
Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !1

Alan Bateman
Java Platform Group, Oracle
November 2018

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !2

Project Loom

• Continuations
• Fibers
• Tail-calls

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !3

Why Fibers

Today, developers choose between

App

Connections

simple (blocking / synchronous),
but less scalable code (with threads)

App

Connections

complex, non-legacy-interoperable,
but scalable code (asynchronous)

and

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !4

Why Fibers

With fibers, devs have both: simple, familiar, maintainable,
interoperable code, that is also scalable

App

Connections

Fibers make even existing server applications consume fewer
machines (by increasing utilization), significantly reducing costs

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !5

Continuations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !6

A continuation (precisely: delimited continuation) is a
program object representing a computation that may be
suspended and resumed (also, possibly, cloned or even
serialized).

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !7

Prototype Continuation API

package java.lang;

public class Continuation implements Runnable {

 public Continuation(ContinuationScope scope, Runnable target)

 public final void run()

 public static void yield(ContinuationScope scope)

 public boolean isDone()

 :

}

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !8

Fibers

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !9

A Fiber light weight or user mode thread, scheduled by the
Java virtual machine, not the operating system

Fibers are low footprint and have negilgible task-switching
overhead. You can have millions of them!

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !10

• The runtime is well positioned to manage and schedule
application threads, esp. if they interleave computation
and I/O and interact very often (exactly how server threads
behave)

• Make concurrency simple again

Why fibers?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !11

fiber = continuation + scheduler

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !12

• A fiber wraps a task in a continuation

• The continuation yields when the task needs to block

• The continuation is continued when the task is ready to continue

• Scheduler executes tasks on a pool of carrier threads

• java.util.concurrent.Executor in the current prototype

• Default/built-in scheduler is a ForkJoinPool

fiber = continuation + scheduler

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !13

• Focus to date has been on the control flow and concepts, not the
API

• Minimal java.lang.Fiber in current prototype that supports
scheduling, park/unpark, and waiting for a fiber to terminate

• java.util.concurrent APIs can park/unpark fibers

• Socket and pipe APIs park fiber rather than block threads in syscalls

Fiber prototype

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !14

• A big question, lots of trade-offs

• Do we completely re-imagine threads?

• Can we run all existing code in the context of a fiber?

• Likely to wrestle with these questions for a long time

• Current prototype can run existing code but with some limitations

How much existing code can fibers run?

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !15

• Example uses Jetty and Jersey

Example using existing code/libraries

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !16

• Assume servlet or REST service that spends a long time waiting

Example with existing code/libraries

assume this takes 100ms

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !17

Default configuration (maxThreads = 200), load = 5000 HTTP request/s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !18

maxThreads = 400, load = 5000 HTTP request/s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !19

fiber per request, load = 5000 HTTP request/s

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !20

• Can’t yield with native frames on continuation stack

• Can’t yield while holding a monitor

• In both cases, parking pins the carrier thread

• monitorenter/Object.wait may park carrier thread

Current limitations

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !21

Back to the big questions

• Will fibers be able to run all existing code?

• Should we completely re-imagine threads? 

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !22

• A lot of existing code uses the Thread API and
Thread.currentThread() (maybe indirectly)

• For now, current prototype can run in a mode that
emulates Thread.currentThread() and most of the
Thread API. That allows fibers to run existing code.

• Project Loom is the opportunity to re-imagine threads

Thread.currentThread() and Thread API

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !23

• ThreadGroup

• Context ClassLoader

• Inheritance: TCCL, ACC, InheritedThreadLocals

• suspend/resume, deprecated for 20+ years

• Thread interrupt problematic with threads pools

• Thread locals …

What is wrong with java.lang.Thread

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !24

Thread locals

• e.g. container managed cache of connection or credentials context

• Long-standing source of memory leaks in thread pools

• Often used because because isn’t anything better

• Sometimes used to make context available to callees

• Sometimes used as approximation to “processor locals”

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !25

Locals (exploring)

• Frame/scope locals

• Locals that are accessible to callees 
e.g. Clojure dynamic binding, special variables in Lisp

• Semantics TDB

• Maybe tied with Structured Concurrency

• Processor locals

• Locals keyed on cpu ID rather than Thread

• Potential users are Striped64/LongAddr to avoid needing fields in Thread

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !26

Structured Concurrency (exploring)

• Core idea 
“every time that control splits into multiple concurrent paths, we want to make sure that they join up again”.

• Background reading and motivations:

• Nathaniel J Smith blogs:

• Notes on structured concurrency, or: Go statement considered harmful

• Timeouts and cancellation for humans

• Also Martin Sustrik blogs on state machines and structured concurrency in high-level languages

• Implemented as Nurseries in Python Trio library

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/
https://vorpus.org/blog/timeouts-and-cancellation-for-humans/

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !27

Structured Concurrency

Instant deadline = Instant.now().plusSeconds(1);
FiberScope.withDeadline(deadline).run(() -> {

 Fiber<?> fiber1 = …
 Fiber<?> fiber2 = …

});

fiber1 and fiber2 guaranteed to have terminated

• Early prototype, but not in loom/loom yet

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !28

• Current prototype executes tasks as Runnable or
Callables

• j.u.concurrent just works so can share objects or share
by communicating

• Not an explicit goal at this time to introduce Channels
or other concurrency APIs but new APIs may emerge

Communication between fibers

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !29

Current status

• Initial prototype with Continuation and Fiber support

• Current focused on

• Performance

• Fiber API

• Debugger support

• Several other topics under exploration

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !30

• Thread sleep, join

• java.util.concurrent and LockSupport.park

• Networking socket read/write/connect/accept

• Pipe read/write

APIs that potentially park in current prototype

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !31

Footprint

• Thread

• Typically 1MB reserved for stack + 16KB of kernel data structures

• ~2300 bytes per started Thread, includes VM meta data

• Fiber

• Continuation stack: hundreds of bytes to KBs

• 200-240 bytes per fiber in current prototype

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !32

Debugging and serviceability

• Basic support in JVM TI to track fiber scheduling, mount
and unmount

• Hope to have some basic debugger support soon

• No investigation yet on JMX/java.lang.management and
other tool APIs

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !33

Other topics to explore

• Tail calls
• Forced preemption
• Serialization and cloning

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !34

More information

• Project Loom page: http://openjdk.java.net/projects/loom/

• Mailing list: loom-dev@openjdk.java.net 

• Repo: http://hg.openjdk.java/net/loom/loom (fibers branch)

http://openjdk.java.net/projects/loom/
mailto:loom-dev@openjdk.java.net
http://hg.openjdk.java/net/loom/loom

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. !35

The following is intended to outline our general product direction. It is
intended for information purposes only, and may not be incorporated into
any contract. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing
decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion
of Oracle.

Safe Harbor Statement

