
Project Loom
The challenges of introducing Virtual Threads to the Java Platform

Name

Alan Bateman

JVMLS 2023

Copyright © 2023, Oracle and/or its affiliates

JVMLS 2019

2

• Virtual thread = user mode thread, scheduled by the Java virtual machine, not the operating system 

• A virtual thread is an instance of java.lang.Thread

• Not tied to a particular OS thread 

• A platform thread is an instance of java.lang.Thread but implemented in the “traditional way”

• Typically a thin wrapper around an OS thread 

• Summary

• java.lang.Thread is the API for all threads

• Thread.currentThread() returns the Thread representing the “current thread”

• A virtual thread and its carrier are distinct Thread objects

• No change to the programming model, it’s the one we already know

Fast forward to today

3 Copyright © 2023, Oracle and/or its affiliates

• Built on continuations, implemented in the HotSpot VM as a lower level construct

• A virtual thread wraps a task in a continuation

• The continuation yields when the task needs to block

• The continuation is continued when the task is ready to continue

• Scheduler executes the tasks for virtual threads on a pool of carrier thread

• M:N threading model

• The scheduler is a j.u.c.ForkJoinPool

• FIFO mode

• Parallelism defaults to the number of hardware threads

How are virtual threads implemented?

4

M virtual threads

N carrier threads managed by the scheduler

Copyright © 2023, Oracle and/or its affiliates

• Developer facing APIs

• java.lang.Thread

• java.util.concurrent.Executors

• ExecutorService implementation with a policy to create a new thread for each task

• Other APIs and exported interfaces

• Additions to JNI, JVM TI and JDWP specs

• Additions to JDI, JFR and com.sun.management APIs

• New thread dump format and jcmd command

• New JDWP agent options

• New JFR events

APIs

5

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• JDK 19

• JEP 425: Virtual Threads (Preview)

• JEP 428: Structured Concurrency (Incubator) 

• JDK 20

• JEP 436: Virtual Threads (Second Preview)

• JEP 437: Structured Concurrency (Second Incubator)

• JEP 429: Scoped Values (Incubator) 

• JDK 21

• JEP 444: Virtual Threads

• JEP 453: Structured Concurrency (Preview)

• JEP 446: Scoped Values (Preview)

Progress to date

6

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

7 Copyright © 2023, Oracle and/or its affiliates

8

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

9

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Thinking that virtual threads are faster threads 

• Replacing platform threads with virtual threads rather than tasks with virtual threads 

• Changing the ThreadFactory for a thread pool, thus pooling virtual threads 

• Pinning issues and assuming that all uses of monitors must be replaced 

• Using framework/libraries that make heavy use of thread locals 

• Warmup issues 

• Doing over complicated stuff 

• Some misunderstanding as to where the performance benefits come from

Some developers are making mistakes

10

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Move to simpler blocking/synchronous code

• Migrate tasks to virtual threads, not platform threads to virtual threads

• Use Semaphores or similar to limit concurrency

• Don’t cache expensive objects in thread locals

• Avoid lengthy and frequent pinning (for now anyway)

Migration: The guidance to developers in JEP 444

11

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Virtual threads have been well received by developers and eco system

• Significant interest in avoiding async/reactive, go back to simpler synchronous/blocking code instead 

• Frameworks learning how to expose virtual threads to developers 

• Performance is good, with the exception of a few areas

• JVM TI based performance profilers

• Timers aren’t as scalable as they could be 

• Reliability is good 

• Pinning due to synchronization is the main issue that comes up

Summary up to JDK 21 RDP2

12

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Big challenge at JVMLS 2019

• How to expose virtual threads to developers

• Adding continuations to HotSpot VM 

• Implementing a thread library in Java

• All the challenges of “Java on Java”

• Can only use a subset of platform to avoid bootstrapping, nested parking, and other issues

• Hard to reliably recover/continue after stack overflow or OOME

• All your blocking belongs to us

• There are hundreds of potentially blocking APIs 

• Herding threads

• Thread locals

• Serviceability, e.g. JVM TI, thread dumps

Challenges

13

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• A virtual thread per task means lots of virtual threads 

• How should lot of threads be organised? Do they need to be organised?

• Long standing thread-organizing construct is java.lang.ThreadGroup

• Select or inherit the ThreadGroup at Thread create time

• Doesn’t play well with ThreadFactory, no dynamic placement

• Serviceability is an interested party 
 
 … but none of the tools or APIs scale to millions of virtual threads

Herding Threads

14 Copyright © 2023, Oracle and/or its affiliates

• De-emphasize, and eventually deprecate, legacy ThreadGroup

• Introduce Structured Concurrency to treat groups of related tasks running in different threads as a
single unit of work

• Acknowledge other natural groupings of threads

• A thread pool is a grouping of worker threads

• A thread-per-task executor is a grouping of (typically virtual) threads

• Allow serviceability tools to discover/enumerate threads

Herding Threads

15 Copyright © 2023, Oracle and/or its affiliates

• When control splits into multiple concurrent paths, we want to make sure that they join up again 
 
 
 
 
 
 
 
 
 
 

• A big plus is that it helps to eliminate common risks arising from cancellation and shutdown, such as
thread leaks and cancellation delays

Structured Concurrency

16 Copyright © 2023, Oracle and/or its affiliates

StructuredTaskScope (JEP 453)

17 Copyright © 2023, Oracle and/or its affiliates

 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {

 Supplier<String> result1 = scope.fork(task1);

 Supplier<String> result2 = scope.fork(task2);

 scope.join();

 scope.throwIfFailed(e -> new WebApplicationException(e));

 // both subtasks completed successfully

 String result = Stream.of(result1, result2)

 .map(Supplier::get)

 .collect(Collectors.joining(", ", "{ ", " }"));

 ...

 }

StructuredTaskScope (JEP 453)

18 Copyright © 2023, Oracle and/or its affiliates platform thread virtual thread

 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {

 Supplier<String> result1 = scope.fork(task1);

 Supplier<String> result2 = scope.fork(task2);

 scope.join();

 scope.throwIfFailed(e -> new WebApplicationException(e));

 // both subtasks completed successfully

 String result = Stream.of(result1, result2)

 .map(Supplier::get)

 .collect(Collectors.joining(", ", "{ ", " }"));

 ...

 }

• Usages leads to a tree of thread groupings

• Bring all thread groups into a tree

• Observe with serviceability tools (e.g. jcmd), maybe APIs in the future

Herding Threads

19 Copyright © 2023, Oracle and/or its affiliates

17 18

<root>

ForkJoinPool.commonPoolThreadPoolExecutor ThreadPerTaskExecutor

• Overly general mechanism to associate data with the current thread of execution 

• Used for a wide range of purposes, e.g.

• Caching, esp. mutable objects that are expensive to create

• Implicit parameters and return values 

• TLs have several problems

• Unbounded lifetime

• Unconstrained mutability

• Unconstrained memory usage

• InheritableThreadLocal = expensive inheritance

Thread locals

20 Copyright © 2023, Oracle and/or its affiliates

• Virtual threads support thread locals

• Forced moved: too much existing code uses TLs

• Dropped (preview) API to opt-out of thread locals out of concern that is bifurcate eco system

• Migration is from tasks to virtual threads, not platform threads to virtual threads

• Problematic for code that assumes running in a thread pool or event loop

• Caching results in negative performance 

• Migration to virtual threads means moving away from caching expensive objects in thread locals

• Move to immutable objects where possible, e.g SimpleDateFormat to DateTimeFormatter

• A global cache can work for some use-cases

Virtual threads and thread locals

21 Copyright © 2023, Oracle and/or its affiliates

• Re-evaluate use of TLs

• JDK dropped several usages from java.base after re-evaluating the performance

• Scoped Values - JEP 446

• A value that may be safely and efficiently shared to methods without using method parameters

• Use for cases where there is "one-way transmission" of data without using method parameters

• Callbacks, detect recursion initialization, …

• In JVMLS 2019 we talked about

• Processor locals

• Prototype on based on RSEQ has been parked, may pick this up again

• Task locals

Moving away from thread locals

22 Copyright © 2023, Oracle and/or its affiliates

• Networking

• All blocking ops release carrier to do other work

• Internet-Address Resolution (DNS look-up, reverse look-up)

• JEP 418 introduced a provider mechanism

• Not proposing that JDK include its own DNS client at this time

• Published samples based on JNDI-DNS and Netty DNS, need eco system to step up

• File I/O

• All potentially blocking ops currently compensate by temporarily increasing parallelism during op

• Work in progress to allow implementation to be based on async or io_uring 

Status of libraries

23 Copyright © 2023, Oracle and/or its affiliates

• 2-way native interface to support a broad range of tool agents

• Debuggers, instrumentation based tools, heap profilers, …

• Very large API surface (150 functions, 50 callbacks), deeply invasive

• Virtual threads are implemented in Java, the scheduler is in Java, lots of challenges to support JVM TI

• The main challenge is the thread identity changes when a virtual thread mounts or unmounts

• Complicated interaction with thread suspend/resume

• Main break through since JVMLS 2019 is to treat the carrier as blocked when a virtual thread is mounted

• The carrier thread is unblocked when the virtual thread unmounts

• A forced move is to hide events when executing the mount/unmount code

• JVM TI meets “Java on Java”

Java Virtual Machine Tool Interface (JVM TI)

24 Copyright © 2023, Oracle and/or its affiliates

• Debugger 

• Heap profilers 

• Performance profilers

• Currently overwhelmed by bookkeeping overhead - multi-step plan to reduce overhead

• Main question is if JVMTI is the right interface for performance profilers? 

• No equivalent of GetAllThreads for virtual threads

Java Virtual Machine Tool Interface (JVM TI)

25 Copyright © 2023, Oracle and/or its affiliates

• Java Debug Wire Protocol (JDWP) + Java Debug Interface (JDI)

• All IDE/debuggers are working with virtual threads

• Missing debugger supporting for discovering threads and navigating groupings of threads

• JMX and java.lang.management

• JDK Flight Recorder 

• HPROF heap dumps

• Thread dumps

Status of other serviceability areas

26 Copyright © 2023, Oracle and/or its affiliates

• Usually the first port of call when troubleshooting 

• HotSpot VM thread dump has organically grown over many years to include a lot of information

• But doesn’t scale to millions of virtual threads

• Virtual threads are just objects in the heap 

• New thread dump format

• Provides a weakly consistent view of the threads in each “thread grouping”

• HotSpotDiagnosticMXBean API or jcmd

• Plain text or JSON format for now

• JSON format intended to be parsed, enables tools to visualize, deduplicate, …

• No lock information or deadlock detection at this time

Thread dumps

27 Copyright © 2023, Oracle and/or its affiliates

28

{

 "threadDump": {

 "processId": "78091",

 "time": "2023-08-07T20:26:44.186396Z",

 "runtimeVersion": "22-internal-adhoc.albatem.open",

 "threadContainers": [

 {

 "container": "<root>",

 "parent": null,

 "owner": null,

 "threads": [

 {

 "tid": "1",

 "name": "main",

 "stack": [

 "java.base\/java.lang.Thread.getStackTrace(Thread.java:2421)",

 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadToJson(ThreadDumper.java:264)",

 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadsToJson(ThreadDumper.java:237)",

 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadsToJson(ThreadDumper.java:201)",

 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadsToJson(ThreadDumper.java:176)",

 "jdk.management\/com.sun.management.internal.HotSpotDiagnostic.dumpThreads(HotSpotDiagnostic.java:197)",

 "jdk.management\/com.sun.management.internal.HotSpotDiagnostic.lambda$dumpThreads$1(HotSpotDiagnostic.java:178)",

 "java.base\/java.security.AccessController.doPrivileged(AccessController.java:571)",

 "jdk.management\/com.sun.management.internal.HotSpotDiagnostic.dumpThreads(HotSpotDiagnostic.java:182)",

 "Test.main(Test.java:28)",

 "java.base\/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)",

 "java.base\/java.lang.reflect.Method.invoke(Method.java:580)",

 "jdk.compiler\/com.sun.tools.javac.launcher.Main.execute(Main.java:484)",

 "jdk.compiler\/com.sun.tools.javac.launcher.Main.run(Main.java:208)",

 "jdk.compiler\/com.sun.tools.javac.launcher.Main.main(Main.java:135)"

]

 },

 {

 "tid": "9",

 "name": "Reference Handler",

 "stack": [

 "java.base\/java.lang.ref.Reference.waitForReferencePendingList(Native Method)",

 "java.base\/java.lang.ref.Reference.processPendingReferences(Reference.java:246)",

 "java.base\/java.lang.ref.Reference$ReferenceHandler.run(Reference.java:208)"

]

 },

 {

 "tid": "10",

 "name": "Finalizer",

 "stack": [

 "java.base\/java.lang.Object.wait0(Native Method)",

 "java.base\/java.lang.Object.wait(Object.java:375)",

 "java.base\/java.lang.Object.wait(Object.java:348)",

 "java.base\/java.lang.ref.NativeReferenceQueue.await(NativeReferenceQueue.java:48)",

 "java.base\/java.lang.ref.ReferenceQueue.remove0(ReferenceQueue.java:158)",

 "java.base\/java.lang.ref.NativeReferenceQueue.remove(NativeReferenceQueue.java:89)",

 "java.base\/java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:173)"

]

 },

 {

 "tid": "11",

 "name": "Signal Dispatcher",

 "stack": [

]

 },

 {

 "tid": "18",

 "name": "Common-Cleaner",

 "stack": [

 "java.base\/jdk.internal.misc.Unsafe.park(Native Method)",

 "java.base\/java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:269)",

 "java.base\/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1847)",

 "java.base\/java.lang.ref.ReferenceQueue.await(ReferenceQueue.java:71)",

 "java.base\/java.lang.ref.ReferenceQueue.remove0(ReferenceQueue.java:143)",

 "java.base\/java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:218)",

 "java.base\/jdk.internal.ref.CleanerImpl.run(CleanerImpl.java:140)",

 "java.base\/java.lang.Thread.run(Thread.java:1570)",

 "java.base\/jdk.internal.misc.InnocuousThread.run(InnocuousThread.java:186)"

]

 },

 {

 "tid": "19",

 "name": "Notification Thread",

 "stack": [

]

 }

],

 "threadCount": "6"

 },

 {

 "container": "java.util.concurrent.ThreadPoolExecutor@7e5afaa6",

 "parent": "<root>",

 "owner": null,

 "threads": [

 {

 "tid": "25",

 "name": "pool-1-thread-1",

 "stack": [

 "java.base\/java.lang.Thread.sleepNanos0(Native Method)",

 "java.base\/java.lang.Thread.sleepNanos(Thread.java:491)",

 "java.base\/java.lang.Thread.sleep(Thread.java:522)",

 "Test.lambda$main$0(Test.java:13)",

 "java.base\/java.util.concurrent.FutureTask.run(FutureTask.java:317)",

 "java.base\/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)",

 "java.base\/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)",

 "java.base\/java.lang.Thread.run(Thread.java:1570)"

]

 }

],

 "threadCount": "1"

 },

 {

 "container": "ForkJoinPool-1\/jdk.internal.vm.SharedThreadContainer@3e27ba32",

 "parent": "<root>",

 "owner": null,

 "threads": [

 {

 "tid": "27",

 "name": "ForkJoinPool-1-worker-1",

 "stack": [

 "java.base\/jdk.internal.misc.Unsafe.park(Native Method)",

 "java.base\/java.util.concurrent.locks.LockSupport.parkUntil(LockSupport.java:449)",

 "java.base\/java.util.concurrent.ForkJoinPool.awaitWork(ForkJoinPool.java:1891)",

 "java.base\/java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1809)",

 "java.base\/java.util.concurrent.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:188)"

]

 }

],

 "threadCount": "1"

 },

 {

 "container": "java.util.concurrent.ScheduledThreadPoolExecutor@2f217633",

 "parent": "<root>",

 "owner": null,

 "threads": [

],

 "threadCount": "0"

 },

 {

 "container": "ForkJoinPool.commonPool\/jdk.internal.vm.SharedThreadContainer@7ef82753",

 "parent": "<root>",

 "owner": null,

 "threads": [

],

 "threadCount": "0"

 },

 {

 "container": "java.util.concurrent.ThreadPoolExecutor@534a5a98",

 "parent": "<root>",

 "owner": null,

 "threads": [

],

 "threadCount": "0"

 },

 {

 "container": "java.util.concurrent.StructuredTaskScope@3bf9ce3e",

 "parent": "<root>",

 "owner": "1",

 "threads": [

],

 "threadCount": "0"

 }

]

 }

}

• “Quality of implementation” and performance

• Java monitors 

• Compressed frames 

• Re-implement file I/O so it can be backed by async or io_uring 

• Include lock information in thread dumps 

• More scalable timer support 

• More scalable tracking of threads; APIs for enumeration/navigating  

• JVM TI performance 

• Custom Schedulers 

• Get feedback and progress Structured Concurrency and Scoped Values to be permanent features

Current exploration/work in progress

29 Copyright © 2023, Oracle and/or its affiliates

• JEP 444: Virtual Threads  
 https://openjdk.org/jeps/444 

• JEP 453: Structured Concurrency (Preview) 
 https://openjdk.org/jeps/453 

• JEP 446: Scoped Values (Preview) 
 https://openjdk.org/jeps/446 

• Repository 
 https://github.com/openjdk/loom/ (several branches)

• Mailing list 
 https://mail.openjdk.org/mailman/listinfo/loom-dev

Links

30 Copyright © 2023, Oracle and/or its affiliates

https://openjdk.org/jeps/444
https://openjdk.org/jeps/453
https://openjdk.org/jeps/446
https://github.com/openjdk/loom/
https://mail.openjdk.org/mailman/listinfo/loom-dev

