1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
  28  * double x[],y[]; int e0,nx,prec; int ipio2[];
  29  *
  30  * __kernel_rem_pio2 return the last three digits of N with
  31  *              y = x - N*pi/2
  32  * so that |y| < pi/2.
  33  *
  34  * The method is to compute the integer (mod 8) and fraction parts of
  35  * (2/pi)*x without doing the full multiplication. In general we
  36  * skip the part of the product that are known to be a huge integer (
  37  * more accurately, = 0 mod 8 ). Thus the number of operations are
  38  * independent of the exponent of the input.
  39  *
  40  * (2/pi) is represented by an array of 24-bit integers in ipio2[].
  41  *
  42  * Input parameters:
  43  *      x[]     The input value (must be positive) is broken into nx
  44  *              pieces of 24-bit integers in double precision format.
  45  *              x[i] will be the i-th 24 bit of x. The scaled exponent
  46  *              of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
  47  *              match x's up to 24 bits.
  48  *
  49  *              Example of breaking a double positive z into x[0]+x[1]+x[2]:
  50  *                      e0 = ilogb(z)-23
  51  *                      z  = scalbn(z,-e0)
  52  *              for i = 0,1,2
  53  *                      x[i] = floor(z)
  54  *                      z    = (z-x[i])*2**24
  55  *
  56  *
  57  *      y[]     output result in an array of double precision numbers.
  58  *              The dimension of y[] is:
  59  *                      24-bit  precision       1
  60  *                      53-bit  precision       2
  61  *                      64-bit  precision       2
  62  *                      113-bit precision       3
  63  *              The actual value is the sum of them. Thus for 113-bit
  64  *              precison, one may have to do something like:
  65  *
  66  *              long double t,w,r_head, r_tail;
  67  *              t = (long double)y[2] + (long double)y[1];
  68  *              w = (long double)y[0];
  69  *              r_head = t+w;
  70  *              r_tail = w - (r_head - t);
  71  *
  72  *      e0      The exponent of x[0]
  73  *
  74  *      nx      dimension of x[]
  75  *
  76  *      prec    an integer indicating the precision:
  77  *                      0       24  bits (single)
  78  *                      1       53  bits (double)
  79  *                      2       64  bits (extended)
  80  *                      3       113 bits (quad)
  81  *
  82  *      ipio2[]
  83  *              integer array, contains the (24*i)-th to (24*i+23)-th
  84  *              bit of 2/pi after binary point. The corresponding
  85  *              floating value is
  86  *
  87  *                      ipio2[i] * 2^(-24(i+1)).
  88  *
  89  * External function:
  90  *      double scalbn(), floor();
  91  *
  92  *
  93  * Here is the description of some local variables:
  94  *
  95  *      jk      jk+1 is the initial number of terms of ipio2[] needed
  96  *              in the computation. The recommended value is 2,3,4,
  97  *              6 for single, double, extended,and quad.
  98  *
  99  *      jz      local integer variable indicating the number of
 100  *              terms of ipio2[] used.
 101  *
 102  *      jx      nx - 1
 103  *
 104  *      jv      index for pointing to the suitable ipio2[] for the
 105  *              computation. In general, we want
 106  *                      ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
 107  *              is an integer. Thus
 108  *                      e0-3-24*jv >= 0 or (e0-3)/24 >= jv
 109  *              Hence jv = max(0,(e0-3)/24).
 110  *
 111  *      jp      jp+1 is the number of terms in PIo2[] needed, jp = jk.
 112  *
 113  *      q[]     double array with integral value, representing the
 114  *              24-bits chunk of the product of x and 2/pi.
 115  *
 116  *      q0      the corresponding exponent of q[0]. Note that the
 117  *              exponent for q[i] would be q0-24*i.
 118  *
 119  *      PIo2[]  double precision array, obtained by cutting pi/2
 120  *              into 24 bits chunks.
 121  *
 122  *      f[]     ipio2[] in floating point
 123  *
 124  *      iq[]    integer array by breaking up q[] in 24-bits chunk.
 125  *
 126  *      fq[]    final product of x*(2/pi) in fq[0],..,fq[jk]
 127  *
 128  *      ih      integer. If >0 it indicates q[] is >= 0.5, hence
 129  *              it also indicates the *sign* of the result.
 130  *
 131  */
 132 
 133 
 134 /*
 135  * Constants:
 136  * The hexadecimal values are the intended ones for the following
 137  * constants. The decimal values may be used, provided that the
 138  * compiler will convert from decimal to binary accurately enough
 139  * to produce the hexadecimal values shown.
 140  */
 141 
 142 #include "fdlibm.h"
 143 
 144 #ifdef __STDC__
 145 static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
 146 #else
 147 static int init_jk[] = {2,3,4,6};
 148 #endif
 149 
 150 #ifdef __STDC__
 151 static const double PIo2[] = {
 152 #else
 153 static double PIo2[] = {
 154 #endif
 155   1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
 156   7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
 157   5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
 158   3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
 159   1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
 160   1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
 161   2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
 162   2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
 163 };
 164 
 165 #ifdef __STDC__
 166 static const double
 167 #else
 168 static double
 169 #endif
 170 zero   = 0.0,
 171 one    = 1.0,
 172 two24   =  1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
 173 twon24  =  5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
 174 
 175 #ifdef __STDC__
 176         int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const int *ipio2)
 177 #else
 178         int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
 179         double x[], y[]; int e0,nx,prec; int ipio2[];
 180 #endif
 181 {
 182         int jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
 183         double z,fw,f[20],fq[20],q[20];
 184 
 185     /* initialize jk*/
 186         jk = init_jk[prec];
 187         jp = jk;
 188 
 189     /* determine jx,jv,q0, note that 3>q0 */
 190         jx =  nx-1;
 191         jv = (e0-3)/24; if(jv<0) jv=0;
 192         q0 =  e0-24*(jv+1);
 193 
 194     /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
 195         j = jv-jx; m = jx+jk;
 196         for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
 197 
 198     /* compute q[0],q[1],...q[jk] */
 199         for (i=0;i<=jk;i++) {
 200             for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
 201         }
 202 
 203         jz = jk;
 204 recompute:
 205     /* distill q[] into iq[] reversingly */
 206         for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
 207             fw    =  (double)((int)(twon24* z));
 208             iq[i] =  (int)(z-two24*fw);
 209             z     =  q[j-1]+fw;
 210         }
 211 
 212     /* compute n */
 213         z  = scalbn(z,q0);              /* actual value of z */
 214         z -= 8.0*floor(z*0.125);                /* trim off integer >= 8 */
 215         n  = (int) z;
 216         z -= (double)n;
 217         ih = 0;
 218         if(q0>0) {      /* need iq[jz-1] to determine n */
 219             i  = (iq[jz-1]>>(24-q0)); n += i;
 220             iq[jz-1] -= i<<(24-q0);
 221             ih = iq[jz-1]>>(23-q0);
 222         }
 223         else if(q0==0) ih = iq[jz-1]>>23;
 224         else if(z>=0.5) ih=2;
 225 
 226         if(ih>0) {      /* q > 0.5 */
 227             n += 1; carry = 0;
 228             for(i=0;i<jz ;i++) {        /* compute 1-q */
 229                 j = iq[i];
 230                 if(carry==0) {
 231                     if(j!=0) {
 232                         carry = 1; iq[i] = 0x1000000- j;
 233                     }
 234                 } else  iq[i] = 0xffffff - j;
 235             }
 236             if(q0>0) {          /* rare case: chance is 1 in 12 */
 237                 switch(q0) {
 238                 case 1:
 239                    iq[jz-1] &= 0x7fffff; break;
 240                 case 2:
 241                    iq[jz-1] &= 0x3fffff; break;
 242                 }
 243             }
 244             if(ih==2) {
 245                 z = one - z;
 246                 if(carry!=0) z -= scalbn(one,q0);
 247             }
 248         }
 249 
 250     /* check if recomputation is needed */
 251         if(z==zero) {
 252             j = 0;
 253             for (i=jz-1;i>=jk;i--) j |= iq[i];
 254             if(j==0) { /* need recomputation */
 255                 for(k=1;iq[jk-k]==0;k++);   /* k = no. of terms needed */
 256 
 257                 for(i=jz+1;i<=jz+k;i++) {   /* add q[jz+1] to q[jz+k] */
 258                     f[jx+i] = (double) ipio2[jv+i];
 259                     for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
 260                     q[i] = fw;
 261                 }
 262                 jz += k;
 263                 goto recompute;
 264             }
 265         }
 266 
 267     /* chop off zero terms */
 268         if(z==0.0) {
 269             jz -= 1; q0 -= 24;
 270             while(iq[jz]==0) { jz--; q0-=24;}
 271         } else { /* break z into 24-bit if necessary */
 272             z = scalbn(z,-q0);
 273             if(z>=two24) {
 274                 fw = (double)((int)(twon24*z));
 275                 iq[jz] = (int)(z-two24*fw);
 276                 jz += 1; q0 += 24;
 277                 iq[jz] = (int) fw;
 278             } else iq[jz] = (int) z ;
 279         }
 280 
 281     /* convert integer "bit" chunk to floating-point value */
 282         fw = scalbn(one,q0);
 283         for(i=jz;i>=0;i--) {
 284             q[i] = fw*(double)iq[i]; fw*=twon24;
 285         }
 286 
 287     /* compute PIo2[0,...,jp]*q[jz,...,0] */
 288         for(i=jz;i>=0;i--) {
 289             for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
 290             fq[jz-i] = fw;
 291         }
 292 
 293     /* compress fq[] into y[] */
 294         switch(prec) {
 295             case 0:
 296                 fw = 0.0;
 297                 for (i=jz;i>=0;i--) fw += fq[i];
 298                 y[0] = (ih==0)? fw: -fw;
 299                 break;
 300             case 1:
 301             case 2:
 302                 fw = 0.0;
 303                 for (i=jz;i>=0;i--) fw += fq[i];
 304                 y[0] = (ih==0)? fw: -fw;
 305                 fw = fq[0]-fw;
 306                 for (i=1;i<=jz;i++) fw += fq[i];
 307                 y[1] = (ih==0)? fw: -fw;
 308                 break;
 309             case 3:     /* painful */
 310                 for (i=jz;i>0;i--) {
 311                     fw      = fq[i-1]+fq[i];
 312                     fq[i]  += fq[i-1]-fw;
 313                     fq[i-1] = fw;
 314                 }
 315                 for (i=jz;i>1;i--) {
 316                     fw      = fq[i-1]+fq[i];
 317                     fq[i]  += fq[i-1]-fw;
 318                     fq[i-1] = fw;
 319                 }
 320                 for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
 321                 if(ih==0) {
 322                     y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
 323                 } else {
 324                     y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
 325                 }
 326         }
 327         return n&7;
 328 }