1 /*
   2  * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d;
  27 
  28 import java.awt.Graphics;
  29 import java.awt.Graphics2D;
  30 import java.awt.RenderingHints;
  31 import java.awt.RenderingHints.Key;
  32 import java.awt.geom.Area;
  33 import java.awt.geom.AffineTransform;
  34 import java.awt.geom.NoninvertibleTransformException;
  35 import java.awt.AlphaComposite;
  36 import java.awt.BasicStroke;
  37 import java.awt.image.BufferedImage;
  38 import java.awt.image.BufferedImageOp;
  39 import java.awt.image.RenderedImage;
  40 import java.awt.image.renderable.RenderableImage;
  41 import java.awt.image.renderable.RenderContext;
  42 import java.awt.image.AffineTransformOp;
  43 import java.awt.image.Raster;
  44 import java.awt.image.WritableRaster;
  45 import java.awt.Image;
  46 import java.awt.Composite;
  47 import java.awt.Color;
  48 import java.awt.image.ColorModel;
  49 import java.awt.GraphicsConfiguration;
  50 import java.awt.Paint;
  51 import java.awt.GradientPaint;
  52 import java.awt.LinearGradientPaint;
  53 import java.awt.RadialGradientPaint;
  54 import java.awt.TexturePaint;
  55 import java.awt.geom.Rectangle2D;
  56 import java.awt.geom.PathIterator;
  57 import java.awt.geom.GeneralPath;
  58 import java.awt.Shape;
  59 import java.awt.Stroke;
  60 import java.awt.FontMetrics;
  61 import java.awt.Rectangle;
  62 import java.text.AttributedCharacterIterator;
  63 import java.awt.Font;
  64 import java.awt.Point;
  65 import java.awt.image.ImageObserver;
  66 import java.awt.Transparency;
  67 import java.awt.font.GlyphVector;
  68 import java.awt.font.TextLayout;
  69 
  70 import sun.awt.image.SurfaceManager;
  71 import sun.font.FontDesignMetrics;
  72 import sun.font.FontUtilities;
  73 import sun.java2d.pipe.PixelDrawPipe;
  74 import sun.java2d.pipe.PixelFillPipe;
  75 import sun.java2d.pipe.ShapeDrawPipe;
  76 import sun.java2d.pipe.ValidatePipe;
  77 import sun.java2d.pipe.ShapeSpanIterator;
  78 import sun.java2d.pipe.Region;
  79 import sun.java2d.pipe.TextPipe;
  80 import sun.java2d.pipe.DrawImagePipe;
  81 import sun.java2d.pipe.LoopPipe;
  82 import sun.java2d.loops.FontInfo;
  83 import sun.java2d.loops.RenderLoops;
  84 import sun.java2d.loops.CompositeType;
  85 import sun.java2d.loops.SurfaceType;
  86 import sun.java2d.loops.Blit;
  87 import sun.java2d.loops.MaskFill;
  88 import java.awt.font.FontRenderContext;
  89 import sun.java2d.loops.XORComposite;
  90 import sun.awt.ConstrainableGraphics;
  91 import sun.awt.SunHints;
  92 import java.util.Map;
  93 import java.util.Iterator;
  94 import sun.misc.PerformanceLogger;
  95 
  96 import java.lang.annotation.Native;
  97 import java.awt.image.MultiResolutionImage;
  98 
  99 import static java.awt.geom.AffineTransform.TYPE_FLIP;
 100 import static java.awt.geom.AffineTransform.TYPE_MASK_SCALE;
 101 import static java.awt.geom.AffineTransform.TYPE_TRANSLATION;
 102 import sun.awt.image.MultiResolutionToolkitImage;
 103 import sun.awt.image.ToolkitImage;
 104 
 105 /**
 106  * This is a the master Graphics2D superclass for all of the Sun
 107  * Graphics implementations.  This class relies on subclasses to
 108  * manage the various device information, but provides an overall
 109  * general framework for performing all of the requests in the
 110  * Graphics and Graphics2D APIs.
 111  *
 112  * @author Jim Graham
 113  */
 114 public final class SunGraphics2D
 115     extends Graphics2D
 116     implements ConstrainableGraphics, Cloneable, DestSurfaceProvider
 117 {
 118     /*
 119      * Attribute States
 120      */
 121     /* Paint */
 122     @Native
 123     public static final int PAINT_CUSTOM       = 6; /* Any other Paint object */
 124     @Native
 125     public static final int PAINT_TEXTURE      = 5; /* Tiled Image */
 126     @Native
 127     public static final int PAINT_RAD_GRADIENT = 4; /* Color RadialGradient */
 128     @Native
 129     public static final int PAINT_LIN_GRADIENT = 3; /* Color LinearGradient */
 130     @Native
 131     public static final int PAINT_GRADIENT     = 2; /* Color Gradient */
 132     @Native
 133     public static final int PAINT_ALPHACOLOR   = 1; /* Non-opaque Color */
 134     @Native
 135     public static final int PAINT_OPAQUECOLOR  = 0; /* Opaque Color */
 136 
 137     /* Composite*/
 138     @Native
 139     public static final int COMP_CUSTOM = 3;/* Custom Composite */
 140     @Native
 141     public static final int COMP_XOR    = 2;/* XOR Mode Composite */
 142     @Native
 143     public static final int COMP_ALPHA  = 1;/* AlphaComposite */
 144     @Native
 145     public static final int COMP_ISCOPY = 0;/* simple stores into destination,
 146                                              * i.e. Src, SrcOverNoEa, and other
 147                                              * alpha modes which replace
 148                                              * the destination.
 149                                              */
 150 
 151     /* Stroke */
 152     @Native
 153     public static final int STROKE_CUSTOM = 3; /* custom Stroke */
 154     @Native
 155     public static final int STROKE_WIDE   = 2; /* BasicStroke */
 156     @Native
 157     public static final int STROKE_THINDASHED   = 1; /* BasicStroke */
 158     @Native
 159     public static final int STROKE_THIN   = 0; /* BasicStroke */
 160 
 161     /* Transform */
 162     @Native
 163     public static final int TRANSFORM_GENERIC = 4; /* any 3x2 */
 164     @Native
 165     public static final int TRANSFORM_TRANSLATESCALE = 3; /* scale XY */
 166     @Native
 167     public static final int TRANSFORM_ANY_TRANSLATE = 2; /* non-int translate */
 168     @Native
 169     public static final int TRANSFORM_INT_TRANSLATE = 1; /* int translate */
 170     @Native
 171     public static final int TRANSFORM_ISIDENT = 0; /* Identity */
 172 
 173     /* Clipping */
 174     @Native
 175     public static final int CLIP_SHAPE       = 2; /* arbitrary clip */
 176     @Native
 177     public static final int CLIP_RECTANGULAR = 1; /* rectangular clip */
 178     @Native
 179     public static final int CLIP_DEVICE      = 0; /* no clipping set */
 180 
 181     /* The following fields are used when the current Paint is a Color. */
 182     public int eargb;  // ARGB value with ExtraAlpha baked in
 183     public int pixel;  // pixel value for eargb
 184 
 185     public SurfaceData surfaceData;
 186 
 187     public PixelDrawPipe drawpipe;
 188     public PixelFillPipe fillpipe;
 189     public DrawImagePipe imagepipe;
 190     public ShapeDrawPipe shapepipe;
 191     public TextPipe textpipe;
 192     public MaskFill alphafill;
 193 
 194     public RenderLoops loops;
 195 
 196     public CompositeType imageComp;     /* Image Transparency checked on fly */
 197 
 198     public int paintState;
 199     public int compositeState;
 200     public int strokeState;
 201     public int transformState;
 202     public int clipState;
 203 
 204     public Color foregroundColor;
 205     public Color backgroundColor;
 206 
 207     public AffineTransform transform;
 208     public int transX;
 209     public int transY;
 210 
 211     protected static final Stroke defaultStroke = new BasicStroke();
 212     protected static final Composite defaultComposite = AlphaComposite.SrcOver;
 213     private static final Font defaultFont =
 214         new Font(Font.DIALOG, Font.PLAIN, 12);
 215 
 216     public Paint paint;
 217     public Stroke stroke;
 218     public Composite composite;
 219     protected Font font;
 220     protected FontMetrics fontMetrics;
 221 
 222     public int renderHint;
 223     public int antialiasHint;
 224     public int textAntialiasHint;
 225     protected int fractionalMetricsHint;
 226 
 227     /* A gamma adjustment to the colour used in lcd text blitting */
 228     public int lcdTextContrast;
 229     private static int lcdTextContrastDefaultValue = 140;
 230 
 231     private int interpolationHint;      // raw value of rendering Hint
 232     public int strokeHint;
 233 
 234     public int interpolationType;       // algorithm choice based on
 235                                         // interpolation and render Hints
 236 
 237     public RenderingHints hints;
 238 
 239     public Region constrainClip;        // lightweight bounds in pixels
 240     public int constrainX;
 241     public int constrainY;
 242 
 243     public Region clipRegion;
 244     public Shape usrClip;
 245     protected Region devClip;           // Actual physical drawable in pixels
 246 
 247     private int resolutionVariantHint;
 248 
 249     // cached state for text rendering
 250     private boolean validFontInfo;
 251     private FontInfo fontInfo;
 252     private FontInfo glyphVectorFontInfo;
 253     private FontRenderContext glyphVectorFRC;
 254 
 255     private static final int slowTextTransformMask =
 256                             AffineTransform.TYPE_GENERAL_TRANSFORM
 257                         |   AffineTransform.TYPE_MASK_ROTATION
 258                         |   AffineTransform.TYPE_FLIP;
 259 
 260     static {
 261         if (PerformanceLogger.loggingEnabled()) {
 262             PerformanceLogger.setTime("SunGraphics2D static initialization");
 263         }
 264     }
 265 
 266     public SunGraphics2D(SurfaceData sd, Color fg, Color bg, Font f) {
 267         surfaceData = sd;
 268         foregroundColor = fg;
 269         backgroundColor = bg;
 270         stroke = defaultStroke;
 271         composite = defaultComposite;
 272         paint = foregroundColor;
 273 
 274         imageComp = CompositeType.SrcOverNoEa;
 275 
 276         renderHint = SunHints.INTVAL_RENDER_DEFAULT;
 277         antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
 278         textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
 279         fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
 280         lcdTextContrast = lcdTextContrastDefaultValue;
 281         interpolationHint = -1;
 282         strokeHint = SunHints.INTVAL_STROKE_DEFAULT;
 283         resolutionVariantHint = SunHints.INTVAL_RESOLUTION_VARIANT_DEFAULT;
 284 
 285         interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
 286 
 287         transform = getDefaultTransform();
 288         if (!transform.isIdentity()) {
 289             invalidateTransform();
 290         }
 291 
 292         validateColor();
 293 
 294         font = f;
 295         if (font == null) {
 296             font = defaultFont;
 297         }
 298 
 299         setDevClip(sd.getBounds());
 300         invalidatePipe();
 301     }
 302 
 303     private AffineTransform getDefaultTransform() {
 304         GraphicsConfiguration gc = getDeviceConfiguration();
 305         return (gc == null) ? new AffineTransform() : gc.getDefaultTransform();
 306     }
 307 
 308     protected Object clone() {
 309         try {
 310             SunGraphics2D g = (SunGraphics2D) super.clone();
 311             g.transform = new AffineTransform(this.transform);
 312             if (hints != null) {
 313                 g.hints = (RenderingHints) this.hints.clone();
 314             }
 315             /* FontInfos are re-used, so must be cloned too, if they
 316              * are valid, and be nulled out if invalid.
 317              * The implied trade-off is that there is more to be gained
 318              * from re-using these objects than is lost by having to
 319              * clone them when the SG2D is cloned.
 320              */
 321             if (this.fontInfo != null) {
 322                 if (this.validFontInfo) {
 323                     g.fontInfo = (FontInfo)this.fontInfo.clone();
 324                 } else {
 325                     g.fontInfo = null;
 326                 }
 327             }
 328             if (this.glyphVectorFontInfo != null) {
 329                 g.glyphVectorFontInfo =
 330                     (FontInfo)this.glyphVectorFontInfo.clone();
 331                 g.glyphVectorFRC = this.glyphVectorFRC;
 332             }
 333             //g.invalidatePipe();
 334             return g;
 335         } catch (CloneNotSupportedException e) {
 336         }
 337         return null;
 338     }
 339 
 340     /**
 341      * Create a new SunGraphics2D based on this one.
 342      */
 343     public Graphics create() {
 344         return (Graphics) clone();
 345     }
 346 
 347     public void setDevClip(int x, int y, int w, int h) {
 348         Region c = constrainClip;
 349         if (c == null) {
 350             devClip = Region.getInstanceXYWH(x, y, w, h);
 351         } else {
 352             devClip = c.getIntersectionXYWH(x, y, w, h);
 353         }
 354         validateCompClip();
 355     }
 356 
 357     public void setDevClip(Rectangle r) {
 358         setDevClip(r.x, r.y, r.width, r.height);
 359     }
 360 
 361     /**
 362      * Constrain rendering for lightweight objects.
 363      */
 364     public void constrain(int x, int y, int w, int h, Region region) {
 365         if ((x | y) != 0) {
 366             translate(x, y);
 367         }
 368         if (transformState > TRANSFORM_TRANSLATESCALE) {
 369             clipRect(0, 0, w, h);
 370             return;
 371         }
 372         // changes parameters according to the current scale and translate.
 373         final double scaleX = transform.getScaleX();
 374         final double scaleY = transform.getScaleY();
 375         x = constrainX = (int) transform.getTranslateX();
 376         y = constrainY = (int) transform.getTranslateY();
 377         w = Region.dimAdd(x, Region.clipScale(w, scaleX));
 378         h = Region.dimAdd(y, Region.clipScale(h, scaleY));
 379 
 380         Region c = constrainClip;
 381         if (c == null) {
 382             c = Region.getInstanceXYXY(x, y, w, h);
 383         } else {
 384             c = c.getIntersectionXYXY(x, y, w, h);
 385         }
 386         if (region != null) {
 387             region = region.getScaledRegion(scaleX, scaleY);
 388             region = region.getTranslatedRegion(x, y);
 389             c = c.getIntersection(region);
 390         }
 391 
 392         if (c == constrainClip) {
 393             // Common case to ignore
 394             return;
 395         }
 396 
 397         constrainClip = c;
 398         if (!devClip.isInsideQuickCheck(c)) {
 399             devClip = devClip.getIntersection(c);
 400             validateCompClip();
 401         }
 402     }
 403 
 404     /**
 405      * Constrain rendering for lightweight objects.
 406      *
 407      * REMIND: This method will back off to the "workaround"
 408      * of using translate and clipRect if the Graphics
 409      * to be constrained has a complex transform.  The
 410      * drawback of the workaround is that the resulting
 411      * clip and device origin cannot be "enforced".
 412      *
 413      * @exception IllegalStateException If the Graphics
 414      * to be constrained has a complex transform.
 415      */
 416     @Override
 417     public void constrain(int x, int y, int w, int h) {
 418         constrain(x, y, w, h, null);
 419     }
 420 
 421     protected static ValidatePipe invalidpipe = new ValidatePipe();
 422 
 423     /*
 424      * Invalidate the pipeline
 425      */
 426     protected void invalidatePipe() {
 427         drawpipe = invalidpipe;
 428         fillpipe = invalidpipe;
 429         shapepipe = invalidpipe;
 430         textpipe = invalidpipe;
 431         imagepipe = invalidpipe;
 432         loops = null;
 433     }
 434 
 435     public void validatePipe() {
 436         /* This workaround is for the situation when we update the Pipelines
 437          * for invalid SurfaceData and run further code when the current
 438          * pipeline doesn't support the type of new SurfaceData created during
 439          * the current pipeline's work (in place of the invalid SurfaceData).
 440          * Usually SurfaceData and Pipelines are repaired (through revalidateAll)
 441          * and called again in the exception handlers */
 442 
 443         if (!surfaceData.isValid()) {
 444             throw new InvalidPipeException("attempt to validate Pipe with invalid SurfaceData");
 445         }
 446 
 447         surfaceData.validatePipe(this);
 448     }
 449 
 450     /*
 451      * Intersect two Shapes by the simplest method, attempting to produce
 452      * a simplified result.
 453      * The boolean arguments keep1 and keep2 specify whether or not
 454      * the first or second shapes can be modified during the operation
 455      * or whether that shape must be "kept" unmodified.
 456      */
 457     Shape intersectShapes(Shape s1, Shape s2, boolean keep1, boolean keep2) {
 458         if (s1 instanceof Rectangle && s2 instanceof Rectangle) {
 459             return ((Rectangle) s1).intersection((Rectangle) s2);
 460         }
 461         if (s1 instanceof Rectangle2D) {
 462             return intersectRectShape((Rectangle2D) s1, s2, keep1, keep2);
 463         } else if (s2 instanceof Rectangle2D) {
 464             return intersectRectShape((Rectangle2D) s2, s1, keep2, keep1);
 465         }
 466         return intersectByArea(s1, s2, keep1, keep2);
 467     }
 468 
 469     /*
 470      * Intersect a Rectangle with a Shape by the simplest method,
 471      * attempting to produce a simplified result.
 472      * The boolean arguments keep1 and keep2 specify whether or not
 473      * the first or second shapes can be modified during the operation
 474      * or whether that shape must be "kept" unmodified.
 475      */
 476     Shape intersectRectShape(Rectangle2D r, Shape s,
 477                              boolean keep1, boolean keep2) {
 478         if (s instanceof Rectangle2D) {
 479             Rectangle2D r2 = (Rectangle2D) s;
 480             Rectangle2D outrect;
 481             if (!keep1) {
 482                 outrect = r;
 483             } else if (!keep2) {
 484                 outrect = r2;
 485             } else {
 486                 outrect = new Rectangle2D.Float();
 487             }
 488             double x1 = Math.max(r.getX(), r2.getX());
 489             double x2 = Math.min(r.getX()  + r.getWidth(),
 490                                  r2.getX() + r2.getWidth());
 491             double y1 = Math.max(r.getY(), r2.getY());
 492             double y2 = Math.min(r.getY()  + r.getHeight(),
 493                                  r2.getY() + r2.getHeight());
 494 
 495             if (((x2 - x1) < 0) || ((y2 - y1) < 0))
 496                 // Width or height is negative. No intersection.
 497                 outrect.setFrameFromDiagonal(0, 0, 0, 0);
 498             else
 499                 outrect.setFrameFromDiagonal(x1, y1, x2, y2);
 500             return outrect;
 501         }
 502         if (r.contains(s.getBounds2D())) {
 503             if (keep2) {
 504                 s = cloneShape(s);
 505             }
 506             return s;
 507         }
 508         return intersectByArea(r, s, keep1, keep2);
 509     }
 510 
 511     protected static Shape cloneShape(Shape s) {
 512         return new GeneralPath(s);
 513     }
 514 
 515     /*
 516      * Intersect two Shapes using the Area class.  Presumably other
 517      * attempts at simpler intersection methods proved fruitless.
 518      * The boolean arguments keep1 and keep2 specify whether or not
 519      * the first or second shapes can be modified during the operation
 520      * or whether that shape must be "kept" unmodified.
 521      * @see #intersectShapes
 522      * @see #intersectRectShape
 523      */
 524     Shape intersectByArea(Shape s1, Shape s2, boolean keep1, boolean keep2) {
 525         Area a1, a2;
 526 
 527         // First see if we can find an overwriteable source shape
 528         // to use as our destination area to avoid duplication.
 529         if (!keep1 && (s1 instanceof Area)) {
 530             a1 = (Area) s1;
 531         } else if (!keep2 && (s2 instanceof Area)) {
 532             a1 = (Area) s2;
 533             s2 = s1;
 534         } else {
 535             a1 = new Area(s1);
 536         }
 537 
 538         if (s2 instanceof Area) {
 539             a2 = (Area) s2;
 540         } else {
 541             a2 = new Area(s2);
 542         }
 543 
 544         a1.intersect(a2);
 545         if (a1.isRectangular()) {
 546             return a1.getBounds();
 547         }
 548 
 549         return a1;
 550     }
 551 
 552     /*
 553      * Intersect usrClip bounds and device bounds to determine the composite
 554      * rendering boundaries.
 555      */
 556     public Region getCompClip() {
 557         if (!surfaceData.isValid()) {
 558             // revalidateAll() implicitly recalculcates the composite clip
 559             revalidateAll();
 560         }
 561 
 562         return clipRegion;
 563     }
 564 
 565     public Font getFont() {
 566         if (font == null) {
 567             font = defaultFont;
 568         }
 569         return font;
 570     }
 571 
 572     private static final double[] IDENT_MATRIX = {1, 0, 0, 1};
 573     private static final AffineTransform IDENT_ATX =
 574         new AffineTransform();
 575 
 576     private static final int MINALLOCATED = 8;
 577     private static final int TEXTARRSIZE = 17;
 578     private static double[][] textTxArr = new double[TEXTARRSIZE][];
 579     private static AffineTransform[] textAtArr =
 580         new AffineTransform[TEXTARRSIZE];
 581 
 582     static {
 583         for (int i=MINALLOCATED;i<TEXTARRSIZE;i++) {
 584           textTxArr[i] = new double [] {i, 0, 0, i};
 585           textAtArr[i] = new AffineTransform( textTxArr[i]);
 586         }
 587     }
 588 
 589     // cached state for various draw[String,Char,Byte] optimizations
 590     public FontInfo checkFontInfo(FontInfo info, Font font,
 591                                   FontRenderContext frc) {
 592         /* Do not create a FontInfo object as part of construction of an
 593          * SG2D as its possible it may never be needed - ie if no text
 594          * is drawn using this SG2D.
 595          */
 596         if (info == null) {
 597             info = new FontInfo();
 598         }
 599 
 600         float ptSize = font.getSize2D();
 601         int txFontType;
 602         AffineTransform devAt, textAt=null;
 603         if (font.isTransformed()) {
 604             textAt = font.getTransform();
 605             textAt.scale(ptSize, ptSize);
 606             txFontType = textAt.getType();
 607             info.originX = (float)textAt.getTranslateX();
 608             info.originY = (float)textAt.getTranslateY();
 609             textAt.translate(-info.originX, -info.originY);
 610             if (transformState >= TRANSFORM_TRANSLATESCALE) {
 611                 transform.getMatrix(info.devTx = new double[4]);
 612                 devAt = new AffineTransform(info.devTx);
 613                 textAt.preConcatenate(devAt);
 614             } else {
 615                 info.devTx = IDENT_MATRIX;
 616                 devAt = IDENT_ATX;
 617             }
 618             textAt.getMatrix(info.glyphTx = new double[4]);
 619             double shearx = textAt.getShearX();
 620             double scaley = textAt.getScaleY();
 621             if (shearx != 0) {
 622                 scaley = Math.sqrt(shearx * shearx + scaley * scaley);
 623             }
 624             info.pixelHeight = (int)(Math.abs(scaley)+0.5);
 625         } else {
 626             txFontType = AffineTransform.TYPE_IDENTITY;
 627             info.originX = info.originY = 0;
 628             if (transformState >= TRANSFORM_TRANSLATESCALE) {
 629                 transform.getMatrix(info.devTx = new double[4]);
 630                 devAt = new AffineTransform(info.devTx);
 631                 info.glyphTx = new double[4];
 632                 for (int i = 0; i < 4; i++) {
 633                     info.glyphTx[i] = info.devTx[i] * ptSize;
 634                 }
 635                 textAt = new AffineTransform(info.glyphTx);
 636                 double shearx = transform.getShearX();
 637                 double scaley = transform.getScaleY();
 638                 if (shearx != 0) {
 639                     scaley = Math.sqrt(shearx * shearx + scaley * scaley);
 640                 }
 641                 info.pixelHeight = (int)(Math.abs(scaley * ptSize)+0.5);
 642             } else {
 643                 /* If the double represents a common integral, we
 644                  * may have pre-allocated objects.
 645                  * A "sparse" array be seems to be as fast as a switch
 646                  * even for 3 or 4 pt sizes, and is more flexible.
 647                  * This should perform comparably in single-threaded
 648                  * rendering to the old code which synchronized on the
 649                  * class and scale better on MP systems.
 650                  */
 651                 int pszInt = (int)ptSize;
 652                 if (ptSize == pszInt &&
 653                     pszInt >= MINALLOCATED && pszInt < TEXTARRSIZE) {
 654                     info.glyphTx = textTxArr[pszInt];
 655                     textAt = textAtArr[pszInt];
 656                     info.pixelHeight = pszInt;
 657                 } else {
 658                     info.pixelHeight = (int)(ptSize+0.5);
 659                 }
 660                 if (textAt == null) {
 661                     info.glyphTx = new double[] {ptSize, 0, 0, ptSize};
 662                     textAt = new AffineTransform(info.glyphTx);
 663                 }
 664 
 665                 info.devTx = IDENT_MATRIX;
 666                 devAt = IDENT_ATX;
 667             }
 668         }
 669 
 670         info.font2D = FontUtilities.getFont2D(font);
 671 
 672         int fmhint = fractionalMetricsHint;
 673         if (fmhint == SunHints.INTVAL_FRACTIONALMETRICS_DEFAULT) {
 674             fmhint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
 675         }
 676         info.lcdSubPixPos = false; // conditionally set true in LCD mode.
 677 
 678         /* The text anti-aliasing hints that are set by the client need
 679          * to be interpreted for the current state and stored in the
 680          * FontInfo.aahint which is what will actually be used and
 681          * will be one of OFF, ON, LCD_HRGB or LCD_VRGB.
 682          * This is what pipe selection code should typically refer to, not
 683          * textAntialiasHint. This means we are now evaluating the meaning
 684          * of "default" here. Any pipe that really cares about that will
 685          * also need to consult that variable.
 686          * Otherwise these are being used only as args to getStrike,
 687          * and are encapsulated in that object which is part of the
 688          * FontInfo, so we do not need to store them directly as fields
 689          * in the FontInfo object.
 690          * That could change if FontInfo's were more selectively
 691          * revalidated when graphics state changed. Presently this
 692          * method re-evaluates all fields in the fontInfo.
 693          * The strike doesn't need to know the RGB subpixel order. Just
 694          * if its H or V orientation, so if an LCD option is specified we
 695          * always pass in the RGB hint to the strike.
 696          * frc is non-null only if this is a GlyphVector. For reasons
 697          * which are probably a historical mistake the AA hint in a GV
 698          * is honoured when we render, overriding the Graphics setting.
 699          */
 700         int aahint;
 701         if (frc == null) {
 702             aahint = textAntialiasHint;
 703         } else {
 704             aahint = ((SunHints.Value)frc.getAntiAliasingHint()).getIndex();
 705         }
 706         if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT) {
 707             if (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
 708                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 709             } else {
 710                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
 711             }
 712         } else {
 713             /* If we are in checkFontInfo because a rendering hint has been
 714              * set then all pipes are revalidated. But we can also
 715              * be here because setFont() has been called when the 'gasp'
 716              * hint is set, as then the font size determines the text pipe.
 717              * See comments in SunGraphics2d.setFont(Font).
 718              */
 719             if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP) {
 720                 if (info.font2D.useAAForPtSize(info.pixelHeight)) {
 721                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 722                 } else {
 723                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
 724                 }
 725             } else if (aahint >= SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB) {
 726                 /* loops for default rendering modes are installed in the SG2D
 727                  * constructor. If there are none this will be null.
 728                  * Not all compositing modes update the render loops, so
 729                  * we also test that this is a mode we know should support
 730                  * this. One minor issue is that the loops aren't necessarily
 731                  * installed for a new rendering mode until after this
 732                  * method is called during pipeline validation. So it is
 733                  * theoretically possible that it was set to null for a
 734                  * compositing mode, the composite is then set back to Src,
 735                  * but the loop is still null when this is called and AA=ON
 736                  * is installed instead of an LCD mode.
 737                  * However this is done in the right order in SurfaceData.java
 738                  * so this is not likely to be a problem - but not
 739                  * guaranteed.
 740                  */
 741                 if (
 742                     !surfaceData.canRenderLCDText(this)
 743 //                    loops.drawGlyphListLCDLoop == null ||
 744 //                    compositeState > COMP_ISCOPY ||
 745 //                    paintState > PAINT_ALPHACOLOR
 746                       ) {
 747                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 748                 } else {
 749                     info.lcdRGBOrder = true;
 750                     /* Collapse these into just HRGB or VRGB.
 751                      * Pipe selection code needs only to test for these two.
 752                      * Since these both select the same pipe anyway its
 753                      * tempting to collapse into one value. But they are
 754                      * different strikes (glyph caches) so the distinction
 755                      * needs to be made for that purpose.
 756                      */
 757                     if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HBGR) {
 758                         aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
 759                         info.lcdRGBOrder = false;
 760                     } else if
 761                         (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VBGR) {
 762                         aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VRGB;
 763                         info.lcdRGBOrder = false;
 764                     }
 765                     /* Support subpixel positioning only for the case in
 766                      * which the horizontal resolution is increased
 767                      */
 768                     info.lcdSubPixPos =
 769                         fmhint == SunHints.INTVAL_FRACTIONALMETRICS_ON &&
 770                         aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
 771                 }
 772             }
 773         }
 774         info.aaHint = aahint;
 775         info.fontStrike = info.font2D.getStrike(font, devAt, textAt,
 776                                                 aahint, fmhint);
 777         return info;
 778     }
 779 
 780     public static boolean isRotated(double [] mtx) {
 781         if ((mtx[0] == mtx[3]) &&
 782             (mtx[1] == 0.0) &&
 783             (mtx[2] == 0.0) &&
 784             (mtx[0] > 0.0))
 785         {
 786             return false;
 787         }
 788 
 789         return true;
 790     }
 791 
 792     public void setFont(Font font) {
 793         /* replacing the reference equality test font != this.font with
 794          * !font.equals(this.font) did not yield any measurable difference
 795          * in testing, but there may be yet to be identified cases where it
 796          * is beneficial.
 797          */
 798         if (font != null && font!=this.font/*!font.equals(this.font)*/) {
 799             /* In the GASP AA case the textpipe depends on the glyph size
 800              * as determined by graphics and font transforms as well as the
 801              * font size, and information in the font. But we may invalidate
 802              * the pipe only to find that it made no difference.
 803              * Deferring pipe invalidation to checkFontInfo won't work because
 804              * when called we may already be rendering to the wrong pipe.
 805              * So, if the font is transformed, or the graphics has more than
 806              * a simple scale, we'll take that as enough of a hint to
 807              * revalidate everything. But if they aren't we will
 808              * use the font's point size to query the gasp table and see if
 809              * what it says matches what's currently being used, in which
 810              * case there's no need to invalidate the textpipe.
 811              * This should be sufficient for all typical uses cases.
 812              */
 813             if (textAntialiasHint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP &&
 814                 textpipe != invalidpipe &&
 815                 (transformState > TRANSFORM_ANY_TRANSLATE ||
 816                  font.isTransformed() ||
 817                  fontInfo == null || // Precaution, if true shouldn't get here
 818                  (fontInfo.aaHint == SunHints.INTVAL_TEXT_ANTIALIAS_ON) !=
 819                      FontUtilities.getFont2D(font).
 820                          useAAForPtSize(font.getSize()))) {
 821                 textpipe = invalidpipe;
 822             }
 823             this.font = font;
 824             this.fontMetrics = null;
 825             this.validFontInfo = false;
 826         }
 827     }
 828 
 829     public FontInfo getFontInfo() {
 830         if (!validFontInfo) {
 831             this.fontInfo = checkFontInfo(this.fontInfo, font, null);
 832             validFontInfo = true;
 833         }
 834         return this.fontInfo;
 835     }
 836 
 837     /* Used by drawGlyphVector which specifies its own font. */
 838     public FontInfo getGVFontInfo(Font font, FontRenderContext frc) {
 839         if (glyphVectorFontInfo != null &&
 840             glyphVectorFontInfo.font == font &&
 841             glyphVectorFRC == frc) {
 842             return glyphVectorFontInfo;
 843         } else {
 844             glyphVectorFRC = frc;
 845             return glyphVectorFontInfo =
 846                 checkFontInfo(glyphVectorFontInfo, font, frc);
 847         }
 848     }
 849 
 850     public FontMetrics getFontMetrics() {
 851         if (this.fontMetrics != null) {
 852             return this.fontMetrics;
 853         }
 854         /* NB the constructor and the setter disallow "font" being null */
 855         return this.fontMetrics =
 856            FontDesignMetrics.getMetrics(font, getFontRenderContext());
 857     }
 858 
 859     public FontMetrics getFontMetrics(Font font) {
 860         if ((this.fontMetrics != null) && (font == this.font)) {
 861             return this.fontMetrics;
 862         }
 863         FontMetrics fm =
 864           FontDesignMetrics.getMetrics(font, getFontRenderContext());
 865 
 866         if (this.font == font) {
 867             this.fontMetrics = fm;
 868         }
 869         return fm;
 870     }
 871 
 872     /**
 873      * Checks to see if a Path intersects the specified Rectangle in device
 874      * space.  The rendering attributes taken into account include the
 875      * clip, transform, and stroke attributes.
 876      * @param rect The area in device space to check for a hit.
 877      * @param s The path to check for a hit.
 878      * @param onStroke Flag to choose between testing the stroked or
 879      * the filled path.
 880      * @return True if there is a hit, false otherwise.
 881      * @see #setStroke
 882      * @see #fill(Shape)
 883      * @see #draw(Shape)
 884      * @see #transform
 885      * @see #setTransform
 886      * @see #clip
 887      * @see #setClip
 888      */
 889     public boolean hit(Rectangle rect, Shape s, boolean onStroke) {
 890         if (onStroke) {
 891             s = stroke.createStrokedShape(s);
 892         }
 893 
 894         s = transformShape(s);
 895         if ((constrainX|constrainY) != 0) {
 896             rect = new Rectangle(rect);
 897             rect.translate(constrainX, constrainY);
 898         }
 899 
 900         return s.intersects(rect);
 901     }
 902 
 903     /**
 904      * Return the ColorModel associated with this Graphics2D.
 905      */
 906     public ColorModel getDeviceColorModel() {
 907         return surfaceData.getColorModel();
 908     }
 909 
 910     /**
 911      * Return the device configuration associated with this Graphics2D.
 912      */
 913     public GraphicsConfiguration getDeviceConfiguration() {
 914         return surfaceData.getDeviceConfiguration();
 915     }
 916 
 917     /**
 918      * Return the SurfaceData object assigned to manage the destination
 919      * drawable surface of this Graphics2D.
 920      */
 921     public SurfaceData getSurfaceData() {
 922         return surfaceData;
 923     }
 924 
 925     /**
 926      * Sets the Composite in the current graphics state. Composite is used
 927      * in all drawing methods such as drawImage, drawString, drawPath,
 928      * and fillPath.  It specifies how new pixels are to be combined with
 929      * the existing pixels on the graphics device in the rendering process.
 930      * @param comp The Composite object to be used for drawing.
 931      * @see java.awt.Graphics#setXORMode
 932      * @see java.awt.Graphics#setPaintMode
 933      * @see AlphaComposite
 934      */
 935     public void setComposite(Composite comp) {
 936         if (composite == comp) {
 937             return;
 938         }
 939         int newCompState;
 940         CompositeType newCompType;
 941         if (comp instanceof AlphaComposite) {
 942             AlphaComposite alphacomp = (AlphaComposite) comp;
 943             newCompType = CompositeType.forAlphaComposite(alphacomp);
 944             if (newCompType == CompositeType.SrcOverNoEa) {
 945                 if (paintState == PAINT_OPAQUECOLOR ||
 946                     (paintState > PAINT_ALPHACOLOR &&
 947                      paint.getTransparency() == Transparency.OPAQUE))
 948                 {
 949                     newCompState = COMP_ISCOPY;
 950                 } else {
 951                     newCompState = COMP_ALPHA;
 952                 }
 953             } else if (newCompType == CompositeType.SrcNoEa ||
 954                        newCompType == CompositeType.Src ||
 955                        newCompType == CompositeType.Clear)
 956             {
 957                 newCompState = COMP_ISCOPY;
 958             } else if (surfaceData.getTransparency() == Transparency.OPAQUE &&
 959                        newCompType == CompositeType.SrcIn)
 960             {
 961                 newCompState = COMP_ISCOPY;
 962             } else {
 963                 newCompState = COMP_ALPHA;
 964             }
 965         } else if (comp instanceof XORComposite) {
 966             newCompState = COMP_XOR;
 967             newCompType = CompositeType.Xor;
 968         } else if (comp == null) {
 969             throw new IllegalArgumentException("null Composite");
 970         } else {
 971             surfaceData.checkCustomComposite();
 972             newCompState = COMP_CUSTOM;
 973             newCompType = CompositeType.General;
 974         }
 975         if (compositeState != newCompState ||
 976             imageComp != newCompType)
 977         {
 978             compositeState = newCompState;
 979             imageComp = newCompType;
 980             invalidatePipe();
 981             validFontInfo = false;
 982         }
 983         composite = comp;
 984         if (paintState <= PAINT_ALPHACOLOR) {
 985             validateColor();
 986         }
 987     }
 988 
 989     /**
 990      * Sets the Paint in the current graphics state.
 991      * @param paint The Paint object to be used to generate color in
 992      * the rendering process.
 993      * @see java.awt.Graphics#setColor
 994      * @see GradientPaint
 995      * @see TexturePaint
 996      */
 997     public void setPaint(Paint paint) {
 998         if (paint instanceof Color) {
 999             setColor((Color) paint);
1000             return;
1001         }
1002         if (paint == null || this.paint == paint) {
1003             return;
1004         }
1005         this.paint = paint;
1006         if (imageComp == CompositeType.SrcOverNoEa) {
1007             // special case where compState depends on opacity of paint
1008             if (paint.getTransparency() == Transparency.OPAQUE) {
1009                 if (compositeState != COMP_ISCOPY) {
1010                     compositeState = COMP_ISCOPY;
1011                 }
1012             } else {
1013                 if (compositeState == COMP_ISCOPY) {
1014                     compositeState = COMP_ALPHA;
1015                 }
1016             }
1017         }
1018         Class<? extends Paint> paintClass = paint.getClass();
1019         if (paintClass == GradientPaint.class) {
1020             paintState = PAINT_GRADIENT;
1021         } else if (paintClass == LinearGradientPaint.class) {
1022             paintState = PAINT_LIN_GRADIENT;
1023         } else if (paintClass == RadialGradientPaint.class) {
1024             paintState = PAINT_RAD_GRADIENT;
1025         } else if (paintClass == TexturePaint.class) {
1026             paintState = PAINT_TEXTURE;
1027         } else {
1028             paintState = PAINT_CUSTOM;
1029         }
1030         validFontInfo = false;
1031         invalidatePipe();
1032     }
1033 
1034     static final int NON_UNIFORM_SCALE_MASK =
1035         (AffineTransform.TYPE_GENERAL_TRANSFORM |
1036          AffineTransform.TYPE_GENERAL_SCALE);
1037     public static final double MinPenSizeAA =
1038         sun.java2d.pipe.RenderingEngine.getInstance().getMinimumAAPenSize();
1039     public static final double MinPenSizeAASquared =
1040         (MinPenSizeAA * MinPenSizeAA);
1041     // Since inaccuracies in the trig package can cause us to
1042     // calculated a rotated pen width of just slightly greater
1043     // than 1.0, we add a fudge factor to our comparison value
1044     // here so that we do not misclassify single width lines as
1045     // wide lines under certain rotations.
1046     public static final double MinPenSizeSquared = 1.000000001;
1047 
1048     private void validateBasicStroke(BasicStroke bs) {
1049         boolean aa = (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON);
1050         if (transformState < TRANSFORM_TRANSLATESCALE) {
1051             if (aa) {
1052                 if (bs.getLineWidth() <= MinPenSizeAA) {
1053                     if (bs.getDashArray() == null) {
1054                         strokeState = STROKE_THIN;
1055                     } else {
1056                         strokeState = STROKE_THINDASHED;
1057                     }
1058                 } else {
1059                     strokeState = STROKE_WIDE;
1060                 }
1061             } else {
1062                 if (bs == defaultStroke) {
1063                     strokeState = STROKE_THIN;
1064                 } else if (bs.getLineWidth() <= 1.0f) {
1065                     if (bs.getDashArray() == null) {
1066                         strokeState = STROKE_THIN;
1067                     } else {
1068                         strokeState = STROKE_THINDASHED;
1069                     }
1070                 } else {
1071                     strokeState = STROKE_WIDE;
1072                 }
1073             }
1074         } else {
1075             double widthsquared;
1076             if ((transform.getType() & NON_UNIFORM_SCALE_MASK) == 0) {
1077                 /* sqrt omitted, compare to squared limits below. */
1078                 widthsquared = Math.abs(transform.getDeterminant());
1079             } else {
1080                 /* First calculate the "maximum scale" of this transform. */
1081                 double A = transform.getScaleX();       // m00
1082                 double C = transform.getShearX();       // m01
1083                 double B = transform.getShearY();       // m10
1084                 double D = transform.getScaleY();       // m11
1085 
1086                 /*
1087                  * Given a 2 x 2 affine matrix [ A B ] such that
1088                  *                             [ C D ]
1089                  * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
1090                  * find the maximum magnitude (norm) of the vector v'
1091                  * with the constraint (x^2 + y^2 = 1).
1092                  * The equation to maximize is
1093                  *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
1094                  * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
1095                  * Since sqrt is monotonic we can maximize |v'|^2
1096                  * instead and plug in the substitution y = sqrt(1 - x^2).
1097                  * Trigonometric equalities can then be used to get
1098                  * rid of most of the sqrt terms.
1099                  */
1100                 double EA = A*A + B*B;          // x^2 coefficient
1101                 double EB = 2*(A*C + B*D);      // xy coefficient
1102                 double EC = C*C + D*D;          // y^2 coefficient
1103 
1104                 /*
1105                  * There is a lot of calculus omitted here.
1106                  *
1107                  * Conceptually, in the interests of understanding the
1108                  * terms that the calculus produced we can consider
1109                  * that EA and EC end up providing the lengths along
1110                  * the major axes and the hypot term ends up being an
1111                  * adjustment for the additional length along the off-axis
1112                  * angle of rotated or sheared ellipses as well as an
1113                  * adjustment for the fact that the equation below
1114                  * averages the two major axis lengths.  (Notice that
1115                  * the hypot term contains a part which resolves to the
1116                  * difference of these two axis lengths in the absence
1117                  * of rotation.)
1118                  *
1119                  * In the calculus, the ratio of the EB and (EA-EC) terms
1120                  * ends up being the tangent of 2*theta where theta is
1121                  * the angle that the long axis of the ellipse makes
1122                  * with the horizontal axis.  Thus, this equation is
1123                  * calculating the length of the hypotenuse of a triangle
1124                  * along that axis.
1125                  */
1126                 double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
1127 
1128                 /* sqrt omitted, compare to squared limits below. */
1129                 widthsquared = ((EA + EC + hypot)/2.0);
1130             }
1131             if (bs != defaultStroke) {
1132                 widthsquared *= bs.getLineWidth() * bs.getLineWidth();
1133             }
1134             if (widthsquared <=
1135                 (aa ? MinPenSizeAASquared : MinPenSizeSquared))
1136             {
1137                 if (bs.getDashArray() == null) {
1138                     strokeState = STROKE_THIN;
1139                 } else {
1140                     strokeState = STROKE_THINDASHED;
1141                 }
1142             } else {
1143                 strokeState = STROKE_WIDE;
1144             }
1145         }
1146     }
1147 
1148     /*
1149      * Sets the Stroke in the current graphics state.
1150      * @param s The Stroke object to be used to stroke a Path in
1151      * the rendering process.
1152      * @see BasicStroke
1153      */
1154     public void setStroke(Stroke s) {
1155         if (s == null) {
1156             throw new IllegalArgumentException("null Stroke");
1157         }
1158         int saveStrokeState = strokeState;
1159         stroke = s;
1160         if (s instanceof BasicStroke) {
1161             validateBasicStroke((BasicStroke) s);
1162         } else {
1163             strokeState = STROKE_CUSTOM;
1164         }
1165         if (strokeState != saveStrokeState) {
1166             invalidatePipe();
1167         }
1168     }
1169 
1170     /**
1171      * Sets the preferences for the rendering algorithms.
1172      * Hint categories include controls for rendering quality and
1173      * overall time/quality trade-off in the rendering process.
1174      * @param hintKey The key of hint to be set. The strings are
1175      * defined in the RenderingHints class.
1176      * @param hintValue The value indicating preferences for the specified
1177      * hint category. These strings are defined in the RenderingHints
1178      * class.
1179      * @see RenderingHints
1180      */
1181     public void setRenderingHint(Key hintKey, Object hintValue) {
1182         // If we recognize the key, we must recognize the value
1183         //     otherwise throw an IllegalArgumentException
1184         //     and do not change the Hints object
1185         // If we do not recognize the key, just pass it through
1186         //     to the Hints object untouched
1187         if (!hintKey.isCompatibleValue(hintValue)) {
1188             throw new IllegalArgumentException
1189                 (hintValue+" is not compatible with "+hintKey);
1190         }
1191         if (hintKey instanceof SunHints.Key) {
1192             boolean stateChanged;
1193             boolean textStateChanged = false;
1194             boolean recognized = true;
1195             SunHints.Key sunKey = (SunHints.Key) hintKey;
1196             int newHint;
1197             if (sunKey == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST) {
1198                 newHint = ((Integer)hintValue).intValue();
1199             } else {
1200                 newHint = ((SunHints.Value) hintValue).getIndex();
1201             }
1202             switch (sunKey.getIndex()) {
1203             case SunHints.INTKEY_RENDERING:
1204                 stateChanged = (renderHint != newHint);
1205                 if (stateChanged) {
1206                     renderHint = newHint;
1207                     if (interpolationHint == -1) {
1208                         interpolationType =
1209                             (newHint == SunHints.INTVAL_RENDER_QUALITY
1210                              ? AffineTransformOp.TYPE_BILINEAR
1211                              : AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
1212                     }
1213                 }
1214                 break;
1215             case SunHints.INTKEY_ANTIALIASING:
1216                 stateChanged = (antialiasHint != newHint);
1217                 antialiasHint = newHint;
1218                 if (stateChanged) {
1219                     textStateChanged =
1220                         (textAntialiasHint ==
1221                          SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT);
1222                     if (strokeState != STROKE_CUSTOM) {
1223                         validateBasicStroke((BasicStroke) stroke);
1224                     }
1225                 }
1226                 break;
1227             case SunHints.INTKEY_TEXT_ANTIALIASING:
1228                 stateChanged = (textAntialiasHint != newHint);
1229                 textStateChanged = stateChanged;
1230                 textAntialiasHint = newHint;
1231                 break;
1232             case SunHints.INTKEY_FRACTIONALMETRICS:
1233                 stateChanged = (fractionalMetricsHint != newHint);
1234                 textStateChanged = stateChanged;
1235                 fractionalMetricsHint = newHint;
1236                 break;
1237             case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
1238                 stateChanged = false;
1239                 /* Already have validated it is an int 100 <= newHint <= 250 */
1240                 lcdTextContrast = newHint;
1241                 break;
1242             case SunHints.INTKEY_INTERPOLATION:
1243                 interpolationHint = newHint;
1244                 switch (newHint) {
1245                 case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1246                     newHint = AffineTransformOp.TYPE_BICUBIC;
1247                     break;
1248                 case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1249                     newHint = AffineTransformOp.TYPE_BILINEAR;
1250                     break;
1251                 default:
1252                 case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1253                     newHint = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
1254                     break;
1255                 }
1256                 stateChanged = (interpolationType != newHint);
1257                 interpolationType = newHint;
1258                 break;
1259             case SunHints.INTKEY_STROKE_CONTROL:
1260                 stateChanged = (strokeHint != newHint);
1261                 strokeHint = newHint;
1262                 break;
1263             case SunHints.INTKEY_RESOLUTION_VARIANT:
1264                 stateChanged = (resolutionVariantHint != newHint);
1265                 resolutionVariantHint = newHint;
1266                 break;
1267             default:
1268                 recognized = false;
1269                 stateChanged = false;
1270                 break;
1271             }
1272             if (recognized) {
1273                 if (stateChanged) {
1274                     invalidatePipe();
1275                     if (textStateChanged) {
1276                         fontMetrics = null;
1277                         this.cachedFRC = null;
1278                         validFontInfo = false;
1279                         this.glyphVectorFontInfo = null;
1280                     }
1281                 }
1282                 if (hints != null) {
1283                     hints.put(hintKey, hintValue);
1284                 }
1285                 return;
1286             }
1287         }
1288         // Nothing we recognize so none of "our state" has changed
1289         if (hints == null) {
1290             hints = makeHints(null);
1291         }
1292         hints.put(hintKey, hintValue);
1293     }
1294 
1295 
1296     /**
1297      * Returns the preferences for the rendering algorithms.
1298      * @param hintKey The category of hint to be set. The strings
1299      * are defined in the RenderingHints class.
1300      * @return The preferences for rendering algorithms. The strings
1301      * are defined in the RenderingHints class.
1302      * @see RenderingHints
1303      */
1304     public Object getRenderingHint(Key hintKey) {
1305         if (hints != null) {
1306             return hints.get(hintKey);
1307         }
1308         if (!(hintKey instanceof SunHints.Key)) {
1309             return null;
1310         }
1311         int keyindex = ((SunHints.Key)hintKey).getIndex();
1312         switch (keyindex) {
1313         case SunHints.INTKEY_RENDERING:
1314             return SunHints.Value.get(SunHints.INTKEY_RENDERING,
1315                                       renderHint);
1316         case SunHints.INTKEY_ANTIALIASING:
1317             return SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
1318                                       antialiasHint);
1319         case SunHints.INTKEY_TEXT_ANTIALIASING:
1320             return SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
1321                                       textAntialiasHint);
1322         case SunHints.INTKEY_FRACTIONALMETRICS:
1323             return SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
1324                                       fractionalMetricsHint);
1325         case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
1326             return lcdTextContrast;
1327         case SunHints.INTKEY_INTERPOLATION:
1328             switch (interpolationHint) {
1329             case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1330                 return SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
1331             case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1332                 return SunHints.VALUE_INTERPOLATION_BILINEAR;
1333             case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1334                 return SunHints.VALUE_INTERPOLATION_BICUBIC;
1335             }
1336             return null;
1337         case SunHints.INTKEY_STROKE_CONTROL:
1338             return SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
1339                                       strokeHint);
1340         case SunHints.INTKEY_RESOLUTION_VARIANT:
1341             return SunHints.Value.get(SunHints.INTKEY_RESOLUTION_VARIANT,
1342                                       resolutionVariantHint);
1343         }
1344         return null;
1345     }
1346 
1347     /**
1348      * Sets the preferences for the rendering algorithms.
1349      * Hint categories include controls for rendering quality and
1350      * overall time/quality trade-off in the rendering process.
1351      * @param hints The rendering hints to be set
1352      * @see RenderingHints
1353      */
1354     public void setRenderingHints(Map<?,?> hints) {
1355         this.hints = null;
1356         renderHint = SunHints.INTVAL_RENDER_DEFAULT;
1357         antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
1358         textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
1359         fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
1360         lcdTextContrast = lcdTextContrastDefaultValue;
1361         interpolationHint = -1;
1362         interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
1363         boolean customHintPresent = false;
1364         Iterator<?> iter = hints.keySet().iterator();
1365         while (iter.hasNext()) {
1366             Object key = iter.next();
1367             if (key == SunHints.KEY_RENDERING ||
1368                 key == SunHints.KEY_ANTIALIASING ||
1369                 key == SunHints.KEY_TEXT_ANTIALIASING ||
1370                 key == SunHints.KEY_FRACTIONALMETRICS ||
1371                 key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
1372                 key == SunHints.KEY_STROKE_CONTROL ||
1373                 key == SunHints.KEY_INTERPOLATION)
1374             {
1375                 setRenderingHint((Key) key, hints.get(key));
1376             } else {
1377                 customHintPresent = true;
1378             }
1379         }
1380         if (customHintPresent) {
1381             this.hints = makeHints(hints);
1382         }
1383         invalidatePipe();
1384     }
1385 
1386     /**
1387      * Adds a number of preferences for the rendering algorithms.
1388      * Hint categories include controls for rendering quality and
1389      * overall time/quality trade-off in the rendering process.
1390      * @param hints The rendering hints to be set
1391      * @see RenderingHints
1392      */
1393     public void addRenderingHints(Map<?,?> hints) {
1394         boolean customHintPresent = false;
1395         Iterator<?> iter = hints.keySet().iterator();
1396         while (iter.hasNext()) {
1397             Object key = iter.next();
1398             if (key == SunHints.KEY_RENDERING ||
1399                 key == SunHints.KEY_ANTIALIASING ||
1400                 key == SunHints.KEY_TEXT_ANTIALIASING ||
1401                 key == SunHints.KEY_FRACTIONALMETRICS ||
1402                 key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
1403                 key == SunHints.KEY_STROKE_CONTROL ||
1404                 key == SunHints.KEY_INTERPOLATION)
1405             {
1406                 setRenderingHint((Key) key, hints.get(key));
1407             } else {
1408                 customHintPresent = true;
1409             }
1410         }
1411         if (customHintPresent) {
1412             if (this.hints == null) {
1413                 this.hints = makeHints(hints);
1414             } else {
1415                 this.hints.putAll(hints);
1416             }
1417         }
1418     }
1419 
1420     /**
1421      * Gets the preferences for the rendering algorithms.
1422      * Hint categories include controls for rendering quality and
1423      * overall time/quality trade-off in the rendering process.
1424      * @see RenderingHints
1425      */
1426     public RenderingHints getRenderingHints() {
1427         if (hints == null) {
1428             return makeHints(null);
1429         } else {
1430             return (RenderingHints) hints.clone();
1431         }
1432     }
1433 
1434     RenderingHints makeHints(Map<?,?> hints) {
1435         RenderingHints model = new RenderingHints(null);
1436         if (hints != null) {
1437             model.putAll(hints);
1438         }
1439         model.put(SunHints.KEY_RENDERING,
1440                   SunHints.Value.get(SunHints.INTKEY_RENDERING,
1441                                      renderHint));
1442         model.put(SunHints.KEY_ANTIALIASING,
1443                   SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
1444                                      antialiasHint));
1445         model.put(SunHints.KEY_TEXT_ANTIALIASING,
1446                   SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
1447                                      textAntialiasHint));
1448         model.put(SunHints.KEY_FRACTIONALMETRICS,
1449                   SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
1450                                      fractionalMetricsHint));
1451         model.put(SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST,
1452                   Integer.valueOf(lcdTextContrast));
1453         Object value;
1454         switch (interpolationHint) {
1455         case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1456             value = SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
1457             break;
1458         case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1459             value = SunHints.VALUE_INTERPOLATION_BILINEAR;
1460             break;
1461         case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1462             value = SunHints.VALUE_INTERPOLATION_BICUBIC;
1463             break;
1464         default:
1465             value = null;
1466             break;
1467         }
1468         if (value != null) {
1469             model.put(SunHints.KEY_INTERPOLATION, value);
1470         }
1471         model.put(SunHints.KEY_STROKE_CONTROL,
1472                   SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
1473                                      strokeHint));
1474         return model;
1475     }
1476 
1477     /**
1478      * Concatenates the current transform of this Graphics2D with a
1479      * translation transformation.
1480      * This is equivalent to calling transform(T), where T is an
1481      * AffineTransform represented by the following matrix:
1482      * <pre>
1483      *          [   1    0    tx  ]
1484      *          [   0    1    ty  ]
1485      *          [   0    0    1   ]
1486      * </pre>
1487      */
1488     public void translate(double tx, double ty) {
1489         transform.translate(tx, ty);
1490         invalidateTransform();
1491     }
1492 
1493     /**
1494      * Concatenates the current transform of this Graphics2D with a
1495      * rotation transformation.
1496      * This is equivalent to calling transform(R), where R is an
1497      * AffineTransform represented by the following matrix:
1498      * <pre>
1499      *          [   cos(theta)    -sin(theta)    0   ]
1500      *          [   sin(theta)     cos(theta)    0   ]
1501      *          [       0              0         1   ]
1502      * </pre>
1503      * Rotating with a positive angle theta rotates points on the positive
1504      * x axis toward the positive y axis.
1505      * @param theta The angle of rotation in radians.
1506      */
1507     public void rotate(double theta) {
1508         transform.rotate(theta);
1509         invalidateTransform();
1510     }
1511 
1512     /**
1513      * Concatenates the current transform of this Graphics2D with a
1514      * translated rotation transformation.
1515      * This is equivalent to the following sequence of calls:
1516      * <pre>
1517      *          translate(x, y);
1518      *          rotate(theta);
1519      *          translate(-x, -y);
1520      * </pre>
1521      * Rotating with a positive angle theta rotates points on the positive
1522      * x axis toward the positive y axis.
1523      * @param theta The angle of rotation in radians.
1524      * @param x The x coordinate of the origin of the rotation
1525      * @param y The x coordinate of the origin of the rotation
1526      */
1527     public void rotate(double theta, double x, double y) {
1528         transform.rotate(theta, x, y);
1529         invalidateTransform();
1530     }
1531 
1532     /**
1533      * Concatenates the current transform of this Graphics2D with a
1534      * scaling transformation.
1535      * This is equivalent to calling transform(S), where S is an
1536      * AffineTransform represented by the following matrix:
1537      * <pre>
1538      *          [   sx   0    0   ]
1539      *          [   0    sy   0   ]
1540      *          [   0    0    1   ]
1541      * </pre>
1542      */
1543     public void scale(double sx, double sy) {
1544         transform.scale(sx, sy);
1545         invalidateTransform();
1546     }
1547 
1548     /**
1549      * Concatenates the current transform of this Graphics2D with a
1550      * shearing transformation.
1551      * This is equivalent to calling transform(SH), where SH is an
1552      * AffineTransform represented by the following matrix:
1553      * <pre>
1554      *          [   1   shx   0   ]
1555      *          [  shy   1    0   ]
1556      *          [   0    0    1   ]
1557      * </pre>
1558      * @param shx The factor by which coordinates are shifted towards the
1559      * positive X axis direction according to their Y coordinate
1560      * @param shy The factor by which coordinates are shifted towards the
1561      * positive Y axis direction according to their X coordinate
1562      */
1563     public void shear(double shx, double shy) {
1564         transform.shear(shx, shy);
1565         invalidateTransform();
1566     }
1567 
1568     /**
1569      * Composes a Transform object with the transform in this
1570      * Graphics2D according to the rule last-specified-first-applied.
1571      * If the currrent transform is Cx, the result of composition
1572      * with Tx is a new transform Cx'.  Cx' becomes the current
1573      * transform for this Graphics2D.
1574      * Transforming a point p by the updated transform Cx' is
1575      * equivalent to first transforming p by Tx and then transforming
1576      * the result by the original transform Cx.  In other words,
1577      * Cx'(p) = Cx(Tx(p)).
1578      * A copy of the Tx is made, if necessary, so further
1579      * modifications to Tx do not affect rendering.
1580      * @param xform The Transform object to be composed with the current
1581      * transform.
1582      * @see #setTransform
1583      * @see AffineTransform
1584      */
1585     public void transform(AffineTransform xform) {
1586         this.transform.concatenate(xform);
1587         invalidateTransform();
1588     }
1589 
1590     /**
1591      * Translate
1592      */
1593     public void translate(int x, int y) {
1594         transform.translate(x, y);
1595         if (transformState <= TRANSFORM_INT_TRANSLATE) {
1596             transX += x;
1597             transY += y;
1598             transformState = (((transX | transY) == 0) ?
1599                               TRANSFORM_ISIDENT : TRANSFORM_INT_TRANSLATE);
1600         } else {
1601             invalidateTransform();
1602         }
1603     }
1604 
1605     /**
1606      * Sets the Transform in the current graphics state.
1607      * @param Tx The Transform object to be used in the rendering process.
1608      * @see #transform
1609      * @see AffineTransform
1610      */
1611     @Override
1612     public void setTransform(AffineTransform Tx) {
1613         if ((constrainX | constrainY) == 0) {
1614             transform.setTransform(Tx);
1615         } else {
1616             transform.setToTranslation(constrainX, constrainY);
1617             transform.concatenate(Tx);
1618         }
1619         invalidateTransform();
1620     }
1621 
1622     protected void invalidateTransform() {
1623         int type = transform.getType();
1624         int origTransformState = transformState;
1625         if (type == AffineTransform.TYPE_IDENTITY) {
1626             transformState = TRANSFORM_ISIDENT;
1627             transX = transY = 0;
1628         } else if (type == AffineTransform.TYPE_TRANSLATION) {
1629             double dtx = transform.getTranslateX();
1630             double dty = transform.getTranslateY();
1631             transX = (int) Math.floor(dtx + 0.5);
1632             transY = (int) Math.floor(dty + 0.5);
1633             if (dtx == transX && dty == transY) {
1634                 transformState = TRANSFORM_INT_TRANSLATE;
1635             } else {
1636                 transformState = TRANSFORM_ANY_TRANSLATE;
1637             }
1638         } else if ((type & (AffineTransform.TYPE_FLIP |
1639                             AffineTransform.TYPE_MASK_ROTATION |
1640                             AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0)
1641         {
1642             transformState = TRANSFORM_TRANSLATESCALE;
1643             transX = transY = 0;
1644         } else {
1645             transformState = TRANSFORM_GENERIC;
1646             transX = transY = 0;
1647         }
1648 
1649         if (transformState >= TRANSFORM_TRANSLATESCALE ||
1650             origTransformState >= TRANSFORM_TRANSLATESCALE)
1651         {
1652             /* Its only in this case that the previous or current transform
1653              * was more than a translate that font info is invalidated
1654              */
1655             cachedFRC = null;
1656             this.validFontInfo = false;
1657             this.fontMetrics = null;
1658             this.glyphVectorFontInfo = null;
1659 
1660             if (transformState != origTransformState) {
1661                 invalidatePipe();
1662             }
1663         }
1664         if (strokeState != STROKE_CUSTOM) {
1665             validateBasicStroke((BasicStroke) stroke);
1666         }
1667     }
1668 
1669     /**
1670      * Returns the current Transform in the Graphics2D state.
1671      * @see #transform
1672      * @see #setTransform
1673      */
1674     @Override
1675     public AffineTransform getTransform() {
1676         if ((constrainX | constrainY) == 0) {
1677             return new AffineTransform(transform);
1678         }
1679         AffineTransform tx
1680                 = AffineTransform.getTranslateInstance(-constrainX, -constrainY);
1681         tx.concatenate(transform);
1682         return tx;
1683     }
1684 
1685     /**
1686      * Returns the current Transform ignoring the "constrain"
1687      * rectangle.
1688      */
1689     public AffineTransform cloneTransform() {
1690         return new AffineTransform(transform);
1691     }
1692 
1693     /**
1694      * Returns the current Paint in the Graphics2D state.
1695      * @see #setPaint
1696      * @see java.awt.Graphics#setColor
1697      */
1698     public Paint getPaint() {
1699         return paint;
1700     }
1701 
1702     /**
1703      * Returns the current Composite in the Graphics2D state.
1704      * @see #setComposite
1705      */
1706     public Composite getComposite() {
1707         return composite;
1708     }
1709 
1710     public Color getColor() {
1711         return foregroundColor;
1712     }
1713 
1714     /*
1715      * Validate the eargb and pixel fields against the current color.
1716      *
1717      * The eargb field must take into account the extraAlpha
1718      * value of an AlphaComposite.  It may also take into account
1719      * the Fsrc Porter-Duff blending function if such a function is
1720      * a constant (see handling of Clear mode below).  For instance,
1721      * by factoring in the (Fsrc == 0) state of the Clear mode we can
1722      * use a SrcNoEa loop just as easily as a general Alpha loop
1723      * since the math will be the same in both cases.
1724      *
1725      * The pixel field will always be the best pixel data choice for
1726      * the final result of all calculations applied to the eargb field.
1727      *
1728      * Note that this method is only necessary under the following
1729      * conditions:
1730      *     (paintState <= PAINT_ALPHA_COLOR &&
1731      *      compositeState <= COMP_CUSTOM)
1732      * though nothing bad will happen if it is run in other states.
1733      */
1734     void validateColor() {
1735         int eargb;
1736         if (imageComp == CompositeType.Clear) {
1737             eargb = 0;
1738         } else {
1739             eargb = foregroundColor.getRGB();
1740             if (compositeState <= COMP_ALPHA &&
1741                 imageComp != CompositeType.SrcNoEa &&
1742                 imageComp != CompositeType.SrcOverNoEa)
1743             {
1744                 AlphaComposite alphacomp = (AlphaComposite) composite;
1745                 int a = Math.round(alphacomp.getAlpha() * (eargb >>> 24));
1746                 eargb = (eargb & 0x00ffffff) | (a << 24);
1747             }
1748         }
1749         this.eargb = eargb;
1750         this.pixel = surfaceData.pixelFor(eargb);
1751     }
1752 
1753     public void setColor(Color color) {
1754         if (color == null || color == paint) {
1755             return;
1756         }
1757         this.paint = foregroundColor = color;
1758         validateColor();
1759         if ((eargb >> 24) == -1) {
1760             if (paintState == PAINT_OPAQUECOLOR) {
1761                 return;
1762             }
1763             paintState = PAINT_OPAQUECOLOR;
1764             if (imageComp == CompositeType.SrcOverNoEa) {
1765                 // special case where compState depends on opacity of paint
1766                 compositeState = COMP_ISCOPY;
1767             }
1768         } else {
1769             if (paintState == PAINT_ALPHACOLOR) {
1770                 return;
1771             }
1772             paintState = PAINT_ALPHACOLOR;
1773             if (imageComp == CompositeType.SrcOverNoEa) {
1774                 // special case where compState depends on opacity of paint
1775                 compositeState = COMP_ALPHA;
1776             }
1777         }
1778         validFontInfo = false;
1779         invalidatePipe();
1780     }
1781 
1782     /**
1783      * Sets the background color in this context used for clearing a region.
1784      * When Graphics2D is constructed for a component, the backgroung color is
1785      * inherited from the component. Setting the background color in the
1786      * Graphics2D context only affects the subsequent clearRect() calls and
1787      * not the background color of the component. To change the background
1788      * of the component, use appropriate methods of the component.
1789      * @param color The background color that should be used in
1790      * subsequent calls to clearRect().
1791      * @see #getBackground
1792      * @see Graphics#clearRect
1793      */
1794     public void setBackground(Color color) {
1795         backgroundColor = color;
1796     }
1797 
1798     /**
1799      * Returns the background color used for clearing a region.
1800      * @see #setBackground
1801      */
1802     public Color getBackground() {
1803         return backgroundColor;
1804     }
1805 
1806     /**
1807      * Returns the current Stroke in the Graphics2D state.
1808      * @see #setStroke
1809      */
1810     public Stroke getStroke() {
1811         return stroke;
1812     }
1813 
1814     public Rectangle getClipBounds() {
1815         if (clipState == CLIP_DEVICE) {
1816             return null;
1817         }
1818         return getClipBounds(new Rectangle());
1819     }
1820 
1821     public Rectangle getClipBounds(Rectangle r) {
1822         if (clipState != CLIP_DEVICE) {
1823             if (transformState <= TRANSFORM_INT_TRANSLATE) {
1824                 if (usrClip instanceof Rectangle) {
1825                     r.setBounds((Rectangle) usrClip);
1826                 } else {
1827                     r.setFrame(usrClip.getBounds2D());
1828                 }
1829                 r.translate(-transX, -transY);
1830             } else {
1831                 r.setFrame(getClip().getBounds2D());
1832             }
1833         } else if (r == null) {
1834             throw new NullPointerException("null rectangle parameter");
1835         }
1836         return r;
1837     }
1838 
1839     public boolean hitClip(int x, int y, int width, int height) {
1840         if (width <= 0 || height <= 0) {
1841             return false;
1842         }
1843         if (transformState > TRANSFORM_INT_TRANSLATE) {
1844             // Note: Technically the most accurate test would be to
1845             // raster scan the parallelogram of the transformed rectangle
1846             // and do a span for span hit test against the clip, but for
1847             // speed we approximate the test with a bounding box of the
1848             // transformed rectangle.  The cost of rasterizing the
1849             // transformed rectangle is probably high enough that it is
1850             // not worth doing so to save the caller from having to call
1851             // a rendering method where we will end up discovering the
1852             // same answer in about the same amount of time anyway.
1853             // This logic breaks down if this hit test is being performed
1854             // on the bounds of a group of shapes in which case it might
1855             // be beneficial to be a little more accurate to avoid lots
1856             // of subsequent rendering calls.  In either case, this relaxed
1857             // test should not be significantly less accurate than the
1858             // optimal test for most transforms and so the conservative
1859             // answer should not cause too much extra work.
1860 
1861             double d[] = {
1862                 x, y,
1863                 x+width, y,
1864                 x, y+height,
1865                 x+width, y+height
1866             };
1867             transform.transform(d, 0, d, 0, 4);
1868             x = (int) Math.floor(Math.min(Math.min(d[0], d[2]),
1869                                           Math.min(d[4], d[6])));
1870             y = (int) Math.floor(Math.min(Math.min(d[1], d[3]),
1871                                           Math.min(d[5], d[7])));
1872             width = (int) Math.ceil(Math.max(Math.max(d[0], d[2]),
1873                                              Math.max(d[4], d[6])));
1874             height = (int) Math.ceil(Math.max(Math.max(d[1], d[3]),
1875                                               Math.max(d[5], d[7])));
1876         } else {
1877             x += transX;
1878             y += transY;
1879             width += x;
1880             height += y;
1881         }
1882 
1883         try {
1884             if (!getCompClip().intersectsQuickCheckXYXY(x, y, width, height)) {
1885                 return false;
1886             }
1887         } catch (InvalidPipeException e) {
1888             return false;
1889         }
1890         // REMIND: We could go one step further here and examine the
1891         // non-rectangular clip shape more closely if there is one.
1892         // Since the clip has already been rasterized, the performance
1893         // penalty of doing the scan is probably still within the bounds
1894         // of a good tradeoff between speed and quality of the answer.
1895         return true;
1896     }
1897 
1898     protected void validateCompClip() {
1899         int origClipState = clipState;
1900         if (usrClip == null) {
1901             clipState = CLIP_DEVICE;
1902             clipRegion = devClip;
1903         } else if (usrClip instanceof Rectangle2D) {
1904             clipState = CLIP_RECTANGULAR;
1905             if (usrClip instanceof Rectangle) {
1906                 clipRegion = devClip.getIntersection((Rectangle)usrClip);
1907             } else {
1908                 clipRegion = devClip.getIntersection(usrClip.getBounds());
1909             }
1910         } else {
1911             PathIterator cpi = usrClip.getPathIterator(null);
1912             int box[] = new int[4];
1913             ShapeSpanIterator sr = LoopPipe.getFillSSI(this);
1914             try {
1915                 sr.setOutputArea(devClip);
1916                 sr.appendPath(cpi);
1917                 sr.getPathBox(box);
1918                 Region r = Region.getInstance(box);
1919                 r.appendSpans(sr);
1920                 clipRegion = r;
1921                 clipState =
1922                     r.isRectangular() ? CLIP_RECTANGULAR : CLIP_SHAPE;
1923             } finally {
1924                 sr.dispose();
1925             }
1926         }
1927         if (origClipState != clipState &&
1928             (clipState == CLIP_SHAPE || origClipState == CLIP_SHAPE))
1929         {
1930             validFontInfo = false;
1931             invalidatePipe();
1932         }
1933     }
1934 
1935     static final int NON_RECTILINEAR_TRANSFORM_MASK =
1936         (AffineTransform.TYPE_GENERAL_TRANSFORM |
1937          AffineTransform.TYPE_GENERAL_ROTATION);
1938 
1939     protected Shape transformShape(Shape s) {
1940         if (s == null) {
1941             return null;
1942         }
1943         if (transformState > TRANSFORM_INT_TRANSLATE) {
1944             return transformShape(transform, s);
1945         } else {
1946             return transformShape(transX, transY, s);
1947         }
1948     }
1949 
1950     public Shape untransformShape(Shape s) {
1951         if (s == null) {
1952             return null;
1953         }
1954         if (transformState > TRANSFORM_INT_TRANSLATE) {
1955             try {
1956                 return transformShape(transform.createInverse(), s);
1957             } catch (NoninvertibleTransformException e) {
1958                 return null;
1959             }
1960         } else {
1961             return transformShape(-transX, -transY, s);
1962         }
1963     }
1964 
1965     protected static Shape transformShape(int tx, int ty, Shape s) {
1966         if (s == null) {
1967             return null;
1968         }
1969 
1970         if (s instanceof Rectangle) {
1971             Rectangle r = s.getBounds();
1972             r.translate(tx, ty);
1973             return r;
1974         }
1975         if (s instanceof Rectangle2D) {
1976             Rectangle2D rect = (Rectangle2D) s;
1977             return new Rectangle2D.Double(rect.getX() + tx,
1978                                           rect.getY() + ty,
1979                                           rect.getWidth(),
1980                                           rect.getHeight());
1981         }
1982 
1983         if (tx == 0 && ty == 0) {
1984             return cloneShape(s);
1985         }
1986 
1987         AffineTransform mat = AffineTransform.getTranslateInstance(tx, ty);
1988         return mat.createTransformedShape(s);
1989     }
1990 
1991     protected static Shape transformShape(AffineTransform tx, Shape clip) {
1992         if (clip == null) {
1993             return null;
1994         }
1995 
1996         if (clip instanceof Rectangle2D &&
1997             (tx.getType() & NON_RECTILINEAR_TRANSFORM_MASK) == 0)
1998         {
1999             Rectangle2D rect = (Rectangle2D) clip;
2000             double matrix[] = new double[4];
2001             matrix[0] = rect.getX();
2002             matrix[1] = rect.getY();
2003             matrix[2] = matrix[0] + rect.getWidth();
2004             matrix[3] = matrix[1] + rect.getHeight();
2005             tx.transform(matrix, 0, matrix, 0, 2);
2006             fixRectangleOrientation(matrix, rect);
2007             return new Rectangle2D.Double(matrix[0], matrix[1],
2008                                           matrix[2] - matrix[0],
2009                                           matrix[3] - matrix[1]);
2010         }
2011 
2012         if (tx.isIdentity()) {
2013             return cloneShape(clip);
2014         }
2015 
2016         return tx.createTransformedShape(clip);
2017     }
2018 
2019     /**
2020      * Sets orientation of the rectangle according to the clip.
2021      */
2022     private static void fixRectangleOrientation(double[] m, Rectangle2D clip) {
2023         if (clip.getWidth() > 0 != (m[2] - m[0] > 0)) {
2024             double t = m[0];
2025             m[0] = m[2];
2026             m[2] = t;
2027         }
2028         if (clip.getHeight() > 0 != (m[3] - m[1] > 0)) {
2029             double t = m[1];
2030             m[1] = m[3];
2031             m[3] = t;
2032         }
2033     }
2034 
2035     public void clipRect(int x, int y, int w, int h) {
2036         clip(new Rectangle(x, y, w, h));
2037     }
2038 
2039     public void setClip(int x, int y, int w, int h) {
2040         setClip(new Rectangle(x, y, w, h));
2041     }
2042 
2043     public Shape getClip() {
2044         return untransformShape(usrClip);
2045     }
2046 
2047     public void setClip(Shape sh) {
2048         usrClip = transformShape(sh);
2049         validateCompClip();
2050     }
2051 
2052     /**
2053      * Intersects the current clip with the specified Path and sets the
2054      * current clip to the resulting intersection. The clip is transformed
2055      * with the current transform in the Graphics2D state before being
2056      * intersected with the current clip. This method is used to make the
2057      * current clip smaller. To make the clip larger, use any setClip method.
2058      * @param s The Path to be intersected with the current clip.
2059      */
2060     public void clip(Shape s) {
2061         s = transformShape(s);
2062         if (usrClip != null) {
2063             s = intersectShapes(usrClip, s, true, true);
2064         }
2065         usrClip = s;
2066         validateCompClip();
2067     }
2068 
2069     public void setPaintMode() {
2070         setComposite(AlphaComposite.SrcOver);
2071     }
2072 
2073     public void setXORMode(Color c) {
2074         if (c == null) {
2075             throw new IllegalArgumentException("null XORColor");
2076         }
2077         setComposite(new XORComposite(c, surfaceData));
2078     }
2079 
2080     Blit lastCAblit;
2081     Composite lastCAcomp;
2082 
2083     public void copyArea(int x, int y, int w, int h, int dx, int dy) {
2084         try {
2085             doCopyArea(x, y, w, h, dx, dy);
2086         } catch (InvalidPipeException e) {
2087             try {
2088                 revalidateAll();
2089                 doCopyArea(x, y, w, h, dx, dy);
2090             } catch (InvalidPipeException e2) {
2091                 // Still catching the exception; we are not yet ready to
2092                 // validate the surfaceData correctly.  Fail for now and
2093                 // try again next time around.
2094             }
2095         } finally {
2096             surfaceData.markDirty();
2097         }
2098     }
2099 
2100     private void doCopyArea(int x, int y, int w, int h, int dx, int dy) {
2101         if (w <= 0 || h <= 0) {
2102             return;
2103         }
2104         SurfaceData theData = surfaceData;
2105         if (theData.copyArea(this, x, y, w, h, dx, dy)) {
2106             return;
2107         }
2108         if (transformState > TRANSFORM_TRANSLATESCALE) {
2109             throw new InternalError("transformed copyArea not implemented yet");
2110         }
2111         // REMIND: This method does not deal with missing data from the
2112         // source object (i.e. it does not send exposure events...)
2113 
2114         Region clip = getCompClip();
2115 
2116         Composite comp = composite;
2117         if (lastCAcomp != comp) {
2118             SurfaceType dsttype = theData.getSurfaceType();
2119             CompositeType comptype = imageComp;
2120             if (CompositeType.SrcOverNoEa.equals(comptype) &&
2121                 theData.getTransparency() == Transparency.OPAQUE)
2122             {
2123                 comptype = CompositeType.SrcNoEa;
2124             }
2125             lastCAblit = Blit.locate(dsttype, comptype, dsttype);
2126             lastCAcomp = comp;
2127         }
2128 
2129         double[] coords = {x, y, x + w, y + h, x + dx, y + dy};
2130         transform.transform(coords, 0, coords, 0, 3);
2131 
2132         x = (int)Math.ceil(coords[0] - 0.5);
2133         y = (int)Math.ceil(coords[1] - 0.5);
2134         w = ((int)Math.ceil(coords[2] - 0.5)) - x;
2135         h = ((int)Math.ceil(coords[3] - 0.5)) - y;
2136         dx = ((int)Math.ceil(coords[4] - 0.5)) - x;
2137         dy = ((int)Math.ceil(coords[5] - 0.5)) - y;
2138 
2139         // In case of negative scale transform, reflect the rect coords.
2140         if (w < 0) {
2141             w *= -1;
2142             x -= w;
2143         }
2144         if (h < 0) {
2145             h *= -1;
2146             y -= h;
2147         }
2148 
2149         Blit ob = lastCAblit;
2150         if (dy == 0 && dx > 0 && dx < w) {
2151             while (w > 0) {
2152                 int partW = Math.min(w, dx);
2153                 w -= partW;
2154                 int sx = x + w;
2155                 ob.Blit(theData, theData, comp, clip,
2156                         sx, y, sx+dx, y+dy, partW, h);
2157             }
2158             return;
2159         }
2160         if (dy > 0 && dy < h && dx > -w && dx < w) {
2161             while (h > 0) {
2162                 int partH = Math.min(h, dy);
2163                 h -= partH;
2164                 int sy = y + h;
2165                 ob.Blit(theData, theData, comp, clip,
2166                         x, sy, x+dx, sy+dy, w, partH);
2167             }
2168             return;
2169         }
2170         ob.Blit(theData, theData, comp, clip, x, y, x+dx, y+dy, w, h);
2171     }
2172 
2173     /*
2174     public void XcopyArea(int x, int y, int w, int h, int dx, int dy) {
2175         Rectangle rect = new Rectangle(x, y, w, h);
2176         rect = transformBounds(rect, transform);
2177         Point2D    point = new Point2D.Float(dx, dy);
2178         Point2D    root  = new Point2D.Float(0, 0);
2179         point = transform.transform(point, point);
2180         root  = transform.transform(root, root);
2181         int fdx = (int)(point.getX()-root.getX());
2182         int fdy = (int)(point.getY()-root.getY());
2183 
2184         Rectangle r = getCompBounds().intersection(rect.getBounds());
2185 
2186         if (r.isEmpty()) {
2187             return;
2188         }
2189 
2190         // Begin Rasterizer for Clip Shape
2191         boolean skipClip = true;
2192         byte[] clipAlpha = null;
2193 
2194         if (clipState == CLIP_SHAPE) {
2195 
2196             int box[] = new int[4];
2197 
2198             clipRegion.getBounds(box);
2199             Rectangle devR = new Rectangle(box[0], box[1],
2200                                            box[2] - box[0],
2201                                            box[3] - box[1]);
2202             if (!devR.isEmpty()) {
2203                 OutputManager mgr = getOutputManager();
2204                 RegionIterator ri = clipRegion.getIterator();
2205                 while (ri.nextYRange(box)) {
2206                     int spany = box[1];
2207                     int spanh = box[3] - spany;
2208                     while (ri.nextXBand(box)) {
2209                         int spanx = box[0];
2210                         int spanw = box[2] - spanx;
2211                         mgr.copyArea(this, null,
2212                                      spanw, 0,
2213                                      spanx, spany,
2214                                      spanw, spanh,
2215                                      fdx, fdy,
2216                                      null);
2217                     }
2218                 }
2219             }
2220             return;
2221         }
2222         // End Rasterizer for Clip Shape
2223 
2224         getOutputManager().copyArea(this, null,
2225                                     r.width, 0,
2226                                     r.x, r.y, r.width,
2227                                     r.height, fdx, fdy,
2228                                     null);
2229     }
2230     */
2231 
2232     public void drawLine(int x1, int y1, int x2, int y2) {
2233         try {
2234             drawpipe.drawLine(this, x1, y1, x2, y2);
2235         } catch (InvalidPipeException e) {
2236             try {
2237                 revalidateAll();
2238                 drawpipe.drawLine(this, x1, y1, x2, y2);
2239             } catch (InvalidPipeException e2) {
2240                 // Still catching the exception; we are not yet ready to
2241                 // validate the surfaceData correctly.  Fail for now and
2242                 // try again next time around.
2243             }
2244         } finally {
2245             surfaceData.markDirty();
2246         }
2247     }
2248 
2249     public void drawRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
2250         try {
2251             drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
2252         } catch (InvalidPipeException e) {
2253             try {
2254                 revalidateAll();
2255                 drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
2256             } catch (InvalidPipeException e2) {
2257                 // Still catching the exception; we are not yet ready to
2258                 // validate the surfaceData correctly.  Fail for now and
2259                 // try again next time around.
2260             }
2261         } finally {
2262             surfaceData.markDirty();
2263         }
2264     }
2265 
2266     public void fillRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
2267         try {
2268             fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
2269         } catch (InvalidPipeException e) {
2270             try {
2271                 revalidateAll();
2272                 fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
2273             } catch (InvalidPipeException e2) {
2274                 // Still catching the exception; we are not yet ready to
2275                 // validate the surfaceData correctly.  Fail for now and
2276                 // try again next time around.
2277             }
2278         } finally {
2279             surfaceData.markDirty();
2280         }
2281     }
2282 
2283     public void drawOval(int x, int y, int w, int h) {
2284         try {
2285             drawpipe.drawOval(this, x, y, w, h);
2286         } catch (InvalidPipeException e) {
2287             try {
2288                 revalidateAll();
2289                 drawpipe.drawOval(this, x, y, w, h);
2290             } catch (InvalidPipeException e2) {
2291                 // Still catching the exception; we are not yet ready to
2292                 // validate the surfaceData correctly.  Fail for now and
2293                 // try again next time around.
2294             }
2295         } finally {
2296             surfaceData.markDirty();
2297         }
2298     }
2299 
2300     public void fillOval(int x, int y, int w, int h) {
2301         try {
2302             fillpipe.fillOval(this, x, y, w, h);
2303         } catch (InvalidPipeException e) {
2304             try {
2305                 revalidateAll();
2306                 fillpipe.fillOval(this, x, y, w, h);
2307             } catch (InvalidPipeException e2) {
2308                 // Still catching the exception; we are not yet ready to
2309                 // validate the surfaceData correctly.  Fail for now and
2310                 // try again next time around.
2311             }
2312         } finally {
2313             surfaceData.markDirty();
2314         }
2315     }
2316 
2317     public void drawArc(int x, int y, int w, int h,
2318                         int startAngl, int arcAngl) {
2319         try {
2320             drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
2321         } catch (InvalidPipeException e) {
2322             try {
2323                 revalidateAll();
2324                 drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
2325             } catch (InvalidPipeException e2) {
2326                 // Still catching the exception; we are not yet ready to
2327                 // validate the surfaceData correctly.  Fail for now and
2328                 // try again next time around.
2329             }
2330         } finally {
2331             surfaceData.markDirty();
2332         }
2333     }
2334 
2335     public void fillArc(int x, int y, int w, int h,
2336                         int startAngl, int arcAngl) {
2337         try {
2338             fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
2339         } catch (InvalidPipeException e) {
2340             try {
2341                 revalidateAll();
2342                 fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
2343             } catch (InvalidPipeException e2) {
2344                 // Still catching the exception; we are not yet ready to
2345                 // validate the surfaceData correctly.  Fail for now and
2346                 // try again next time around.
2347             }
2348         } finally {
2349             surfaceData.markDirty();
2350         }
2351     }
2352 
2353     public void drawPolyline(int xPoints[], int yPoints[], int nPoints) {
2354         try {
2355             drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
2356         } catch (InvalidPipeException e) {
2357             try {
2358                 revalidateAll();
2359                 drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
2360             } catch (InvalidPipeException e2) {
2361                 // Still catching the exception; we are not yet ready to
2362                 // validate the surfaceData correctly.  Fail for now and
2363                 // try again next time around.
2364             }
2365         } finally {
2366             surfaceData.markDirty();
2367         }
2368     }
2369 
2370     public void drawPolygon(int xPoints[], int yPoints[], int nPoints) {
2371         try {
2372             drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
2373         } catch (InvalidPipeException e) {
2374             try {
2375                 revalidateAll();
2376                 drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
2377             } catch (InvalidPipeException e2) {
2378                 // Still catching the exception; we are not yet ready to
2379                 // validate the surfaceData correctly.  Fail for now and
2380                 // try again next time around.
2381             }
2382         } finally {
2383             surfaceData.markDirty();
2384         }
2385     }
2386 
2387     public void fillPolygon(int xPoints[], int yPoints[], int nPoints) {
2388         try {
2389             fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
2390         } catch (InvalidPipeException e) {
2391             try {
2392                 revalidateAll();
2393                 fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
2394             } catch (InvalidPipeException e2) {
2395                 // Still catching the exception; we are not yet ready to
2396                 // validate the surfaceData correctly.  Fail for now and
2397                 // try again next time around.
2398             }
2399         } finally {
2400             surfaceData.markDirty();
2401         }
2402     }
2403 
2404     public void drawRect (int x, int y, int w, int h) {
2405         try {
2406             drawpipe.drawRect(this, x, y, w, h);
2407         } catch (InvalidPipeException e) {
2408             try {
2409                 revalidateAll();
2410                 drawpipe.drawRect(this, x, y, w, h);
2411             } catch (InvalidPipeException e2) {
2412                 // Still catching the exception; we are not yet ready to
2413                 // validate the surfaceData correctly.  Fail for now and
2414                 // try again next time around.
2415             }
2416         } finally {
2417             surfaceData.markDirty();
2418         }
2419     }
2420 
2421     public void fillRect (int x, int y, int w, int h) {
2422         try {
2423             fillpipe.fillRect(this, x, y, w, h);
2424         } catch (InvalidPipeException e) {
2425             try {
2426                 revalidateAll();
2427                 fillpipe.fillRect(this, x, y, w, h);
2428             } catch (InvalidPipeException e2) {
2429                 // Still catching the exception; we are not yet ready to
2430                 // validate the surfaceData correctly.  Fail for now and
2431                 // try again next time around.
2432             }
2433         } finally {
2434             surfaceData.markDirty();
2435         }
2436     }
2437 
2438     private void revalidateAll() {
2439         try {
2440             // REMIND: This locking needs to be done around the
2441             // caller of this method so that the pipe stays valid
2442             // long enough to call the new primitive.
2443             // REMIND: No locking yet in screen SurfaceData objects!
2444             // surfaceData.lock();
2445             surfaceData = surfaceData.getReplacement();
2446             if (surfaceData == null) {
2447                 surfaceData = NullSurfaceData.theInstance;
2448             }
2449 
2450             invalidatePipe();
2451 
2452             // this will recalculate the composite clip
2453             setDevClip(surfaceData.getBounds());
2454 
2455             if (paintState <= PAINT_ALPHACOLOR) {
2456                 validateColor();
2457             }
2458             if (composite instanceof XORComposite) {
2459                 Color c = ((XORComposite) composite).getXorColor();
2460                 setComposite(new XORComposite(c, surfaceData));
2461             }
2462             validatePipe();
2463         } finally {
2464             // REMIND: No locking yet in screen SurfaceData objects!
2465             // surfaceData.unlock();
2466         }
2467     }
2468 
2469     public void clearRect(int x, int y, int w, int h) {
2470         // REMIND: has some "interesting" consequences if threads are
2471         // not synchronized
2472         Composite c = composite;
2473         Paint p = paint;
2474         setComposite(AlphaComposite.Src);
2475         setColor(getBackground());
2476         fillRect(x, y, w, h);
2477         setPaint(p);
2478         setComposite(c);
2479     }
2480 
2481     /**
2482      * Strokes the outline of a Path using the settings of the current
2483      * graphics state.  The rendering attributes applied include the
2484      * clip, transform, paint or color, composite and stroke attributes.
2485      * @param s The path to be drawn.
2486      * @see #setStroke
2487      * @see #setPaint
2488      * @see java.awt.Graphics#setColor
2489      * @see #transform
2490      * @see #setTransform
2491      * @see #clip
2492      * @see #setClip
2493      * @see #setComposite
2494      */
2495     public void draw(Shape s) {
2496         try {
2497             shapepipe.draw(this, s);
2498         } catch (InvalidPipeException e) {
2499             try {
2500                 revalidateAll();
2501                 shapepipe.draw(this, s);
2502             } catch (InvalidPipeException e2) {
2503                 // Still catching the exception; we are not yet ready to
2504                 // validate the surfaceData correctly.  Fail for now and
2505                 // try again next time around.
2506             }
2507         } finally {
2508             surfaceData.markDirty();
2509         }
2510     }
2511 
2512 
2513     /**
2514      * Fills the interior of a Path using the settings of the current
2515      * graphics state. The rendering attributes applied include the
2516      * clip, transform, paint or color, and composite.
2517      * @see #setPaint
2518      * @see java.awt.Graphics#setColor
2519      * @see #transform
2520      * @see #setTransform
2521      * @see #setComposite
2522      * @see #clip
2523      * @see #setClip
2524      */
2525     public void fill(Shape s) {
2526         try {
2527             shapepipe.fill(this, s);
2528         } catch (InvalidPipeException e) {
2529             try {
2530                 revalidateAll();
2531                 shapepipe.fill(this, s);
2532             } catch (InvalidPipeException e2) {
2533                 // Still catching the exception; we are not yet ready to
2534                 // validate the surfaceData correctly.  Fail for now and
2535                 // try again next time around.
2536             }
2537         } finally {
2538             surfaceData.markDirty();
2539         }
2540     }
2541 
2542     /**
2543      * Returns true if the given AffineTransform is an integer
2544      * translation.
2545      */
2546     private static boolean isIntegerTranslation(AffineTransform xform) {
2547         if (xform.isIdentity()) {
2548             return true;
2549         }
2550         if (xform.getType() == AffineTransform.TYPE_TRANSLATION) {
2551             double tx = xform.getTranslateX();
2552             double ty = xform.getTranslateY();
2553             return (tx == (int)tx && ty == (int)ty);
2554         }
2555         return false;
2556     }
2557 
2558     /**
2559      * Returns the index of the tile corresponding to the supplied position
2560      * given the tile grid offset and size along the same axis.
2561      */
2562     private static int getTileIndex(int p, int tileGridOffset, int tileSize) {
2563         p -= tileGridOffset;
2564         if (p < 0) {
2565             p += 1 - tileSize;          // force round to -infinity (ceiling)
2566         }
2567         return p/tileSize;
2568     }
2569 
2570     /**
2571      * Returns a rectangle in image coordinates that may be required
2572      * in order to draw the given image into the given clipping region
2573      * through a pair of AffineTransforms.  In addition, horizontal and
2574      * vertical padding factors for antialising and interpolation may
2575      * be used.
2576      */
2577     private static Rectangle getImageRegion(RenderedImage img,
2578                                             Region compClip,
2579                                             AffineTransform transform,
2580                                             AffineTransform xform,
2581                                             int padX, int padY) {
2582         Rectangle imageRect =
2583             new Rectangle(img.getMinX(), img.getMinY(),
2584                           img.getWidth(), img.getHeight());
2585 
2586         Rectangle result = null;
2587         try {
2588             double p[] = new double[8];
2589             p[0] = p[2] = compClip.getLoX();
2590             p[4] = p[6] = compClip.getHiX();
2591             p[1] = p[5] = compClip.getLoY();
2592             p[3] = p[7] = compClip.getHiY();
2593 
2594             // Inverse transform the output bounding rect
2595             transform.inverseTransform(p, 0, p, 0, 4);
2596             xform.inverseTransform(p, 0, p, 0, 4);
2597 
2598             // Determine a bounding box for the inverse transformed region
2599             double x0,x1,y0,y1;
2600             x0 = x1 = p[0];
2601             y0 = y1 = p[1];
2602 
2603             for (int i = 2; i < 8; ) {
2604                 double pt = p[i++];
2605                 if (pt < x0)  {
2606                     x0 = pt;
2607                 } else if (pt > x1) {
2608                     x1 = pt;
2609                 }
2610                 pt = p[i++];
2611                 if (pt < y0)  {
2612                     y0 = pt;
2613                 } else if (pt > y1) {
2614                     y1 = pt;
2615                 }
2616             }
2617 
2618             // This is padding for anti-aliasing and such.  It may
2619             // be more than is needed.
2620             int x = (int)x0 - padX;
2621             int w = (int)(x1 - x0 + 2*padX);
2622             int y = (int)y0 - padY;
2623             int h = (int)(y1 - y0 + 2*padY);
2624 
2625             Rectangle clipRect = new Rectangle(x,y,w,h);
2626             result = clipRect.intersection(imageRect);
2627         } catch (NoninvertibleTransformException nte) {
2628             // Worst case bounds are the bounds of the image.
2629             result = imageRect;
2630         }
2631 
2632         return result;
2633     }
2634 
2635     /**
2636      * Draws an image, applying a transform from image space into user space
2637      * before drawing.
2638      * The transformation from user space into device space is done with
2639      * the current transform in the Graphics2D.
2640      * The given transformation is applied to the image before the
2641      * transform attribute in the Graphics2D state is applied.
2642      * The rendering attributes applied include the clip, transform,
2643      * and composite attributes. Note that the result is
2644      * undefined, if the given transform is noninvertible.
2645      * @param img The image to be drawn. Does nothing if img is null.
2646      * @param xform The transformation from image space into user space.
2647      * @see #transform
2648      * @see #setTransform
2649      * @see #setComposite
2650      * @see #clip
2651      * @see #setClip
2652      */
2653     public void drawRenderedImage(RenderedImage img,
2654                                   AffineTransform xform) {
2655 
2656         if (img == null) {
2657             return;
2658         }
2659 
2660         // BufferedImage case: use a simple drawImage call
2661         if (img instanceof BufferedImage) {
2662             BufferedImage bufImg = (BufferedImage)img;
2663             drawImage(bufImg,xform,null);
2664             return;
2665         }
2666 
2667         // transformState tracks the state of transform and
2668         // transX, transY contain the integer casts of the
2669         // translation factors
2670         boolean isIntegerTranslate =
2671             (transformState <= TRANSFORM_INT_TRANSLATE) &&
2672             isIntegerTranslation(xform);
2673 
2674         // Include padding for interpolation/antialiasing if necessary
2675         int pad = isIntegerTranslate ? 0 : 3;
2676 
2677         Region clip;
2678         try {
2679             clip = getCompClip();
2680         } catch (InvalidPipeException e) {
2681             return;
2682         }
2683 
2684         // Determine the region of the image that may contribute to
2685         // the clipped drawing area
2686         Rectangle region = getImageRegion(img,
2687                                           clip,
2688                                           transform,
2689                                           xform,
2690                                           pad, pad);
2691         if (region.width <= 0 || region.height <= 0) {
2692             return;
2693         }
2694 
2695         // Attempt to optimize integer translation of tiled images.
2696         // Although theoretically we are O.K. if the concatenation of
2697         // the user transform and the device transform is an integer
2698         // translation, we'll play it safe and only optimize the case
2699         // where both are integer translations.
2700         if (isIntegerTranslate) {
2701             // Use optimized code
2702             // Note that drawTranslatedRenderedImage calls copyImage
2703             // which takes the user space to device space transform into
2704             // account, but we need to provide the image space to user space
2705             // translations.
2706 
2707             drawTranslatedRenderedImage(img, region,
2708                                         (int) xform.getTranslateX(),
2709                                         (int) xform.getTranslateY());
2710             return;
2711         }
2712 
2713         // General case: cobble the necessary region into a single Raster
2714         Raster raster = img.getData(region);
2715 
2716         // Make a new Raster with the same contents as raster
2717         // but starting at (0, 0).  This raster is thus in the same
2718         // coordinate system as the SampleModel of the original raster.
2719         WritableRaster wRaster =
2720               Raster.createWritableRaster(raster.getSampleModel(),
2721                                           raster.getDataBuffer(),
2722                                           null);
2723 
2724         // If the original raster was in a different coordinate
2725         // system than its SampleModel, we need to perform an
2726         // additional translation in order to get the (minX, minY)
2727         // pixel of raster to be pixel (0, 0) of wRaster.  We also
2728         // have to have the correct width and height.
2729         int minX = raster.getMinX();
2730         int minY = raster.getMinY();
2731         int width = raster.getWidth();
2732         int height = raster.getHeight();
2733         int px = minX - raster.getSampleModelTranslateX();
2734         int py = minY - raster.getSampleModelTranslateY();
2735         if (px != 0 || py != 0 || width != wRaster.getWidth() ||
2736             height != wRaster.getHeight()) {
2737             wRaster =
2738                 wRaster.createWritableChild(px,
2739                                             py,
2740                                             width,
2741                                             height,
2742                                             0, 0,
2743                                             null);
2744         }
2745 
2746         // Now we have a BufferedImage starting at (0, 0)
2747         // with the same contents that started at (minX, minY)
2748         // in raster.  So we must draw the BufferedImage with a
2749         // translation of (minX, minY).
2750         AffineTransform transXform = (AffineTransform)xform.clone();
2751         transXform.translate(minX, minY);
2752 
2753         ColorModel cm = img.getColorModel();
2754         BufferedImage bufImg = new BufferedImage(cm,
2755                                                  wRaster,
2756                                                  cm.isAlphaPremultiplied(),
2757                                                  null);
2758         drawImage(bufImg, transXform, null);
2759     }
2760 
2761     /**
2762      * Intersects <code>destRect</code> with <code>clip</code> and
2763      * overwrites <code>destRect</code> with the result.
2764      * Returns false if the intersection was empty, true otherwise.
2765      */
2766     private boolean clipTo(Rectangle destRect, Rectangle clip) {
2767         int x1 = Math.max(destRect.x, clip.x);
2768         int x2 = Math.min(destRect.x + destRect.width, clip.x + clip.width);
2769         int y1 = Math.max(destRect.y, clip.y);
2770         int y2 = Math.min(destRect.y + destRect.height, clip.y + clip.height);
2771         if (((x2 - x1) < 0) || ((y2 - y1) < 0)) {
2772             destRect.width = -1; // Set both just to be safe
2773             destRect.height = -1;
2774             return false;
2775         } else {
2776             destRect.x = x1;
2777             destRect.y = y1;
2778             destRect.width = x2 - x1;
2779             destRect.height = y2 - y1;
2780             return true;
2781         }
2782     }
2783 
2784     /**
2785      * Draw a portion of a RenderedImage tile-by-tile with a given
2786      * integer image to user space translation.  The user to
2787      * device transform must also be an integer translation.
2788      */
2789     private void drawTranslatedRenderedImage(RenderedImage img,
2790                                              Rectangle region,
2791                                              int i2uTransX,
2792                                              int i2uTransY) {
2793         // Cache tile grid info
2794         int tileGridXOffset = img.getTileGridXOffset();
2795         int tileGridYOffset = img.getTileGridYOffset();
2796         int tileWidth = img.getTileWidth();
2797         int tileHeight = img.getTileHeight();
2798 
2799         // Determine the tile index extrema in each direction
2800         int minTileX =
2801             getTileIndex(region.x, tileGridXOffset, tileWidth);
2802         int minTileY =
2803             getTileIndex(region.y, tileGridYOffset, tileHeight);
2804         int maxTileX =
2805             getTileIndex(region.x + region.width - 1,
2806                          tileGridXOffset, tileWidth);
2807         int maxTileY =
2808             getTileIndex(region.y + region.height - 1,
2809                          tileGridYOffset, tileHeight);
2810 
2811         // Create a single ColorModel to use for all BufferedImages
2812         ColorModel colorModel = img.getColorModel();
2813 
2814         // Reuse the same Rectangle for each iteration
2815         Rectangle tileRect = new Rectangle();
2816 
2817         for (int ty = minTileY; ty <= maxTileY; ty++) {
2818             for (int tx = minTileX; tx <= maxTileX; tx++) {
2819                 // Get the current tile.
2820                 Raster raster = img.getTile(tx, ty);
2821 
2822                 // Fill in tileRect with the tile bounds
2823                 tileRect.x = tx*tileWidth + tileGridXOffset;
2824                 tileRect.y = ty*tileHeight + tileGridYOffset;
2825                 tileRect.width = tileWidth;
2826                 tileRect.height = tileHeight;
2827 
2828                 // Clip the tile against the image bounds and
2829                 // backwards mapped clip region
2830                 // The result can't be empty
2831                 clipTo(tileRect, region);
2832 
2833                 // Create a WritableRaster containing the tile
2834                 WritableRaster wRaster = null;
2835                 if (raster instanceof WritableRaster) {
2836                     wRaster = (WritableRaster)raster;
2837                 } else {
2838                     // Create a WritableRaster in the same coordinate system
2839                     // as the original raster.
2840                     wRaster =
2841                         Raster.createWritableRaster(raster.getSampleModel(),
2842                                                     raster.getDataBuffer(),
2843                                                     null);
2844                 }
2845 
2846                 // Translate wRaster to start at (0, 0) and to contain
2847                 // only the relevent portion of the tile
2848                 wRaster = wRaster.createWritableChild(tileRect.x, tileRect.y,
2849                                                       tileRect.width,
2850                                                       tileRect.height,
2851                                                       0, 0,
2852                                                       null);
2853 
2854                 // Wrap wRaster in a BufferedImage
2855                 BufferedImage bufImg =
2856                     new BufferedImage(colorModel,
2857                                       wRaster,
2858                                       colorModel.isAlphaPremultiplied(),
2859                                       null);
2860                 // Now we have a BufferedImage starting at (0, 0) that
2861                 // represents data from a Raster starting at
2862                 // (tileRect.x, tileRect.y).  Additionally, it needs
2863                 // to be translated by (i2uTransX, i2uTransY).  We call
2864                 // copyImage to draw just the region of interest
2865                 // without needing to create a child image.
2866                 copyImage(bufImg, tileRect.x + i2uTransX,
2867                           tileRect.y + i2uTransY, 0, 0, tileRect.width,
2868                           tileRect.height, null, null);
2869             }
2870         }
2871     }
2872 
2873     public void drawRenderableImage(RenderableImage img,
2874                                     AffineTransform xform) {
2875 
2876         if (img == null) {
2877             return;
2878         }
2879 
2880         AffineTransform pipeTransform = transform;
2881         AffineTransform concatTransform = new AffineTransform(xform);
2882         concatTransform.concatenate(pipeTransform);
2883         AffineTransform reverseTransform;
2884 
2885         RenderContext rc = new RenderContext(concatTransform);
2886 
2887         try {
2888             reverseTransform = pipeTransform.createInverse();
2889         } catch (NoninvertibleTransformException nte) {
2890             rc = new RenderContext(pipeTransform);
2891             reverseTransform = new AffineTransform();
2892         }
2893 
2894         RenderedImage rendering = img.createRendering(rc);
2895         drawRenderedImage(rendering,reverseTransform);
2896     }
2897 
2898 
2899 
2900     /*
2901      * Transform the bounding box of the BufferedImage
2902      */
2903     protected Rectangle transformBounds(Rectangle rect,
2904                                         AffineTransform tx) {
2905         if (tx.isIdentity()) {
2906             return rect;
2907         }
2908 
2909         Shape s = transformShape(tx, rect);
2910         return s.getBounds();
2911     }
2912 
2913     // text rendering methods
2914     public void drawString(String str, int x, int y) {
2915         if (str == null) {
2916             throw new NullPointerException("String is null");
2917         }
2918 
2919         if (font.hasLayoutAttributes()) {
2920             if (str.length() == 0) {
2921                 return;
2922             }
2923             new TextLayout(str, font, getFontRenderContext()).draw(this, x, y);
2924             return;
2925         }
2926 
2927         try {
2928             textpipe.drawString(this, str, x, y);
2929         } catch (InvalidPipeException e) {
2930             try {
2931                 revalidateAll();
2932                 textpipe.drawString(this, str, x, y);
2933             } catch (InvalidPipeException e2) {
2934                 // Still catching the exception; we are not yet ready to
2935                 // validate the surfaceData correctly.  Fail for now and
2936                 // try again next time around.
2937             }
2938         } finally {
2939             surfaceData.markDirty();
2940         }
2941     }
2942 
2943     public void drawString(String str, float x, float y) {
2944         if (str == null) {
2945             throw new NullPointerException("String is null");
2946         }
2947 
2948         if (font.hasLayoutAttributes()) {
2949             if (str.length() == 0) {
2950                 return;
2951             }
2952             new TextLayout(str, font, getFontRenderContext()).draw(this, x, y);
2953             return;
2954         }
2955 
2956         try {
2957             textpipe.drawString(this, str, x, y);
2958         } catch (InvalidPipeException e) {
2959             try {
2960                 revalidateAll();
2961                 textpipe.drawString(this, str, x, y);
2962             } catch (InvalidPipeException e2) {
2963                 // Still catching the exception; we are not yet ready to
2964                 // validate the surfaceData correctly.  Fail for now and
2965                 // try again next time around.
2966             }
2967         } finally {
2968             surfaceData.markDirty();
2969         }
2970     }
2971 
2972     public void drawString(AttributedCharacterIterator iterator,
2973                            int x, int y) {
2974         if (iterator == null) {
2975             throw new NullPointerException("AttributedCharacterIterator is null");
2976         }
2977         if (iterator.getBeginIndex() == iterator.getEndIndex()) {
2978             return; /* nothing to draw */
2979         }
2980         TextLayout tl = new TextLayout(iterator, getFontRenderContext());
2981         tl.draw(this, (float) x, (float) y);
2982     }
2983 
2984     public void drawString(AttributedCharacterIterator iterator,
2985                            float x, float y) {
2986         if (iterator == null) {
2987             throw new NullPointerException("AttributedCharacterIterator is null");
2988         }
2989         if (iterator.getBeginIndex() == iterator.getEndIndex()) {
2990             return; /* nothing to draw */
2991         }
2992         TextLayout tl = new TextLayout(iterator, getFontRenderContext());
2993         tl.draw(this, x, y);
2994     }
2995 
2996     public void drawGlyphVector(GlyphVector gv, float x, float y)
2997     {
2998         if (gv == null) {
2999             throw new NullPointerException("GlyphVector is null");
3000         }
3001 
3002         try {
3003             textpipe.drawGlyphVector(this, gv, x, y);
3004         } catch (InvalidPipeException e) {
3005             try {
3006                 revalidateAll();
3007                 textpipe.drawGlyphVector(this, gv, x, y);
3008             } catch (InvalidPipeException e2) {
3009                 // Still catching the exception; we are not yet ready to
3010                 // validate the surfaceData correctly.  Fail for now and
3011                 // try again next time around.
3012             }
3013         } finally {
3014             surfaceData.markDirty();
3015         }
3016     }
3017 
3018     public void drawChars(char data[], int offset, int length, int x, int y) {
3019 
3020         if (data == null) {
3021             throw new NullPointerException("char data is null");
3022         }
3023         if (offset < 0 || length < 0 || offset + length > data.length) {
3024             throw new ArrayIndexOutOfBoundsException("bad offset/length");
3025         }
3026         if (font.hasLayoutAttributes()) {
3027             if (data.length == 0) {
3028                 return;
3029             }
3030             new TextLayout(new String(data, offset, length),
3031                            font, getFontRenderContext()).draw(this, x, y);
3032             return;
3033         }
3034 
3035         try {
3036             textpipe.drawChars(this, data, offset, length, x, y);
3037         } catch (InvalidPipeException e) {
3038             try {
3039                 revalidateAll();
3040                 textpipe.drawChars(this, data, offset, length, x, y);
3041             } catch (InvalidPipeException e2) {
3042                 // Still catching the exception; we are not yet ready to
3043                 // validate the surfaceData correctly.  Fail for now and
3044                 // try again next time around.
3045             }
3046         } finally {
3047             surfaceData.markDirty();
3048         }
3049     }
3050 
3051     public void drawBytes(byte data[], int offset, int length, int x, int y) {
3052         if (data == null) {
3053             throw new NullPointerException("byte data is null");
3054         }
3055         if (offset < 0 || length < 0 || offset + length > data.length) {
3056             throw new ArrayIndexOutOfBoundsException("bad offset/length");
3057         }
3058         /* Byte data is interpreted as 8-bit ASCII. Re-use drawChars loops */
3059         char chData[] = new char[length];
3060         for (int i = length; i-- > 0; ) {
3061             chData[i] = (char)(data[i+offset] & 0xff);
3062         }
3063         if (font.hasLayoutAttributes()) {
3064             if (data.length == 0) {
3065                 return;
3066             }
3067             new TextLayout(new String(chData),
3068                            font, getFontRenderContext()).draw(this, x, y);
3069             return;
3070         }
3071 
3072         try {
3073             textpipe.drawChars(this, chData, 0, length, x, y);
3074         } catch (InvalidPipeException e) {
3075             try {
3076                 revalidateAll();
3077                 textpipe.drawChars(this, chData, 0, length, x, y);
3078             } catch (InvalidPipeException e2) {
3079                 // Still catching the exception; we are not yet ready to
3080                 // validate the surfaceData correctly.  Fail for now and
3081                 // try again next time around.
3082             }
3083         } finally {
3084             surfaceData.markDirty();
3085         }
3086     }
3087 // end of text rendering methods
3088 
3089     private boolean isHiDPIImage(final Image img) {
3090         return (SurfaceManager.getImageScale(img) != 1)
3091                 || img instanceof MultiResolutionImage;
3092     }
3093 
3094     private boolean drawHiDPIImage(Image img, int dx1, int dy1, int dx2,
3095                                    int dy2, int sx1, int sy1, int sx2, int sy2,
3096                                    Color bgcolor, ImageObserver observer) {
3097 
3098         if (SurfaceManager.getImageScale(img) != 1) {  // Volatile Image
3099             final int scale = SurfaceManager.getImageScale(img);
3100             sx1 = Region.clipScale(sx1, scale);
3101             sx2 = Region.clipScale(sx2, scale);
3102             sy1 = Region.clipScale(sy1, scale);
3103             sy2 = Region.clipScale(sy2, scale);
3104         } else if (img instanceof MultiResolutionImage) {
3105             // get scaled destination image size
3106 
3107             int width = img.getWidth(observer);
3108             int height = img.getHeight(observer);
3109 
3110             Image resolutionVariant = getResolutionVariant(
3111                     (MultiResolutionImage) img, width, height,
3112                     dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2);
3113 
3114             if (resolutionVariant != img && resolutionVariant != null) {
3115                 // recalculate source region for the resolution variant
3116 
3117                 ImageObserver rvObserver = MultiResolutionToolkitImage.
3118                         getResolutionVariantObserver(img, observer,
3119                                 width, height, -1, -1);
3120 
3121                 int rvWidth = resolutionVariant.getWidth(rvObserver);
3122                 int rvHeight = resolutionVariant.getHeight(rvObserver);
3123 
3124                 if (0 < width && 0 < height && 0 < rvWidth && 0 < rvHeight) {
3125 
3126                     float widthScale = ((float) rvWidth) / width;
3127                     float heightScale = ((float) rvHeight) / height;
3128 
3129                     sx1 = Region.clipScale(sx1, widthScale);
3130                     sy1 = Region.clipScale(sy1, heightScale);
3131                     sx2 = Region.clipScale(sx2, widthScale);
3132                     sy2 = Region.clipScale(sy2, heightScale);
3133 
3134                     observer = rvObserver;
3135                     img = resolutionVariant;
3136                 }
3137             }
3138         }
3139 
3140         try {
3141             return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2, sx1, sy1,
3142                                         sx2, sy2, bgcolor, observer);
3143         } catch (InvalidPipeException e) {
3144             try {
3145                 revalidateAll();
3146                 return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2, sx1,
3147                                             sy1, sx2, sy2, bgcolor, observer);
3148             } catch (InvalidPipeException e2) {
3149                 // Still catching the exception; we are not yet ready to
3150                 // validate the surfaceData correctly.  Fail for now and
3151                 // try again next time around.
3152                 return false;
3153             }
3154         } finally {
3155             surfaceData.markDirty();
3156         }
3157     }
3158 
3159     private Image getResolutionVariant(MultiResolutionImage img,
3160             int srcWidth, int srcHeight, int dx1, int dy1, int dx2, int dy2,
3161             int sx1, int sy1, int sx2, int sy2) {
3162 
3163         if (srcWidth <= 0 || srcHeight <= 0) {
3164             return null;
3165         }
3166 
3167         int sw = sx2 - sx1;
3168         int sh = sy2 - sy1;
3169 
3170         if (sw == 0 || sh == 0) {
3171             return null;
3172         }
3173 
3174         int type = transform.getType();
3175         int dw = dx2 - dx1;
3176         int dh = dy2 - dy1;
3177 
3178         double destImageWidth;
3179         double destImageHeight;
3180 
3181         if (resolutionVariantHint == SunHints.INTVAL_RESOLUTION_VARIANT_BASE) {
3182             destImageWidth = srcWidth;
3183             destImageHeight = srcHeight;
3184         } else if (resolutionVariantHint == SunHints.INTVAL_RESOLUTION_VARIANT_DPI_FIT) {
3185             AffineTransform configTransform = getDefaultTransform();
3186             if (configTransform.isIdentity()) {
3187                 destImageWidth = srcWidth;
3188                 destImageHeight = srcHeight;
3189             } else {
3190                 destImageWidth = srcWidth * configTransform.getScaleX();
3191                 destImageHeight = srcHeight * configTransform.getScaleY();
3192             }
3193         } else {
3194             double destRegionWidth;
3195             double destRegionHeight;
3196 
3197             if ((type & ~(TYPE_TRANSLATION | TYPE_FLIP)) == 0) {
3198                 destRegionWidth = dw;
3199                 destRegionHeight = dh;
3200             } else if ((type & ~(TYPE_TRANSLATION | TYPE_FLIP | TYPE_MASK_SCALE)) == 0) {
3201                 destRegionWidth = dw * transform.getScaleX();
3202                 destRegionHeight = dh * transform.getScaleY();
3203             } else {
3204                 destRegionWidth = dw * Math.hypot(
3205                         transform.getScaleX(), transform.getShearY());
3206                 destRegionHeight = dh * Math.hypot(
3207                         transform.getShearX(), transform.getScaleY());
3208             }
3209             destImageWidth = Math.abs(srcWidth * destRegionWidth / sw);
3210             destImageHeight = Math.abs(srcHeight * destRegionHeight / sh);
3211         }
3212 
3213         Image resolutionVariant
3214                 = img.getResolutionVariant(destImageWidth, destImageHeight);
3215 
3216         if (resolutionVariant instanceof ToolkitImage
3217                 && ((ToolkitImage) resolutionVariant).hasError()) {
3218             return null;
3219         }
3220 
3221         return resolutionVariant;
3222     }
3223 
3224     /**
3225      * Draws an image scaled to x,y,w,h in nonblocking mode with a
3226      * callback object.
3227      */
3228     public boolean drawImage(Image img, int x, int y, int width, int height,
3229                              ImageObserver observer) {
3230         return drawImage(img, x, y, width, height, null, observer);
3231     }
3232 
3233     /**
3234      * Not part of the advertised API but a useful utility method
3235      * to call internally.  This is for the case where we are
3236      * drawing to/from given coordinates using a given width/height,
3237      * but we guarantee that the surfaceData's width/height of the src and dest
3238      * areas are equal (no scale needed). Note that this method intentionally
3239      * ignore scale factor of the source image, and copy it as is.
3240      */
3241     public boolean copyImage(Image img, int dx, int dy, int sx, int sy,
3242                              int width, int height, Color bgcolor,
3243                              ImageObserver observer) {
3244         try {
3245             return imagepipe.copyImage(this, img, dx, dy, sx, sy,
3246                                        width, height, bgcolor, observer);
3247         } catch (InvalidPipeException e) {
3248             try {
3249                 revalidateAll();
3250                 return imagepipe.copyImage(this, img, dx, dy, sx, sy,
3251                                            width, height, bgcolor, observer);
3252             } catch (InvalidPipeException e2) {
3253                 // Still catching the exception; we are not yet ready to
3254                 // validate the surfaceData correctly.  Fail for now and
3255                 // try again next time around.
3256                 return false;
3257             }
3258         } finally {
3259             surfaceData.markDirty();
3260         }
3261     }
3262 
3263     /**
3264      * Draws an image scaled to x,y,w,h in nonblocking mode with a
3265      * solid background color and a callback object.
3266      */
3267     public boolean drawImage(Image img, int x, int y, int width, int height,
3268                              Color bg, ImageObserver observer) {
3269 
3270         if (img == null) {
3271             return true;
3272         }
3273 
3274         if ((width == 0) || (height == 0)) {
3275             return true;
3276         }
3277 
3278         final int imgW = img.getWidth(null);
3279         final int imgH = img.getHeight(null);
3280         if (isHiDPIImage(img)) {
3281             return drawHiDPIImage(img, x, y, x + width, y + height, 0, 0, imgW,
3282                                   imgH, bg, observer);
3283         }
3284 
3285         if (width == imgW && height == imgH) {
3286             return copyImage(img, x, y, 0, 0, width, height, bg, observer);
3287         }
3288 
3289         try {
3290             return imagepipe.scaleImage(this, img, x, y, width, height,
3291                                         bg, observer);
3292         } catch (InvalidPipeException e) {
3293             try {
3294                 revalidateAll();
3295                 return imagepipe.scaleImage(this, img, x, y, width, height,
3296                                             bg, observer);
3297             } catch (InvalidPipeException e2) {
3298                 // Still catching the exception; we are not yet ready to
3299                 // validate the surfaceData correctly.  Fail for now and
3300                 // try again next time around.
3301                 return false;
3302             }
3303         } finally {
3304             surfaceData.markDirty();
3305         }
3306     }
3307 
3308     /**
3309      * Draws an image at x,y in nonblocking mode.
3310      */
3311     public boolean drawImage(Image img, int x, int y, ImageObserver observer) {
3312         return drawImage(img, x, y, null, observer);
3313     }
3314 
3315     /**
3316      * Draws an image at x,y in nonblocking mode with a solid background
3317      * color and a callback object.
3318      */
3319     public boolean drawImage(Image img, int x, int y, Color bg,
3320                              ImageObserver observer) {
3321 
3322         if (img == null) {
3323             return true;
3324         }
3325 
3326         if (isHiDPIImage(img)) {
3327             final int imgW = img.getWidth(null);
3328             final int imgH = img.getHeight(null);
3329             return drawHiDPIImage(img, x, y, x + imgW, y + imgH, 0, 0, imgW,
3330                                   imgH, bg, observer);
3331         }
3332 
3333         try {
3334             return imagepipe.copyImage(this, img, x, y, bg, observer);
3335         } catch (InvalidPipeException e) {
3336             try {
3337                 revalidateAll();
3338                 return imagepipe.copyImage(this, img, x, y, bg, observer);
3339             } catch (InvalidPipeException e2) {
3340                 // Still catching the exception; we are not yet ready to
3341                 // validate the surfaceData correctly.  Fail for now and
3342                 // try again next time around.
3343                 return false;
3344             }
3345         } finally {
3346             surfaceData.markDirty();
3347         }
3348     }
3349 
3350     /**
3351      * Draws a subrectangle of an image scaled to a destination rectangle
3352      * in nonblocking mode with a callback object.
3353      */
3354     public boolean drawImage(Image img,
3355                              int dx1, int dy1, int dx2, int dy2,
3356                              int sx1, int sy1, int sx2, int sy2,
3357                              ImageObserver observer) {
3358         return drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, null,
3359                          observer);
3360     }
3361 
3362     /**
3363      * Draws a subrectangle of an image scaled to a destination rectangle in
3364      * nonblocking mode with a solid background color and a callback object.
3365      */
3366     public boolean drawImage(Image img,
3367                              int dx1, int dy1, int dx2, int dy2,
3368                              int sx1, int sy1, int sx2, int sy2,
3369                              Color bgcolor, ImageObserver observer) {
3370 
3371         if (img == null) {
3372             return true;
3373         }
3374 
3375         if (dx1 == dx2 || dy1 == dy2 ||
3376             sx1 == sx2 || sy1 == sy2)
3377         {
3378             return true;
3379         }
3380 
3381         if (isHiDPIImage(img)) {
3382             return drawHiDPIImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2,
3383                                   bgcolor, observer);
3384         }
3385 
3386         if (((sx2 - sx1) == (dx2 - dx1)) &&
3387             ((sy2 - sy1) == (dy2 - dy1)))
3388         {
3389             // Not a scale - forward it to a copy routine
3390             int srcX, srcY, dstX, dstY, width, height;
3391             if (sx2 > sx1) {
3392                 width = sx2 - sx1;
3393                 srcX = sx1;
3394                 dstX = dx1;
3395             } else {
3396                 width = sx1 - sx2;
3397                 srcX = sx2;
3398                 dstX = dx2;
3399             }
3400             if (sy2 > sy1) {
3401                 height = sy2-sy1;
3402                 srcY = sy1;
3403                 dstY = dy1;
3404             } else {
3405                 height = sy1-sy2;
3406                 srcY = sy2;
3407                 dstY = dy2;
3408             }
3409             return copyImage(img, dstX, dstY, srcX, srcY,
3410                              width, height, bgcolor, observer);
3411         }
3412 
3413         try {
3414             return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2,
3415                                           sx1, sy1, sx2, sy2, bgcolor,
3416                                           observer);
3417         } catch (InvalidPipeException e) {
3418             try {
3419                 revalidateAll();
3420                 return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2,
3421                                               sx1, sy1, sx2, sy2, bgcolor,
3422                                               observer);
3423             } catch (InvalidPipeException e2) {
3424                 // Still catching the exception; we are not yet ready to
3425                 // validate the surfaceData correctly.  Fail for now and
3426                 // try again next time around.
3427                 return false;
3428             }
3429         } finally {
3430             surfaceData.markDirty();
3431         }
3432     }
3433 
3434     /**
3435      * Draw an image, applying a transform from image space into user space
3436      * before drawing.
3437      * The transformation from user space into device space is done with
3438      * the current transform in the Graphics2D.
3439      * The given transformation is applied to the image before the
3440      * transform attribute in the Graphics2D state is applied.
3441      * The rendering attributes applied include the clip, transform,
3442      * paint or color and composite attributes. Note that the result is
3443      * undefined, if the given transform is non-invertible.
3444      * @param img The image to be drawn.
3445      * @param xform The transformation from image space into user space.
3446      * @param observer The image observer to be notified on the image producing
3447      * progress.
3448      * @see #transform
3449      * @see #setComposite
3450      * @see #setClip
3451      */
3452     public boolean drawImage(Image img,
3453                              AffineTransform xform,
3454                              ImageObserver observer) {
3455 
3456         if (img == null) {
3457             return true;
3458         }
3459 
3460         if (xform == null || xform.isIdentity()) {
3461             return drawImage(img, 0, 0, null, observer);
3462         }
3463 
3464         if (isHiDPIImage(img)) {
3465             final int w = img.getWidth(null);
3466             final int h = img.getHeight(null);
3467             final AffineTransform tx = new AffineTransform(transform);
3468             transform(xform);
3469             boolean result = drawHiDPIImage(img, 0, 0, w, h, 0, 0, w, h, null,
3470                                             observer);
3471             transform.setTransform(tx);
3472             invalidateTransform();
3473             return result;
3474         }
3475 
3476         try {
3477             return imagepipe.transformImage(this, img, xform, observer);
3478         } catch (InvalidPipeException e) {
3479             try {
3480                 revalidateAll();
3481                 return imagepipe.transformImage(this, img, xform, observer);
3482             } catch (InvalidPipeException e2) {
3483                 // Still catching the exception; we are not yet ready to
3484                 // validate the surfaceData correctly.  Fail for now and
3485                 // try again next time around.
3486                 return false;
3487             }
3488         } finally {
3489             surfaceData.markDirty();
3490         }
3491     }
3492 
3493     public void drawImage(BufferedImage bImg,
3494                           BufferedImageOp op,
3495                           int x,
3496                           int y)  {
3497 
3498         if (bImg == null) {
3499             return;
3500         }
3501 
3502         try {
3503             imagepipe.transformImage(this, bImg, op, x, y);
3504         } catch (InvalidPipeException e) {
3505             try {
3506                 revalidateAll();
3507                 imagepipe.transformImage(this, bImg, op, x, y);
3508             } catch (InvalidPipeException e2) {
3509                 // Still catching the exception; we are not yet ready to
3510                 // validate the surfaceData correctly.  Fail for now and
3511                 // try again next time around.
3512             }
3513         } finally {
3514             surfaceData.markDirty();
3515         }
3516     }
3517 
3518     /**
3519     * Get the rendering context of the font
3520     * within this Graphics2D context.
3521     */
3522     public FontRenderContext getFontRenderContext() {
3523         if (cachedFRC == null) {
3524             int aahint = textAntialiasHint;
3525             if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT &&
3526                 antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
3527                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
3528             }
3529             // Translation components should be excluded from the FRC transform
3530             AffineTransform tx = null;
3531             if (transformState >= TRANSFORM_TRANSLATESCALE) {
3532                 if (transform.getTranslateX() == 0 &&
3533                     transform.getTranslateY() == 0) {
3534                     tx = transform;
3535                 } else {
3536                     tx = new AffineTransform(transform.getScaleX(),
3537                                              transform.getShearY(),
3538                                              transform.getShearX(),
3539                                              transform.getScaleY(),
3540                                              0, 0);
3541                 }
3542             }
3543             cachedFRC = new FontRenderContext(tx,
3544              SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING, aahint),
3545              SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
3546                                 fractionalMetricsHint));
3547         }
3548         return cachedFRC;
3549     }
3550     private FontRenderContext cachedFRC;
3551 
3552     /**
3553      * This object has no resources to dispose of per se, but the
3554      * doc comments for the base method in java.awt.Graphics imply
3555      * that this object will not be useable after it is disposed.
3556      * So, we sabotage the object to prevent further use to prevent
3557      * developers from relying on behavior that may not work on
3558      * other, less forgiving, VMs that really need to dispose of
3559      * resources.
3560      */
3561     public void dispose() {
3562         surfaceData = NullSurfaceData.theInstance;
3563         invalidatePipe();
3564     }
3565 
3566     /**
3567      * Graphics has a finalize method that automatically calls dispose()
3568      * for subclasses.  For SunGraphics2D we do not need to be finalized
3569      * so that method simply causes us to be enqueued on the Finalizer
3570      * queues for no good reason.  Unfortunately, that method and
3571      * implementation are now considered part of the public contract
3572      * of that base class so we can not remove or gut the method.
3573      * We override it here with an empty method and the VM is smart
3574      * enough to know that if our override is empty then it should not
3575      * mark us as finalizeable.
3576      */
3577     public void finalize() {
3578         // DO NOT REMOVE THIS METHOD
3579     }
3580 
3581     /**
3582      * Returns destination that this Graphics renders to.  This could be
3583      * either an Image or a Component; subclasses of SurfaceData are
3584      * responsible for returning the appropriate object.
3585      */
3586     public Object getDestination() {
3587         return surfaceData.getDestination();
3588     }
3589 
3590     /**
3591      * {@inheritDoc}
3592      *
3593      * @see sun.java2d.DestSurfaceProvider#getDestSurface
3594      */
3595     @Override
3596     public Surface getDestSurface() {
3597         return surfaceData;
3598     }
3599 }