
Project Loom
The challenges of introducing Virtual Threads to the Java Platform

Name

Alan Bateman

JVMLS 2023

Copyright © 2023, Oracle and/or its affiliates

JVMLS 2019

2

• Virtual thread = user mode thread, scheduled by the Java virtual machine, not the operating system

• A virtual thread is an instance of java.lang.Thread

• Not tied to a particular OS thread

• A platform thread is an instance of java.lang.Thread but implemented in the “traditional way”

• Typically a thin wrapper around an OS thread

• Summary

• java.lang.Thread is the API for all threads

• Thread.currentThread() returns the Thread representing the “current thread”

• A virtual thread and its carrier are distinct Thread objects

• No change to the programming model, it’s the one we already know

Fast forward to today

3 Copyright © 2023, Oracle and/or its affiliates

• Built on continuations, implemented in the HotSpot VM as a lower level construct

• A virtual thread wraps a task in a continuation

• The continuation yields when the task needs to block

• The continuation is continued when the task is ready to continue

• Scheduler executes the tasks for virtual threads on a pool of carrier thread

• M:N threading model

• The scheduler is a j.u.c.ForkJoinPool

• FIFO mode

• Parallelism defaults to the number of hardware threads

How are virtual threads implemented?

4

M virtual threads

N carrier threads managed by the scheduler

Copyright © 2023, Oracle and/or its affiliates

• Developer facing APIs
• java.lang.Thread
• java.util.concurrent.Executors
• ExecutorService implementation with a policy to create a new thread for each task

• Other APIs and exported interfaces
• Additions to JNI, JVM TI and JDWP specs

• Additions to JDI, JFR and com.sun.management APIs

• New thread dump format and jcmd command

• New JDWP agent options
• New JFR events

APIs

5

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• JDK 19
• JEP 425: Virtual Threads (Preview)
• JEP 428: Structured Concurrency (Incubator)

• JDK 20
• JEP 436: Virtual Threads (Second Preview)
• JEP 437: Structured Concurrency (Second Incubator)
• JEP 429: Scoped Values (Incubator)

• JDK 21
• JEP 444: Virtual Threads
• JEP 453: Structured Concurrency (Preview)
• JEP 446: Scoped Values (Preview)

Progress to date

6

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

7 Copyright © 2023, Oracle and/or its affiliates

8

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

9

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Thinking that virtual threads are faster threads

• Replacing platform threads with virtual threads rather than tasks with virtual threads

• Changing the ThreadFactory for a thread pool, thus pooling virtual threads

• Pinning issues and assuming that all uses of monitors must be replaced

• Using framework/libraries that make heavy use of thread locals

• Warmup issues

• Doing over complicated stuff

• Some misunderstanding as to where the performance benefits come from

Some developers are making mistakes

10

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Move to simpler blocking/synchronous code

• Migrate tasks to virtual threads, not platform threads to virtual threads

• Use Semaphores or similar to limit concurrency

• Don’t cache expensive objects in thread locals

• Avoid lengthy and frequent pinning (for now anyway)

Migration: The guidance to developers in JEP 444

11

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Virtual threads have been well received by developers and eco system

• Significant interest in avoiding async/reactive, go back to simpler synchronous/blocking code instead

• Frameworks learning how to expose virtual threads to developers

• Performance is good, with the exception of a few areas
• JVM TI based performance profilers
• Timers aren’t as scalable as they could be

• Reliability is good

• Pinning due to synchronization is the main issue that comes up

Summary up to JDK 21 RDP2

12

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• Big challenge at JVMLS 2019
• How to expose virtual threads to developers
• Adding continuations to HotSpot VM

• Implementing a thread library in Java
• All the challenges of “Java on Java”
• Can only use a subset of platform to avoid bootstrapping, nested parking, and other issues
• Hard to reliably recover/continue after stack overflow or OOME

• All your blocking belongs to us
• There are hundreds of potentially blocking APIs

• Herding threads

• Thread locals

• Serviceability, e.g. JVM TI, thread dumps

Challenges

13

Note: Delete this slide when your deck is completed

Copyright © 2023, Oracle and/or its affiliates

• A virtual thread per task means lots of virtual threads

• How should lot of threads be organised? Do they need to be organised?

• Long standing thread-organizing construct is java.lang.ThreadGroup

• Select or inherit the ThreadGroup at Thread create time

• Doesn’t play well with ThreadFactory, no dynamic placement

• Serviceability is an interested party

 … but none of the tools or APIs scale to millions of virtual threads

Herding Threads

14 Copyright © 2023, Oracle and/or its affiliates

• De-emphasize, and eventually deprecate, legacy ThreadGroup

• Introduce Structured Concurrency to treat groups of related tasks running in different threads as a
single unit of work

• Acknowledge other natural groupings of threads
• A thread pool is a grouping of worker threads
• A thread-per-task executor is a grouping of (typically virtual) threads

• Allow serviceability tools to discover/enumerate threads

Herding Threads

15 Copyright © 2023, Oracle and/or its affiliates

• When control splits into multiple concurrent paths, we want to make sure that they join up again

• A big plus is that it helps to eliminate common risks arising from cancellation and shutdown, such as
thread leaks and cancellation delays

Structured Concurrency

16 Copyright © 2023, Oracle and/or its affiliates

StructuredTaskScope (JEP 453)

17 Copyright © 2023, Oracle and/or its affiliates

 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {

 Supplier<String> result1 = scope.fork(task1);
 Supplier<String> result2 = scope.fork(task2);

 scope.join();

 scope.throwIfFailed(e -> new WebApplicationException(e));

 // both subtasks completed successfully
 String result = Stream.of(result1, result2)
 .map(Supplier::get)
 .collect(Collectors.joining(", ", "{ ", " }"));

 ...
 }

StructuredTaskScope (JEP 453)

18 Copyright © 2023, Oracle and/or its affiliates platform thread virtual thread

 try (var scope = new StructuredTaskScope.ShutdownOnFailure()) {

 Supplier<String> result1 = scope.fork(task1);
 Supplier<String> result2 = scope.fork(task2);

 scope.join();

 scope.throwIfFailed(e -> new WebApplicationException(e));

 // both subtasks completed successfully
 String result = Stream.of(result1, result2)
 .map(Supplier::get)
 .collect(Collectors.joining(", ", "{ ", " }"));

 ...
 }

• Usages leads to a tree of thread groupings

• Bring all thread groups into a tree

• Observe with serviceability tools (e.g. jcmd), maybe APIs in the future

Herding Threads

19 Copyright © 2023, Oracle and/or its affiliates

17 18

<root>

ForkJoinPool.commonPoolThreadPoolExecutor ThreadPerTaskExecutor

• Overly general mechanism to associate data with the current thread of execution

• Used for a wide range of purposes, e.g.
• Caching, esp. mutable objects that are expensive to create
• Implicit parameters and return values

• TLs have several problems
• Unbounded lifetime
• Unconstrained mutability
• Unconstrained memory usage
• InheritableThreadLocal = expensive inheritance

Thread locals

20 Copyright © 2023, Oracle and/or its affiliates

• Virtual threads support thread locals
• Forced moved: too much existing code uses TLs
• Dropped (preview) API to opt-out of thread locals out of concern that is bifurcate eco system

• Migration is from tasks to virtual threads, not platform threads to virtual threads
• Problematic for code that assumes running in a thread pool or event loop
• Caching results in negative performance

• Migration to virtual threads means moving away from caching expensive objects in thread locals

• Move to immutable objects where possible, e.g SimpleDateFormat to DateTimeFormatter

• A global cache can work for some use-cases

Virtual threads and thread locals

21 Copyright © 2023, Oracle and/or its affiliates

• Re-evaluate use of TLs
• JDK dropped several usages from java.base after re-evaluating the performance

• Scoped Values - JEP 446
• A value that may be safely and efficiently shared to methods without using method parameters
• Use for cases where there is "one-way transmission" of data without using method parameters
• Callbacks, detect recursion initialization, …

• In JVMLS 2019 we talked about
• Processor locals
• Prototype on based on RSEQ has been parked, may pick this up again

• Task locals

Moving away from thread locals

22 Copyright © 2023, Oracle and/or its affiliates

• Networking
• All blocking ops release carrier to do other work

• Internet-Address Resolution (DNS look-up, reverse look-up)
• JEP 418 introduced a provider mechanism
• Not proposing that JDK include its own DNS client at this time
• Published samples based on JNDI-DNS and Netty DNS, need eco system to step up

• File I/O
• All potentially blocking ops currently compensate by temporarily increasing parallelism during op

• Work in progress to allow implementation to be based on async or io_uring

Status of libraries

23 Copyright © 2023, Oracle and/or its affiliates

• 2-way native interface to support a broad range of tool agents
• Debuggers, instrumentation based tools, heap profilers, …
• Very large API surface (150 functions, 50 callbacks), deeply invasive

• Virtual threads are implemented in Java, the scheduler is in Java, lots of challenges to support JVM TI

• The main challenge is the thread identity changes when a virtual thread mounts or unmounts
• Complicated interaction with thread suspend/resume

• Main break through since JVMLS 2019 is to treat the carrier as blocked when a virtual thread is mounted
• The carrier thread is unblocked when the virtual thread unmounts

• A forced move is to hide events when executing the mount/unmount code
• JVM TI meets “Java on Java”

Java Virtual Machine Tool Interface (JVM TI)

24 Copyright © 2023, Oracle and/or its affiliates

• Debugger

• Heap profilers

• Performance profilers
• Currently overwhelmed by bookkeeping overhead - multi-step plan to reduce overhead
• Main question is if JVMTI is the right interface for performance profilers?

• No equivalent of GetAllThreads for virtual threads

Java Virtual Machine Tool Interface (JVM TI)

25 Copyright © 2023, Oracle and/or its affiliates

• Java Debug Wire Protocol (JDWP) + Java Debug Interface (JDI)
• All IDE/debuggers are working with virtual threads
• Missing debugger supporting for discovering threads and navigating groupings of threads

• JMX and java.lang.management

• JDK Flight Recorder

• HPROF heap dumps

• Thread dumps

Status of other serviceability areas

26 Copyright © 2023, Oracle and/or its affiliates

• Usually the first port of call when troubleshooting

• HotSpot VM thread dump has organically grown over many years to include a lot of information
• But doesn’t scale to millions of virtual threads
• Virtual threads are just objects in the heap

• New thread dump format
• Provides a weakly consistent view of the threads in each “thread grouping”

• HotSpotDiagnosticMXBean API or jcmd

• Plain text or JSON format for now
• JSON format intended to be parsed, enables tools to visualize, deduplicate, …

• No lock information or deadlock detection at this time

Thread dumps

27 Copyright © 2023, Oracle and/or its affiliates

28

{
 "threadDump": {
 "processId": "78091",
 "time": "2023-08-07T20:26:44.186396Z",
 "runtimeVersion": "22-internal-adhoc.albatem.open",
 "threadContainers": [
 {
 "container": "<root>",
 "parent": null,
 "owner": null,
 "threads": [
 {
 "tid": "1",
 "name": "main",
 "stack": [
 "java.base\/java.lang.Thread.getStackTrace(Thread.java:2421)",
 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadToJson(ThreadDumper.java:264)",
 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadsToJson(ThreadDumper.java:237)",
 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadsToJson(ThreadDumper.java:201)",
 "java.base\/jdk.internal.vm.ThreadDumper.dumpThreadsToJson(ThreadDumper.java:176)",
 "jdk.management\/com.sun.management.internal.HotSpotDiagnostic.dumpThreads(HotSpotDiagnostic.java:197)",
 "jdk.management\/com.sun.management.internal.HotSpotDiagnostic.lambda$dumpThreads$1(HotSpotDiagnostic.java:178)",
 "java.base\/java.security.AccessController.doPrivileged(AccessController.java:571)",
 "jdk.management\/com.sun.management.internal.HotSpotDiagnostic.dumpThreads(HotSpotDiagnostic.java:182)",
 "Test.main(Test.java:28)",
 "java.base\/jdk.internal.reflect.DirectMethodHandleAccessor.invoke(DirectMethodHandleAccessor.java:103)",
 "java.base\/java.lang.reflect.Method.invoke(Method.java:580)",
 "jdk.compiler\/com.sun.tools.javac.launcher.Main.execute(Main.java:484)",
 "jdk.compiler\/com.sun.tools.javac.launcher.Main.run(Main.java:208)",
 "jdk.compiler\/com.sun.tools.javac.launcher.Main.main(Main.java:135)"
]
 },
 {
 "tid": "9",
 "name": "Reference Handler",
 "stack": [
 "java.base\/java.lang.ref.Reference.waitForReferencePendingList(Native Method)",
 "java.base\/java.lang.ref.Reference.processPendingReferences(Reference.java:246)",
 "java.base\/java.lang.ref.Reference$ReferenceHandler.run(Reference.java:208)"
]
 },
 {
 "tid": "10",
 "name": "Finalizer",
 "stack": [
 "java.base\/java.lang.Object.wait0(Native Method)",
 "java.base\/java.lang.Object.wait(Object.java:375)",
 "java.base\/java.lang.Object.wait(Object.java:348)",
 "java.base\/java.lang.ref.NativeReferenceQueue.await(NativeReferenceQueue.java:48)",
 "java.base\/java.lang.ref.ReferenceQueue.remove0(ReferenceQueue.java:158)",
 "java.base\/java.lang.ref.NativeReferenceQueue.remove(NativeReferenceQueue.java:89)",
 "java.base\/java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:173)"
]
 },
 {
 "tid": "11",
 "name": "Signal Dispatcher",
 "stack": [
]
 },
 {
 "tid": "18",
 "name": "Common-Cleaner",
 "stack": [
 "java.base\/jdk.internal.misc.Unsafe.park(Native Method)",
 "java.base\/java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:269)",
 "java.base\/java.util.concurrent.locks.AbstractQueuedSynchronizer$ConditionObject.await(AbstractQueuedSynchronizer.java:1847)",
 "java.base\/java.lang.ref.ReferenceQueue.await(ReferenceQueue.java:71)",
 "java.base\/java.lang.ref.ReferenceQueue.remove0(ReferenceQueue.java:143)",
 "java.base\/java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:218)",
 "java.base\/jdk.internal.ref.CleanerImpl.run(CleanerImpl.java:140)",
 "java.base\/java.lang.Thread.run(Thread.java:1570)",
 "java.base\/jdk.internal.misc.InnocuousThread.run(InnocuousThread.java:186)"
]
 },
 {
 "tid": "19",
 "name": "Notification Thread",
 "stack": [
]

 }
],
 "threadCount": "6"
 },
 {
 "container": "java.util.concurrent.ThreadPoolExecutor@7e5afaa6",
 "parent": "<root>",
 "owner": null,
 "threads": [
 {
 "tid": "25",
 "name": "pool-1-thread-1",
 "stack": [
 "java.base\/java.lang.Thread.sleepNanos0(Native Method)",
 "java.base\/java.lang.Thread.sleepNanos(Thread.java:491)",
 "java.base\/java.lang.Thread.sleep(Thread.java:522)",
 "Test.lambda$main$0(Test.java:13)",
 "java.base\/java.util.concurrent.FutureTask.run(FutureTask.java:317)",
 "java.base\/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1144)",
 "java.base\/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:642)",
 "java.base\/java.lang.Thread.run(Thread.java:1570)"
]
 }
],
 "threadCount": "1"
 },
 {
 "container": "ForkJoinPool-1\/jdk.internal.vm.SharedThreadContainer@3e27ba32",
 "parent": "<root>",
 "owner": null,
 "threads": [
 {
 "tid": "27",
 "name": "ForkJoinPool-1-worker-1",
 "stack": [
 "java.base\/jdk.internal.misc.Unsafe.park(Native Method)",
 "java.base\/java.util.concurrent.locks.LockSupport.parkUntil(LockSupport.java:449)",
 "java.base\/java.util.concurrent.ForkJoinPool.awaitWork(ForkJoinPool.java:1891)",
 "java.base\/java.util.concurrent.ForkJoinPool.runWorker(ForkJoinPool.java:1809)",
 "java.base\/java.util.concurrent.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:188)"
]
 }
],
 "threadCount": "1"
 },
 {
 "container": "java.util.concurrent.ScheduledThreadPoolExecutor@2f217633",
 "parent": "<root>",
 "owner": null,
 "threads": [
],
 "threadCount": "0"
 },
 {
 "container": "ForkJoinPool.commonPool\/jdk.internal.vm.SharedThreadContainer@7ef82753",
 "parent": "<root>",
 "owner": null,
 "threads": [
],
 "threadCount": "0"
 },
 {
 "container": "java.util.concurrent.ThreadPoolExecutor@534a5a98",
 "parent": "<root>",
 "owner": null,
 "threads": [
],
 "threadCount": "0"
 },
 {
 "container": "java.util.concurrent.StructuredTaskScope@3bf9ce3e",
 "parent": "<root>",
 "owner": "1",
 "threads": [
],
 "threadCount": "0"
 }
]
 }
}

• “Quality of implementation” and performance

• Java monitors

• Compressed frames

• Re-implement file I/O so it can be backed by async or io_uring

• Include lock information in thread dumps

• More scalable timer support

• More scalable tracking of threads; APIs for enumeration/navigating

• JVM TI performance

• Custom Schedulers

• Get feedback and progress Structured Concurrency and Scoped Values to be permanent features

Current exploration/work in progress

29 Copyright © 2023, Oracle and/or its affiliates

• JEP 444: Virtual Threads
 https://openjdk.org/jeps/444

• JEP 453: Structured Concurrency (Preview)
 https://openjdk.org/jeps/453

• JEP 446: Scoped Values (Preview)
 https://openjdk.org/jeps/446

• Repository
 https://github.com/openjdk/loom/ (several branches)

• Mailing list
 https://mail.openjdk.org/mailman/listinfo/loom-dev

Links

30 Copyright © 2023, Oracle and/or its affiliates

https://openjdk.org/jeps/444
https://openjdk.org/jeps/453
https://openjdk.org/jeps/446
https://github.com/openjdk/loom/
https://mail.openjdk.org/mailman/listinfo/loom-dev

