&
LU
(O (0

Project Loom

The challenges of introducing Virtual Threads to the Java Platform

‘“"///' '//.//‘ —

.
\\

r 4
s / ’ . 4 y
\J’ 1"’ (‘/

Name

Alan Bateman
JVMLS 2023

ALY B

JVMLS 2019

What is a fiber? Why fibers? How are fibers implemented? How are fibers implemented?
* A light weight or user mode thread, scheduled by the * The runtime is well positioned to manage and schedule « Built on Continuations, implemented in the HotSpot VM, * Fibers = continuation + scheduler
Java virtual machine, not the operating system application threads, esp. when they interleave computation as a lower level construct « Afiber wraps a task in & continuation
and I/0O and interact very often (exactly how many server
* Fibers are intented to have very low footprint and have threads behave) « A Continuation (precisely: delimited continuation) is a " The continuation yields when the taskneeds to block
negligible task-switching overhead. You can have millions _ L _ program object representing a computation that may be » The continuation is continued when the task is ready to continue
of them! * Fibers allow developers to write simple synchronous/blocking

suspended and resumed

code that is easy read, maintain, debug and profile, yet scales * Scheduler executes tasks on a pool of carrier threads

e TBD on whether API to Continuations will be exposed * java.util.concurrent.Executor in the current prototype

¢ Default/built-in scheduler is a ForkJoinPool

* Project mantra: Make concurrency simple again!

Thread vs. Eiber Thread vs. Eiber What about Thread.currentThread() ?
e Mental model: fiber is a thread e Trying to “re-imagine threads”, leave the java.lang.Thread baggage behind * Alot of existing code makes direct or indirect use of Thread.currentThread))
« Is java.lang.Thread the right API for fibers? « Prototypes to date: * For now, first use of Thread.currentThread() in context of a fiber creates an adaptor
¢ a.k.a. the “Shadow Thread”, Thread object, no stack or VM meta data
* java.lang.Thread has accumulated a lot of baggage over 20+ years * Fiber <: Thread
e Emulates legacy Thread API, everything except stop, suspend, and resume
» Defines 13 static and 29 instance methods, many are not interesting * Fiber <: Strand, Thread <: Strand , L , ,
¢ Everything thread local is fiber local, the cost is footprint
* Thread footprint is significant * Fiber and Thread without a common super type « Pragmatic solution to keep existing code working
» Thread locals add to footprint e Current status » Thread object for the transient carrier thread is never leaked to user code

2 Copyright © 2023, Oracle and/or its affiliates

Fast forward to today

* Virtual thread = user mode thread, scheduled by the Java virtual machine, not the operating system

* Avirtual thread is an instance of java.lang.Thread
* Not tied to a particular OS thread

* A platform thread is an instance of java.lang.Thread butimplemented in the “traditional way”

* Typically a thin wrapper around an OS thread

* Summary
* java.lang.Threadis the API for all threads

* Thread.currentThread () returns the Thread representing the “current thread”
* A virtual thread and its carrier are distinct Thread objects
* No change to the programming model, it’'s the one we already know

3 Copyright © 2023, Oracle and/or its affiliates

How are virtual threads implemented?

e Built on continuations, implemented in the HotSpot VM as a lower level construct

* A virtual thread wraps a task in a continuation

* The continuation yields when the task needs to block

* The continuation is continued when the task is ready to continue

M virtual threads

* Scheduler executes the tasks for virtual threads on a pool of carrier thread
 M:N threading model
5 EEEEE
* The schedulerisa j.u.c.ForkJoinPool BEEEEB
* FIFO mode
* Parallelism defaults to the number of hardware threads

N carrier threads managed by the scheduler

4 Copyright © 2023, Oracle and/or its affiliates E

APls

* Developer facing APIs
e Java.lang.Thread

e Java.util.concurrent.Executors
* ExecutorService implementation with a policy to create a new thread for each task

* Other APIs and exported interfaces

* Additions to JNI, JVM Tl and JDWP specs

* Additions to JDI, JFR and com. sun.management APIs

* New thread dump format and jcmd command

* New JDWP agent options

* New JFR events

5 Copyright © 2023, Oracle and/or its affiliates

Progress to date

* JDK 19
* JEP 425: Virtual Threads (Preview)
* JEP 428: Structured Concurrency (Incubator)

» JDK 20
* JEP 436: Virtual Threads (Second Preview)

* JEP 437: Structured Concurrency (Second Incubator)
* JEP 429: Scoped Values (Incubator)

 JDK 21
 JEP 444: \/irtual Threads

* JEP 453: Structured Concurrency (Preview)
* JEP 446: Scoped Values (Preview)

6 Copyright © 2023, Oracle and/or its affiliates

Article Talk Read Edit View history | Search Wikipedia

Virtual threads

From Wikipedia, the free encyclopedia

In computer programming, virtual threads are threads that are scheduled by a runtime library instead of natively by the underlying operating system (OS). Virtual
threads allows for tens of millions of preemptive tasks and events without swapping on a 2021 consumer-grade computer..['], compared to low thousands of
operating system threads.[?] Preemptive execution!® is important to performance gains through parallelism and fast preemptive response times for tens of millions of
events. Earlier constructs that are not preemptive, such as coroutines or the largely single-threaded Node.js, introduce delays in responding to asynchronous events

such as every incoming request in a server application!*!

Contents [hide]
1 Definition
2 Underlying reasons
3 Complexity
4 Implementations
4.1 Google Chrome Browser
4.2 Go
4.3 Java Project Loom
5 See also
6 References

7 External links

Tomasz Nurkiewicz
Java Champion and CTO (DevSkiller

Spent half of his life on programming, for the last decade professionally in Java land.

Loves back-end and data visualization. Passionate about alternative JVM languages.

Disappointed with the quality of software written these days (so often by himself!),
hates long methods and hidden side...

Two takeaways, | would say. First of all, | would like people to get really excited because
the project Loom may make your concurrent code much, much more readable, much
easier to maintain, because you no longer have to deal with these low level details,
pooling threads, making sure your queues are long enough. Tuning, monitoring, and so
on. You just create treads as if it was a very native, very low footprint abstraction, which
is not the case right now. The first takeaway is that this may revolutionize the way you
work with concurrent code. That's why I'm excited about it. On the other hand, we can
already see that even though the feature wasn't yet released, you have to be aware of
the shortcomings. For example, now the garbage collector has to do much more work
because the virtual threads that you can create in millions are actually subject to
garbage collection, which means you will have a much harder time fine tuning garbage
collectors. There's always a tradeoff. And also, there are a few other disadvantages or
limitations of Project Loom that you must be aware of. Otherwise, you will just shoot
yourself in the foot. There's no free lunch. | want people to get the best idea, what they
can get and what are the best use cases for this new project and whether they should
use it from day one, the moment it's released. Or maybe it's just a very specialized tool

that they should never really look at because it's a matter of framework developers.

7 Copyright © 2023, Oracle and/or its affiliates

Implementing Raft using Project Loom

Java Scala Zio Distributed Systems Distributed Consensus raft Project Loom

Adam Warski in ’ O

30 Aug 2022. 24 minutes read

ZIO vs Loom: the verdict

Loom has the upper hand when it comes to syntax familiarity and simpler
types (no viral Future / 10 wrappers). ZIO, on the other hand, wins in its
interruption implementation, testing capabilities, and uniformity. When it
comes to concurrency, to the degree that we've been using it, there haven't
been significant differences.

As far as Saft—our Scala Raft implementation—is concerned, I'd say it's a
tie. I'm happy with both implementations, and they are hopefully both
readable and easy to relate various implementation fragments to the Raft

paper.

Using Java’s Project Loom to build more
reliable distributed systems

09 May 2022

#clojure #jdk19 #java

Evaluation

Simulation performance

The simulation was surprisingly performant. I have no clear comparison point,
but on my computer with reasonable-looking latency configurations I was able
to simulate about 40k Raft rounds per second on a single core, and 500k when
running multiple simulations in parallel. This represents simulating hundreds of
thousands of individual RPCs per second, and represents 2.5M Loom context
switches per second on a single core.

When I cranked up the rate of timeouts and failures (leading to lots of
exceptions being thrown), I saw closer to 15k requests per second processed

£
| ste
|

(with about 100 leader elections during that time) and when I made performance
uniformly excellent, I saw single core throughput as high as 85k Raft rounds per P 1,632views
second.

Gunnar Morling
Random Musings on All Things Software Engineering

!

Blog Projects Conferences Podcasts About

Loom and Thread Fairness

Posted at May 27, 2022

1vesa o

In wallclock time, it took all the 64 threads roughly 16 seconds to complete. The threads are rather
equally scheduled between the available cores of my machine. l.e. we're observing a fair scheduling
scheme. Now here are the results using virtual threads (by obtaining the executor via

Executors: :newVirtualThreadPerTaskExecutor()):

Walckock time achedding to nish (ms)

16000

10000

012345678 910WNMNVVUBBITEHN0N20MBXB7B9NVNNIVIUBUITBRNOMNQOMSBTRN0NNRNABHETHNHNONRD
Thread id

</

(€7110100)) (0] —

Redis Clone: Improved IO Control

‘We left with unsuccessful attempts to improve the 10 by only using Virtual Threads and the classing
blocking IO classes in the previous post.

This time we are using the NIO network API to get more fined grained control to the IO pattern. As a recap:
We try to avoid blocking while flushing each individual response. This way we take advantage of the
pipelined requests: We get a bunch of requests from the client, answer all of them and amortize the flush
over multiple responses.

P

Figure 1. More I0 Control

Unfortunately, the NIO API is not great. It felt clunky 20 year ago (yes, it was introduced with Java 1.4 in
2002), and feels very clunky by now. There are improved APIs like the AsynchronousSocketChannel added
later, but they didn’t quite fit my approach. Generally, I recommend using a library like Netty, Grizzly or

| others. I actually ended up using the Netty’s ByteBuf library, just to have a better buffer abstraction than
Java’s ByteBuffer.

The non-blocking NIO is intended for multiplexing multiple socket operations on that single thread. That
usually ends with some callback / event-driven code. However, I wanted to keep classic blocking code style
code with the virtual threads. The NIO API certainly wasn’t designed for that =). Anyway, onwards with the
code.

2:03/2:16) 7

& kolotyluk /loom-lab ' pubiic

3 ebarlas / game-of-life-csp ' Public
<> Code (© Issues 11 Pullrequests (@ Actions [Projects © Security [~ Insights
<> Code (© Issues 11 Pullrequests & Actions [Projects © Security [~ Insights
P main ~ P 1branch © 0tags Go to file Add file ~ P master - F 1branch © 0tags Go to file Add file ~
' ebarlas Rename first nextState method parameter for clarity. 3f4c9a3 on 8 Jun {D 5 commits ‘ kolotyluk General Updates v 438chae 18 days ago @ 46 commits
M images Initial commit with source code, patterns catalog, readme doc, and ... 3 months ago
M idea General Updates 18 days ago
I patterns Initial commit with source code, patterns catalog, readme doc, and ... 3 months ago
B src/mainjjava/gameoflife Rename first nextState method parameter for clarity. 3 months ago . benchmarks General Updates 18 days ago
M .gitignore This path skips through empty directories code, patterns catalog, readme doc, and... 3 months ago B docs Use Cucumber testing 9 months ago
3 LICENSE Initial commit 3 months ago M» laboratory General Updates 18 days ago
[README.md Add CSP Wikipedia link to README doc. 3 months ago & lucav76 / Flbry S
M old-school Initial commit 11 months ago
Y pom.xml Initial commit with source code, patterns catalog, readme doc, and ... 3 months ago
<> Code Issues Pull requests Actions Projects 1 Securit 2~ Insights . . E)
@iy Al © B Proj © urity k2 Inslg (% .gitignore Setup Maven Site Documentation and GitHub Pages 10 months ago
‘= README.md . . .
e $ 6 branches 27 tags Go to file Add file - [LICENSE.txt Setup Maven Site Documentation and GitHub Pages 10 months ago
Game of Life CSP [README.md Improve Introductory Documentation 10 months ago
‘ lucav76 Updates test dependencies to remove vulnerabilities and to suppo... - + 78d6983 on 27 May) 216 commits
Game of Life CSP is a Java implementation of Conway's Game of Life using communicating sequential D lavadoc.css Polish off Throughput Benchmarking 9 months ago
processes (CSP). W gradie Switches to Gradle 74 7 months 830 D pom.xml General Updates 18 days ago
Each grid cell is an independent process and all cell communication occurs via channels. W sre Tests stabilization 7 months ago
O gt Add o | . 5 D test.txt Initial commit 11 months ago
It's built atop virtual threads, defined in JDK Enhancement Proposal (JEP) 425. -gitignore S support for release notes years ago
The virtual threads feature is part of Project Loom [CONTRIBUTING.md Contributing and version fix 3 years ago
[LICENSE Strat d actors that t both void and returni | 3 READMEmd
rate ana actors that suppor oth void and returning a value ears ago
Prior to Project Loom and virtual threads, CSP style programming in this manner simply wasn't available in Java. & PP N y N
[README.md Documentation improvements 7 months ago
. -
D TODO.md Distributed version of Fibry, with an HttpChannel, and some simple ... 3 years ago ProjeCt Loom Learn'“g Laboratory
D build.gradle Updates test dependencies to remove vulnerabilities and to suppor... 4 months ago Al , bout Prol h h hand . . J . .
place to learn about Project Loom t roug ands-on experimentation and exploration.
D gradle.properties Version 2.6 7 months ago
9 gradlew Switches to Gradle 7.4 7 months ago See more at Project Site Pages
(3 gradlew.bat Fixes returns 11 months ago My hope is to develop this into a learning tool for other people as well, so if you have ideas on how this can work
X O publish.gradle Switch to JReleaser, to improve the release to GitHub 10 months ago better for you or others, please create a ticket in loom-lab Issues. People are encouraged to clone this repo,
| ebarlas / project-loom-c5m public run the experiments and other code, make local changes, and watch what happens
D settings.gradle Strategy and actors that support both void and returning a value 3 years ago ! ! '
<> Code (© Issues I Pullrequests (® Actions [Projects © Security |+ Insights
[‘= README.md
¥ main ~ ¥ 1branch 0 tags Go to file Add file ~ F-b
iory
Elliot Barlas Use LongAdder increment and decrement. 72110d7 on 27 Apr O 8 commits Fibry is an experimental Actor System built to be simple and flexible. Hopefully, it will also be fun to use. Fibry is | pgjdbC/ pgjdbc il
the first Java Actor System using fibers (now called Virtual Threads) from Project Loom, however it also
src/main/java/loomtest se Long er increment and decrement. months ago i i . ode ssues ull requests iscussions ctions rojects ecurity nsights
[/main/javall Use LongAdder i dd 5 h works with threads using any OpenJDK <> Code @1 251 1 Pull 135) Di i ® Acti B Pproj 3 @ security 3 |~ Insigh
3 .gitignore Initial commit of c5m project repo. Includes echo client, echo serve.. 5 months ago Project Loom is an OpenJDK project that is expected to bring fibers (green threads) and continuations (co-
routines) to Java. Fibry 1.X works with any version of Java starting from Java 8, while Fibry 2.X is targeting Java . . .
[® LICENSE Initial commit 5 months ago 11, but in both cases, you will need to use Loom if you want to leverage the power of fibers. Fibry 1.X is Loom Compatlble replace SynChronlzed bIOCk WIth for example
) supported, and changes are available in the jdk8 branch. Fibry aims to replicate some of the features of the H
[README.md Add section about observed number of platform OS threads and ca... 5 months ago j.U.C. Reentra ntLOCk #1 951
Erlang Actor System in Java. Fibry allows you to send code to be executed in the thread/fiber of an actor, a
9 pom.xml Initial commit of c5m project repo. Includes echo client, echo serve.. 5 months ago Inecianism skl 1o tha oie lised i Chromam. rbygrave opened this issue on 12 Nov 2020 - 29 comments

The current line of development is meant to make Fibry useful on the creation of loT products and video games
supporting online multi-players functionalities.

README.md
@ rbygrave commented on 12 Nov 2020 © -

P I'Oject Loo m C 5 M Loom project: https://openjdk.java.net/projects/loom/

With Loom there is a current known limitation that means code should ideally avoid performing 10 inside a synchronized
Project Loom C5M is an experiment to achieve 5 million persistent connections each in client and server Java block.
applications using OpenJDK Project Loom virtual threads.

The suggestion to make java code "loom friendly" is to replace the use of synchronized blocks with a
java.util.concurrent.Lock (like ReentrantLock).

The C5M name is inspired by the C10k problem proposed in 1999.
An example of the simple case is to replace code like:

void foo() { i
synchronized(this) {
. // performs 10 or something blocking
}
}

8 Copyright © 2023, Oracle and/or its affiliates

With code like:

// loom friendlv ...

B eclipse/jetty.project public 2 mp911de / spring-boot-virtual-threads-experiment pubiic

<> Code () lIssues 354 11 Pull requests 23 ® Actions [0 projects s © security 12 [~ Insights
q 2 i 9 <> Code () Issues 11 Pullrequests () Actions @ Security [~ Insights

Support Loom #8007/

¥ main ~ ¥ 2 branches 0 tags Go to file Add file ~ m
sbordet opened this issue on 16 May - 2 comments - Fixed by #8465
g mp911de Update build.yml v 6efal52 on4 Aug 10 commits
@ sbordet commented on 16 May Contributor | () *** B _github/workflows Update build.yml 2 months ago
Target Jetty version(s) . B .mvn/wrapper Initial commit 2 years ago
10:0.x Vert ° x VI rtual Th reads I ncu bator B img Reduce Kernel Thread scenario to achieve similar throughput as Vir... 2 years ago
Enhancement Description . . .)
With project Loom being integrated in Java 19+22, we should offer an option to call Handler s with a virtual thread. # src/main Migrate to Spring Boot 3 and Java 19 2 months ago
This would allow testing by early adopters. -~ - - . . X
) CI |passing [% .gitignore Initial commit 2 years ago
© &1 @ (a4 % .sdkmanrc Adding pipeline to build prototype with latest Java 19 EA build #2 2 months ago
Incubator for virtual threads based prototypes. () README.md Migrate to Spring Boot 3 and Java 19 2 months ago
O esbordet added the ' Enhancement label on 16 May 0 initlal))
mvnw nitial commit years ago
. .
(2 sbordet added a commit that referenced this issue on 22 May prereqU|S|tes B SrvP.Cind WREESE CORMNL 2 years ago
e Fixes #8807 - Support Loom. |« Verified | X fcl1e9a Y pom.xml Removing unneeded dependency exclusion #1 2 months ago
e Vert.x4.3.3
N} esbordet linked a pull request on 22 May that will close this issue . . ‘= README.md
[]
Fixes #8007 - Support Loom. #8035 Java 19 USIng preVIGW feature
0 - - - . -
OpenJDK 19 EA Project Loom Experiment using Spring Boot, Spring
o Maven WebMVC, and Postgres
o [ntelljj

This repository contains an experiment that uses a Spring Boot application with Virtual Threads.

Involved components:

Projects

¢ Spring Framework 6.0 M5
¢ Spring Boot 3.0 M4
e Async/await incubator « Apache Tomcat 10.1.0 M17
e HikariCP 5.0.1 (Loom issue: brettwooldridge/HikariCP#1463)
e PGJDBC 42.4.0 (PR that turns synchronized into Loom-friendly Locks: pgjdbc/pgjdbc#1951)

June 22,2022 i#release
e Execute blocking incubator

e Examples

Quarkus 2.10.0.Final released - T guientokasPomtort, G h prsos s g s sening e ok
Preliminary work on Loom's

virtual threads and various

refinements all over the place

Virtual Threads and Tomcat

By Guillaume Smet

Virtual threads are the ideal mechanism for running mostly blocking tasks, providing a high level of concurrency without requiring asynchronous acrobatics from business logic programmers. |
show that it is easy to configure Tomcat for virtual threads, provided one makes a small change to the Tomcat source code.

New month, new Quarkus feature release, you know the drill: Quarkus 2.10.0.Final has landed.

This version is a mix of exploratory work and refinements on existing extensions:
Virtual Threads

e Preliminary work on Loom's virtual threads
Java 19 has virtual threads as a preview feature, described in JEP 425. Virtual threads are scheduled to run in platform threads. When a virtual thread blocks, it is parked and
another virtual thread can runin its place. Large numbers of virtual threads can run concurrently, provided that they mostly block. This workload is typical in web applications where requests spend much of their time waiting for
responses from database queries or other external services.

9 Copyright © 2023, Oracle and/or its affiliates

Some developers are making mistakes

* Thinking that virtual threads are faster threads

* Replacing platform threads with virtual threads rather than tasks with virtual threads
* Changing the ThreadFactory for a thread pool, thus pooling virtual threads

* Pinning issues and assuming that all uses of monitors must be replaced

* Using framework/libraries that make heavy use of thread locals

* Warmup issues

* Doing over complicated stuff

* Some misunderstanding as to where the performance benefits come from

10 Copyright © 2023, Oracle and/or its affiliates

Migration: The guidance to developers in JEP 444

* Move to simpler blocking/synchronous code

* Migrate tasks to virtual threads, not platform threads to virtual threads
* Use Semaphores or similar to limit concurrency

* Don’t cache expensive objects in thread locals

* Avoid lengthy and frequent pinning (for now anyway)

11 Copyright © 2023, Oracle and/or its affiliates

Summary up to JDK 21 RDP2

* Virtual threads have been well received by developers and eco system

* Significant interest in avoiding async/reactive, go back to simpler synchronous/blocking code instead
* Frameworks learning how to expose virtual threads to developers

* Performance is good, with the exception of a few areas
* JVM Tl based performance profilers
* Timers aren’t as scalable as they could be

* Reliability is good

* Pinning due to synchronization is the main issue that comes up

12 Copyright © 2023, Oracle and/or its affiliates

Challenges

* Big challenge at JVMLS 2019
* How to expose virtual threads to developers
* Adding continuations to HotSpot VM

* Implementing a thread library in Java
* All the challenges of “Java on Java”
* Can only use a subset of platform to avoid bootstrapping, nested parking, and other issues
* Hard to reliably recover/continue after stack overflow or OOME
* All your blocking belongs to us
* There are hundreds of potentially blocking APIs

* Herding threads
* Thread locals

* Serviceability, e.g. JVM TI, thread dumps

13 Copyright © 2023, Oracle and/or its affiliates

Herding Threads

* A virtual thread per task means lots of virtual threads

* How should lot of threads be organised? Do they need to be organised?

* Long standing thread-organizing constructis java.lang.ThreadGroup
» Select or inherit the ThreadGroup at Thread create time
* Doesn’t play well with ThreadFactory, no dynamic placement

* Serviceability is an interested party

... but none of the tools or APIs scale to millions of virtual threads

14 Copyright © 2023, Oracle and/or its affiliates

Herding Threads

* De-emphasize, and eventually deprecate, legacy ThreadGroup

* Introduce Structured Concurrency to treat groups of related tasks running in different threads as a
single unit of work

* Acknowledge other natural groupings of threads
* A thread pool is a grouping of worker threads

* A thread-per-task executor is a grouping of (typically virtual) threads

* Allow serviceability tools to discover/enumerate threads

15 Copyright © 2023, Oracle and/or its affiliates

Structured Concurrency

* When control splits into multiple concurrent paths, we want to make sure that they join up again

|
ENEEEEER

'

* A big plus is that it helps to eliminate common risks arising from cancellation and shutdown, such as
thread leaks and cancellation delays

16 Copyright © 2023, Oracle and/or its affiliates E

StructuredTaskScope (JEP 453)

try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {

Supplier<String> resultl = scope.fork(taskl);
Supplier<String> result2 = scope.fork(task?2);

scope.join () ;
scope.throwIfFailed (e -> new WebApplicationException(e))

// both subtasks completed successfully

String result = Stream.of (resultl, result?2?)
.map (Supplier: :get)
.collect (Collectors.joining (", ", "{ ", " ")),

17 Copyright © 2023, Oracle and/or its affiliates

StructuredTaskScope (JEP 453)

try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {

Supplier<String> resultl = scope.fork(taskl);
Supplier<String> result2 = scope.fork(task?2);

scope.join () ;
scope.throwIfFailed (e -> new WebApplicationException(e))

// both subtasks completed successfully

String result = Stream.of (resultl, result?2?)
.map (Supplier: :get)
.collect (Collectors.joining (", ", "{ ", " ")),

* Usages leads to a tree of thread groupings

18 Copyright © 2023, Oracle and/or its affiliates ‘ platform thread virtual thread

Herding Threads

* Bring all thread groups into a tree
» Observe with serviceability tools (e.g. 7cmd), maybe APlIs in the future

<root>
~~~
4" Ve
f‘ L 3 ~~
‘f k ~~ ~~
> ~
\ ~ ~
s’ ~ ~
s” A N o
s ) 2 “~ ~ o
“ S IS ~
s” s . ™o
Y . N N
- LS ~
& s 5 e
\ S ~
LS ~~
4 D N
L N 5 ~
4 ~ ~~
L 3 N
S L 3 N
L 3 N
‘\ ~5 ~§~
< 4 a A

G ThreadPoolExecutor ForkJoinPool.commonPool ThreadPerTaskExecutor
19 Copyright © 2023, Oracle and/or its affiliates E



Thread locals

* Overly general mechanism to associate data with the current thread of execution

* Used for a wide range of purposes, e.g.
* Caching, esp. mutable objects that are expensive to create
* Implicit parameters and return values

* TLs have several problems
* Unbounded lifetime
* Unconstrained mutability
* Unconstrained memory usage
* InheritableThreadlLocal = expensive inheritance

20 Copyright © 2023, Oracle and/or its affiliates



Virtual threads and thread locals

* Virtual threads support thread locals
* Forced moved: too much existing code uses TLs
* Dropped (preview) API to opt-out of thread locals out of concern that is bifurcate eco system

* Migration is from tasks to virtual threads, not platform threads to virtual threads
* Problematic for code that assumes running in a thread pool or event loop
* Caching results in negative performance

* Migration to virtual threads means moving away from caching expensive objects in thread locals
* Move to immutable objects where possible, e.g SimpleDateFormat to DateTimeFormatter
* A global cache can work for some use-cases

21 Copyright © 2023, Oracle and/or its affiliates E



Moving away from thread locals

* Re-evaluate use of TLs
* JDK dropped several usages from java.base after re-evaluating the performance

* Scoped Values - JEP 446
* A value that may be safely and efficiently shared to methods without using method parameters

* Use for cases where there is "one-way transmission" of data without using method parameters
* Callbacks, detect recursion initialization, ...

* In JVMLS 2019 we talked about

* Processor locals
* Prototype on based on RSEQ has been parked, may pick this up again

* Task locals

22 Copyright © 2023, Oracle and/or its affiliates



Status of libraries

* Networking
* All blocking ops release carrier to do other work

* Internet-Address Resolution (DNS look-up, reverse look-up)
* JEP 418 introduced a provider mechanism
* Not proposing that JDK include its own DNS client at this time
* Published samples based on JNDI-DNS and Netty DNS, need eco system to step up

* Filel/O
* All potentially blocking ops currently compensate by temporarily increasing parallelism during op
* Work in progress to allow implementation to be based on asyncor io uring

23 Copyright © 2023, Oracle and/or its affiliates E



Java Virtual Machine Tool Interface (JVM TI)

« 2-way native interface to support a broad range of tool agents
* Debuggers, instrumentation based tools, heap profilers, ...
* Very large APl surface (150 functions, 50 callbacks), deeply invasive

* Virtual threads are implemented in Java, the scheduler is in Java, lots of challenges to support JVM TI

* The main challenge is the thread identity changes when a virtual thread mounts or unmounts
* Complicated interaction with thread suspend/resume

* Main break through since JVMLS 2019 is to treat the carrier as blocked when a virtual thread is mounted
* The carrier thread is unblocked when the virtual thread unmounts

* A forced move is to hide events when executing the mount/unmount code
* JVM Tl meets “Java on Java”

24 Copyright © 2023, Oracle and/or its affiliates



Java Virtual Machine Tool Interface (JVM TI)

o @ 0
Debugger =)

Q0

* Heap profilers —)

* Performance profilers
* Currently overwhelmed by bookkeeping overhead - multi-step plan to reduce overhead ‘;:0/
* Main question is if JVMTI is the right interface for performance profilers?

* No equivalent of GetAllThreads for virtual threads

25 Copyright © 2023, Oracle and/or its affiliates



Status of other serviceability areas

* Java Debug Wire Protocol (JDWP) + Java Debug Interface (JDI)
* All IDE/debuggers are working with virtual threads
* Missing debugger supporting for discovering threads and navigating groupings of threads

* JMX and java.lang.management

* JDK Flight Recorder

* HPROF heap dumps

* Thread dumps

26 Copyright © 2023, Oracle and/or its affiliates



Thread dumps

* Usually the first port of call when troubleshooting

* HotSpot VM thread dump has organically grown over many years to include a lot of information
* But doesn’t scale to millions of virtual threads
* Virtual threads are just objects in the heap

* New thread dump format
* Provides a weakly consistent view of the threads in each “thread grouping”
* HotSpotDiagnosticMXBean APl or jcmd
* Plain text or JSON format for now
* JSON format intended to be parsed, enables tools to visualize, deduplicate, ...
* No lock information or deadlock detection at this time

27 Copyright © 2023, Oracle and/or its affiliates



"threadDump": {

"processId": "78091",
"time": "2023-08-07T20:26:44.1863962",
"runtimeVersion": "22-internal-adhoc.albatem.open",
"threadContainers": [
{
"container": "<root>",
"parent": null,
"owner": null,
"threads": |
{
"tid": "1",
"name": "main",
"stack": [
"Java.base\/Java.lang.Thread.getStackTrace (Thread. java:2421)",
"jJava.base\/Jjdk.internal.vm.ThreadDumper.dumpThreadToJson (ThreadDumper.java:264)",
"jJava.base\/Jjdk.internal.vm.ThreadDumper.dumpThreadsToJson (ThreadDumper.java:237)",
"jJava.base\/Jjdk.internal.vm.ThreadDumper.dumpThreadsToJson (ThreadDumper.java:201)",
"jJava.base\/Jjdk.internal.vm.ThreadDumper.dumpThreadsToJson (ThreadDumper.java:176)",

"jdk.management\/com.sun.
"jdk.management\/com.sun.

management.internal.HotSpotDiagnostic.dumpThreads (HotSpotDiagnostic.java:197)",
management.internal.HotSpotDiagnostic.lambda$SdumpThreads$l (HotSpotDiagnostic.java:178)",

"jJava.base\/Jjava.security.AccessController.doPrivileged (AccessController.java:571)",
"Jdk.management\/com.sun.management.internal.HotSpotDiagnostic.dumpThreads (HotSpotDiagnostic.java:182)",
"Test.main (Test.java:28)",

"Java.base\/jdk.internal.reflect.DirectMethodHandleAccessor.invoke (DirectMethodHandleAccessor.java:103)",
"Java.base\/java.lang.reflect.Method. invoke (Method.java:580)",
"jdk.compiler\/com.sun.tools.javac.launcher.Main.execute (Main.java:484)",
"Jjdk.compiler\/com.sun.tools.javac.launcher.Main.run (Main.Jjava:208)",
"Jdk.compiler\/com.sun.tools.javac.launcher.Main.main (Main.java:135)"

"tid": "9",
"name": "Reference Handler",
"stack": [
"jJava.base\/Jjava.lang.ref.Reference.waitForReferencePendingList (Native Method)",
"jJava.base\/Jjava.lang.ref.Reference.processPendingReferences (Reference.java:246)",
"jJava.base\/Jjava.lang.ref.Reference$SReferenceHandler.run (Reference.java:208)"
]
b
{
"tid": "10",
"name": "Finalizer",
"stack": [
"java.base\/Jjava.lang.Object.waitQ (Native Method)",
"Java.base\/Jjava.lang.Object.wait (Object.java:375)",
"Java.base\/Jjava.lang.Object.wait (Object.java:348)",
"jJava.base\/Jjava.lang.ref.NativeReferenceQueue.await (NativeReferenceQueue.java:48)",
"Java.base\/Jjava.lang.ref.ReferenceQueue.removel (ReferenceQueue.java:158)",
"jJava.base\/Jjava.lang.ref.NativeReferenceQueue.remove (NativeReferenceQueue.java:89)",
"jJava.base\/Jjava.lang.ref.Finalizer$FinalizerThread.run (Finalizer.java:173)"
]
b
{
"tid": "1i1",
"name": "Signal Dispatcher",
"stack": [
]
b
{
"tid": "18",
"name": "Common-Cleaner",
"stack": [
"Java.base\/Jjdk.internal.misc.Unsafe.park (Native Method)",
"jJava.base\/Jjava.util.concurrent.locks.LockSupport.parkNanos (LockSupport.java:269)",
"jJava.base\/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await (AbstractQueuedSynchronizer.java:1847)",
"java.base\/Jjava.lang.ref.ReferenceQueue.await (ReferenceQueue.java:71)",
"jJava.base\/Jjava.lang.ref.ReferenceQueue.removel (ReferenceQueue.java:143)",
"java.base\/Jjava.lang.ref.ReferenceQueue.remove (ReferenceQueue.java:218)",
"jJava.base\/Jjdk.internal.ref.CleanerImpl.run (CleanerImpl.java:140)",
"Java.base\/Jjava.lang.Thread.run (Thread.java:1570)",
"jJava.base\/Jjdk.internal.misc.InnocuousThread.run (InnocuousThread.java:186)"
]
b
{
"tid": "19",
"name": "Notification Thread",

"stack":

]

[

}
]

4
"threadCount": "6"
"container": "java.util.concurrent.ThreadPoolExecutor@7eb5afaa6",
"parent": "<root>",
"owner": null,
"threads": [
{
"tid": "25",
"name": "pool-l-thread-1",
"stack": [
"Java.base\/Java.lang.Thread.sleepNanos0O (Native Method)",
"Java.base\/Jjava.lang.Thread.sleepNanos (Thread.java:491)",
"Java.base\/Jjava.lang.Thread.sleep (Thread.java:522)",
"Test.lambda$main$0 (Test.java:13)",
"Java.base\/Jjava.util.concurrent.FutureTask.run (FutureTask.java:317)",
"Java.base\/java.util.concurrent.ThreadPoolExecutor.runWorker (ThreadPoolExecutor.java:1144)",
"Java.base\/java.util.concurrent.ThreadPoolExecutor$SWorker.run (ThreadPoolExecutor.java:642)",
"Java.base\/Jjava.lang.Thread.run (Thread.java:1570)"
]
}
1,
"threadCount": "1"
"container": "ForkJoinPool-1\/jdk.internal.vm.SharedThreadContainer@3e27ba32",
"parent": "<root>",
"owner": null,
"threads":
{
"tid": "27",
"name": "ForkJoinPool-l-worker-1",
"stack": [
"Java.base\/Jjdk.internal.misc.Unsafe.park (Native Method)",
"Java.base\/java.util.concurrent.locks.LockSupport.parkUntil (LockSupport.java:449)",
"Java.base\/Jjava.util.concurrent.ForkJoinPool.awaitWork (ForkJoinPool.java:1891)",
"Java.base\/java.util.concurrent.ForkJoinPool.runWorker (ForkJoinPool.java:1809)",
"Java.base\/java.util.concurrent.ForkJoinWorkerThread.run (ForkJoinWorkerThread.java:188)"
]
}
1,
"threadCount": "1"
"container": "java.util.concurrent.ScheduledThreadPoolExecutor@2f217633",
"parent": "<root>",
"owner": null,
"threads":
1,
"threadCount": "O"
"container": "ForkJoinPool.commonPool\/jdk.internal.vm.SharedThreadContainer@7e£f82753",
"parent": "<root>",
"owner": null,
"threads":
1,
"threadCount": "O"
"container": "java.util.concurrent.ThreadPoolExecutor@534a5a98",
"parent": "<root>",
"owner": null,
"threads":
1,
"threadCount": "O"
"container": "java.util.concurrent.StructuredTaskScope@3bf9ce3e",
"parent": "<root>",
"owner": "1",
"threads": [
1,
"threadCount": "O"



Current exploration/work in progress

* “Quality of implementation” and performance

* Java monitors
* Compressed frames

* Re-implement file /O so it can be backed by async or io_uring

Include lock information in thread dumps
* More scalable timer support

* More scalable tracking of threads; APIs for enumeration/navigating

JVM Tl performance
* Custom Schedulers

* Get feedback and progress Structured Concurrency and Scoped Values to be permanent features

29 Copyright © 2023, Oracle and/or its affiliates




Links

 JEP 444: Virtual Threads
https://openjdk.org/jeps /444

* JEP 453: Structured Concurrency (Preview)
https://openjdk.org/jeps/453

* JEP 446: Scoped Values (Preview)
https://openjdk.org/jeps /446

* Repository
https://github.com/openjdk/loom/ (several branches)

* Mailing list
https://mail.openjdk.org/mailman/listinfo/loom-dev

30 Copyright © 2023, Oracle and/or its affiliates


https://openjdk.org/jeps/444
https://openjdk.org/jeps/453
https://openjdk.org/jeps/446
https://github.com/openjdk/loom/
https://mail.openjdk.org/mailman/listinfo/loom-dev

