1 /*
   2  * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d;
  27 
  28 import java.awt.Graphics;
  29 import java.awt.Graphics2D;
  30 import java.awt.RenderingHints;
  31 import java.awt.RenderingHints.Key;
  32 import java.awt.geom.Area;
  33 import java.awt.geom.AffineTransform;
  34 import java.awt.geom.NoninvertibleTransformException;
  35 import java.awt.AlphaComposite;
  36 import java.awt.BasicStroke;
  37 import java.awt.image.BufferedImage;
  38 import java.awt.image.BufferedImageOp;
  39 import java.awt.image.RenderedImage;
  40 import java.awt.image.renderable.RenderableImage;
  41 import java.awt.image.renderable.RenderContext;
  42 import java.awt.image.AffineTransformOp;
  43 import java.awt.image.Raster;
  44 import java.awt.image.WritableRaster;
  45 import java.awt.Image;
  46 import java.awt.Composite;
  47 import java.awt.Color;
  48 import java.awt.image.ColorModel;
  49 import java.awt.GraphicsConfiguration;
  50 import java.awt.Paint;
  51 import java.awt.GradientPaint;
  52 import java.awt.LinearGradientPaint;
  53 import java.awt.RadialGradientPaint;
  54 import java.awt.TexturePaint;
  55 import java.awt.geom.Rectangle2D;
  56 import java.awt.geom.PathIterator;
  57 import java.awt.geom.GeneralPath;
  58 import java.awt.Shape;
  59 import java.awt.Stroke;
  60 import java.awt.FontMetrics;
  61 import java.awt.Rectangle;
  62 import java.text.AttributedCharacterIterator;
  63 import java.awt.Font;
  64 import java.awt.Point;
  65 import java.awt.image.ImageObserver;
  66 import java.awt.Transparency;
  67 import java.awt.font.GlyphVector;
  68 import java.awt.font.TextLayout;
  69 
  70 import sun.awt.image.SurfaceManager;
  71 import sun.font.FontDesignMetrics;
  72 import sun.font.FontUtilities;
  73 import sun.java2d.pipe.PixelDrawPipe;
  74 import sun.java2d.pipe.PixelFillPipe;
  75 import sun.java2d.pipe.ShapeDrawPipe;
  76 import sun.java2d.pipe.ValidatePipe;
  77 import sun.java2d.pipe.ShapeSpanIterator;
  78 import sun.java2d.pipe.Region;
  79 import sun.java2d.pipe.TextPipe;
  80 import sun.java2d.pipe.DrawImagePipe;
  81 import sun.java2d.pipe.LoopPipe;
  82 import sun.java2d.loops.FontInfo;
  83 import sun.java2d.loops.RenderLoops;
  84 import sun.java2d.loops.CompositeType;
  85 import sun.java2d.loops.SurfaceType;
  86 import sun.java2d.loops.Blit;
  87 import sun.java2d.loops.MaskFill;
  88 import java.awt.font.FontRenderContext;
  89 import sun.java2d.loops.XORComposite;
  90 import sun.awt.ConstrainableGraphics;
  91 import sun.awt.SunHints;
  92 import java.util.Map;
  93 import java.util.Iterator;
  94 import sun.misc.PerformanceLogger;
  95 
  96 import java.lang.annotation.Native;
  97 import java.awt.image.MultiResolutionImage;
  98 
  99 import static java.awt.geom.AffineTransform.TYPE_FLIP;
 100 import static java.awt.geom.AffineTransform.TYPE_MASK_SCALE;
 101 import static java.awt.geom.AffineTransform.TYPE_TRANSLATION;
 102 import sun.awt.image.MultiResolutionToolkitImage;
 103 import sun.awt.image.ToolkitImage;
 104 
 105 /**
 106  * This is a the master Graphics2D superclass for all of the Sun
 107  * Graphics implementations.  This class relies on subclasses to
 108  * manage the various device information, but provides an overall
 109  * general framework for performing all of the requests in the
 110  * Graphics and Graphics2D APIs.
 111  *
 112  * @author Jim Graham
 113  */
 114 public final class SunGraphics2D
 115     extends Graphics2D
 116     implements ConstrainableGraphics, Cloneable, DestSurfaceProvider
 117 {
 118     /*
 119      * Attribute States
 120      */
 121     /* Paint */
 122     @Native
 123     public static final int PAINT_CUSTOM       = 6; /* Any other Paint object */
 124     @Native
 125     public static final int PAINT_TEXTURE      = 5; /* Tiled Image */
 126     @Native
 127     public static final int PAINT_RAD_GRADIENT = 4; /* Color RadialGradient */
 128     @Native
 129     public static final int PAINT_LIN_GRADIENT = 3; /* Color LinearGradient */
 130     @Native
 131     public static final int PAINT_GRADIENT     = 2; /* Color Gradient */
 132     @Native
 133     public static final int PAINT_ALPHACOLOR   = 1; /* Non-opaque Color */
 134     @Native
 135     public static final int PAINT_OPAQUECOLOR  = 0; /* Opaque Color */
 136 
 137     /* Composite*/
 138     @Native
 139     public static final int COMP_CUSTOM = 3;/* Custom Composite */
 140     @Native
 141     public static final int COMP_XOR    = 2;/* XOR Mode Composite */
 142     @Native
 143     public static final int COMP_ALPHA  = 1;/* AlphaComposite */
 144     @Native
 145     public static final int COMP_ISCOPY = 0;/* simple stores into destination,
 146                                              * i.e. Src, SrcOverNoEa, and other
 147                                              * alpha modes which replace
 148                                              * the destination.
 149                                              */
 150 
 151     /* Stroke */
 152     @Native
 153     public static final int STROKE_CUSTOM = 3; /* custom Stroke */
 154     @Native
 155     public static final int STROKE_WIDE   = 2; /* BasicStroke */
 156     @Native
 157     public static final int STROKE_THINDASHED   = 1; /* BasicStroke */
 158     @Native
 159     public static final int STROKE_THIN   = 0; /* BasicStroke */
 160 
 161     /* Transform */
 162     @Native
 163     public static final int TRANSFORM_GENERIC = 4; /* any 3x2 */
 164     @Native
 165     public static final int TRANSFORM_TRANSLATESCALE = 3; /* scale XY */
 166     @Native
 167     public static final int TRANSFORM_ANY_TRANSLATE = 2; /* non-int translate */
 168     @Native
 169     public static final int TRANSFORM_INT_TRANSLATE = 1; /* int translate */
 170     @Native
 171     public static final int TRANSFORM_ISIDENT = 0; /* Identity */
 172 
 173     /* Clipping */
 174     @Native
 175     public static final int CLIP_SHAPE       = 2; /* arbitrary clip */
 176     @Native
 177     public static final int CLIP_RECTANGULAR = 1; /* rectangular clip */
 178     @Native
 179     public static final int CLIP_DEVICE      = 0; /* no clipping set */
 180 
 181     /* The following fields are used when the current Paint is a Color. */
 182     public int eargb;  // ARGB value with ExtraAlpha baked in
 183     public int pixel;  // pixel value for eargb
 184 
 185     public SurfaceData surfaceData;
 186 
 187     public PixelDrawPipe drawpipe;
 188     public PixelFillPipe fillpipe;
 189     public DrawImagePipe imagepipe;
 190     public ShapeDrawPipe shapepipe;
 191     public TextPipe textpipe;
 192     public MaskFill alphafill;
 193 
 194     public RenderLoops loops;
 195 
 196     public CompositeType imageComp;     /* Image Transparency checked on fly */
 197 
 198     public int paintState;
 199     public int compositeState;
 200     public int strokeState;
 201     public int transformState;
 202     public int clipState;
 203 
 204     public Color foregroundColor;
 205     public Color backgroundColor;
 206 
 207     public AffineTransform transform;
 208     public int transX;
 209     public int transY;
 210 
 211     protected static final Stroke defaultStroke = new BasicStroke();
 212     protected static final Composite defaultComposite = AlphaComposite.SrcOver;
 213     private static final Font defaultFont =
 214         new Font(Font.DIALOG, Font.PLAIN, 12);
 215 
 216     public Paint paint;
 217     public Stroke stroke;
 218     public Composite composite;
 219     protected Font font;
 220     protected FontMetrics fontMetrics;
 221 
 222     public int renderHint;
 223     public int antialiasHint;
 224     public int textAntialiasHint;
 225     protected int fractionalMetricsHint;
 226 
 227     /* A gamma adjustment to the colour used in lcd text blitting */
 228     public int lcdTextContrast;
 229     private static int lcdTextContrastDefaultValue = 140;
 230 
 231     private int interpolationHint;      // raw value of rendering Hint
 232     public int strokeHint;
 233 
 234     public int interpolationType;       // algorithm choice based on
 235                                         // interpolation and render Hints
 236 
 237     public RenderingHints hints;
 238 
 239     public Region constrainClip;        // lightweight bounds in pixels
 240     public int constrainX;
 241     public int constrainY;
 242 
 243     public Region clipRegion;
 244     public Shape usrClip;
 245     protected Region devClip;           // Actual physical drawable in pixels
 246 
 247     private final int devScale;         // Actual physical scale factor
 248     private int resolutionVariantHint;
 249 
 250     // cached state for text rendering
 251     private boolean validFontInfo;
 252     private FontInfo fontInfo;
 253     private FontInfo glyphVectorFontInfo;
 254     private FontRenderContext glyphVectorFRC;
 255 
 256     private final static int slowTextTransformMask =
 257                             AffineTransform.TYPE_GENERAL_TRANSFORM
 258                         |   AffineTransform.TYPE_MASK_ROTATION
 259                         |   AffineTransform.TYPE_FLIP;
 260 
 261     static {
 262         if (PerformanceLogger.loggingEnabled()) {
 263             PerformanceLogger.setTime("SunGraphics2D static initialization");
 264         }
 265     }
 266 
 267     public SunGraphics2D(SurfaceData sd, Color fg, Color bg, Font f) {
 268         surfaceData = sd;
 269         foregroundColor = fg;
 270         backgroundColor = bg;
 271 
 272         transform = new AffineTransform();
 273         stroke = defaultStroke;
 274         composite = defaultComposite;
 275         paint = foregroundColor;
 276 
 277         imageComp = CompositeType.SrcOverNoEa;
 278 
 279         renderHint = SunHints.INTVAL_RENDER_DEFAULT;
 280         antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
 281         textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
 282         fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
 283         lcdTextContrast = lcdTextContrastDefaultValue;
 284         interpolationHint = -1;
 285         strokeHint = SunHints.INTVAL_STROKE_DEFAULT;
 286         resolutionVariantHint = SunHints.INTVAL_RESOLUTION_VARIANT_DEFAULT;
 287 
 288         interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
 289 
 290         validateColor();
 291 
 292         devScale = sd.getDefaultScale();
 293         if (devScale != 1) {
 294             transform.setToScale(devScale, devScale);
 295             invalidateTransform();
 296         }
 297 
 298         font = f;
 299         if (font == null) {
 300             font = defaultFont;
 301         }
 302 
 303         setDevClip(sd.getBounds());
 304         invalidatePipe();
 305     }
 306 
 307     protected Object clone() {
 308         try {
 309             SunGraphics2D g = (SunGraphics2D) super.clone();
 310             g.transform = new AffineTransform(this.transform);
 311             if (hints != null) {
 312                 g.hints = (RenderingHints) this.hints.clone();
 313             }
 314             /* FontInfos are re-used, so must be cloned too, if they
 315              * are valid, and be nulled out if invalid.
 316              * The implied trade-off is that there is more to be gained
 317              * from re-using these objects than is lost by having to
 318              * clone them when the SG2D is cloned.
 319              */
 320             if (this.fontInfo != null) {
 321                 if (this.validFontInfo) {
 322                     g.fontInfo = (FontInfo)this.fontInfo.clone();
 323                 } else {
 324                     g.fontInfo = null;
 325                 }
 326             }
 327             if (this.glyphVectorFontInfo != null) {
 328                 g.glyphVectorFontInfo =
 329                     (FontInfo)this.glyphVectorFontInfo.clone();
 330                 g.glyphVectorFRC = this.glyphVectorFRC;
 331             }
 332             //g.invalidatePipe();
 333             return g;
 334         } catch (CloneNotSupportedException e) {
 335         }
 336         return null;
 337     }
 338 
 339     /**
 340      * Create a new SunGraphics2D based on this one.
 341      */
 342     public Graphics create() {
 343         return (Graphics) clone();
 344     }
 345 
 346     public void setDevClip(int x, int y, int w, int h) {
 347         Region c = constrainClip;
 348         if (c == null) {
 349             devClip = Region.getInstanceXYWH(x, y, w, h);
 350         } else {
 351             devClip = c.getIntersectionXYWH(x, y, w, h);
 352         }
 353         validateCompClip();
 354     }
 355 
 356     public void setDevClip(Rectangle r) {
 357         setDevClip(r.x, r.y, r.width, r.height);
 358     }
 359 
 360     /**
 361      * Constrain rendering for lightweight objects.
 362      */
 363     public void constrain(int x, int y, int w, int h, Region region) {
 364         if ((x | y) != 0) {
 365             translate(x, y);
 366         }
 367         if (transformState > TRANSFORM_TRANSLATESCALE) {
 368             clipRect(0, 0, w, h);
 369             return;
 370         }
 371         // changes parameters according to the current scale and translate.
 372         final double scaleX = transform.getScaleX();
 373         final double scaleY = transform.getScaleY();
 374         x = constrainX = (int) transform.getTranslateX();
 375         y = constrainY = (int) transform.getTranslateY();
 376         w = Region.dimAdd(x, Region.clipScale(w, scaleX));
 377         h = Region.dimAdd(y, Region.clipScale(h, scaleY));
 378 
 379         Region c = constrainClip;
 380         if (c == null) {
 381             c = Region.getInstanceXYXY(x, y, w, h);
 382         } else {
 383             c = c.getIntersectionXYXY(x, y, w, h);
 384         }
 385         if (region != null) {
 386             region = region.getScaledRegion(scaleX, scaleY);
 387             region = region.getTranslatedRegion(x, y);
 388             c = c.getIntersection(region);
 389         }
 390 
 391         if (c == constrainClip) {
 392             // Common case to ignore
 393             return;
 394         }
 395 
 396         constrainClip = c;
 397         if (!devClip.isInsideQuickCheck(c)) {
 398             devClip = devClip.getIntersection(c);
 399             validateCompClip();
 400         }
 401     }
 402 
 403     /**
 404      * Constrain rendering for lightweight objects.
 405      *
 406      * REMIND: This method will back off to the "workaround"
 407      * of using translate and clipRect if the Graphics
 408      * to be constrained has a complex transform.  The
 409      * drawback of the workaround is that the resulting
 410      * clip and device origin cannot be "enforced".
 411      *
 412      * @exception IllegalStateException If the Graphics
 413      * to be constrained has a complex transform.
 414      */
 415     @Override
 416     public void constrain(int x, int y, int w, int h) {
 417         constrain(x, y, w, h, null);
 418     }
 419 
 420     protected static ValidatePipe invalidpipe = new ValidatePipe();
 421 
 422     /*
 423      * Invalidate the pipeline
 424      */
 425     protected void invalidatePipe() {
 426         drawpipe = invalidpipe;
 427         fillpipe = invalidpipe;
 428         shapepipe = invalidpipe;
 429         textpipe = invalidpipe;
 430         imagepipe = invalidpipe;
 431         loops = null;
 432     }
 433 
 434     public void validatePipe() {
 435         /* This workaround is for the situation when we update the Pipelines
 436          * for invalid SurfaceData and run further code when the current
 437          * pipeline doesn't support the type of new SurfaceData created during
 438          * the current pipeline's work (in place of the invalid SurfaceData).
 439          * Usually SurfaceData and Pipelines are repaired (through revalidateAll)
 440          * and called again in the exception handlers */
 441 
 442         if (!surfaceData.isValid()) {
 443             throw new InvalidPipeException("attempt to validate Pipe with invalid SurfaceData");
 444         }
 445 
 446         surfaceData.validatePipe(this);
 447     }
 448 
 449     /*
 450      * Intersect two Shapes by the simplest method, attempting to produce
 451      * a simplified result.
 452      * The boolean arguments keep1 and keep2 specify whether or not
 453      * the first or second shapes can be modified during the operation
 454      * or whether that shape must be "kept" unmodified.
 455      */
 456     Shape intersectShapes(Shape s1, Shape s2, boolean keep1, boolean keep2) {
 457         if (s1 instanceof Rectangle && s2 instanceof Rectangle) {
 458             return ((Rectangle) s1).intersection((Rectangle) s2);
 459         }
 460         if (s1 instanceof Rectangle2D) {
 461             return intersectRectShape((Rectangle2D) s1, s2, keep1, keep2);
 462         } else if (s2 instanceof Rectangle2D) {
 463             return intersectRectShape((Rectangle2D) s2, s1, keep2, keep1);
 464         }
 465         return intersectByArea(s1, s2, keep1, keep2);
 466     }
 467 
 468     /*
 469      * Intersect a Rectangle with a Shape by the simplest method,
 470      * attempting to produce a simplified result.
 471      * The boolean arguments keep1 and keep2 specify whether or not
 472      * the first or second shapes can be modified during the operation
 473      * or whether that shape must be "kept" unmodified.
 474      */
 475     Shape intersectRectShape(Rectangle2D r, Shape s,
 476                              boolean keep1, boolean keep2) {
 477         if (s instanceof Rectangle2D) {
 478             Rectangle2D r2 = (Rectangle2D) s;
 479             Rectangle2D outrect;
 480             if (!keep1) {
 481                 outrect = r;
 482             } else if (!keep2) {
 483                 outrect = r2;
 484             } else {
 485                 outrect = new Rectangle2D.Float();
 486             }
 487             double x1 = Math.max(r.getX(), r2.getX());
 488             double x2 = Math.min(r.getX()  + r.getWidth(),
 489                                  r2.getX() + r2.getWidth());
 490             double y1 = Math.max(r.getY(), r2.getY());
 491             double y2 = Math.min(r.getY()  + r.getHeight(),
 492                                  r2.getY() + r2.getHeight());
 493 
 494             if (((x2 - x1) < 0) || ((y2 - y1) < 0))
 495                 // Width or height is negative. No intersection.
 496                 outrect.setFrameFromDiagonal(0, 0, 0, 0);
 497             else
 498                 outrect.setFrameFromDiagonal(x1, y1, x2, y2);
 499             return outrect;
 500         }
 501         if (r.contains(s.getBounds2D())) {
 502             if (keep2) {
 503                 s = cloneShape(s);
 504             }
 505             return s;
 506         }
 507         return intersectByArea(r, s, keep1, keep2);
 508     }
 509 
 510     protected static Shape cloneShape(Shape s) {
 511         return new GeneralPath(s);
 512     }
 513 
 514     /*
 515      * Intersect two Shapes using the Area class.  Presumably other
 516      * attempts at simpler intersection methods proved fruitless.
 517      * The boolean arguments keep1 and keep2 specify whether or not
 518      * the first or second shapes can be modified during the operation
 519      * or whether that shape must be "kept" unmodified.
 520      * @see #intersectShapes
 521      * @see #intersectRectShape
 522      */
 523     Shape intersectByArea(Shape s1, Shape s2, boolean keep1, boolean keep2) {
 524         Area a1, a2;
 525 
 526         // First see if we can find an overwriteable source shape
 527         // to use as our destination area to avoid duplication.
 528         if (!keep1 && (s1 instanceof Area)) {
 529             a1 = (Area) s1;
 530         } else if (!keep2 && (s2 instanceof Area)) {
 531             a1 = (Area) s2;
 532             s2 = s1;
 533         } else {
 534             a1 = new Area(s1);
 535         }
 536 
 537         if (s2 instanceof Area) {
 538             a2 = (Area) s2;
 539         } else {
 540             a2 = new Area(s2);
 541         }
 542 
 543         a1.intersect(a2);
 544         if (a1.isRectangular()) {
 545             return a1.getBounds();
 546         }
 547 
 548         return a1;
 549     }
 550 
 551     /*
 552      * Intersect usrClip bounds and device bounds to determine the composite
 553      * rendering boundaries.
 554      */
 555     public Region getCompClip() {
 556         if (!surfaceData.isValid()) {
 557             // revalidateAll() implicitly recalculcates the composite clip
 558             revalidateAll();
 559         }
 560 
 561         return clipRegion;
 562     }
 563 
 564     public Font getFont() {
 565         if (font == null) {
 566             font = defaultFont;
 567         }
 568         return font;
 569     }
 570 
 571     private static final double[] IDENT_MATRIX = {1, 0, 0, 1};
 572     private static final AffineTransform IDENT_ATX =
 573         new AffineTransform();
 574 
 575     private static final int MINALLOCATED = 8;
 576     private static final int TEXTARRSIZE = 17;
 577     private static double[][] textTxArr = new double[TEXTARRSIZE][];
 578     private static AffineTransform[] textAtArr =
 579         new AffineTransform[TEXTARRSIZE];
 580 
 581     static {
 582         for (int i=MINALLOCATED;i<TEXTARRSIZE;i++) {
 583           textTxArr[i] = new double [] {i, 0, 0, i};
 584           textAtArr[i] = new AffineTransform( textTxArr[i]);
 585         }
 586     }
 587 
 588     // cached state for various draw[String,Char,Byte] optimizations
 589     public FontInfo checkFontInfo(FontInfo info, Font font,
 590                                   FontRenderContext frc) {
 591         /* Do not create a FontInfo object as part of construction of an
 592          * SG2D as its possible it may never be needed - ie if no text
 593          * is drawn using this SG2D.
 594          */
 595         if (info == null) {
 596             info = new FontInfo();
 597         }
 598 
 599         float ptSize = font.getSize2D();
 600         int txFontType;
 601         AffineTransform devAt, textAt=null;
 602         if (font.isTransformed()) {
 603             textAt = font.getTransform();
 604             textAt.scale(ptSize, ptSize);
 605             txFontType = textAt.getType();
 606             info.originX = (float)textAt.getTranslateX();
 607             info.originY = (float)textAt.getTranslateY();
 608             textAt.translate(-info.originX, -info.originY);
 609             if (transformState >= TRANSFORM_TRANSLATESCALE) {
 610                 transform.getMatrix(info.devTx = new double[4]);
 611                 devAt = new AffineTransform(info.devTx);
 612                 textAt.preConcatenate(devAt);
 613             } else {
 614                 info.devTx = IDENT_MATRIX;
 615                 devAt = IDENT_ATX;
 616             }
 617             textAt.getMatrix(info.glyphTx = new double[4]);
 618             double shearx = textAt.getShearX();
 619             double scaley = textAt.getScaleY();
 620             if (shearx != 0) {
 621                 scaley = Math.sqrt(shearx * shearx + scaley * scaley);
 622             }
 623             info.pixelHeight = (int)(Math.abs(scaley)+0.5);
 624         } else {
 625             txFontType = AffineTransform.TYPE_IDENTITY;
 626             info.originX = info.originY = 0;
 627             if (transformState >= TRANSFORM_TRANSLATESCALE) {
 628                 transform.getMatrix(info.devTx = new double[4]);
 629                 devAt = new AffineTransform(info.devTx);
 630                 info.glyphTx = new double[4];
 631                 for (int i = 0; i < 4; i++) {
 632                     info.glyphTx[i] = info.devTx[i] * ptSize;
 633                 }
 634                 textAt = new AffineTransform(info.glyphTx);
 635                 double shearx = transform.getShearX();
 636                 double scaley = transform.getScaleY();
 637                 if (shearx != 0) {
 638                     scaley = Math.sqrt(shearx * shearx + scaley * scaley);
 639                 }
 640                 info.pixelHeight = (int)(Math.abs(scaley * ptSize)+0.5);
 641             } else {
 642                 /* If the double represents a common integral, we
 643                  * may have pre-allocated objects.
 644                  * A "sparse" array be seems to be as fast as a switch
 645                  * even for 3 or 4 pt sizes, and is more flexible.
 646                  * This should perform comparably in single-threaded
 647                  * rendering to the old code which synchronized on the
 648                  * class and scale better on MP systems.
 649                  */
 650                 int pszInt = (int)ptSize;
 651                 if (ptSize == pszInt &&
 652                     pszInt >= MINALLOCATED && pszInt < TEXTARRSIZE) {
 653                     info.glyphTx = textTxArr[pszInt];
 654                     textAt = textAtArr[pszInt];
 655                     info.pixelHeight = pszInt;
 656                 } else {
 657                     info.pixelHeight = (int)(ptSize+0.5);
 658                 }
 659                 if (textAt == null) {
 660                     info.glyphTx = new double[] {ptSize, 0, 0, ptSize};
 661                     textAt = new AffineTransform(info.glyphTx);
 662                 }
 663 
 664                 info.devTx = IDENT_MATRIX;
 665                 devAt = IDENT_ATX;
 666             }
 667         }
 668 
 669         info.font2D = FontUtilities.getFont2D(font);
 670 
 671         int fmhint = fractionalMetricsHint;
 672         if (fmhint == SunHints.INTVAL_FRACTIONALMETRICS_DEFAULT) {
 673             fmhint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
 674         }
 675         info.lcdSubPixPos = false; // conditionally set true in LCD mode.
 676 
 677         /* The text anti-aliasing hints that are set by the client need
 678          * to be interpreted for the current state and stored in the
 679          * FontInfo.aahint which is what will actually be used and
 680          * will be one of OFF, ON, LCD_HRGB or LCD_VRGB.
 681          * This is what pipe selection code should typically refer to, not
 682          * textAntialiasHint. This means we are now evaluating the meaning
 683          * of "default" here. Any pipe that really cares about that will
 684          * also need to consult that variable.
 685          * Otherwise these are being used only as args to getStrike,
 686          * and are encapsulated in that object which is part of the
 687          * FontInfo, so we do not need to store them directly as fields
 688          * in the FontInfo object.
 689          * That could change if FontInfo's were more selectively
 690          * revalidated when graphics state changed. Presently this
 691          * method re-evaluates all fields in the fontInfo.
 692          * The strike doesn't need to know the RGB subpixel order. Just
 693          * if its H or V orientation, so if an LCD option is specified we
 694          * always pass in the RGB hint to the strike.
 695          * frc is non-null only if this is a GlyphVector. For reasons
 696          * which are probably a historical mistake the AA hint in a GV
 697          * is honoured when we render, overriding the Graphics setting.
 698          */
 699         int aahint;
 700         if (frc == null) {
 701             aahint = textAntialiasHint;
 702         } else {
 703             aahint = ((SunHints.Value)frc.getAntiAliasingHint()).getIndex();
 704         }
 705         if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT) {
 706             if (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
 707                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 708             } else {
 709                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
 710             }
 711         } else {
 712             /* If we are in checkFontInfo because a rendering hint has been
 713              * set then all pipes are revalidated. But we can also
 714              * be here because setFont() has been called when the 'gasp'
 715              * hint is set, as then the font size determines the text pipe.
 716              * See comments in SunGraphics2d.setFont(Font).
 717              */
 718             if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP) {
 719                 if (info.font2D.useAAForPtSize(info.pixelHeight)) {
 720                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 721                 } else {
 722                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
 723                 }
 724             } else if (aahint >= SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB) {
 725                 /* loops for default rendering modes are installed in the SG2D
 726                  * constructor. If there are none this will be null.
 727                  * Not all compositing modes update the render loops, so
 728                  * we also test that this is a mode we know should support
 729                  * this. One minor issue is that the loops aren't necessarily
 730                  * installed for a new rendering mode until after this
 731                  * method is called during pipeline validation. So it is
 732                  * theoretically possible that it was set to null for a
 733                  * compositing mode, the composite is then set back to Src,
 734                  * but the loop is still null when this is called and AA=ON
 735                  * is installed instead of an LCD mode.
 736                  * However this is done in the right order in SurfaceData.java
 737                  * so this is not likely to be a problem - but not
 738                  * guaranteed.
 739                  */
 740                 if (
 741                     !surfaceData.canRenderLCDText(this)
 742 //                    loops.drawGlyphListLCDLoop == null ||
 743 //                    compositeState > COMP_ISCOPY ||
 744 //                    paintState > PAINT_ALPHACOLOR
 745                       ) {
 746                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 747                 } else {
 748                     info.lcdRGBOrder = true;
 749                     /* Collapse these into just HRGB or VRGB.
 750                      * Pipe selection code needs only to test for these two.
 751                      * Since these both select the same pipe anyway its
 752                      * tempting to collapse into one value. But they are
 753                      * different strikes (glyph caches) so the distinction
 754                      * needs to be made for that purpose.
 755                      */
 756                     if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HBGR) {
 757                         aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
 758                         info.lcdRGBOrder = false;
 759                     } else if
 760                         (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VBGR) {
 761                         aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VRGB;
 762                         info.lcdRGBOrder = false;
 763                     }
 764                     /* Support subpixel positioning only for the case in
 765                      * which the horizontal resolution is increased
 766                      */
 767                     info.lcdSubPixPos =
 768                         fmhint == SunHints.INTVAL_FRACTIONALMETRICS_ON &&
 769                         aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
 770                 }
 771             }
 772         }
 773         info.aaHint = aahint;
 774         info.fontStrike = info.font2D.getStrike(font, devAt, textAt,
 775                                                 aahint, fmhint);
 776         return info;
 777     }
 778 
 779     public static boolean isRotated(double [] mtx) {
 780         if ((mtx[0] == mtx[3]) &&
 781             (mtx[1] == 0.0) &&
 782             (mtx[2] == 0.0) &&
 783             (mtx[0] > 0.0))
 784         {
 785             return false;
 786         }
 787 
 788         return true;
 789     }
 790 
 791     public void setFont(Font font) {
 792         /* replacing the reference equality test font != this.font with
 793          * !font.equals(this.font) did not yield any measurable difference
 794          * in testing, but there may be yet to be identified cases where it
 795          * is beneficial.
 796          */
 797         if (font != null && font!=this.font/*!font.equals(this.font)*/) {
 798             /* In the GASP AA case the textpipe depends on the glyph size
 799              * as determined by graphics and font transforms as well as the
 800              * font size, and information in the font. But we may invalidate
 801              * the pipe only to find that it made no difference.
 802              * Deferring pipe invalidation to checkFontInfo won't work because
 803              * when called we may already be rendering to the wrong pipe.
 804              * So, if the font is transformed, or the graphics has more than
 805              * a simple scale, we'll take that as enough of a hint to
 806              * revalidate everything. But if they aren't we will
 807              * use the font's point size to query the gasp table and see if
 808              * what it says matches what's currently being used, in which
 809              * case there's no need to invalidate the textpipe.
 810              * This should be sufficient for all typical uses cases.
 811              */
 812             if (textAntialiasHint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP &&
 813                 textpipe != invalidpipe &&
 814                 (transformState > TRANSFORM_ANY_TRANSLATE ||
 815                  font.isTransformed() ||
 816                  fontInfo == null || // Precaution, if true shouldn't get here
 817                  (fontInfo.aaHint == SunHints.INTVAL_TEXT_ANTIALIAS_ON) !=
 818                      FontUtilities.getFont2D(font).
 819                          useAAForPtSize(font.getSize()))) {
 820                 textpipe = invalidpipe;
 821             }
 822             this.font = font;
 823             this.fontMetrics = null;
 824             this.validFontInfo = false;
 825         }
 826     }
 827 
 828     public FontInfo getFontInfo() {
 829         if (!validFontInfo) {
 830             this.fontInfo = checkFontInfo(this.fontInfo, font, null);
 831             validFontInfo = true;
 832         }
 833         return this.fontInfo;
 834     }
 835 
 836     /* Used by drawGlyphVector which specifies its own font. */
 837     public FontInfo getGVFontInfo(Font font, FontRenderContext frc) {
 838         if (glyphVectorFontInfo != null &&
 839             glyphVectorFontInfo.font == font &&
 840             glyphVectorFRC == frc) {
 841             return glyphVectorFontInfo;
 842         } else {
 843             glyphVectorFRC = frc;
 844             return glyphVectorFontInfo =
 845                 checkFontInfo(glyphVectorFontInfo, font, frc);
 846         }
 847     }
 848 
 849     public FontMetrics getFontMetrics() {
 850         if (this.fontMetrics != null) {
 851             return this.fontMetrics;
 852         }
 853         /* NB the constructor and the setter disallow "font" being null */
 854         return this.fontMetrics =
 855            FontDesignMetrics.getMetrics(font, getFontRenderContext());
 856     }
 857 
 858     public FontMetrics getFontMetrics(Font font) {
 859         if ((this.fontMetrics != null) && (font == this.font)) {
 860             return this.fontMetrics;
 861         }
 862         FontMetrics fm =
 863           FontDesignMetrics.getMetrics(font, getFontRenderContext());
 864 
 865         if (this.font == font) {
 866             this.fontMetrics = fm;
 867         }
 868         return fm;
 869     }
 870 
 871     /**
 872      * Checks to see if a Path intersects the specified Rectangle in device
 873      * space.  The rendering attributes taken into account include the
 874      * clip, transform, and stroke attributes.
 875      * @param rect The area in device space to check for a hit.
 876      * @param p The path to check for a hit.
 877      * @param onStroke Flag to choose between testing the stroked or
 878      * the filled path.
 879      * @return True if there is a hit, false otherwise.
 880      * @see #setStroke
 881      * @see #fillPath
 882      * @see #drawPath
 883      * @see #transform
 884      * @see #setTransform
 885      * @see #clip
 886      * @see #setClip
 887      */
 888     public boolean hit(Rectangle rect, Shape s, boolean onStroke) {
 889         if (onStroke) {
 890             s = stroke.createStrokedShape(s);
 891         }
 892 
 893         s = transformShape(s);
 894         if ((constrainX|constrainY) != 0) {
 895             rect = new Rectangle(rect);
 896             rect.translate(constrainX, constrainY);
 897         }
 898 
 899         return s.intersects(rect);
 900     }
 901 
 902     /**
 903      * Return the ColorModel associated with this Graphics2D.
 904      */
 905     public ColorModel getDeviceColorModel() {
 906         return surfaceData.getColorModel();
 907     }
 908 
 909     /**
 910      * Return the device configuration associated with this Graphics2D.
 911      */
 912     public GraphicsConfiguration getDeviceConfiguration() {
 913         return surfaceData.getDeviceConfiguration();
 914     }
 915 
 916     /**
 917      * Return the SurfaceData object assigned to manage the destination
 918      * drawable surface of this Graphics2D.
 919      */
 920     public final SurfaceData getSurfaceData() {
 921         return surfaceData;
 922     }
 923 
 924     /**
 925      * Sets the Composite in the current graphics state. Composite is used
 926      * in all drawing methods such as drawImage, drawString, drawPath,
 927      * and fillPath.  It specifies how new pixels are to be combined with
 928      * the existing pixels on the graphics device in the rendering process.
 929      * @param comp The Composite object to be used for drawing.
 930      * @see java.awt.Graphics#setXORMode
 931      * @see java.awt.Graphics#setPaintMode
 932      * @see AlphaComposite
 933      */
 934     public void setComposite(Composite comp) {
 935         if (composite == comp) {
 936             return;
 937         }
 938         int newCompState;
 939         CompositeType newCompType;
 940         if (comp instanceof AlphaComposite) {
 941             AlphaComposite alphacomp = (AlphaComposite) comp;
 942             newCompType = CompositeType.forAlphaComposite(alphacomp);
 943             if (newCompType == CompositeType.SrcOverNoEa) {
 944                 if (paintState == PAINT_OPAQUECOLOR ||
 945                     (paintState > PAINT_ALPHACOLOR &&
 946                      paint.getTransparency() == Transparency.OPAQUE))
 947                 {
 948                     newCompState = COMP_ISCOPY;
 949                 } else {
 950                     newCompState = COMP_ALPHA;
 951                 }
 952             } else if (newCompType == CompositeType.SrcNoEa ||
 953                        newCompType == CompositeType.Src ||
 954                        newCompType == CompositeType.Clear)
 955             {
 956                 newCompState = COMP_ISCOPY;
 957             } else if (surfaceData.getTransparency() == Transparency.OPAQUE &&
 958                        newCompType == CompositeType.SrcIn)
 959             {
 960                 newCompState = COMP_ISCOPY;
 961             } else {
 962                 newCompState = COMP_ALPHA;
 963             }
 964         } else if (comp instanceof XORComposite) {
 965             newCompState = COMP_XOR;
 966             newCompType = CompositeType.Xor;
 967         } else if (comp == null) {
 968             throw new IllegalArgumentException("null Composite");
 969         } else {
 970             surfaceData.checkCustomComposite();
 971             newCompState = COMP_CUSTOM;
 972             newCompType = CompositeType.General;
 973         }
 974         if (compositeState != newCompState ||
 975             imageComp != newCompType)
 976         {
 977             compositeState = newCompState;
 978             imageComp = newCompType;
 979             invalidatePipe();
 980             validFontInfo = false;
 981         }
 982         composite = comp;
 983         if (paintState <= PAINT_ALPHACOLOR) {
 984             validateColor();
 985         }
 986     }
 987 
 988     /**
 989      * Sets the Paint in the current graphics state.
 990      * @param paint The Paint object to be used to generate color in
 991      * the rendering process.
 992      * @see java.awt.Graphics#setColor
 993      * @see GradientPaint
 994      * @see TexturePaint
 995      */
 996     public void setPaint(Paint paint) {
 997         if (paint instanceof Color) {
 998             setColor((Color) paint);
 999             return;
1000         }
1001         if (paint == null || this.paint == paint) {
1002             return;
1003         }
1004         this.paint = paint;
1005         if (imageComp == CompositeType.SrcOverNoEa) {
1006             // special case where compState depends on opacity of paint
1007             if (paint.getTransparency() == Transparency.OPAQUE) {
1008                 if (compositeState != COMP_ISCOPY) {
1009                     compositeState = COMP_ISCOPY;
1010                 }
1011             } else {
1012                 if (compositeState == COMP_ISCOPY) {
1013                     compositeState = COMP_ALPHA;
1014                 }
1015             }
1016         }
1017         Class<? extends Paint> paintClass = paint.getClass();
1018         if (paintClass == GradientPaint.class) {
1019             paintState = PAINT_GRADIENT;
1020         } else if (paintClass == LinearGradientPaint.class) {
1021             paintState = PAINT_LIN_GRADIENT;
1022         } else if (paintClass == RadialGradientPaint.class) {
1023             paintState = PAINT_RAD_GRADIENT;
1024         } else if (paintClass == TexturePaint.class) {
1025             paintState = PAINT_TEXTURE;
1026         } else {
1027             paintState = PAINT_CUSTOM;
1028         }
1029         validFontInfo = false;
1030         invalidatePipe();
1031     }
1032 
1033     static final int NON_UNIFORM_SCALE_MASK =
1034         (AffineTransform.TYPE_GENERAL_TRANSFORM |
1035          AffineTransform.TYPE_GENERAL_SCALE);
1036     public static final double MinPenSizeAA =
1037         sun.java2d.pipe.RenderingEngine.getInstance().getMinimumAAPenSize();
1038     public static final double MinPenSizeAASquared =
1039         (MinPenSizeAA * MinPenSizeAA);
1040     // Since inaccuracies in the trig package can cause us to
1041     // calculated a rotated pen width of just slightly greater
1042     // than 1.0, we add a fudge factor to our comparison value
1043     // here so that we do not misclassify single width lines as
1044     // wide lines under certain rotations.
1045     public static final double MinPenSizeSquared = 1.000000001;
1046 
1047     private void validateBasicStroke(BasicStroke bs) {
1048         boolean aa = (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON);
1049         if (transformState < TRANSFORM_TRANSLATESCALE) {
1050             if (aa) {
1051                 if (bs.getLineWidth() <= MinPenSizeAA) {
1052                     if (bs.getDashArray() == null) {
1053                         strokeState = STROKE_THIN;
1054                     } else {
1055                         strokeState = STROKE_THINDASHED;
1056                     }
1057                 } else {
1058                     strokeState = STROKE_WIDE;
1059                 }
1060             } else {
1061                 if (bs == defaultStroke) {
1062                     strokeState = STROKE_THIN;
1063                 } else if (bs.getLineWidth() <= 1.0f) {
1064                     if (bs.getDashArray() == null) {
1065                         strokeState = STROKE_THIN;
1066                     } else {
1067                         strokeState = STROKE_THINDASHED;
1068                     }
1069                 } else {
1070                     strokeState = STROKE_WIDE;
1071                 }
1072             }
1073         } else {
1074             double widthsquared;
1075             if ((transform.getType() & NON_UNIFORM_SCALE_MASK) == 0) {
1076                 /* sqrt omitted, compare to squared limits below. */
1077                 widthsquared = Math.abs(transform.getDeterminant());
1078             } else {
1079                 /* First calculate the "maximum scale" of this transform. */
1080                 double A = transform.getScaleX();       // m00
1081                 double C = transform.getShearX();       // m01
1082                 double B = transform.getShearY();       // m10
1083                 double D = transform.getScaleY();       // m11
1084 
1085                 /*
1086                  * Given a 2 x 2 affine matrix [ A B ] such that
1087                  *                             [ C D ]
1088                  * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
1089                  * find the maximum magnitude (norm) of the vector v'
1090                  * with the constraint (x^2 + y^2 = 1).
1091                  * The equation to maximize is
1092                  *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
1093                  * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
1094                  * Since sqrt is monotonic we can maximize |v'|^2
1095                  * instead and plug in the substitution y = sqrt(1 - x^2).
1096                  * Trigonometric equalities can then be used to get
1097                  * rid of most of the sqrt terms.
1098                  */
1099                 double EA = A*A + B*B;          // x^2 coefficient
1100                 double EB = 2*(A*C + B*D);      // xy coefficient
1101                 double EC = C*C + D*D;          // y^2 coefficient
1102 
1103                 /*
1104                  * There is a lot of calculus omitted here.
1105                  *
1106                  * Conceptually, in the interests of understanding the
1107                  * terms that the calculus produced we can consider
1108                  * that EA and EC end up providing the lengths along
1109                  * the major axes and the hypot term ends up being an
1110                  * adjustment for the additional length along the off-axis
1111                  * angle of rotated or sheared ellipses as well as an
1112                  * adjustment for the fact that the equation below
1113                  * averages the two major axis lengths.  (Notice that
1114                  * the hypot term contains a part which resolves to the
1115                  * difference of these two axis lengths in the absence
1116                  * of rotation.)
1117                  *
1118                  * In the calculus, the ratio of the EB and (EA-EC) terms
1119                  * ends up being the tangent of 2*theta where theta is
1120                  * the angle that the long axis of the ellipse makes
1121                  * with the horizontal axis.  Thus, this equation is
1122                  * calculating the length of the hypotenuse of a triangle
1123                  * along that axis.
1124                  */
1125                 double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
1126 
1127                 /* sqrt omitted, compare to squared limits below. */
1128                 widthsquared = ((EA + EC + hypot)/2.0);
1129             }
1130             if (bs != defaultStroke) {
1131                 widthsquared *= bs.getLineWidth() * bs.getLineWidth();
1132             }
1133             if (widthsquared <=
1134                 (aa ? MinPenSizeAASquared : MinPenSizeSquared))
1135             {
1136                 if (bs.getDashArray() == null) {
1137                     strokeState = STROKE_THIN;
1138                 } else {
1139                     strokeState = STROKE_THINDASHED;
1140                 }
1141             } else {
1142                 strokeState = STROKE_WIDE;
1143             }
1144         }
1145     }
1146 
1147     /*
1148      * Sets the Stroke in the current graphics state.
1149      * @param s The Stroke object to be used to stroke a Path in
1150      * the rendering process.
1151      * @see BasicStroke
1152      */
1153     public void setStroke(Stroke s) {
1154         if (s == null) {
1155             throw new IllegalArgumentException("null Stroke");
1156         }
1157         int saveStrokeState = strokeState;
1158         stroke = s;
1159         if (s instanceof BasicStroke) {
1160             validateBasicStroke((BasicStroke) s);
1161         } else {
1162             strokeState = STROKE_CUSTOM;
1163         }
1164         if (strokeState != saveStrokeState) {
1165             invalidatePipe();
1166         }
1167     }
1168 
1169     /**
1170      * Sets the preferences for the rendering algorithms.
1171      * Hint categories include controls for rendering quality and
1172      * overall time/quality trade-off in the rendering process.
1173      * @param hintKey The key of hint to be set. The strings are
1174      * defined in the RenderingHints class.
1175      * @param hintValue The value indicating preferences for the specified
1176      * hint category. These strings are defined in the RenderingHints
1177      * class.
1178      * @see RenderingHints
1179      */
1180     public void setRenderingHint(Key hintKey, Object hintValue) {
1181         // If we recognize the key, we must recognize the value
1182         //     otherwise throw an IllegalArgumentException
1183         //     and do not change the Hints object
1184         // If we do not recognize the key, just pass it through
1185         //     to the Hints object untouched
1186         if (!hintKey.isCompatibleValue(hintValue)) {
1187             throw new IllegalArgumentException
1188                 (hintValue+" is not compatible with "+hintKey);
1189         }
1190         if (hintKey instanceof SunHints.Key) {
1191             boolean stateChanged;
1192             boolean textStateChanged = false;
1193             boolean recognized = true;
1194             SunHints.Key sunKey = (SunHints.Key) hintKey;
1195             int newHint;
1196             if (sunKey == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST) {
1197                 newHint = ((Integer)hintValue).intValue();
1198             } else {
1199                 newHint = ((SunHints.Value) hintValue).getIndex();
1200             }
1201             switch (sunKey.getIndex()) {
1202             case SunHints.INTKEY_RENDERING:
1203                 stateChanged = (renderHint != newHint);
1204                 if (stateChanged) {
1205                     renderHint = newHint;
1206                     if (interpolationHint == -1) {
1207                         interpolationType =
1208                             (newHint == SunHints.INTVAL_RENDER_QUALITY
1209                              ? AffineTransformOp.TYPE_BILINEAR
1210                              : AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
1211                     }
1212                 }
1213                 break;
1214             case SunHints.INTKEY_ANTIALIASING:
1215                 stateChanged = (antialiasHint != newHint);
1216                 antialiasHint = newHint;
1217                 if (stateChanged) {
1218                     textStateChanged =
1219                         (textAntialiasHint ==
1220                          SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT);
1221                     if (strokeState != STROKE_CUSTOM) {
1222                         validateBasicStroke((BasicStroke) stroke);
1223                     }
1224                 }
1225                 break;
1226             case SunHints.INTKEY_TEXT_ANTIALIASING:
1227                 stateChanged = (textAntialiasHint != newHint);
1228                 textStateChanged = stateChanged;
1229                 textAntialiasHint = newHint;
1230                 break;
1231             case SunHints.INTKEY_FRACTIONALMETRICS:
1232                 stateChanged = (fractionalMetricsHint != newHint);
1233                 textStateChanged = stateChanged;
1234                 fractionalMetricsHint = newHint;
1235                 break;
1236             case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
1237                 stateChanged = false;
1238                 /* Already have validated it is an int 100 <= newHint <= 250 */
1239                 lcdTextContrast = newHint;
1240                 break;
1241             case SunHints.INTKEY_INTERPOLATION:
1242                 interpolationHint = newHint;
1243                 switch (newHint) {
1244                 case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1245                     newHint = AffineTransformOp.TYPE_BICUBIC;
1246                     break;
1247                 case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1248                     newHint = AffineTransformOp.TYPE_BILINEAR;
1249                     break;
1250                 default:
1251                 case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1252                     newHint = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
1253                     break;
1254                 }
1255                 stateChanged = (interpolationType != newHint);
1256                 interpolationType = newHint;
1257                 break;
1258             case SunHints.INTKEY_STROKE_CONTROL:
1259                 stateChanged = (strokeHint != newHint);
1260                 strokeHint = newHint;
1261                 break;
1262             case SunHints.INTKEY_RESOLUTION_VARIANT:
1263                 stateChanged = (resolutionVariantHint != newHint);
1264                 resolutionVariantHint = newHint;
1265                 break;
1266             default:
1267                 recognized = false;
1268                 stateChanged = false;
1269                 break;
1270             }
1271             if (recognized) {
1272                 if (stateChanged) {
1273                     invalidatePipe();
1274                     if (textStateChanged) {
1275                         fontMetrics = null;
1276                         this.cachedFRC = null;
1277                         validFontInfo = false;
1278                         this.glyphVectorFontInfo = null;
1279                     }
1280                 }
1281                 if (hints != null) {
1282                     hints.put(hintKey, hintValue);
1283                 }
1284                 return;
1285             }
1286         }
1287         // Nothing we recognize so none of "our state" has changed
1288         if (hints == null) {
1289             hints = makeHints(null);
1290         }
1291         hints.put(hintKey, hintValue);
1292     }
1293 
1294 
1295     /**
1296      * Returns the preferences for the rendering algorithms.
1297      * @param hintCategory The category of hint to be set. The strings
1298      * are defined in the RenderingHints class.
1299      * @return The preferences for rendering algorithms. The strings
1300      * are defined in the RenderingHints class.
1301      * @see RenderingHints
1302      */
1303     public Object getRenderingHint(Key hintKey) {
1304         if (hints != null) {
1305             return hints.get(hintKey);
1306         }
1307         if (!(hintKey instanceof SunHints.Key)) {
1308             return null;
1309         }
1310         int keyindex = ((SunHints.Key)hintKey).getIndex();
1311         switch (keyindex) {
1312         case SunHints.INTKEY_RENDERING:
1313             return SunHints.Value.get(SunHints.INTKEY_RENDERING,
1314                                       renderHint);
1315         case SunHints.INTKEY_ANTIALIASING:
1316             return SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
1317                                       antialiasHint);
1318         case SunHints.INTKEY_TEXT_ANTIALIASING:
1319             return SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
1320                                       textAntialiasHint);
1321         case SunHints.INTKEY_FRACTIONALMETRICS:
1322             return SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
1323                                       fractionalMetricsHint);
1324         case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
1325             return new Integer(lcdTextContrast);
1326         case SunHints.INTKEY_INTERPOLATION:
1327             switch (interpolationHint) {
1328             case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1329                 return SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
1330             case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1331                 return SunHints.VALUE_INTERPOLATION_BILINEAR;
1332             case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1333                 return SunHints.VALUE_INTERPOLATION_BICUBIC;
1334             }
1335             return null;
1336         case SunHints.INTKEY_STROKE_CONTROL:
1337             return SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
1338                                       strokeHint);
1339         case SunHints.INTKEY_RESOLUTION_VARIANT:
1340             return SunHints.Value.get(SunHints.INTKEY_RESOLUTION_VARIANT,
1341                                       resolutionVariantHint);
1342         }
1343         return null;
1344     }
1345 
1346     /**
1347      * Sets the preferences for the rendering algorithms.
1348      * Hint categories include controls for rendering quality and
1349      * overall time/quality trade-off in the rendering process.
1350      * @param hints The rendering hints to be set
1351      * @see RenderingHints
1352      */
1353     public void setRenderingHints(Map<?,?> hints) {
1354         this.hints = null;
1355         renderHint = SunHints.INTVAL_RENDER_DEFAULT;
1356         antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
1357         textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
1358         fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
1359         lcdTextContrast = lcdTextContrastDefaultValue;
1360         interpolationHint = -1;
1361         interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
1362         boolean customHintPresent = false;
1363         Iterator<?> iter = hints.keySet().iterator();
1364         while (iter.hasNext()) {
1365             Object key = iter.next();
1366             if (key == SunHints.KEY_RENDERING ||
1367                 key == SunHints.KEY_ANTIALIASING ||
1368                 key == SunHints.KEY_TEXT_ANTIALIASING ||
1369                 key == SunHints.KEY_FRACTIONALMETRICS ||
1370                 key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
1371                 key == SunHints.KEY_STROKE_CONTROL ||
1372                 key == SunHints.KEY_INTERPOLATION)
1373             {
1374                 setRenderingHint((Key) key, hints.get(key));
1375             } else {
1376                 customHintPresent = true;
1377             }
1378         }
1379         if (customHintPresent) {
1380             this.hints = makeHints(hints);
1381         }
1382         invalidatePipe();
1383     }
1384 
1385     /**
1386      * Adds a number of preferences for the rendering algorithms.
1387      * Hint categories include controls for rendering quality and
1388      * overall time/quality trade-off in the rendering process.
1389      * @param hints The rendering hints to be set
1390      * @see RenderingHints
1391      */
1392     public void addRenderingHints(Map<?,?> hints) {
1393         boolean customHintPresent = false;
1394         Iterator<?> iter = hints.keySet().iterator();
1395         while (iter.hasNext()) {
1396             Object key = iter.next();
1397             if (key == SunHints.KEY_RENDERING ||
1398                 key == SunHints.KEY_ANTIALIASING ||
1399                 key == SunHints.KEY_TEXT_ANTIALIASING ||
1400                 key == SunHints.KEY_FRACTIONALMETRICS ||
1401                 key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
1402                 key == SunHints.KEY_STROKE_CONTROL ||
1403                 key == SunHints.KEY_INTERPOLATION)
1404             {
1405                 setRenderingHint((Key) key, hints.get(key));
1406             } else {
1407                 customHintPresent = true;
1408             }
1409         }
1410         if (customHintPresent) {
1411             if (this.hints == null) {
1412                 this.hints = makeHints(hints);
1413             } else {
1414                 this.hints.putAll(hints);
1415             }
1416         }
1417     }
1418 
1419     /**
1420      * Gets the preferences for the rendering algorithms.
1421      * Hint categories include controls for rendering quality and
1422      * overall time/quality trade-off in the rendering process.
1423      * @see RenderingHints
1424      */
1425     public RenderingHints getRenderingHints() {
1426         if (hints == null) {
1427             return makeHints(null);
1428         } else {
1429             return (RenderingHints) hints.clone();
1430         }
1431     }
1432 
1433     RenderingHints makeHints(Map hints) {
1434         RenderingHints model = new RenderingHints(hints);
1435         model.put(SunHints.KEY_RENDERING,
1436                   SunHints.Value.get(SunHints.INTKEY_RENDERING,
1437                                      renderHint));
1438         model.put(SunHints.KEY_ANTIALIASING,
1439                   SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
1440                                      antialiasHint));
1441         model.put(SunHints.KEY_TEXT_ANTIALIASING,
1442                   SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
1443                                      textAntialiasHint));
1444         model.put(SunHints.KEY_FRACTIONALMETRICS,
1445                   SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
1446                                      fractionalMetricsHint));
1447         model.put(SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST,
1448                   Integer.valueOf(lcdTextContrast));
1449         Object value;
1450         switch (interpolationHint) {
1451         case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1452             value = SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
1453             break;
1454         case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1455             value = SunHints.VALUE_INTERPOLATION_BILINEAR;
1456             break;
1457         case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1458             value = SunHints.VALUE_INTERPOLATION_BICUBIC;
1459             break;
1460         default:
1461             value = null;
1462             break;
1463         }
1464         if (value != null) {
1465             model.put(SunHints.KEY_INTERPOLATION, value);
1466         }
1467         model.put(SunHints.KEY_STROKE_CONTROL,
1468                   SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
1469                                      strokeHint));
1470         return model;
1471     }
1472 
1473     /**
1474      * Concatenates the current transform of this Graphics2D with a
1475      * translation transformation.
1476      * This is equivalent to calling transform(T), where T is an
1477      * AffineTransform represented by the following matrix:
1478      * <pre>
1479      *          [   1    0    tx  ]
1480      *          [   0    1    ty  ]
1481      *          [   0    0    1   ]
1482      * </pre>
1483      */
1484     public void translate(double tx, double ty) {
1485         transform.translate(tx, ty);
1486         invalidateTransform();
1487     }
1488 
1489     /**
1490      * Concatenates the current transform of this Graphics2D with a
1491      * rotation transformation.
1492      * This is equivalent to calling transform(R), where R is an
1493      * AffineTransform represented by the following matrix:
1494      * <pre>
1495      *          [   cos(theta)    -sin(theta)    0   ]
1496      *          [   sin(theta)     cos(theta)    0   ]
1497      *          [       0              0         1   ]
1498      * </pre>
1499      * Rotating with a positive angle theta rotates points on the positive
1500      * x axis toward the positive y axis.
1501      * @param theta The angle of rotation in radians.
1502      */
1503     public void rotate(double theta) {
1504         transform.rotate(theta);
1505         invalidateTransform();
1506     }
1507 
1508     /**
1509      * Concatenates the current transform of this Graphics2D with a
1510      * translated rotation transformation.
1511      * This is equivalent to the following sequence of calls:
1512      * <pre>
1513      *          translate(x, y);
1514      *          rotate(theta);
1515      *          translate(-x, -y);
1516      * </pre>
1517      * Rotating with a positive angle theta rotates points on the positive
1518      * x axis toward the positive y axis.
1519      * @param theta The angle of rotation in radians.
1520      * @param x The x coordinate of the origin of the rotation
1521      * @param y The x coordinate of the origin of the rotation
1522      */
1523     public void rotate(double theta, double x, double y) {
1524         transform.rotate(theta, x, y);
1525         invalidateTransform();
1526     }
1527 
1528     /**
1529      * Concatenates the current transform of this Graphics2D with a
1530      * scaling transformation.
1531      * This is equivalent to calling transform(S), where S is an
1532      * AffineTransform represented by the following matrix:
1533      * <pre>
1534      *          [   sx   0    0   ]
1535      *          [   0    sy   0   ]
1536      *          [   0    0    1   ]
1537      * </pre>
1538      */
1539     public void scale(double sx, double sy) {
1540         transform.scale(sx, sy);
1541         invalidateTransform();
1542     }
1543 
1544     /**
1545      * Concatenates the current transform of this Graphics2D with a
1546      * shearing transformation.
1547      * This is equivalent to calling transform(SH), where SH is an
1548      * AffineTransform represented by the following matrix:
1549      * <pre>
1550      *          [   1   shx   0   ]
1551      *          [  shy   1    0   ]
1552      *          [   0    0    1   ]
1553      * </pre>
1554      * @param shx The factor by which coordinates are shifted towards the
1555      * positive X axis direction according to their Y coordinate
1556      * @param shy The factor by which coordinates are shifted towards the
1557      * positive Y axis direction according to their X coordinate
1558      */
1559     public void shear(double shx, double shy) {
1560         transform.shear(shx, shy);
1561         invalidateTransform();
1562     }
1563 
1564     /**
1565      * Composes a Transform object with the transform in this
1566      * Graphics2D according to the rule last-specified-first-applied.
1567      * If the currrent transform is Cx, the result of composition
1568      * with Tx is a new transform Cx'.  Cx' becomes the current
1569      * transform for this Graphics2D.
1570      * Transforming a point p by the updated transform Cx' is
1571      * equivalent to first transforming p by Tx and then transforming
1572      * the result by the original transform Cx.  In other words,
1573      * Cx'(p) = Cx(Tx(p)).
1574      * A copy of the Tx is made, if necessary, so further
1575      * modifications to Tx do not affect rendering.
1576      * @param Tx The Transform object to be composed with the current
1577      * transform.
1578      * @see #setTransform
1579      * @see AffineTransform
1580      */
1581     public void transform(AffineTransform xform) {
1582         this.transform.concatenate(xform);
1583         invalidateTransform();
1584     }
1585 
1586     /**
1587      * Translate
1588      */
1589     public void translate(int x, int y) {
1590         transform.translate(x, y);
1591         if (transformState <= TRANSFORM_INT_TRANSLATE) {
1592             transX += x;
1593             transY += y;
1594             transformState = (((transX | transY) == 0) ?
1595                               TRANSFORM_ISIDENT : TRANSFORM_INT_TRANSLATE);
1596         } else {
1597             invalidateTransform();
1598         }
1599     }
1600 
1601     /**
1602      * Sets the Transform in the current graphics state.
1603      * @param Tx The Transform object to be used in the rendering process.
1604      * @see #transform
1605      * @see TransformChain
1606      * @see AffineTransform
1607      */
1608     @Override
1609     public void setTransform(AffineTransform Tx) {
1610         if ((constrainX | constrainY) == 0 && devScale == 1) {
1611             transform.setTransform(Tx);
1612         } else {
1613             transform.setTransform(devScale, 0, 0, devScale, constrainX,
1614                                    constrainY);
1615             transform.concatenate(Tx);
1616         }
1617         invalidateTransform();
1618     }
1619 
1620     protected void invalidateTransform() {
1621         int type = transform.getType();
1622         int origTransformState = transformState;
1623         if (type == AffineTransform.TYPE_IDENTITY) {
1624             transformState = TRANSFORM_ISIDENT;
1625             transX = transY = 0;
1626         } else if (type == AffineTransform.TYPE_TRANSLATION) {
1627             double dtx = transform.getTranslateX();
1628             double dty = transform.getTranslateY();
1629             transX = (int) Math.floor(dtx + 0.5);
1630             transY = (int) Math.floor(dty + 0.5);
1631             if (dtx == transX && dty == transY) {
1632                 transformState = TRANSFORM_INT_TRANSLATE;
1633             } else {
1634                 transformState = TRANSFORM_ANY_TRANSLATE;
1635             }
1636         } else if ((type & (AffineTransform.TYPE_FLIP |
1637                             AffineTransform.TYPE_MASK_ROTATION |
1638                             AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0)
1639         {
1640             transformState = TRANSFORM_TRANSLATESCALE;
1641             transX = transY = 0;
1642         } else {
1643             transformState = TRANSFORM_GENERIC;
1644             transX = transY = 0;
1645         }
1646 
1647         if (transformState >= TRANSFORM_TRANSLATESCALE ||
1648             origTransformState >= TRANSFORM_TRANSLATESCALE)
1649         {
1650             /* Its only in this case that the previous or current transform
1651              * was more than a translate that font info is invalidated
1652              */
1653             cachedFRC = null;
1654             this.validFontInfo = false;
1655             this.fontMetrics = null;
1656             this.glyphVectorFontInfo = null;
1657 
1658             if (transformState != origTransformState) {
1659                 invalidatePipe();
1660             }
1661         }
1662         if (strokeState != STROKE_CUSTOM) {
1663             validateBasicStroke((BasicStroke) stroke);
1664         }
1665     }
1666 
1667     /**
1668      * Returns the current Transform in the Graphics2D state.
1669      * @see #transform
1670      * @see #setTransform
1671      */
1672     @Override
1673     public AffineTransform getTransform() {
1674         if ((constrainX | constrainY) == 0 && devScale == 1) {
1675             return new AffineTransform(transform);
1676         }
1677         final double invScale = 1.0 / devScale;
1678         AffineTransform tx = new AffineTransform(invScale, 0, 0, invScale,
1679                                                  -constrainX * invScale,
1680                                                  -constrainY * invScale);
1681         tx.concatenate(transform);
1682         return tx;
1683     }
1684 
1685     /**
1686      * Returns the current Transform ignoring the "constrain"
1687      * rectangle.
1688      */
1689     public AffineTransform cloneTransform() {
1690         return new AffineTransform(transform);
1691     }
1692 
1693     /**
1694      * Returns the current Paint in the Graphics2D state.
1695      * @see #setPaint
1696      * @see java.awt.Graphics#setColor
1697      */
1698     public Paint getPaint() {
1699         return paint;
1700     }
1701 
1702     /**
1703      * Returns the current Composite in the Graphics2D state.
1704      * @see #setComposite
1705      */
1706     public Composite getComposite() {
1707         return composite;
1708     }
1709 
1710     public Color getColor() {
1711         return foregroundColor;
1712     }
1713 
1714     /*
1715      * Validate the eargb and pixel fields against the current color.
1716      *
1717      * The eargb field must take into account the extraAlpha
1718      * value of an AlphaComposite.  It may also take into account
1719      * the Fsrc Porter-Duff blending function if such a function is
1720      * a constant (see handling of Clear mode below).  For instance,
1721      * by factoring in the (Fsrc == 0) state of the Clear mode we can
1722      * use a SrcNoEa loop just as easily as a general Alpha loop
1723      * since the math will be the same in both cases.
1724      *
1725      * The pixel field will always be the best pixel data choice for
1726      * the final result of all calculations applied to the eargb field.
1727      *
1728      * Note that this method is only necessary under the following
1729      * conditions:
1730      *     (paintState <= PAINT_ALPHA_COLOR &&
1731      *      compositeState <= COMP_CUSTOM)
1732      * though nothing bad will happen if it is run in other states.
1733      */
1734     final void validateColor() {
1735         int eargb;
1736         if (imageComp == CompositeType.Clear) {
1737             eargb = 0;
1738         } else {
1739             eargb = foregroundColor.getRGB();
1740             if (compositeState <= COMP_ALPHA &&
1741                 imageComp != CompositeType.SrcNoEa &&
1742                 imageComp != CompositeType.SrcOverNoEa)
1743             {
1744                 AlphaComposite alphacomp = (AlphaComposite) composite;
1745                 int a = Math.round(alphacomp.getAlpha() * (eargb >>> 24));
1746                 eargb = (eargb & 0x00ffffff) | (a << 24);
1747             }
1748         }
1749         this.eargb = eargb;
1750         this.pixel = surfaceData.pixelFor(eargb);
1751     }
1752 
1753     public void setColor(Color color) {
1754         if (color == null || color == paint) {
1755             return;
1756         }
1757         this.paint = foregroundColor = color;
1758         validateColor();
1759         if ((eargb >> 24) == -1) {
1760             if (paintState == PAINT_OPAQUECOLOR) {
1761                 return;
1762             }
1763             paintState = PAINT_OPAQUECOLOR;
1764             if (imageComp == CompositeType.SrcOverNoEa) {
1765                 // special case where compState depends on opacity of paint
1766                 compositeState = COMP_ISCOPY;
1767             }
1768         } else {
1769             if (paintState == PAINT_ALPHACOLOR) {
1770                 return;
1771             }
1772             paintState = PAINT_ALPHACOLOR;
1773             if (imageComp == CompositeType.SrcOverNoEa) {
1774                 // special case where compState depends on opacity of paint
1775                 compositeState = COMP_ALPHA;
1776             }
1777         }
1778         validFontInfo = false;
1779         invalidatePipe();
1780     }
1781 
1782     /**
1783      * Sets the background color in this context used for clearing a region.
1784      * When Graphics2D is constructed for a component, the backgroung color is
1785      * inherited from the component. Setting the background color in the
1786      * Graphics2D context only affects the subsequent clearRect() calls and
1787      * not the background color of the component. To change the background
1788      * of the component, use appropriate methods of the component.
1789      * @param color The background color that should be used in
1790      * subsequent calls to clearRect().
1791      * @see getBackground
1792      * @see Graphics.clearRect()
1793      */
1794     public void setBackground(Color color) {
1795         backgroundColor = color;
1796     }
1797 
1798     /**
1799      * Returns the background color used for clearing a region.
1800      * @see setBackground
1801      */
1802     public Color getBackground() {
1803         return backgroundColor;
1804     }
1805 
1806     /**
1807      * Returns the current Stroke in the Graphics2D state.
1808      * @see setStroke
1809      */
1810     public Stroke getStroke() {
1811         return stroke;
1812     }
1813 
1814     public Rectangle getClipBounds() {
1815         if (clipState == CLIP_DEVICE) {
1816             return null;
1817         }
1818         return getClipBounds(new Rectangle());
1819     }
1820 
1821     public Rectangle getClipBounds(Rectangle r) {
1822         if (clipState != CLIP_DEVICE) {
1823             if (transformState <= TRANSFORM_INT_TRANSLATE) {
1824                 if (usrClip instanceof Rectangle) {
1825                     r.setBounds((Rectangle) usrClip);
1826                 } else {
1827                     r.setFrame(usrClip.getBounds2D());
1828                 }
1829                 r.translate(-transX, -transY);
1830             } else {
1831                 r.setFrame(getClip().getBounds2D());
1832             }
1833         } else if (r == null) {
1834             throw new NullPointerException("null rectangle parameter");
1835         }
1836         return r;
1837     }
1838 
1839     public boolean hitClip(int x, int y, int width, int height) {
1840         if (width <= 0 || height <= 0) {
1841             return false;
1842         }
1843         if (transformState > TRANSFORM_INT_TRANSLATE) {
1844             // Note: Technically the most accurate test would be to
1845             // raster scan the parallelogram of the transformed rectangle
1846             // and do a span for span hit test against the clip, but for
1847             // speed we approximate the test with a bounding box of the
1848             // transformed rectangle.  The cost of rasterizing the
1849             // transformed rectangle is probably high enough that it is
1850             // not worth doing so to save the caller from having to call
1851             // a rendering method where we will end up discovering the
1852             // same answer in about the same amount of time anyway.
1853             // This logic breaks down if this hit test is being performed
1854             // on the bounds of a group of shapes in which case it might
1855             // be beneficial to be a little more accurate to avoid lots
1856             // of subsequent rendering calls.  In either case, this relaxed
1857             // test should not be significantly less accurate than the
1858             // optimal test for most transforms and so the conservative
1859             // answer should not cause too much extra work.
1860 
1861             double d[] = {
1862                 x, y,
1863                 x+width, y,
1864                 x, y+height,
1865                 x+width, y+height
1866             };
1867             transform.transform(d, 0, d, 0, 4);
1868             x = (int) Math.floor(Math.min(Math.min(d[0], d[2]),
1869                                           Math.min(d[4], d[6])));
1870             y = (int) Math.floor(Math.min(Math.min(d[1], d[3]),
1871                                           Math.min(d[5], d[7])));
1872             width = (int) Math.ceil(Math.max(Math.max(d[0], d[2]),
1873                                              Math.max(d[4], d[6])));
1874             height = (int) Math.ceil(Math.max(Math.max(d[1], d[3]),
1875                                               Math.max(d[5], d[7])));
1876         } else {
1877             x += transX;
1878             y += transY;
1879             width += x;
1880             height += y;
1881         }
1882 
1883         try {
1884             if (!getCompClip().intersectsQuickCheckXYXY(x, y, width, height)) {
1885                 return false;
1886             }
1887         } catch (InvalidPipeException e) {
1888             return false;
1889         }
1890         // REMIND: We could go one step further here and examine the
1891         // non-rectangular clip shape more closely if there is one.
1892         // Since the clip has already been rasterized, the performance
1893         // penalty of doing the scan is probably still within the bounds
1894         // of a good tradeoff between speed and quality of the answer.
1895         return true;
1896     }
1897 
1898     protected void validateCompClip() {
1899         int origClipState = clipState;
1900         if (usrClip == null) {
1901             clipState = CLIP_DEVICE;
1902             clipRegion = devClip;
1903         } else if (usrClip instanceof Rectangle2D) {
1904             clipState = CLIP_RECTANGULAR;
1905             if (usrClip instanceof Rectangle) {
1906                 clipRegion = devClip.getIntersection((Rectangle)usrClip);
1907             } else {
1908                 clipRegion = devClip.getIntersection(usrClip.getBounds());
1909             }
1910         } else {
1911             PathIterator cpi = usrClip.getPathIterator(null);
1912             int box[] = new int[4];
1913             ShapeSpanIterator sr = LoopPipe.getFillSSI(this);
1914             try {
1915                 sr.setOutputArea(devClip);
1916                 sr.appendPath(cpi);
1917                 sr.getPathBox(box);
1918                 Region r = Region.getInstance(box);
1919                 r.appendSpans(sr);
1920                 clipRegion = r;
1921                 clipState =
1922                     r.isRectangular() ? CLIP_RECTANGULAR : CLIP_SHAPE;
1923             } finally {
1924                 sr.dispose();
1925             }
1926         }
1927         if (origClipState != clipState &&
1928             (clipState == CLIP_SHAPE || origClipState == CLIP_SHAPE))
1929         {
1930             validFontInfo = false;
1931             invalidatePipe();
1932         }
1933     }
1934 
1935     static final int NON_RECTILINEAR_TRANSFORM_MASK =
1936         (AffineTransform.TYPE_GENERAL_TRANSFORM |
1937          AffineTransform.TYPE_GENERAL_ROTATION);
1938 
1939     protected Shape transformShape(Shape s) {
1940         if (s == null) {
1941             return null;
1942         }
1943         if (transformState > TRANSFORM_INT_TRANSLATE) {
1944             return transformShape(transform, s);
1945         } else {
1946             return transformShape(transX, transY, s);
1947         }
1948     }
1949 
1950     public Shape untransformShape(Shape s) {
1951         if (s == null) {
1952             return null;
1953         }
1954         if (transformState > TRANSFORM_INT_TRANSLATE) {
1955             try {
1956                 return transformShape(transform.createInverse(), s);
1957             } catch (NoninvertibleTransformException e) {
1958                 return null;
1959             }
1960         } else {
1961             return transformShape(-transX, -transY, s);
1962         }
1963     }
1964 
1965     protected static Shape transformShape(int tx, int ty, Shape s) {
1966         if (s == null) {
1967             return null;
1968         }
1969 
1970         if (s instanceof Rectangle) {
1971             Rectangle r = s.getBounds();
1972             r.translate(tx, ty);
1973             return r;
1974         }
1975         if (s instanceof Rectangle2D) {
1976             Rectangle2D rect = (Rectangle2D) s;
1977             return new Rectangle2D.Double(rect.getX() + tx,
1978                                           rect.getY() + ty,
1979                                           rect.getWidth(),
1980                                           rect.getHeight());
1981         }
1982 
1983         if (tx == 0 && ty == 0) {
1984             return cloneShape(s);
1985         }
1986 
1987         AffineTransform mat = AffineTransform.getTranslateInstance(tx, ty);
1988         return mat.createTransformedShape(s);
1989     }
1990 
1991     protected static Shape transformShape(AffineTransform tx, Shape clip) {
1992         if (clip == null) {
1993             return null;
1994         }
1995 
1996         if (clip instanceof Rectangle2D &&
1997             (tx.getType() & NON_RECTILINEAR_TRANSFORM_MASK) == 0)
1998         {
1999             Rectangle2D rect = (Rectangle2D) clip;
2000             double matrix[] = new double[4];
2001             matrix[0] = rect.getX();
2002             matrix[1] = rect.getY();
2003             matrix[2] = matrix[0] + rect.getWidth();
2004             matrix[3] = matrix[1] + rect.getHeight();
2005             tx.transform(matrix, 0, matrix, 0, 2);
2006             fixRectangleOrientation(matrix, rect);
2007             return new Rectangle2D.Double(matrix[0], matrix[1],
2008                                           matrix[2] - matrix[0],
2009                                           matrix[3] - matrix[1]);
2010         }
2011 
2012         if (tx.isIdentity()) {
2013             return cloneShape(clip);
2014         }
2015 
2016         return tx.createTransformedShape(clip);
2017     }
2018 
2019     /**
2020      * Sets orientation of the rectangle according to the clip.
2021      */
2022     private static void fixRectangleOrientation(double[] m, Rectangle2D clip) {
2023         if (clip.getWidth() > 0 != (m[2] - m[0] > 0)) {
2024             double t = m[0];
2025             m[0] = m[2];
2026             m[2] = t;
2027         }
2028         if (clip.getHeight() > 0 != (m[3] - m[1] > 0)) {
2029             double t = m[1];
2030             m[1] = m[3];
2031             m[3] = t;
2032         }
2033     }
2034 
2035     public void clipRect(int x, int y, int w, int h) {
2036         clip(new Rectangle(x, y, w, h));
2037     }
2038 
2039     public void setClip(int x, int y, int w, int h) {
2040         setClip(new Rectangle(x, y, w, h));
2041     }
2042 
2043     public Shape getClip() {
2044         return untransformShape(usrClip);
2045     }
2046 
2047     public void setClip(Shape sh) {
2048         usrClip = transformShape(sh);
2049         validateCompClip();
2050     }
2051 
2052     /**
2053      * Intersects the current clip with the specified Path and sets the
2054      * current clip to the resulting intersection. The clip is transformed
2055      * with the current transform in the Graphics2D state before being
2056      * intersected with the current clip. This method is used to make the
2057      * current clip smaller. To make the clip larger, use any setClip method.
2058      * @param p The Path to be intersected with the current clip.
2059      */
2060     public void clip(Shape s) {
2061         s = transformShape(s);
2062         if (usrClip != null) {
2063             s = intersectShapes(usrClip, s, true, true);
2064         }
2065         usrClip = s;
2066         validateCompClip();
2067     }
2068 
2069     public void setPaintMode() {
2070         setComposite(AlphaComposite.SrcOver);
2071     }
2072 
2073     public void setXORMode(Color c) {
2074         if (c == null) {
2075             throw new IllegalArgumentException("null XORColor");
2076         }
2077         setComposite(new XORComposite(c, surfaceData));
2078     }
2079 
2080     Blit lastCAblit;
2081     Composite lastCAcomp;
2082 
2083     public void copyArea(int x, int y, int w, int h, int dx, int dy) {
2084         try {
2085             doCopyArea(x, y, w, h, dx, dy);
2086         } catch (InvalidPipeException e) {
2087             try {
2088                 revalidateAll();
2089                 doCopyArea(x, y, w, h, dx, dy);
2090             } catch (InvalidPipeException e2) {
2091                 // Still catching the exception; we are not yet ready to
2092                 // validate the surfaceData correctly.  Fail for now and
2093                 // try again next time around.
2094             }
2095         } finally {
2096             surfaceData.markDirty();
2097         }
2098     }
2099 
2100     private void doCopyArea(int x, int y, int w, int h, int dx, int dy) {
2101         if (w <= 0 || h <= 0) {
2102             return;
2103         }
2104         SurfaceData theData = surfaceData;
2105         if (theData.copyArea(this, x, y, w, h, dx, dy)) {
2106             return;
2107         }
2108         if (transformState >= TRANSFORM_TRANSLATESCALE) {
2109             throw new InternalError("transformed copyArea not implemented yet");
2110         }
2111         // REMIND: This method does not deal with missing data from the
2112         // source object (i.e. it does not send exposure events...)
2113 
2114         Region clip = getCompClip();
2115 
2116         Composite comp = composite;
2117         if (lastCAcomp != comp) {
2118             SurfaceType dsttype = theData.getSurfaceType();
2119             CompositeType comptype = imageComp;
2120             if (CompositeType.SrcOverNoEa.equals(comptype) &&
2121                 theData.getTransparency() == Transparency.OPAQUE)
2122             {
2123                 comptype = CompositeType.SrcNoEa;
2124             }
2125             lastCAblit = Blit.locate(dsttype, comptype, dsttype);
2126             lastCAcomp = comp;
2127         }
2128 
2129         x += transX;
2130         y += transY;
2131 
2132         Blit ob = lastCAblit;
2133         if (dy == 0 && dx > 0 && dx < w) {
2134             while (w > 0) {
2135                 int partW = Math.min(w, dx);
2136                 w -= partW;
2137                 int sx = x + w;
2138                 ob.Blit(theData, theData, comp, clip,
2139                         sx, y, sx+dx, y+dy, partW, h);
2140             }
2141             return;
2142         }
2143         if (dy > 0 && dy < h && dx > -w && dx < w) {
2144             while (h > 0) {
2145                 int partH = Math.min(h, dy);
2146                 h -= partH;
2147                 int sy = y + h;
2148                 ob.Blit(theData, theData, comp, clip,
2149                         x, sy, x+dx, sy+dy, w, partH);
2150             }
2151             return;
2152         }
2153         ob.Blit(theData, theData, comp, clip, x, y, x+dx, y+dy, w, h);
2154     }
2155 
2156     /*
2157     public void XcopyArea(int x, int y, int w, int h, int dx, int dy) {
2158         Rectangle rect = new Rectangle(x, y, w, h);
2159         rect = transformBounds(rect, transform);
2160         Point2D    point = new Point2D.Float(dx, dy);
2161         Point2D    root  = new Point2D.Float(0, 0);
2162         point = transform.transform(point, point);
2163         root  = transform.transform(root, root);
2164         int fdx = (int)(point.getX()-root.getX());
2165         int fdy = (int)(point.getY()-root.getY());
2166 
2167         Rectangle r = getCompBounds().intersection(rect.getBounds());
2168 
2169         if (r.isEmpty()) {
2170             return;
2171         }
2172 
2173         // Begin Rasterizer for Clip Shape
2174         boolean skipClip = true;
2175         byte[] clipAlpha = null;
2176 
2177         if (clipState == CLIP_SHAPE) {
2178 
2179             int box[] = new int[4];
2180 
2181             clipRegion.getBounds(box);
2182             Rectangle devR = new Rectangle(box[0], box[1],
2183                                            box[2] - box[0],
2184                                            box[3] - box[1]);
2185             if (!devR.isEmpty()) {
2186                 OutputManager mgr = getOutputManager();
2187                 RegionIterator ri = clipRegion.getIterator();
2188                 while (ri.nextYRange(box)) {
2189                     int spany = box[1];
2190                     int spanh = box[3] - spany;
2191                     while (ri.nextXBand(box)) {
2192                         int spanx = box[0];
2193                         int spanw = box[2] - spanx;
2194                         mgr.copyArea(this, null,
2195                                      spanw, 0,
2196                                      spanx, spany,
2197                                      spanw, spanh,
2198                                      fdx, fdy,
2199                                      null);
2200                     }
2201                 }
2202             }
2203             return;
2204         }
2205         // End Rasterizer for Clip Shape
2206 
2207         getOutputManager().copyArea(this, null,
2208                                     r.width, 0,
2209                                     r.x, r.y, r.width,
2210                                     r.height, fdx, fdy,
2211                                     null);
2212     }
2213     */
2214 
2215     public void drawLine(int x1, int y1, int x2, int y2) {
2216         try {
2217             drawpipe.drawLine(this, x1, y1, x2, y2);
2218         } catch (InvalidPipeException e) {
2219             try {
2220                 revalidateAll();
2221                 drawpipe.drawLine(this, x1, y1, x2, y2);
2222             } catch (InvalidPipeException e2) {
2223                 // Still catching the exception; we are not yet ready to
2224                 // validate the surfaceData correctly.  Fail for now and
2225                 // try again next time around.
2226             }
2227         } finally {
2228             surfaceData.markDirty();
2229         }
2230     }
2231 
2232     public void drawRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
2233         try {
2234             drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
2235         } catch (InvalidPipeException e) {
2236             try {
2237                 revalidateAll();
2238                 drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
2239             } catch (InvalidPipeException e2) {
2240                 // Still catching the exception; we are not yet ready to
2241                 // validate the surfaceData correctly.  Fail for now and
2242                 // try again next time around.
2243             }
2244         } finally {
2245             surfaceData.markDirty();
2246         }
2247     }
2248 
2249     public void fillRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
2250         try {
2251             fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
2252         } catch (InvalidPipeException e) {
2253             try {
2254                 revalidateAll();
2255                 fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
2256             } catch (InvalidPipeException e2) {
2257                 // Still catching the exception; we are not yet ready to
2258                 // validate the surfaceData correctly.  Fail for now and
2259                 // try again next time around.
2260             }
2261         } finally {
2262             surfaceData.markDirty();
2263         }
2264     }
2265 
2266     public void drawOval(int x, int y, int w, int h) {
2267         try {
2268             drawpipe.drawOval(this, x, y, w, h);
2269         } catch (InvalidPipeException e) {
2270             try {
2271                 revalidateAll();
2272                 drawpipe.drawOval(this, x, y, w, h);
2273             } catch (InvalidPipeException e2) {
2274                 // Still catching the exception; we are not yet ready to
2275                 // validate the surfaceData correctly.  Fail for now and
2276                 // try again next time around.
2277             }
2278         } finally {
2279             surfaceData.markDirty();
2280         }
2281     }
2282 
2283     public void fillOval(int x, int y, int w, int h) {
2284         try {
2285             fillpipe.fillOval(this, x, y, w, h);
2286         } catch (InvalidPipeException e) {
2287             try {
2288                 revalidateAll();
2289                 fillpipe.fillOval(this, x, y, w, h);
2290             } catch (InvalidPipeException e2) {
2291                 // Still catching the exception; we are not yet ready to
2292                 // validate the surfaceData correctly.  Fail for now and
2293                 // try again next time around.
2294             }
2295         } finally {
2296             surfaceData.markDirty();
2297         }
2298     }
2299 
2300     public void drawArc(int x, int y, int w, int h,
2301                         int startAngl, int arcAngl) {
2302         try {
2303             drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
2304         } catch (InvalidPipeException e) {
2305             try {
2306                 revalidateAll();
2307                 drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
2308             } catch (InvalidPipeException e2) {
2309                 // Still catching the exception; we are not yet ready to
2310                 // validate the surfaceData correctly.  Fail for now and
2311                 // try again next time around.
2312             }
2313         } finally {
2314             surfaceData.markDirty();
2315         }
2316     }
2317 
2318     public void fillArc(int x, int y, int w, int h,
2319                         int startAngl, int arcAngl) {
2320         try {
2321             fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
2322         } catch (InvalidPipeException e) {
2323             try {
2324                 revalidateAll();
2325                 fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
2326             } catch (InvalidPipeException e2) {
2327                 // Still catching the exception; we are not yet ready to
2328                 // validate the surfaceData correctly.  Fail for now and
2329                 // try again next time around.
2330             }
2331         } finally {
2332             surfaceData.markDirty();
2333         }
2334     }
2335 
2336     public void drawPolyline(int xPoints[], int yPoints[], int nPoints) {
2337         try {
2338             drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
2339         } catch (InvalidPipeException e) {
2340             try {
2341                 revalidateAll();
2342                 drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
2343             } catch (InvalidPipeException e2) {
2344                 // Still catching the exception; we are not yet ready to
2345                 // validate the surfaceData correctly.  Fail for now and
2346                 // try again next time around.
2347             }
2348         } finally {
2349             surfaceData.markDirty();
2350         }
2351     }
2352 
2353     public void drawPolygon(int xPoints[], int yPoints[], int nPoints) {
2354         try {
2355             drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
2356         } catch (InvalidPipeException e) {
2357             try {
2358                 revalidateAll();
2359                 drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
2360             } catch (InvalidPipeException e2) {
2361                 // Still catching the exception; we are not yet ready to
2362                 // validate the surfaceData correctly.  Fail for now and
2363                 // try again next time around.
2364             }
2365         } finally {
2366             surfaceData.markDirty();
2367         }
2368     }
2369 
2370     public void fillPolygon(int xPoints[], int yPoints[], int nPoints) {
2371         try {
2372             fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
2373         } catch (InvalidPipeException e) {
2374             try {
2375                 revalidateAll();
2376                 fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
2377             } catch (InvalidPipeException e2) {
2378                 // Still catching the exception; we are not yet ready to
2379                 // validate the surfaceData correctly.  Fail for now and
2380                 // try again next time around.
2381             }
2382         } finally {
2383             surfaceData.markDirty();
2384         }
2385     }
2386 
2387     public void drawRect (int x, int y, int w, int h) {
2388         try {
2389             drawpipe.drawRect(this, x, y, w, h);
2390         } catch (InvalidPipeException e) {
2391             try {
2392                 revalidateAll();
2393                 drawpipe.drawRect(this, x, y, w, h);
2394             } catch (InvalidPipeException e2) {
2395                 // Still catching the exception; we are not yet ready to
2396                 // validate the surfaceData correctly.  Fail for now and
2397                 // try again next time around.
2398             }
2399         } finally {
2400             surfaceData.markDirty();
2401         }
2402     }
2403 
2404     public void fillRect (int x, int y, int w, int h) {
2405         try {
2406             fillpipe.fillRect(this, x, y, w, h);
2407         } catch (InvalidPipeException e) {
2408             try {
2409                 revalidateAll();
2410                 fillpipe.fillRect(this, x, y, w, h);
2411             } catch (InvalidPipeException e2) {
2412                 // Still catching the exception; we are not yet ready to
2413                 // validate the surfaceData correctly.  Fail for now and
2414                 // try again next time around.
2415             }
2416         } finally {
2417             surfaceData.markDirty();
2418         }
2419     }
2420 
2421     private void revalidateAll() {
2422         try {
2423             // REMIND: This locking needs to be done around the
2424             // caller of this method so that the pipe stays valid
2425             // long enough to call the new primitive.
2426             // REMIND: No locking yet in screen SurfaceData objects!
2427             // surfaceData.lock();
2428             surfaceData = surfaceData.getReplacement();
2429             if (surfaceData == null) {
2430                 surfaceData = NullSurfaceData.theInstance;
2431             }
2432 
2433             // this will recalculate the composite clip
2434             setDevClip(surfaceData.getBounds());
2435 
2436             if (paintState <= PAINT_ALPHACOLOR) {
2437                 validateColor();
2438             }
2439             if (composite instanceof XORComposite) {
2440                 Color c = ((XORComposite) composite).getXorColor();
2441                 setComposite(new XORComposite(c, surfaceData));
2442             }
2443             validatePipe();
2444         } finally {
2445             // REMIND: No locking yet in screen SurfaceData objects!
2446             // surfaceData.unlock();
2447         }
2448     }
2449 
2450     public void clearRect(int x, int y, int w, int h) {
2451         // REMIND: has some "interesting" consequences if threads are
2452         // not synchronized
2453         Composite c = composite;
2454         Paint p = paint;
2455         setComposite(AlphaComposite.Src);
2456         setColor(getBackground());
2457         fillRect(x, y, w, h);
2458         setPaint(p);
2459         setComposite(c);
2460     }
2461 
2462     /**
2463      * Strokes the outline of a Path using the settings of the current
2464      * graphics state.  The rendering attributes applied include the
2465      * clip, transform, paint or color, composite and stroke attributes.
2466      * @param p The path to be drawn.
2467      * @see #setStroke
2468      * @see #setPaint
2469      * @see java.awt.Graphics#setColor
2470      * @see #transform
2471      * @see #setTransform
2472      * @see #clip
2473      * @see #setClip
2474      * @see #setComposite
2475      */
2476     public void draw(Shape s) {
2477         try {
2478             shapepipe.draw(this, s);
2479         } catch (InvalidPipeException e) {
2480             try {
2481                 revalidateAll();
2482                 shapepipe.draw(this, s);
2483             } catch (InvalidPipeException e2) {
2484                 // Still catching the exception; we are not yet ready to
2485                 // validate the surfaceData correctly.  Fail for now and
2486                 // try again next time around.
2487             }
2488         } finally {
2489             surfaceData.markDirty();
2490         }
2491     }
2492 
2493 
2494     /**
2495      * Fills the interior of a Path using the settings of the current
2496      * graphics state. The rendering attributes applied include the
2497      * clip, transform, paint or color, and composite.
2498      * @see #setPaint
2499      * @see java.awt.Graphics#setColor
2500      * @see #transform
2501      * @see #setTransform
2502      * @see #setComposite
2503      * @see #clip
2504      * @see #setClip
2505      */
2506     public void fill(Shape s) {
2507         try {
2508             shapepipe.fill(this, s);
2509         } catch (InvalidPipeException e) {
2510             try {
2511                 revalidateAll();
2512                 shapepipe.fill(this, s);
2513             } catch (InvalidPipeException e2) {
2514                 // Still catching the exception; we are not yet ready to
2515                 // validate the surfaceData correctly.  Fail for now and
2516                 // try again next time around.
2517             }
2518         } finally {
2519             surfaceData.markDirty();
2520         }
2521     }
2522 
2523     /**
2524      * Returns true if the given AffineTransform is an integer
2525      * translation.
2526      */
2527     private static boolean isIntegerTranslation(AffineTransform xform) {
2528         if (xform.isIdentity()) {
2529             return true;
2530         }
2531         if (xform.getType() == AffineTransform.TYPE_TRANSLATION) {
2532             double tx = xform.getTranslateX();
2533             double ty = xform.getTranslateY();
2534             return (tx == (int)tx && ty == (int)ty);
2535         }
2536         return false;
2537     }
2538 
2539     /**
2540      * Returns the index of the tile corresponding to the supplied position
2541      * given the tile grid offset and size along the same axis.
2542      */
2543     private static int getTileIndex(int p, int tileGridOffset, int tileSize) {
2544         p -= tileGridOffset;
2545         if (p < 0) {
2546             p += 1 - tileSize;          // force round to -infinity (ceiling)
2547         }
2548         return p/tileSize;
2549     }
2550 
2551     /**
2552      * Returns a rectangle in image coordinates that may be required
2553      * in order to draw the given image into the given clipping region
2554      * through a pair of AffineTransforms.  In addition, horizontal and
2555      * vertical padding factors for antialising and interpolation may
2556      * be used.
2557      */
2558     private static Rectangle getImageRegion(RenderedImage img,
2559                                             Region compClip,
2560                                             AffineTransform transform,
2561                                             AffineTransform xform,
2562                                             int padX, int padY) {
2563         Rectangle imageRect =
2564             new Rectangle(img.getMinX(), img.getMinY(),
2565                           img.getWidth(), img.getHeight());
2566 
2567         Rectangle result = null;
2568         try {
2569             double p[] = new double[8];
2570             p[0] = p[2] = compClip.getLoX();
2571             p[4] = p[6] = compClip.getHiX();
2572             p[1] = p[5] = compClip.getLoY();
2573             p[3] = p[7] = compClip.getHiY();
2574 
2575             // Inverse transform the output bounding rect
2576             transform.inverseTransform(p, 0, p, 0, 4);
2577             xform.inverseTransform(p, 0, p, 0, 4);
2578 
2579             // Determine a bounding box for the inverse transformed region
2580             double x0,x1,y0,y1;
2581             x0 = x1 = p[0];
2582             y0 = y1 = p[1];
2583 
2584             for (int i = 2; i < 8; ) {
2585                 double pt = p[i++];
2586                 if (pt < x0)  {
2587                     x0 = pt;
2588                 } else if (pt > x1) {
2589                     x1 = pt;
2590                 }
2591                 pt = p[i++];
2592                 if (pt < y0)  {
2593                     y0 = pt;
2594                 } else if (pt > y1) {
2595                     y1 = pt;
2596                 }
2597             }
2598 
2599             // This is padding for anti-aliasing and such.  It may
2600             // be more than is needed.
2601             int x = (int)x0 - padX;
2602             int w = (int)(x1 - x0 + 2*padX);
2603             int y = (int)y0 - padY;
2604             int h = (int)(y1 - y0 + 2*padY);
2605 
2606             Rectangle clipRect = new Rectangle(x,y,w,h);
2607             result = clipRect.intersection(imageRect);
2608         } catch (NoninvertibleTransformException nte) {
2609             // Worst case bounds are the bounds of the image.
2610             result = imageRect;
2611         }
2612 
2613         return result;
2614     }
2615 
2616     /**
2617      * Draws an image, applying a transform from image space into user space
2618      * before drawing.
2619      * The transformation from user space into device space is done with
2620      * the current transform in the Graphics2D.
2621      * The given transformation is applied to the image before the
2622      * transform attribute in the Graphics2D state is applied.
2623      * The rendering attributes applied include the clip, transform,
2624      * and composite attributes. Note that the result is
2625      * undefined, if the given transform is noninvertible.
2626      * @param img The image to be drawn. Does nothing if img is null.
2627      * @param xform The transformation from image space into user space.
2628      * @see #transform
2629      * @see #setTransform
2630      * @see #setComposite
2631      * @see #clip
2632      * @see #setClip
2633      */
2634     public void drawRenderedImage(RenderedImage img,
2635                                   AffineTransform xform) {
2636 
2637         if (img == null) {
2638             return;
2639         }
2640 
2641         // BufferedImage case: use a simple drawImage call
2642         if (img instanceof BufferedImage) {
2643             BufferedImage bufImg = (BufferedImage)img;
2644             drawImage(bufImg,xform,null);
2645             return;
2646         }
2647 
2648         // transformState tracks the state of transform and
2649         // transX, transY contain the integer casts of the
2650         // translation factors
2651         boolean isIntegerTranslate =
2652             (transformState <= TRANSFORM_INT_TRANSLATE) &&
2653             isIntegerTranslation(xform);
2654 
2655         // Include padding for interpolation/antialiasing if necessary
2656         int pad = isIntegerTranslate ? 0 : 3;
2657 
2658         Region clip;
2659         try {
2660             clip = getCompClip();
2661         } catch (InvalidPipeException e) {
2662             return;
2663         }
2664 
2665         // Determine the region of the image that may contribute to
2666         // the clipped drawing area
2667         Rectangle region = getImageRegion(img,
2668                                           clip,
2669                                           transform,
2670                                           xform,
2671                                           pad, pad);
2672         if (region.width <= 0 || region.height <= 0) {
2673             return;
2674         }
2675 
2676         // Attempt to optimize integer translation of tiled images.
2677         // Although theoretically we are O.K. if the concatenation of
2678         // the user transform and the device transform is an integer
2679         // translation, we'll play it safe and only optimize the case
2680         // where both are integer translations.
2681         if (isIntegerTranslate) {
2682             // Use optimized code
2683             // Note that drawTranslatedRenderedImage calls copyImage
2684             // which takes the user space to device space transform into
2685             // account, but we need to provide the image space to user space
2686             // translations.
2687 
2688             drawTranslatedRenderedImage(img, region,
2689                                         (int) xform.getTranslateX(),
2690                                         (int) xform.getTranslateY());
2691             return;
2692         }
2693 
2694         // General case: cobble the necessary region into a single Raster
2695         Raster raster = img.getData(region);
2696 
2697         // Make a new Raster with the same contents as raster
2698         // but starting at (0, 0).  This raster is thus in the same
2699         // coordinate system as the SampleModel of the original raster.
2700         WritableRaster wRaster =
2701               Raster.createWritableRaster(raster.getSampleModel(),
2702                                           raster.getDataBuffer(),
2703                                           null);
2704 
2705         // If the original raster was in a different coordinate
2706         // system than its SampleModel, we need to perform an
2707         // additional translation in order to get the (minX, minY)
2708         // pixel of raster to be pixel (0, 0) of wRaster.  We also
2709         // have to have the correct width and height.
2710         int minX = raster.getMinX();
2711         int minY = raster.getMinY();
2712         int width = raster.getWidth();
2713         int height = raster.getHeight();
2714         int px = minX - raster.getSampleModelTranslateX();
2715         int py = minY - raster.getSampleModelTranslateY();
2716         if (px != 0 || py != 0 || width != wRaster.getWidth() ||
2717             height != wRaster.getHeight()) {
2718             wRaster =
2719                 wRaster.createWritableChild(px,
2720                                             py,
2721                                             width,
2722                                             height,
2723                                             0, 0,
2724                                             null);
2725         }
2726 
2727         // Now we have a BufferedImage starting at (0, 0)
2728         // with the same contents that started at (minX, minY)
2729         // in raster.  So we must draw the BufferedImage with a
2730         // translation of (minX, minY).
2731         AffineTransform transXform = (AffineTransform)xform.clone();
2732         transXform.translate(minX, minY);
2733 
2734         ColorModel cm = img.getColorModel();
2735         BufferedImage bufImg = new BufferedImage(cm,
2736                                                  wRaster,
2737                                                  cm.isAlphaPremultiplied(),
2738                                                  null);
2739         drawImage(bufImg, transXform, null);
2740     }
2741 
2742     /**
2743      * Intersects <code>destRect</code> with <code>clip</code> and
2744      * overwrites <code>destRect</code> with the result.
2745      * Returns false if the intersection was empty, true otherwise.
2746      */
2747     private boolean clipTo(Rectangle destRect, Rectangle clip) {
2748         int x1 = Math.max(destRect.x, clip.x);
2749         int x2 = Math.min(destRect.x + destRect.width, clip.x + clip.width);
2750         int y1 = Math.max(destRect.y, clip.y);
2751         int y2 = Math.min(destRect.y + destRect.height, clip.y + clip.height);
2752         if (((x2 - x1) < 0) || ((y2 - y1) < 0)) {
2753             destRect.width = -1; // Set both just to be safe
2754             destRect.height = -1;
2755             return false;
2756         } else {
2757             destRect.x = x1;
2758             destRect.y = y1;
2759             destRect.width = x2 - x1;
2760             destRect.height = y2 - y1;
2761             return true;
2762         }
2763     }
2764 
2765     /**
2766      * Draw a portion of a RenderedImage tile-by-tile with a given
2767      * integer image to user space translation.  The user to
2768      * device transform must also be an integer translation.
2769      */
2770     private void drawTranslatedRenderedImage(RenderedImage img,
2771                                              Rectangle region,
2772                                              int i2uTransX,
2773                                              int i2uTransY) {
2774         // Cache tile grid info
2775         int tileGridXOffset = img.getTileGridXOffset();
2776         int tileGridYOffset = img.getTileGridYOffset();
2777         int tileWidth = img.getTileWidth();
2778         int tileHeight = img.getTileHeight();
2779 
2780         // Determine the tile index extrema in each direction
2781         int minTileX =
2782             getTileIndex(region.x, tileGridXOffset, tileWidth);
2783         int minTileY =
2784             getTileIndex(region.y, tileGridYOffset, tileHeight);
2785         int maxTileX =
2786             getTileIndex(region.x + region.width - 1,
2787                          tileGridXOffset, tileWidth);
2788         int maxTileY =
2789             getTileIndex(region.y + region.height - 1,
2790                          tileGridYOffset, tileHeight);
2791 
2792         // Create a single ColorModel to use for all BufferedImages
2793         ColorModel colorModel = img.getColorModel();
2794 
2795         // Reuse the same Rectangle for each iteration
2796         Rectangle tileRect = new Rectangle();
2797 
2798         for (int ty = minTileY; ty <= maxTileY; ty++) {
2799             for (int tx = minTileX; tx <= maxTileX; tx++) {
2800                 // Get the current tile.
2801                 Raster raster = img.getTile(tx, ty);
2802 
2803                 // Fill in tileRect with the tile bounds
2804                 tileRect.x = tx*tileWidth + tileGridXOffset;
2805                 tileRect.y = ty*tileHeight + tileGridYOffset;
2806                 tileRect.width = tileWidth;
2807                 tileRect.height = tileHeight;
2808 
2809                 // Clip the tile against the image bounds and
2810                 // backwards mapped clip region
2811                 // The result can't be empty
2812                 clipTo(tileRect, region);
2813 
2814                 // Create a WritableRaster containing the tile
2815                 WritableRaster wRaster = null;
2816                 if (raster instanceof WritableRaster) {
2817                     wRaster = (WritableRaster)raster;
2818                 } else {
2819                     // Create a WritableRaster in the same coordinate system
2820                     // as the original raster.
2821                     wRaster =
2822                         Raster.createWritableRaster(raster.getSampleModel(),
2823                                                     raster.getDataBuffer(),
2824                                                     null);
2825                 }
2826 
2827                 // Translate wRaster to start at (0, 0) and to contain
2828                 // only the relevent portion of the tile
2829                 wRaster = wRaster.createWritableChild(tileRect.x, tileRect.y,
2830                                                       tileRect.width,
2831                                                       tileRect.height,
2832                                                       0, 0,
2833                                                       null);
2834 
2835                 // Wrap wRaster in a BufferedImage
2836                 BufferedImage bufImg =
2837                     new BufferedImage(colorModel,
2838                                       wRaster,
2839                                       colorModel.isAlphaPremultiplied(),
2840                                       null);
2841                 // Now we have a BufferedImage starting at (0, 0) that
2842                 // represents data from a Raster starting at
2843                 // (tileRect.x, tileRect.y).  Additionally, it needs
2844                 // to be translated by (i2uTransX, i2uTransY).  We call
2845                 // copyImage to draw just the region of interest
2846                 // without needing to create a child image.
2847                 copyImage(bufImg, tileRect.x + i2uTransX,
2848                           tileRect.y + i2uTransY, 0, 0, tileRect.width,
2849                           tileRect.height, null, null);
2850             }
2851         }
2852     }
2853 
2854     public void drawRenderableImage(RenderableImage img,
2855                                     AffineTransform xform) {
2856 
2857         if (img == null) {
2858             return;
2859         }
2860 
2861         AffineTransform pipeTransform = transform;
2862         AffineTransform concatTransform = new AffineTransform(xform);
2863         concatTransform.concatenate(pipeTransform);
2864         AffineTransform reverseTransform;
2865 
2866         RenderContext rc = new RenderContext(concatTransform);
2867 
2868         try {
2869             reverseTransform = pipeTransform.createInverse();
2870         } catch (NoninvertibleTransformException nte) {
2871             rc = new RenderContext(pipeTransform);
2872             reverseTransform = new AffineTransform();
2873         }
2874 
2875         RenderedImage rendering = img.createRendering(rc);
2876         drawRenderedImage(rendering,reverseTransform);
2877     }
2878 
2879 
2880 
2881     /*
2882      * Transform the bounding box of the BufferedImage
2883      */
2884     protected Rectangle transformBounds(Rectangle rect,
2885                                         AffineTransform tx) {
2886         if (tx.isIdentity()) {
2887             return rect;
2888         }
2889 
2890         Shape s = transformShape(tx, rect);
2891         return s.getBounds();
2892     }
2893 
2894     // text rendering methods
2895     public void drawString(String str, int x, int y) {
2896         if (str == null) {
2897             throw new NullPointerException("String is null");
2898         }
2899 
2900         if (font.hasLayoutAttributes()) {
2901             if (str.length() == 0) {
2902                 return;
2903             }
2904             new TextLayout(str, font, getFontRenderContext()).draw(this, x, y);
2905             return;
2906         }
2907 
2908         try {
2909             textpipe.drawString(this, str, x, y);
2910         } catch (InvalidPipeException e) {
2911             try {
2912                 revalidateAll();
2913                 textpipe.drawString(this, str, x, y);
2914             } catch (InvalidPipeException e2) {
2915                 // Still catching the exception; we are not yet ready to
2916                 // validate the surfaceData correctly.  Fail for now and
2917                 // try again next time around.
2918             }
2919         } finally {
2920             surfaceData.markDirty();
2921         }
2922     }
2923 
2924     public void drawString(String str, float x, float y) {
2925         if (str == null) {
2926             throw new NullPointerException("String is null");
2927         }
2928 
2929         if (font.hasLayoutAttributes()) {
2930             if (str.length() == 0) {
2931                 return;
2932             }
2933             new TextLayout(str, font, getFontRenderContext()).draw(this, x, y);
2934             return;
2935         }
2936 
2937         try {
2938             textpipe.drawString(this, str, x, y);
2939         } catch (InvalidPipeException e) {
2940             try {
2941                 revalidateAll();
2942                 textpipe.drawString(this, str, x, y);
2943             } catch (InvalidPipeException e2) {
2944                 // Still catching the exception; we are not yet ready to
2945                 // validate the surfaceData correctly.  Fail for now and
2946                 // try again next time around.
2947             }
2948         } finally {
2949             surfaceData.markDirty();
2950         }
2951     }
2952 
2953     public void drawString(AttributedCharacterIterator iterator,
2954                            int x, int y) {
2955         if (iterator == null) {
2956             throw new NullPointerException("AttributedCharacterIterator is null");
2957         }
2958         if (iterator.getBeginIndex() == iterator.getEndIndex()) {
2959             return; /* nothing to draw */
2960         }
2961         TextLayout tl = new TextLayout(iterator, getFontRenderContext());
2962         tl.draw(this, (float) x, (float) y);
2963     }
2964 
2965     public void drawString(AttributedCharacterIterator iterator,
2966                            float x, float y) {
2967         if (iterator == null) {
2968             throw new NullPointerException("AttributedCharacterIterator is null");
2969         }
2970         if (iterator.getBeginIndex() == iterator.getEndIndex()) {
2971             return; /* nothing to draw */
2972         }
2973         TextLayout tl = new TextLayout(iterator, getFontRenderContext());
2974         tl.draw(this, x, y);
2975     }
2976 
2977     public void drawGlyphVector(GlyphVector gv, float x, float y)
2978     {
2979         if (gv == null) {
2980             throw new NullPointerException("GlyphVector is null");
2981         }
2982 
2983         try {
2984             textpipe.drawGlyphVector(this, gv, x, y);
2985         } catch (InvalidPipeException e) {
2986             try {
2987                 revalidateAll();
2988                 textpipe.drawGlyphVector(this, gv, x, y);
2989             } catch (InvalidPipeException e2) {
2990                 // Still catching the exception; we are not yet ready to
2991                 // validate the surfaceData correctly.  Fail for now and
2992                 // try again next time around.
2993             }
2994         } finally {
2995             surfaceData.markDirty();
2996         }
2997     }
2998 
2999     public void drawChars(char data[], int offset, int length, int x, int y) {
3000 
3001         if (data == null) {
3002             throw new NullPointerException("char data is null");
3003         }
3004         if (offset < 0 || length < 0 || offset + length > data.length) {
3005             throw new ArrayIndexOutOfBoundsException("bad offset/length");
3006         }
3007         if (font.hasLayoutAttributes()) {
3008             if (data.length == 0) {
3009                 return;
3010             }
3011             new TextLayout(new String(data, offset, length),
3012                            font, getFontRenderContext()).draw(this, x, y);
3013             return;
3014         }
3015 
3016         try {
3017             textpipe.drawChars(this, data, offset, length, x, y);
3018         } catch (InvalidPipeException e) {
3019             try {
3020                 revalidateAll();
3021                 textpipe.drawChars(this, data, offset, length, x, y);
3022             } catch (InvalidPipeException e2) {
3023                 // Still catching the exception; we are not yet ready to
3024                 // validate the surfaceData correctly.  Fail for now and
3025                 // try again next time around.
3026             }
3027         } finally {
3028             surfaceData.markDirty();
3029         }
3030     }
3031 
3032     public void drawBytes(byte data[], int offset, int length, int x, int y) {
3033         if (data == null) {
3034             throw new NullPointerException("byte data is null");
3035         }
3036         if (offset < 0 || length < 0 || offset + length > data.length) {
3037             throw new ArrayIndexOutOfBoundsException("bad offset/length");
3038         }
3039         /* Byte data is interpreted as 8-bit ASCII. Re-use drawChars loops */
3040         char chData[] = new char[length];
3041         for (int i = length; i-- > 0; ) {
3042             chData[i] = (char)(data[i+offset] & 0xff);
3043         }
3044         if (font.hasLayoutAttributes()) {
3045             if (data.length == 0) {
3046                 return;
3047             }
3048             new TextLayout(new String(chData),
3049                            font, getFontRenderContext()).draw(this, x, y);
3050             return;
3051         }
3052 
3053         try {
3054             textpipe.drawChars(this, chData, 0, length, x, y);
3055         } catch (InvalidPipeException e) {
3056             try {
3057                 revalidateAll();
3058                 textpipe.drawChars(this, chData, 0, length, x, y);
3059             } catch (InvalidPipeException e2) {
3060                 // Still catching the exception; we are not yet ready to
3061                 // validate the surfaceData correctly.  Fail for now and
3062                 // try again next time around.
3063             }
3064         } finally {
3065             surfaceData.markDirty();
3066         }
3067     }
3068 // end of text rendering methods
3069 
3070     private boolean isHiDPIImage(final Image img) {
3071         return (SurfaceManager.getImageScale(img) != 1) ||
3072                (resolutionVariantHint != SunHints.INTVAL_RESOLUTION_VARIANT_OFF
3073                     && img instanceof MultiResolutionImage);
3074     }
3075 
3076     private boolean drawHiDPIImage(Image img, int dx1, int dy1, int dx2,
3077                                    int dy2, int sx1, int sy1, int sx2, int sy2,
3078                                    Color bgcolor, ImageObserver observer) {
3079 
3080         if (SurfaceManager.getImageScale(img) != 1) {  // Volatile Image
3081             final int scale = SurfaceManager.getImageScale(img);
3082             sx1 = Region.clipScale(sx1, scale);
3083             sx2 = Region.clipScale(sx2, scale);
3084             sy1 = Region.clipScale(sy1, scale);
3085             sy2 = Region.clipScale(sy2, scale);
3086         } else if (img instanceof MultiResolutionImage) {
3087             // get scaled destination image size
3088 
3089             int width = img.getWidth(observer);
3090             int height = img.getHeight(observer);
3091 
3092             Image resolutionVariant = getResolutionVariant(
3093                     (MultiResolutionImage) img, width, height,
3094                     dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2);
3095 
3096             if (resolutionVariant != img && resolutionVariant != null) {
3097                 // recalculate source region for the resolution variant
3098 
3099                 ImageObserver rvObserver = MultiResolutionToolkitImage.
3100                         getResolutionVariantObserver(img, observer,
3101                                 width, height, -1, -1);
3102 
3103                 int rvWidth = resolutionVariant.getWidth(rvObserver);
3104                 int rvHeight = resolutionVariant.getHeight(rvObserver);
3105 
3106                 if (0 < width && 0 < height && 0 < rvWidth && 0 < rvHeight) {
3107 
3108                     float widthScale = ((float) rvWidth) / width;
3109                     float heightScale = ((float) rvHeight) / height;
3110 
3111                     sx1 = Region.clipScale(sx1, widthScale);
3112                     sy1 = Region.clipScale(sy1, heightScale);
3113                     sx2 = Region.clipScale(sx2, widthScale);
3114                     sy2 = Region.clipScale(sy2, heightScale);
3115 
3116                     observer = rvObserver;
3117                     img = resolutionVariant;
3118                 }
3119             }
3120         }
3121 
3122         try {
3123             return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2, sx1, sy1,
3124                                         sx2, sy2, bgcolor, observer);
3125         } catch (InvalidPipeException e) {
3126             try {
3127                 revalidateAll();
3128                 return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2, sx1,
3129                                             sy1, sx2, sy2, bgcolor, observer);
3130             } catch (InvalidPipeException e2) {
3131                 // Still catching the exception; we are not yet ready to
3132                 // validate the surfaceData correctly.  Fail for now and
3133                 // try again next time around.
3134                 return false;
3135             }
3136         } finally {
3137             surfaceData.markDirty();
3138         }
3139     }
3140 
3141     private Image getResolutionVariant(MultiResolutionImage img,
3142             int srcWidth, int srcHeight, int dx1, int dy1, int dx2, int dy2,
3143             int sx1, int sy1, int sx2, int sy2) {
3144 
3145         if (srcWidth <= 0 || srcHeight <= 0) {
3146             return null;
3147         }
3148 
3149         int sw = sx2 - sx1;
3150         int sh = sy2 - sy1;
3151 
3152         if (sw == 0 || sh == 0) {
3153             return null;
3154         }
3155 
3156         int type = transform.getType();
3157         int dw = dx2 - dx1;
3158         int dh = dy2 - dy1;
3159         double destRegionWidth;
3160         double destRegionHeight;
3161 
3162         if ((type & ~(TYPE_TRANSLATION | TYPE_FLIP)) == 0) {
3163             destRegionWidth = dw;
3164             destRegionHeight = dh;
3165         } else if ((type & ~(TYPE_TRANSLATION | TYPE_FLIP | TYPE_MASK_SCALE)) == 0) {
3166             destRegionWidth = dw * transform.getScaleX();
3167             destRegionHeight = dh * transform.getScaleY();
3168         } else {
3169             destRegionWidth = dw * Math.hypot(
3170                     transform.getScaleX(), transform.getShearY());
3171             destRegionHeight = dh * Math.hypot(
3172                     transform.getShearX(), transform.getScaleY());
3173         }
3174 
3175         int destImageWidth = (int) Math.abs(srcWidth * destRegionWidth / sw);
3176         int destImageHeight = (int) Math.abs(srcHeight * destRegionHeight / sh);
3177 
3178         Image resolutionVariant
3179                 = img.getResolutionVariant(devScale, devScale,
3180                         srcWidth, srcHeight, destImageWidth, destImageHeight);
3181 
3182         if (resolutionVariant instanceof ToolkitImage
3183                 && ((ToolkitImage) resolutionVariant).hasError()) {
3184             return null;
3185         }
3186 
3187         return resolutionVariant;
3188     }
3189 
3190     /**
3191      * Draws an image scaled to x,y,w,h in nonblocking mode with a
3192      * callback object.
3193      */
3194     public boolean drawImage(Image img, int x, int y, int width, int height,
3195                              ImageObserver observer) {
3196         return drawImage(img, x, y, width, height, null, observer);
3197     }
3198 
3199     /**
3200      * Not part of the advertised API but a useful utility method
3201      * to call internally.  This is for the case where we are
3202      * drawing to/from given coordinates using a given width/height,
3203      * but we guarantee that the surfaceData's width/height of the src and dest
3204      * areas are equal (no scale needed). Note that this method intentionally
3205      * ignore scale factor of the source image, and copy it as is.
3206      */
3207     public boolean copyImage(Image img, int dx, int dy, int sx, int sy,
3208                              int width, int height, Color bgcolor,
3209                              ImageObserver observer) {
3210         try {
3211             return imagepipe.copyImage(this, img, dx, dy, sx, sy,
3212                                        width, height, bgcolor, observer);
3213         } catch (InvalidPipeException e) {
3214             try {
3215                 revalidateAll();
3216                 return imagepipe.copyImage(this, img, dx, dy, sx, sy,
3217                                            width, height, bgcolor, observer);
3218             } catch (InvalidPipeException e2) {
3219                 // Still catching the exception; we are not yet ready to
3220                 // validate the surfaceData correctly.  Fail for now and
3221                 // try again next time around.
3222                 return false;
3223             }
3224         } finally {
3225             surfaceData.markDirty();
3226         }
3227     }
3228 
3229     /**
3230      * Draws an image scaled to x,y,w,h in nonblocking mode with a
3231      * solid background color and a callback object.
3232      */
3233     public boolean drawImage(Image img, int x, int y, int width, int height,
3234                              Color bg, ImageObserver observer) {
3235 
3236         if (img == null) {
3237             return true;
3238         }
3239 
3240         if ((width == 0) || (height == 0)) {
3241             return true;
3242         }
3243 
3244         final int imgW = img.getWidth(null);
3245         final int imgH = img.getHeight(null);
3246         if (isHiDPIImage(img)) {
3247             return drawHiDPIImage(img, x, y, x + width, y + height, 0, 0, imgW,
3248                                   imgH, bg, observer);
3249         }
3250 
3251         if (width == imgW && height == imgH) {
3252             return copyImage(img, x, y, 0, 0, width, height, bg, observer);
3253         }
3254 
3255         try {
3256             return imagepipe.scaleImage(this, img, x, y, width, height,
3257                                         bg, observer);
3258         } catch (InvalidPipeException e) {
3259             try {
3260                 revalidateAll();
3261                 return imagepipe.scaleImage(this, img, x, y, width, height,
3262                                             bg, observer);
3263             } catch (InvalidPipeException e2) {
3264                 // Still catching the exception; we are not yet ready to
3265                 // validate the surfaceData correctly.  Fail for now and
3266                 // try again next time around.
3267                 return false;
3268             }
3269         } finally {
3270             surfaceData.markDirty();
3271         }
3272     }
3273 
3274     /**
3275      * Draws an image at x,y in nonblocking mode.
3276      */
3277     public boolean drawImage(Image img, int x, int y, ImageObserver observer) {
3278         return drawImage(img, x, y, null, observer);
3279     }
3280 
3281     /**
3282      * Draws an image at x,y in nonblocking mode with a solid background
3283      * color and a callback object.
3284      */
3285     public boolean drawImage(Image img, int x, int y, Color bg,
3286                              ImageObserver observer) {
3287 
3288         if (img == null) {
3289             return true;
3290         }
3291 
3292         if (isHiDPIImage(img)) {
3293             final int imgW = img.getWidth(null);
3294             final int imgH = img.getHeight(null);
3295             return drawHiDPIImage(img, x, y, x + imgW, y + imgH, 0, 0, imgW,
3296                                   imgH, bg, observer);
3297         }
3298 
3299         try {
3300             return imagepipe.copyImage(this, img, x, y, bg, observer);
3301         } catch (InvalidPipeException e) {
3302             try {
3303                 revalidateAll();
3304                 return imagepipe.copyImage(this, img, x, y, bg, observer);
3305             } catch (InvalidPipeException e2) {
3306                 // Still catching the exception; we are not yet ready to
3307                 // validate the surfaceData correctly.  Fail for now and
3308                 // try again next time around.
3309                 return false;
3310             }
3311         } finally {
3312             surfaceData.markDirty();
3313         }
3314     }
3315 
3316     /**
3317      * Draws a subrectangle of an image scaled to a destination rectangle
3318      * in nonblocking mode with a callback object.
3319      */
3320     public boolean drawImage(Image img,
3321                              int dx1, int dy1, int dx2, int dy2,
3322                              int sx1, int sy1, int sx2, int sy2,
3323                              ImageObserver observer) {
3324         return drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, null,
3325                          observer);
3326     }
3327 
3328     /**
3329      * Draws a subrectangle of an image scaled to a destination rectangle in
3330      * nonblocking mode with a solid background color and a callback object.
3331      */
3332     public boolean drawImage(Image img,
3333                              int dx1, int dy1, int dx2, int dy2,
3334                              int sx1, int sy1, int sx2, int sy2,
3335                              Color bgcolor, ImageObserver observer) {
3336 
3337         if (img == null) {
3338             return true;
3339         }
3340 
3341         if (dx1 == dx2 || dy1 == dy2 ||
3342             sx1 == sx2 || sy1 == sy2)
3343         {
3344             return true;
3345         }
3346 
3347         if (isHiDPIImage(img)) {
3348             return drawHiDPIImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2,
3349                                   bgcolor, observer);
3350         }
3351 
3352         if (((sx2 - sx1) == (dx2 - dx1)) &&
3353             ((sy2 - sy1) == (dy2 - dy1)))
3354         {
3355             // Not a scale - forward it to a copy routine
3356             int srcX, srcY, dstX, dstY, width, height;
3357             if (sx2 > sx1) {
3358                 width = sx2 - sx1;
3359                 srcX = sx1;
3360                 dstX = dx1;
3361             } else {
3362                 width = sx1 - sx2;
3363                 srcX = sx2;
3364                 dstX = dx2;
3365             }
3366             if (sy2 > sy1) {
3367                 height = sy2-sy1;
3368                 srcY = sy1;
3369                 dstY = dy1;
3370             } else {
3371                 height = sy1-sy2;
3372                 srcY = sy2;
3373                 dstY = dy2;
3374             }
3375             return copyImage(img, dstX, dstY, srcX, srcY,
3376                              width, height, bgcolor, observer);
3377         }
3378 
3379         try {
3380             return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2,
3381                                           sx1, sy1, sx2, sy2, bgcolor,
3382                                           observer);
3383         } catch (InvalidPipeException e) {
3384             try {
3385                 revalidateAll();
3386                 return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2,
3387                                               sx1, sy1, sx2, sy2, bgcolor,
3388                                               observer);
3389             } catch (InvalidPipeException e2) {
3390                 // Still catching the exception; we are not yet ready to
3391                 // validate the surfaceData correctly.  Fail for now and
3392                 // try again next time around.
3393                 return false;
3394             }
3395         } finally {
3396             surfaceData.markDirty();
3397         }
3398     }
3399 
3400     /**
3401      * Draw an image, applying a transform from image space into user space
3402      * before drawing.
3403      * The transformation from user space into device space is done with
3404      * the current transform in the Graphics2D.
3405      * The given transformation is applied to the image before the
3406      * transform attribute in the Graphics2D state is applied.
3407      * The rendering attributes applied include the clip, transform,
3408      * paint or color and composite attributes. Note that the result is
3409      * undefined, if the given transform is non-invertible.
3410      * @param img The image to be drawn.
3411      * @param xform The transformation from image space into user space.
3412      * @param observer The image observer to be notified on the image producing
3413      * progress.
3414      * @see #transform
3415      * @see #setComposite
3416      * @see #setClip
3417      */
3418     public boolean drawImage(Image img,
3419                              AffineTransform xform,
3420                              ImageObserver observer) {
3421 
3422         if (img == null) {
3423             return true;
3424         }
3425 
3426         if (xform == null || xform.isIdentity()) {
3427             return drawImage(img, 0, 0, null, observer);
3428         }
3429 
3430         if (isHiDPIImage(img)) {
3431             final int w = img.getWidth(null);
3432             final int h = img.getHeight(null);
3433             final AffineTransform tx = new AffineTransform(transform);
3434             transform(xform);
3435             boolean result = drawHiDPIImage(img, 0, 0, w, h, 0, 0, w, h, null,
3436                                             observer);
3437             transform.setTransform(tx);
3438             invalidateTransform();
3439             return result;
3440         }
3441 
3442         try {
3443             return imagepipe.transformImage(this, img, xform, observer);
3444         } catch (InvalidPipeException e) {
3445             try {
3446                 revalidateAll();
3447                 return imagepipe.transformImage(this, img, xform, observer);
3448             } catch (InvalidPipeException e2) {
3449                 // Still catching the exception; we are not yet ready to
3450                 // validate the surfaceData correctly.  Fail for now and
3451                 // try again next time around.
3452                 return false;
3453             }
3454         } finally {
3455             surfaceData.markDirty();
3456         }
3457     }
3458 
3459     public void drawImage(BufferedImage bImg,
3460                           BufferedImageOp op,
3461                           int x,
3462                           int y)  {
3463 
3464         if (bImg == null) {
3465             return;
3466         }
3467 
3468         try {
3469             imagepipe.transformImage(this, bImg, op, x, y);
3470         } catch (InvalidPipeException e) {
3471             try {
3472                 revalidateAll();
3473                 imagepipe.transformImage(this, bImg, op, x, y);
3474             } catch (InvalidPipeException e2) {
3475                 // Still catching the exception; we are not yet ready to
3476                 // validate the surfaceData correctly.  Fail for now and
3477                 // try again next time around.
3478             }
3479         } finally {
3480             surfaceData.markDirty();
3481         }
3482     }
3483 
3484     /**
3485     * Get the rendering context of the font
3486     * within this Graphics2D context.
3487     */
3488     public FontRenderContext getFontRenderContext() {
3489         if (cachedFRC == null) {
3490             int aahint = textAntialiasHint;
3491             if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT &&
3492                 antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
3493                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
3494             }
3495             // Translation components should be excluded from the FRC transform
3496             AffineTransform tx = null;
3497             if (transformState >= TRANSFORM_TRANSLATESCALE) {
3498                 if (transform.getTranslateX() == 0 &&
3499                     transform.getTranslateY() == 0) {
3500                     tx = transform;
3501                 } else {
3502                     tx = new AffineTransform(transform.getScaleX(),
3503                                              transform.getShearY(),
3504                                              transform.getShearX(),
3505                                              transform.getScaleY(),
3506                                              0, 0);
3507                 }
3508             }
3509             cachedFRC = new FontRenderContext(tx,
3510              SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING, aahint),
3511              SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
3512                                 fractionalMetricsHint));
3513         }
3514         return cachedFRC;
3515     }
3516     private FontRenderContext cachedFRC;
3517 
3518     /**
3519      * This object has no resources to dispose of per se, but the
3520      * doc comments for the base method in java.awt.Graphics imply
3521      * that this object will not be useable after it is disposed.
3522      * So, we sabotage the object to prevent further use to prevent
3523      * developers from relying on behavior that may not work on
3524      * other, less forgiving, VMs that really need to dispose of
3525      * resources.
3526      */
3527     public void dispose() {
3528         surfaceData = NullSurfaceData.theInstance;
3529         invalidatePipe();
3530     }
3531 
3532     /**
3533      * Graphics has a finalize method that automatically calls dispose()
3534      * for subclasses.  For SunGraphics2D we do not need to be finalized
3535      * so that method simply causes us to be enqueued on the Finalizer
3536      * queues for no good reason.  Unfortunately, that method and
3537      * implementation are now considered part of the public contract
3538      * of that base class so we can not remove or gut the method.
3539      * We override it here with an empty method and the VM is smart
3540      * enough to know that if our override is empty then it should not
3541      * mark us as finalizeable.
3542      */
3543     public void finalize() {
3544         // DO NOT REMOVE THIS METHOD
3545     }
3546 
3547     /**
3548      * Returns destination that this Graphics renders to.  This could be
3549      * either an Image or a Component; subclasses of SurfaceData are
3550      * responsible for returning the appropriate object.
3551      */
3552     public Object getDestination() {
3553         return surfaceData.getDestination();
3554     }
3555 
3556     /**
3557      * {@inheritDoc}
3558      *
3559      * @see sun.java2d.DestSurfaceProvider#getDestSurface
3560      */
3561     @Override
3562     public Surface getDestSurface() {
3563         return surfaceData;
3564     }
3565 }