(this, prio);
3272 
3273   // Add the new thread to the Threads list and set it in motion.
3274   // We must have threads lock in order to call Threads::add.
3275   // It is crucial that we do not block before the thread is
3276   // added to the Threads list for if a GC happens, then the java_thread oop
3277   // will not be visited by GC.
3278   Threads::add(this);
3279 }
3280 
3281 oop JavaThread::current_park_blocker() {
3282   // Support for JSR-166 locks
3283   oop thread_oop = threadObj();
3284   if (thread_oop != NULL) {
3285     return java_lang_Thread::park_blocker(thread_oop);
3286   }
3287   return NULL;
3288 }
3289 
3290 
3291 void JavaThread::print_stack_on(outputStream* st) {
3292   if (!has_last_Java_frame()) return;
3293 
3294   Thread* current_thread = Thread::current();
3295   ResourceMark rm(current_thread);
3296   HandleMark hm(current_thread);
3297 
3298   RegisterMap reg_map(this);
3299   vframe* start_vf = last_java_vframe(&reg_map);
3300   int count = 0;
3301   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3302     if (f->is_java_frame()) {
3303       javaVFrame* jvf = javaVFrame::cast(f);
3304       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3305 
3306       // Print out lock information
3307       if (JavaMonitorsInStackTrace) {
3308         jvf->print_lock_info_on(st, count);
3309       }
3310     } else {
3311       // Ignore non-Java frames
3312     }
3313 
3314     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3315     count++;
3316     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3317   }
3318 }
3319 
3320 
3321 // JVMTI PopFrame support
3322 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3323   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3324   if (in_bytes(size_in_bytes) != 0) {
3325     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3326     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3327     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3328   }
3329 }
3330 
3331 void* JavaThread::popframe_preserved_args() {
3332   return _popframe_preserved_args;
3333 }
3334 
3335 ByteSize JavaThread::popframe_preserved_args_size() {
3336   return in_ByteSize(_popframe_preserved_args_size);
3337 }
3338 
3339 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3340   int sz = in_bytes(popframe_preserved_args_size());
3341   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3342   return in_WordSize(sz / wordSize);
3343 }
3344 
3345 void JavaThread::popframe_free_preserved_args() {
3346   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3347   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3348   _popframe_preserved_args = NULL;
3349   _popframe_preserved_args_size = 0;
3350 }
3351 
3352 #ifndef PRODUCT
3353 
3354 void JavaThread::trace_frames() {
3355   tty->print_cr("[Describe stack]");
3356   int frame_no = 1;
3357   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3358     tty->print("  %d. ", frame_no++);
3359     fst.current()->print_value_on(tty, this);
3360     tty->cr();
3361   }
3362 }
3363 
3364 class PrintAndVerifyOopClosure: public OopClosure {
3365  protected:
3366   template <class T> inline void do_oop_work(T* p) {
3367     oop obj = RawAccess<>::oop_load(p);
3368     if (obj == NULL) return;
3369     tty->print(INTPTR_FORMAT ": ", p2i(p));
3370     if (oopDesc::is_oop_or_null(obj)) {
3371       if (obj->is_objArray()) {
3372         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3373       } else {
3374         obj->print();
3375       }
3376     } else {
3377       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3378     }
3379     tty->cr();
3380   }
3381  public:
3382   virtual void do_oop(oop* p) { do_oop_work(p); }
3383   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3384 };
3385 
3386 #ifdef ASSERT
3387 // Print or validate the layout of stack frames
3388 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3389   ResourceMark rm;
3390   PRESERVE_EXCEPTION_MARK;
3391   FrameValues values;
3392   int frame_no = 0;
3393   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3394     fst.current()->describe(values, ++frame_no);
3395     if (depth == frame_no) break;
3396   }
3397   if (validate_only) {
3398     values.validate();
3399   } else {
3400     tty->print_cr("[Describe stack layout]");
3401     values.print(this);
3402   }
3403 }
3404 #endif
3405 
3406 void JavaThread::trace_stack_from(vframe* start_vf) {
3407   ResourceMark rm;
3408   int vframe_no = 1;
3409   for (vframe* f = start_vf; f; f = f->sender()) {
3410     if (f->is_java_frame()) {
3411       javaVFrame::cast(f)->print_activation(vframe_no++);
3412     } else {
3413       f->print();
3414     }
3415     if (vframe_no > StackPrintLimit) {
3416       tty->print_cr("...<more frames>...");
3417       return;
3418     }
3419   }
3420 }
3421 
3422 
3423 void JavaThread::trace_stack() {
3424   if (!has_last_Java_frame()) return;
3425   Thread* current_thread = Thread::current();
3426   ResourceMark rm(current_thread);
3427   HandleMark hm(current_thread);
3428   RegisterMap reg_map(this);
3429   trace_stack_from(last_java_vframe(&reg_map));
3430 }
3431 
3432 
3433 #endif // PRODUCT
3434 
3435 
3436 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3437   assert(reg_map != NULL, "a map must be given");
3438   frame f = last_frame();
3439   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3440     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3441   }
3442   return NULL;
3443 }
3444 
3445 
3446 Klass* JavaThread::security_get_caller_class(int depth) {
3447   vframeStream vfst(this);
3448   vfst.security_get_caller_frame(depth);
3449   if (!vfst.at_end()) {
3450     return vfst.method()->method_holder();
3451   }
3452   return NULL;
3453 }
3454 
3455 // java.lang.Thread.sleep support
3456 // Returns true if sleep time elapsed as expected, and false
3457 // if the thread was interrupted.
3458 bool JavaThread::sleep(jlong millis) {
3459   assert(this == Thread::current(),  "thread consistency check");
3460 
3461   ParkEvent * const slp = this->_SleepEvent;
3462   // Because there can be races with thread interruption sending an unpark()
3463   // to the event, we explicitly reset it here to avoid an immediate return.
3464   // The actual interrupt state will be checked before we park().
3465   slp->reset();
3466   // Thread interruption establishes a happens-before ordering in the
3467   // Java Memory Model, so we need to ensure we synchronize with the
3468   // interrupt state.
3469   OrderAccess::fence();
3470 
3471   jlong prevtime = os::javaTimeNanos();
3472 
3473   for (;;) {
3474     // interruption has precedence over timing out
3475     if (this->is_interrupted(true)) {
3476       return false;
3477     }
3478 
3479     if (millis <= 0) {
3480       return true;
3481     }
3482 
3483     {
3484       ThreadBlockInVM tbivm(this);
3485       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3486 
3487       this->set_suspend_equivalent();
3488       // cleared by handle_special_suspend_equivalent_condition() or
3489       // java_suspend_self() via check_and_wait_while_suspended()
3490 
3491       slp->park(millis);
3492 
3493       // were we externally suspended while we were waiting?
3494       this->check_and_wait_while_suspended();
3495     }
3496 
3497     // Update elapsed time tracking
3498     jlong newtime = os::javaTimeNanos();
3499     if (newtime - prevtime < 0) {
3500       // time moving backwards, should only happen if no monotonic clock
3501       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3502       assert(!os::supports_monotonic_clock(),
3503              "unexpected time moving backwards detected in JavaThread::sleep()");
3504     } else {
3505       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3506     }
3507     prevtime = newtime;
3508   }
3509 }
3510 
3511 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3512   assert(thread->is_Compiler_thread(), "must be compiler thread");
3513   CompileBroker::compiler_thread_loop();
3514 }
3515 
3516 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3517   NMethodSweeper::sweeper_loop();
3518 }
3519 
3520 // Create a CompilerThread
3521 CompilerThread::CompilerThread(CompileQueue* queue,
3522                                CompilerCounters* counters)
3523                                : JavaThread(&compiler_thread_entry) {
3524   _env   = NULL;
3525   _log   = NULL;
3526   _task  = NULL;
3527   _queue = queue;
3528   _counters = counters;
3529   _buffer_blob = NULL;
3530   _compiler = NULL;
3531 
3532   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3533   resource_area()->bias_to(mtCompiler);
3534 
3535 #ifndef PRODUCT
3536   _ideal_graph_printer = NULL;
3537 #endif
3538 }
3539 
3540 CompilerThread::~CompilerThread() {
3541   // Delete objects which were allocated on heap.
3542   delete _counters;
3543 }
3544 
3545 bool CompilerThread::can_call_java() const {
3546   return _compiler != NULL && _compiler->is_jvmci();
3547 }
3548 
3549 // Create sweeper thread
3550 CodeCacheSweeperThread::CodeCacheSweeperThread()
3551 : JavaThread(&sweeper_thread_entry) {
3552   _scanned_compiled_method = NULL;
3553 }
3554 
3555 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3556   JavaThread::oops_do(f, cf);
3557   if (_scanned_compiled_method != NULL && cf != NULL) {
3558     // Safepoints can occur when the sweeper is scanning an nmethod so
3559     // process it here to make sure it isn't unloaded in the middle of
3560     // a scan.
3561     cf->do_code_blob(_scanned_compiled_method);
3562   }
3563 }
3564 
3565 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3566   JavaThread::nmethods_do(cf);
3567   if (_scanned_compiled_method != NULL && cf != NULL) {
3568     // Safepoints can occur when the sweeper is scanning an nmethod so
3569     // process it here to make sure it isn't unloaded in the middle of
3570     // a scan.
3571     cf->do_code_blob(_scanned_compiled_method);
3572   }
3573 }
3574 
3575 
3576 // ======= Threads ========
3577 
3578 // The Threads class links together all active threads, and provides
3579 // operations over all threads. It is protected by the Threads_lock,
3580 // which is also used in other global contexts like safepointing.
3581 // ThreadsListHandles are used to safely perform operations on one
3582 // or more threads without the risk of the thread exiting during the
3583 // operation.
3584 //
3585 // Note: The Threads_lock is currently more widely used than we
3586 // would like. We are actively migrating Threads_lock uses to other
3587 // mechanisms in order to reduce Threads_lock contention.
3588 
3589 int         Threads::_number_of_threads = 0;
3590 int         Threads::_number_of_non_daemon_threads = 0;
3591 int         Threads::_return_code = 0;
3592 uintx       Threads::_thread_claim_token = 1; // Never zero.
3593 size_t      JavaThread::_stack_size_at_create = 0;
3594 
3595 #ifdef ASSERT
3596 bool        Threads::_vm_complete = false;
3597 #endif
3598 
3599 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3600   Prefetch::read((void*)addr, prefetch_interval);
3601   return *addr;
3602 }
3603 
3604 // Possibly the ugliest for loop the world has seen. C++ does not allow
3605 // multiple types in the declaration section of the for loop. In this case
3606 // we are only dealing with pointers and hence can cast them. It looks ugly
3607 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3608 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3609     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3610              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3611              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3612              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3613              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3614          MACRO_current_p != MACRO_end;                                                                                    \
3615          MACRO_current_p++,                                                                                               \
3616              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3617 
3618 // All JavaThreads
3619 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3620 
3621 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3622 void Threads::non_java_threads_do(ThreadClosure* tc) {
3623   NoSafepointVerifier nsv;
3624   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3625     tc->do_thread(njti.current());
3626   }
3627 }
3628 
3629 // All JavaThreads
3630 void Threads::java_threads_do(ThreadClosure* tc) {
3631   assert_locked_or_safepoint(Threads_lock);
3632   // ALL_JAVA_THREADS iterates through all JavaThreads.
3633   ALL_JAVA_THREADS(p) {
3634     tc->do_thread(p);
3635   }
3636 }
3637 
3638 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3639   assert_locked_or_safepoint(Threads_lock);
3640   java_threads_do(tc);
3641   tc->do_thread(VMThread::vm_thread());
3642 }
3643 
3644 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3645 void Threads::threads_do(ThreadClosure* tc) {
3646   assert_locked_or_safepoint(Threads_lock);
3647   java_threads_do(tc);
3648   non_java_threads_do(tc);
3649 }
3650 
3651 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3652   uintx claim_token = Threads::thread_claim_token();
3653   ALL_JAVA_THREADS(p) {
3654     if (p->claim_threads_do(is_par, claim_token)) {
3655       tc->do_thread(p);
3656     }
3657   }
3658   VMThread* vmt = VMThread::vm_thread();
3659   if (vmt->claim_threads_do(is_par, claim_token)) {
3660     tc->do_thread(vmt);
3661   }
3662 }
3663 
3664 // The system initialization in the library has three phases.
3665 //
3666 // Phase 1: java.lang.System class initialization
3667 //     java.lang.System is a primordial class loaded and initialized
3668 //     by the VM early during startup.  java.lang.System.<clinit>
3669 //     only does registerNatives and keeps the rest of the class
3670 //     initialization work later until thread initialization completes.
3671 //
3672 //     System.initPhase1 initializes the system properties, the static
3673 //     fields in, out, and err. Set up java signal handlers, OS-specific
3674 //     system settings, and thread group of the main thread.
3675 static void call_initPhase1(TRAPS) {
3676   Klass* klass = SystemDictionary::System_klass();
3677   JavaValue result(T_VOID);
3678   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3679                                          vmSymbols::void_method_signature(), CHECK);
3680 }
3681 
3682 // Phase 2. Module system initialization
3683 //     This will initialize the module system.  Only java.base classes
3684 //     can be loaded until phase 2 completes.
3685 //
3686 //     Call System.initPhase2 after the compiler initialization and jsr292
3687 //     classes get initialized because module initialization runs a lot of java
3688 //     code, that for performance reasons, should be compiled.  Also, this will
3689 //     enable the startup code to use lambda and other language features in this
3690 //     phase and onward.
3691 //
3692 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3693 static void call_initPhase2(TRAPS) {
3694   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3695 
3696   Klass* klass = SystemDictionary::System_klass();
3697 
3698   JavaValue result(T_INT);
3699   JavaCallArguments args;
3700   args.push_int(DisplayVMOutputToStderr);
3701   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3702   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3703                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3704   if (result.get_jint() != JNI_OK) {
3705     vm_exit_during_initialization(); // no message or exception
3706   }
3707 
3708   universe_post_module_init();
3709 }
3710 
3711 // Phase 3. final setup - set security manager, system class loader and TCCL
3712 //
3713 //     This will instantiate and set the security manager, set the system class
3714 //     loader as well as the thread context class loader.  The security manager
3715 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3716 //     other modules or the application's classpath.
3717 static void call_initPhase3(TRAPS) {
3718   Klass* klass = SystemDictionary::System_klass();
3719   JavaValue result(T_VOID);
3720   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3721                                          vmSymbols::void_method_signature(), CHECK);
3722 }
3723 
3724 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3725   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3726 
3727   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3728     create_vm_init_libraries();
3729   }
3730 
3731   initialize_class(vmSymbols::java_lang_String(), CHECK);
3732 
3733   // Inject CompactStrings value after the static initializers for String ran.
3734   java_lang_String::set_compact_strings(CompactStrings);
3735 
3736   // Initialize java_lang.System (needed before creating the thread)
3737   initialize_class(vmSymbols::java_lang_System(), CHECK);
3738   // The VM creates & returns objects of this class. Make sure it's initialized.
3739   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3740   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3741   Handle thread_group = create_initial_thread_group(CHECK);
3742   Universe::set_main_thread_group(thread_group());
3743   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3744   create_initial_thread(thread_group, main_thread, CHECK);
3745 
3746   // The VM creates objects of this class.
3747   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3748 
3749 #ifdef ASSERT
3750   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3751   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3752 #endif
3753 
3754   // initialize the hardware-specific constants needed by Unsafe
3755   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3756   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3757 
3758   // The VM preresolves methods to these classes. Make sure that they get initialized
3759   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3760   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3761 
3762   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3763   call_initPhase1(CHECK);
3764 
3765   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3766   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3767   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3768   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3769   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3770 
3771   // an instance of OutOfMemory exception has been allocated earlier
3772   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3773   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3774   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3775   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3776   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3777   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3778   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3779   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3780 
3781   // Eager box cache initialization only if AOT is on and any library is loaded.
3782   AOTLoader::initialize_box_caches(CHECK);
3783 }
3784 
3785 void Threads::initialize_jsr292_core_classes(TRAPS) {
3786   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3787 
3788   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3789   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3790   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3791   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3792 }
3793 
3794 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3795   extern void JDK_Version_init();
3796 
3797   // Preinitialize version info.
3798   VM_Version::early_initialize();
3799 
3800   // Check version
3801   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3802 
3803   // Initialize library-based TLS
3804   ThreadLocalStorage::init();
3805 
3806   // Initialize the output stream module
3807   ostream_init();
3808 
3809   // Process java launcher properties.
3810   Arguments::process_sun_java_launcher_properties(args);
3811 
3812   // Initialize the os module
3813   os::init();
3814 
3815   // Record VM creation timing statistics
3816   TraceVmCreationTime create_vm_timer;
3817   create_vm_timer.start();
3818 
3819   // Initialize system properties.
3820   Arguments::init_system_properties();
3821 
3822   // So that JDK version can be used as a discriminator when parsing arguments
3823   JDK_Version_init();
3824 
3825   // Update/Initialize System properties after JDK version number is known
3826   Arguments::init_version_specific_system_properties();
3827 
3828   // Make sure to initialize log configuration *before* parsing arguments
3829   LogConfiguration::initialize(create_vm_timer.begin_time());
3830 
3831   // Parse arguments
3832   // Note: this internally calls os::init_container_support()
3833   jint parse_result = Arguments::parse(args);
3834   if (parse_result != JNI_OK) return parse_result;
3835 
3836   os::init_before_ergo();
3837 
3838   jint ergo_result = Arguments::apply_ergo();
3839   if (ergo_result != JNI_OK) return ergo_result;
3840 
3841   // Final check of all ranges after ergonomics which may change values.
3842   if (!JVMFlagRangeList::check_ranges()) {
3843     return JNI_EINVAL;
3844   }
3845 
3846   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3847   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3848   if (!constraint_result) {
3849     return JNI_EINVAL;
3850   }
3851 
3852   if (PauseAtStartup) {
3853     os::pause();
3854   }
3855 
3856   HOTSPOT_VM_INIT_BEGIN();
3857 
3858   // Timing (must come after argument parsing)
3859   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3860 
3861   // Initialize the os module after parsing the args
3862   jint os_init_2_result = os::init_2();
3863   if (os_init_2_result != JNI_OK) return os_init_2_result;
3864 
3865 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3866   // Initialize assert poison page mechanism.
3867   if (ShowRegistersOnAssert) {
3868     initialize_assert_poison();
3869   }
3870 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3871 
3872   SafepointMechanism::initialize();
3873 
3874   jint adjust_after_os_result = Arguments::adjust_after_os();
3875   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3876 
3877   // Initialize output stream logging
3878   ostream_init_log();
3879 
3880   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3881   // Must be before create_vm_init_agents()
3882   if (Arguments::init_libraries_at_startup()) {
3883     convert_vm_init_libraries_to_agents();
3884   }
3885 
3886   // Launch -agentlib/-agentpath and converted -Xrun agents
3887   if (Arguments::init_agents_at_startup()) {
3888     create_vm_init_agents();
3889   }
3890 
3891   // Initialize Threads state
3892   _number_of_threads = 0;
3893   _number_of_non_daemon_threads = 0;
3894 
3895   // Initialize global data structures and create system classes in heap
3896   vm_init_globals();
3897 
3898 #if INCLUDE_JVMCI
3899   if (JVMCICounterSize > 0) {
3900     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3901     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3902   } else {
3903     JavaThread::_jvmci_old_thread_counters = NULL;
3904   }
3905 #endif // INCLUDE_JVMCI
3906 
3907   // Initialize OopStorage for threadObj
3908   _thread_oop_storage = OopStorageSet::create_strong("Thread OopStorage");
3909 
3910   // Attach the main thread to this os thread
3911   JavaThread* main_thread = new JavaThread();
3912   main_thread->set_thread_state(_thread_in_vm);
3913   main_thread->initialize_thread_current();
3914   // must do this before set_active_handles
3915   main_thread->record_stack_base_and_size();
3916   main_thread->register_thread_stack_with_NMT();
3917   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3918 
3919   if (!main_thread->set_as_starting_thread()) {
3920     vm_shutdown_during_initialization(
3921                                       "Failed necessary internal allocation. Out of swap space");
3922     main_thread->smr_delete();
3923     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3924     return JNI_ENOMEM;
3925   }
3926 
3927   // Enable guard page *after* os::create_main_thread(), otherwise it would
3928   // crash Linux VM, see notes in os_linux.cpp.
3929   main_thread->create_stack_guard_pages();
3930 
3931   // Initialize Java-Level synchronization subsystem
3932   ObjectMonitor::Initialize();
3933 
3934   // Initialize global modules
3935   jint status = init_globals();
3936   if (status != JNI_OK) {
3937     main_thread->smr_delete();
3938     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3939     return status;
3940   }
3941 
3942   JFR_ONLY(Jfr::on_create_vm_1();)
3943 
3944   // Should be done after the heap is fully created
3945   main_thread->cache_global_variables();
3946 
3947   { MutexLocker mu(Threads_lock);
3948     Threads::add(main_thread);
3949   }
3950 
3951   // Any JVMTI raw monitors entered in onload will transition into
3952   // real raw monitor. VM is setup enough here for raw monitor enter.
3953   JvmtiExport::transition_pending_onload_raw_monitors();
3954 
3955   // Create the VMThread
3956   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3957 
3958     VMThread::create();
3959     Thread* vmthread = VMThread::vm_thread();
3960 
3961     if (!os::create_thread(vmthread, os::vm_thread)) {
3962       vm_exit_during_initialization("Cannot create VM thread. "
3963                                     "Out of system resources.");
3964     }
3965 
3966     // Wait for the VM thread to become ready, and VMThread::run to initialize
3967     // Monitors can have spurious returns, must always check another state flag
3968     {
3969       MonitorLocker ml(Notify_lock);
3970       os::start_thread(vmthread);
3971       while (vmthread->active_handles() == NULL) {
3972         ml.wait();
3973       }
3974     }
3975   }
3976 
3977   assert(Universe::is_fully_initialized(), "not initialized");
3978   if (VerifyDuringStartup) {
3979     // Make sure we're starting with a clean slate.
3980     VM_Verify verify_op;
3981     VMThread::execute(&verify_op);
3982   }
3983 
3984   // We need this to update the java.vm.info property in case any flags used
3985   // to initially define it have been changed. This is needed for both CDS and
3986   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3987   // is initially computed. See Abstract_VM_Version::vm_info_string().
3988   // This update must happen before we initialize the java classes, but
3989   // after any initialization logic that might modify the flags.
3990   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3991 
3992   Thread* THREAD = Thread::current();
3993   HandleMark hm(THREAD);
3994 
3995   // Always call even when there are not JVMTI environments yet, since environments
3996   // may be attached late and JVMTI must track phases of VM execution
3997   JvmtiExport::enter_early_start_phase();
3998 
3999   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4000   JvmtiExport::post_early_vm_start();
4001 
4002   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
4003 
4004   quicken_jni_functions();
4005 
4006   // No more stub generation allowed after that point.
4007   StubCodeDesc::freeze();
4008 
4009   // Set flag that basic initialization has completed. Used by exceptions and various
4010   // debug stuff, that does not work until all basic classes have been initialized.
4011   set_init_completed();
4012 
4013   LogConfiguration::post_initialize();
4014   Metaspace::post_initialize();
4015 
4016   HOTSPOT_VM_INIT_END();
4017 
4018   // record VM initialization completion time
4019 #if INCLUDE_MANAGEMENT
4020   Management::record_vm_init_completed();
4021 #endif // INCLUDE_MANAGEMENT
4022 
4023   // Signal Dispatcher needs to be started before VMInit event is posted
4024   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
4025 
4026   // Start Attach Listener if +StartAttachListener or it can't be started lazily
4027   if (!DisableAttachMechanism) {
4028     AttachListener::vm_start();
4029     if (StartAttachListener || AttachListener::init_at_startup()) {
4030       AttachListener::init();
4031     }
4032   }
4033 
4034   // Launch -Xrun agents
4035   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
4036   // back-end can launch with -Xdebug -Xrunjdwp.
4037   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
4038     create_vm_init_libraries();
4039   }
4040 
4041   if (CleanChunkPoolAsync) {
4042     Chunk::start_chunk_pool_cleaner_task();
4043   }
4044 
4045   // Start the service thread
4046   // The service thread enqueues JVMTI deferred events and does various hashtable
4047   // and other cleanups.  Needs to start before the compilers start posting events.
4048   ServiceThread::initialize();
4049 
4050   // initialize compiler(s)
4051 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
4052 #if INCLUDE_JVMCI
4053   bool force_JVMCI_intialization = false;
4054   if (EnableJVMCI) {
4055     // Initialize JVMCI eagerly when it is explicitly requested.
4056     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4057     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4058 
4059     if (!force_JVMCI_intialization) {
4060       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4061       // compilations via JVMCI will not actually block until JVMCI is initialized.
4062       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4063     }
4064   }
4065 #endif
4066   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4067   // Postpone completion of compiler initialization to after JVMCI
4068   // is initialized to avoid timeouts of blocking compilations.
4069   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4070     CompileBroker::compilation_init_phase2();
4071   }
4072 #endif
4073 
4074   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4075   // It is done after compilers are initialized, because otherwise compilations of
4076   // signature polymorphic MH intrinsics can be missed
4077   // (see SystemDictionary::find_method_handle_intrinsic).
4078   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4079 
4080   // This will initialize the module system.  Only java.base classes can be
4081   // loaded until phase 2 completes
4082   call_initPhase2(CHECK_JNI_ERR);
4083 
4084   JFR_ONLY(Jfr::on_create_vm_2();)
4085 
4086   // Always call even when there are not JVMTI environments yet, since environments
4087   // may be attached late and JVMTI must track phases of VM execution
4088   JvmtiExport::enter_start_phase();
4089 
4090   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4091   JvmtiExport::post_vm_start();
4092 
4093   // Final system initialization including security manager and system class loader
4094   call_initPhase3(CHECK_JNI_ERR);
4095 
4096   // cache the system and platform class loaders
4097   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4098 
4099 #if INCLUDE_CDS
4100   // capture the module path info from the ModuleEntryTable
4101   ClassLoader::initialize_module_path(THREAD);
4102 #endif
4103 
4104 #if INCLUDE_JVMCI
4105   if (force_JVMCI_intialization) {
4106     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4107     CompileBroker::compilation_init_phase2();
4108   }
4109 #endif
4110 
4111   // Always call even when there are not JVMTI environments yet, since environments
4112   // may be attached late and JVMTI must track phases of VM execution
4113   JvmtiExport::enter_live_phase();
4114 
4115   // Make perfmemory accessible
4116   PerfMemory::set_accessible(true);
4117 
4118   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4119   JvmtiExport::post_vm_initialized();
4120 
4121   JFR_ONLY(Jfr::on_create_vm_3();)
4122 
4123 #if INCLUDE_MANAGEMENT
4124   Management::initialize(THREAD);
4125 
4126   if (HAS_PENDING_EXCEPTION) {
4127     // management agent fails to start possibly due to
4128     // configuration problem and is responsible for printing
4129     // stack trace if appropriate. Simply exit VM.
4130     vm_exit(1);
4131   }
4132 #endif // INCLUDE_MANAGEMENT
4133 
4134   if (MemProfiling)                   MemProfiler::engage();
4135   StatSampler::engage();
4136   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4137 
4138   BiasedLocking::init();
4139 
4140 #if INCLUDE_RTM_OPT
4141   RTMLockingCounters::init();
4142 #endif
4143 
4144   call_postVMInitHook(THREAD);
4145   // The Java side of PostVMInitHook.run must deal with all
4146   // exceptions and provide means of diagnosis.
4147   if (HAS_PENDING_EXCEPTION) {
4148     CLEAR_PENDING_EXCEPTION;
4149   }
4150 
4151   {
4152     MutexLocker ml(PeriodicTask_lock);
4153     // Make sure the WatcherThread can be started by WatcherThread::start()
4154     // or by dynamic enrollment.
4155     WatcherThread::make_startable();
4156     // Start up the WatcherThread if there are any periodic tasks
4157     // NOTE:  All PeriodicTasks should be registered by now. If they
4158     //   aren't, late joiners might appear to start slowly (we might
4159     //   take a while to process their first tick).
4160     if (PeriodicTask::num_tasks() > 0) {
4161       WatcherThread::start();
4162     }
4163   }
4164 
4165   create_vm_timer.end();
4166 #ifdef ASSERT
4167   _vm_complete = true;
4168 #endif
4169 
4170   if (DumpSharedSpaces) {
4171     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4172     ShouldNotReachHere();
4173   }
4174 
4175   return JNI_OK;
4176 }
4177 
4178 // type for the Agent_OnLoad and JVM_OnLoad entry points
4179 extern "C" {
4180   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4181 }
4182 // Find a command line agent library and return its entry point for
4183 //         -agentlib:  -agentpath:   -Xrun
4184 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4185 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4186                                     const char *on_load_symbols[],
4187                                     size_t num_symbol_entries) {
4188   OnLoadEntry_t on_load_entry = NULL;
4189   void *library = NULL;
4190 
4191   if (!agent->valid()) {
4192     char buffer[JVM_MAXPATHLEN];
4193     char ebuf[1024] = "";
4194     const char *name = agent->name();
4195     const char *msg = "Could not find agent library ";
4196 
4197     // First check to see if agent is statically linked into executable
4198     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4199       library = agent->os_lib();
4200     } else if (agent->is_absolute_path()) {
4201       library = os::dll_load(name, ebuf, sizeof ebuf);
4202       if (library == NULL) {
4203         const char *sub_msg = " in absolute path, with error: ";
4204         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4205         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4206         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4207         // If we can't find the agent, exit.
4208         vm_exit_during_initialization(buf, NULL);
4209         FREE_C_HEAP_ARRAY(char, buf);
4210       }
4211     } else {
4212       // Try to load the agent from the standard dll directory
4213       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4214                              name)) {
4215         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4216       }
4217       if (library == NULL) { // Try the library path directory.
4218         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4219           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4220         }
4221         if (library == NULL) {
4222           const char *sub_msg = " on the library path, with error: ";
4223           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4224 
4225           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4226                        strlen(ebuf) + strlen(sub_msg2) + 1;
4227           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4228           if (!agent->is_instrument_lib()) {
4229             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4230           } else {
4231             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4232           }
4233           // If we can't find the agent, exit.
4234           vm_exit_during_initialization(buf, NULL);
4235           FREE_C_HEAP_ARRAY(char, buf);
4236         }
4237       }
4238     }
4239     agent->set_os_lib(library);
4240     agent->set_valid();
4241   }
4242 
4243   // Find the OnLoad function.
4244   on_load_entry =
4245     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4246                                                           false,
4247                                                           on_load_symbols,
4248                                                           num_symbol_entries));
4249   return on_load_entry;
4250 }
4251 
4252 // Find the JVM_OnLoad entry point
4253 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4254   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4255   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4256 }
4257 
4258 // Find the Agent_OnLoad entry point
4259 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4260   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4261   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4262 }
4263 
4264 // For backwards compatibility with -Xrun
4265 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4266 // treated like -agentpath:
4267 // Must be called before agent libraries are created
4268 void Threads::convert_vm_init_libraries_to_agents() {
4269   AgentLibrary* agent;
4270   AgentLibrary* next;
4271 
4272   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4273     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4274     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4275 
4276     // If there is an JVM_OnLoad function it will get called later,
4277     // otherwise see if there is an Agent_OnLoad
4278     if (on_load_entry == NULL) {
4279       on_load_entry = lookup_agent_on_load(agent);
4280       if (on_load_entry != NULL) {
4281         // switch it to the agent list -- so that Agent_OnLoad will be called,
4282         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4283         Arguments::convert_library_to_agent(agent);
4284       } else {
4285         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4286       }
4287     }
4288   }
4289 }
4290 
4291 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4292 // Invokes Agent_OnLoad
4293 // Called very early -- before JavaThreads exist
4294 void Threads::create_vm_init_agents() {
4295   extern struct JavaVM_ main_vm;
4296   AgentLibrary* agent;
4297 
4298   JvmtiExport::enter_onload_phase();
4299 
4300   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4301     // CDS dumping does not support native JVMTI agent.
4302     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4303     if (Arguments::is_dumping_archive()) {
4304       if(!agent->is_instrument_lib()) {
4305         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4306       } else if (!AllowArchivingWithJavaAgent) {
4307         vm_exit_during_cds_dumping(
4308           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4309       }
4310     }
4311 
4312     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4313 
4314     if (on_load_entry != NULL) {
4315       // Invoke the Agent_OnLoad function
4316       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4317       if (err != JNI_OK) {
4318         vm_exit_during_initialization("agent library failed to init", agent->name());
4319       }
4320     } else {
4321       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4322     }
4323   }
4324 
4325   JvmtiExport::enter_primordial_phase();
4326 }
4327 
4328 extern "C" {
4329   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4330 }
4331 
4332 void Threads::shutdown_vm_agents() {
4333   // Send any Agent_OnUnload notifications
4334   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4335   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4336   extern struct JavaVM_ main_vm;
4337   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4338 
4339     // Find the Agent_OnUnload function.
4340     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4341                                                    os::find_agent_function(agent,
4342                                                    false,
4343                                                    on_unload_symbols,
4344                                                    num_symbol_entries));
4345 
4346     // Invoke the Agent_OnUnload function
4347     if (unload_entry != NULL) {
4348       JavaThread* thread = JavaThread::current();
4349       ThreadToNativeFromVM ttn(thread);
4350       HandleMark hm(thread);
4351       (*unload_entry)(&main_vm);
4352     }
4353   }
4354 }
4355 
4356 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4357 // Invokes JVM_OnLoad
4358 void Threads::create_vm_init_libraries() {
4359   extern struct JavaVM_ main_vm;
4360   AgentLibrary* agent;
4361 
4362   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4363     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4364 
4365     if (on_load_entry != NULL) {
4366       // Invoke the JVM_OnLoad function
4367       JavaThread* thread = JavaThread::current();
4368       ThreadToNativeFromVM ttn(thread);
4369       HandleMark hm(thread);
4370       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4371       if (err != JNI_OK) {
4372         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4373       }
4374     } else {
4375       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4376     }
4377   }
4378 }
4379 
4380 
4381 // Last thread running calls java.lang.Shutdown.shutdown()
4382 void JavaThread::invoke_shutdown_hooks() {
4383   HandleMark hm(this);
4384 
4385   // Link all classes for dynamic CDS dumping before vm exit.
4386   // Same operation is being done in JVM_BeforeHalt for handling the
4387   // case where the application calls System.exit().
4388   if (DynamicDumpSharedSpaces) {
4389     MetaspaceShared::link_and_cleanup_shared_classes(this);
4390   }
4391 
4392   // We could get here with a pending exception, if so clear it now.
4393   if (this->has_pending_exception()) {
4394     this->clear_pending_exception();
4395   }
4396 
4397   EXCEPTION_MARK;
4398   Klass* shutdown_klass =
4399     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4400                                       THREAD);
4401   if (shutdown_klass != NULL) {
4402     // SystemDictionary::resolve_or_null will return null if there was
4403     // an exception.  If we cannot load the Shutdown class, just don't
4404     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4405     // won't be run.  Note that if a shutdown hook was registered,
4406     // the Shutdown class would have already been loaded
4407     // (Runtime.addShutdownHook will load it).
4408     JavaValue result(T_VOID);
4409     JavaCalls::call_static(&result,
4410                            shutdown_klass,
4411                            vmSymbols::shutdown_name(),
4412                            vmSymbols::void_method_signature(),
4413                            THREAD);
4414   }
4415   CLEAR_PENDING_EXCEPTION;
4416 }
4417 
4418 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4419 // the program falls off the end of main(). Another VM exit path is through
4420 // vm_exit() when the program calls System.exit() to return a value or when
4421 // there is a serious error in VM. The two shutdown paths are not exactly
4422 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4423 // and VM_Exit op at VM level.
4424 //
4425 // Shutdown sequence:
4426 //   + Shutdown native memory tracking if it is on
4427 //   + Wait until we are the last non-daemon thread to execute
4428 //     <-- every thing is still working at this moment -->
4429 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4430 //        shutdown hooks
4431 //   + Call before_exit(), prepare for VM exit
4432 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4433 //        currently the only user of this mechanism is File.deleteOnExit())
4434 //      > stop StatSampler, watcher thread,
4435 //        post thread end and vm death events to JVMTI,
4436 //        stop signal thread
4437 //   + Call JavaThread::exit(), it will:
4438 //      > release JNI handle blocks, remove stack guard pages
4439 //      > remove this thread from Threads list
4440 //     <-- no more Java code from this thread after this point -->
4441 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4442 //     the compiler threads at safepoint
4443 //     <-- do not use anything that could get blocked by Safepoint -->
4444 //   + Disable tracing at JNI/JVM barriers
4445 //   + Set _vm_exited flag for threads that are still running native code
4446 //   + Call exit_globals()
4447 //      > deletes tty
4448 //      > deletes PerfMemory resources
4449 //   + Delete this thread
4450 //   + Return to caller
4451 
4452 bool Threads::destroy_vm() {
4453   JavaThread* thread = JavaThread::current();
4454 
4455 #ifdef ASSERT
4456   _vm_complete = false;
4457 #endif
4458   // Wait until we are the last non-daemon thread to execute
4459   { MonitorLocker nu(Threads_lock);
4460     while (Threads::number_of_non_daemon_threads() > 1)
4461       // This wait should make safepoint checks, wait without a timeout,
4462       // and wait as a suspend-equivalent condition.
4463       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4464   }
4465 
4466   EventShutdown e;
4467   if (e.should_commit()) {
4468     e.set_reason("No remaining non-daemon Java threads");
4469     e.commit();
4470   }
4471 
4472   // Hang forever on exit if we are reporting an error.
4473   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4474     os::infinite_sleep();
4475   }
4476   os::wait_for_keypress_at_exit();
4477 
4478   // run Java level shutdown hooks
4479   thread->invoke_shutdown_hooks();
4480 
4481   before_exit(thread);
4482 
4483   thread->exit(true);
4484 
4485   // We are no longer on the main thread list but could still be in a
4486   // secondary list where another thread may try to interact with us.
4487   // So wait until all such interactions are complete before we bring
4488   // the VM to the termination safepoint. Normally this would be done
4489   // using thread->smr_delete() below where we delete the thread, but
4490   // we can't call that after the termination safepoint is active as
4491   // we will deadlock on the Threads_lock. Once all interactions are
4492   // complete it is safe to directly delete the thread at any time.
4493   ThreadsSMRSupport::wait_until_not_protected(thread);
4494 
4495   // Stop VM thread.
4496   {
4497     // 4945125 The vm thread comes to a safepoint during exit.
4498     // GC vm_operations can get caught at the safepoint, and the
4499     // heap is unparseable if they are caught. Grab the Heap_lock
4500     // to prevent this. The GC vm_operations will not be able to
4501     // queue until after the vm thread is dead. After this point,
4502     // we'll never emerge out of the safepoint before the VM exits.
4503 
4504     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4505 
4506     VMThread::wait_for_vm_thread_exit();
4507     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4508     VMThread::destroy();
4509   }
4510 
4511   // Now, all Java threads are gone except daemon threads. Daemon threads
4512   // running Java code or in VM are stopped by the Safepoint. However,
4513   // daemon threads executing native code are still running.  But they
4514   // will be stopped at native=>Java/VM barriers. Note that we can't
4515   // simply kill or suspend them, as it is inherently deadlock-prone.
4516 
4517   VM_Exit::set_vm_exited();
4518 
4519   // Clean up ideal graph printers after the VMThread has started
4520   // the final safepoint which will block all the Compiler threads.
4521   // Note that this Thread has already logically exited so the
4522   // clean_up() function's use of a JavaThreadIteratorWithHandle
4523   // would be a problem except set_vm_exited() has remembered the
4524   // shutdown thread which is granted a policy exception.
4525 #if defined(COMPILER2) && !defined(PRODUCT)
4526   IdealGraphPrinter::clean_up();
4527 #endif
4528 
4529   notify_vm_shutdown();
4530 
4531   // exit_globals() will delete tty
4532   exit_globals();
4533 
4534   // Deleting the shutdown thread here is safe. See comment on
4535   // wait_until_not_protected() above.
4536   delete thread;
4537 
4538 #if INCLUDE_JVMCI
4539   if (JVMCICounterSize > 0) {
4540     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4541   }
4542 #endif
4543 
4544   LogConfiguration::finalize();
4545 
4546   return true;
4547 }
4548 
4549 
4550 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4551   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4552   return is_supported_jni_version(version);
4553 }
4554 
4555 
4556 jboolean Threads::is_supported_jni_version(jint version) {
4557   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4558   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4559   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4560   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4561   if (version == JNI_VERSION_9) return JNI_TRUE;
4562   if (version == JNI_VERSION_10) return JNI_TRUE;
4563   return JNI_FALSE;
4564 }
4565 
4566 
4567 void Threads::add(JavaThread* p, bool force_daemon) {
4568   // The threads lock must be owned at this point
4569   assert(Threads_lock->owned_by_self(), "must have threads lock");
4570 
4571   BarrierSet::barrier_set()->on_thread_attach(p);
4572 
4573   // Once a JavaThread is added to the Threads list, smr_delete() has
4574   // to be used to delete it. Otherwise we can just delete it directly.
4575   p->set_on_thread_list();
4576 
4577   _number_of_threads++;
4578   oop threadObj = p->threadObj();
4579   bool daemon = true;
4580   // Bootstrapping problem: threadObj can be null for initial
4581   // JavaThread (or for threads attached via JNI)
4582   if ((!force_daemon) && !is_daemon((threadObj))) {
4583     _number_of_non_daemon_threads++;
4584     daemon = false;
4585   }
4586 
4587   ThreadService::add_thread(p, daemon);
4588 
4589   // Maintain fast thread list
4590   ThreadsSMRSupport::add_thread(p);
4591 
4592   // Possible GC point.
4593   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4594 }
4595 
4596 void Threads::remove(JavaThread* p, bool is_daemon) {
4597 
4598   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4599   ObjectSynchronizer::om_flush(p);
4600 
4601   // Extra scope needed for Thread_lock, so we can check
4602   // that we do not remove thread without safepoint code notice
4603   { MonitorLocker ml(Threads_lock);
4604 
4605     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4606 
4607     // Maintain fast thread list
4608     ThreadsSMRSupport::remove_thread(p);
4609 
4610     _number_of_threads--;
4611     if (!is_daemon) {
4612       _number_of_non_daemon_threads--;
4613 
4614       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4615       // on destroy_vm will wake up.
4616       if (number_of_non_daemon_threads() == 1) {
4617         ml.notify_all();
4618       }
4619     }
4620     ThreadService::remove_thread(p, is_daemon);
4621 
4622     // Make sure that safepoint code disregard this thread. This is needed since
4623     // the thread might mess around with locks after this point. This can cause it
4624     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4625     // of this thread since it is removed from the queue.
4626     p->set_terminated_value();
4627   } // unlock Threads_lock
4628 
4629   // Since Events::log uses a lock, we grab it outside the Threads_lock
4630   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4631 }
4632 
4633 // Operations on the Threads list for GC.  These are not explicitly locked,
4634 // but the garbage collector must provide a safe context for them to run.
4635 // In particular, these things should never be called when the Threads_lock
4636 // is held by some other thread. (Note: the Safepoint abstraction also
4637 // uses the Threads_lock to guarantee this property. It also makes sure that
4638 // all threads gets blocked when exiting or starting).
4639 
4640 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4641   ALL_JAVA_THREADS(p) {
4642     p->oops_do(f, cf);
4643   }
4644   VMThread::vm_thread()->oops_do(f, cf);
4645 }
4646 
4647 void Threads::change_thread_claim_token() {
4648   if (++_thread_claim_token == 0) {
4649     // On overflow of the token counter, there is a risk of future
4650     // collisions between a new global token value and a stale token
4651     // for a thread, because not all iterations visit all threads.
4652     // (Though it's pretty much a theoretical concern for non-trivial
4653     // token counter sizes.)  To deal with the possibility, reset all
4654     // the thread tokens to zero on global token overflow.
4655     struct ResetClaims : public ThreadClosure {
4656       virtual void do_thread(Thread* t) {
4657         t->claim_threads_do(false, 0);
4658       }
4659     } reset_claims;
4660     Threads::threads_do(&reset_claims);
4661     // On overflow, update the global token to non-zero, to
4662     // avoid the special "never claimed" initial thread value.
4663     _thread_claim_token = 1;
4664   }
4665 }
4666 
4667 #ifdef ASSERT
4668 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4669   const uintx token = t->threads_do_token();
4670   assert(token == expected,
4671          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4672          UINTX_FORMAT, kind, p2i(t), token, expected);
4673 }
4674 
4675 void Threads::assert_all_threads_claimed() {
4676   ALL_JAVA_THREADS(p) {
4677     assert_thread_claimed("Thread", p, _thread_claim_token);
4678   }
4679   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4680 }
4681 #endif // ASSERT
4682 
4683 class ParallelOopsDoThreadClosure : public ThreadClosure {
4684 private:
4685   OopClosure* _f;
4686   CodeBlobClosure* _cf;
4687 public:
4688   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4689   void do_thread(Thread* t) {
4690     t->oops_do(_f, _cf);
4691   }
4692 };
4693 
4694 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4695   ParallelOopsDoThreadClosure tc(f, cf);
4696   possibly_parallel_threads_do(is_par, &tc);
4697 }
4698 
4699 void Threads::nmethods_do(CodeBlobClosure* cf) {
4700   ALL_JAVA_THREADS(p) {
4701     // This is used by the code cache sweeper to mark nmethods that are active
4702     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4703     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4704     if(!p->is_Code_cache_sweeper_thread()) {
4705       p->nmethods_do(cf);
4706     }
4707   }
4708 }
4709 
4710 void Threads::metadata_do(MetadataClosure* f) {
4711   ALL_JAVA_THREADS(p) {
4712     p->metadata_do(f);
4713   }
4714 }
4715 
4716 class ThreadHandlesClosure : public ThreadClosure {
4717   void (*_f)(Metadata*);
4718  public:
4719   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4720   virtual void do_thread(Thread* thread) {
4721     thread->metadata_handles_do(_f);
4722   }
4723 };
4724 
4725 void Threads::metadata_handles_do(void f(Metadata*)) {
4726   // Only walk the Handles in Thread.
4727   ThreadHandlesClosure handles_closure(f);
4728   threads_do(&handles_closure);
4729 }
4730 
4731 // Get count Java threads that are waiting to enter the specified monitor.
4732 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4733                                                          int count,
4734                                                          address monitor) {
4735   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4736 
4737   int i = 0;
4738   DO_JAVA_THREADS(t_list, p) {
4739     if (!p->can_call_java()) continue;
4740 
4741     // The first stage of async deflation does not affect any field
4742     // used by this comparison so the ObjectMonitor* is usable here.
4743     address pending = (address)p->current_pending_monitor();
4744     if (pending == monitor) {             // found a match
4745       if (i < count) result->append(p);   // save the first count matches
4746       i++;
4747     }
4748   }
4749 
4750   return result;
4751 }
4752 
4753 
4754 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4755                                                       address owner) {
4756   // NULL owner means not locked so we can skip the search
4757   if (owner == NULL) return NULL;
4758 
4759   DO_JAVA_THREADS(t_list, p) {
4760     // first, see if owner is the address of a Java thread
4761     if (owner == (address)p) return p;
4762   }
4763 
4764   // Cannot assert on lack of success here since this function may be
4765   // used by code that is trying to report useful problem information
4766   // like deadlock detection.
4767   if (UseHeavyMonitors) return NULL;
4768 
4769   // If we didn't find a matching Java thread and we didn't force use of
4770   // heavyweight monitors, then the owner is the stack address of the
4771   // Lock Word in the owning Java thread's stack.
4772   //
4773   JavaThread* the_owner = NULL;
4774   DO_JAVA_THREADS(t_list, q) {
4775     if (q->is_lock_owned(owner)) {
4776       the_owner = q;
4777       break;
4778     }
4779   }
4780 
4781   // cannot assert on lack of success here; see above comment
4782   return the_owner;
4783 }
4784 
4785 class PrintOnClosure : public ThreadClosure {
4786 private:
4787   outputStream* _st;
4788 
4789 public:
4790   PrintOnClosure(outputStream* st) :
4791       _st(st) {}
4792 
4793   virtual void do_thread(Thread* thread) {
4794     if (thread != NULL) {
4795       thread->print_on(_st);
4796       _st->cr();
4797     }
4798   }
4799 };
4800 
4801 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4802 void Threads::print_on(outputStream* st, bool print_stacks,
4803                        bool internal_format, bool print_concurrent_locks,
4804                        bool print_extended_info) {
4805   char buf[32];
4806   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4807 
4808   st->print_cr("Full thread dump %s (%s %s):",
4809                VM_Version::vm_name(),
4810                VM_Version::vm_release(),
4811                VM_Version::vm_info_string());
4812   st->cr();
4813 
4814 #if INCLUDE_SERVICES
4815   // Dump concurrent locks
4816   ConcurrentLocksDump concurrent_locks;
4817   if (print_concurrent_locks) {
4818     concurrent_locks.dump_at_safepoint();
4819   }
4820 #endif // INCLUDE_SERVICES
4821 
4822   ThreadsSMRSupport::print_info_on(st);
4823   st->cr();
4824 
4825   ALL_JAVA_THREADS(p) {
4826     ResourceMark rm;
4827     p->print_on(st, print_extended_info);
4828     if (print_stacks) {
4829       if (internal_format) {
4830         p->trace_stack();
4831       } else {
4832         p->print_stack_on(st);
4833       }
4834     }
4835     st->cr();
4836 #if INCLUDE_SERVICES
4837     if (print_concurrent_locks) {
4838       concurrent_locks.print_locks_on(p, st);
4839     }
4840 #endif // INCLUDE_SERVICES
4841   }
4842 
4843   PrintOnClosure cl(st);
4844   cl.do_thread(VMThread::vm_thread());
4845   Universe::heap()->gc_threads_do(&cl);
4846   cl.do_thread(WatcherThread::watcher_thread());
4847 
4848   st->flush();
4849 }
4850 
4851 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4852                              int buflen, bool* found_current) {
4853   if (this_thread != NULL) {
4854     bool is_current = (current == this_thread);
4855     *found_current = *found_current || is_current;
4856     st->print("%s", is_current ? "=>" : "  ");
4857 
4858     st->print(PTR_FORMAT, p2i(this_thread));
4859     st->print(" ");
4860     this_thread->print_on_error(st, buf, buflen);
4861     st->cr();
4862   }
4863 }
4864 
4865 class PrintOnErrorClosure : public ThreadClosure {
4866   outputStream* _st;
4867   Thread* _current;
4868   char* _buf;
4869   int _buflen;
4870   bool* _found_current;
4871  public:
4872   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4873                       int buflen, bool* found_current) :
4874    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4875 
4876   virtual void do_thread(Thread* thread) {
4877     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4878   }
4879 };
4880 
4881 // Threads::print_on_error() is called by fatal error handler. It's possible
4882 // that VM is not at safepoint and/or current thread is inside signal handler.
4883 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4884 // memory (even in resource area), it might deadlock the error handler.
4885 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4886                              int buflen) {
4887   ThreadsSMRSupport::print_info_on(st);
4888   st->cr();
4889 
4890   bool found_current = false;
4891   st->print_cr("Java Threads: ( => current thread )");
4892   ALL_JAVA_THREADS(thread) {
4893     print_on_error(thread, st, current, buf, buflen, &found_current);
4894   }
4895   st->cr();
4896 
4897   st->print_cr("Other Threads:");
4898   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4899   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4900 
4901   if (Universe::heap() != NULL) {
4902     PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4903     Universe::heap()->gc_threads_do(&print_closure);
4904   }
4905 
4906   if (!found_current) {
4907     st->cr();
4908     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4909     current->print_on_error(st, buf, buflen);
4910     st->cr();
4911   }
4912   st->cr();
4913 
4914   st->print_cr("Threads with active compile tasks:");
4915   print_threads_compiling(st, buf, buflen);
4916 }
4917 
4918 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4919   ALL_JAVA_THREADS(thread) {
4920     if (thread->is_Compiler_thread()) {
4921       CompilerThread* ct = (CompilerThread*) thread;
4922 
4923       // Keep task in local variable for NULL check.
4924       // ct->_task might be set to NULL by concurring compiler thread
4925       // because it completed the compilation. The task is never freed,
4926       // though, just returned to a free list.
4927       CompileTask* task = ct->task();
4928       if (task != NULL) {
4929         thread->print_name_on_error(st, buf, buflen);
4930         st->print("  ");
4931         task->print(st, NULL, short_form, true);
4932       }
4933     }
4934   }
4935 }
4936 
4937 
4938 // Internal SpinLock and Mutex
4939 // Based on ParkEvent
4940 
4941 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4942 //
4943 // We employ SpinLocks _only for low-contention, fixed-length
4944 // short-duration critical sections where we're concerned
4945 // about native mutex_t or HotSpot Mutex:: latency.
4946 // The mux construct provides a spin-then-block mutual exclusion
4947 // mechanism.
4948 //
4949 // Testing has shown that contention on the ListLock guarding gFreeList
4950 // is common.  If we implement ListLock as a simple SpinLock it's common
4951 // for the JVM to devolve to yielding with little progress.  This is true
4952 // despite the fact that the critical sections protected by ListLock are
4953 // extremely short.
4954 //
4955 // TODO-FIXME: ListLock should be of type SpinLock.
4956 // We should make this a 1st-class type, integrated into the lock
4957 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4958 // should have sufficient padding to avoid false-sharing and excessive
4959 // cache-coherency traffic.
4960 
4961 
4962 typedef volatile int SpinLockT;
4963 
4964 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4965   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4966     return;   // normal fast-path return
4967   }
4968 
4969   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4970   int ctr = 0;
4971   int Yields = 0;
4972   for (;;) {
4973     while (*adr != 0) {
4974       ++ctr;
4975       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4976         if (Yields > 5) {
4977           os::naked_short_sleep(1);
4978         } else {
4979           os::naked_yield();
4980           ++Yields;
4981         }
4982       } else {
4983         SpinPause();
4984       }
4985     }
4986     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4987   }
4988 }
4989 
4990 void Thread::SpinRelease(volatile int * adr) {
4991   assert(*adr != 0, "invariant");
4992   OrderAccess::fence();      // guarantee at least release consistency.
4993   // Roach-motel semantics.
4994   // It's safe if subsequent LDs and STs float "up" into the critical section,
4995   // but prior LDs and STs within the critical section can't be allowed
4996   // to reorder or float past the ST that releases the lock.
4997   // Loads and stores in the critical section - which appear in program
4998   // order before the store that releases the lock - must also appear
4999   // before the store that releases the lock in memory visibility order.
5000   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
5001   // the ST of 0 into the lock-word which releases the lock, so fence
5002   // more than covers this on all platforms.
5003   *adr = 0;
5004 }
5005 
5006 // muxAcquire and muxRelease:
5007 //
5008 // *  muxAcquire and muxRelease support a single-word lock-word construct.
5009 //    The LSB of the word is set IFF the lock is held.
5010 //    The remainder of the word points to the head of a singly-linked list
5011 //    of threads blocked on the lock.
5012 //
5013 // *  The current implementation of muxAcquire-muxRelease uses its own
5014 //    dedicated Thread._MuxEvent instance.  If we're interested in
5015 //    minimizing the peak number of extant ParkEvent instances then
5016 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
5017 //    as certain invariants were satisfied.  Specifically, care would need
5018 //    to be taken with regards to consuming unpark() "permits".
5019 //    A safe rule of thumb is that a thread would never call muxAcquire()
5020 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
5021 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
5022 //    consume an unpark() permit intended for monitorenter, for instance.
5023 //    One way around this would be to widen the restricted-range semaphore
5024 //    implemented in park().  Another alternative would be to provide
5025 //    multiple instances of the PlatformEvent() for each thread.  One
5026 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
5027 //
5028 // *  Usage:
5029 //    -- Only as leaf locks
5030 //    -- for short-term locking only as muxAcquire does not perform
5031 //       thread state transitions.
5032 //
5033 // Alternatives:
5034 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
5035 //    but with parking or spin-then-park instead of pure spinning.
5036 // *  Use Taura-Oyama-Yonenzawa locks.
5037 // *  It's possible to construct a 1-0 lock if we encode the lockword as
5038 //    (List,LockByte).  Acquire will CAS the full lockword while Release
5039 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
5040 //    acquiring threads use timers (ParkTimed) to detect and recover from
5041 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
5042 //    boundaries by using placement-new.
5043 // *  Augment MCS with advisory back-link fields maintained with CAS().
5044 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
5045 //    The validity of the backlinks must be ratified before we trust the value.
5046 //    If the backlinks are invalid the exiting thread must back-track through the
5047 //    the forward links, which are always trustworthy.
5048 // *  Add a successor indication.  The LockWord is currently encoded as
5049 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
5050 //    to provide the usual futile-wakeup optimization.
5051 //    See RTStt for details.
5052 //
5053 
5054 
5055 const intptr_t LOCKBIT = 1;
5056 
5057 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
5058   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
5059   if (w == 0) return;
5060   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5061     return;
5062   }
5063 
5064   ParkEvent * const Self = Thread::current()->_MuxEvent;
5065   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
5066   for (;;) {
5067     int its = (os::is_MP() ? 100 : 0) + 1;
5068 
5069     // Optional spin phase: spin-then-park strategy
5070     while (--its >= 0) {
5071       w = *Lock;
5072       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5073         return;
5074       }
5075     }
5076 
5077     Self->reset();
5078     Self->OnList = intptr_t(Lock);
5079     // The following fence() isn't _strictly necessary as the subsequent
5080     // CAS() both serializes execution and ratifies the fetched *Lock value.
5081     OrderAccess::fence();
5082     for (;;) {
5083       w = *Lock;
5084       if ((w & LOCKBIT) == 0) {
5085         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5086           Self->OnList = 0;   // hygiene - allows stronger asserts
5087           return;
5088         }
5089         continue;      // Interference -- *Lock changed -- Just retry
5090       }
5091       assert(w & LOCKBIT, "invariant");
5092       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5093       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5094     }
5095 
5096     while (Self->OnList != 0) {
5097       Self->park();
5098     }
5099   }
5100 }
5101 
5102 // Release() must extract a successor from the list and then wake that thread.
5103 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5104 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5105 // Release() would :
5106 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5107 // (B) Extract a successor from the private list "in-hand"
5108 // (C) attempt to CAS() the residual back into *Lock over null.
5109 //     If there were any newly arrived threads and the CAS() would fail.
5110 //     In that case Release() would detach the RATs, re-merge the list in-hand
5111 //     with the RATs and repeat as needed.  Alternately, Release() might
5112 //     detach and extract a successor, but then pass the residual list to the wakee.
5113 //     The wakee would be responsible for reattaching and remerging before it
5114 //     competed for the lock.
5115 //
5116 // Both "pop" and DMR are immune from ABA corruption -- there can be
5117 // multiple concurrent pushers, but only one popper or detacher.
5118 // This implementation pops from the head of the list.  This is unfair,
5119 // but tends to provide excellent throughput as hot threads remain hot.
5120 // (We wake recently run threads first).
5121 //
5122 // All paths through muxRelease() will execute a CAS.
5123 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5124 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5125 // executed within the critical section are complete and globally visible before the
5126 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5127 void Thread::muxRelease(volatile intptr_t * Lock)  {
5128   for (;;) {
5129     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5130     assert(w & LOCKBIT, "invariant");
5131     if (w == LOCKBIT) return;
5132     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5133     assert(List != NULL, "invariant");
5134     assert(List->OnList == intptr_t(Lock), "invariant");
5135     ParkEvent * const nxt = List->ListNext;
5136     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5137 
5138     // The following CAS() releases the lock and pops the head element.
5139     // The CAS() also ratifies the previously fetched lock-word value.
5140     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5141       continue;
5142     }
5143     List->OnList = 0;
5144     OrderAccess::fence();
5145     List->unpark();
5146     return;
5147   }
5148 }
5149 
5150 
5151 void Threads::verify() {
5152   ALL_JAVA_THREADS(p) {
5153     p->verify();
5154   }
5155   VMThread* thread = VMThread::vm_thread();
5156   if (thread != NULL) thread->verify();
5157 }