1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.misc.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.concurrent.ConcurrentHashMap;
  58 import java.util.stream.Collectors;
  59 import java.util.stream.Stream;
  60 
  61 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  62 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  63 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  64 import static java.lang.invoke.MethodType.methodType;
  65 
  66 /**
  67  * This class consists exclusively of static methods that operate on or return
  68  * method handles. They fall into several categories:
  69  * <ul>
  70  * <li>Lookup methods which help create method handles for methods and fields.
  71  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  72  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  73  * </ul>
  74  * A lookup, combinator, or factory method will fail and throw an
  75  * {@code IllegalArgumentException} if the created method handle's type
  76  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  77  *
  78  * @author John Rose, JSR 292 EG
  79  * @since 1.7
  80  */
  81 public class MethodHandles {
  82 
  83     private MethodHandles() { }  // do not instantiate
  84 
  85     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  86 
  87     // See IMPL_LOOKUP below.
  88 
  89     //// Method handle creation from ordinary methods.
  90 
  91     /**
  92      * Returns a {@link Lookup lookup object} with
  93      * full capabilities to emulate all supported bytecode behaviors of the caller.
  94      * These capabilities include <a href="MethodHandles.Lookup.html#privacc">private access</a> to the caller.
  95      * Factory methods on the lookup object can create
  96      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  97      * for any member that the caller has access to via bytecodes,
  98      * including protected and private fields and methods.
  99      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 100      * Do not store it in place where untrusted code can access it.
 101      * <p>
 102      * This method is caller sensitive, which means that it may return different
 103      * values to different callers.
 104      * @return a lookup object for the caller of this method, with private access
 105      */
 106     @CallerSensitive
 107     @ForceInline // to ensure Reflection.getCallerClass optimization
 108     public static Lookup lookup() {
 109         return new Lookup(Reflection.getCallerClass());
 110     }
 111 
 112     /**
 113      * This reflected$lookup method is the alternate implementation of
 114      * the lookup method when being invoked by reflection.
 115      */
 116     @CallerSensitive
 117     private static Lookup reflected$lookup() {
 118         Class<?> caller = Reflection.getCallerClass();
 119         if (caller.getClassLoader() == null) {
 120             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 121         }
 122         return new Lookup(caller);
 123     }
 124 
 125     /**
 126      * Returns a {@link Lookup lookup object} which is trusted minimally.
 127      * The lookup has the {@code PUBLIC} and {@code UNCONDITIONAL} modes.
 128      * It can only be used to create method handles to public members of
 129      * public classes in packages that are exported unconditionally.
 130      * <p>
 131      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 132      * of this lookup object will be {@link java.lang.Object}.
 133      *
 134      * @apiNote The use of Object is conventional, and because the lookup modes are
 135      * limited, there is no special access provided to the internals of Object, its package
 136      * or its module. Consequently, the lookup context of this lookup object will be the
 137      * bootstrap class loader, which means it cannot find user classes.
 138      *
 139      * <p style="font-size:smaller;">
 140      * <em>Discussion:</em>
 141      * The lookup class can be changed to any other class {@code C} using an expression of the form
 142      * {@link Lookup#in publicLookup().in(C.class)}.
 143      * but may change the lookup context by virtue of changing the class loader.
 144      * A public lookup object is always subject to
 145      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 146      * Also, it cannot access
 147      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 148      * @return a lookup object which is trusted minimally
 149      *
 150      * @revised 9
 151      * @spec JPMS
 152      */
 153     public static Lookup publicLookup() {
 154         return Lookup.PUBLIC_LOOKUP;
 155     }
 156 
 157     /**
 158      * Returns a {@link Lookup lookup object} with full capabilities to emulate all
 159      * supported bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">
 160      * private access</a>, on a target class.
 161      * This method checks that a caller, specified as a {@code Lookup} object, is allowed to
 162      * do <em>deep reflection</em> on the target class. If {@code m1} is the module containing
 163      * the {@link Lookup#lookupClass() lookup class}, and {@code m2} is the module containing
 164      * the target class, then this check ensures that
 165      * <ul>
 166      *     <li>{@code m1} {@link Module#canRead reads} {@code m2}.</li>
 167      *     <li>{@code m2} {@link Module#isOpen(String,Module) opens} the package containing
 168      *     the target class to at least {@code m1}.</li>
 169      *     <li>The lookup has the {@link Lookup#MODULE MODULE} lookup mode.</li>
 170      * </ul>
 171      * <p>
 172      * If there is a security manager, its {@code checkPermission} method is called to
 173      * check {@code ReflectPermission("suppressAccessChecks")}.
 174      * @apiNote The {@code MODULE} lookup mode serves to authenticate that the lookup object
 175      * was created by code in the caller module (or derived from a lookup object originally
 176      * created by the caller). A lookup object with the {@code MODULE} lookup mode can be
 177      * shared with trusted parties without giving away {@code PRIVATE} and {@code PACKAGE}
 178      * access to the caller.
 179      * @param targetClass the target class
 180      * @param lookup the caller lookup object
 181      * @return a lookup object for the target class, with private access
 182      * @throws IllegalArgumentException if {@code targetClass} is a primitve type or array class
 183      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 184      * @throws IllegalAccessException if the access check specified above fails
 185      * @throws SecurityException if denied by the security manager
 186      * @since 9
 187      * @spec JPMS
 188      * @see Lookup#dropLookupMode
 189      */
 190     public static Lookup privateLookupIn(Class<?> targetClass, Lookup lookup) throws IllegalAccessException {
 191         SecurityManager sm = System.getSecurityManager();
 192         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 193         if (targetClass.isPrimitive())
 194             throw new IllegalArgumentException(targetClass + " is a primitive class");
 195         if (targetClass.isArray())
 196             throw new IllegalArgumentException(targetClass + " is an array class");
 197         Module targetModule = targetClass.getModule();
 198         Module callerModule = lookup.lookupClass().getModule();
 199         if (!callerModule.canRead(targetModule))
 200             throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 201         if (targetModule.isNamed()) {
 202             String pn = targetClass.getPackageName();
 203             assert pn.length() > 0 : "unnamed package cannot be in named module";
 204             if (!targetModule.isOpen(pn, callerModule))
 205                 throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 206         }
 207         if ((lookup.lookupModes() & Lookup.MODULE) == 0)
 208             throw new IllegalAccessException("lookup does not have MODULE lookup mode");
 209         if (!callerModule.isNamed() && targetModule.isNamed()) {
 210             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 211             if (logger != null) {
 212                 logger.logIfOpenedForIllegalAccess(lookup, targetClass);
 213             }
 214         }
 215         return new Lookup(targetClass);
 216     }
 217 
 218     /**
 219      * Performs an unchecked "crack" of a
 220      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 221      * The result is as if the user had obtained a lookup object capable enough
 222      * to crack the target method handle, called
 223      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 224      * on the target to obtain its symbolic reference, and then called
 225      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 226      * to resolve the symbolic reference to a member.
 227      * <p>
 228      * If there is a security manager, its {@code checkPermission} method
 229      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 230      * @param <T> the desired type of the result, either {@link Member} or a subtype
 231      * @param target a direct method handle to crack into symbolic reference components
 232      * @param expected a class object representing the desired result type {@code T}
 233      * @return a reference to the method, constructor, or field object
 234      * @exception SecurityException if the caller is not privileged to call {@code setAccessible}
 235      * @exception NullPointerException if either argument is {@code null}
 236      * @exception IllegalArgumentException if the target is not a direct method handle
 237      * @exception ClassCastException if the member is not of the expected type
 238      * @since 1.8
 239      */
 240     public static <T extends Member> T
 241     reflectAs(Class<T> expected, MethodHandle target) {
 242         SecurityManager smgr = System.getSecurityManager();
 243         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 244         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 245         return lookup.revealDirect(target).reflectAs(expected, lookup);
 246     }
 247     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 248     private static final java.security.Permission ACCESS_PERMISSION =
 249         new ReflectPermission("suppressAccessChecks");
 250 
 251     /**
 252      * A <em>lookup object</em> is a factory for creating method handles,
 253      * when the creation requires access checking.
 254      * Method handles do not perform
 255      * access checks when they are called, but rather when they are created.
 256      * Therefore, method handle access
 257      * restrictions must be enforced when a method handle is created.
 258      * The caller class against which those restrictions are enforced
 259      * is known as the {@linkplain #lookupClass() lookup class}.
 260      * <p>
 261      * A lookup class which needs to create method handles will call
 262      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 263      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 264      * determined, and securely stored in the {@code Lookup} object.
 265      * The lookup class (or its delegates) may then use factory methods
 266      * on the {@code Lookup} object to create method handles for access-checked members.
 267      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 268      * even private ones.
 269      *
 270      * <h1><a id="lookups"></a>Lookup Factory Methods</h1>
 271      * The factory methods on a {@code Lookup} object correspond to all major
 272      * use cases for methods, constructors, and fields.
 273      * Each method handle created by a factory method is the functional
 274      * equivalent of a particular <em>bytecode behavior</em>.
 275      * (Bytecode behaviors are described in section 5.4.3.5 of the Java Virtual Machine Specification.)
 276      * Here is a summary of the correspondence between these factory methods and
 277      * the behavior of the resulting method handles:
 278      * <table class="striped">
 279      * <caption style="display:none">lookup method behaviors</caption>
 280      * <thead>
 281      * <tr>
 282      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 283      *     <th scope="col">member</th>
 284      *     <th scope="col">bytecode behavior</th>
 285      * </tr>
 286      * </thead>
 287      * <tbody>
 288      * <tr>
 289      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 290      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 291      * </tr>
 292      * <tr>
 293      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 294      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (T) C.f;}</td>
 295      * </tr>
 296      * <tr>
 297      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 298      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 299      * </tr>
 300      * <tr>
 301      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 302      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 303      * </tr>
 304      * <tr>
 305      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 306      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 307      * </tr>
 308      * <tr>
 309      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 310      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 311      * </tr>
 312      * <tr>
 313      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 314      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 315      * </tr>
 316      * <tr>
 317      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 318      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 319      * </tr>
 320      * <tr>
 321      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 322      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 323      * </tr>
 324      * <tr>
 325      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 326      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 327      * </tr>
 328      * <tr>
 329      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 330      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 331      * </tr>
 332      * <tr>
 333      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 334      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 335      * </tr>
 336      * <tr>
 337      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 338      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 339      * </tr>
 340      * <tr>
 341      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 342      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 343      * </tr>
 344      * </tbody>
 345      * </table>
 346      *
 347      * Here, the type {@code C} is the class or interface being searched for a member,
 348      * documented as a parameter named {@code refc} in the lookup methods.
 349      * The method type {@code MT} is composed from the return type {@code T}
 350      * and the sequence of argument types {@code A*}.
 351      * The constructor also has a sequence of argument types {@code A*} and
 352      * is deemed to return the newly-created object of type {@code C}.
 353      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 354      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 355      * if it is present, it is always the leading argument to the method handle invocation.
 356      * (In the case of some {@code protected} members, {@code this} may be
 357      * restricted in type to the lookup class; see below.)
 358      * The name {@code arg} stands for all the other method handle arguments.
 359      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 360      * stands for a null reference if the accessed method or field is static,
 361      * and {@code this} otherwise.
 362      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 363      * for reflective objects corresponding to the given members.
 364      * <p>
 365      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 366      * as if by {@code ldc CONSTANT_Class}.
 367      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 368      * <p>
 369      * In cases where the given member is of variable arity (i.e., a method or constructor)
 370      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 371      * In all other cases, the returned method handle will be of fixed arity.
 372      * <p style="font-size:smaller;">
 373      * <em>Discussion:</em>
 374      * The equivalence between looked-up method handles and underlying
 375      * class members and bytecode behaviors
 376      * can break down in a few ways:
 377      * <ul style="font-size:smaller;">
 378      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 379      * the lookup can still succeed, even when there is no equivalent
 380      * Java expression or bytecoded constant.
 381      * <li>Likewise, if {@code T} or {@code MT}
 382      * is not symbolically accessible from the lookup class's loader,
 383      * the lookup can still succeed.
 384      * For example, lookups for {@code MethodHandle.invokeExact} and
 385      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 386      * <li>If there is a security manager installed, it can forbid the lookup
 387      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 388      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 389      * constant is not subject to security manager checks.
 390      * <li>If the looked-up method has a
 391      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 392      * the method handle creation may fail with an
 393      * {@code IllegalArgumentException}, due to the method handle type having
 394      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 395      * </ul>
 396      *
 397      * <h1><a id="access"></a>Access checking</h1>
 398      * Access checks are applied in the factory methods of {@code Lookup},
 399      * when a method handle is created.
 400      * This is a key difference from the Core Reflection API, since
 401      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 402      * performs access checking against every caller, on every call.
 403      * <p>
 404      * All access checks start from a {@code Lookup} object, which
 405      * compares its recorded lookup class against all requests to
 406      * create method handles.
 407      * A single {@code Lookup} object can be used to create any number
 408      * of access-checked method handles, all checked against a single
 409      * lookup class.
 410      * <p>
 411      * A {@code Lookup} object can be shared with other trusted code,
 412      * such as a metaobject protocol.
 413      * A shared {@code Lookup} object delegates the capability
 414      * to create method handles on private members of the lookup class.
 415      * Even if privileged code uses the {@code Lookup} object,
 416      * the access checking is confined to the privileges of the
 417      * original lookup class.
 418      * <p>
 419      * A lookup can fail, because
 420      * the containing class is not accessible to the lookup class, or
 421      * because the desired class member is missing, or because the
 422      * desired class member is not accessible to the lookup class, or
 423      * because the lookup object is not trusted enough to access the member.
 424      * In any of these cases, a {@code ReflectiveOperationException} will be
 425      * thrown from the attempted lookup.  The exact class will be one of
 426      * the following:
 427      * <ul>
 428      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 429      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 430      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 431      * </ul>
 432      * <p>
 433      * In general, the conditions under which a method handle may be
 434      * looked up for a method {@code M} are no more restrictive than the conditions
 435      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 436      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 437      * a method handle lookup will generally raise a corresponding
 438      * checked exception, such as {@code NoSuchMethodException}.
 439      * And the effect of invoking the method handle resulting from the lookup
 440      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 441      * to executing the compiled, verified, and resolved call to {@code M}.
 442      * The same point is true of fields and constructors.
 443      * <p style="font-size:smaller;">
 444      * <em>Discussion:</em>
 445      * Access checks only apply to named and reflected methods,
 446      * constructors, and fields.
 447      * Other method handle creation methods, such as
 448      * {@link MethodHandle#asType MethodHandle.asType},
 449      * do not require any access checks, and are used
 450      * independently of any {@code Lookup} object.
 451      * <p>
 452      * If the desired member is {@code protected}, the usual JVM rules apply,
 453      * including the requirement that the lookup class must either be in the
 454      * same package as the desired member, or must inherit that member.
 455      * (See the Java Virtual Machine Specification, sections 4.9.2, 5.4.3.5, and 6.4.)
 456      * In addition, if the desired member is a non-static field or method
 457      * in a different package, the resulting method handle may only be applied
 458      * to objects of the lookup class or one of its subclasses.
 459      * This requirement is enforced by narrowing the type of the leading
 460      * {@code this} parameter from {@code C}
 461      * (which will necessarily be a superclass of the lookup class)
 462      * to the lookup class itself.
 463      * <p>
 464      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 465      * that the receiver argument must match both the resolved method <em>and</em>
 466      * the current class.  Again, this requirement is enforced by narrowing the
 467      * type of the leading parameter to the resulting method handle.
 468      * (See the Java Virtual Machine Specification, section 4.10.1.9.)
 469      * <p>
 470      * The JVM represents constructors and static initializer blocks as internal methods
 471      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 472      * The internal syntax of invocation instructions allows them to refer to such internal
 473      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 474      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 475      * <p>
 476      * If the relationship between nested types is expressed directly through the
 477      * {@code NestHost} and {@code NestMembers} attributes
 478      * (see the Java Virtual Machine Specification, sections 4.7.28 and 4.7.29),
 479      * then the associated {@code Lookup} object provides direct access to
 480      * the lookup class and all of its nestmates
 481      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 482      * Otherwise, access between nested classes is obtained by the Java compiler creating
 483      * a wrapper method to access a private method of another class in the same nest.
 484      * For example, a nested class {@code C.D}
 485      * can access private members within other related classes such as
 486      * {@code C}, {@code C.D.E}, or {@code C.B},
 487      * but the Java compiler may need to generate wrapper methods in
 488      * those related classes.  In such cases, a {@code Lookup} object on
 489      * {@code C.E} would be unable to access those private members.
 490      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 491      * which can transform a lookup on {@code C.E} into one on any of those other
 492      * classes, without special elevation of privilege.
 493      * <p>
 494      * The accesses permitted to a given lookup object may be limited,
 495      * according to its set of {@link #lookupModes lookupModes},
 496      * to a subset of members normally accessible to the lookup class.
 497      * For example, the {@link MethodHandles#publicLookup publicLookup}
 498      * method produces a lookup object which is only allowed to access
 499      * public members in public classes of exported packages.
 500      * The caller sensitive method {@link MethodHandles#lookup lookup}
 501      * produces a lookup object with full capabilities relative to
 502      * its caller class, to emulate all supported bytecode behaviors.
 503      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 504      * with fewer access modes than the original lookup object.
 505      *
 506      * <p style="font-size:smaller;">
 507      * <a id="privacc"></a>
 508      * <em>Discussion of private access:</em>
 509      * We say that a lookup has <em>private access</em>
 510      * if its {@linkplain #lookupModes lookup modes}
 511      * include the possibility of accessing {@code private} members
 512      * (which includes the private members of nestmates).
 513      * As documented in the relevant methods elsewhere,
 514      * only lookups with private access possess the following capabilities:
 515      * <ul style="font-size:smaller;">
 516      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 517      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 518      *     such as {@code Class.forName}
 519      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 520      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 521      *     for classes accessible to the lookup class
 522      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 523      *     within the same package member
 524      * </ul>
 525      * <p style="font-size:smaller;">
 526      * Each of these permissions is a consequence of the fact that a lookup object
 527      * with private access can be securely traced back to an originating class,
 528      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 529      * can be reliably determined and emulated by method handles.
 530      *
 531      * <h1><a id="secmgr"></a>Security manager interactions</h1>
 532      * Although bytecode instructions can only refer to classes in
 533      * a related class loader, this API can search for methods in any
 534      * class, as long as a reference to its {@code Class} object is
 535      * available.  Such cross-loader references are also possible with the
 536      * Core Reflection API, and are impossible to bytecode instructions
 537      * such as {@code invokestatic} or {@code getfield}.
 538      * There is a {@linkplain java.lang.SecurityManager security manager API}
 539      * to allow applications to check such cross-loader references.
 540      * These checks apply to both the {@code MethodHandles.Lookup} API
 541      * and the Core Reflection API
 542      * (as found on {@link java.lang.Class Class}).
 543      * <p>
 544      * If a security manager is present, member and class lookups are subject to
 545      * additional checks.
 546      * From one to three calls are made to the security manager.
 547      * Any of these calls can refuse access by throwing a
 548      * {@link java.lang.SecurityException SecurityException}.
 549      * Define {@code smgr} as the security manager,
 550      * {@code lookc} as the lookup class of the current lookup object,
 551      * {@code refc} as the containing class in which the member
 552      * is being sought, and {@code defc} as the class in which the
 553      * member is actually defined.
 554      * (If a class or other type is being accessed,
 555      * the {@code refc} and {@code defc} values are the class itself.)
 556      * The value {@code lookc} is defined as <em>not present</em>
 557      * if the current lookup object does not have
 558      * <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 559      * The calls are made according to the following rules:
 560      * <ul>
 561      * <li><b>Step 1:</b>
 562      *     If {@code lookc} is not present, or if its class loader is not
 563      *     the same as or an ancestor of the class loader of {@code refc},
 564      *     then {@link SecurityManager#checkPackageAccess
 565      *     smgr.checkPackageAccess(refcPkg)} is called,
 566      *     where {@code refcPkg} is the package of {@code refc}.
 567      * <li><b>Step 2a:</b>
 568      *     If the retrieved member is not public and
 569      *     {@code lookc} is not present, then
 570      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 571      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
 572      * <li><b>Step 2b:</b>
 573      *     If the retrieved class has a {@code null} class loader,
 574      *     and {@code lookc} is not present, then
 575      *     {@link SecurityManager#checkPermission smgr.checkPermission}
 576      *     with {@code RuntimePermission("getClassLoader")} is called.
 577      * <li><b>Step 3:</b>
 578      *     If the retrieved member is not public,
 579      *     and if {@code lookc} is not present,
 580      *     and if {@code defc} and {@code refc} are different,
 581      *     then {@link SecurityManager#checkPackageAccess
 582      *     smgr.checkPackageAccess(defcPkg)} is called,
 583      *     where {@code defcPkg} is the package of {@code defc}.
 584      * </ul>
 585      * Security checks are performed after other access checks have passed.
 586      * Therefore, the above rules presuppose a member or class that is public,
 587      * or else that is being accessed from a lookup class that has
 588      * rights to access the member or class.
 589      *
 590      * <h1><a id="callsens"></a>Caller sensitive methods</h1>
 591      * A small number of Java methods have a special property called caller sensitivity.
 592      * A <em>caller-sensitive</em> method can behave differently depending on the
 593      * identity of its immediate caller.
 594      * <p>
 595      * If a method handle for a caller-sensitive method is requested,
 596      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
 597      * but they take account of the lookup class in a special way.
 598      * The resulting method handle behaves as if it were called
 599      * from an instruction contained in the lookup class,
 600      * so that the caller-sensitive method detects the lookup class.
 601      * (By contrast, the invoker of the method handle is disregarded.)
 602      * Thus, in the case of caller-sensitive methods,
 603      * different lookup classes may give rise to
 604      * differently behaving method handles.
 605      * <p>
 606      * In cases where the lookup object is
 607      * {@link MethodHandles#publicLookup() publicLookup()},
 608      * or some other lookup object without
 609      * <a href="MethodHandles.Lookup.html#privacc">private access</a>,
 610      * the lookup class is disregarded.
 611      * In such cases, no caller-sensitive method handle can be created,
 612      * access is forbidden, and the lookup fails with an
 613      * {@code IllegalAccessException}.
 614      * <p style="font-size:smaller;">
 615      * <em>Discussion:</em>
 616      * For example, the caller-sensitive method
 617      * {@link java.lang.Class#forName(String) Class.forName(x)}
 618      * can return varying classes or throw varying exceptions,
 619      * depending on the class loader of the class that calls it.
 620      * A public lookup of {@code Class.forName} will fail, because
 621      * there is no reasonable way to determine its bytecode behavior.
 622      * <p style="font-size:smaller;">
 623      * If an application caches method handles for broad sharing,
 624      * it should use {@code publicLookup()} to create them.
 625      * If there is a lookup of {@code Class.forName}, it will fail,
 626      * and the application must take appropriate action in that case.
 627      * It may be that a later lookup, perhaps during the invocation of a
 628      * bootstrap method, can incorporate the specific identity
 629      * of the caller, making the method accessible.
 630      * <p style="font-size:smaller;">
 631      * The function {@code MethodHandles.lookup} is caller sensitive
 632      * so that there can be a secure foundation for lookups.
 633      * Nearly all other methods in the JSR 292 API rely on lookup
 634      * objects to check access requests.
 635      *
 636      * @revised 9
 637      */
 638     public static final
 639     class Lookup {
 640         /** The class on behalf of whom the lookup is being performed. */
 641         private final Class<?> lookupClass;
 642 
 643         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
 644         private final int allowedModes;
 645 
 646         /** A single-bit mask representing {@code public} access,
 647          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 648          *  The value, {@code 0x01}, happens to be the same as the value of the
 649          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
 650          */
 651         public static final int PUBLIC = Modifier.PUBLIC;
 652 
 653         /** A single-bit mask representing {@code private} access,
 654          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 655          *  The value, {@code 0x02}, happens to be the same as the value of the
 656          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
 657          */
 658         public static final int PRIVATE = Modifier.PRIVATE;
 659 
 660         /** A single-bit mask representing {@code protected} access,
 661          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 662          *  The value, {@code 0x04}, happens to be the same as the value of the
 663          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
 664          */
 665         public static final int PROTECTED = Modifier.PROTECTED;
 666 
 667         /** A single-bit mask representing {@code package} access (default access),
 668          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 669          *  The value is {@code 0x08}, which does not correspond meaningfully to
 670          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 671          */
 672         public static final int PACKAGE = Modifier.STATIC;
 673 
 674         /** A single-bit mask representing {@code module} access (default access),
 675          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 676          *  The value is {@code 0x10}, which does not correspond meaningfully to
 677          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 678          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 679          *  with this lookup mode can access all public types in the module of the
 680          *  lookup class and public types in packages exported by other modules
 681          *  to the module of the lookup class.
 682          *  @since 9
 683          *  @spec JPMS
 684          */
 685         public static final int MODULE = PACKAGE << 1;
 686 
 687         /** A single-bit mask representing {@code unconditional} access
 688          *  which may contribute to the result of {@link #lookupModes lookupModes}.
 689          *  The value is {@code 0x20}, which does not correspond meaningfully to
 690          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
 691          *  A {@code Lookup} with this lookup mode assumes {@linkplain
 692          *  java.lang.Module#canRead(java.lang.Module) readability}.
 693          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
 694          *  with this lookup mode can access all public members of public types
 695          *  of all modules where the type is in a package that is {@link
 696          *  java.lang.Module#isExported(String) exported unconditionally}.
 697          *  @since 9
 698          *  @spec JPMS
 699          *  @see #publicLookup()
 700          */
 701         public static final int UNCONDITIONAL = PACKAGE << 2;
 702 
 703         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
 704         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
 705         private static final int TRUSTED   = -1;
 706 
 707         private static int fixmods(int mods) {
 708             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
 709             return (mods != 0) ? mods : (PACKAGE | MODULE | UNCONDITIONAL);
 710         }
 711 
 712         /** Tells which class is performing the lookup.  It is this class against
 713          *  which checks are performed for visibility and access permissions.
 714          *  <p>
 715          *  The class implies a maximum level of access permission,
 716          *  but the permissions may be additionally limited by the bitmask
 717          *  {@link #lookupModes lookupModes}, which controls whether non-public members
 718          *  can be accessed.
 719          *  @return the lookup class, on behalf of which this lookup object finds members
 720          */
 721         public Class<?> lookupClass() {
 722             return lookupClass;
 723         }
 724 
 725         // This is just for calling out to MethodHandleImpl.
 726         private Class<?> lookupClassOrNull() {
 727             return (allowedModes == TRUSTED) ? null : lookupClass;
 728         }
 729 
 730         /** Tells which access-protection classes of members this lookup object can produce.
 731          *  The result is a bit-mask of the bits
 732          *  {@linkplain #PUBLIC PUBLIC (0x01)},
 733          *  {@linkplain #PRIVATE PRIVATE (0x02)},
 734          *  {@linkplain #PROTECTED PROTECTED (0x04)},
 735          *  {@linkplain #PACKAGE PACKAGE (0x08)},
 736          *  {@linkplain #MODULE MODULE (0x10)},
 737          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
 738          *  <p>
 739          *  A freshly-created lookup object
 740          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
 741          *  all possible bits set, except {@code UNCONDITIONAL}.
 742          *  A lookup object on a new lookup class
 743          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
 744          *  may have some mode bits set to zero.
 745          *  Mode bits can also be
 746          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
 747          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
 748          *  The purpose of this is to restrict access via the new lookup object,
 749          *  so that it can access only names which can be reached by the original
 750          *  lookup object, and also by the new lookup class.
 751          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
 752          *  @see #in
 753          *  @see #dropLookupMode
 754          *
 755          *  @revised 9
 756          *  @spec JPMS
 757          */
 758         public int lookupModes() {
 759             return allowedModes & ALL_MODES;
 760         }
 761 
 762         /** Embody the current class (the lookupClass) as a lookup class
 763          * for method handle creation.
 764          * Must be called by from a method in this package,
 765          * which in turn is called by a method not in this package.
 766          */
 767         Lookup(Class<?> lookupClass) {
 768             this(lookupClass, FULL_POWER_MODES);
 769             // make sure we haven't accidentally picked up a privileged class:
 770             checkUnprivilegedlookupClass(lookupClass);
 771         }
 772 
 773         private Lookup(Class<?> lookupClass, int allowedModes) {
 774             this.lookupClass = lookupClass;
 775             this.allowedModes = allowedModes;
 776         }
 777 
 778         /**
 779          * Creates a lookup on the specified new lookup class.
 780          * The resulting object will report the specified
 781          * class as its own {@link #lookupClass() lookupClass}.
 782          * <p>
 783          * However, the resulting {@code Lookup} object is guaranteed
 784          * to have no more access capabilities than the original.
 785          * In particular, access capabilities can be lost as follows:<ul>
 786          * <li>If the old lookup class is in a {@link Module#isNamed() named} module, and
 787          * the new lookup class is in a different module {@code M}, then no members, not
 788          * even public members in {@code M}'s exported packages, will be accessible.
 789          * The exception to this is when this lookup is {@link #publicLookup()
 790          * publicLookup}, in which case {@code PUBLIC} access is not lost.
 791          * <li>If the old lookup class is in an unnamed module, and the new lookup class
 792          * is a different module then {@link #MODULE MODULE} access is lost.
 793          * <li>If the new lookup class differs from the old one then {@code UNCONDITIONAL} is lost.
 794          * <li>If the new lookup class is in a different package
 795          * than the old one, protected and default (package) members will not be accessible.
 796          * <li>If the new lookup class is not within the same package member
 797          * as the old one, private members will not be accessible, and protected members
 798          * will not be accessible by virtue of inheritance.
 799          * (Protected members may continue to be accessible because of package sharing.)
 800          * <li>If the new lookup class is not accessible to the old lookup class,
 801          * then no members, not even public members, will be accessible.
 802          * (In all other cases, public members will continue to be accessible.)
 803          * </ul>
 804          * <p>
 805          * The resulting lookup's capabilities for loading classes
 806          * (used during {@link #findClass} invocations)
 807          * are determined by the lookup class' loader,
 808          * which may change due to this operation.
 809          *
 810          * @param requestedLookupClass the desired lookup class for the new lookup object
 811          * @return a lookup object which reports the desired lookup class, or the same object
 812          * if there is no change
 813          * @throws NullPointerException if the argument is null
 814          *
 815          * @revised 9
 816          * @spec JPMS
 817          */
 818         public Lookup in(Class<?> requestedLookupClass) {
 819             Objects.requireNonNull(requestedLookupClass);
 820             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
 821                 return new Lookup(requestedLookupClass, FULL_POWER_MODES);
 822             if (requestedLookupClass == this.lookupClass)
 823                 return this;  // keep same capabilities
 824             int newModes = (allowedModes & FULL_POWER_MODES);
 825             if (!VerifyAccess.isSameModule(this.lookupClass, requestedLookupClass)) {
 826                 // Need to drop all access when teleporting from a named module to another
 827                 // module. The exception is publicLookup where PUBLIC is not lost.
 828                 if (this.lookupClass.getModule().isNamed()
 829                     && (this.allowedModes & UNCONDITIONAL) == 0)
 830                     newModes = 0;
 831                 else
 832                     newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
 833             }
 834             if ((newModes & PACKAGE) != 0
 835                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
 836                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
 837             }
 838             // Allow nestmate lookups to be created without special privilege:
 839             if ((newModes & PRIVATE) != 0
 840                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
 841                 newModes &= ~(PRIVATE|PROTECTED);
 842             }
 843             if ((newModes & PUBLIC) != 0
 844                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, allowedModes)) {
 845                 // The requested class it not accessible from the lookup class.
 846                 // No permissions.
 847                 newModes = 0;
 848             }
 849 
 850             checkUnprivilegedlookupClass(requestedLookupClass);
 851             return new Lookup(requestedLookupClass, newModes);
 852         }
 853 
 854 
 855         /**
 856          * Creates a lookup on the same lookup class which this lookup object
 857          * finds members, but with a lookup mode that has lost the given lookup mode.
 858          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
 859          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
 860          * {@link #PROTECTED PROTECTED} and {@link #UNCONDITIONAL UNCONDITIONAL} are always
 861          * dropped and so the resulting lookup mode will never have these access capabilities.
 862          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
 863          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
 864          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
 865          * is dropped then the resulting lookup has no access.
 866          * @param modeToDrop the lookup mode to drop
 867          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
 868          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
 869          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
 870          * @see MethodHandles#privateLookupIn
 871          * @since 9
 872          */
 873         public Lookup dropLookupMode(int modeToDrop) {
 874             int oldModes = lookupModes();
 875             int newModes = oldModes & ~(modeToDrop | PROTECTED | UNCONDITIONAL);
 876             switch (modeToDrop) {
 877                 case PUBLIC: newModes &= ~(ALL_MODES); break;
 878                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
 879                 case PACKAGE: newModes &= ~(PRIVATE); break;
 880                 case PROTECTED:
 881                 case PRIVATE:
 882                 case UNCONDITIONAL: break;
 883                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
 884             }
 885             if (newModes == oldModes) return this;  // return self if no change
 886             return new Lookup(lookupClass(), newModes);
 887         }
 888 
 889         /**
 890          * Defines a class to the same class loader and in the same runtime package and
 891          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
 892          * {@linkplain #lookupClass() lookup class}.
 893          *
 894          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
 895          * {@link #PACKAGE PACKAGE} access as default (package) members will be
 896          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
 897          * that the lookup object was created by a caller in the runtime package (or derived
 898          * from a lookup originally created by suitably privileged code to a target class in
 899          * the runtime package). </p>
 900          *
 901          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
 902          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
 903          * same package as the lookup class. </p>
 904          *
 905          * <p> This method does not run the class initializer. The class initializer may
 906          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
 907          * Specification</em>. </p>
 908          *
 909          * <p> If there is a security manager, its {@code checkPermission} method is first called
 910          * to check {@code RuntimePermission("defineClass")}. </p>
 911          *
 912          * @param bytes the class bytes
 913          * @return the {@code Class} object for the class
 914          * @throws IllegalArgumentException the bytes are for a class in a different package
 915          * to the lookup class
 916          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
 917          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
 918          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
 919          * @throws SecurityException if denied by the security manager
 920          * @throws NullPointerException if {@code bytes} is {@code null}
 921          * @since 9
 922          * @spec JPMS
 923          * @see Lookup#privateLookupIn
 924          * @see Lookup#dropLookupMode
 925          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
 926          */
 927         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
 928             SecurityManager sm = System.getSecurityManager();
 929             if (sm != null)
 930                 sm.checkPermission(new RuntimePermission("defineClass"));
 931             if ((lookupModes() & PACKAGE) == 0)
 932                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
 933             assert (lookupModes() & (MODULE|PUBLIC)) != 0;
 934 
 935             // parse class bytes to get class name (in internal form)
 936             bytes = bytes.clone();
 937             String name;
 938             try {
 939                 ClassReader reader = new ClassReader(bytes);
 940                 name = reader.getClassName();
 941             } catch (RuntimeException e) {
 942                 // ASM exceptions are poorly specified
 943                 ClassFormatError cfe = new ClassFormatError();
 944                 cfe.initCause(e);
 945                 throw cfe;
 946             }
 947 
 948             // get package and class name in binary form
 949             String cn, pn;
 950             int index = name.lastIndexOf('/');
 951             if (index == -1) {
 952                 cn = name;
 953                 pn = "";
 954             } else {
 955                 cn = name.replace('/', '.');
 956                 pn = cn.substring(0, index);
 957             }
 958             if (!pn.equals(lookupClass.getPackageName())) {
 959                 throw new IllegalArgumentException("Class not in same package as lookup class");
 960             }
 961 
 962             // invoke the class loader's defineClass method
 963             ClassLoader loader = lookupClass.getClassLoader();
 964             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
 965             String source = "__Lookup_defineClass__";
 966             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
 967             assert clazz.getClassLoader() == lookupClass.getClassLoader()
 968                     && clazz.getPackageName().equals(lookupClass.getPackageName())
 969                     && protectionDomain(clazz) == lookupClassProtectionDomain();
 970             return clazz;
 971         }
 972 
 973         private ProtectionDomain lookupClassProtectionDomain() {
 974             ProtectionDomain pd = cachedProtectionDomain;
 975             if (pd == null) {
 976                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
 977             }
 978             return pd;
 979         }
 980 
 981         private ProtectionDomain protectionDomain(Class<?> clazz) {
 982             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
 983             return AccessController.doPrivileged(pa);
 984         }
 985 
 986         // cached protection domain
 987         private volatile ProtectionDomain cachedProtectionDomain;
 988 
 989 
 990         // Make sure outer class is initialized first.
 991         static { IMPL_NAMES.getClass(); }
 992 
 993         /** Package-private version of lookup which is trusted. */
 994         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, TRUSTED);
 995 
 996         /** Version of lookup which is trusted minimally.
 997          *  It can only be used to create method handles to publicly accessible
 998          *  members in packages that are exported unconditionally.
 999          */
1000         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, (PUBLIC|UNCONDITIONAL));
1001 
1002         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1003             String name = lookupClass.getName();
1004             if (name.startsWith("java.lang.invoke."))
1005                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1006         }
1007 
1008         /**
1009          * Displays the name of the class from which lookups are to be made.
1010          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1011          * If there are restrictions on the access permitted to this lookup,
1012          * this is indicated by adding a suffix to the class name, consisting
1013          * of a slash and a keyword.  The keyword represents the strongest
1014          * allowed access, and is chosen as follows:
1015          * <ul>
1016          * <li>If no access is allowed, the suffix is "/noaccess".
1017          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1018          * <li>If only public access and unconditional access are allowed, the suffix is "/publicLookup".
1019          * <li>If only public and module access are allowed, the suffix is "/module".
1020          * <li>If only public, module and package access are allowed, the suffix is "/package".
1021          * <li>If only public, module, package, and private access are allowed, the suffix is "/private".
1022          * </ul>
1023          * If none of the above cases apply, it is the case that full
1024          * access (public, module, package, private, and protected) is allowed.
1025          * In this case, no suffix is added.
1026          * This is true only of an object obtained originally from
1027          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1028          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1029          * always have restricted access, and will display a suffix.
1030          * <p>
1031          * (It may seem strange that protected access should be
1032          * stronger than private access.  Viewed independently from
1033          * package access, protected access is the first to be lost,
1034          * because it requires a direct subclass relationship between
1035          * caller and callee.)
1036          * @see #in
1037          *
1038          * @revised 9
1039          * @spec JPMS
1040          */
1041         @Override
1042         public String toString() {
1043             String cname = lookupClass.getName();
1044             switch (allowedModes) {
1045             case 0:  // no privileges
1046                 return cname + "/noaccess";
1047             case PUBLIC:
1048                 return cname + "/public";
1049             case PUBLIC|UNCONDITIONAL:
1050                 return cname  + "/publicLookup";
1051             case PUBLIC|MODULE:
1052                 return cname + "/module";
1053             case PUBLIC|MODULE|PACKAGE:
1054                 return cname + "/package";
1055             case FULL_POWER_MODES & ~PROTECTED:
1056                 return cname + "/private";
1057             case FULL_POWER_MODES:
1058                 return cname;
1059             case TRUSTED:
1060                 return "/trusted";  // internal only; not exported
1061             default:  // Should not happen, but it's a bitfield...
1062                 cname = cname + "/" + Integer.toHexString(allowedModes);
1063                 assert(false) : cname;
1064                 return cname;
1065             }
1066         }
1067 
1068         /**
1069          * Produces a method handle for a static method.
1070          * The type of the method handle will be that of the method.
1071          * (Since static methods do not take receivers, there is no
1072          * additional receiver argument inserted into the method handle type,
1073          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1074          * The method and all its argument types must be accessible to the lookup object.
1075          * <p>
1076          * The returned method handle will have
1077          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1078          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1079          * <p>
1080          * If the returned method handle is invoked, the method's class will
1081          * be initialized, if it has not already been initialized.
1082          * <p><b>Example:</b>
1083          * <blockquote><pre>{@code
1084 import static java.lang.invoke.MethodHandles.*;
1085 import static java.lang.invoke.MethodType.*;
1086 ...
1087 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1088   "asList", methodType(List.class, Object[].class));
1089 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1090          * }</pre></blockquote>
1091          * @param refc the class from which the method is accessed
1092          * @param name the name of the method
1093          * @param type the type of the method
1094          * @return the desired method handle
1095          * @throws NoSuchMethodException if the method does not exist
1096          * @throws IllegalAccessException if access checking fails,
1097          *                                or if the method is not {@code static},
1098          *                                or if the method's variable arity modifier bit
1099          *                                is set and {@code asVarargsCollector} fails
1100          * @exception SecurityException if a security manager is present and it
1101          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1102          * @throws NullPointerException if any argument is null
1103          */
1104         public
1105         MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1106             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1107             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerClass(method));
1108         }
1109 
1110         /**
1111          * Produces a method handle for a virtual method.
1112          * The type of the method handle will be that of the method,
1113          * with the receiver type (usually {@code refc}) prepended.
1114          * The method and all its argument types must be accessible to the lookup object.
1115          * <p>
1116          * When called, the handle will treat the first argument as a receiver
1117          * and, for non-private methods, dispatch on the receiver's type to determine which method
1118          * implementation to enter.
1119          * For private methods the named method in {@code refc} will be invoked on the receiver.
1120          * (The dispatching action is identical with that performed by an
1121          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1122          * <p>
1123          * The first argument will be of type {@code refc} if the lookup
1124          * class has full privileges to access the member.  Otherwise
1125          * the member must be {@code protected} and the first argument
1126          * will be restricted in type to the lookup class.
1127          * <p>
1128          * The returned method handle will have
1129          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1130          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1131          * <p>
1132          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1133          * instructions and method handles produced by {@code findVirtual},
1134          * if the class is {@code MethodHandle} and the name string is
1135          * {@code invokeExact} or {@code invoke}, the resulting
1136          * method handle is equivalent to one produced by
1137          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1138          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1139          * with the same {@code type} argument.
1140          * <p>
1141          * If the class is {@code VarHandle} and the name string corresponds to
1142          * the name of a signature-polymorphic access mode method, the resulting
1143          * method handle is equivalent to one produced by
1144          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1145          * the access mode corresponding to the name string and with the same
1146          * {@code type} arguments.
1147          * <p>
1148          * <b>Example:</b>
1149          * <blockquote><pre>{@code
1150 import static java.lang.invoke.MethodHandles.*;
1151 import static java.lang.invoke.MethodType.*;
1152 ...
1153 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1154   "concat", methodType(String.class, String.class));
1155 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1156   "hashCode", methodType(int.class));
1157 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1158   "hashCode", methodType(int.class));
1159 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1160 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1161 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1162 // interface method:
1163 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1164   "subSequence", methodType(CharSequence.class, int.class, int.class));
1165 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1166 // constructor "internal method" must be accessed differently:
1167 MethodType MT_newString = methodType(void.class); //()V for new String()
1168 try { assertEquals("impossible", lookup()
1169         .findVirtual(String.class, "<init>", MT_newString));
1170  } catch (NoSuchMethodException ex) { } // OK
1171 MethodHandle MH_newString = publicLookup()
1172   .findConstructor(String.class, MT_newString);
1173 assertEquals("", (String) MH_newString.invokeExact());
1174          * }</pre></blockquote>
1175          *
1176          * @param refc the class or interface from which the method is accessed
1177          * @param name the name of the method
1178          * @param type the type of the method, with the receiver argument omitted
1179          * @return the desired method handle
1180          * @throws NoSuchMethodException if the method does not exist
1181          * @throws IllegalAccessException if access checking fails,
1182          *                                or if the method is {@code static},
1183          *                                or if the method's variable arity modifier bit
1184          *                                is set and {@code asVarargsCollector} fails
1185          * @exception SecurityException if a security manager is present and it
1186          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1187          * @throws NullPointerException if any argument is null
1188          */
1189         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1190             if (refc == MethodHandle.class) {
1191                 MethodHandle mh = findVirtualForMH(name, type);
1192                 if (mh != null)  return mh;
1193             } else if (refc == VarHandle.class) {
1194                 MethodHandle mh = findVirtualForVH(name, type);
1195                 if (mh != null)  return mh;
1196             }
1197             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1198             MemberName method = resolveOrFail(refKind, refc, name, type);
1199             return getDirectMethod(refKind, refc, method, findBoundCallerClass(method));
1200         }
1201         private MethodHandle findVirtualForMH(String name, MethodType type) {
1202             // these names require special lookups because of the implicit MethodType argument
1203             if ("invoke".equals(name))
1204                 return invoker(type);
1205             if ("invokeExact".equals(name))
1206                 return exactInvoker(type);
1207             assert(!MemberName.isMethodHandleInvokeName(name));
1208             return null;
1209         }
1210         private MethodHandle findVirtualForVH(String name, MethodType type) {
1211             try {
1212                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1213             } catch (IllegalArgumentException e) {
1214                 return null;
1215             }
1216         }
1217 
1218         /**
1219          * Produces a method handle which creates an object and initializes it, using
1220          * the constructor of the specified type.
1221          * The parameter types of the method handle will be those of the constructor,
1222          * while the return type will be a reference to the constructor's class.
1223          * The constructor and all its argument types must be accessible to the lookup object.
1224          * <p>
1225          * The requested type must have a return type of {@code void}.
1226          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1227          * <p>
1228          * The returned method handle will have
1229          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1230          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1231          * <p>
1232          * If the returned method handle is invoked, the constructor's class will
1233          * be initialized, if it has not already been initialized.
1234          * <p><b>Example:</b>
1235          * <blockquote><pre>{@code
1236 import static java.lang.invoke.MethodHandles.*;
1237 import static java.lang.invoke.MethodType.*;
1238 ...
1239 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1240   ArrayList.class, methodType(void.class, Collection.class));
1241 Collection orig = Arrays.asList("x", "y");
1242 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1243 assert(orig != copy);
1244 assertEquals(orig, copy);
1245 // a variable-arity constructor:
1246 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1247   ProcessBuilder.class, methodType(void.class, String[].class));
1248 ProcessBuilder pb = (ProcessBuilder)
1249   MH_newProcessBuilder.invoke("x", "y", "z");
1250 assertEquals("[x, y, z]", pb.command().toString());
1251          * }</pre></blockquote>
1252          * @param refc the class or interface from which the method is accessed
1253          * @param type the type of the method, with the receiver argument omitted, and a void return type
1254          * @return the desired method handle
1255          * @throws NoSuchMethodException if the constructor does not exist
1256          * @throws IllegalAccessException if access checking fails
1257          *                                or if the method's variable arity modifier bit
1258          *                                is set and {@code asVarargsCollector} fails
1259          * @exception SecurityException if a security manager is present and it
1260          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1261          * @throws NullPointerException if any argument is null
1262          */
1263         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1264             if (refc.isArray()) {
1265                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1266             }
1267             String name = "<init>";
1268             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1269             return getDirectConstructor(refc, ctor);
1270         }
1271 
1272         /**
1273          * Looks up a class by name from the lookup context defined by this {@code Lookup} object. The static
1274          * initializer of the class is not run.
1275          * <p>
1276          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class}, its class
1277          * loader, and the {@linkplain #lookupModes() lookup modes}. In particular, the method first attempts to
1278          * load the requested class, and then determines whether the class is accessible to this lookup object.
1279          *
1280          * @param targetName the fully qualified name of the class to be looked up.
1281          * @return the requested class.
1282          * @exception SecurityException if a security manager is present and it
1283          *            <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1284          * @throws LinkageError if the linkage fails
1285          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1286          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1287          * modes.
1288          * @exception SecurityException if a security manager is present and it
1289          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1290          * @since 9
1291          */
1292         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1293             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1294             return accessClass(targetClass);
1295         }
1296 
1297         /**
1298          * Determines if a class can be accessed from the lookup context defined by this {@code Lookup} object. The
1299          * static initializer of the class is not run.
1300          * <p>
1301          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class} and the
1302          * {@linkplain #lookupModes() lookup modes}.
1303          *
1304          * @param targetClass the class to be access-checked
1305          *
1306          * @return the class that has been access-checked
1307          *
1308          * @throws IllegalAccessException if the class is not accessible from the lookup class, using the allowed access
1309          * modes.
1310          * @exception SecurityException if a security manager is present and it
1311          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1312          * @since 9
1313          */
1314         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
1315             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, allowedModes)) {
1316                 throw new MemberName(targetClass).makeAccessException("access violation", this);
1317             }
1318             checkSecurityManager(targetClass, null);
1319             return targetClass;
1320         }
1321 
1322         /**
1323          * Produces an early-bound method handle for a virtual method.
1324          * It will bypass checks for overriding methods on the receiver,
1325          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1326          * instruction from within the explicitly specified {@code specialCaller}.
1327          * The type of the method handle will be that of the method,
1328          * with a suitably restricted receiver type prepended.
1329          * (The receiver type will be {@code specialCaller} or a subtype.)
1330          * The method and all its argument types must be accessible
1331          * to the lookup object.
1332          * <p>
1333          * Before method resolution,
1334          * if the explicitly specified caller class is not identical with the
1335          * lookup class, or if this lookup object does not have
1336          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1337          * privileges, the access fails.
1338          * <p>
1339          * The returned method handle will have
1340          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1341          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1342          * <p style="font-size:smaller;">
1343          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
1344          * even though the {@code invokespecial} instruction can refer to them
1345          * in special circumstances.  Use {@link #findConstructor findConstructor}
1346          * to access instance initialization methods in a safe manner.)</em>
1347          * <p><b>Example:</b>
1348          * <blockquote><pre>{@code
1349 import static java.lang.invoke.MethodHandles.*;
1350 import static java.lang.invoke.MethodType.*;
1351 ...
1352 static class Listie extends ArrayList {
1353   public String toString() { return "[wee Listie]"; }
1354   static Lookup lookup() { return MethodHandles.lookup(); }
1355 }
1356 ...
1357 // no access to constructor via invokeSpecial:
1358 MethodHandle MH_newListie = Listie.lookup()
1359   .findConstructor(Listie.class, methodType(void.class));
1360 Listie l = (Listie) MH_newListie.invokeExact();
1361 try { assertEquals("impossible", Listie.lookup().findSpecial(
1362         Listie.class, "<init>", methodType(void.class), Listie.class));
1363  } catch (NoSuchMethodException ex) { } // OK
1364 // access to super and self methods via invokeSpecial:
1365 MethodHandle MH_super = Listie.lookup().findSpecial(
1366   ArrayList.class, "toString" , methodType(String.class), Listie.class);
1367 MethodHandle MH_this = Listie.lookup().findSpecial(
1368   Listie.class, "toString" , methodType(String.class), Listie.class);
1369 MethodHandle MH_duper = Listie.lookup().findSpecial(
1370   Object.class, "toString" , methodType(String.class), Listie.class);
1371 assertEquals("[]", (String) MH_super.invokeExact(l));
1372 assertEquals(""+l, (String) MH_this.invokeExact(l));
1373 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
1374 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
1375         String.class, "toString", methodType(String.class), Listie.class));
1376  } catch (IllegalAccessException ex) { } // OK
1377 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
1378 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
1379          * }</pre></blockquote>
1380          *
1381          * @param refc the class or interface from which the method is accessed
1382          * @param name the name of the method (which must not be "&lt;init&gt;")
1383          * @param type the type of the method, with the receiver argument omitted
1384          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
1385          * @return the desired method handle
1386          * @throws NoSuchMethodException if the method does not exist
1387          * @throws IllegalAccessException if access checking fails,
1388          *                                or if the method is {@code static},
1389          *                                or if the method's variable arity modifier bit
1390          *                                is set and {@code asVarargsCollector} fails
1391          * @exception SecurityException if a security manager is present and it
1392          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1393          * @throws NullPointerException if any argument is null
1394          */
1395         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
1396                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
1397             checkSpecialCaller(specialCaller, refc);
1398             Lookup specialLookup = this.in(specialCaller);
1399             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
1400             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerClass(method));
1401         }
1402 
1403         /**
1404          * Produces a method handle giving read access to a non-static field.
1405          * The type of the method handle will have a return type of the field's
1406          * value type.
1407          * The method handle's single argument will be the instance containing
1408          * the field.
1409          * Access checking is performed immediately on behalf of the lookup class.
1410          * @param refc the class or interface from which the method is accessed
1411          * @param name the field's name
1412          * @param type the field's type
1413          * @return a method handle which can load values from the field
1414          * @throws NoSuchFieldException if the field does not exist
1415          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1416          * @exception SecurityException if a security manager is present and it
1417          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1418          * @throws NullPointerException if any argument is null
1419          * @see #findVarHandle(Class, String, Class)
1420          */
1421         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1422             MemberName field = resolveOrFail(REF_getField, refc, name, type);
1423             return getDirectField(REF_getField, refc, field);
1424         }
1425 
1426         /**
1427          * Produces a method handle giving write access to a non-static field.
1428          * The type of the method handle will have a void return type.
1429          * The method handle will take two arguments, the instance containing
1430          * the field, and the value to be stored.
1431          * The second argument will be of the field's value type.
1432          * Access checking is performed immediately on behalf of the lookup class.
1433          * @param refc the class or interface from which the method is accessed
1434          * @param name the field's name
1435          * @param type the field's type
1436          * @return a method handle which can store values into the field
1437          * @throws NoSuchFieldException if the field does not exist
1438          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1439          * @exception SecurityException if a security manager is present and it
1440          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1441          * @throws NullPointerException if any argument is null
1442          * @see #findVarHandle(Class, String, Class)
1443          */
1444         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1445             MemberName field = resolveOrFail(REF_putField, refc, name, type);
1446             return getDirectField(REF_putField, refc, field);
1447         }
1448 
1449         /**
1450          * Produces a VarHandle giving access to a non-static field {@code name}
1451          * of type {@code type} declared in a class of type {@code recv}.
1452          * The VarHandle's variable type is {@code type} and it has one
1453          * coordinate type, {@code recv}.
1454          * <p>
1455          * Access checking is performed immediately on behalf of the lookup
1456          * class.
1457          * <p>
1458          * Certain access modes of the returned VarHandle are unsupported under
1459          * the following conditions:
1460          * <ul>
1461          * <li>if the field is declared {@code final}, then the write, atomic
1462          *     update, numeric atomic update, and bitwise atomic update access
1463          *     modes are unsupported.
1464          * <li>if the field type is anything other than {@code byte},
1465          *     {@code short}, {@code char}, {@code int}, {@code long},
1466          *     {@code float}, or {@code double} then numeric atomic update
1467          *     access modes are unsupported.
1468          * <li>if the field type is anything other than {@code boolean},
1469          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1470          *     {@code long} then bitwise atomic update access modes are
1471          *     unsupported.
1472          * </ul>
1473          * <p>
1474          * If the field is declared {@code volatile} then the returned VarHandle
1475          * will override access to the field (effectively ignore the
1476          * {@code volatile} declaration) in accordance to its specified
1477          * access modes.
1478          * <p>
1479          * If the field type is {@code float} or {@code double} then numeric
1480          * and atomic update access modes compare values using their bitwise
1481          * representation (see {@link Float#floatToRawIntBits} and
1482          * {@link Double#doubleToRawLongBits}, respectively).
1483          * @apiNote
1484          * Bitwise comparison of {@code float} values or {@code double} values,
1485          * as performed by the numeric and atomic update access modes, differ
1486          * from the primitive {@code ==} operator and the {@link Float#equals}
1487          * and {@link Double#equals} methods, specifically with respect to
1488          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1489          * Care should be taken when performing a compare and set or a compare
1490          * and exchange operation with such values since the operation may
1491          * unexpectedly fail.
1492          * There are many possible NaN values that are considered to be
1493          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1494          * provided by Java can distinguish between them.  Operation failure can
1495          * occur if the expected or witness value is a NaN value and it is
1496          * transformed (perhaps in a platform specific manner) into another NaN
1497          * value, and thus has a different bitwise representation (see
1498          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1499          * details).
1500          * The values {@code -0.0} and {@code +0.0} have different bitwise
1501          * representations but are considered equal when using the primitive
1502          * {@code ==} operator.  Operation failure can occur if, for example, a
1503          * numeric algorithm computes an expected value to be say {@code -0.0}
1504          * and previously computed the witness value to be say {@code +0.0}.
1505          * @param recv the receiver class, of type {@code R}, that declares the
1506          * non-static field
1507          * @param name the field's name
1508          * @param type the field's type, of type {@code T}
1509          * @return a VarHandle giving access to non-static fields.
1510          * @throws NoSuchFieldException if the field does not exist
1511          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
1512          * @exception SecurityException if a security manager is present and it
1513          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1514          * @throws NullPointerException if any argument is null
1515          * @since 9
1516          */
1517         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1518             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
1519             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
1520             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
1521         }
1522 
1523         /**
1524          * Produces a method handle giving read access to a static field.
1525          * The type of the method handle will have a return type of the field's
1526          * value type.
1527          * The method handle will take no arguments.
1528          * Access checking is performed immediately on behalf of the lookup class.
1529          * <p>
1530          * If the returned method handle is invoked, the field's class will
1531          * be initialized, if it has not already been initialized.
1532          * @param refc the class or interface from which the method is accessed
1533          * @param name the field's name
1534          * @param type the field's type
1535          * @return a method handle which can load values from the field
1536          * @throws NoSuchFieldException if the field does not exist
1537          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1538          * @exception SecurityException if a security manager is present and it
1539          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1540          * @throws NullPointerException if any argument is null
1541          */
1542         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1543             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
1544             return getDirectField(REF_getStatic, refc, field);
1545         }
1546 
1547         /**
1548          * Produces a method handle giving write access to a static field.
1549          * The type of the method handle will have a void return type.
1550          * The method handle will take a single
1551          * argument, of the field's value type, the value to be stored.
1552          * Access checking is performed immediately on behalf of the lookup class.
1553          * <p>
1554          * If the returned method handle is invoked, the field's class will
1555          * be initialized, if it has not already been initialized.
1556          * @param refc the class or interface from which the method is accessed
1557          * @param name the field's name
1558          * @param type the field's type
1559          * @return a method handle which can store values into the field
1560          * @throws NoSuchFieldException if the field does not exist
1561          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1562          * @exception SecurityException if a security manager is present and it
1563          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1564          * @throws NullPointerException if any argument is null
1565          */
1566         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1567             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
1568             return getDirectField(REF_putStatic, refc, field);
1569         }
1570 
1571         /**
1572          * Produces a VarHandle giving access to a static field {@code name} of
1573          * type {@code type} declared in a class of type {@code decl}.
1574          * The VarHandle's variable type is {@code type} and it has no
1575          * coordinate types.
1576          * <p>
1577          * Access checking is performed immediately on behalf of the lookup
1578          * class.
1579          * <p>
1580          * If the returned VarHandle is operated on, the declaring class will be
1581          * initialized, if it has not already been initialized.
1582          * <p>
1583          * Certain access modes of the returned VarHandle are unsupported under
1584          * the following conditions:
1585          * <ul>
1586          * <li>if the field is declared {@code final}, then the write, atomic
1587          *     update, numeric atomic update, and bitwise atomic update access
1588          *     modes are unsupported.
1589          * <li>if the field type is anything other than {@code byte},
1590          *     {@code short}, {@code char}, {@code int}, {@code long},
1591          *     {@code float}, or {@code double}, then numeric atomic update
1592          *     access modes are unsupported.
1593          * <li>if the field type is anything other than {@code boolean},
1594          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1595          *     {@code long} then bitwise atomic update access modes are
1596          *     unsupported.
1597          * </ul>
1598          * <p>
1599          * If the field is declared {@code volatile} then the returned VarHandle
1600          * will override access to the field (effectively ignore the
1601          * {@code volatile} declaration) in accordance to its specified
1602          * access modes.
1603          * <p>
1604          * If the field type is {@code float} or {@code double} then numeric
1605          * and atomic update access modes compare values using their bitwise
1606          * representation (see {@link Float#floatToRawIntBits} and
1607          * {@link Double#doubleToRawLongBits}, respectively).
1608          * @apiNote
1609          * Bitwise comparison of {@code float} values or {@code double} values,
1610          * as performed by the numeric and atomic update access modes, differ
1611          * from the primitive {@code ==} operator and the {@link Float#equals}
1612          * and {@link Double#equals} methods, specifically with respect to
1613          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1614          * Care should be taken when performing a compare and set or a compare
1615          * and exchange operation with such values since the operation may
1616          * unexpectedly fail.
1617          * There are many possible NaN values that are considered to be
1618          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1619          * provided by Java can distinguish between them.  Operation failure can
1620          * occur if the expected or witness value is a NaN value and it is
1621          * transformed (perhaps in a platform specific manner) into another NaN
1622          * value, and thus has a different bitwise representation (see
1623          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1624          * details).
1625          * The values {@code -0.0} and {@code +0.0} have different bitwise
1626          * representations but are considered equal when using the primitive
1627          * {@code ==} operator.  Operation failure can occur if, for example, a
1628          * numeric algorithm computes an expected value to be say {@code -0.0}
1629          * and previously computed the witness value to be say {@code +0.0}.
1630          * @param decl the class that declares the static field
1631          * @param name the field's name
1632          * @param type the field's type, of type {@code T}
1633          * @return a VarHandle giving access to a static field
1634          * @throws NoSuchFieldException if the field does not exist
1635          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
1636          * @exception SecurityException if a security manager is present and it
1637          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1638          * @throws NullPointerException if any argument is null
1639          * @since 9
1640          */
1641         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
1642             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
1643             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
1644             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
1645         }
1646 
1647         /**
1648          * Produces an early-bound method handle for a non-static method.
1649          * The receiver must have a supertype {@code defc} in which a method
1650          * of the given name and type is accessible to the lookup class.
1651          * The method and all its argument types must be accessible to the lookup object.
1652          * The type of the method handle will be that of the method,
1653          * without any insertion of an additional receiver parameter.
1654          * The given receiver will be bound into the method handle,
1655          * so that every call to the method handle will invoke the
1656          * requested method on the given receiver.
1657          * <p>
1658          * The returned method handle will have
1659          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1660          * the method's variable arity modifier bit ({@code 0x0080}) is set
1661          * <em>and</em> the trailing array argument is not the only argument.
1662          * (If the trailing array argument is the only argument,
1663          * the given receiver value will be bound to it.)
1664          * <p>
1665          * This is almost equivalent to the following code, with some differences noted below:
1666          * <blockquote><pre>{@code
1667 import static java.lang.invoke.MethodHandles.*;
1668 import static java.lang.invoke.MethodType.*;
1669 ...
1670 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
1671 MethodHandle mh1 = mh0.bindTo(receiver);
1672 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
1673 return mh1;
1674          * }</pre></blockquote>
1675          * where {@code defc} is either {@code receiver.getClass()} or a super
1676          * type of that class, in which the requested method is accessible
1677          * to the lookup class.
1678          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
1679          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
1680          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
1681          * the receiver is restricted by {@code findVirtual} to the lookup class.)
1682          * @param receiver the object from which the method is accessed
1683          * @param name the name of the method
1684          * @param type the type of the method, with the receiver argument omitted
1685          * @return the desired method handle
1686          * @throws NoSuchMethodException if the method does not exist
1687          * @throws IllegalAccessException if access checking fails
1688          *                                or if the method's variable arity modifier bit
1689          *                                is set and {@code asVarargsCollector} fails
1690          * @exception SecurityException if a security manager is present and it
1691          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1692          * @throws NullPointerException if any argument is null
1693          * @see MethodHandle#bindTo
1694          * @see #findVirtual
1695          */
1696         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1697             Class<? extends Object> refc = receiver.getClass(); // may get NPE
1698             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
1699             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerClass(method));
1700             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
1701                 throw new IllegalAccessException("The restricted defining class " +
1702                                                  mh.type().leadingReferenceParameter().getName() +
1703                                                  " is not assignable from receiver class " +
1704                                                  receiver.getClass().getName());
1705             }
1706             return mh.bindArgumentL(0, receiver).setVarargs(method);
1707         }
1708 
1709         /**
1710          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1711          * to <i>m</i>, if the lookup class has permission.
1712          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
1713          * If <i>m</i> is virtual, overriding is respected on every call.
1714          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
1715          * The type of the method handle will be that of the method,
1716          * with the receiver type prepended (but only if it is non-static).
1717          * If the method's {@code accessible} flag is not set,
1718          * access checking is performed immediately on behalf of the lookup class.
1719          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
1720          * <p>
1721          * The returned method handle will have
1722          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1723          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1724          * <p>
1725          * If <i>m</i> is static, and
1726          * if the returned method handle is invoked, the method's class will
1727          * be initialized, if it has not already been initialized.
1728          * @param m the reflected method
1729          * @return a method handle which can invoke the reflected method
1730          * @throws IllegalAccessException if access checking fails
1731          *                                or if the method's variable arity modifier bit
1732          *                                is set and {@code asVarargsCollector} fails
1733          * @throws NullPointerException if the argument is null
1734          */
1735         public MethodHandle unreflect(Method m) throws IllegalAccessException {
1736             if (m.getDeclaringClass() == MethodHandle.class) {
1737                 MethodHandle mh = unreflectForMH(m);
1738                 if (mh != null)  return mh;
1739             }
1740             if (m.getDeclaringClass() == VarHandle.class) {
1741                 MethodHandle mh = unreflectForVH(m);
1742                 if (mh != null)  return mh;
1743             }
1744             MemberName method = new MemberName(m);
1745             byte refKind = method.getReferenceKind();
1746             if (refKind == REF_invokeSpecial)
1747                 refKind = REF_invokeVirtual;
1748             assert(method.isMethod());
1749             @SuppressWarnings("deprecation")
1750             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
1751             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerClass(method));
1752         }
1753         private MethodHandle unreflectForMH(Method m) {
1754             // these names require special lookups because they throw UnsupportedOperationException
1755             if (MemberName.isMethodHandleInvokeName(m.getName()))
1756                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
1757             return null;
1758         }
1759         private MethodHandle unreflectForVH(Method m) {
1760             // these names require special lookups because they throw UnsupportedOperationException
1761             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
1762                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
1763             return null;
1764         }
1765 
1766         /**
1767          * Produces a method handle for a reflected method.
1768          * It will bypass checks for overriding methods on the receiver,
1769          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
1770          * instruction from within the explicitly specified {@code specialCaller}.
1771          * The type of the method handle will be that of the method,
1772          * with a suitably restricted receiver type prepended.
1773          * (The receiver type will be {@code specialCaller} or a subtype.)
1774          * If the method's {@code accessible} flag is not set,
1775          * access checking is performed immediately on behalf of the lookup class,
1776          * as if {@code invokespecial} instruction were being linked.
1777          * <p>
1778          * Before method resolution,
1779          * if the explicitly specified caller class is not identical with the
1780          * lookup class, or if this lookup object does not have
1781          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
1782          * privileges, the access fails.
1783          * <p>
1784          * The returned method handle will have
1785          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1786          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1787          * @param m the reflected method
1788          * @param specialCaller the class nominally calling the method
1789          * @return a method handle which can invoke the reflected method
1790          * @throws IllegalAccessException if access checking fails,
1791          *                                or if the method is {@code static},
1792          *                                or if the method's variable arity modifier bit
1793          *                                is set and {@code asVarargsCollector} fails
1794          * @throws NullPointerException if any argument is null
1795          */
1796         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
1797             checkSpecialCaller(specialCaller, null);
1798             Lookup specialLookup = this.in(specialCaller);
1799             MemberName method = new MemberName(m, true);
1800             assert(method.isMethod());
1801             // ignore m.isAccessible:  this is a new kind of access
1802             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerClass(method));
1803         }
1804 
1805         /**
1806          * Produces a method handle for a reflected constructor.
1807          * The type of the method handle will be that of the constructor,
1808          * with the return type changed to the declaring class.
1809          * The method handle will perform a {@code newInstance} operation,
1810          * creating a new instance of the constructor's class on the
1811          * arguments passed to the method handle.
1812          * <p>
1813          * If the constructor's {@code accessible} flag is not set,
1814          * access checking is performed immediately on behalf of the lookup class.
1815          * <p>
1816          * The returned method handle will have
1817          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1818          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1819          * <p>
1820          * If the returned method handle is invoked, the constructor's class will
1821          * be initialized, if it has not already been initialized.
1822          * @param c the reflected constructor
1823          * @return a method handle which can invoke the reflected constructor
1824          * @throws IllegalAccessException if access checking fails
1825          *                                or if the method's variable arity modifier bit
1826          *                                is set and {@code asVarargsCollector} fails
1827          * @throws NullPointerException if the argument is null
1828          */
1829         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
1830             MemberName ctor = new MemberName(c);
1831             assert(ctor.isConstructor());
1832             @SuppressWarnings("deprecation")
1833             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
1834             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
1835         }
1836 
1837         /**
1838          * Produces a method handle giving read access to a reflected field.
1839          * The type of the method handle will have a return type of the field's
1840          * value type.
1841          * If the field is static, the method handle will take no arguments.
1842          * Otherwise, its single argument will be the instance containing
1843          * the field.
1844          * If the field's {@code accessible} flag is not set,
1845          * access checking is performed immediately on behalf of the lookup class.
1846          * <p>
1847          * If the field is static, and
1848          * if the returned method handle is invoked, the field's class will
1849          * be initialized, if it has not already been initialized.
1850          * @param f the reflected field
1851          * @return a method handle which can load values from the reflected field
1852          * @throws IllegalAccessException if access checking fails
1853          * @throws NullPointerException if the argument is null
1854          */
1855         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
1856             return unreflectField(f, false);
1857         }
1858         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
1859             MemberName field = new MemberName(f, isSetter);
1860             assert(isSetter
1861                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
1862                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
1863             @SuppressWarnings("deprecation")
1864             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
1865             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
1866         }
1867 
1868         /**
1869          * Produces a method handle giving write access to a reflected field.
1870          * The type of the method handle will have a void return type.
1871          * If the field is static, the method handle will take a single
1872          * argument, of the field's value type, the value to be stored.
1873          * Otherwise, the two arguments will be the instance containing
1874          * the field, and the value to be stored.
1875          * If the field's {@code accessible} flag is not set,
1876          * access checking is performed immediately on behalf of the lookup class.
1877          * <p>
1878          * If the field is static, and
1879          * if the returned method handle is invoked, the field's class will
1880          * be initialized, if it has not already been initialized.
1881          * @param f the reflected field
1882          * @return a method handle which can store values into the reflected field
1883          * @throws IllegalAccessException if access checking fails
1884          * @throws NullPointerException if the argument is null
1885          */
1886         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
1887             return unreflectField(f, true);
1888         }
1889 
1890         /**
1891          * Produces a VarHandle giving access to a reflected field {@code f}
1892          * of type {@code T} declared in a class of type {@code R}.
1893          * The VarHandle's variable type is {@code T}.
1894          * If the field is non-static the VarHandle has one coordinate type,
1895          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
1896          * coordinate types.
1897          * <p>
1898          * Access checking is performed immediately on behalf of the lookup
1899          * class, regardless of the value of the field's {@code accessible}
1900          * flag.
1901          * <p>
1902          * If the field is static, and if the returned VarHandle is operated
1903          * on, the field's declaring class will be initialized, if it has not
1904          * already been initialized.
1905          * <p>
1906          * Certain access modes of the returned VarHandle are unsupported under
1907          * the following conditions:
1908          * <ul>
1909          * <li>if the field is declared {@code final}, then the write, atomic
1910          *     update, numeric atomic update, and bitwise atomic update access
1911          *     modes are unsupported.
1912          * <li>if the field type is anything other than {@code byte},
1913          *     {@code short}, {@code char}, {@code int}, {@code long},
1914          *     {@code float}, or {@code double} then numeric atomic update
1915          *     access modes are unsupported.
1916          * <li>if the field type is anything other than {@code boolean},
1917          *     {@code byte}, {@code short}, {@code char}, {@code int} or
1918          *     {@code long} then bitwise atomic update access modes are
1919          *     unsupported.
1920          * </ul>
1921          * <p>
1922          * If the field is declared {@code volatile} then the returned VarHandle
1923          * will override access to the field (effectively ignore the
1924          * {@code volatile} declaration) in accordance to its specified
1925          * access modes.
1926          * <p>
1927          * If the field type is {@code float} or {@code double} then numeric
1928          * and atomic update access modes compare values using their bitwise
1929          * representation (see {@link Float#floatToRawIntBits} and
1930          * {@link Double#doubleToRawLongBits}, respectively).
1931          * @apiNote
1932          * Bitwise comparison of {@code float} values or {@code double} values,
1933          * as performed by the numeric and atomic update access modes, differ
1934          * from the primitive {@code ==} operator and the {@link Float#equals}
1935          * and {@link Double#equals} methods, specifically with respect to
1936          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
1937          * Care should be taken when performing a compare and set or a compare
1938          * and exchange operation with such values since the operation may
1939          * unexpectedly fail.
1940          * There are many possible NaN values that are considered to be
1941          * {@code NaN} in Java, although no IEEE 754 floating-point operation
1942          * provided by Java can distinguish between them.  Operation failure can
1943          * occur if the expected or witness value is a NaN value and it is
1944          * transformed (perhaps in a platform specific manner) into another NaN
1945          * value, and thus has a different bitwise representation (see
1946          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
1947          * details).
1948          * The values {@code -0.0} and {@code +0.0} have different bitwise
1949          * representations but are considered equal when using the primitive
1950          * {@code ==} operator.  Operation failure can occur if, for example, a
1951          * numeric algorithm computes an expected value to be say {@code -0.0}
1952          * and previously computed the witness value to be say {@code +0.0}.
1953          * @param f the reflected field, with a field of type {@code T}, and
1954          * a declaring class of type {@code R}
1955          * @return a VarHandle giving access to non-static fields or a static
1956          * field
1957          * @throws IllegalAccessException if access checking fails
1958          * @throws NullPointerException if the argument is null
1959          * @since 9
1960          */
1961         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
1962             MemberName getField = new MemberName(f, false);
1963             MemberName putField = new MemberName(f, true);
1964             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
1965                                                       f.getDeclaringClass(), getField, putField);
1966         }
1967 
1968         /**
1969          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
1970          * created by this lookup object or a similar one.
1971          * Security and access checks are performed to ensure that this lookup object
1972          * is capable of reproducing the target method handle.
1973          * This means that the cracking may fail if target is a direct method handle
1974          * but was created by an unrelated lookup object.
1975          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
1976          * and was created by a lookup object for a different class.
1977          * @param target a direct method handle to crack into symbolic reference components
1978          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
1979          * @exception SecurityException if a security manager is present and it
1980          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1981          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
1982          * @exception NullPointerException if the target is {@code null}
1983          * @see MethodHandleInfo
1984          * @since 1.8
1985          */
1986         public MethodHandleInfo revealDirect(MethodHandle target) {
1987             MemberName member = target.internalMemberName();
1988             if (member == null || (!member.isResolved() &&
1989                                    !member.isMethodHandleInvoke() &&
1990                                    !member.isVarHandleMethodInvoke()))
1991                 throw newIllegalArgumentException("not a direct method handle");
1992             Class<?> defc = member.getDeclaringClass();
1993             byte refKind = member.getReferenceKind();
1994             assert(MethodHandleNatives.refKindIsValid(refKind));
1995             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
1996                 // Devirtualized method invocation is usually formally virtual.
1997                 // To avoid creating extra MemberName objects for this common case,
1998                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
1999                 refKind = REF_invokeVirtual;
2000             if (refKind == REF_invokeVirtual && defc.isInterface())
2001                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2002                 refKind = REF_invokeInterface;
2003             // Check SM permissions and member access before cracking.
2004             try {
2005                 checkAccess(refKind, defc, member);
2006                 checkSecurityManager(defc, member);
2007             } catch (IllegalAccessException ex) {
2008                 throw new IllegalArgumentException(ex);
2009             }
2010             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2011                 Class<?> callerClass = target.internalCallerClass();
2012                 if (!hasPrivateAccess() || callerClass != lookupClass())
2013                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2014             }
2015             // Produce the handle to the results.
2016             return new InfoFromMemberName(this, member, refKind);
2017         }
2018 
2019         /// Helper methods, all package-private.
2020 
2021         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2022             checkSymbolicClass(refc);  // do this before attempting to resolve
2023             Objects.requireNonNull(name);
2024             Objects.requireNonNull(type);
2025             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2026                                             NoSuchFieldException.class);
2027         }
2028 
2029         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2030             checkSymbolicClass(refc);  // do this before attempting to resolve
2031             Objects.requireNonNull(name);
2032             Objects.requireNonNull(type);
2033             checkMethodName(refKind, name);  // NPE check on name
2034             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2035                                             NoSuchMethodException.class);
2036         }
2037 
2038         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2039             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2040             Objects.requireNonNull(member.getName());
2041             Objects.requireNonNull(member.getType());
2042             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2043                                             ReflectiveOperationException.class);
2044         }
2045 
2046         MemberName resolveOrNull(byte refKind, MemberName member) {
2047             // do this before attempting to resolve
2048             if (!isClassAccessible(member.getDeclaringClass())) {
2049                 return null;
2050             }
2051             Objects.requireNonNull(member.getName());
2052             Objects.requireNonNull(member.getType());
2053             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2054         }
2055 
2056         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2057             if (!isClassAccessible(refc)) {
2058                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2059             }
2060         }
2061 
2062         boolean isClassAccessible(Class<?> refc) {
2063             Objects.requireNonNull(refc);
2064             Class<?> caller = lookupClassOrNull();
2065             return caller == null || VerifyAccess.isClassAccessible(refc, caller, allowedModes);
2066         }
2067 
2068         /** Check name for an illegal leading "&lt;" character. */
2069         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2070             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2071                 throw new NoSuchMethodException("illegal method name: "+name);
2072         }
2073 
2074 
2075         /**
2076          * Find my trustable caller class if m is a caller sensitive method.
2077          * If this lookup object has private access, then the caller class is the lookupClass.
2078          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2079          */
2080         Class<?> findBoundCallerClass(MemberName m) throws IllegalAccessException {
2081             Class<?> callerClass = null;
2082             if (MethodHandleNatives.isCallerSensitive(m)) {
2083                 // Only lookups with private access are allowed to resolve caller-sensitive methods
2084                 if (hasPrivateAccess()) {
2085                     callerClass = lookupClass;
2086                 } else {
2087                     throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2088                 }
2089             }
2090             return callerClass;
2091         }
2092 
2093         /**
2094          * Returns {@code true} if this lookup has {@code PRIVATE} access.
2095          * @return {@code true} if this lookup has {@code PRIVATE} access.
2096          * @since 9
2097          */
2098         public boolean hasPrivateAccess() {
2099             return (allowedModes & PRIVATE) != 0;
2100         }
2101 
2102         /**
2103          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2104          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2105          * If this lookup object has private access, then the caller class is the lookupClass.
2106          */
2107         void checkSecurityManager(Class<?> refc, MemberName m) {
2108             SecurityManager smgr = System.getSecurityManager();
2109             if (smgr == null)  return;
2110             if (allowedModes == TRUSTED)  return;
2111 
2112             // Step 1:
2113             boolean fullPowerLookup = hasPrivateAccess();
2114             if (!fullPowerLookup ||
2115                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2116                 ReflectUtil.checkPackageAccess(refc);
2117             }
2118 
2119             if (m == null) {  // findClass or accessClass
2120                 // Step 2b:
2121                 if (!fullPowerLookup) {
2122                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2123                 }
2124                 return;
2125             }
2126 
2127             // Step 2a:
2128             if (m.isPublic()) return;
2129             if (!fullPowerLookup) {
2130                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2131             }
2132 
2133             // Step 3:
2134             Class<?> defc = m.getDeclaringClass();
2135             if (!fullPowerLookup && defc != refc) {
2136                 ReflectUtil.checkPackageAccess(defc);
2137             }
2138         }
2139 
2140         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2141             boolean wantStatic = (refKind == REF_invokeStatic);
2142             String message;
2143             if (m.isConstructor())
2144                 message = "expected a method, not a constructor";
2145             else if (!m.isMethod())
2146                 message = "expected a method";
2147             else if (wantStatic != m.isStatic())
2148                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2149             else
2150                 { checkAccess(refKind, refc, m); return; }
2151             throw m.makeAccessException(message, this);
2152         }
2153 
2154         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2155             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2156             String message;
2157             if (wantStatic != m.isStatic())
2158                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2159             else
2160                 { checkAccess(refKind, refc, m); return; }
2161             throw m.makeAccessException(message, this);
2162         }
2163 
2164         /** Check public/protected/private bits on the symbolic reference class and its member. */
2165         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2166             assert(m.referenceKindIsConsistentWith(refKind) &&
2167                    MethodHandleNatives.refKindIsValid(refKind) &&
2168                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2169             int allowedModes = this.allowedModes;
2170             if (allowedModes == TRUSTED)  return;
2171             int mods = m.getModifiers();
2172             if (Modifier.isProtected(mods) &&
2173                     refKind == REF_invokeVirtual &&
2174                     m.getDeclaringClass() == Object.class &&
2175                     m.getName().equals("clone") &&
2176                     refc.isArray()) {
2177                 // The JVM does this hack also.
2178                 // (See ClassVerifier::verify_invoke_instructions
2179                 // and LinkResolver::check_method_accessability.)
2180                 // Because the JVM does not allow separate methods on array types,
2181                 // there is no separate method for int[].clone.
2182                 // All arrays simply inherit Object.clone.
2183                 // But for access checking logic, we make Object.clone
2184                 // (normally protected) appear to be public.
2185                 // Later on, when the DirectMethodHandle is created,
2186                 // its leading argument will be restricted to the
2187                 // requested array type.
2188                 // N.B. The return type is not adjusted, because
2189                 // that is *not* the bytecode behavior.
2190                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2191             }
2192             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2193                 // cannot "new" a protected ctor in a different package
2194                 mods ^= Modifier.PROTECTED;
2195             }
2196             if (Modifier.isFinal(mods) &&
2197                     MethodHandleNatives.refKindIsSetter(refKind))
2198                 throw m.makeAccessException("unexpected set of a final field", this);
2199             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2200             if ((requestedModes & allowedModes) != 0) {
2201                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2202                                                     mods, lookupClass(), allowedModes))
2203                     return;
2204             } else {
2205                 // Protected members can also be checked as if they were package-private.
2206                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2207                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2208                     return;
2209             }
2210             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2211         }
2212 
2213         String accessFailedMessage(Class<?> refc, MemberName m) {
2214             Class<?> defc = m.getDeclaringClass();
2215             int mods = m.getModifiers();
2216             // check the class first:
2217             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2218                                (defc == refc ||
2219                                 Modifier.isPublic(refc.getModifiers())));
2220             if (!classOK && (allowedModes & PACKAGE) != 0) {
2221                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), FULL_POWER_MODES) &&
2222                            (defc == refc ||
2223                             VerifyAccess.isClassAccessible(refc, lookupClass(), FULL_POWER_MODES)));
2224             }
2225             if (!classOK)
2226                 return "class is not public";
2227             if (Modifier.isPublic(mods))
2228                 return "access to public member failed";  // (how?, module not readable?)
2229             if (Modifier.isPrivate(mods))
2230                 return "member is private";
2231             if (Modifier.isProtected(mods))
2232                 return "member is protected";
2233             return "member is private to package";
2234         }
2235 
2236         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
2237             int allowedModes = this.allowedModes;
2238             if (allowedModes == TRUSTED)  return;
2239             if (!hasPrivateAccess()
2240                 || (specialCaller != lookupClass()
2241                        // ensure non-abstract methods in superinterfaces can be special-invoked
2242                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
2243                 throw new MemberName(specialCaller).
2244                     makeAccessException("no private access for invokespecial", this);
2245         }
2246 
2247         private boolean restrictProtectedReceiver(MemberName method) {
2248             // The accessing class only has the right to use a protected member
2249             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
2250             if (!method.isProtected() || method.isStatic()
2251                 || allowedModes == TRUSTED
2252                 || method.getDeclaringClass() == lookupClass()
2253                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
2254                 return false;
2255             return true;
2256         }
2257         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
2258             assert(!method.isStatic());
2259             // receiver type of mh is too wide; narrow to caller
2260             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
2261                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
2262             }
2263             MethodType rawType = mh.type();
2264             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
2265             MethodType narrowType = rawType.changeParameterType(0, caller);
2266             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
2267             assert(mh.viewAsTypeChecks(narrowType, true));
2268             return mh.copyWith(narrowType, mh.form);
2269         }
2270 
2271         /** Check access and get the requested method. */
2272         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2273             final boolean doRestrict    = true;
2274             final boolean checkSecurity = true;
2275             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
2276         }
2277         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
2278         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2279             final boolean doRestrict    = false;
2280             final boolean checkSecurity = true;
2281             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, boundCallerClass);
2282         }
2283         /** Check access and get the requested method, eliding security manager checks. */
2284         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Class<?> boundCallerClass) throws IllegalAccessException {
2285             final boolean doRestrict    = true;
2286             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2287             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, boundCallerClass);
2288         }
2289         /** Common code for all methods; do not call directly except from immediately above. */
2290         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
2291                                                    boolean checkSecurity,
2292                                                    boolean doRestrict, Class<?> boundCallerClass) throws IllegalAccessException {
2293 
2294             checkMethod(refKind, refc, method);
2295             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2296             if (checkSecurity)
2297                 checkSecurityManager(refc, method);
2298             assert(!method.isMethodHandleInvoke());
2299 
2300             if (refKind == REF_invokeSpecial &&
2301                 refc != lookupClass() &&
2302                 !refc.isInterface() &&
2303                 refc != lookupClass().getSuperclass() &&
2304                 refc.isAssignableFrom(lookupClass())) {
2305                 assert(!method.getName().equals("<init>"));  // not this code path
2306 
2307                 // Per JVMS 6.5, desc. of invokespecial instruction:
2308                 // If the method is in a superclass of the LC,
2309                 // and if our original search was above LC.super,
2310                 // repeat the search (symbolic lookup) from LC.super
2311                 // and continue with the direct superclass of that class,
2312                 // and so forth, until a match is found or no further superclasses exist.
2313                 // FIXME: MemberName.resolve should handle this instead.
2314                 Class<?> refcAsSuper = lookupClass();
2315                 MemberName m2;
2316                 do {
2317                     refcAsSuper = refcAsSuper.getSuperclass();
2318                     m2 = new MemberName(refcAsSuper,
2319                                         method.getName(),
2320                                         method.getMethodType(),
2321                                         REF_invokeSpecial);
2322                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
2323                 } while (m2 == null &&         // no method is found yet
2324                          refc != refcAsSuper); // search up to refc
2325                 if (m2 == null)  throw new InternalError(method.toString());
2326                 method = m2;
2327                 refc = refcAsSuper;
2328                 // redo basic checks
2329                 checkMethod(refKind, refc, method);
2330             }
2331 
2332             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
2333             MethodHandle mh = dmh;
2334             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
2335             if ((doRestrict && refKind == REF_invokeSpecial) ||
2336                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
2337                 mh = restrictReceiver(method, dmh, lookupClass());
2338             }
2339             mh = maybeBindCaller(method, mh, boundCallerClass);
2340             mh = mh.setVarargs(method);
2341             return mh;
2342         }
2343         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh,
2344                                              Class<?> boundCallerClass)
2345                                              throws IllegalAccessException {
2346             if (allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
2347                 return mh;
2348             Class<?> hostClass = lookupClass;
2349             if (!hasPrivateAccess())  // caller must have private access
2350                 hostClass = boundCallerClass;  // boundCallerClass came from a security manager style stack walk
2351             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, hostClass);
2352             // Note: caller will apply varargs after this step happens.
2353             return cbmh;
2354         }
2355         /** Check access and get the requested field. */
2356         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2357             final boolean checkSecurity = true;
2358             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2359         }
2360         /** Check access and get the requested field, eliding security manager checks. */
2361         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
2362             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2363             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
2364         }
2365         /** Common code for all fields; do not call directly except from immediately above. */
2366         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
2367                                                   boolean checkSecurity) throws IllegalAccessException {
2368             checkField(refKind, refc, field);
2369             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2370             if (checkSecurity)
2371                 checkSecurityManager(refc, field);
2372             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
2373             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
2374                                     restrictProtectedReceiver(field));
2375             if (doRestrict)
2376                 return restrictReceiver(field, dmh, lookupClass());
2377             return dmh;
2378         }
2379         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
2380                                             Class<?> refc, MemberName getField, MemberName putField)
2381                 throws IllegalAccessException {
2382             final boolean checkSecurity = true;
2383             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2384         }
2385         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
2386                                                              Class<?> refc, MemberName getField, MemberName putField)
2387                 throws IllegalAccessException {
2388             final boolean checkSecurity = false;
2389             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
2390         }
2391         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
2392                                                   Class<?> refc, MemberName getField, MemberName putField,
2393                                                   boolean checkSecurity) throws IllegalAccessException {
2394             assert getField.isStatic() == putField.isStatic();
2395             assert getField.isGetter() && putField.isSetter();
2396             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
2397             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
2398 
2399             checkField(getRefKind, refc, getField);
2400             if (checkSecurity)
2401                 checkSecurityManager(refc, getField);
2402 
2403             if (!putField.isFinal()) {
2404                 // A VarHandle does not support updates to final fields, any
2405                 // such VarHandle to a final field will be read-only and
2406                 // therefore the following write-based accessibility checks are
2407                 // only required for non-final fields
2408                 checkField(putRefKind, refc, putField);
2409                 if (checkSecurity)
2410                     checkSecurityManager(refc, putField);
2411             }
2412 
2413             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
2414                                   restrictProtectedReceiver(getField));
2415             if (doRestrict) {
2416                 assert !getField.isStatic();
2417                 // receiver type of VarHandle is too wide; narrow to caller
2418                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
2419                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
2420                 }
2421                 refc = lookupClass();
2422             }
2423             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
2424         }
2425         /** Check access and get the requested constructor. */
2426         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2427             final boolean checkSecurity = true;
2428             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2429         }
2430         /** Check access and get the requested constructor, eliding security manager checks. */
2431         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
2432             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
2433             return getDirectConstructorCommon(refc, ctor, checkSecurity);
2434         }
2435         /** Common code for all constructors; do not call directly except from immediately above. */
2436         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
2437                                                   boolean checkSecurity) throws IllegalAccessException {
2438             assert(ctor.isConstructor());
2439             checkAccess(REF_newInvokeSpecial, refc, ctor);
2440             // Optionally check with the security manager; this isn't needed for unreflect* calls.
2441             if (checkSecurity)
2442                 checkSecurityManager(refc, ctor);
2443             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
2444             return DirectMethodHandle.make(ctor).setVarargs(ctor);
2445         }
2446 
2447         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
2448          */
2449         /*non-public*/
2450         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type) throws ReflectiveOperationException {
2451             if (!(type instanceof Class || type instanceof MethodType))
2452                 throw new InternalError("unresolved MemberName");
2453             MemberName member = new MemberName(refKind, defc, name, type);
2454             MethodHandle mh = LOOKASIDE_TABLE.get(member);
2455             if (mh != null) {
2456                 checkSymbolicClass(defc);
2457                 return mh;
2458             }
2459             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
2460                 // Treat MethodHandle.invoke and invokeExact specially.
2461                 mh = findVirtualForMH(member.getName(), member.getMethodType());
2462                 if (mh != null) {
2463                     return mh;
2464                 }
2465             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
2466                 // Treat signature-polymorphic methods on VarHandle specially.
2467                 mh = findVirtualForVH(member.getName(), member.getMethodType());
2468                 if (mh != null) {
2469                     return mh;
2470                 }
2471             }
2472             MemberName resolved = resolveOrFail(refKind, member);
2473             mh = getDirectMethodForConstant(refKind, defc, resolved);
2474             if (mh instanceof DirectMethodHandle
2475                     && canBeCached(refKind, defc, resolved)) {
2476                 MemberName key = mh.internalMemberName();
2477                 if (key != null) {
2478                     key = key.asNormalOriginal();
2479                 }
2480                 if (member.equals(key)) {  // better safe than sorry
2481                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
2482                 }
2483             }
2484             return mh;
2485         }
2486         private
2487         boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
2488             if (refKind == REF_invokeSpecial) {
2489                 return false;
2490             }
2491             if (!Modifier.isPublic(defc.getModifiers()) ||
2492                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
2493                     !member.isPublic() ||
2494                     member.isCallerSensitive()) {
2495                 return false;
2496             }
2497             ClassLoader loader = defc.getClassLoader();
2498             if (loader != null) {
2499                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
2500                 boolean found = false;
2501                 while (sysl != null) {
2502                     if (loader == sysl) { found = true; break; }
2503                     sysl = sysl.getParent();
2504                 }
2505                 if (!found) {
2506                     return false;
2507                 }
2508             }
2509             try {
2510                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
2511                     new MemberName(refKind, defc, member.getName(), member.getType()));
2512                 if (resolved2 == null) {
2513                     return false;
2514                 }
2515                 checkSecurityManager(defc, resolved2);
2516             } catch (SecurityException ex) {
2517                 return false;
2518             }
2519             return true;
2520         }
2521         private
2522         MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
2523                 throws ReflectiveOperationException {
2524             if (MethodHandleNatives.refKindIsField(refKind)) {
2525                 return getDirectFieldNoSecurityManager(refKind, defc, member);
2526             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
2527                 return getDirectMethodNoSecurityManager(refKind, defc, member, lookupClass);
2528             } else if (refKind == REF_newInvokeSpecial) {
2529                 return getDirectConstructorNoSecurityManager(defc, member);
2530             }
2531             // oops
2532             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
2533         }
2534 
2535         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
2536     }
2537 
2538     /**
2539      * Produces a method handle constructing arrays of a desired type,
2540      * as if by the {@code anewarray} bytecode.
2541      * The return type of the method handle will be the array type.
2542      * The type of its sole argument will be {@code int}, which specifies the size of the array.
2543      *
2544      * <p> If the returned method handle is invoked with a negative
2545      * array size, a {@code NegativeArraySizeException} will be thrown.
2546      *
2547      * @param arrayClass an array type
2548      * @return a method handle which can create arrays of the given type
2549      * @throws NullPointerException if the argument is {@code null}
2550      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
2551      * @see java.lang.reflect.Array#newInstance(Class, int)
2552      * @jvms 6.5 {@code anewarray} Instruction
2553      * @since 9
2554      */
2555     public static
2556     MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
2557         if (!arrayClass.isArray()) {
2558             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
2559         }
2560         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
2561                 bindTo(arrayClass.getComponentType());
2562         return ani.asType(ani.type().changeReturnType(arrayClass));
2563     }
2564 
2565     /**
2566      * Produces a method handle returning the length of an array,
2567      * as if by the {@code arraylength} bytecode.
2568      * The type of the method handle will have {@code int} as return type,
2569      * and its sole argument will be the array type.
2570      *
2571      * <p> If the returned method handle is invoked with a {@code null}
2572      * array reference, a {@code NullPointerException} will be thrown.
2573      *
2574      * @param arrayClass an array type
2575      * @return a method handle which can retrieve the length of an array of the given array type
2576      * @throws NullPointerException if the argument is {@code null}
2577      * @throws IllegalArgumentException if arrayClass is not an array type
2578      * @jvms 6.5 {@code arraylength} Instruction
2579      * @since 9
2580      */
2581     public static
2582     MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
2583         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
2584     }
2585 
2586     /**
2587      * Produces a method handle giving read access to elements of an array,
2588      * as if by the {@code aaload} bytecode.
2589      * The type of the method handle will have a return type of the array's
2590      * element type.  Its first argument will be the array type,
2591      * and the second will be {@code int}.
2592      *
2593      * <p> When the returned method handle is invoked,
2594      * the array reference and array index are checked.
2595      * A {@code NullPointerException} will be thrown if the array reference
2596      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2597      * thrown if the index is negative or if it is greater than or equal to
2598      * the length of the array.
2599      *
2600      * @param arrayClass an array type
2601      * @return a method handle which can load values from the given array type
2602      * @throws NullPointerException if the argument is null
2603      * @throws  IllegalArgumentException if arrayClass is not an array type
2604      * @jvms 6.5 {@code aaload} Instruction
2605      */
2606     public static
2607     MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
2608         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
2609     }
2610 
2611     /**
2612      * Produces a method handle giving write access to elements of an array,
2613      * as if by the {@code astore} bytecode.
2614      * The type of the method handle will have a void return type.
2615      * Its last argument will be the array's element type.
2616      * The first and second arguments will be the array type and int.
2617      *
2618      * <p> When the returned method handle is invoked,
2619      * the array reference and array index are checked.
2620      * A {@code NullPointerException} will be thrown if the array reference
2621      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2622      * thrown if the index is negative or if it is greater than or equal to
2623      * the length of the array.
2624      *
2625      * @param arrayClass the class of an array
2626      * @return a method handle which can store values into the array type
2627      * @throws NullPointerException if the argument is null
2628      * @throws IllegalArgumentException if arrayClass is not an array type
2629      * @jvms 6.5 {@code aastore} Instruction
2630      */
2631     public static
2632     MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
2633         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
2634     }
2635 
2636     /**
2637      * Produces a VarHandle giving access to elements of an array of type
2638      * {@code arrayClass}.  The VarHandle's variable type is the component type
2639      * of {@code arrayClass} and the list of coordinate types is
2640      * {@code (arrayClass, int)}, where the {@code int} coordinate type
2641      * corresponds to an argument that is an index into an array.
2642      * <p>
2643      * Certain access modes of the returned VarHandle are unsupported under
2644      * the following conditions:
2645      * <ul>
2646      * <li>if the component type is anything other than {@code byte},
2647      *     {@code short}, {@code char}, {@code int}, {@code long},
2648      *     {@code float}, or {@code double} then numeric atomic update access
2649      *     modes are unsupported.
2650      * <li>if the field type is anything other than {@code boolean},
2651      *     {@code byte}, {@code short}, {@code char}, {@code int} or
2652      *     {@code long} then bitwise atomic update access modes are
2653      *     unsupported.
2654      * </ul>
2655      * <p>
2656      * If the component type is {@code float} or {@code double} then numeric
2657      * and atomic update access modes compare values using their bitwise
2658      * representation (see {@link Float#floatToRawIntBits} and
2659      * {@link Double#doubleToRawLongBits}, respectively).
2660      *
2661      * <p> When the returned {@code VarHandle} is invoked,
2662      * the array reference and array index are checked.
2663      * A {@code NullPointerException} will be thrown if the array reference
2664      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
2665      * thrown if the index is negative or if it is greater than or equal to
2666      * the length of the array.
2667      *
2668      * @apiNote
2669      * Bitwise comparison of {@code float} values or {@code double} values,
2670      * as performed by the numeric and atomic update access modes, differ
2671      * from the primitive {@code ==} operator and the {@link Float#equals}
2672      * and {@link Double#equals} methods, specifically with respect to
2673      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2674      * Care should be taken when performing a compare and set or a compare
2675      * and exchange operation with such values since the operation may
2676      * unexpectedly fail.
2677      * There are many possible NaN values that are considered to be
2678      * {@code NaN} in Java, although no IEEE 754 floating-point operation
2679      * provided by Java can distinguish between them.  Operation failure can
2680      * occur if the expected or witness value is a NaN value and it is
2681      * transformed (perhaps in a platform specific manner) into another NaN
2682      * value, and thus has a different bitwise representation (see
2683      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2684      * details).
2685      * The values {@code -0.0} and {@code +0.0} have different bitwise
2686      * representations but are considered equal when using the primitive
2687      * {@code ==} operator.  Operation failure can occur if, for example, a
2688      * numeric algorithm computes an expected value to be say {@code -0.0}
2689      * and previously computed the witness value to be say {@code +0.0}.
2690      * @param arrayClass the class of an array, of type {@code T[]}
2691      * @return a VarHandle giving access to elements of an array
2692      * @throws NullPointerException if the arrayClass is null
2693      * @throws IllegalArgumentException if arrayClass is not an array type
2694      * @since 9
2695      */
2696     public static
2697     VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
2698         return VarHandles.makeArrayElementHandle(arrayClass);
2699     }
2700 
2701     /**
2702      * Produces a VarHandle giving access to elements of a {@code byte[]} array
2703      * viewed as if it were a different primitive array type, such as
2704      * {@code int[]} or {@code long[]}.
2705      * The VarHandle's variable type is the component type of
2706      * {@code viewArrayClass} and the list of coordinate types is
2707      * {@code (byte[], int)}, where the {@code int} coordinate type
2708      * corresponds to an argument that is an index into a {@code byte[]} array.
2709      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
2710      * array, composing bytes to or from a value of the component type of
2711      * {@code viewArrayClass} according to the given endianness.
2712      * <p>
2713      * The supported component types (variables types) are {@code short},
2714      * {@code char}, {@code int}, {@code long}, {@code float} and
2715      * {@code double}.
2716      * <p>
2717      * Access of bytes at a given index will result in an
2718      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2719      * or greater than the {@code byte[]} array length minus the size (in bytes)
2720      * of {@code T}.
2721      * <p>
2722      * Access of bytes at an index may be aligned or misaligned for {@code T},
2723      * with respect to the underlying memory address, {@code A} say, associated
2724      * with the array and index.
2725      * If access is misaligned then access for anything other than the
2726      * {@code get} and {@code set} access modes will result in an
2727      * {@code IllegalStateException}.  In such cases atomic access is only
2728      * guaranteed with respect to the largest power of two that divides the GCD
2729      * of {@code A} and the size (in bytes) of {@code T}.
2730      * If access is aligned then following access modes are supported and are
2731      * guaranteed to support atomic access:
2732      * <ul>
2733      * <li>read write access modes for all {@code T}, with the exception of
2734      *     access modes {@code get} and {@code set} for {@code long} and
2735      *     {@code double} on 32-bit platforms.
2736      * <li>atomic update access modes for {@code int}, {@code long},
2737      *     {@code float} or {@code double}.
2738      *     (Future major platform releases of the JDK may support additional
2739      *     types for certain currently unsupported access modes.)
2740      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2741      *     (Future major platform releases of the JDK may support additional
2742      *     numeric types for certain currently unsupported access modes.)
2743      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2744      *     (Future major platform releases of the JDK may support additional
2745      *     numeric types for certain currently unsupported access modes.)
2746      * </ul>
2747      * <p>
2748      * Misaligned access, and therefore atomicity guarantees, may be determined
2749      * for {@code byte[]} arrays without operating on a specific array.  Given
2750      * an {@code index}, {@code T} and it's corresponding boxed type,
2751      * {@code T_BOX}, misalignment may be determined as follows:
2752      * <pre>{@code
2753      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2754      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
2755      *     alignmentOffset(0, sizeOfT);
2756      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
2757      * boolean isMisaligned = misalignedAtIndex != 0;
2758      * }</pre>
2759      * <p>
2760      * If the variable type is {@code float} or {@code double} then atomic
2761      * update access modes compare values using their bitwise representation
2762      * (see {@link Float#floatToRawIntBits} and
2763      * {@link Double#doubleToRawLongBits}, respectively).
2764      * @param viewArrayClass the view array class, with a component type of
2765      * type {@code T}
2766      * @param byteOrder the endianness of the view array elements, as
2767      * stored in the underlying {@code byte} array
2768      * @return a VarHandle giving access to elements of a {@code byte[]} array
2769      * viewed as if elements corresponding to the components type of the view
2770      * array class
2771      * @throws NullPointerException if viewArrayClass or byteOrder is null
2772      * @throws IllegalArgumentException if viewArrayClass is not an array type
2773      * @throws UnsupportedOperationException if the component type of
2774      * viewArrayClass is not supported as a variable type
2775      * @since 9
2776      */
2777     public static
2778     VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
2779                                      ByteOrder byteOrder) throws IllegalArgumentException {
2780         Objects.requireNonNull(byteOrder);
2781         return VarHandles.byteArrayViewHandle(viewArrayClass,
2782                                               byteOrder == ByteOrder.BIG_ENDIAN);
2783     }
2784 
2785     /**
2786      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
2787      * viewed as if it were an array of elements of a different primitive
2788      * component type to that of {@code byte}, such as {@code int[]} or
2789      * {@code long[]}.
2790      * The VarHandle's variable type is the component type of
2791      * {@code viewArrayClass} and the list of coordinate types is
2792      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
2793      * corresponds to an argument that is an index into a {@code byte[]} array.
2794      * The returned VarHandle accesses bytes at an index in a
2795      * {@code ByteBuffer}, composing bytes to or from a value of the component
2796      * type of {@code viewArrayClass} according to the given endianness.
2797      * <p>
2798      * The supported component types (variables types) are {@code short},
2799      * {@code char}, {@code int}, {@code long}, {@code float} and
2800      * {@code double}.
2801      * <p>
2802      * Access will result in a {@code ReadOnlyBufferException} for anything
2803      * other than the read access modes if the {@code ByteBuffer} is read-only.
2804      * <p>
2805      * Access of bytes at a given index will result in an
2806      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
2807      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
2808      * {@code T}.
2809      * <p>
2810      * Access of bytes at an index may be aligned or misaligned for {@code T},
2811      * with respect to the underlying memory address, {@code A} say, associated
2812      * with the {@code ByteBuffer} and index.
2813      * If access is misaligned then access for anything other than the
2814      * {@code get} and {@code set} access modes will result in an
2815      * {@code IllegalStateException}.  In such cases atomic access is only
2816      * guaranteed with respect to the largest power of two that divides the GCD
2817      * of {@code A} and the size (in bytes) of {@code T}.
2818      * If access is aligned then following access modes are supported and are
2819      * guaranteed to support atomic access:
2820      * <ul>
2821      * <li>read write access modes for all {@code T}, with the exception of
2822      *     access modes {@code get} and {@code set} for {@code long} and
2823      *     {@code double} on 32-bit platforms.
2824      * <li>atomic update access modes for {@code int}, {@code long},
2825      *     {@code float} or {@code double}.
2826      *     (Future major platform releases of the JDK may support additional
2827      *     types for certain currently unsupported access modes.)
2828      * <li>numeric atomic update access modes for {@code int} and {@code long}.
2829      *     (Future major platform releases of the JDK may support additional
2830      *     numeric types for certain currently unsupported access modes.)
2831      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
2832      *     (Future major platform releases of the JDK may support additional
2833      *     numeric types for certain currently unsupported access modes.)
2834      * </ul>
2835      * <p>
2836      * Misaligned access, and therefore atomicity guarantees, may be determined
2837      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
2838      * {@code index}, {@code T} and it's corresponding boxed type,
2839      * {@code T_BOX}, as follows:
2840      * <pre>{@code
2841      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
2842      * ByteBuffer bb = ...
2843      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
2844      * boolean isMisaligned = misalignedAtIndex != 0;
2845      * }</pre>
2846      * <p>
2847      * If the variable type is {@code float} or {@code double} then atomic
2848      * update access modes compare values using their bitwise representation
2849      * (see {@link Float#floatToRawIntBits} and
2850      * {@link Double#doubleToRawLongBits}, respectively).
2851      * @param viewArrayClass the view array class, with a component type of
2852      * type {@code T}
2853      * @param byteOrder the endianness of the view array elements, as
2854      * stored in the underlying {@code ByteBuffer} (Note this overrides the
2855      * endianness of a {@code ByteBuffer})
2856      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
2857      * viewed as if elements corresponding to the components type of the view
2858      * array class
2859      * @throws NullPointerException if viewArrayClass or byteOrder is null
2860      * @throws IllegalArgumentException if viewArrayClass is not an array type
2861      * @throws UnsupportedOperationException if the component type of
2862      * viewArrayClass is not supported as a variable type
2863      * @since 9
2864      */
2865     public static
2866     VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
2867                                       ByteOrder byteOrder) throws IllegalArgumentException {
2868         Objects.requireNonNull(byteOrder);
2869         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
2870                                                    byteOrder == ByteOrder.BIG_ENDIAN);
2871     }
2872 
2873 
2874     /// method handle invocation (reflective style)
2875 
2876     /**
2877      * Produces a method handle which will invoke any method handle of the
2878      * given {@code type}, with a given number of trailing arguments replaced by
2879      * a single trailing {@code Object[]} array.
2880      * The resulting invoker will be a method handle with the following
2881      * arguments:
2882      * <ul>
2883      * <li>a single {@code MethodHandle} target
2884      * <li>zero or more leading values (counted by {@code leadingArgCount})
2885      * <li>an {@code Object[]} array containing trailing arguments
2886      * </ul>
2887      * <p>
2888      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
2889      * the indicated {@code type}.
2890      * That is, if the target is exactly of the given {@code type}, it will behave
2891      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
2892      * is used to convert the target to the required {@code type}.
2893      * <p>
2894      * The type of the returned invoker will not be the given {@code type}, but rather
2895      * will have all parameters except the first {@code leadingArgCount}
2896      * replaced by a single array of type {@code Object[]}, which will be
2897      * the final parameter.
2898      * <p>
2899      * Before invoking its target, the invoker will spread the final array, apply
2900      * reference casts as necessary, and unbox and widen primitive arguments.
2901      * If, when the invoker is called, the supplied array argument does
2902      * not have the correct number of elements, the invoker will throw
2903      * an {@link IllegalArgumentException} instead of invoking the target.
2904      * <p>
2905      * This method is equivalent to the following code (though it may be more efficient):
2906      * <blockquote><pre>{@code
2907 MethodHandle invoker = MethodHandles.invoker(type);
2908 int spreadArgCount = type.parameterCount() - leadingArgCount;
2909 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
2910 return invoker;
2911      * }</pre></blockquote>
2912      * This method throws no reflective or security exceptions.
2913      * @param type the desired target type
2914      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
2915      * @return a method handle suitable for invoking any method handle of the given type
2916      * @throws NullPointerException if {@code type} is null
2917      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
2918      *                  the range from 0 to {@code type.parameterCount()} inclusive,
2919      *                  or if the resulting method handle's type would have
2920      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2921      */
2922     public static
2923     MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
2924         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
2925             throw newIllegalArgumentException("bad argument count", leadingArgCount);
2926         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
2927         return type.invokers().spreadInvoker(leadingArgCount);
2928     }
2929 
2930     /**
2931      * Produces a special <em>invoker method handle</em> which can be used to
2932      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
2933      * The resulting invoker will have a type which is
2934      * exactly equal to the desired type, except that it will accept
2935      * an additional leading argument of type {@code MethodHandle}.
2936      * <p>
2937      * This method is equivalent to the following code (though it may be more efficient):
2938      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
2939      *
2940      * <p style="font-size:smaller;">
2941      * <em>Discussion:</em>
2942      * Invoker method handles can be useful when working with variable method handles
2943      * of unknown types.
2944      * For example, to emulate an {@code invokeExact} call to a variable method
2945      * handle {@code M}, extract its type {@code T},
2946      * look up the invoker method {@code X} for {@code T},
2947      * and call the invoker method, as {@code X.invoke(T, A...)}.
2948      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
2949      * is unknown.)
2950      * If spreading, collecting, or other argument transformations are required,
2951      * they can be applied once to the invoker {@code X} and reused on many {@code M}
2952      * method handle values, as long as they are compatible with the type of {@code X}.
2953      * <p style="font-size:smaller;">
2954      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2955      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2956      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2957      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2958      * <p>
2959      * This method throws no reflective or security exceptions.
2960      * @param type the desired target type
2961      * @return a method handle suitable for invoking any method handle of the given type
2962      * @throws IllegalArgumentException if the resulting method handle's type would have
2963      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
2964      */
2965     public static
2966     MethodHandle exactInvoker(MethodType type) {
2967         return type.invokers().exactInvoker();
2968     }
2969 
2970     /**
2971      * Produces a special <em>invoker method handle</em> which can be used to
2972      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
2973      * The resulting invoker will have a type which is
2974      * exactly equal to the desired type, except that it will accept
2975      * an additional leading argument of type {@code MethodHandle}.
2976      * <p>
2977      * Before invoking its target, if the target differs from the expected type,
2978      * the invoker will apply reference casts as
2979      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
2980      * Similarly, the return value will be converted as necessary.
2981      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
2982      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
2983      * <p>
2984      * This method is equivalent to the following code (though it may be more efficient):
2985      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
2986      * <p style="font-size:smaller;">
2987      * <em>Discussion:</em>
2988      * A {@linkplain MethodType#genericMethodType general method type} is one which
2989      * mentions only {@code Object} arguments and return values.
2990      * An invoker for such a type is capable of calling any method handle
2991      * of the same arity as the general type.
2992      * <p style="font-size:smaller;">
2993      * <em>(Note:  The invoker method is not available via the Core Reflection API.
2994      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
2995      * on the declared {@code invokeExact} or {@code invoke} method will raise an
2996      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
2997      * <p>
2998      * This method throws no reflective or security exceptions.
2999      * @param type the desired target type
3000      * @return a method handle suitable for invoking any method handle convertible to the given type
3001      * @throws IllegalArgumentException if the resulting method handle's type would have
3002      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3003      */
3004     public static
3005     MethodHandle invoker(MethodType type) {
3006         return type.invokers().genericInvoker();
3007     }
3008 
3009     /**
3010      * Produces a special <em>invoker method handle</em> which can be used to
3011      * invoke a signature-polymorphic access mode method on any VarHandle whose
3012      * associated access mode type is compatible with the given type.
3013      * The resulting invoker will have a type which is exactly equal to the
3014      * desired given type, except that it will accept an additional leading
3015      * argument of type {@code VarHandle}.
3016      *
3017      * @param accessMode the VarHandle access mode
3018      * @param type the desired target type
3019      * @return a method handle suitable for invoking an access mode method of
3020      *         any VarHandle whose access mode type is of the given type.
3021      * @since 9
3022      */
3023     static public
3024     MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3025         return type.invokers().varHandleMethodExactInvoker(accessMode);
3026     }
3027 
3028     /**
3029      * Produces a special <em>invoker method handle</em> which can be used to
3030      * invoke a signature-polymorphic access mode method on any VarHandle whose
3031      * associated access mode type is compatible with the given type.
3032      * The resulting invoker will have a type which is exactly equal to the
3033      * desired given type, except that it will accept an additional leading
3034      * argument of type {@code VarHandle}.
3035      * <p>
3036      * Before invoking its target, if the access mode type differs from the
3037      * desired given type, the invoker will apply reference casts as necessary
3038      * and box, unbox, or widen primitive values, as if by
3039      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3040      * converted as necessary.
3041      * <p>
3042      * This method is equivalent to the following code (though it may be more
3043      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3044      *
3045      * @param accessMode the VarHandle access mode
3046      * @param type the desired target type
3047      * @return a method handle suitable for invoking an access mode method of
3048      *         any VarHandle whose access mode type is convertible to the given
3049      *         type.
3050      * @since 9
3051      */
3052     static public
3053     MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3054         return type.invokers().varHandleMethodInvoker(accessMode);
3055     }
3056 
3057     static /*non-public*/
3058     MethodHandle basicInvoker(MethodType type) {
3059         return type.invokers().basicInvoker();
3060     }
3061 
3062      /// method handle modification (creation from other method handles)
3063 
3064     /**
3065      * Produces a method handle which adapts the type of the
3066      * given method handle to a new type by pairwise argument and return type conversion.
3067      * The original type and new type must have the same number of arguments.
3068      * The resulting method handle is guaranteed to report a type
3069      * which is equal to the desired new type.
3070      * <p>
3071      * If the original type and new type are equal, returns target.
3072      * <p>
3073      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3074      * and some additional conversions are also applied if those conversions fail.
3075      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3076      * if possible, before or instead of any conversions done by {@code asType}:
3077      * <ul>
3078      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3079      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3080      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3081      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3082      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3083      *     (This treatment follows the usage of the bytecode verifier.)
3084      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3085      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3086      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3087      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3088      *     then a Java casting conversion (JLS 5.5) is applied.
3089      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3090      *     widening and/or narrowing.)
3091      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3092      *     conversion will be applied at runtime, possibly followed
3093      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3094      *     possibly followed by a conversion from byte to boolean by testing
3095      *     the low-order bit.
3096      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3097      *     and if the reference is null at runtime, a zero value is introduced.
3098      * </ul>
3099      * @param target the method handle to invoke after arguments are retyped
3100      * @param newType the expected type of the new method handle
3101      * @return a method handle which delegates to the target after performing
3102      *           any necessary argument conversions, and arranges for any
3103      *           necessary return value conversions
3104      * @throws NullPointerException if either argument is null
3105      * @throws WrongMethodTypeException if the conversion cannot be made
3106      * @see MethodHandle#asType
3107      */
3108     public static
3109     MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3110         explicitCastArgumentsChecks(target, newType);
3111         // use the asTypeCache when possible:
3112         MethodType oldType = target.type();
3113         if (oldType == newType)  return target;
3114         if (oldType.explicitCastEquivalentToAsType(newType)) {
3115             return target.asFixedArity().asType(newType);
3116         }
3117         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3118     }
3119 
3120     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3121         if (target.type().parameterCount() != newType.parameterCount()) {
3122             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3123         }
3124     }
3125 
3126     /**
3127      * Produces a method handle which adapts the calling sequence of the
3128      * given method handle to a new type, by reordering the arguments.
3129      * The resulting method handle is guaranteed to report a type
3130      * which is equal to the desired new type.
3131      * <p>
3132      * The given array controls the reordering.
3133      * Call {@code #I} the number of incoming parameters (the value
3134      * {@code newType.parameterCount()}, and call {@code #O} the number
3135      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3136      * Then the length of the reordering array must be {@code #O},
3137      * and each element must be a non-negative number less than {@code #I}.
3138      * For every {@code N} less than {@code #O}, the {@code N}-th
3139      * outgoing argument will be taken from the {@code I}-th incoming
3140      * argument, where {@code I} is {@code reorder[N]}.
3141      * <p>
3142      * No argument or return value conversions are applied.
3143      * The type of each incoming argument, as determined by {@code newType},
3144      * must be identical to the type of the corresponding outgoing parameter
3145      * or parameters in the target method handle.
3146      * The return type of {@code newType} must be identical to the return
3147      * type of the original target.
3148      * <p>
3149      * The reordering array need not specify an actual permutation.
3150      * An incoming argument will be duplicated if its index appears
3151      * more than once in the array, and an incoming argument will be dropped
3152      * if its index does not appear in the array.
3153      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3154      * incoming arguments which are not mentioned in the reordering array
3155      * may be of any type, as determined only by {@code newType}.
3156      * <blockquote><pre>{@code
3157 import static java.lang.invoke.MethodHandles.*;
3158 import static java.lang.invoke.MethodType.*;
3159 ...
3160 MethodType intfn1 = methodType(int.class, int.class);
3161 MethodType intfn2 = methodType(int.class, int.class, int.class);
3162 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3163 assert(sub.type().equals(intfn2));
3164 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3165 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3166 assert((int)rsub.invokeExact(1, 100) == 99);
3167 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3168 assert(add.type().equals(intfn2));
3169 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3170 assert(twice.type().equals(intfn1));
3171 assert((int)twice.invokeExact(21) == 42);
3172      * }</pre></blockquote>
3173      * <p>
3174      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3175      * variable-arity method handle}, even if the original target method handle was.
3176      * @param target the method handle to invoke after arguments are reordered
3177      * @param newType the expected type of the new method handle
3178      * @param reorder an index array which controls the reordering
3179      * @return a method handle which delegates to the target after it
3180      *           drops unused arguments and moves and/or duplicates the other arguments
3181      * @throws NullPointerException if any argument is null
3182      * @throws IllegalArgumentException if the index array length is not equal to
3183      *                  the arity of the target, or if any index array element
3184      *                  not a valid index for a parameter of {@code newType},
3185      *                  or if two corresponding parameter types in
3186      *                  {@code target.type()} and {@code newType} are not identical,
3187      */
3188     public static
3189     MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3190         reorder = reorder.clone();  // get a private copy
3191         MethodType oldType = target.type();
3192         permuteArgumentChecks(reorder, newType, oldType);
3193         // first detect dropped arguments and handle them separately
3194         int[] originalReorder = reorder;
3195         BoundMethodHandle result = target.rebind();
3196         LambdaForm form = result.form;
3197         int newArity = newType.parameterCount();
3198         // Normalize the reordering into a real permutation,
3199         // by removing duplicates and adding dropped elements.
3200         // This somewhat improves lambda form caching, as well
3201         // as simplifying the transform by breaking it up into steps.
3202         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3203             if (ddIdx > 0) {
3204                 // We found a duplicated entry at reorder[ddIdx].
3205                 // Example:  (x,y,z)->asList(x,y,z)
3206                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3207                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3208                 // The starred element corresponds to the argument
3209                 // deleted by the dupArgumentForm transform.
3210                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3211                 boolean killFirst = false;
3212                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3213                     // Set killFirst if the dup is larger than an intervening position.
3214                     // This will remove at least one inversion from the permutation.
3215                     if (dupVal > val) killFirst = true;
3216                 }
3217                 if (!killFirst) {
3218                     srcPos = dstPos;
3219                     dstPos = ddIdx;
3220                 }
3221                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3222                 assert (reorder[srcPos] == reorder[dstPos]);
3223                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3224                 // contract the reordering by removing the element at dstPos
3225                 int tailPos = dstPos + 1;
3226                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3227                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3228             } else {
3229                 int dropVal = ~ddIdx, insPos = 0;
3230                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3231                     // Find first element of reorder larger than dropVal.
3232                     // This is where we will insert the dropVal.
3233                     insPos += 1;
3234                 }
3235                 Class<?> ptype = newType.parameterType(dropVal);
3236                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3237                 oldType = oldType.insertParameterTypes(insPos, ptype);
3238                 // expand the reordering by inserting an element at insPos
3239                 int tailPos = insPos + 1;
3240                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3241                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3242                 reorder[insPos] = dropVal;
3243             }
3244             assert (permuteArgumentChecks(reorder, newType, oldType));
3245         }
3246         assert (reorder.length == newArity);  // a perfect permutation
3247         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
3248         form = form.editor().permuteArgumentsForm(1, reorder);
3249         if (newType == result.type() && form == result.internalForm())
3250             return result;
3251         return result.copyWith(newType, form);
3252     }
3253 
3254     /**
3255      * Return an indication of any duplicate or omission in reorder.
3256      * If the reorder contains a duplicate entry, return the index of the second occurrence.
3257      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
3258      * Otherwise, return zero.
3259      * If an element not in [0..newArity-1] is encountered, return reorder.length.
3260      */
3261     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
3262         final int BIT_LIMIT = 63;  // max number of bits in bit mask
3263         if (newArity < BIT_LIMIT) {
3264             long mask = 0;
3265             for (int i = 0; i < reorder.length; i++) {
3266                 int arg = reorder[i];
3267                 if (arg >= newArity) {
3268                     return reorder.length;
3269                 }
3270                 long bit = 1L << arg;
3271                 if ((mask & bit) != 0) {
3272                     return i;  // >0 indicates a dup
3273                 }
3274                 mask |= bit;
3275             }
3276             if (mask == (1L << newArity) - 1) {
3277                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
3278                 return 0;
3279             }
3280             // find first zero
3281             long zeroBit = Long.lowestOneBit(~mask);
3282             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
3283             assert(zeroPos <= newArity);
3284             if (zeroPos == newArity) {
3285                 return 0;
3286             }
3287             return ~zeroPos;
3288         } else {
3289             // same algorithm, different bit set
3290             BitSet mask = new BitSet(newArity);
3291             for (int i = 0; i < reorder.length; i++) {
3292                 int arg = reorder[i];
3293                 if (arg >= newArity) {
3294                     return reorder.length;
3295                 }
3296                 if (mask.get(arg)) {
3297                     return i;  // >0 indicates a dup
3298                 }
3299                 mask.set(arg);
3300             }
3301             int zeroPos = mask.nextClearBit(0);
3302             assert(zeroPos <= newArity);
3303             if (zeroPos == newArity) {
3304                 return 0;
3305             }
3306             return ~zeroPos;
3307         }
3308     }
3309 
3310     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
3311         if (newType.returnType() != oldType.returnType())
3312             throw newIllegalArgumentException("return types do not match",
3313                     oldType, newType);
3314         if (reorder.length == oldType.parameterCount()) {
3315             int limit = newType.parameterCount();
3316             boolean bad = false;
3317             for (int j = 0; j < reorder.length; j++) {
3318                 int i = reorder[j];
3319                 if (i < 0 || i >= limit) {
3320                     bad = true; break;
3321                 }
3322                 Class<?> src = newType.parameterType(i);
3323                 Class<?> dst = oldType.parameterType(j);
3324                 if (src != dst)
3325                     throw newIllegalArgumentException("parameter types do not match after reorder",
3326                             oldType, newType);
3327             }
3328             if (!bad)  return true;
3329         }
3330         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
3331     }
3332 
3333     /**
3334      * Produces a method handle of the requested return type which returns the given
3335      * constant value every time it is invoked.
3336      * <p>
3337      * Before the method handle is returned, the passed-in value is converted to the requested type.
3338      * If the requested type is primitive, widening primitive conversions are attempted,
3339      * else reference conversions are attempted.
3340      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
3341      * @param type the return type of the desired method handle
3342      * @param value the value to return
3343      * @return a method handle of the given return type and no arguments, which always returns the given value
3344      * @throws NullPointerException if the {@code type} argument is null
3345      * @throws ClassCastException if the value cannot be converted to the required return type
3346      * @throws IllegalArgumentException if the given type is {@code void.class}
3347      */
3348     public static
3349     MethodHandle constant(Class<?> type, Object value) {
3350         if (type.isPrimitive()) {
3351             if (type == void.class)
3352                 throw newIllegalArgumentException("void type");
3353             Wrapper w = Wrapper.forPrimitiveType(type);
3354             value = w.convert(value, type);
3355             if (w.zero().equals(value))
3356                 return zero(w, type);
3357             return insertArguments(identity(type), 0, value);
3358         } else {
3359             if (value == null)
3360                 return zero(Wrapper.OBJECT, type);
3361             return identity(type).bindTo(value);
3362         }
3363     }
3364 
3365     /**
3366      * Produces a method handle which returns its sole argument when invoked.
3367      * @param type the type of the sole parameter and return value of the desired method handle
3368      * @return a unary method handle which accepts and returns the given type
3369      * @throws NullPointerException if the argument is null
3370      * @throws IllegalArgumentException if the given type is {@code void.class}
3371      */
3372     public static
3373     MethodHandle identity(Class<?> type) {
3374         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
3375         int pos = btw.ordinal();
3376         MethodHandle ident = IDENTITY_MHS[pos];
3377         if (ident == null) {
3378             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
3379         }
3380         if (ident.type().returnType() == type)
3381             return ident;
3382         // something like identity(Foo.class); do not bother to intern these
3383         assert (btw == Wrapper.OBJECT);
3384         return makeIdentity(type);
3385     }
3386 
3387     /**
3388      * Produces a constant method handle of the requested return type which
3389      * returns the default value for that type every time it is invoked.
3390      * The resulting constant method handle will have no side effects.
3391      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
3392      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
3393      * since {@code explicitCastArguments} converts {@code null} to default values.
3394      * @param type the expected return type of the desired method handle
3395      * @return a constant method handle that takes no arguments
3396      *         and returns the default value of the given type (or void, if the type is void)
3397      * @throws NullPointerException if the argument is null
3398      * @see MethodHandles#constant
3399      * @see MethodHandles#empty
3400      * @see MethodHandles#explicitCastArguments
3401      * @since 9
3402      */
3403     public static MethodHandle zero(Class<?> type) {
3404         Objects.requireNonNull(type);
3405         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
3406     }
3407 
3408     private static MethodHandle identityOrVoid(Class<?> type) {
3409         return type == void.class ? zero(type) : identity(type);
3410     }
3411 
3412     /**
3413      * Produces a method handle of the requested type which ignores any arguments, does nothing,
3414      * and returns a suitable default depending on the return type.
3415      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
3416      * <p>The returned method handle is equivalent to
3417      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
3418      *
3419      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
3420      * {@code guardWithTest(pred, target, empty(target.type())}.
3421      * @param type the type of the desired method handle
3422      * @return a constant method handle of the given type, which returns a default value of the given return type
3423      * @throws NullPointerException if the argument is null
3424      * @see MethodHandles#zero
3425      * @see MethodHandles#constant
3426      * @since 9
3427      */
3428     public static  MethodHandle empty(MethodType type) {
3429         Objects.requireNonNull(type);
3430         return dropArguments(zero(type.returnType()), 0, type.parameterList());
3431     }
3432 
3433     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
3434     private static MethodHandle makeIdentity(Class<?> ptype) {
3435         MethodType mtype = methodType(ptype, ptype);
3436         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
3437         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
3438     }
3439 
3440     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
3441         int pos = btw.ordinal();
3442         MethodHandle zero = ZERO_MHS[pos];
3443         if (zero == null) {
3444             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
3445         }
3446         if (zero.type().returnType() == rtype)
3447             return zero;
3448         assert(btw == Wrapper.OBJECT);
3449         return makeZero(rtype);
3450     }
3451     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
3452     private static MethodHandle makeZero(Class<?> rtype) {
3453         MethodType mtype = methodType(rtype);
3454         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
3455         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
3456     }
3457 
3458     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
3459         // Simulate a CAS, to avoid racy duplication of results.
3460         MethodHandle prev = cache[pos];
3461         if (prev != null) return prev;
3462         return cache[pos] = value;
3463     }
3464 
3465     /**
3466      * Provides a target method handle with one or more <em>bound arguments</em>
3467      * in advance of the method handle's invocation.
3468      * The formal parameters to the target corresponding to the bound
3469      * arguments are called <em>bound parameters</em>.
3470      * Returns a new method handle which saves away the bound arguments.
3471      * When it is invoked, it receives arguments for any non-bound parameters,
3472      * binds the saved arguments to their corresponding parameters,
3473      * and calls the original target.
3474      * <p>
3475      * The type of the new method handle will drop the types for the bound
3476      * parameters from the original target type, since the new method handle
3477      * will no longer require those arguments to be supplied by its callers.
3478      * <p>
3479      * Each given argument object must match the corresponding bound parameter type.
3480      * If a bound parameter type is a primitive, the argument object
3481      * must be a wrapper, and will be unboxed to produce the primitive value.
3482      * <p>
3483      * The {@code pos} argument selects which parameters are to be bound.
3484      * It may range between zero and <i>N-L</i> (inclusively),
3485      * where <i>N</i> is the arity of the target method handle
3486      * and <i>L</i> is the length of the values array.
3487      * <p>
3488      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3489      * variable-arity method handle}, even if the original target method handle was.
3490      * @param target the method handle to invoke after the argument is inserted
3491      * @param pos where to insert the argument (zero for the first)
3492      * @param values the series of arguments to insert
3493      * @return a method handle which inserts an additional argument,
3494      *         before calling the original method handle
3495      * @throws NullPointerException if the target or the {@code values} array is null
3496      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
3497      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
3498      *         is the length of the values array.
3499      * @throws ClassCastException if an argument does not match the corresponding bound parameter
3500      *         type.
3501      * @see MethodHandle#bindTo
3502      */
3503     public static
3504     MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
3505         int insCount = values.length;
3506         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
3507         if (insCount == 0)  return target;
3508         BoundMethodHandle result = target.rebind();
3509         for (int i = 0; i < insCount; i++) {
3510             Object value = values[i];
3511             Class<?> ptype = ptypes[pos+i];
3512             if (ptype.isPrimitive()) {
3513                 result = insertArgumentPrimitive(result, pos, ptype, value);
3514             } else {
3515                 value = ptype.cast(value);  // throw CCE if needed
3516                 result = result.bindArgumentL(pos, value);
3517             }
3518         }
3519         return result;
3520     }
3521 
3522     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
3523                                                              Class<?> ptype, Object value) {
3524         Wrapper w = Wrapper.forPrimitiveType(ptype);
3525         // perform unboxing and/or primitive conversion
3526         value = w.convert(value, ptype);
3527         switch (w) {
3528         case INT:     return result.bindArgumentI(pos, (int)value);
3529         case LONG:    return result.bindArgumentJ(pos, (long)value);
3530         case FLOAT:   return result.bindArgumentF(pos, (float)value);
3531         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
3532         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
3533         }
3534     }
3535 
3536     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
3537         MethodType oldType = target.type();
3538         int outargs = oldType.parameterCount();
3539         int inargs  = outargs - insCount;
3540         if (inargs < 0)
3541             throw newIllegalArgumentException("too many values to insert");
3542         if (pos < 0 || pos > inargs)
3543             throw newIllegalArgumentException("no argument type to append");
3544         return oldType.ptypes();
3545     }
3546 
3547     /**
3548      * Produces a method handle which will discard some dummy arguments
3549      * before calling some other specified <i>target</i> method handle.
3550      * The type of the new method handle will be the same as the target's type,
3551      * except it will also include the dummy argument types,
3552      * at some given position.
3553      * <p>
3554      * The {@code pos} argument may range between zero and <i>N</i>,
3555      * where <i>N</i> is the arity of the target.
3556      * If {@code pos} is zero, the dummy arguments will precede
3557      * the target's real arguments; if {@code pos} is <i>N</i>
3558      * they will come after.
3559      * <p>
3560      * <b>Example:</b>
3561      * <blockquote><pre>{@code
3562 import static java.lang.invoke.MethodHandles.*;
3563 import static java.lang.invoke.MethodType.*;
3564 ...
3565 MethodHandle cat = lookup().findVirtual(String.class,
3566   "concat", methodType(String.class, String.class));
3567 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3568 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
3569 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
3570 assertEquals(bigType, d0.type());
3571 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
3572      * }</pre></blockquote>
3573      * <p>
3574      * This method is also equivalent to the following code:
3575      * <blockquote><pre>
3576      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
3577      * </pre></blockquote>
3578      * @param target the method handle to invoke after the arguments are dropped
3579      * @param valueTypes the type(s) of the argument(s) to drop
3580      * @param pos position of first argument to drop (zero for the leftmost)
3581      * @return a method handle which drops arguments of the given types,
3582      *         before calling the original method handle
3583      * @throws NullPointerException if the target is null,
3584      *                              or if the {@code valueTypes} list or any of its elements is null
3585      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3586      *                  or if {@code pos} is negative or greater than the arity of the target,
3587      *                  or if the new method handle's type would have too many parameters
3588      */
3589     public static
3590     MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3591         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
3592     }
3593 
3594     private static List<Class<?>> copyTypes(Object[] array) {
3595         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
3596     }
3597 
3598     private static
3599     MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
3600         MethodType oldType = target.type();  // get NPE
3601         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
3602         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
3603         if (dropped == 0)  return target;
3604         BoundMethodHandle result = target.rebind();
3605         LambdaForm lform = result.form;
3606         int insertFormArg = 1 + pos;
3607         for (Class<?> ptype : valueTypes) {
3608             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
3609         }
3610         result = result.copyWith(newType, lform);
3611         return result;
3612     }
3613 
3614     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
3615         int dropped = valueTypes.size();
3616         MethodType.checkSlotCount(dropped);
3617         int outargs = oldType.parameterCount();
3618         int inargs  = outargs + dropped;
3619         if (pos < 0 || pos > outargs)
3620             throw newIllegalArgumentException("no argument type to remove"
3621                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
3622                     );
3623         return dropped;
3624     }
3625 
3626     /**
3627      * Produces a method handle which will discard some dummy arguments
3628      * before calling some other specified <i>target</i> method handle.
3629      * The type of the new method handle will be the same as the target's type,
3630      * except it will also include the dummy argument types,
3631      * at some given position.
3632      * <p>
3633      * The {@code pos} argument may range between zero and <i>N</i>,
3634      * where <i>N</i> is the arity of the target.
3635      * If {@code pos} is zero, the dummy arguments will precede
3636      * the target's real arguments; if {@code pos} is <i>N</i>
3637      * they will come after.
3638      * @apiNote
3639      * <blockquote><pre>{@code
3640 import static java.lang.invoke.MethodHandles.*;
3641 import static java.lang.invoke.MethodType.*;
3642 ...
3643 MethodHandle cat = lookup().findVirtual(String.class,
3644   "concat", methodType(String.class, String.class));
3645 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3646 MethodHandle d0 = dropArguments(cat, 0, String.class);
3647 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
3648 MethodHandle d1 = dropArguments(cat, 1, String.class);
3649 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
3650 MethodHandle d2 = dropArguments(cat, 2, String.class);
3651 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
3652 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
3653 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
3654      * }</pre></blockquote>
3655      * <p>
3656      * This method is also equivalent to the following code:
3657      * <blockquote><pre>
3658      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
3659      * </pre></blockquote>
3660      * @param target the method handle to invoke after the arguments are dropped
3661      * @param valueTypes the type(s) of the argument(s) to drop
3662      * @param pos position of first argument to drop (zero for the leftmost)
3663      * @return a method handle which drops arguments of the given types,
3664      *         before calling the original method handle
3665      * @throws NullPointerException if the target is null,
3666      *                              or if the {@code valueTypes} array or any of its elements is null
3667      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
3668      *                  or if {@code pos} is negative or greater than the arity of the target,
3669      *                  or if the new method handle's type would have
3670      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
3671      */
3672     public static
3673     MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
3674         return dropArguments0(target, pos, copyTypes(valueTypes));
3675     }
3676 
3677     // private version which allows caller some freedom with error handling
3678     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
3679                                       boolean nullOnFailure) {
3680         newTypes = copyTypes(newTypes.toArray());
3681         List<Class<?>> oldTypes = target.type().parameterList();
3682         int match = oldTypes.size();
3683         if (skip != 0) {
3684             if (skip < 0 || skip > match) {
3685                 throw newIllegalArgumentException("illegal skip", skip, target);
3686             }
3687             oldTypes = oldTypes.subList(skip, match);
3688             match -= skip;
3689         }
3690         List<Class<?>> addTypes = newTypes;
3691         int add = addTypes.size();
3692         if (pos != 0) {
3693             if (pos < 0 || pos > add) {
3694                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
3695             }
3696             addTypes = addTypes.subList(pos, add);
3697             add -= pos;
3698             assert(addTypes.size() == add);
3699         }
3700         // Do not add types which already match the existing arguments.
3701         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
3702             if (nullOnFailure) {
3703                 return null;
3704             }
3705             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
3706         }
3707         addTypes = addTypes.subList(match, add);
3708         add -= match;
3709         assert(addTypes.size() == add);
3710         // newTypes:     (   P*[pos], M*[match], A*[add] )
3711         // target: ( S*[skip],        M*[match]  )
3712         MethodHandle adapter = target;
3713         if (add > 0) {
3714             adapter = dropArguments0(adapter, skip+ match, addTypes);
3715         }
3716         // adapter: (S*[skip],        M*[match], A*[add] )
3717         if (pos > 0) {
3718             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
3719         }
3720         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
3721         return adapter;
3722     }
3723 
3724     /**
3725      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
3726      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
3727      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
3728      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
3729      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
3730      * {@link #dropArguments(MethodHandle, int, Class[])}.
3731      * <p>
3732      * The resulting handle will have the same return type as the target handle.
3733      * <p>
3734      * In more formal terms, assume these two type lists:<ul>
3735      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
3736      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
3737      * {@code newTypes}.
3738      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
3739      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
3740      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
3741      * sub-list.
3742      * </ul>
3743      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
3744      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
3745      * {@link #dropArguments(MethodHandle, int, Class[])}.
3746      *
3747      * @apiNote
3748      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
3749      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
3750      * <blockquote><pre>{@code
3751 import static java.lang.invoke.MethodHandles.*;
3752 import static java.lang.invoke.MethodType.*;
3753 ...
3754 ...
3755 MethodHandle h0 = constant(boolean.class, true);
3756 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
3757 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
3758 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
3759 if (h1.type().parameterCount() < h2.type().parameterCount())
3760     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
3761 else
3762     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
3763 MethodHandle h3 = guardWithTest(h0, h1, h2);
3764 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
3765      * }</pre></blockquote>
3766      * @param target the method handle to adapt
3767      * @param skip number of targets parameters to disregard (they will be unchanged)
3768      * @param newTypes the list of types to match {@code target}'s parameter type list to
3769      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
3770      * @return a possibly adapted method handle
3771      * @throws NullPointerException if either argument is null
3772      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
3773      *         or if {@code skip} is negative or greater than the arity of the target,
3774      *         or if {@code pos} is negative or greater than the newTypes list size,
3775      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
3776      *         {@code pos}.
3777      * @since 9
3778      */
3779     public static
3780     MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
3781         Objects.requireNonNull(target);
3782         Objects.requireNonNull(newTypes);
3783         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
3784     }
3785 
3786     /**
3787      * Adapts a target method handle by pre-processing
3788      * one or more of its arguments, each with its own unary filter function,
3789      * and then calling the target with each pre-processed argument
3790      * replaced by the result of its corresponding filter function.
3791      * <p>
3792      * The pre-processing is performed by one or more method handles,
3793      * specified in the elements of the {@code filters} array.
3794      * The first element of the filter array corresponds to the {@code pos}
3795      * argument of the target, and so on in sequence.
3796      * The filter functions are invoked in left to right order.
3797      * <p>
3798      * Null arguments in the array are treated as identity functions,
3799      * and the corresponding arguments left unchanged.
3800      * (If there are no non-null elements in the array, the original target is returned.)
3801      * Each filter is applied to the corresponding argument of the adapter.
3802      * <p>
3803      * If a filter {@code F} applies to the {@code N}th argument of
3804      * the target, then {@code F} must be a method handle which
3805      * takes exactly one argument.  The type of {@code F}'s sole argument
3806      * replaces the corresponding argument type of the target
3807      * in the resulting adapted method handle.
3808      * The return type of {@code F} must be identical to the corresponding
3809      * parameter type of the target.
3810      * <p>
3811      * It is an error if there are elements of {@code filters}
3812      * (null or not)
3813      * which do not correspond to argument positions in the target.
3814      * <p><b>Example:</b>
3815      * <blockquote><pre>{@code
3816 import static java.lang.invoke.MethodHandles.*;
3817 import static java.lang.invoke.MethodType.*;
3818 ...
3819 MethodHandle cat = lookup().findVirtual(String.class,
3820   "concat", methodType(String.class, String.class));
3821 MethodHandle upcase = lookup().findVirtual(String.class,
3822   "toUpperCase", methodType(String.class));
3823 assertEquals("xy", (String) cat.invokeExact("x", "y"));
3824 MethodHandle f0 = filterArguments(cat, 0, upcase);
3825 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
3826 MethodHandle f1 = filterArguments(cat, 1, upcase);
3827 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
3828 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
3829 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
3830      * }</pre></blockquote>
3831      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3832      * denotes the return type of both the {@code target} and resulting adapter.
3833      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
3834      * of the parameters and arguments that precede and follow the filter position
3835      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
3836      * values of the filtered parameters and arguments; they also represent the
3837      * return types of the {@code filter[i]} handles. The latter accept arguments
3838      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
3839      * the resulting adapter.
3840      * <blockquote><pre>{@code
3841      * T target(P... p, A[i]... a[i], B... b);
3842      * A[i] filter[i](V[i]);
3843      * T adapter(P... p, V[i]... v[i], B... b) {
3844      *   return target(p..., filter[i](v[i])..., b...);
3845      * }
3846      * }</pre></blockquote>
3847      * <p>
3848      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3849      * variable-arity method handle}, even if the original target method handle was.
3850      *
3851      * @param target the method handle to invoke after arguments are filtered
3852      * @param pos the position of the first argument to filter
3853      * @param filters method handles to call initially on filtered arguments
3854      * @return method handle which incorporates the specified argument filtering logic
3855      * @throws NullPointerException if the target is null
3856      *                              or if the {@code filters} array is null
3857      * @throws IllegalArgumentException if a non-null element of {@code filters}
3858      *          does not match a corresponding argument type of target as described above,
3859      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
3860      *          or if the resulting method handle's type would have
3861      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3862      */
3863     public static
3864     MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
3865         filterArgumentsCheckArity(target, pos, filters);
3866         MethodHandle adapter = target;
3867         // process filters in reverse order so that the invocation of
3868         // the resulting adapter will invoke the filters in left-to-right order
3869         for (int i = filters.length - 1; i >= 0; --i) {
3870             MethodHandle filter = filters[i];
3871             if (filter == null)  continue;  // ignore null elements of filters
3872             adapter = filterArgument(adapter, pos + i, filter);
3873         }
3874         return adapter;
3875     }
3876 
3877     /*non-public*/ static
3878     MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
3879         filterArgumentChecks(target, pos, filter);
3880         MethodType targetType = target.type();
3881         MethodType filterType = filter.type();
3882         BoundMethodHandle result = target.rebind();
3883         Class<?> newParamType = filterType.parameterType(0);
3884         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
3885         MethodType newType = targetType.changeParameterType(pos, newParamType);
3886         result = result.copyWithExtendL(newType, lform, filter);
3887         return result;
3888     }
3889 
3890     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
3891         MethodType targetType = target.type();
3892         int maxPos = targetType.parameterCount();
3893         if (pos + filters.length > maxPos)
3894             throw newIllegalArgumentException("too many filters");
3895     }
3896 
3897     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
3898         MethodType targetType = target.type();
3899         MethodType filterType = filter.type();
3900         if (filterType.parameterCount() != 1
3901             || filterType.returnType() != targetType.parameterType(pos))
3902             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
3903     }
3904 
3905     /**
3906      * Adapts a target method handle by pre-processing
3907      * a sub-sequence of its arguments with a filter (another method handle).
3908      * The pre-processed arguments are replaced by the result (if any) of the
3909      * filter function.
3910      * The target is then called on the modified (usually shortened) argument list.
3911      * <p>
3912      * If the filter returns a value, the target must accept that value as
3913      * its argument in position {@code pos}, preceded and/or followed by
3914      * any arguments not passed to the filter.
3915      * If the filter returns void, the target must accept all arguments
3916      * not passed to the filter.
3917      * No arguments are reordered, and a result returned from the filter
3918      * replaces (in order) the whole subsequence of arguments originally
3919      * passed to the adapter.
3920      * <p>
3921      * The argument types (if any) of the filter
3922      * replace zero or one argument types of the target, at position {@code pos},
3923      * in the resulting adapted method handle.
3924      * The return type of the filter (if any) must be identical to the
3925      * argument type of the target at position {@code pos}, and that target argument
3926      * is supplied by the return value of the filter.
3927      * <p>
3928      * In all cases, {@code pos} must be greater than or equal to zero, and
3929      * {@code pos} must also be less than or equal to the target's arity.
3930      * <p><b>Example:</b>
3931      * <blockquote><pre>{@code
3932 import static java.lang.invoke.MethodHandles.*;
3933 import static java.lang.invoke.MethodType.*;
3934 ...
3935 MethodHandle deepToString = publicLookup()
3936   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
3937 
3938 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
3939 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
3940 
3941 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
3942 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
3943 
3944 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
3945 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
3946 assertEquals("[top, [up, down], strange]",
3947              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
3948 
3949 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
3950 assertEquals("[top, [up, down], [strange]]",
3951              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
3952 
3953 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
3954 assertEquals("[top, [[up, down, strange], charm], bottom]",
3955              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
3956      * }</pre></blockquote>
3957      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
3958      * represents the return type of the {@code target} and resulting adapter.
3959      * {@code V}/{@code v} stand for the return type and value of the
3960      * {@code filter}, which are also found in the signature and arguments of
3961      * the {@code target}, respectively, unless {@code V} is {@code void}.
3962      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
3963      * and values preceding and following the collection position, {@code pos},
3964      * in the {@code target}'s signature. They also turn up in the resulting
3965      * adapter's signature and arguments, where they surround
3966      * {@code B}/{@code b}, which represent the parameter types and arguments
3967      * to the {@code filter} (if any).
3968      * <blockquote><pre>{@code
3969      * T target(A...,V,C...);
3970      * V filter(B...);
3971      * T adapter(A... a,B... b,C... c) {
3972      *   V v = filter(b...);
3973      *   return target(a...,v,c...);
3974      * }
3975      * // and if the filter has no arguments:
3976      * T target2(A...,V,C...);
3977      * V filter2();
3978      * T adapter2(A... a,C... c) {
3979      *   V v = filter2();
3980      *   return target2(a...,v,c...);
3981      * }
3982      * // and if the filter has a void return:
3983      * T target3(A...,C...);
3984      * void filter3(B...);
3985      * T adapter3(A... a,B... b,C... c) {
3986      *   filter3(b...);
3987      *   return target3(a...,c...);
3988      * }
3989      * }</pre></blockquote>
3990      * <p>
3991      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
3992      * one which first "folds" the affected arguments, and then drops them, in separate
3993      * steps as follows:
3994      * <blockquote><pre>{@code
3995      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
3996      * mh = MethodHandles.foldArguments(mh, coll); //step 1
3997      * }</pre></blockquote>
3998      * If the target method handle consumes no arguments besides than the result
3999      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4000      * is equivalent to {@code filterReturnValue(coll, mh)}.
4001      * If the filter method handle {@code coll} consumes one argument and produces
4002      * a non-void result, then {@code collectArguments(mh, N, coll)}
4003      * is equivalent to {@code filterArguments(mh, N, coll)}.
4004      * Other equivalences are possible but would require argument permutation.
4005      * <p>
4006      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4007      * variable-arity method handle}, even if the original target method handle was.
4008      *
4009      * @param target the method handle to invoke after filtering the subsequence of arguments
4010      * @param pos the position of the first adapter argument to pass to the filter,
4011      *            and/or the target argument which receives the result of the filter
4012      * @param filter method handle to call on the subsequence of arguments
4013      * @return method handle which incorporates the specified argument subsequence filtering logic
4014      * @throws NullPointerException if either argument is null
4015      * @throws IllegalArgumentException if the return type of {@code filter}
4016      *          is non-void and is not the same as the {@code pos} argument of the target,
4017      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4018      *          or if the resulting method handle's type would have
4019      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4020      * @see MethodHandles#foldArguments
4021      * @see MethodHandles#filterArguments
4022      * @see MethodHandles#filterReturnValue
4023      */
4024     public static
4025     MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4026         MethodType newType = collectArgumentsChecks(target, pos, filter);
4027         MethodType collectorType = filter.type();
4028         BoundMethodHandle result = target.rebind();
4029         LambdaForm lform;
4030         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4031             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4032             if (lform != null) {
4033                 return result.copyWith(newType, lform);
4034             }
4035         }
4036         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4037         return result.copyWithExtendL(newType, lform, filter);
4038     }
4039 
4040     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4041         MethodType targetType = target.type();
4042         MethodType filterType = filter.type();
4043         Class<?> rtype = filterType.returnType();
4044         List<Class<?>> filterArgs = filterType.parameterList();
4045         if (rtype == void.class) {
4046             return targetType.insertParameterTypes(pos, filterArgs);
4047         }
4048         if (rtype != targetType.parameterType(pos)) {
4049             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4050         }
4051         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4052     }
4053 
4054     /**
4055      * Adapts a target method handle by post-processing
4056      * its return value (if any) with a filter (another method handle).
4057      * The result of the filter is returned from the adapter.
4058      * <p>
4059      * If the target returns a value, the filter must accept that value as
4060      * its only argument.
4061      * If the target returns void, the filter must accept no arguments.
4062      * <p>
4063      * The return type of the filter
4064      * replaces the return type of the target
4065      * in the resulting adapted method handle.
4066      * The argument type of the filter (if any) must be identical to the
4067      * return type of the target.
4068      * <p><b>Example:</b>
4069      * <blockquote><pre>{@code
4070 import static java.lang.invoke.MethodHandles.*;
4071 import static java.lang.invoke.MethodType.*;
4072 ...
4073 MethodHandle cat = lookup().findVirtual(String.class,
4074   "concat", methodType(String.class, String.class));
4075 MethodHandle length = lookup().findVirtual(String.class,
4076   "length", methodType(int.class));
4077 System.out.println((String) cat.invokeExact("x", "y")); // xy
4078 MethodHandle f0 = filterReturnValue(cat, length);
4079 System.out.println((int) f0.invokeExact("x", "y")); // 2
4080      * }</pre></blockquote>
4081      * <p>Here is pseudocode for the resulting adapter. In the code,
4082      * {@code T}/{@code t} represent the result type and value of the
4083      * {@code target}; {@code V}, the result type of the {@code filter}; and
4084      * {@code A}/{@code a}, the types and values of the parameters and arguments
4085      * of the {@code target} as well as the resulting adapter.
4086      * <blockquote><pre>{@code
4087      * T target(A...);
4088      * V filter(T);
4089      * V adapter(A... a) {
4090      *   T t = target(a...);
4091      *   return filter(t);
4092      * }
4093      * // and if the target has a void return:
4094      * void target2(A...);
4095      * V filter2();
4096      * V adapter2(A... a) {
4097      *   target2(a...);
4098      *   return filter2();
4099      * }
4100      * // and if the filter has a void return:
4101      * T target3(A...);
4102      * void filter3(V);
4103      * void adapter3(A... a) {
4104      *   T t = target3(a...);
4105      *   filter3(t);
4106      * }
4107      * }</pre></blockquote>
4108      * <p>
4109      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4110      * variable-arity method handle}, even if the original target method handle was.
4111      * @param target the method handle to invoke before filtering the return value
4112      * @param filter method handle to call on the return value
4113      * @return method handle which incorporates the specified return value filtering logic
4114      * @throws NullPointerException if either argument is null
4115      * @throws IllegalArgumentException if the argument list of {@code filter}
4116      *          does not match the return type of target as described above
4117      */
4118     public static
4119     MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4120         MethodType targetType = target.type();
4121         MethodType filterType = filter.type();
4122         filterReturnValueChecks(targetType, filterType);
4123         BoundMethodHandle result = target.rebind();
4124         BasicType rtype = BasicType.basicType(filterType.returnType());
4125         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4126         MethodType newType = targetType.changeReturnType(filterType.returnType());
4127         result = result.copyWithExtendL(newType, lform, filter);
4128         return result;
4129     }
4130 
4131     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4132         Class<?> rtype = targetType.returnType();
4133         int filterValues = filterType.parameterCount();
4134         if (filterValues == 0
4135                 ? (rtype != void.class)
4136                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4137             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4138     }
4139 
4140     /**
4141      * Adapts a target method handle by pre-processing
4142      * some of its arguments, and then calling the target with
4143      * the result of the pre-processing, inserted into the original
4144      * sequence of arguments.
4145      * <p>
4146      * The pre-processing is performed by {@code combiner}, a second method handle.
4147      * Of the arguments passed to the adapter, the first {@code N} arguments
4148      * are copied to the combiner, which is then called.
4149      * (Here, {@code N} is defined as the parameter count of the combiner.)
4150      * After this, control passes to the target, with any result
4151      * from the combiner inserted before the original {@code N} incoming
4152      * arguments.
4153      * <p>
4154      * If the combiner returns a value, the first parameter type of the target
4155      * must be identical with the return type of the combiner, and the next
4156      * {@code N} parameter types of the target must exactly match the parameters
4157      * of the combiner.
4158      * <p>
4159      * If the combiner has a void return, no result will be inserted,
4160      * and the first {@code N} parameter types of the target
4161      * must exactly match the parameters of the combiner.
4162      * <p>
4163      * The resulting adapter is the same type as the target, except that the
4164      * first parameter type is dropped,
4165      * if it corresponds to the result of the combiner.
4166      * <p>
4167      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4168      * that either the combiner or the target does not wish to receive.
4169      * If some of the incoming arguments are destined only for the combiner,
4170      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4171      * arguments will not need to be live on the stack on entry to the
4172      * target.)
4173      * <p><b>Example:</b>
4174      * <blockquote><pre>{@code
4175 import static java.lang.invoke.MethodHandles.*;
4176 import static java.lang.invoke.MethodType.*;
4177 ...
4178 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4179   "println", methodType(void.class, String.class))
4180     .bindTo(System.out);
4181 MethodHandle cat = lookup().findVirtual(String.class,
4182   "concat", methodType(String.class, String.class));
4183 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4184 MethodHandle catTrace = foldArguments(cat, trace);
4185 // also prints "boo":
4186 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4187      * }</pre></blockquote>
4188      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4189      * represents the result type of the {@code target} and resulting adapter.
4190      * {@code V}/{@code v} represent the type and value of the parameter and argument
4191      * of {@code target} that precedes the folding position; {@code V} also is
4192      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4193      * types and values of the {@code N} parameters and arguments at the folding
4194      * position. {@code B}/{@code b} represent the types and values of the
4195      * {@code target} parameters and arguments that follow the folded parameters
4196      * and arguments.
4197      * <blockquote><pre>{@code
4198      * // there are N arguments in A...
4199      * T target(V, A[N]..., B...);
4200      * V combiner(A...);
4201      * T adapter(A... a, B... b) {
4202      *   V v = combiner(a...);
4203      *   return target(v, a..., b...);
4204      * }
4205      * // and if the combiner has a void return:
4206      * T target2(A[N]..., B...);
4207      * void combiner2(A...);
4208      * T adapter2(A... a, B... b) {
4209      *   combiner2(a...);
4210      *   return target2(a..., b...);
4211      * }
4212      * }</pre></blockquote>
4213      * <p>
4214      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4215      * variable-arity method handle}, even if the original target method handle was.
4216      * @param target the method handle to invoke after arguments are combined
4217      * @param combiner method handle to call initially on the incoming arguments
4218      * @return method handle which incorporates the specified argument folding logic
4219      * @throws NullPointerException if either argument is null
4220      * @throws IllegalArgumentException if {@code combiner}'s return type
4221      *          is non-void and not the same as the first argument type of
4222      *          the target, or if the initial {@code N} argument types
4223      *          of the target
4224      *          (skipping one matching the {@code combiner}'s return type)
4225      *          are not identical with the argument types of {@code combiner}
4226      */
4227     public static
4228     MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
4229         return foldArguments(target, 0, combiner);
4230     }
4231 
4232     /**
4233      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
4234      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
4235      * before the folded arguments.
4236      * <p>
4237      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
4238      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
4239      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
4240      * 0.
4241      *
4242      * @apiNote Example:
4243      * <blockquote><pre>{@code
4244     import static java.lang.invoke.MethodHandles.*;
4245     import static java.lang.invoke.MethodType.*;
4246     ...
4247     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4248     "println", methodType(void.class, String.class))
4249     .bindTo(System.out);
4250     MethodHandle cat = lookup().findVirtual(String.class,
4251     "concat", methodType(String.class, String.class));
4252     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4253     MethodHandle catTrace = foldArguments(cat, 1, trace);
4254     // also prints "jum":
4255     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4256      * }</pre></blockquote>
4257      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4258      * represents the result type of the {@code target} and resulting adapter.
4259      * {@code V}/{@code v} represent the type and value of the parameter and argument
4260      * of {@code target} that precedes the folding position; {@code V} also is
4261      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4262      * types and values of the {@code N} parameters and arguments at the folding
4263      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
4264      * and values of the {@code target} parameters and arguments that precede and
4265      * follow the folded parameters and arguments starting at {@code pos},
4266      * respectively.
4267      * <blockquote><pre>{@code
4268      * // there are N arguments in A...
4269      * T target(Z..., V, A[N]..., B...);
4270      * V combiner(A...);
4271      * T adapter(Z... z, A... a, B... b) {
4272      *   V v = combiner(a...);
4273      *   return target(z..., v, a..., b...);
4274      * }
4275      * // and if the combiner has a void return:
4276      * T target2(Z..., A[N]..., B...);
4277      * void combiner2(A...);
4278      * T adapter2(Z... z, A... a, B... b) {
4279      *   combiner2(a...);
4280      *   return target2(z..., a..., b...);
4281      * }
4282      * }</pre></blockquote>
4283      * <p>
4284      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4285      * variable-arity method handle}, even if the original target method handle was.
4286      *
4287      * @param target the method handle to invoke after arguments are combined
4288      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
4289      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
4290      * @param combiner method handle to call initially on the incoming arguments
4291      * @return method handle which incorporates the specified argument folding logic
4292      * @throws NullPointerException if either argument is null
4293      * @throws IllegalArgumentException if either of the following two conditions holds:
4294      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
4295      *              {@code pos} of the target signature;
4296      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
4297      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
4298      *
4299      * @see #foldArguments(MethodHandle, MethodHandle)
4300      * @since 9
4301      */
4302     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
4303         MethodType targetType = target.type();
4304         MethodType combinerType = combiner.type();
4305         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
4306         BoundMethodHandle result = target.rebind();
4307         boolean dropResult = rtype == void.class;
4308         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
4309         MethodType newType = targetType;
4310         if (!dropResult) {
4311             newType = newType.dropParameterTypes(pos, pos + 1);
4312         }
4313         result = result.copyWithExtendL(newType, lform, combiner);
4314         return result;
4315     }
4316 
4317     /**
4318      * As {@see foldArguments(MethodHandle, int, MethodHandle)}, but with the
4319      * added capability of selecting the arguments from the targets parameters
4320      * to call the combiner with. This allows us to avoid some simple cases of
4321      * permutations and padding the combiner with dropArguments to select the
4322      * right argument, which may ultimately produce fewer intermediaries.
4323      */
4324     static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner, int ... argPositions) {
4325         MethodType targetType = target.type();
4326         MethodType combinerType = combiner.type();
4327         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType, argPositions);
4328         BoundMethodHandle result = target.rebind();
4329         boolean dropResult = rtype == void.class;
4330         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType(), argPositions);
4331         MethodType newType = targetType;
4332         if (!dropResult) {
4333             newType = newType.dropParameterTypes(pos, pos + 1);
4334         }
4335         result = result.copyWithExtendL(newType, lform, combiner);
4336         return result;
4337     }
4338 
4339     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
4340         int foldArgs   = combinerType.parameterCount();
4341         Class<?> rtype = combinerType.returnType();
4342         int foldVals = rtype == void.class ? 0 : 1;
4343         int afterInsertPos = foldPos + foldVals;
4344         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
4345         if (ok) {
4346             for (int i = 0; i < foldArgs; i++) {
4347                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
4348                     ok = false;
4349                     break;
4350                 }
4351             }
4352         }
4353         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
4354             ok = false;
4355         if (!ok)
4356             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4357         return rtype;
4358     }
4359 
4360     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType, int ... argPos) {
4361         int foldArgs = combinerType.parameterCount();
4362         if (argPos.length != foldArgs) {
4363             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
4364         }
4365         Class<?> rtype = combinerType.returnType();
4366         int foldVals = rtype == void.class ? 0 : 1;
4367         boolean ok = true;
4368         for (int i = 0; i < foldArgs; i++) {
4369             int arg = argPos[i];
4370             if (arg < 0 || arg > targetType.parameterCount()) {
4371                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
4372             }
4373             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
4374                 throw newIllegalArgumentException("target argument type at position " + arg
4375                         + " must match combiner argument type at index " + i + ": " + targetType
4376                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
4377             }
4378         }
4379         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos)) {
4380             ok = false;
4381         }
4382         if (!ok)
4383             throw misMatchedTypes("target and combiner types", targetType, combinerType);
4384         return rtype;
4385     }
4386 
4387     /**
4388      * Makes a method handle which adapts a target method handle,
4389      * by guarding it with a test, a boolean-valued method handle.
4390      * If the guard fails, a fallback handle is called instead.
4391      * All three method handles must have the same corresponding
4392      * argument and return types, except that the return type
4393      * of the test must be boolean, and the test is allowed
4394      * to have fewer arguments than the other two method handles.
4395      * <p>
4396      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4397      * represents the uniform result type of the three involved handles;
4398      * {@code A}/{@code a}, the types and values of the {@code target}
4399      * parameters and arguments that are consumed by the {@code test}; and
4400      * {@code B}/{@code b}, those types and values of the {@code target}
4401      * parameters and arguments that are not consumed by the {@code test}.
4402      * <blockquote><pre>{@code
4403      * boolean test(A...);
4404      * T target(A...,B...);
4405      * T fallback(A...,B...);
4406      * T adapter(A... a,B... b) {
4407      *   if (test(a...))
4408      *     return target(a..., b...);
4409      *   else
4410      *     return fallback(a..., b...);
4411      * }
4412      * }</pre></blockquote>
4413      * Note that the test arguments ({@code a...} in the pseudocode) cannot
4414      * be modified by execution of the test, and so are passed unchanged
4415      * from the caller to the target or fallback as appropriate.
4416      * @param test method handle used for test, must return boolean
4417      * @param target method handle to call if test passes
4418      * @param fallback method handle to call if test fails
4419      * @return method handle which incorporates the specified if/then/else logic
4420      * @throws NullPointerException if any argument is null
4421      * @throws IllegalArgumentException if {@code test} does not return boolean,
4422      *          or if all three method types do not match (with the return
4423      *          type of {@code test} changed to match that of the target).
4424      */
4425     public static
4426     MethodHandle guardWithTest(MethodHandle test,
4427                                MethodHandle target,
4428                                MethodHandle fallback) {
4429         MethodType gtype = test.type();
4430         MethodType ttype = target.type();
4431         MethodType ftype = fallback.type();
4432         if (!ttype.equals(ftype))
4433             throw misMatchedTypes("target and fallback types", ttype, ftype);
4434         if (gtype.returnType() != boolean.class)
4435             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
4436         List<Class<?>> targs = ttype.parameterList();
4437         test = dropArgumentsToMatch(test, 0, targs, 0, true);
4438         if (test == null) {
4439             throw misMatchedTypes("target and test types", ttype, gtype);
4440         }
4441         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
4442     }
4443 
4444     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
4445         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
4446     }
4447 
4448     /**
4449      * Makes a method handle which adapts a target method handle,
4450      * by running it inside an exception handler.
4451      * If the target returns normally, the adapter returns that value.
4452      * If an exception matching the specified type is thrown, the fallback
4453      * handle is called instead on the exception, plus the original arguments.
4454      * <p>
4455      * The target and handler must have the same corresponding
4456      * argument and return types, except that handler may omit trailing arguments
4457      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
4458      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
4459      * <p>
4460      * Here is pseudocode for the resulting adapter. In the code, {@code T}
4461      * represents the return type of the {@code target} and {@code handler},
4462      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
4463      * the types and values of arguments to the resulting handle consumed by
4464      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
4465      * resulting handle discarded by {@code handler}.
4466      * <blockquote><pre>{@code
4467      * T target(A..., B...);
4468      * T handler(ExType, A...);
4469      * T adapter(A... a, B... b) {
4470      *   try {
4471      *     return target(a..., b...);
4472      *   } catch (ExType ex) {
4473      *     return handler(ex, a...);
4474      *   }
4475      * }
4476      * }</pre></blockquote>
4477      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
4478      * be modified by execution of the target, and so are passed unchanged
4479      * from the caller to the handler, if the handler is invoked.
4480      * <p>
4481      * The target and handler must return the same type, even if the handler
4482      * always throws.  (This might happen, for instance, because the handler
4483      * is simulating a {@code finally} clause).
4484      * To create such a throwing handler, compose the handler creation logic
4485      * with {@link #throwException throwException},
4486      * in order to create a method handle of the correct return type.
4487      * @param target method handle to call
4488      * @param exType the type of exception which the handler will catch
4489      * @param handler method handle to call if a matching exception is thrown
4490      * @return method handle which incorporates the specified try/catch logic
4491      * @throws NullPointerException if any argument is null
4492      * @throws IllegalArgumentException if {@code handler} does not accept
4493      *          the given exception type, or if the method handle types do
4494      *          not match in their return types and their
4495      *          corresponding parameters
4496      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
4497      */
4498     public static
4499     MethodHandle catchException(MethodHandle target,
4500                                 Class<? extends Throwable> exType,
4501                                 MethodHandle handler) {
4502         MethodType ttype = target.type();
4503         MethodType htype = handler.type();
4504         if (!Throwable.class.isAssignableFrom(exType))
4505             throw new ClassCastException(exType.getName());
4506         if (htype.parameterCount() < 1 ||
4507             !htype.parameterType(0).isAssignableFrom(exType))
4508             throw newIllegalArgumentException("handler does not accept exception type "+exType);
4509         if (htype.returnType() != ttype.returnType())
4510             throw misMatchedTypes("target and handler return types", ttype, htype);
4511         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
4512         if (handler == null) {
4513             throw misMatchedTypes("target and handler types", ttype, htype);
4514         }
4515         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
4516     }
4517 
4518     /**
4519      * Produces a method handle which will throw exceptions of the given {@code exType}.
4520      * The method handle will accept a single argument of {@code exType},
4521      * and immediately throw it as an exception.
4522      * The method type will nominally specify a return of {@code returnType}.
4523      * The return type may be anything convenient:  It doesn't matter to the
4524      * method handle's behavior, since it will never return normally.
4525      * @param returnType the return type of the desired method handle
4526      * @param exType the parameter type of the desired method handle
4527      * @return method handle which can throw the given exceptions
4528      * @throws NullPointerException if either argument is null
4529      */
4530     public static
4531     MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
4532         if (!Throwable.class.isAssignableFrom(exType))
4533             throw new ClassCastException(exType.getName());
4534         return MethodHandleImpl.throwException(methodType(returnType, exType));
4535     }
4536 
4537     /**
4538      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
4539      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
4540      * delivers the loop's result, which is the return value of the resulting handle.
4541      * <p>
4542      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
4543      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
4544      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
4545      * terms of method handles, each clause will specify up to four independent actions:<ul>
4546      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
4547      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
4548      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
4549      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
4550      * </ul>
4551      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
4552      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
4553      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
4554      * <p>
4555      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
4556      * this case. See below for a detailed description.
4557      * <p>
4558      * <em>Parameters optional everywhere:</em>
4559      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
4560      * As an exception, the init functions cannot take any {@code v} parameters,
4561      * because those values are not yet computed when the init functions are executed.
4562      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
4563      * In fact, any clause function may take no arguments at all.
4564      * <p>
4565      * <em>Loop parameters:</em>
4566      * A clause function may take all the iteration variable values it is entitled to, in which case
4567      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
4568      * with their types and values notated as {@code (A...)} and {@code (a...)}.
4569      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
4570      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
4571      * init function is automatically a loop parameter {@code a}.)
4572      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
4573      * These loop parameters act as loop-invariant values visible across the whole loop.
4574      * <p>
4575      * <em>Parameters visible everywhere:</em>
4576      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
4577      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
4578      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
4579      * Most clause functions will not need all of this information, but they will be formally connected to it
4580      * as if by {@link #dropArguments}.
4581      * <a id="astar"></a>
4582      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
4583      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
4584      * In that notation, the general form of an init function parameter list
4585      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
4586      * <p>
4587      * <em>Checking clause structure:</em>
4588      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
4589      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
4590      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
4591      * met by the inputs to the loop combinator.
4592      * <p>
4593      * <em>Effectively identical sequences:</em>
4594      * <a id="effid"></a>
4595      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
4596      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
4597      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
4598      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
4599      * that longest list.
4600      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
4601      * and the same is true if more sequences of the form {@code (V... A*)} are added.
4602      * <p>
4603      * <em>Step 0: Determine clause structure.</em><ol type="a">
4604      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
4605      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
4606      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
4607      * four. Padding takes place by appending elements to the array.
4608      * <li>Clauses with all {@code null}s are disregarded.
4609      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
4610      * </ol>
4611      * <p>
4612      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
4613      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
4614      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
4615      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
4616      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
4617      * iteration variable type.
4618      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
4619      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
4620      * </ol>
4621      * <p>
4622      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
4623      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
4624      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
4625      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
4626      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
4627      * (These types will checked in step 2, along with all the clause function types.)
4628      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
4629      * <li>All of the collected parameter lists must be effectively identical.
4630      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
4631      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
4632      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
4633      * the "internal parameter list".
4634      * </ul>
4635      * <p>
4636      * <em>Step 1C: Determine loop return type.</em><ol type="a">
4637      * <li>Examine fini function return types, disregarding omitted fini functions.
4638      * <li>If there are no fini functions, the loop return type is {@code void}.
4639      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
4640      * type.
4641      * </ol>
4642      * <p>
4643      * <em>Step 1D: Check other types.</em><ol type="a">
4644      * <li>There must be at least one non-omitted pred function.
4645      * <li>Every non-omitted pred function must have a {@code boolean} return type.
4646      * </ol>
4647      * <p>
4648      * <em>Step 2: Determine parameter lists.</em><ol type="a">
4649      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
4650      * <li>The parameter list for init functions will be adjusted to the external parameter list.
4651      * (Note that their parameter lists are already effectively identical to this list.)
4652      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
4653      * effectively identical to the internal parameter list {@code (V... A...)}.
4654      * </ol>
4655      * <p>
4656      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
4657      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
4658      * type.
4659      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
4660      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
4661      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
4662      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
4663      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
4664      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
4665      * loop return type.
4666      * </ol>
4667      * <p>
4668      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
4669      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
4670      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
4671      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
4672      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
4673      * pad out the end of the list.
4674      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
4675      * </ol>
4676      * <p>
4677      * <em>Final observations.</em><ol type="a">
4678      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
4679      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
4680      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
4681      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
4682      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
4683      * <li>Each pair of init and step functions agrees in their return type {@code V}.
4684      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
4685      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
4686      * </ol>
4687      * <p>
4688      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
4689      * <ul>
4690      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
4691      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
4692      * (Only one {@code Pn} has to be non-{@code null}.)
4693      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
4694      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
4695      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
4696      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
4697      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
4698      * the resulting loop handle's parameter types {@code (A...)}.
4699      * </ul>
4700      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
4701      * which is natural if most of the loop computation happens in the steps.  For some loops,
4702      * the burden of computation might be heaviest in the pred functions, and so the pred functions
4703      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
4704      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
4705      * where the init functions will need the extra parameters.  For such reasons, the rules for
4706      * determining these parameters are as symmetric as possible, across all clause parts.
4707      * In general, the loop parameters function as common invariant values across the whole
4708      * loop, while the iteration variables function as common variant values, or (if there is
4709      * no step function) as internal loop invariant temporaries.
4710      * <p>
4711      * <em>Loop execution.</em><ol type="a">
4712      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
4713      * every clause function. These locals are loop invariant.
4714      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
4715      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
4716      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
4717      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
4718      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
4719      * (in argument order).
4720      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
4721      * returns {@code false}.
4722      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
4723      * sequence {@code (v...)} of loop variables.
4724      * The updated value is immediately visible to all subsequent function calls.
4725      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
4726      * (of type {@code R}) is returned from the loop as a whole.
4727      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
4728      * except by throwing an exception.
4729      * </ol>
4730      * <p>
4731      * <em>Usage tips.</em>
4732      * <ul>
4733      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
4734      * sometimes a step function only needs to observe the current value of its own variable.
4735      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
4736      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
4737      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
4738      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
4739      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
4740      * <li>If some of the clause functions are virtual methods on an instance, the instance
4741      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
4742      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
4743      * will be the first iteration variable value, and it will be easy to use virtual
4744      * methods as clause parts, since all of them will take a leading instance reference matching that value.
4745      * </ul>
4746      * <p>
4747      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
4748      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
4749      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
4750      * <blockquote><pre>{@code
4751      * V... init...(A...);
4752      * boolean pred...(V..., A...);
4753      * V... step...(V..., A...);
4754      * R fini...(V..., A...);
4755      * R loop(A... a) {
4756      *   V... v... = init...(a...);
4757      *   for (;;) {
4758      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
4759      *       v = s(v..., a...);
4760      *       if (!p(v..., a...)) {
4761      *         return f(v..., a...);
4762      *       }
4763      *     }
4764      *   }
4765      * }
4766      * }</pre></blockquote>
4767      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
4768      * to their full length, even though individual clause functions may neglect to take them all.
4769      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
4770      *
4771      * @apiNote Example:
4772      * <blockquote><pre>{@code
4773      * // iterative implementation of the factorial function as a loop handle
4774      * static int one(int k) { return 1; }
4775      * static int inc(int i, int acc, int k) { return i + 1; }
4776      * static int mult(int i, int acc, int k) { return i * acc; }
4777      * static boolean pred(int i, int acc, int k) { return i < k; }
4778      * static int fin(int i, int acc, int k) { return acc; }
4779      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4780      * // null initializer for counter, should initialize to 0
4781      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4782      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4783      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4784      * assertEquals(120, loop.invoke(5));
4785      * }</pre></blockquote>
4786      * The same example, dropping arguments and using combinators:
4787      * <blockquote><pre>{@code
4788      * // simplified implementation of the factorial function as a loop handle
4789      * static int inc(int i) { return i + 1; } // drop acc, k
4790      * static int mult(int i, int acc) { return i * acc; } //drop k
4791      * static boolean cmp(int i, int k) { return i < k; }
4792      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
4793      * // null initializer for counter, should initialize to 0
4794      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4795      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
4796      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
4797      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4798      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4799      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
4800      * assertEquals(720, loop.invoke(6));
4801      * }</pre></blockquote>
4802      * A similar example, using a helper object to hold a loop parameter:
4803      * <blockquote><pre>{@code
4804      * // instance-based implementation of the factorial function as a loop handle
4805      * static class FacLoop {
4806      *   final int k;
4807      *   FacLoop(int k) { this.k = k; }
4808      *   int inc(int i) { return i + 1; }
4809      *   int mult(int i, int acc) { return i * acc; }
4810      *   boolean pred(int i) { return i < k; }
4811      *   int fin(int i, int acc) { return acc; }
4812      * }
4813      * // assume MH_FacLoop is a handle to the constructor
4814      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
4815      * // null initializer for counter, should initialize to 0
4816      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
4817      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
4818      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
4819      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
4820      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
4821      * assertEquals(5040, loop.invoke(7));
4822      * }</pre></blockquote>
4823      *
4824      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
4825      *
4826      * @return a method handle embodying the looping behavior as defined by the arguments.
4827      *
4828      * @throws IllegalArgumentException in case any of the constraints described above is violated.
4829      *
4830      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
4831      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
4832      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
4833      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
4834      * @since 9
4835      */
4836     public static MethodHandle loop(MethodHandle[]... clauses) {
4837         // Step 0: determine clause structure.
4838         loopChecks0(clauses);
4839 
4840         List<MethodHandle> init = new ArrayList<>();
4841         List<MethodHandle> step = new ArrayList<>();
4842         List<MethodHandle> pred = new ArrayList<>();
4843         List<MethodHandle> fini = new ArrayList<>();
4844 
4845         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
4846             init.add(clause[0]); // all clauses have at least length 1
4847             step.add(clause.length <= 1 ? null : clause[1]);
4848             pred.add(clause.length <= 2 ? null : clause[2]);
4849             fini.add(clause.length <= 3 ? null : clause[3]);
4850         });
4851 
4852         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
4853         final int nclauses = init.size();
4854 
4855         // Step 1A: determine iteration variables (V...).
4856         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
4857         for (int i = 0; i < nclauses; ++i) {
4858             MethodHandle in = init.get(i);
4859             MethodHandle st = step.get(i);
4860             if (in == null && st == null) {
4861                 iterationVariableTypes.add(void.class);
4862             } else if (in != null && st != null) {
4863                 loopChecks1a(i, in, st);
4864                 iterationVariableTypes.add(in.type().returnType());
4865             } else {
4866                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
4867             }
4868         }
4869         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
4870                 collect(Collectors.toList());
4871 
4872         // Step 1B: determine loop parameters (A...).
4873         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
4874         loopChecks1b(init, commonSuffix);
4875 
4876         // Step 1C: determine loop return type.
4877         // Step 1D: check other types.
4878         final Class<?> loopReturnType = fini.stream().filter(Objects::nonNull).map(MethodHandle::type).
4879                 map(MethodType::returnType).findFirst().orElse(void.class);
4880         loopChecks1cd(pred, fini, loopReturnType);
4881 
4882         // Step 2: determine parameter lists.
4883         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
4884         commonParameterSequence.addAll(commonSuffix);
4885         loopChecks2(step, pred, fini, commonParameterSequence);
4886 
4887         // Step 3: fill in omitted functions.
4888         for (int i = 0; i < nclauses; ++i) {
4889             Class<?> t = iterationVariableTypes.get(i);
4890             if (init.get(i) == null) {
4891                 init.set(i, empty(methodType(t, commonSuffix)));
4892             }
4893             if (step.get(i) == null) {
4894                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
4895             }
4896             if (pred.get(i) == null) {
4897                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
4898             }
4899             if (fini.get(i) == null) {
4900                 fini.set(i, empty(methodType(t, commonParameterSequence)));
4901             }
4902         }
4903 
4904         // Step 4: fill in missing parameter types.
4905         // Also convert all handles to fixed-arity handles.
4906         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
4907         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
4908         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
4909         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
4910 
4911         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
4912                 allMatch(pl -> pl.equals(commonSuffix));
4913         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
4914                 allMatch(pl -> pl.equals(commonParameterSequence));
4915 
4916         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
4917     }
4918 
4919     private static void loopChecks0(MethodHandle[][] clauses) {
4920         if (clauses == null || clauses.length == 0) {
4921             throw newIllegalArgumentException("null or no clauses passed");
4922         }
4923         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
4924             throw newIllegalArgumentException("null clauses are not allowed");
4925         }
4926         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
4927             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
4928         }
4929     }
4930 
4931     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
4932         if (in.type().returnType() != st.type().returnType()) {
4933             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
4934                     st.type().returnType());
4935         }
4936     }
4937 
4938     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
4939         final List<Class<?>> empty = List.of();
4940         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
4941                 // take only those that can contribute to a common suffix because they are longer than the prefix
4942                         map(MethodHandle::type).
4943                         filter(t -> t.parameterCount() > skipSize).
4944                         map(MethodType::parameterList).
4945                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4946         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
4947     }
4948 
4949     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
4950         final List<Class<?>> empty = List.of();
4951         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
4952     }
4953 
4954     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
4955         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
4956         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
4957         return longestParameterList(Arrays.asList(longest1, longest2));
4958     }
4959 
4960     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
4961         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
4962                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
4963             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
4964                     " (common suffix: " + commonSuffix + ")");
4965         }
4966     }
4967 
4968     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
4969         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4970                 anyMatch(t -> t != loopReturnType)) {
4971             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
4972                     loopReturnType + ")");
4973         }
4974 
4975         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
4976             throw newIllegalArgumentException("no predicate found", pred);
4977         }
4978         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
4979                 anyMatch(t -> t != boolean.class)) {
4980             throw newIllegalArgumentException("predicates must have boolean return type", pred);
4981         }
4982     }
4983 
4984     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
4985         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
4986                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
4987             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
4988                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
4989         }
4990     }
4991 
4992     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
4993         return hs.stream().map(h -> {
4994             int pc = h.type().parameterCount();
4995             int tpsize = targetParams.size();
4996             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
4997         }).collect(Collectors.toList());
4998     }
4999 
5000     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5001         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5002     }
5003 
5004     /**
5005      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5006      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5007      * <p>
5008      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5009      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5010      * evaluates to {@code true}).
5011      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5012      * <p>
5013      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5014      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5015      * and updated with the value returned from its invocation. The result of loop execution will be
5016      * the final value of the additional loop-local variable (if present).
5017      * <p>
5018      * The following rules hold for these argument handles:<ul>
5019      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5020      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5021      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5022      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5023      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5024      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5025      * It will constrain the parameter lists of the other loop parts.
5026      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5027      * list {@code (A...)} is called the <em>external parameter list</em>.
5028      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5029      * additional state variable of the loop.
5030      * The body must both accept and return a value of this type {@code V}.
5031      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5032      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5033      * <a href="MethodHandles.html#effid">effectively identical</a>
5034      * to the external parameter list {@code (A...)}.
5035      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5036      * {@linkplain #empty default value}.
5037      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5038      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5039      * effectively identical to the internal parameter list.
5040      * </ul>
5041      * <p>
5042      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5043      * <li>The loop handle's result type is the result type {@code V} of the body.
5044      * <li>The loop handle's parameter types are the types {@code (A...)},
5045      * from the external parameter list.
5046      * </ul>
5047      * <p>
5048      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5049      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5050      * passed to the loop.
5051      * <blockquote><pre>{@code
5052      * V init(A...);
5053      * boolean pred(V, A...);
5054      * V body(V, A...);
5055      * V whileLoop(A... a...) {
5056      *   V v = init(a...);
5057      *   while (pred(v, a...)) {
5058      *     v = body(v, a...);
5059      *   }
5060      *   return v;
5061      * }
5062      * }</pre></blockquote>
5063      *
5064      * @apiNote Example:
5065      * <blockquote><pre>{@code
5066      * // implement the zip function for lists as a loop handle
5067      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5068      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5069      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5070      *   zip.add(a.next());
5071      *   zip.add(b.next());
5072      *   return zip;
5073      * }
5074      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5075      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5076      * List<String> a = Arrays.asList("a", "b", "c", "d");
5077      * List<String> b = Arrays.asList("e", "f", "g", "h");
5078      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5079      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5080      * }</pre></blockquote>
5081      *
5082      *
5083      * @apiNote The implementation of this method can be expressed as follows:
5084      * <blockquote><pre>{@code
5085      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5086      *     MethodHandle fini = (body.type().returnType() == void.class
5087      *                         ? null : identity(body.type().returnType()));
5088      *     MethodHandle[]
5089      *         checkExit = { null, null, pred, fini },
5090      *         varBody   = { init, body };
5091      *     return loop(checkExit, varBody);
5092      * }
5093      * }</pre></blockquote>
5094      *
5095      * @param init optional initializer, providing the initial value of the loop variable.
5096      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5097      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5098      *             above for other constraints.
5099      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5100      *             See above for other constraints.
5101      *
5102      * @return a method handle implementing the {@code while} loop as described by the arguments.
5103      * @throws IllegalArgumentException if the rules for the arguments are violated.
5104      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5105      *
5106      * @see #loop(MethodHandle[][])
5107      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5108      * @since 9
5109      */
5110     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5111         whileLoopChecks(init, pred, body);
5112         MethodHandle fini = identityOrVoid(body.type().returnType());
5113         MethodHandle[] checkExit = { null, null, pred, fini };
5114         MethodHandle[] varBody = { init, body };
5115         return loop(checkExit, varBody);
5116     }
5117 
5118     /**
5119      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5120      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5121      * <p>
5122      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5123      * method will, in each iteration, first execute its body and then evaluate the predicate.
5124      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5125      * <p>
5126      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5127      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5128      * and updated with the value returned from its invocation. The result of loop execution will be
5129      * the final value of the additional loop-local variable (if present).
5130      * <p>
5131      * The following rules hold for these argument handles:<ul>
5132      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5133      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5134      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5135      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5136      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5137      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5138      * It will constrain the parameter lists of the other loop parts.
5139      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5140      * list {@code (A...)} is called the <em>external parameter list</em>.
5141      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5142      * additional state variable of the loop.
5143      * The body must both accept and return a value of this type {@code V}.
5144      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5145      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5146      * <a href="MethodHandles.html#effid">effectively identical</a>
5147      * to the external parameter list {@code (A...)}.
5148      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5149      * {@linkplain #empty default value}.
5150      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5151      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5152      * effectively identical to the internal parameter list.
5153      * </ul>
5154      * <p>
5155      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5156      * <li>The loop handle's result type is the result type {@code V} of the body.
5157      * <li>The loop handle's parameter types are the types {@code (A...)},
5158      * from the external parameter list.
5159      * </ul>
5160      * <p>
5161      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5162      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5163      * passed to the loop.
5164      * <blockquote><pre>{@code
5165      * V init(A...);
5166      * boolean pred(V, A...);
5167      * V body(V, A...);
5168      * V doWhileLoop(A... a...) {
5169      *   V v = init(a...);
5170      *   do {
5171      *     v = body(v, a...);
5172      *   } while (pred(v, a...));
5173      *   return v;
5174      * }
5175      * }</pre></blockquote>
5176      *
5177      * @apiNote Example:
5178      * <blockquote><pre>{@code
5179      * // int i = 0; while (i < limit) { ++i; } return i; => limit
5180      * static int zero(int limit) { return 0; }
5181      * static int step(int i, int limit) { return i + 1; }
5182      * static boolean pred(int i, int limit) { return i < limit; }
5183      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
5184      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
5185      * assertEquals(23, loop.invoke(23));
5186      * }</pre></blockquote>
5187      *
5188      *
5189      * @apiNote The implementation of this method can be expressed as follows:
5190      * <blockquote><pre>{@code
5191      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5192      *     MethodHandle fini = (body.type().returnType() == void.class
5193      *                         ? null : identity(body.type().returnType()));
5194      *     MethodHandle[] clause = { init, body, pred, fini };
5195      *     return loop(clause);
5196      * }
5197      * }</pre></blockquote>
5198      *
5199      * @param init optional initializer, providing the initial value of the loop variable.
5200      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5201      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5202      *             See above for other constraints.
5203      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5204      *             above for other constraints.
5205      *
5206      * @return a method handle implementing the {@code while} loop as described by the arguments.
5207      * @throws IllegalArgumentException if the rules for the arguments are violated.
5208      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5209      *
5210      * @see #loop(MethodHandle[][])
5211      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
5212      * @since 9
5213      */
5214     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
5215         whileLoopChecks(init, pred, body);
5216         MethodHandle fini = identityOrVoid(body.type().returnType());
5217         MethodHandle[] clause = {init, body, pred, fini };
5218         return loop(clause);
5219     }
5220 
5221     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
5222         Objects.requireNonNull(pred);
5223         Objects.requireNonNull(body);
5224         MethodType bodyType = body.type();
5225         Class<?> returnType = bodyType.returnType();
5226         List<Class<?>> innerList = bodyType.parameterList();
5227         List<Class<?>> outerList = innerList;
5228         if (returnType == void.class) {
5229             // OK
5230         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
5231             // leading V argument missing => error
5232             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5233             throw misMatchedTypes("body function", bodyType, expected);
5234         } else {
5235             outerList = innerList.subList(1, innerList.size());
5236         }
5237         MethodType predType = pred.type();
5238         if (predType.returnType() != boolean.class ||
5239                 !predType.effectivelyIdenticalParameters(0, innerList)) {
5240             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
5241         }
5242         if (init != null) {
5243             MethodType initType = init.type();
5244             if (initType.returnType() != returnType ||
5245                     !initType.effectivelyIdenticalParameters(0, outerList)) {
5246                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5247             }
5248         }
5249     }
5250 
5251     /**
5252      * Constructs a loop that runs a given number of iterations.
5253      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5254      * <p>
5255      * The number of iterations is determined by the {@code iterations} handle evaluation result.
5256      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
5257      * It will be initialized to 0 and incremented by 1 in each iteration.
5258      * <p>
5259      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5260      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5261      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5262      * <p>
5263      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5264      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5265      * iteration variable.
5266      * The result of the loop handle execution will be the final {@code V} value of that variable
5267      * (or {@code void} if there is no {@code V} variable).
5268      * <p>
5269      * The following rules hold for the argument handles:<ul>
5270      * <li>The {@code iterations} handle must not be {@code null}, and must return
5271      * the type {@code int}, referred to here as {@code I} in parameter type lists.
5272      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5273      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5274      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5275      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5276      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5277      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5278      * of types called the <em>internal parameter list</em>.
5279      * It will constrain the parameter lists of the other loop parts.
5280      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5281      * with no additional {@code A} types, then the internal parameter list is extended by
5282      * the argument types {@code A...} of the {@code iterations} handle.
5283      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5284      * list {@code (A...)} is called the <em>external parameter list</em>.
5285      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5286      * additional state variable of the loop.
5287      * The body must both accept a leading parameter and return a value of this type {@code V}.
5288      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5289      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5290      * <a href="MethodHandles.html#effid">effectively identical</a>
5291      * to the external parameter list {@code (A...)}.
5292      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5293      * {@linkplain #empty default value}.
5294      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
5295      * effectively identical to the external parameter list {@code (A...)}.
5296      * </ul>
5297      * <p>
5298      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5299      * <li>The loop handle's result type is the result type {@code V} of the body.
5300      * <li>The loop handle's parameter types are the types {@code (A...)},
5301      * from the external parameter list.
5302      * </ul>
5303      * <p>
5304      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5305      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5306      * arguments passed to the loop.
5307      * <blockquote><pre>{@code
5308      * int iterations(A...);
5309      * V init(A...);
5310      * V body(V, int, A...);
5311      * V countedLoop(A... a...) {
5312      *   int end = iterations(a...);
5313      *   V v = init(a...);
5314      *   for (int i = 0; i < end; ++i) {
5315      *     v = body(v, i, a...);
5316      *   }
5317      *   return v;
5318      * }
5319      * }</pre></blockquote>
5320      *
5321      * @apiNote Example with a fully conformant body method:
5322      * <blockquote><pre>{@code
5323      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5324      * // => a variation on a well known theme
5325      * static String step(String v, int counter, String init) { return "na " + v; }
5326      * // assume MH_step is a handle to the method above
5327      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
5328      * MethodHandle start = MethodHandles.identity(String.class);
5329      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
5330      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
5331      * }</pre></blockquote>
5332      *
5333      * @apiNote Example with the simplest possible body method type,
5334      * and passing the number of iterations to the loop invocation:
5335      * <blockquote><pre>{@code
5336      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
5337      * // => a variation on a well known theme
5338      * static String step(String v, int counter ) { return "na " + v; }
5339      * // assume MH_step is a handle to the method above
5340      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
5341      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
5342      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
5343      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
5344      * }</pre></blockquote>
5345      *
5346      * @apiNote Example that treats the number of iterations, string to append to, and string to append
5347      * as loop parameters:
5348      * <blockquote><pre>{@code
5349      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5350      * // => a variation on a well known theme
5351      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
5352      * // assume MH_step is a handle to the method above
5353      * MethodHandle count = MethodHandles.identity(int.class);
5354      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
5355      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
5356      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
5357      * }</pre></blockquote>
5358      *
5359      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
5360      * to enforce a loop type:
5361      * <blockquote><pre>{@code
5362      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
5363      * // => a variation on a well known theme
5364      * static String step(String v, int counter, String pre) { return pre + " " + v; }
5365      * // assume MH_step is a handle to the method above
5366      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
5367      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
5368      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
5369      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
5370      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
5371      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
5372      * }</pre></blockquote>
5373      *
5374      * @apiNote The implementation of this method can be expressed as follows:
5375      * <blockquote><pre>{@code
5376      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5377      *     return countedLoop(empty(iterations.type()), iterations, init, body);
5378      * }
5379      * }</pre></blockquote>
5380      *
5381      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
5382      *                   result type must be {@code int}. See above for other constraints.
5383      * @param init optional initializer, providing the initial value of the loop variable.
5384      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5385      * @param body body of the loop, which may not be {@code null}.
5386      *             It controls the loop parameters and result type in the standard case (see above for details).
5387      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5388      *             and may accept any number of additional types.
5389      *             See above for other constraints.
5390      *
5391      * @return a method handle representing the loop.
5392      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
5393      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5394      *
5395      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
5396      * @since 9
5397      */
5398     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
5399         return countedLoop(empty(iterations.type()), iterations, init, body);
5400     }
5401 
5402     /**
5403      * Constructs a loop that counts over a range of numbers.
5404      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5405      * <p>
5406      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
5407      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
5408      * values of the loop counter.
5409      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
5410      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
5411      * <p>
5412      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5413      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5414      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5415      * <p>
5416      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5417      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5418      * iteration variable.
5419      * The result of the loop handle execution will be the final {@code V} value of that variable
5420      * (or {@code void} if there is no {@code V} variable).
5421      * <p>
5422      * The following rules hold for the argument handles:<ul>
5423      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
5424      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
5425      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5426      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
5427      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5428      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
5429      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
5430      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
5431      * of types called the <em>internal parameter list</em>.
5432      * It will constrain the parameter lists of the other loop parts.
5433      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
5434      * with no additional {@code A} types, then the internal parameter list is extended by
5435      * the argument types {@code A...} of the {@code end} handle.
5436      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
5437      * list {@code (A...)} is called the <em>external parameter list</em>.
5438      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5439      * additional state variable of the loop.
5440      * The body must both accept a leading parameter and return a value of this type {@code V}.
5441      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5442      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5443      * <a href="MethodHandles.html#effid">effectively identical</a>
5444      * to the external parameter list {@code (A...)}.
5445      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5446      * {@linkplain #empty default value}.
5447      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
5448      * effectively identical to the external parameter list {@code (A...)}.
5449      * <li>Likewise, the parameter list of {@code end} must be effectively identical
5450      * to the external parameter list.
5451      * </ul>
5452      * <p>
5453      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5454      * <li>The loop handle's result type is the result type {@code V} of the body.
5455      * <li>The loop handle's parameter types are the types {@code (A...)},
5456      * from the external parameter list.
5457      * </ul>
5458      * <p>
5459      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5460      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
5461      * arguments passed to the loop.
5462      * <blockquote><pre>{@code
5463      * int start(A...);
5464      * int end(A...);
5465      * V init(A...);
5466      * V body(V, int, A...);
5467      * V countedLoop(A... a...) {
5468      *   int e = end(a...);
5469      *   int s = start(a...);
5470      *   V v = init(a...);
5471      *   for (int i = s; i < e; ++i) {
5472      *     v = body(v, i, a...);
5473      *   }
5474      *   return v;
5475      * }
5476      * }</pre></blockquote>
5477      *
5478      * @apiNote The implementation of this method can be expressed as follows:
5479      * <blockquote><pre>{@code
5480      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5481      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
5482      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
5483      *     // the following semantics:
5484      *     // MH_increment: (int limit, int counter) -> counter + 1
5485      *     // MH_predicate: (int limit, int counter) -> counter < limit
5486      *     Class<?> counterType = start.type().returnType();  // int
5487      *     Class<?> returnType = body.type().returnType();
5488      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
5489      *     if (returnType != void.class) {  // ignore the V variable
5490      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5491      *         pred = dropArguments(pred, 1, returnType);  // ditto
5492      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
5493      *     }
5494      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
5495      *     MethodHandle[]
5496      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5497      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
5498      *         indexVar   = { start, incr };           // i = start(); i = i + 1
5499      *     return loop(loopLimit, bodyClause, indexVar);
5500      * }
5501      * }</pre></blockquote>
5502      *
5503      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
5504      *              See above for other constraints.
5505      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
5506      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
5507      * @param init optional initializer, providing the initial value of the loop variable.
5508      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5509      * @param body body of the loop, which may not be {@code null}.
5510      *             It controls the loop parameters and result type in the standard case (see above for details).
5511      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
5512      *             and may accept any number of additional types.
5513      *             See above for other constraints.
5514      *
5515      * @return a method handle representing the loop.
5516      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
5517      * @throws IllegalArgumentException if any argument violates the rules formulated above.
5518      *
5519      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
5520      * @since 9
5521      */
5522     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5523         countedLoopChecks(start, end, init, body);
5524         Class<?> counterType = start.type().returnType();  // int, but who's counting?
5525         Class<?> limitType   = end.type().returnType();    // yes, int again
5526         Class<?> returnType  = body.type().returnType();
5527         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
5528         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
5529         MethodHandle retv = null;
5530         if (returnType != void.class) {
5531             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
5532             pred = dropArguments(pred, 1, returnType);  // ditto
5533             retv = dropArguments(identity(returnType), 0, counterType);
5534         }
5535         body = dropArguments(body, 0, counterType);  // ignore the limit variable
5536         MethodHandle[]
5537             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
5538             bodyClause = { init, body },            // v = init(); v = body(v, i)
5539             indexVar   = { start, incr };           // i = start(); i = i + 1
5540         return loop(loopLimit, bodyClause, indexVar);
5541     }
5542 
5543     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
5544         Objects.requireNonNull(start);
5545         Objects.requireNonNull(end);
5546         Objects.requireNonNull(body);
5547         Class<?> counterType = start.type().returnType();
5548         if (counterType != int.class) {
5549             MethodType expected = start.type().changeReturnType(int.class);
5550             throw misMatchedTypes("start function", start.type(), expected);
5551         } else if (end.type().returnType() != counterType) {
5552             MethodType expected = end.type().changeReturnType(counterType);
5553             throw misMatchedTypes("end function", end.type(), expected);
5554         }
5555         MethodType bodyType = body.type();
5556         Class<?> returnType = bodyType.returnType();
5557         List<Class<?>> innerList = bodyType.parameterList();
5558         // strip leading V value if present
5559         int vsize = (returnType == void.class ? 0 : 1);
5560         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
5561             // argument list has no "V" => error
5562             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5563             throw misMatchedTypes("body function", bodyType, expected);
5564         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
5565             // missing I type => error
5566             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
5567             throw misMatchedTypes("body function", bodyType, expected);
5568         }
5569         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
5570         if (outerList.isEmpty()) {
5571             // special case; take lists from end handle
5572             outerList = end.type().parameterList();
5573             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
5574         }
5575         MethodType expected = methodType(counterType, outerList);
5576         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
5577             throw misMatchedTypes("start parameter types", start.type(), expected);
5578         }
5579         if (end.type() != start.type() &&
5580             !end.type().effectivelyIdenticalParameters(0, outerList)) {
5581             throw misMatchedTypes("end parameter types", end.type(), expected);
5582         }
5583         if (init != null) {
5584             MethodType initType = init.type();
5585             if (initType.returnType() != returnType ||
5586                 !initType.effectivelyIdenticalParameters(0, outerList)) {
5587                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
5588             }
5589         }
5590     }
5591 
5592     /**
5593      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
5594      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5595      * <p>
5596      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
5597      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
5598      * <p>
5599      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
5600      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
5601      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
5602      * <p>
5603      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
5604      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
5605      * iteration variable.
5606      * The result of the loop handle execution will be the final {@code V} value of that variable
5607      * (or {@code void} if there is no {@code V} variable).
5608      * <p>
5609      * The following rules hold for the argument handles:<ul>
5610      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5611      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
5612      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5613      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
5614      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
5615      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
5616      * of types called the <em>internal parameter list</em>.
5617      * It will constrain the parameter lists of the other loop parts.
5618      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
5619      * with no additional {@code A} types, then the internal parameter list is extended by
5620      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
5621      * single type {@code Iterable} is added and constitutes the {@code A...} list.
5622      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
5623      * list {@code (A...)} is called the <em>external parameter list</em>.
5624      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5625      * additional state variable of the loop.
5626      * The body must both accept a leading parameter and return a value of this type {@code V}.
5627      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5628      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5629      * <a href="MethodHandles.html#effid">effectively identical</a>
5630      * to the external parameter list {@code (A...)}.
5631      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5632      * {@linkplain #empty default value}.
5633      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
5634      * type {@code java.util.Iterator} or a subtype thereof.
5635      * The iterator it produces when the loop is executed will be assumed
5636      * to yield values which can be converted to type {@code T}.
5637      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
5638      * effectively identical to the external parameter list {@code (A...)}.
5639      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
5640      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
5641      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
5642      * handle parameter is adjusted to accept the leading {@code A} type, as if by
5643      * the {@link MethodHandle#asType asType} conversion method.
5644      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
5645      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
5646      * </ul>
5647      * <p>
5648      * The type {@code T} may be either a primitive or reference.
5649      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
5650      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
5651      * as if by the {@link MethodHandle#asType asType} conversion method.
5652      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
5653      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
5654      * <p>
5655      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5656      * <li>The loop handle's result type is the result type {@code V} of the body.
5657      * <li>The loop handle's parameter types are the types {@code (A...)},
5658      * from the external parameter list.
5659      * </ul>
5660      * <p>
5661      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5662      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
5663      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
5664      * <blockquote><pre>{@code
5665      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
5666      * V init(A...);
5667      * V body(V,T,A...);
5668      * V iteratedLoop(A... a...) {
5669      *   Iterator<T> it = iterator(a...);
5670      *   V v = init(a...);
5671      *   while (it.hasNext()) {
5672      *     T t = it.next();
5673      *     v = body(v, t, a...);
5674      *   }
5675      *   return v;
5676      * }
5677      * }</pre></blockquote>
5678      *
5679      * @apiNote Example:
5680      * <blockquote><pre>{@code
5681      * // get an iterator from a list
5682      * static List<String> reverseStep(List<String> r, String e) {
5683      *   r.add(0, e);
5684      *   return r;
5685      * }
5686      * static List<String> newArrayList() { return new ArrayList<>(); }
5687      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
5688      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
5689      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
5690      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
5691      * assertEquals(reversedList, (List<String>) loop.invoke(list));
5692      * }</pre></blockquote>
5693      *
5694      * @apiNote The implementation of this method can be expressed approximately as follows:
5695      * <blockquote><pre>{@code
5696      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5697      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
5698      *     Class<?> returnType = body.type().returnType();
5699      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5700      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
5701      *     MethodHandle retv = null, step = body, startIter = iterator;
5702      *     if (returnType != void.class) {
5703      *         // the simple thing first:  in (I V A...), drop the I to get V
5704      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
5705      *         // body type signature (V T A...), internal loop types (I V A...)
5706      *         step = swapArguments(body, 0, 1);  // swap V <-> T
5707      *     }
5708      *     if (startIter == null)  startIter = MH_getIter;
5709      *     MethodHandle[]
5710      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
5711      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
5712      *     return loop(iterVar, bodyClause);
5713      * }
5714      * }</pre></blockquote>
5715      *
5716      * @param iterator an optional handle to return the iterator to start the loop.
5717      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
5718      *                 See above for other constraints.
5719      * @param init optional initializer, providing the initial value of the loop variable.
5720      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5721      * @param body body of the loop, which may not be {@code null}.
5722      *             It controls the loop parameters and result type in the standard case (see above for details).
5723      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
5724      *             and may accept any number of additional types.
5725      *             See above for other constraints.
5726      *
5727      * @return a method handle embodying the iteration loop functionality.
5728      * @throws NullPointerException if the {@code body} handle is {@code null}.
5729      * @throws IllegalArgumentException if any argument violates the above requirements.
5730      *
5731      * @since 9
5732      */
5733     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5734         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
5735         Class<?> returnType = body.type().returnType();
5736         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
5737         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
5738         MethodHandle startIter;
5739         MethodHandle nextVal;
5740         {
5741             MethodType iteratorType;
5742             if (iterator == null) {
5743                 // derive argument type from body, if available, else use Iterable
5744                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
5745                 iteratorType = startIter.type().changeParameterType(0, iterableType);
5746             } else {
5747                 // force return type to the internal iterator class
5748                 iteratorType = iterator.type().changeReturnType(Iterator.class);
5749                 startIter = iterator;
5750             }
5751             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
5752             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
5753 
5754             // perform the asType transforms under an exception transformer, as per spec.:
5755             try {
5756                 startIter = startIter.asType(iteratorType);
5757                 nextVal = nextRaw.asType(nextValType);
5758             } catch (WrongMethodTypeException ex) {
5759                 throw new IllegalArgumentException(ex);
5760             }
5761         }
5762 
5763         MethodHandle retv = null, step = body;
5764         if (returnType != void.class) {
5765             // the simple thing first:  in (I V A...), drop the I to get V
5766             retv = dropArguments(identity(returnType), 0, Iterator.class);
5767             // body type signature (V T A...), internal loop types (I V A...)
5768             step = swapArguments(body, 0, 1);  // swap V <-> T
5769         }
5770 
5771         MethodHandle[]
5772             iterVar    = { startIter, null, hasNext, retv },
5773             bodyClause = { init, filterArgument(step, 0, nextVal) };
5774         return loop(iterVar, bodyClause);
5775     }
5776 
5777     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
5778         Objects.requireNonNull(body);
5779         MethodType bodyType = body.type();
5780         Class<?> returnType = bodyType.returnType();
5781         List<Class<?>> internalParamList = bodyType.parameterList();
5782         // strip leading V value if present
5783         int vsize = (returnType == void.class ? 0 : 1);
5784         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
5785             // argument list has no "V" => error
5786             MethodType expected = bodyType.insertParameterTypes(0, returnType);
5787             throw misMatchedTypes("body function", bodyType, expected);
5788         } else if (internalParamList.size() <= vsize) {
5789             // missing T type => error
5790             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
5791             throw misMatchedTypes("body function", bodyType, expected);
5792         }
5793         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
5794         Class<?> iterableType = null;
5795         if (iterator != null) {
5796             // special case; if the body handle only declares V and T then
5797             // the external parameter list is obtained from iterator handle
5798             if (externalParamList.isEmpty()) {
5799                 externalParamList = iterator.type().parameterList();
5800             }
5801             MethodType itype = iterator.type();
5802             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
5803                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
5804             }
5805             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
5806                 MethodType expected = methodType(itype.returnType(), externalParamList);
5807                 throw misMatchedTypes("iterator parameters", itype, expected);
5808             }
5809         } else {
5810             if (externalParamList.isEmpty()) {
5811                 // special case; if the iterator handle is null and the body handle
5812                 // only declares V and T then the external parameter list consists
5813                 // of Iterable
5814                 externalParamList = Arrays.asList(Iterable.class);
5815                 iterableType = Iterable.class;
5816             } else {
5817                 // special case; if the iterator handle is null and the external
5818                 // parameter list is not empty then the first parameter must be
5819                 // assignable to Iterable
5820                 iterableType = externalParamList.get(0);
5821                 if (!Iterable.class.isAssignableFrom(iterableType)) {
5822                     throw newIllegalArgumentException(
5823                             "inferred first loop argument must inherit from Iterable: " + iterableType);
5824                 }
5825             }
5826         }
5827         if (init != null) {
5828             MethodType initType = init.type();
5829             if (initType.returnType() != returnType ||
5830                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
5831                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
5832             }
5833         }
5834         return iterableType;  // help the caller a bit
5835     }
5836 
5837     /*non-public*/ static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
5838         // there should be a better way to uncross my wires
5839         int arity = mh.type().parameterCount();
5840         int[] order = new int[arity];
5841         for (int k = 0; k < arity; k++)  order[k] = k;
5842         order[i] = j; order[j] = i;
5843         Class<?>[] types = mh.type().parameterArray();
5844         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
5845         MethodType swapType = methodType(mh.type().returnType(), types);
5846         return permuteArguments(mh, swapType, order);
5847     }
5848 
5849     /**
5850      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
5851      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
5852      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
5853      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
5854      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
5855      * {@code try-finally} handle.
5856      * <p>
5857      * The {@code cleanup} handle will be passed one or two additional leading arguments.
5858      * The first is the exception thrown during the
5859      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
5860      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
5861      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
5862      * The second argument is not present if the {@code target} handle has a {@code void} return type.
5863      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
5864      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
5865      * <p>
5866      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
5867      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
5868      * two extra leading parameters:<ul>
5869      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
5870      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
5871      * the result from the execution of the {@code target} handle.
5872      * This parameter is not present if the {@code target} returns {@code void}.
5873      * </ul>
5874      * <p>
5875      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
5876      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
5877      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
5878      * the cleanup.
5879      * <blockquote><pre>{@code
5880      * V target(A..., B...);
5881      * V cleanup(Throwable, V, A...);
5882      * V adapter(A... a, B... b) {
5883      *   V result = (zero value for V);
5884      *   Throwable throwable = null;
5885      *   try {
5886      *     result = target(a..., b...);
5887      *   } catch (Throwable t) {
5888      *     throwable = t;
5889      *     throw t;
5890      *   } finally {
5891      *     result = cleanup(throwable, result, a...);
5892      *   }
5893      *   return result;
5894      * }
5895      * }</pre></blockquote>
5896      * <p>
5897      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5898      * be modified by execution of the target, and so are passed unchanged
5899      * from the caller to the cleanup, if it is invoked.
5900      * <p>
5901      * The target and cleanup must return the same type, even if the cleanup
5902      * always throws.
5903      * To create such a throwing cleanup, compose the cleanup logic
5904      * with {@link #throwException throwException},
5905      * in order to create a method handle of the correct return type.
5906      * <p>
5907      * Note that {@code tryFinally} never converts exceptions into normal returns.
5908      * In rare cases where exceptions must be converted in that way, first wrap
5909      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
5910      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
5911      * <p>
5912      * It is recommended that the first parameter type of {@code cleanup} be
5913      * declared {@code Throwable} rather than a narrower subtype.  This ensures
5914      * {@code cleanup} will always be invoked with whatever exception that
5915      * {@code target} throws.  Declaring a narrower type may result in a
5916      * {@code ClassCastException} being thrown by the {@code try-finally}
5917      * handle if the type of the exception thrown by {@code target} is not
5918      * assignable to the first parameter type of {@code cleanup}.  Note that
5919      * various exception types of {@code VirtualMachineError},
5920      * {@code LinkageError}, and {@code RuntimeException} can in principle be
5921      * thrown by almost any kind of Java code, and a finally clause that
5922      * catches (say) only {@code IOException} would mask any of the others
5923      * behind a {@code ClassCastException}.
5924      *
5925      * @param target the handle whose execution is to be wrapped in a {@code try} block.
5926      * @param cleanup the handle that is invoked in the finally block.
5927      *
5928      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
5929      * @throws NullPointerException if any argument is null
5930      * @throws IllegalArgumentException if {@code cleanup} does not accept
5931      *          the required leading arguments, or if the method handle types do
5932      *          not match in their return types and their
5933      *          corresponding trailing parameters
5934      *
5935      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
5936      * @since 9
5937      */
5938     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
5939         List<Class<?>> targetParamTypes = target.type().parameterList();
5940         Class<?> rtype = target.type().returnType();
5941 
5942         tryFinallyChecks(target, cleanup);
5943 
5944         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
5945         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5946         // target parameter list.
5947         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
5948 
5949         // Ensure that the intrinsic type checks the instance thrown by the
5950         // target against the first parameter of cleanup
5951         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
5952 
5953         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
5954         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
5955     }
5956 
5957     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
5958         Class<?> rtype = target.type().returnType();
5959         if (rtype != cleanup.type().returnType()) {
5960             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
5961         }
5962         MethodType cleanupType = cleanup.type();
5963         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
5964             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
5965         }
5966         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
5967             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
5968         }
5969         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
5970         // target parameter list.
5971         int cleanupArgIndex = rtype == void.class ? 1 : 2;
5972         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
5973             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
5974                     cleanup.type(), target.type());
5975         }
5976     }
5977 
5978 }