1 /*
   2  * Copyright (c) 1996, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.java2d;
  27 
  28 import java.awt.Graphics;
  29 import java.awt.Graphics2D;
  30 import java.awt.RenderingHints;
  31 import java.awt.RenderingHints.Key;
  32 import java.awt.geom.Area;
  33 import java.awt.geom.AffineTransform;
  34 import java.awt.geom.NoninvertibleTransformException;
  35 import java.awt.AlphaComposite;
  36 import java.awt.BasicStroke;
  37 import java.awt.image.BufferedImage;
  38 import java.awt.image.BufferedImageOp;
  39 import java.awt.image.RenderedImage;
  40 import java.awt.image.renderable.RenderableImage;
  41 import java.awt.image.renderable.RenderContext;
  42 import java.awt.image.AffineTransformOp;
  43 import java.awt.image.Raster;
  44 import java.awt.image.WritableRaster;
  45 import java.awt.Image;
  46 import java.awt.Composite;
  47 import java.awt.Color;
  48 import java.awt.image.ColorModel;
  49 import java.awt.GraphicsConfiguration;
  50 import java.awt.Paint;
  51 import java.awt.GradientPaint;
  52 import java.awt.LinearGradientPaint;
  53 import java.awt.RadialGradientPaint;
  54 import java.awt.TexturePaint;
  55 import java.awt.geom.Rectangle2D;
  56 import java.awt.geom.PathIterator;
  57 import java.awt.geom.GeneralPath;
  58 import java.awt.Shape;
  59 import java.awt.Stroke;
  60 import java.awt.FontMetrics;
  61 import java.awt.Rectangle;
  62 import java.text.AttributedCharacterIterator;
  63 import java.awt.Font;
  64 import java.awt.image.ImageObserver;
  65 import java.awt.Transparency;
  66 import java.awt.font.GlyphVector;
  67 import java.awt.font.TextLayout;
  68 
  69 import sun.awt.image.SurfaceManager;
  70 import sun.font.FontDesignMetrics;
  71 import sun.font.FontUtilities;
  72 import sun.java2d.pipe.PixelDrawPipe;
  73 import sun.java2d.pipe.PixelFillPipe;
  74 import sun.java2d.pipe.ShapeDrawPipe;
  75 import sun.java2d.pipe.ValidatePipe;
  76 import sun.java2d.pipe.ShapeSpanIterator;
  77 import sun.java2d.pipe.Region;
  78 import sun.java2d.pipe.TextPipe;
  79 import sun.java2d.pipe.DrawImagePipe;
  80 import sun.java2d.pipe.LoopPipe;
  81 import sun.java2d.loops.FontInfo;
  82 import sun.java2d.loops.RenderLoops;
  83 import sun.java2d.loops.CompositeType;
  84 import sun.java2d.loops.SurfaceType;
  85 import sun.java2d.loops.Blit;
  86 import sun.java2d.loops.MaskFill;
  87 import java.awt.font.FontRenderContext;
  88 import sun.java2d.loops.XORComposite;
  89 import sun.awt.ConstrainableGraphics;
  90 import sun.awt.SunHints;
  91 import sun.awt.util.PerformanceLogger;
  92 import java.util.Map;
  93 import java.util.Iterator;
  94 
  95 import java.lang.annotation.Native;
  96 import java.awt.image.MultiResolutionImage;
  97 
  98 import static java.awt.geom.AffineTransform.TYPE_FLIP;
  99 import static java.awt.geom.AffineTransform.TYPE_MASK_SCALE;
 100 import static java.awt.geom.AffineTransform.TYPE_TRANSLATION;
 101 import java.awt.image.VolatileImage;
 102 import sun.awt.image.MultiResolutionToolkitImage;
 103 import sun.awt.image.MultiResolutionToolkitImage.ResolutionVariantItem;
 104 import sun.awt.image.ToolkitImage;
 105 
 106 /**
 107  * This is a the master Graphics2D superclass for all of the Sun
 108  * Graphics implementations.  This class relies on subclasses to
 109  * manage the various device information, but provides an overall
 110  * general framework for performing all of the requests in the
 111  * Graphics and Graphics2D APIs.
 112  *
 113  * @author Jim Graham
 114  */
 115 public final class SunGraphics2D
 116     extends Graphics2D
 117     implements ConstrainableGraphics, Cloneable, DestSurfaceProvider
 118 {
 119     /*
 120      * Attribute States
 121      */
 122     /* Paint */
 123     @Native
 124     public static final int PAINT_CUSTOM       = 6; /* Any other Paint object */
 125     @Native
 126     public static final int PAINT_TEXTURE      = 5; /* Tiled Image */
 127     @Native
 128     public static final int PAINT_RAD_GRADIENT = 4; /* Color RadialGradient */
 129     @Native
 130     public static final int PAINT_LIN_GRADIENT = 3; /* Color LinearGradient */
 131     @Native
 132     public static final int PAINT_GRADIENT     = 2; /* Color Gradient */
 133     @Native
 134     public static final int PAINT_ALPHACOLOR   = 1; /* Non-opaque Color */
 135     @Native
 136     public static final int PAINT_OPAQUECOLOR  = 0; /* Opaque Color */
 137 
 138     /* Composite*/
 139     @Native
 140     public static final int COMP_CUSTOM = 3;/* Custom Composite */
 141     @Native
 142     public static final int COMP_XOR    = 2;/* XOR Mode Composite */
 143     @Native
 144     public static final int COMP_ALPHA  = 1;/* AlphaComposite */
 145     @Native
 146     public static final int COMP_ISCOPY = 0;/* simple stores into destination,
 147                                              * i.e. Src, SrcOverNoEa, and other
 148                                              * alpha modes which replace
 149                                              * the destination.
 150                                              */
 151 
 152     /* Stroke */
 153     @Native
 154     public static final int STROKE_CUSTOM = 3; /* custom Stroke */
 155     @Native
 156     public static final int STROKE_WIDE   = 2; /* BasicStroke */
 157     @Native
 158     public static final int STROKE_THINDASHED   = 1; /* BasicStroke */
 159     @Native
 160     public static final int STROKE_THIN   = 0; /* BasicStroke */
 161 
 162     /* Transform */
 163     @Native
 164     public static final int TRANSFORM_GENERIC = 4; /* any 3x2 */
 165     @Native
 166     public static final int TRANSFORM_TRANSLATESCALE = 3; /* scale XY */
 167     @Native
 168     public static final int TRANSFORM_ANY_TRANSLATE = 2; /* non-int translate */
 169     @Native
 170     public static final int TRANSFORM_INT_TRANSLATE = 1; /* int translate */
 171     @Native
 172     public static final int TRANSFORM_ISIDENT = 0; /* Identity */
 173 
 174     /* Clipping */
 175     @Native
 176     public static final int CLIP_SHAPE       = 2; /* arbitrary clip */
 177     @Native
 178     public static final int CLIP_RECTANGULAR = 1; /* rectangular clip */
 179     @Native
 180     public static final int CLIP_DEVICE      = 0; /* no clipping set */
 181 
 182     /* The following fields are used when the current Paint is a Color. */
 183     public int eargb;  // ARGB value with ExtraAlpha baked in
 184     public int pixel;  // pixel value for eargb
 185 
 186     public SurfaceData surfaceData;
 187 
 188     public PixelDrawPipe drawpipe;
 189     public PixelFillPipe fillpipe;
 190     public DrawImagePipe imagepipe;
 191     public ShapeDrawPipe shapepipe;
 192     public TextPipe textpipe;
 193     public MaskFill alphafill;
 194 
 195     public RenderLoops loops;
 196 
 197     public CompositeType imageComp;     /* Image Transparency checked on fly */
 198 
 199     public int paintState;
 200     public int compositeState;
 201     public int strokeState;
 202     public int transformState;
 203     public int clipState;
 204 
 205     public Color foregroundColor;
 206     public Color backgroundColor;
 207 
 208     public AffineTransform transform;
 209     public int transX;
 210     public int transY;
 211 
 212     protected static final Stroke defaultStroke = new BasicStroke();
 213     protected static final Composite defaultComposite = AlphaComposite.SrcOver;
 214     private static final Font defaultFont =
 215         new Font(Font.DIALOG, Font.PLAIN, 12);
 216 
 217     public Paint paint;
 218     public Stroke stroke;
 219     public Composite composite;
 220     protected Font font;
 221     protected FontMetrics fontMetrics;
 222 
 223     public int renderHint;
 224     public int antialiasHint;
 225     public int textAntialiasHint;
 226     protected int fractionalMetricsHint;
 227 
 228     /* A gamma adjustment to the colour used in lcd text blitting */
 229     public int lcdTextContrast;
 230     private static int lcdTextContrastDefaultValue = 140;
 231 
 232     private int interpolationHint;      // raw value of rendering Hint
 233     public int strokeHint;
 234 
 235     public int interpolationType;       // algorithm choice based on
 236                                         // interpolation and render Hints
 237 
 238     public RenderingHints hints;
 239 
 240     public Region constrainClip;        // lightweight bounds in pixels
 241     public int constrainX;
 242     public int constrainY;
 243 
 244     public Region clipRegion;
 245     public Shape usrClip;
 246     protected Region devClip;           // Actual physical drawable in pixels
 247 
 248     private int resolutionVariantHint;
 249 
 250     // cached state for text rendering
 251     private boolean validFontInfo;
 252     private FontInfo fontInfo;
 253     private FontInfo glyphVectorFontInfo;
 254     private FontRenderContext glyphVectorFRC;
 255 
 256     private static final int slowTextTransformMask =
 257                             AffineTransform.TYPE_GENERAL_TRANSFORM
 258                         |   AffineTransform.TYPE_MASK_ROTATION
 259                         |   AffineTransform.TYPE_FLIP;
 260 
 261     static {
 262         if (PerformanceLogger.loggingEnabled()) {
 263             PerformanceLogger.setTime("SunGraphics2D static initialization");
 264         }
 265     }
 266 
 267     public SunGraphics2D(SurfaceData sd, Color fg, Color bg, Font f) {
 268         surfaceData = sd;
 269         foregroundColor = fg;
 270         backgroundColor = bg;
 271         stroke = defaultStroke;
 272         composite = defaultComposite;
 273         paint = foregroundColor;
 274 
 275         imageComp = CompositeType.SrcOverNoEa;
 276 
 277         renderHint = SunHints.INTVAL_RENDER_DEFAULT;
 278         antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
 279         textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
 280         fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
 281         lcdTextContrast = lcdTextContrastDefaultValue;
 282         interpolationHint = -1;
 283         strokeHint = SunHints.INTVAL_STROKE_DEFAULT;
 284         resolutionVariantHint = SunHints.INTVAL_RESOLUTION_VARIANT_DEFAULT;
 285 
 286         interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
 287 
 288         transform = getDefaultTransform();
 289         if (!transform.isIdentity()) {
 290             invalidateTransform();
 291         }
 292 
 293         validateColor();
 294 
 295         font = f;
 296         if (font == null) {
 297             font = defaultFont;
 298         }
 299 
 300         setDevClip(sd.getBounds());
 301         invalidatePipe();
 302     }
 303 
 304     private AffineTransform getDefaultTransform() {
 305         GraphicsConfiguration gc = getDeviceConfiguration();
 306         return (gc == null) ? new AffineTransform() : gc.getDefaultTransform();
 307     }
 308 
 309     protected Object clone() {
 310         try {
 311             SunGraphics2D g = (SunGraphics2D) super.clone();
 312             g.transform = new AffineTransform(this.transform);
 313             if (hints != null) {
 314                 g.hints = (RenderingHints) this.hints.clone();
 315             }
 316             /* FontInfos are re-used, so must be cloned too, if they
 317              * are valid, and be nulled out if invalid.
 318              * The implied trade-off is that there is more to be gained
 319              * from re-using these objects than is lost by having to
 320              * clone them when the SG2D is cloned.
 321              */
 322             if (this.fontInfo != null) {
 323                 if (this.validFontInfo) {
 324                     g.fontInfo = (FontInfo)this.fontInfo.clone();
 325                 } else {
 326                     g.fontInfo = null;
 327                 }
 328             }
 329             if (this.glyphVectorFontInfo != null) {
 330                 g.glyphVectorFontInfo =
 331                     (FontInfo)this.glyphVectorFontInfo.clone();
 332                 g.glyphVectorFRC = this.glyphVectorFRC;
 333             }
 334             //g.invalidatePipe();
 335             return g;
 336         } catch (CloneNotSupportedException e) {
 337         }
 338         return null;
 339     }
 340 
 341     /**
 342      * Create a new SunGraphics2D based on this one.
 343      */
 344     public Graphics create() {
 345         return (Graphics) clone();
 346     }
 347 
 348     public void setDevClip(int x, int y, int w, int h) {
 349         Region c = constrainClip;
 350         if (c == null) {
 351             devClip = Region.getInstanceXYWH(x, y, w, h);
 352         } else {
 353             devClip = c.getIntersectionXYWH(x, y, w, h);
 354         }
 355         validateCompClip();
 356     }
 357 
 358     public void setDevClip(Rectangle r) {
 359         setDevClip(r.x, r.y, r.width, r.height);
 360     }
 361 
 362     /**
 363      * Constrain rendering for lightweight objects.
 364      */
 365     public void constrain(int x, int y, int w, int h, Region region) {
 366         if ((x | y) != 0) {
 367             translate(x, y);
 368         }
 369         if (transformState > TRANSFORM_TRANSLATESCALE) {
 370             clipRect(0, 0, w, h);
 371             return;
 372         }
 373         // changes parameters according to the current scale and translate.
 374         final double scaleX = transform.getScaleX();
 375         final double scaleY = transform.getScaleY();
 376         x = constrainX = (int) transform.getTranslateX();
 377         y = constrainY = (int) transform.getTranslateY();
 378         w = Region.dimAdd(x, Region.clipScale(w, scaleX));
 379         h = Region.dimAdd(y, Region.clipScale(h, scaleY));
 380 
 381         Region c = constrainClip;
 382         if (c == null) {
 383             c = Region.getInstanceXYXY(x, y, w, h);
 384         } else {
 385             c = c.getIntersectionXYXY(x, y, w, h);
 386         }
 387         if (region != null) {
 388             region = region.getScaledRegion(scaleX, scaleY);
 389             region = region.getTranslatedRegion(x, y);
 390             c = c.getIntersection(region);
 391         }
 392 
 393         if (c == constrainClip) {
 394             // Common case to ignore
 395             return;
 396         }
 397 
 398         constrainClip = c;
 399         if (!devClip.isInsideQuickCheck(c)) {
 400             devClip = devClip.getIntersection(c);
 401             validateCompClip();
 402         }
 403     }
 404 
 405     /**
 406      * Constrain rendering for lightweight objects.
 407      *
 408      * REMIND: This method will back off to the "workaround"
 409      * of using translate and clipRect if the Graphics
 410      * to be constrained has a complex transform.  The
 411      * drawback of the workaround is that the resulting
 412      * clip and device origin cannot be "enforced".
 413      *
 414      * @exception IllegalStateException If the Graphics
 415      * to be constrained has a complex transform.
 416      */
 417     @Override
 418     public void constrain(int x, int y, int w, int h) {
 419         constrain(x, y, w, h, null);
 420     }
 421 
 422     protected static ValidatePipe invalidpipe = new ValidatePipe();
 423 
 424     /*
 425      * Invalidate the pipeline
 426      */
 427     protected void invalidatePipe() {
 428         drawpipe = invalidpipe;
 429         fillpipe = invalidpipe;
 430         shapepipe = invalidpipe;
 431         textpipe = invalidpipe;
 432         imagepipe = invalidpipe;
 433         loops = null;
 434     }
 435 
 436     public void validatePipe() {
 437         /* This workaround is for the situation when we update the Pipelines
 438          * for invalid SurfaceData and run further code when the current
 439          * pipeline doesn't support the type of new SurfaceData created during
 440          * the current pipeline's work (in place of the invalid SurfaceData).
 441          * Usually SurfaceData and Pipelines are repaired (through revalidateAll)
 442          * and called again in the exception handlers */
 443 
 444         if (!surfaceData.isValid()) {
 445             throw new InvalidPipeException("attempt to validate Pipe with invalid SurfaceData");
 446         }
 447 
 448         surfaceData.validatePipe(this);
 449     }
 450 
 451     /*
 452      * Intersect two Shapes by the simplest method, attempting to produce
 453      * a simplified result.
 454      * The boolean arguments keep1 and keep2 specify whether or not
 455      * the first or second shapes can be modified during the operation
 456      * or whether that shape must be "kept" unmodified.
 457      */
 458     Shape intersectShapes(Shape s1, Shape s2, boolean keep1, boolean keep2) {
 459         if (s1 instanceof Rectangle && s2 instanceof Rectangle) {
 460             return ((Rectangle) s1).intersection((Rectangle) s2);
 461         }
 462         if (s1 instanceof Rectangle2D) {
 463             return intersectRectShape((Rectangle2D) s1, s2, keep1, keep2);
 464         } else if (s2 instanceof Rectangle2D) {
 465             return intersectRectShape((Rectangle2D) s2, s1, keep2, keep1);
 466         }
 467         return intersectByArea(s1, s2, keep1, keep2);
 468     }
 469 
 470     /*
 471      * Intersect a Rectangle with a Shape by the simplest method,
 472      * attempting to produce a simplified result.
 473      * The boolean arguments keep1 and keep2 specify whether or not
 474      * the first or second shapes can be modified during the operation
 475      * or whether that shape must be "kept" unmodified.
 476      */
 477     Shape intersectRectShape(Rectangle2D r, Shape s,
 478                              boolean keep1, boolean keep2) {
 479         if (s instanceof Rectangle2D) {
 480             Rectangle2D r2 = (Rectangle2D) s;
 481             Rectangle2D outrect;
 482             if (!keep1) {
 483                 outrect = r;
 484             } else if (!keep2) {
 485                 outrect = r2;
 486             } else {
 487                 outrect = new Rectangle2D.Float();
 488             }
 489             double x1 = Math.max(r.getX(), r2.getX());
 490             double x2 = Math.min(r.getX()  + r.getWidth(),
 491                                  r2.getX() + r2.getWidth());
 492             double y1 = Math.max(r.getY(), r2.getY());
 493             double y2 = Math.min(r.getY()  + r.getHeight(),
 494                                  r2.getY() + r2.getHeight());
 495 
 496             if (((x2 - x1) < 0) || ((y2 - y1) < 0))
 497                 // Width or height is negative. No intersection.
 498                 outrect.setFrameFromDiagonal(0, 0, 0, 0);
 499             else
 500                 outrect.setFrameFromDiagonal(x1, y1, x2, y2);
 501             return outrect;
 502         }
 503         if (r.contains(s.getBounds2D())) {
 504             if (keep2) {
 505                 s = cloneShape(s);
 506             }
 507             return s;
 508         }
 509         return intersectByArea(r, s, keep1, keep2);
 510     }
 511 
 512     protected static Shape cloneShape(Shape s) {
 513         return new GeneralPath(s);
 514     }
 515 
 516     /*
 517      * Intersect two Shapes using the Area class.  Presumably other
 518      * attempts at simpler intersection methods proved fruitless.
 519      * The boolean arguments keep1 and keep2 specify whether or not
 520      * the first or second shapes can be modified during the operation
 521      * or whether that shape must be "kept" unmodified.
 522      * @see #intersectShapes
 523      * @see #intersectRectShape
 524      */
 525     Shape intersectByArea(Shape s1, Shape s2, boolean keep1, boolean keep2) {
 526         Area a1, a2;
 527 
 528         // First see if we can find an overwriteable source shape
 529         // to use as our destination area to avoid duplication.
 530         if (!keep1 && (s1 instanceof Area)) {
 531             a1 = (Area) s1;
 532         } else if (!keep2 && (s2 instanceof Area)) {
 533             a1 = (Area) s2;
 534             s2 = s1;
 535         } else {
 536             a1 = new Area(s1);
 537         }
 538 
 539         if (s2 instanceof Area) {
 540             a2 = (Area) s2;
 541         } else {
 542             a2 = new Area(s2);
 543         }
 544 
 545         a1.intersect(a2);
 546         if (a1.isRectangular()) {
 547             return a1.getBounds();
 548         }
 549 
 550         return a1;
 551     }
 552 
 553     /*
 554      * Intersect usrClip bounds and device bounds to determine the composite
 555      * rendering boundaries.
 556      */
 557     public Region getCompClip() {
 558         if (!surfaceData.isValid()) {
 559             // revalidateAll() implicitly recalculcates the composite clip
 560             revalidateAll();
 561         }
 562 
 563         return clipRegion;
 564     }
 565 
 566     public Font getFont() {
 567         if (font == null) {
 568             font = defaultFont;
 569         }
 570         return font;
 571     }
 572 
 573     private static final double[] IDENT_MATRIX = {1, 0, 0, 1};
 574     private static final AffineTransform IDENT_ATX =
 575         new AffineTransform();
 576 
 577     private static final int MINALLOCATED = 8;
 578     private static final int TEXTARRSIZE = 17;
 579     private static double[][] textTxArr = new double[TEXTARRSIZE][];
 580     private static AffineTransform[] textAtArr =
 581         new AffineTransform[TEXTARRSIZE];
 582 
 583     static {
 584         for (int i=MINALLOCATED;i<TEXTARRSIZE;i++) {
 585           textTxArr[i] = new double [] {i, 0, 0, i};
 586           textAtArr[i] = new AffineTransform( textTxArr[i]);
 587         }
 588     }
 589 
 590     // cached state for various draw[String,Char,Byte] optimizations
 591     public FontInfo checkFontInfo(FontInfo info, Font font,
 592                                   FontRenderContext frc) {
 593         /* Do not create a FontInfo object as part of construction of an
 594          * SG2D as its possible it may never be needed - ie if no text
 595          * is drawn using this SG2D.
 596          */
 597         if (info == null) {
 598             info = new FontInfo();
 599         }
 600 
 601         float ptSize = font.getSize2D();
 602         int txFontType;
 603         AffineTransform devAt, textAt=null;
 604         if (font.isTransformed()) {
 605             textAt = font.getTransform();
 606             textAt.scale(ptSize, ptSize);
 607             txFontType = textAt.getType();
 608             info.originX = (float)textAt.getTranslateX();
 609             info.originY = (float)textAt.getTranslateY();
 610             textAt.translate(-info.originX, -info.originY);
 611             if (transformState >= TRANSFORM_TRANSLATESCALE) {
 612                 transform.getMatrix(info.devTx = new double[4]);
 613                 devAt = new AffineTransform(info.devTx);
 614                 textAt.preConcatenate(devAt);
 615             } else {
 616                 info.devTx = IDENT_MATRIX;
 617                 devAt = IDENT_ATX;
 618             }
 619             textAt.getMatrix(info.glyphTx = new double[4]);
 620             double shearx = textAt.getShearX();
 621             double scaley = textAt.getScaleY();
 622             if (shearx != 0) {
 623                 scaley = Math.sqrt(shearx * shearx + scaley * scaley);
 624             }
 625             info.pixelHeight = (int)(Math.abs(scaley)+0.5);
 626         } else {
 627             txFontType = AffineTransform.TYPE_IDENTITY;
 628             info.originX = info.originY = 0;
 629             if (transformState >= TRANSFORM_TRANSLATESCALE) {
 630                 transform.getMatrix(info.devTx = new double[4]);
 631                 devAt = new AffineTransform(info.devTx);
 632                 info.glyphTx = new double[4];
 633                 for (int i = 0; i < 4; i++) {
 634                     info.glyphTx[i] = info.devTx[i] * ptSize;
 635                 }
 636                 textAt = new AffineTransform(info.glyphTx);
 637                 double shearx = transform.getShearX();
 638                 double scaley = transform.getScaleY();
 639                 if (shearx != 0) {
 640                     scaley = Math.sqrt(shearx * shearx + scaley * scaley);
 641                 }
 642                 info.pixelHeight = (int)(Math.abs(scaley * ptSize)+0.5);
 643             } else {
 644                 /* If the double represents a common integral, we
 645                  * may have pre-allocated objects.
 646                  * A "sparse" array be seems to be as fast as a switch
 647                  * even for 3 or 4 pt sizes, and is more flexible.
 648                  * This should perform comparably in single-threaded
 649                  * rendering to the old code which synchronized on the
 650                  * class and scale better on MP systems.
 651                  */
 652                 int pszInt = (int)ptSize;
 653                 if (ptSize == pszInt &&
 654                     pszInt >= MINALLOCATED && pszInt < TEXTARRSIZE) {
 655                     info.glyphTx = textTxArr[pszInt];
 656                     textAt = textAtArr[pszInt];
 657                     info.pixelHeight = pszInt;
 658                 } else {
 659                     info.pixelHeight = (int)(ptSize+0.5);
 660                 }
 661                 if (textAt == null) {
 662                     info.glyphTx = new double[] {ptSize, 0, 0, ptSize};
 663                     textAt = new AffineTransform(info.glyphTx);
 664                 }
 665 
 666                 info.devTx = IDENT_MATRIX;
 667                 devAt = IDENT_ATX;
 668             }
 669         }
 670 
 671         info.font2D = FontUtilities.getFont2D(font);
 672 
 673         int fmhint = fractionalMetricsHint;
 674         if (fmhint == SunHints.INTVAL_FRACTIONALMETRICS_DEFAULT) {
 675             fmhint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
 676         }
 677         info.lcdSubPixPos = false; // conditionally set true in LCD mode.
 678 
 679         /* The text anti-aliasing hints that are set by the client need
 680          * to be interpreted for the current state and stored in the
 681          * FontInfo.aahint which is what will actually be used and
 682          * will be one of OFF, ON, LCD_HRGB or LCD_VRGB.
 683          * This is what pipe selection code should typically refer to, not
 684          * textAntialiasHint. This means we are now evaluating the meaning
 685          * of "default" here. Any pipe that really cares about that will
 686          * also need to consult that variable.
 687          * Otherwise these are being used only as args to getStrike,
 688          * and are encapsulated in that object which is part of the
 689          * FontInfo, so we do not need to store them directly as fields
 690          * in the FontInfo object.
 691          * That could change if FontInfo's were more selectively
 692          * revalidated when graphics state changed. Presently this
 693          * method re-evaluates all fields in the fontInfo.
 694          * The strike doesn't need to know the RGB subpixel order. Just
 695          * if its H or V orientation, so if an LCD option is specified we
 696          * always pass in the RGB hint to the strike.
 697          * frc is non-null only if this is a GlyphVector. For reasons
 698          * which are probably a historical mistake the AA hint in a GV
 699          * is honoured when we render, overriding the Graphics setting.
 700          */
 701         int aahint;
 702         if (frc == null) {
 703             aahint = textAntialiasHint;
 704         } else {
 705             aahint = ((SunHints.Value)frc.getAntiAliasingHint()).getIndex();
 706         }
 707         if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT) {
 708             if (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
 709                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 710             } else {
 711                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
 712             }
 713         } else {
 714             /* If we are in checkFontInfo because a rendering hint has been
 715              * set then all pipes are revalidated. But we can also
 716              * be here because setFont() has been called when the 'gasp'
 717              * hint is set, as then the font size determines the text pipe.
 718              * See comments in SunGraphics2d.setFont(Font).
 719              */
 720             if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP) {
 721                 if (info.font2D.useAAForPtSize(info.pixelHeight)) {
 722                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 723                 } else {
 724                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_OFF;
 725                 }
 726             } else if (aahint >= SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB) {
 727                 /* loops for default rendering modes are installed in the SG2D
 728                  * constructor. If there are none this will be null.
 729                  * Not all compositing modes update the render loops, so
 730                  * we also test that this is a mode we know should support
 731                  * this. One minor issue is that the loops aren't necessarily
 732                  * installed for a new rendering mode until after this
 733                  * method is called during pipeline validation. So it is
 734                  * theoretically possible that it was set to null for a
 735                  * compositing mode, the composite is then set back to Src,
 736                  * but the loop is still null when this is called and AA=ON
 737                  * is installed instead of an LCD mode.
 738                  * However this is done in the right order in SurfaceData.java
 739                  * so this is not likely to be a problem - but not
 740                  * guaranteed.
 741                  */
 742                 if (
 743                     !surfaceData.canRenderLCDText(this)
 744 //                    loops.drawGlyphListLCDLoop == null ||
 745 //                    compositeState > COMP_ISCOPY ||
 746 //                    paintState > PAINT_ALPHACOLOR
 747                       ) {
 748                     aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
 749                 } else {
 750                     info.lcdRGBOrder = true;
 751                     /* Collapse these into just HRGB or VRGB.
 752                      * Pipe selection code needs only to test for these two.
 753                      * Since these both select the same pipe anyway its
 754                      * tempting to collapse into one value. But they are
 755                      * different strikes (glyph caches) so the distinction
 756                      * needs to be made for that purpose.
 757                      */
 758                     if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HBGR) {
 759                         aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
 760                         info.lcdRGBOrder = false;
 761                     } else if
 762                         (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VBGR) {
 763                         aahint = SunHints.INTVAL_TEXT_ANTIALIAS_LCD_VRGB;
 764                         info.lcdRGBOrder = false;
 765                     }
 766                     /* Support subpixel positioning only for the case in
 767                      * which the horizontal resolution is increased
 768                      */
 769                     info.lcdSubPixPos =
 770                         fmhint == SunHints.INTVAL_FRACTIONALMETRICS_ON &&
 771                         aahint == SunHints.INTVAL_TEXT_ANTIALIAS_LCD_HRGB;
 772                 }
 773             }
 774         }
 775         info.aaHint = aahint;
 776         info.fontStrike = info.font2D.getStrike(font, devAt, textAt,
 777                                                 aahint, fmhint);
 778         return info;
 779     }
 780 
 781     public static boolean isRotated(double [] mtx) {
 782         if ((mtx[0] == mtx[3]) &&
 783             (mtx[1] == 0.0) &&
 784             (mtx[2] == 0.0) &&
 785             (mtx[0] > 0.0))
 786         {
 787             return false;
 788         }
 789 
 790         return true;
 791     }
 792 
 793     public void setFont(Font font) {
 794         /* replacing the reference equality test font != this.font with
 795          * !font.equals(this.font) did not yield any measurable difference
 796          * in testing, but there may be yet to be identified cases where it
 797          * is beneficial.
 798          */
 799         if (font != null && font!=this.font/*!font.equals(this.font)*/) {
 800             /* In the GASP AA case the textpipe depends on the glyph size
 801              * as determined by graphics and font transforms as well as the
 802              * font size, and information in the font. But we may invalidate
 803              * the pipe only to find that it made no difference.
 804              * Deferring pipe invalidation to checkFontInfo won't work because
 805              * when called we may already be rendering to the wrong pipe.
 806              * So, if the font is transformed, or the graphics has more than
 807              * a simple scale, we'll take that as enough of a hint to
 808              * revalidate everything. But if they aren't we will
 809              * use the font's point size to query the gasp table and see if
 810              * what it says matches what's currently being used, in which
 811              * case there's no need to invalidate the textpipe.
 812              * This should be sufficient for all typical uses cases.
 813              */
 814             if (textAntialiasHint == SunHints.INTVAL_TEXT_ANTIALIAS_GASP &&
 815                 textpipe != invalidpipe &&
 816                 (transformState > TRANSFORM_ANY_TRANSLATE ||
 817                  font.isTransformed() ||
 818                  fontInfo == null || // Precaution, if true shouldn't get here
 819                  (fontInfo.aaHint == SunHints.INTVAL_TEXT_ANTIALIAS_ON) !=
 820                      FontUtilities.getFont2D(font).
 821                          useAAForPtSize(font.getSize()))) {
 822                 textpipe = invalidpipe;
 823             }
 824             this.font = font;
 825             this.fontMetrics = null;
 826             this.validFontInfo = false;
 827         }
 828     }
 829 
 830     public FontInfo getFontInfo() {
 831         if (!validFontInfo) {
 832             this.fontInfo = checkFontInfo(this.fontInfo, font, null);
 833             validFontInfo = true;
 834         }
 835         return this.fontInfo;
 836     }
 837 
 838     /* Used by drawGlyphVector which specifies its own font. */
 839     public FontInfo getGVFontInfo(Font font, FontRenderContext frc) {
 840         if (glyphVectorFontInfo != null &&
 841             glyphVectorFontInfo.font == font &&
 842             glyphVectorFRC == frc) {
 843             return glyphVectorFontInfo;
 844         } else {
 845             glyphVectorFRC = frc;
 846             return glyphVectorFontInfo =
 847                 checkFontInfo(glyphVectorFontInfo, font, frc);
 848         }
 849     }
 850 
 851     public FontMetrics getFontMetrics() {
 852         if (this.fontMetrics != null) {
 853             return this.fontMetrics;
 854         }
 855         /* NB the constructor and the setter disallow "font" being null */
 856         return this.fontMetrics =
 857            FontDesignMetrics.getMetrics(font, getFontRenderContext());
 858     }
 859 
 860     public FontMetrics getFontMetrics(Font font) {
 861         if ((this.fontMetrics != null) && (font == this.font)) {
 862             return this.fontMetrics;
 863         }
 864         FontMetrics fm =
 865           FontDesignMetrics.getMetrics(font, getFontRenderContext());
 866 
 867         if (this.font == font) {
 868             this.fontMetrics = fm;
 869         }
 870         return fm;
 871     }
 872 
 873     /**
 874      * Checks to see if a Path intersects the specified Rectangle in device
 875      * space.  The rendering attributes taken into account include the
 876      * clip, transform, and stroke attributes.
 877      * @param rect The area in device space to check for a hit.
 878      * @param s The path to check for a hit.
 879      * @param onStroke Flag to choose between testing the stroked or
 880      * the filled path.
 881      * @return True if there is a hit, false otherwise.
 882      * @see #setStroke
 883      * @see #fill(Shape)
 884      * @see #draw(Shape)
 885      * @see #transform
 886      * @see #setTransform
 887      * @see #clip
 888      * @see #setClip
 889      */
 890     public boolean hit(Rectangle rect, Shape s, boolean onStroke) {
 891         if (onStroke) {
 892             s = stroke.createStrokedShape(s);
 893         }
 894 
 895         s = transformShape(s);
 896         if ((constrainX|constrainY) != 0) {
 897             rect = new Rectangle(rect);
 898             rect.translate(constrainX, constrainY);
 899         }
 900 
 901         return s.intersects(rect);
 902     }
 903 
 904     /**
 905      * Return the ColorModel associated with this Graphics2D.
 906      */
 907     public ColorModel getDeviceColorModel() {
 908         return surfaceData.getColorModel();
 909     }
 910 
 911     /**
 912      * Return the device configuration associated with this Graphics2D.
 913      */
 914     public GraphicsConfiguration getDeviceConfiguration() {
 915         return surfaceData.getDeviceConfiguration();
 916     }
 917 
 918     /**
 919      * Return the SurfaceData object assigned to manage the destination
 920      * drawable surface of this Graphics2D.
 921      */
 922     public SurfaceData getSurfaceData() {
 923         return surfaceData;
 924     }
 925 
 926     /**
 927      * Sets the Composite in the current graphics state. Composite is used
 928      * in all drawing methods such as drawImage, drawString, drawPath,
 929      * and fillPath.  It specifies how new pixels are to be combined with
 930      * the existing pixels on the graphics device in the rendering process.
 931      * @param comp The Composite object to be used for drawing.
 932      * @see java.awt.Graphics#setXORMode
 933      * @see java.awt.Graphics#setPaintMode
 934      * @see AlphaComposite
 935      */
 936     public void setComposite(Composite comp) {
 937         if (composite == comp) {
 938             return;
 939         }
 940         int newCompState;
 941         CompositeType newCompType;
 942         if (comp instanceof AlphaComposite) {
 943             AlphaComposite alphacomp = (AlphaComposite) comp;
 944             newCompType = CompositeType.forAlphaComposite(alphacomp);
 945             if (newCompType == CompositeType.SrcOverNoEa) {
 946                 if (paintState == PAINT_OPAQUECOLOR ||
 947                     (paintState > PAINT_ALPHACOLOR &&
 948                      paint.getTransparency() == Transparency.OPAQUE))
 949                 {
 950                     newCompState = COMP_ISCOPY;
 951                 } else {
 952                     newCompState = COMP_ALPHA;
 953                 }
 954             } else if (newCompType == CompositeType.SrcNoEa ||
 955                        newCompType == CompositeType.Src ||
 956                        newCompType == CompositeType.Clear)
 957             {
 958                 newCompState = COMP_ISCOPY;
 959             } else if (surfaceData.getTransparency() == Transparency.OPAQUE &&
 960                        newCompType == CompositeType.SrcIn)
 961             {
 962                 newCompState = COMP_ISCOPY;
 963             } else {
 964                 newCompState = COMP_ALPHA;
 965             }
 966         } else if (comp instanceof XORComposite) {
 967             newCompState = COMP_XOR;
 968             newCompType = CompositeType.Xor;
 969         } else if (comp == null) {
 970             throw new IllegalArgumentException("null Composite");
 971         } else {
 972             surfaceData.checkCustomComposite();
 973             newCompState = COMP_CUSTOM;
 974             newCompType = CompositeType.General;
 975         }
 976         if (compositeState != newCompState ||
 977             imageComp != newCompType)
 978         {
 979             compositeState = newCompState;
 980             imageComp = newCompType;
 981             invalidatePipe();
 982             validFontInfo = false;
 983         }
 984         composite = comp;
 985         if (paintState <= PAINT_ALPHACOLOR) {
 986             validateColor();
 987         }
 988     }
 989 
 990     /**
 991      * Sets the Paint in the current graphics state.
 992      * @param paint The Paint object to be used to generate color in
 993      * the rendering process.
 994      * @see java.awt.Graphics#setColor
 995      * @see GradientPaint
 996      * @see TexturePaint
 997      */
 998     public void setPaint(Paint paint) {
 999         if (paint instanceof Color) {
1000             setColor((Color) paint);
1001             return;
1002         }
1003         if (paint == null || this.paint == paint) {
1004             return;
1005         }
1006         this.paint = paint;
1007         if (imageComp == CompositeType.SrcOverNoEa) {
1008             // special case where compState depends on opacity of paint
1009             if (paint.getTransparency() == Transparency.OPAQUE) {
1010                 if (compositeState != COMP_ISCOPY) {
1011                     compositeState = COMP_ISCOPY;
1012                 }
1013             } else {
1014                 if (compositeState == COMP_ISCOPY) {
1015                     compositeState = COMP_ALPHA;
1016                 }
1017             }
1018         }
1019         Class<? extends Paint> paintClass = paint.getClass();
1020         if (paintClass == GradientPaint.class) {
1021             paintState = PAINT_GRADIENT;
1022         } else if (paintClass == LinearGradientPaint.class) {
1023             paintState = PAINT_LIN_GRADIENT;
1024         } else if (paintClass == RadialGradientPaint.class) {
1025             paintState = PAINT_RAD_GRADIENT;
1026         } else if (paintClass == TexturePaint.class) {
1027             paintState = PAINT_TEXTURE;
1028         } else {
1029             paintState = PAINT_CUSTOM;
1030         }
1031         validFontInfo = false;
1032         invalidatePipe();
1033     }
1034 
1035     static final int NON_UNIFORM_SCALE_MASK =
1036         (AffineTransform.TYPE_GENERAL_TRANSFORM |
1037          AffineTransform.TYPE_GENERAL_SCALE);
1038     public static final double MinPenSizeAA =
1039         sun.java2d.pipe.RenderingEngine.getInstance().getMinimumAAPenSize();
1040     public static final double MinPenSizeAASquared =
1041         (MinPenSizeAA * MinPenSizeAA);
1042     // Since inaccuracies in the trig package can cause us to
1043     // calculated a rotated pen width of just slightly greater
1044     // than 1.0, we add a fudge factor to our comparison value
1045     // here so that we do not misclassify single width lines as
1046     // wide lines under certain rotations.
1047     public static final double MinPenSizeSquared = 1.000000001;
1048 
1049     private void validateBasicStroke(BasicStroke bs) {
1050         boolean aa = (antialiasHint == SunHints.INTVAL_ANTIALIAS_ON);
1051         if (transformState < TRANSFORM_TRANSLATESCALE) {
1052             if (aa) {
1053                 if (bs.getLineWidth() <= MinPenSizeAA) {
1054                     if (bs.getDashArray() == null) {
1055                         strokeState = STROKE_THIN;
1056                     } else {
1057                         strokeState = STROKE_THINDASHED;
1058                     }
1059                 } else {
1060                     strokeState = STROKE_WIDE;
1061                 }
1062             } else {
1063                 if (bs == defaultStroke) {
1064                     strokeState = STROKE_THIN;
1065                 } else if (bs.getLineWidth() <= 1.0f) {
1066                     if (bs.getDashArray() == null) {
1067                         strokeState = STROKE_THIN;
1068                     } else {
1069                         strokeState = STROKE_THINDASHED;
1070                     }
1071                 } else {
1072                     strokeState = STROKE_WIDE;
1073                 }
1074             }
1075         } else {
1076             double widthsquared;
1077             if ((transform.getType() & NON_UNIFORM_SCALE_MASK) == 0) {
1078                 /* sqrt omitted, compare to squared limits below. */
1079                 widthsquared = Math.abs(transform.getDeterminant());
1080             } else {
1081                 /* First calculate the "maximum scale" of this transform. */
1082                 double A = transform.getScaleX();       // m00
1083                 double C = transform.getShearX();       // m01
1084                 double B = transform.getShearY();       // m10
1085                 double D = transform.getScaleY();       // m11
1086 
1087                 /*
1088                  * Given a 2 x 2 affine matrix [ A B ] such that
1089                  *                             [ C D ]
1090                  * v' = [x' y'] = [Ax + Cy, Bx + Dy], we want to
1091                  * find the maximum magnitude (norm) of the vector v'
1092                  * with the constraint (x^2 + y^2 = 1).
1093                  * The equation to maximize is
1094                  *     |v'| = sqrt((Ax+Cy)^2+(Bx+Dy)^2)
1095                  * or  |v'| = sqrt((AA+BB)x^2 + 2(AC+BD)xy + (CC+DD)y^2).
1096                  * Since sqrt is monotonic we can maximize |v'|^2
1097                  * instead and plug in the substitution y = sqrt(1 - x^2).
1098                  * Trigonometric equalities can then be used to get
1099                  * rid of most of the sqrt terms.
1100                  */
1101                 double EA = A*A + B*B;          // x^2 coefficient
1102                 double EB = 2*(A*C + B*D);      // xy coefficient
1103                 double EC = C*C + D*D;          // y^2 coefficient
1104 
1105                 /*
1106                  * There is a lot of calculus omitted here.
1107                  *
1108                  * Conceptually, in the interests of understanding the
1109                  * terms that the calculus produced we can consider
1110                  * that EA and EC end up providing the lengths along
1111                  * the major axes and the hypot term ends up being an
1112                  * adjustment for the additional length along the off-axis
1113                  * angle of rotated or sheared ellipses as well as an
1114                  * adjustment for the fact that the equation below
1115                  * averages the two major axis lengths.  (Notice that
1116                  * the hypot term contains a part which resolves to the
1117                  * difference of these two axis lengths in the absence
1118                  * of rotation.)
1119                  *
1120                  * In the calculus, the ratio of the EB and (EA-EC) terms
1121                  * ends up being the tangent of 2*theta where theta is
1122                  * the angle that the long axis of the ellipse makes
1123                  * with the horizontal axis.  Thus, this equation is
1124                  * calculating the length of the hypotenuse of a triangle
1125                  * along that axis.
1126                  */
1127                 double hypot = Math.sqrt(EB*EB + (EA-EC)*(EA-EC));
1128 
1129                 /* sqrt omitted, compare to squared limits below. */
1130                 widthsquared = ((EA + EC + hypot)/2.0);
1131             }
1132             if (bs != defaultStroke) {
1133                 widthsquared *= bs.getLineWidth() * bs.getLineWidth();
1134             }
1135             if (widthsquared <=
1136                 (aa ? MinPenSizeAASquared : MinPenSizeSquared))
1137             {
1138                 if (bs.getDashArray() == null) {
1139                     strokeState = STROKE_THIN;
1140                 } else {
1141                     strokeState = STROKE_THINDASHED;
1142                 }
1143             } else {
1144                 strokeState = STROKE_WIDE;
1145             }
1146         }
1147     }
1148 
1149     /*
1150      * Sets the Stroke in the current graphics state.
1151      * @param s The Stroke object to be used to stroke a Path in
1152      * the rendering process.
1153      * @see BasicStroke
1154      */
1155     public void setStroke(Stroke s) {
1156         if (s == null) {
1157             throw new IllegalArgumentException("null Stroke");
1158         }
1159         int saveStrokeState = strokeState;
1160         stroke = s;
1161         if (s instanceof BasicStroke) {
1162             validateBasicStroke((BasicStroke) s);
1163         } else {
1164             strokeState = STROKE_CUSTOM;
1165         }
1166         if (strokeState != saveStrokeState) {
1167             invalidatePipe();
1168         }
1169     }
1170 
1171     /**
1172      * Sets the preferences for the rendering algorithms.
1173      * Hint categories include controls for rendering quality and
1174      * overall time/quality trade-off in the rendering process.
1175      * @param hintKey The key of hint to be set. The strings are
1176      * defined in the RenderingHints class.
1177      * @param hintValue The value indicating preferences for the specified
1178      * hint category. These strings are defined in the RenderingHints
1179      * class.
1180      * @see RenderingHints
1181      */
1182     public void setRenderingHint(Key hintKey, Object hintValue) {
1183         // If we recognize the key, we must recognize the value
1184         //     otherwise throw an IllegalArgumentException
1185         //     and do not change the Hints object
1186         // If we do not recognize the key, just pass it through
1187         //     to the Hints object untouched
1188         if (!hintKey.isCompatibleValue(hintValue)) {
1189             throw new IllegalArgumentException
1190                 (hintValue+" is not compatible with "+hintKey);
1191         }
1192         if (hintKey instanceof SunHints.Key) {
1193             boolean stateChanged;
1194             boolean textStateChanged = false;
1195             boolean recognized = true;
1196             SunHints.Key sunKey = (SunHints.Key) hintKey;
1197             int newHint;
1198             if (sunKey == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST) {
1199                 newHint = ((Integer)hintValue).intValue();
1200             } else {
1201                 newHint = ((SunHints.Value) hintValue).getIndex();
1202             }
1203             switch (sunKey.getIndex()) {
1204             case SunHints.INTKEY_RENDERING:
1205                 stateChanged = (renderHint != newHint);
1206                 if (stateChanged) {
1207                     renderHint = newHint;
1208                     if (interpolationHint == -1) {
1209                         interpolationType =
1210                             (newHint == SunHints.INTVAL_RENDER_QUALITY
1211                              ? AffineTransformOp.TYPE_BILINEAR
1212                              : AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
1213                     }
1214                 }
1215                 break;
1216             case SunHints.INTKEY_ANTIALIASING:
1217                 stateChanged = (antialiasHint != newHint);
1218                 antialiasHint = newHint;
1219                 if (stateChanged) {
1220                     textStateChanged =
1221                         (textAntialiasHint ==
1222                          SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT);
1223                     if (strokeState != STROKE_CUSTOM) {
1224                         validateBasicStroke((BasicStroke) stroke);
1225                     }
1226                 }
1227                 break;
1228             case SunHints.INTKEY_TEXT_ANTIALIASING:
1229                 stateChanged = (textAntialiasHint != newHint);
1230                 textStateChanged = stateChanged;
1231                 textAntialiasHint = newHint;
1232                 break;
1233             case SunHints.INTKEY_FRACTIONALMETRICS:
1234                 stateChanged = (fractionalMetricsHint != newHint);
1235                 textStateChanged = stateChanged;
1236                 fractionalMetricsHint = newHint;
1237                 break;
1238             case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
1239                 stateChanged = false;
1240                 /* Already have validated it is an int 100 <= newHint <= 250 */
1241                 lcdTextContrast = newHint;
1242                 break;
1243             case SunHints.INTKEY_INTERPOLATION:
1244                 interpolationHint = newHint;
1245                 switch (newHint) {
1246                 case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1247                     newHint = AffineTransformOp.TYPE_BICUBIC;
1248                     break;
1249                 case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1250                     newHint = AffineTransformOp.TYPE_BILINEAR;
1251                     break;
1252                 default:
1253                 case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1254                     newHint = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
1255                     break;
1256                 }
1257                 stateChanged = (interpolationType != newHint);
1258                 interpolationType = newHint;
1259                 break;
1260             case SunHints.INTKEY_STROKE_CONTROL:
1261                 stateChanged = (strokeHint != newHint);
1262                 strokeHint = newHint;
1263                 break;
1264             case SunHints.INTKEY_RESOLUTION_VARIANT:
1265                 stateChanged = (resolutionVariantHint != newHint);
1266                 resolutionVariantHint = newHint;
1267                 break;
1268             default:
1269                 recognized = false;
1270                 stateChanged = false;
1271                 break;
1272             }
1273             if (recognized) {
1274                 if (stateChanged) {
1275                     invalidatePipe();
1276                     if (textStateChanged) {
1277                         fontMetrics = null;
1278                         this.cachedFRC = null;
1279                         validFontInfo = false;
1280                         this.glyphVectorFontInfo = null;
1281                     }
1282                 }
1283                 if (hints != null) {
1284                     hints.put(hintKey, hintValue);
1285                 }
1286                 return;
1287             }
1288         }
1289         // Nothing we recognize so none of "our state" has changed
1290         if (hints == null) {
1291             hints = makeHints(null);
1292         }
1293         hints.put(hintKey, hintValue);
1294     }
1295 
1296 
1297     /**
1298      * Returns the preferences for the rendering algorithms.
1299      * @param hintKey The category of hint to be set. The strings
1300      * are defined in the RenderingHints class.
1301      * @return The preferences for rendering algorithms. The strings
1302      * are defined in the RenderingHints class.
1303      * @see RenderingHints
1304      */
1305     public Object getRenderingHint(Key hintKey) {
1306         if (hints != null) {
1307             return hints.get(hintKey);
1308         }
1309         if (!(hintKey instanceof SunHints.Key)) {
1310             return null;
1311         }
1312         int keyindex = ((SunHints.Key)hintKey).getIndex();
1313         switch (keyindex) {
1314         case SunHints.INTKEY_RENDERING:
1315             return SunHints.Value.get(SunHints.INTKEY_RENDERING,
1316                                       renderHint);
1317         case SunHints.INTKEY_ANTIALIASING:
1318             return SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
1319                                       antialiasHint);
1320         case SunHints.INTKEY_TEXT_ANTIALIASING:
1321             return SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
1322                                       textAntialiasHint);
1323         case SunHints.INTKEY_FRACTIONALMETRICS:
1324             return SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
1325                                       fractionalMetricsHint);
1326         case SunHints.INTKEY_AATEXT_LCD_CONTRAST:
1327             return lcdTextContrast;
1328         case SunHints.INTKEY_INTERPOLATION:
1329             switch (interpolationHint) {
1330             case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1331                 return SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
1332             case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1333                 return SunHints.VALUE_INTERPOLATION_BILINEAR;
1334             case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1335                 return SunHints.VALUE_INTERPOLATION_BICUBIC;
1336             }
1337             return null;
1338         case SunHints.INTKEY_STROKE_CONTROL:
1339             return SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
1340                                       strokeHint);
1341         case SunHints.INTKEY_RESOLUTION_VARIANT:
1342             return SunHints.Value.get(SunHints.INTKEY_RESOLUTION_VARIANT,
1343                                       resolutionVariantHint);
1344         }
1345         return null;
1346     }
1347 
1348     /**
1349      * Sets the preferences for the rendering algorithms.
1350      * Hint categories include controls for rendering quality and
1351      * overall time/quality trade-off in the rendering process.
1352      * @param hints The rendering hints to be set
1353      * @see RenderingHints
1354      */
1355     public void setRenderingHints(Map<?,?> hints) {
1356         this.hints = null;
1357         renderHint = SunHints.INTVAL_RENDER_DEFAULT;
1358         antialiasHint = SunHints.INTVAL_ANTIALIAS_OFF;
1359         textAntialiasHint = SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT;
1360         fractionalMetricsHint = SunHints.INTVAL_FRACTIONALMETRICS_OFF;
1361         lcdTextContrast = lcdTextContrastDefaultValue;
1362         interpolationHint = -1;
1363         interpolationType = AffineTransformOp.TYPE_NEAREST_NEIGHBOR;
1364         boolean customHintPresent = false;
1365         Iterator<?> iter = hints.keySet().iterator();
1366         while (iter.hasNext()) {
1367             Object key = iter.next();
1368             if (key == SunHints.KEY_RENDERING ||
1369                 key == SunHints.KEY_ANTIALIASING ||
1370                 key == SunHints.KEY_TEXT_ANTIALIASING ||
1371                 key == SunHints.KEY_FRACTIONALMETRICS ||
1372                 key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
1373                 key == SunHints.KEY_STROKE_CONTROL ||
1374                 key == SunHints.KEY_INTERPOLATION)
1375             {
1376                 setRenderingHint((Key) key, hints.get(key));
1377             } else {
1378                 customHintPresent = true;
1379             }
1380         }
1381         if (customHintPresent) {
1382             this.hints = makeHints(hints);
1383         }
1384         invalidatePipe();
1385     }
1386 
1387     /**
1388      * Adds a number of preferences for the rendering algorithms.
1389      * Hint categories include controls for rendering quality and
1390      * overall time/quality trade-off in the rendering process.
1391      * @param hints The rendering hints to be set
1392      * @see RenderingHints
1393      */
1394     public void addRenderingHints(Map<?,?> hints) {
1395         boolean customHintPresent = false;
1396         Iterator<?> iter = hints.keySet().iterator();
1397         while (iter.hasNext()) {
1398             Object key = iter.next();
1399             if (key == SunHints.KEY_RENDERING ||
1400                 key == SunHints.KEY_ANTIALIASING ||
1401                 key == SunHints.KEY_TEXT_ANTIALIASING ||
1402                 key == SunHints.KEY_FRACTIONALMETRICS ||
1403                 key == SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST ||
1404                 key == SunHints.KEY_STROKE_CONTROL ||
1405                 key == SunHints.KEY_INTERPOLATION)
1406             {
1407                 setRenderingHint((Key) key, hints.get(key));
1408             } else {
1409                 customHintPresent = true;
1410             }
1411         }
1412         if (customHintPresent) {
1413             if (this.hints == null) {
1414                 this.hints = makeHints(hints);
1415             } else {
1416                 this.hints.putAll(hints);
1417             }
1418         }
1419     }
1420 
1421     /**
1422      * Gets the preferences for the rendering algorithms.
1423      * Hint categories include controls for rendering quality and
1424      * overall time/quality trade-off in the rendering process.
1425      * @see RenderingHints
1426      */
1427     public RenderingHints getRenderingHints() {
1428         if (hints == null) {
1429             return makeHints(null);
1430         } else {
1431             return (RenderingHints) hints.clone();
1432         }
1433     }
1434 
1435     RenderingHints makeHints(Map<?,?> hints) {
1436         RenderingHints model = new RenderingHints(null);
1437         if (hints != null) {
1438             model.putAll(hints);
1439         }
1440         model.put(SunHints.KEY_RENDERING,
1441                   SunHints.Value.get(SunHints.INTKEY_RENDERING,
1442                                      renderHint));
1443         model.put(SunHints.KEY_ANTIALIASING,
1444                   SunHints.Value.get(SunHints.INTKEY_ANTIALIASING,
1445                                      antialiasHint));
1446         model.put(SunHints.KEY_TEXT_ANTIALIASING,
1447                   SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING,
1448                                      textAntialiasHint));
1449         model.put(SunHints.KEY_FRACTIONALMETRICS,
1450                   SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
1451                                      fractionalMetricsHint));
1452         model.put(SunHints.KEY_TEXT_ANTIALIAS_LCD_CONTRAST,
1453                   Integer.valueOf(lcdTextContrast));
1454         Object value;
1455         switch (interpolationHint) {
1456         case SunHints.INTVAL_INTERPOLATION_NEAREST_NEIGHBOR:
1457             value = SunHints.VALUE_INTERPOLATION_NEAREST_NEIGHBOR;
1458             break;
1459         case SunHints.INTVAL_INTERPOLATION_BILINEAR:
1460             value = SunHints.VALUE_INTERPOLATION_BILINEAR;
1461             break;
1462         case SunHints.INTVAL_INTERPOLATION_BICUBIC:
1463             value = SunHints.VALUE_INTERPOLATION_BICUBIC;
1464             break;
1465         default:
1466             value = null;
1467             break;
1468         }
1469         if (value != null) {
1470             model.put(SunHints.KEY_INTERPOLATION, value);
1471         }
1472         model.put(SunHints.KEY_STROKE_CONTROL,
1473                   SunHints.Value.get(SunHints.INTKEY_STROKE_CONTROL,
1474                                      strokeHint));
1475         return model;
1476     }
1477 
1478     /**
1479      * Concatenates the current transform of this Graphics2D with a
1480      * translation transformation.
1481      * This is equivalent to calling transform(T), where T is an
1482      * AffineTransform represented by the following matrix:
1483      * <pre>
1484      *          [   1    0    tx  ]
1485      *          [   0    1    ty  ]
1486      *          [   0    0    1   ]
1487      * </pre>
1488      */
1489     public void translate(double tx, double ty) {
1490         transform.translate(tx, ty);
1491         invalidateTransform();
1492     }
1493 
1494     /**
1495      * Concatenates the current transform of this Graphics2D with a
1496      * rotation transformation.
1497      * This is equivalent to calling transform(R), where R is an
1498      * AffineTransform represented by the following matrix:
1499      * <pre>
1500      *          [   cos(theta)    -sin(theta)    0   ]
1501      *          [   sin(theta)     cos(theta)    0   ]
1502      *          [       0              0         1   ]
1503      * </pre>
1504      * Rotating with a positive angle theta rotates points on the positive
1505      * x axis toward the positive y axis.
1506      * @param theta The angle of rotation in radians.
1507      */
1508     public void rotate(double theta) {
1509         transform.rotate(theta);
1510         invalidateTransform();
1511     }
1512 
1513     /**
1514      * Concatenates the current transform of this Graphics2D with a
1515      * translated rotation transformation.
1516      * This is equivalent to the following sequence of calls:
1517      * <pre>
1518      *          translate(x, y);
1519      *          rotate(theta);
1520      *          translate(-x, -y);
1521      * </pre>
1522      * Rotating with a positive angle theta rotates points on the positive
1523      * x axis toward the positive y axis.
1524      * @param theta The angle of rotation in radians.
1525      * @param x The x coordinate of the origin of the rotation
1526      * @param y The x coordinate of the origin of the rotation
1527      */
1528     public void rotate(double theta, double x, double y) {
1529         transform.rotate(theta, x, y);
1530         invalidateTransform();
1531     }
1532 
1533     /**
1534      * Concatenates the current transform of this Graphics2D with a
1535      * scaling transformation.
1536      * This is equivalent to calling transform(S), where S is an
1537      * AffineTransform represented by the following matrix:
1538      * <pre>
1539      *          [   sx   0    0   ]
1540      *          [   0    sy   0   ]
1541      *          [   0    0    1   ]
1542      * </pre>
1543      */
1544     public void scale(double sx, double sy) {
1545         transform.scale(sx, sy);
1546         invalidateTransform();
1547     }
1548 
1549     /**
1550      * Concatenates the current transform of this Graphics2D with a
1551      * shearing transformation.
1552      * This is equivalent to calling transform(SH), where SH is an
1553      * AffineTransform represented by the following matrix:
1554      * <pre>
1555      *          [   1   shx   0   ]
1556      *          [  shy   1    0   ]
1557      *          [   0    0    1   ]
1558      * </pre>
1559      * @param shx The factor by which coordinates are shifted towards the
1560      * positive X axis direction according to their Y coordinate
1561      * @param shy The factor by which coordinates are shifted towards the
1562      * positive Y axis direction according to their X coordinate
1563      */
1564     public void shear(double shx, double shy) {
1565         transform.shear(shx, shy);
1566         invalidateTransform();
1567     }
1568 
1569     /**
1570      * Composes a Transform object with the transform in this
1571      * Graphics2D according to the rule last-specified-first-applied.
1572      * If the currrent transform is Cx, the result of composition
1573      * with Tx is a new transform Cx'.  Cx' becomes the current
1574      * transform for this Graphics2D.
1575      * Transforming a point p by the updated transform Cx' is
1576      * equivalent to first transforming p by Tx and then transforming
1577      * the result by the original transform Cx.  In other words,
1578      * Cx'(p) = Cx(Tx(p)).
1579      * A copy of the Tx is made, if necessary, so further
1580      * modifications to Tx do not affect rendering.
1581      * @param xform The Transform object to be composed with the current
1582      * transform.
1583      * @see #setTransform
1584      * @see AffineTransform
1585      */
1586     public void transform(AffineTransform xform) {
1587         this.transform.concatenate(xform);
1588         invalidateTransform();
1589     }
1590 
1591     /**
1592      * Translate
1593      */
1594     public void translate(int x, int y) {
1595         transform.translate(x, y);
1596         if (transformState <= TRANSFORM_INT_TRANSLATE) {
1597             transX += x;
1598             transY += y;
1599             transformState = (((transX | transY) == 0) ?
1600                               TRANSFORM_ISIDENT : TRANSFORM_INT_TRANSLATE);
1601         } else {
1602             invalidateTransform();
1603         }
1604     }
1605 
1606     /**
1607      * Sets the Transform in the current graphics state.
1608      * @param Tx The Transform object to be used in the rendering process.
1609      * @see #transform
1610      * @see AffineTransform
1611      */
1612     @Override
1613     public void setTransform(AffineTransform Tx) {
1614         if ((constrainX | constrainY) == 0) {
1615             transform.setTransform(Tx);
1616         } else {
1617             transform.setToTranslation(constrainX, constrainY);
1618             transform.concatenate(Tx);
1619         }
1620         invalidateTransform();
1621     }
1622 
1623     protected void invalidateTransform() {
1624         int type = transform.getType();
1625         int origTransformState = transformState;
1626         if (type == AffineTransform.TYPE_IDENTITY) {
1627             transformState = TRANSFORM_ISIDENT;
1628             transX = transY = 0;
1629         } else if (type == AffineTransform.TYPE_TRANSLATION) {
1630             double dtx = transform.getTranslateX();
1631             double dty = transform.getTranslateY();
1632             transX = (int) Math.floor(dtx + 0.5);
1633             transY = (int) Math.floor(dty + 0.5);
1634             if (dtx == transX && dty == transY) {
1635                 transformState = TRANSFORM_INT_TRANSLATE;
1636             } else {
1637                 transformState = TRANSFORM_ANY_TRANSLATE;
1638             }
1639         } else if ((type & (AffineTransform.TYPE_FLIP |
1640                             AffineTransform.TYPE_MASK_ROTATION |
1641                             AffineTransform.TYPE_GENERAL_TRANSFORM)) == 0)
1642         {
1643             transformState = TRANSFORM_TRANSLATESCALE;
1644             transX = transY = 0;
1645         } else {
1646             transformState = TRANSFORM_GENERIC;
1647             transX = transY = 0;
1648         }
1649 
1650         if (transformState >= TRANSFORM_TRANSLATESCALE ||
1651             origTransformState >= TRANSFORM_TRANSLATESCALE)
1652         {
1653             /* Its only in this case that the previous or current transform
1654              * was more than a translate that font info is invalidated
1655              */
1656             cachedFRC = null;
1657             this.validFontInfo = false;
1658             this.fontMetrics = null;
1659             this.glyphVectorFontInfo = null;
1660 
1661             if (transformState != origTransformState) {
1662                 invalidatePipe();
1663             }
1664         }
1665         if (strokeState != STROKE_CUSTOM) {
1666             validateBasicStroke((BasicStroke) stroke);
1667         }
1668     }
1669 
1670     /**
1671      * Returns the current Transform in the Graphics2D state.
1672      * @see #transform
1673      * @see #setTransform
1674      */
1675     @Override
1676     public AffineTransform getTransform() {
1677         if ((constrainX | constrainY) == 0) {
1678             return new AffineTransform(transform);
1679         }
1680         AffineTransform tx
1681                 = AffineTransform.getTranslateInstance(-constrainX, -constrainY);
1682         tx.concatenate(transform);
1683         return tx;
1684     }
1685 
1686     /**
1687      * Returns the current Transform ignoring the "constrain"
1688      * rectangle.
1689      */
1690     public AffineTransform cloneTransform() {
1691         return new AffineTransform(transform);
1692     }
1693 
1694     /**
1695      * Returns the current Paint in the Graphics2D state.
1696      * @see #setPaint
1697      * @see java.awt.Graphics#setColor
1698      */
1699     public Paint getPaint() {
1700         return paint;
1701     }
1702 
1703     /**
1704      * Returns the current Composite in the Graphics2D state.
1705      * @see #setComposite
1706      */
1707     public Composite getComposite() {
1708         return composite;
1709     }
1710 
1711     public Color getColor() {
1712         return foregroundColor;
1713     }
1714 
1715     /*
1716      * Validate the eargb and pixel fields against the current color.
1717      *
1718      * The eargb field must take into account the extraAlpha
1719      * value of an AlphaComposite.  It may also take into account
1720      * the Fsrc Porter-Duff blending function if such a function is
1721      * a constant (see handling of Clear mode below).  For instance,
1722      * by factoring in the (Fsrc == 0) state of the Clear mode we can
1723      * use a SrcNoEa loop just as easily as a general Alpha loop
1724      * since the math will be the same in both cases.
1725      *
1726      * The pixel field will always be the best pixel data choice for
1727      * the final result of all calculations applied to the eargb field.
1728      *
1729      * Note that this method is only necessary under the following
1730      * conditions:
1731      *     (paintState <= PAINT_ALPHA_COLOR &&
1732      *      compositeState <= COMP_CUSTOM)
1733      * though nothing bad will happen if it is run in other states.
1734      */
1735     void validateColor() {
1736         int eargb;
1737         if (imageComp == CompositeType.Clear) {
1738             eargb = 0;
1739         } else {
1740             eargb = foregroundColor.getRGB();
1741             if (compositeState <= COMP_ALPHA &&
1742                 imageComp != CompositeType.SrcNoEa &&
1743                 imageComp != CompositeType.SrcOverNoEa)
1744             {
1745                 AlphaComposite alphacomp = (AlphaComposite) composite;
1746                 int a = Math.round(alphacomp.getAlpha() * (eargb >>> 24));
1747                 eargb = (eargb & 0x00ffffff) | (a << 24);
1748             }
1749         }
1750         this.eargb = eargb;
1751         this.pixel = surfaceData.pixelFor(eargb);
1752     }
1753 
1754     public void setColor(Color color) {
1755         if (color == null || color == paint) {
1756             return;
1757         }
1758         this.paint = foregroundColor = color;
1759         validateColor();
1760         if ((eargb >> 24) == -1) {
1761             if (paintState == PAINT_OPAQUECOLOR) {
1762                 return;
1763             }
1764             paintState = PAINT_OPAQUECOLOR;
1765             if (imageComp == CompositeType.SrcOverNoEa) {
1766                 // special case where compState depends on opacity of paint
1767                 compositeState = COMP_ISCOPY;
1768             }
1769         } else {
1770             if (paintState == PAINT_ALPHACOLOR) {
1771                 return;
1772             }
1773             paintState = PAINT_ALPHACOLOR;
1774             if (imageComp == CompositeType.SrcOverNoEa) {
1775                 // special case where compState depends on opacity of paint
1776                 compositeState = COMP_ALPHA;
1777             }
1778         }
1779         validFontInfo = false;
1780         invalidatePipe();
1781     }
1782 
1783     /**
1784      * Sets the background color in this context used for clearing a region.
1785      * When Graphics2D is constructed for a component, the backgroung color is
1786      * inherited from the component. Setting the background color in the
1787      * Graphics2D context only affects the subsequent clearRect() calls and
1788      * not the background color of the component. To change the background
1789      * of the component, use appropriate methods of the component.
1790      * @param color The background color that should be used in
1791      * subsequent calls to clearRect().
1792      * @see #getBackground
1793      * @see Graphics#clearRect
1794      */
1795     public void setBackground(Color color) {
1796         backgroundColor = color;
1797     }
1798 
1799     /**
1800      * Returns the background color used for clearing a region.
1801      * @see #setBackground
1802      */
1803     public Color getBackground() {
1804         return backgroundColor;
1805     }
1806 
1807     /**
1808      * Returns the current Stroke in the Graphics2D state.
1809      * @see #setStroke
1810      */
1811     public Stroke getStroke() {
1812         return stroke;
1813     }
1814 
1815     public Rectangle getClipBounds() {
1816         if (clipState == CLIP_DEVICE) {
1817             return null;
1818         }
1819         return getClipBounds(new Rectangle());
1820     }
1821 
1822     public Rectangle getClipBounds(Rectangle r) {
1823         if (clipState != CLIP_DEVICE) {
1824             if (transformState <= TRANSFORM_INT_TRANSLATE) {
1825                 if (usrClip instanceof Rectangle) {
1826                     r.setBounds((Rectangle) usrClip);
1827                 } else {
1828                     r.setFrame(usrClip.getBounds2D());
1829                 }
1830                 r.translate(-transX, -transY);
1831             } else {
1832                 r.setFrame(getClip().getBounds2D());
1833             }
1834         } else if (r == null) {
1835             throw new NullPointerException("null rectangle parameter");
1836         }
1837         return r;
1838     }
1839 
1840     public boolean hitClip(int x, int y, int width, int height) {
1841         if (width <= 0 || height <= 0) {
1842             return false;
1843         }
1844         if (transformState > TRANSFORM_INT_TRANSLATE) {
1845             // Note: Technically the most accurate test would be to
1846             // raster scan the parallelogram of the transformed rectangle
1847             // and do a span for span hit test against the clip, but for
1848             // speed we approximate the test with a bounding box of the
1849             // transformed rectangle.  The cost of rasterizing the
1850             // transformed rectangle is probably high enough that it is
1851             // not worth doing so to save the caller from having to call
1852             // a rendering method where we will end up discovering the
1853             // same answer in about the same amount of time anyway.
1854             // This logic breaks down if this hit test is being performed
1855             // on the bounds of a group of shapes in which case it might
1856             // be beneficial to be a little more accurate to avoid lots
1857             // of subsequent rendering calls.  In either case, this relaxed
1858             // test should not be significantly less accurate than the
1859             // optimal test for most transforms and so the conservative
1860             // answer should not cause too much extra work.
1861 
1862             double d[] = {
1863                 x, y,
1864                 x+width, y,
1865                 x, y+height,
1866                 x+width, y+height
1867             };
1868             transform.transform(d, 0, d, 0, 4);
1869             x = (int) Math.floor(Math.min(Math.min(d[0], d[2]),
1870                                           Math.min(d[4], d[6])));
1871             y = (int) Math.floor(Math.min(Math.min(d[1], d[3]),
1872                                           Math.min(d[5], d[7])));
1873             width = (int) Math.ceil(Math.max(Math.max(d[0], d[2]),
1874                                              Math.max(d[4], d[6])));
1875             height = (int) Math.ceil(Math.max(Math.max(d[1], d[3]),
1876                                               Math.max(d[5], d[7])));
1877         } else {
1878             x += transX;
1879             y += transY;
1880             width += x;
1881             height += y;
1882         }
1883 
1884         try {
1885             if (!getCompClip().intersectsQuickCheckXYXY(x, y, width, height)) {
1886                 return false;
1887             }
1888         } catch (InvalidPipeException e) {
1889             return false;
1890         }
1891         // REMIND: We could go one step further here and examine the
1892         // non-rectangular clip shape more closely if there is one.
1893         // Since the clip has already been rasterized, the performance
1894         // penalty of doing the scan is probably still within the bounds
1895         // of a good tradeoff between speed and quality of the answer.
1896         return true;
1897     }
1898 
1899     protected void validateCompClip() {
1900         int origClipState = clipState;
1901         if (usrClip == null) {
1902             clipState = CLIP_DEVICE;
1903             clipRegion = devClip;
1904         } else if (usrClip instanceof Rectangle2D) {
1905             clipState = CLIP_RECTANGULAR;
1906             if (usrClip instanceof Rectangle) {
1907                 clipRegion = devClip.getIntersection((Rectangle)usrClip);
1908             } else {
1909                 clipRegion = devClip.getIntersection(usrClip.getBounds());
1910             }
1911         } else {
1912             PathIterator cpi = usrClip.getPathIterator(null);
1913             int box[] = new int[4];
1914             ShapeSpanIterator sr = LoopPipe.getFillSSI(this);
1915             try {
1916                 sr.setOutputArea(devClip);
1917                 sr.appendPath(cpi);
1918                 sr.getPathBox(box);
1919                 Region r = Region.getInstance(box, sr);
1920                 clipRegion = r;
1921                 clipState =
1922                     r.isRectangular() ? CLIP_RECTANGULAR : CLIP_SHAPE;
1923             } finally {
1924                 sr.dispose();
1925             }
1926         }
1927         if (origClipState != clipState &&
1928             (clipState == CLIP_SHAPE || origClipState == CLIP_SHAPE))
1929         {
1930             validFontInfo = false;
1931             invalidatePipe();
1932         }
1933     }
1934 
1935     static final int NON_RECTILINEAR_TRANSFORM_MASK =
1936         (AffineTransform.TYPE_GENERAL_TRANSFORM |
1937          AffineTransform.TYPE_GENERAL_ROTATION);
1938 
1939     protected Shape transformShape(Shape s) {
1940         if (s == null) {
1941             return null;
1942         }
1943         if (transformState > TRANSFORM_INT_TRANSLATE) {
1944             return transformShape(transform, s);
1945         } else {
1946             return transformShape(transX, transY, s);
1947         }
1948     }
1949 
1950     public Shape untransformShape(Shape s) {
1951         if (s == null) {
1952             return null;
1953         }
1954         if (transformState > TRANSFORM_INT_TRANSLATE) {
1955             try {
1956                 return transformShape(transform.createInverse(), s);
1957             } catch (NoninvertibleTransformException e) {
1958                 return null;
1959             }
1960         } else {
1961             return transformShape(-transX, -transY, s);
1962         }
1963     }
1964 
1965     protected static Shape transformShape(int tx, int ty, Shape s) {
1966         if (s == null) {
1967             return null;
1968         }
1969 
1970         if (s instanceof Rectangle) {
1971             Rectangle r = s.getBounds();
1972             r.translate(tx, ty);
1973             return r;
1974         }
1975         if (s instanceof Rectangle2D) {
1976             Rectangle2D rect = (Rectangle2D) s;
1977             return new Rectangle2D.Double(rect.getX() + tx,
1978                                           rect.getY() + ty,
1979                                           rect.getWidth(),
1980                                           rect.getHeight());
1981         }
1982 
1983         if (tx == 0 && ty == 0) {
1984             return cloneShape(s);
1985         }
1986 
1987         AffineTransform mat = AffineTransform.getTranslateInstance(tx, ty);
1988         return mat.createTransformedShape(s);
1989     }
1990 
1991     protected static Shape transformShape(AffineTransform tx, Shape clip) {
1992         if (clip == null) {
1993             return null;
1994         }
1995 
1996         if (clip instanceof Rectangle2D &&
1997             (tx.getType() & NON_RECTILINEAR_TRANSFORM_MASK) == 0)
1998         {
1999             Rectangle2D rect = (Rectangle2D) clip;
2000             double matrix[] = new double[4];
2001             matrix[0] = rect.getX();
2002             matrix[1] = rect.getY();
2003             matrix[2] = matrix[0] + rect.getWidth();
2004             matrix[3] = matrix[1] + rect.getHeight();
2005             tx.transform(matrix, 0, matrix, 0, 2);
2006             fixRectangleOrientation(matrix, rect);
2007             return new Rectangle2D.Double(matrix[0], matrix[1],
2008                                           matrix[2] - matrix[0],
2009                                           matrix[3] - matrix[1]);
2010         }
2011 
2012         if (tx.isIdentity()) {
2013             return cloneShape(clip);
2014         }
2015 
2016         return tx.createTransformedShape(clip);
2017     }
2018 
2019     /**
2020      * Sets orientation of the rectangle according to the clip.
2021      */
2022     private static void fixRectangleOrientation(double[] m, Rectangle2D clip) {
2023         if (clip.getWidth() > 0 != (m[2] - m[0] > 0)) {
2024             double t = m[0];
2025             m[0] = m[2];
2026             m[2] = t;
2027         }
2028         if (clip.getHeight() > 0 != (m[3] - m[1] > 0)) {
2029             double t = m[1];
2030             m[1] = m[3];
2031             m[3] = t;
2032         }
2033     }
2034 
2035     public void clipRect(int x, int y, int w, int h) {
2036         clip(new Rectangle(x, y, w, h));
2037     }
2038 
2039     public void setClip(int x, int y, int w, int h) {
2040         setClip(new Rectangle(x, y, w, h));
2041     }
2042 
2043     public Shape getClip() {
2044         return untransformShape(usrClip);
2045     }
2046 
2047     public void setClip(Shape sh) {
2048         usrClip = transformShape(sh);
2049         validateCompClip();
2050     }
2051 
2052     /**
2053      * Intersects the current clip with the specified Path and sets the
2054      * current clip to the resulting intersection. The clip is transformed
2055      * with the current transform in the Graphics2D state before being
2056      * intersected with the current clip. This method is used to make the
2057      * current clip smaller. To make the clip larger, use any setClip method.
2058      * @param s The Path to be intersected with the current clip.
2059      */
2060     public void clip(Shape s) {
2061         s = transformShape(s);
2062         if (usrClip != null) {
2063             s = intersectShapes(usrClip, s, true, true);
2064         }
2065         usrClip = s;
2066         validateCompClip();
2067     }
2068 
2069     public void setPaintMode() {
2070         setComposite(AlphaComposite.SrcOver);
2071     }
2072 
2073     public void setXORMode(Color c) {
2074         if (c == null) {
2075             throw new IllegalArgumentException("null XORColor");
2076         }
2077         setComposite(new XORComposite(c, surfaceData));
2078     }
2079 
2080     Blit lastCAblit;
2081     Composite lastCAcomp;
2082 
2083     public void copyArea(int x, int y, int w, int h, int dx, int dy) {
2084         try {
2085             doCopyArea(x, y, w, h, dx, dy);
2086         } catch (InvalidPipeException e) {
2087             try {
2088                 revalidateAll();
2089                 doCopyArea(x, y, w, h, dx, dy);
2090             } catch (InvalidPipeException e2) {
2091                 // Still catching the exception; we are not yet ready to
2092                 // validate the surfaceData correctly.  Fail for now and
2093                 // try again next time around.
2094             }
2095         } finally {
2096             surfaceData.markDirty();
2097         }
2098     }
2099 
2100     private void doCopyArea(int x, int y, int w, int h, int dx, int dy) {
2101         if (w <= 0 || h <= 0) {
2102             return;
2103         }
2104 
2105         if (transformState == SunGraphics2D.TRANSFORM_ISIDENT) {
2106             // do nothing
2107         } else if (transformState <= SunGraphics2D.TRANSFORM_ANY_TRANSLATE) {
2108             x += transX;
2109             y += transY;
2110         } else if (transformState == SunGraphics2D.TRANSFORM_TRANSLATESCALE) {
2111             final double[] coords = {x, y, x + w, y + h, x + dx, y + dy};
2112             transform.transform(coords, 0, coords, 0, 3);
2113             x = (int) Math.ceil(coords[0] - 0.5);
2114             y = (int) Math.ceil(coords[1] - 0.5);
2115             w = ((int) Math.ceil(coords[2] - 0.5)) - x;
2116             h = ((int) Math.ceil(coords[3] - 0.5)) - y;
2117             dx = ((int) Math.ceil(coords[4] - 0.5)) - x;
2118             dy = ((int) Math.ceil(coords[5] - 0.5)) - y;
2119             // In case of negative scale transform, reflect the rect coords.
2120             if (w < 0) {
2121                 w = -w;
2122                 x -= w;
2123             }
2124             if (h < 0) {
2125                 h = -h;
2126                 y -= h;
2127             }
2128         } else {
2129             throw new InternalError("transformed copyArea not implemented yet");
2130         }
2131 
2132         SurfaceData theData = surfaceData;
2133         if (theData.copyArea(this, x, y, w, h, dx, dy)) {
2134             return;
2135         }
2136 
2137         // REMIND: This method does not deal with missing data from the
2138         // source object (i.e. it does not send exposure events...)
2139 
2140         Region clip = getCompClip();
2141 
2142         Composite comp = composite;
2143         if (lastCAcomp != comp) {
2144             SurfaceType dsttype = theData.getSurfaceType();
2145             CompositeType comptype = imageComp;
2146             if (CompositeType.SrcOverNoEa.equals(comptype) &&
2147                 theData.getTransparency() == Transparency.OPAQUE)
2148             {
2149                 comptype = CompositeType.SrcNoEa;
2150             }
2151             lastCAblit = Blit.locate(dsttype, comptype, dsttype);
2152             lastCAcomp = comp;
2153         }
2154 
2155         Blit ob = lastCAblit;
2156         if (dy == 0 && dx > 0 && dx < w) {
2157             while (w > 0) {
2158                 int partW = Math.min(w, dx);
2159                 w -= partW;
2160                 int sx = x + w;
2161                 ob.Blit(theData, theData, comp, clip,
2162                         sx, y, sx+dx, y+dy, partW, h);
2163             }
2164             return;
2165         }
2166         if (dy > 0 && dy < h && dx > -w && dx < w) {
2167             while (h > 0) {
2168                 int partH = Math.min(h, dy);
2169                 h -= partH;
2170                 int sy = y + h;
2171                 ob.Blit(theData, theData, comp, clip,
2172                         x, sy, x+dx, sy+dy, w, partH);
2173             }
2174             return;
2175         }
2176             ob.Blit(theData, theData, comp, clip, x, y, x+dx, y+dy, w, h);
2177     }
2178 
2179     /*
2180     public void XcopyArea(int x, int y, int w, int h, int dx, int dy) {
2181         Rectangle rect = new Rectangle(x, y, w, h);
2182         rect = transformBounds(rect, transform);
2183         Point2D    point = new Point2D.Float(dx, dy);
2184         Point2D    root  = new Point2D.Float(0, 0);
2185         point = transform.transform(point, point);
2186         root  = transform.transform(root, root);
2187         int fdx = (int)(point.getX()-root.getX());
2188         int fdy = (int)(point.getY()-root.getY());
2189 
2190         Rectangle r = getCompBounds().intersection(rect.getBounds());
2191 
2192         if (r.isEmpty()) {
2193             return;
2194         }
2195 
2196         // Begin Rasterizer for Clip Shape
2197         boolean skipClip = true;
2198         byte[] clipAlpha = null;
2199 
2200         if (clipState == CLIP_SHAPE) {
2201 
2202             int box[] = new int[4];
2203 
2204             clipRegion.getBounds(box);
2205             Rectangle devR = new Rectangle(box[0], box[1],
2206                                            box[2] - box[0],
2207                                            box[3] - box[1]);
2208             if (!devR.isEmpty()) {
2209                 OutputManager mgr = getOutputManager();
2210                 RegionIterator ri = clipRegion.getIterator();
2211                 while (ri.nextYRange(box)) {
2212                     int spany = box[1];
2213                     int spanh = box[3] - spany;
2214                     while (ri.nextXBand(box)) {
2215                         int spanx = box[0];
2216                         int spanw = box[2] - spanx;
2217                         mgr.copyArea(this, null,
2218                                      spanw, 0,
2219                                      spanx, spany,
2220                                      spanw, spanh,
2221                                      fdx, fdy,
2222                                      null);
2223                     }
2224                 }
2225             }
2226             return;
2227         }
2228         // End Rasterizer for Clip Shape
2229 
2230         getOutputManager().copyArea(this, null,
2231                                     r.width, 0,
2232                                     r.x, r.y, r.width,
2233                                     r.height, fdx, fdy,
2234                                     null);
2235     }
2236     */
2237 
2238     public void drawLine(int x1, int y1, int x2, int y2) {
2239         try {
2240             drawpipe.drawLine(this, x1, y1, x2, y2);
2241         } catch (InvalidPipeException e) {
2242             try {
2243                 revalidateAll();
2244                 drawpipe.drawLine(this, x1, y1, x2, y2);
2245             } catch (InvalidPipeException e2) {
2246                 // Still catching the exception; we are not yet ready to
2247                 // validate the surfaceData correctly.  Fail for now and
2248                 // try again next time around.
2249             }
2250         } finally {
2251             surfaceData.markDirty();
2252         }
2253     }
2254 
2255     public void drawRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
2256         try {
2257             drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
2258         } catch (InvalidPipeException e) {
2259             try {
2260                 revalidateAll();
2261                 drawpipe.drawRoundRect(this, x, y, w, h, arcW, arcH);
2262             } catch (InvalidPipeException e2) {
2263                 // Still catching the exception; we are not yet ready to
2264                 // validate the surfaceData correctly.  Fail for now and
2265                 // try again next time around.
2266             }
2267         } finally {
2268             surfaceData.markDirty();
2269         }
2270     }
2271 
2272     public void fillRoundRect(int x, int y, int w, int h, int arcW, int arcH) {
2273         try {
2274             fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
2275         } catch (InvalidPipeException e) {
2276             try {
2277                 revalidateAll();
2278                 fillpipe.fillRoundRect(this, x, y, w, h, arcW, arcH);
2279             } catch (InvalidPipeException e2) {
2280                 // Still catching the exception; we are not yet ready to
2281                 // validate the surfaceData correctly.  Fail for now and
2282                 // try again next time around.
2283             }
2284         } finally {
2285             surfaceData.markDirty();
2286         }
2287     }
2288 
2289     public void drawOval(int x, int y, int w, int h) {
2290         try {
2291             drawpipe.drawOval(this, x, y, w, h);
2292         } catch (InvalidPipeException e) {
2293             try {
2294                 revalidateAll();
2295                 drawpipe.drawOval(this, x, y, w, h);
2296             } catch (InvalidPipeException e2) {
2297                 // Still catching the exception; we are not yet ready to
2298                 // validate the surfaceData correctly.  Fail for now and
2299                 // try again next time around.
2300             }
2301         } finally {
2302             surfaceData.markDirty();
2303         }
2304     }
2305 
2306     public void fillOval(int x, int y, int w, int h) {
2307         try {
2308             fillpipe.fillOval(this, x, y, w, h);
2309         } catch (InvalidPipeException e) {
2310             try {
2311                 revalidateAll();
2312                 fillpipe.fillOval(this, x, y, w, h);
2313             } catch (InvalidPipeException e2) {
2314                 // Still catching the exception; we are not yet ready to
2315                 // validate the surfaceData correctly.  Fail for now and
2316                 // try again next time around.
2317             }
2318         } finally {
2319             surfaceData.markDirty();
2320         }
2321     }
2322 
2323     public void drawArc(int x, int y, int w, int h,
2324                         int startAngl, int arcAngl) {
2325         try {
2326             drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
2327         } catch (InvalidPipeException e) {
2328             try {
2329                 revalidateAll();
2330                 drawpipe.drawArc(this, x, y, w, h, startAngl, arcAngl);
2331             } catch (InvalidPipeException e2) {
2332                 // Still catching the exception; we are not yet ready to
2333                 // validate the surfaceData correctly.  Fail for now and
2334                 // try again next time around.
2335             }
2336         } finally {
2337             surfaceData.markDirty();
2338         }
2339     }
2340 
2341     public void fillArc(int x, int y, int w, int h,
2342                         int startAngl, int arcAngl) {
2343         try {
2344             fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
2345         } catch (InvalidPipeException e) {
2346             try {
2347                 revalidateAll();
2348                 fillpipe.fillArc(this, x, y, w, h, startAngl, arcAngl);
2349             } catch (InvalidPipeException e2) {
2350                 // Still catching the exception; we are not yet ready to
2351                 // validate the surfaceData correctly.  Fail for now and
2352                 // try again next time around.
2353             }
2354         } finally {
2355             surfaceData.markDirty();
2356         }
2357     }
2358 
2359     public void drawPolyline(int xPoints[], int yPoints[], int nPoints) {
2360         try {
2361             drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
2362         } catch (InvalidPipeException e) {
2363             try {
2364                 revalidateAll();
2365                 drawpipe.drawPolyline(this, xPoints, yPoints, nPoints);
2366             } catch (InvalidPipeException e2) {
2367                 // Still catching the exception; we are not yet ready to
2368                 // validate the surfaceData correctly.  Fail for now and
2369                 // try again next time around.
2370             }
2371         } finally {
2372             surfaceData.markDirty();
2373         }
2374     }
2375 
2376     public void drawPolygon(int xPoints[], int yPoints[], int nPoints) {
2377         try {
2378             drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
2379         } catch (InvalidPipeException e) {
2380             try {
2381                 revalidateAll();
2382                 drawpipe.drawPolygon(this, xPoints, yPoints, nPoints);
2383             } catch (InvalidPipeException e2) {
2384                 // Still catching the exception; we are not yet ready to
2385                 // validate the surfaceData correctly.  Fail for now and
2386                 // try again next time around.
2387             }
2388         } finally {
2389             surfaceData.markDirty();
2390         }
2391     }
2392 
2393     public void fillPolygon(int xPoints[], int yPoints[], int nPoints) {
2394         try {
2395             fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
2396         } catch (InvalidPipeException e) {
2397             try {
2398                 revalidateAll();
2399                 fillpipe.fillPolygon(this, xPoints, yPoints, nPoints);
2400             } catch (InvalidPipeException e2) {
2401                 // Still catching the exception; we are not yet ready to
2402                 // validate the surfaceData correctly.  Fail for now and
2403                 // try again next time around.
2404             }
2405         } finally {
2406             surfaceData.markDirty();
2407         }
2408     }
2409 
2410     public void drawRect (int x, int y, int w, int h) {
2411         try {
2412             drawpipe.drawRect(this, x, y, w, h);
2413         } catch (InvalidPipeException e) {
2414             try {
2415                 revalidateAll();
2416                 drawpipe.drawRect(this, x, y, w, h);
2417             } catch (InvalidPipeException e2) {
2418                 // Still catching the exception; we are not yet ready to
2419                 // validate the surfaceData correctly.  Fail for now and
2420                 // try again next time around.
2421             }
2422         } finally {
2423             surfaceData.markDirty();
2424         }
2425     }
2426 
2427     public void fillRect (int x, int y, int w, int h) {
2428         try {
2429             fillpipe.fillRect(this, x, y, w, h);
2430         } catch (InvalidPipeException e) {
2431             try {
2432                 revalidateAll();
2433                 fillpipe.fillRect(this, x, y, w, h);
2434             } catch (InvalidPipeException e2) {
2435                 // Still catching the exception; we are not yet ready to
2436                 // validate the surfaceData correctly.  Fail for now and
2437                 // try again next time around.
2438             }
2439         } finally {
2440             surfaceData.markDirty();
2441         }
2442     }
2443 
2444     private void revalidateAll() {
2445         try {
2446             // REMIND: This locking needs to be done around the
2447             // caller of this method so that the pipe stays valid
2448             // long enough to call the new primitive.
2449             // REMIND: No locking yet in screen SurfaceData objects!
2450             // surfaceData.lock();
2451             surfaceData = surfaceData.getReplacement();
2452             if (surfaceData == null) {
2453                 surfaceData = NullSurfaceData.theInstance;
2454             }
2455 
2456             invalidatePipe();
2457 
2458             // this will recalculate the composite clip
2459             setDevClip(surfaceData.getBounds());
2460 
2461             if (paintState <= PAINT_ALPHACOLOR) {
2462                 validateColor();
2463             }
2464             if (composite instanceof XORComposite) {
2465                 Color c = ((XORComposite) composite).getXorColor();
2466                 setComposite(new XORComposite(c, surfaceData));
2467             }
2468             validatePipe();
2469         } finally {
2470             // REMIND: No locking yet in screen SurfaceData objects!
2471             // surfaceData.unlock();
2472         }
2473     }
2474 
2475     public void clearRect(int x, int y, int w, int h) {
2476         // REMIND: has some "interesting" consequences if threads are
2477         // not synchronized
2478         Composite c = composite;
2479         Paint p = paint;
2480         setComposite(AlphaComposite.Src);
2481         setColor(getBackground());
2482         fillRect(x, y, w, h);
2483         setPaint(p);
2484         setComposite(c);
2485     }
2486 
2487     /**
2488      * Strokes the outline of a Path using the settings of the current
2489      * graphics state.  The rendering attributes applied include the
2490      * clip, transform, paint or color, composite and stroke attributes.
2491      * @param s The path to be drawn.
2492      * @see #setStroke
2493      * @see #setPaint
2494      * @see java.awt.Graphics#setColor
2495      * @see #transform
2496      * @see #setTransform
2497      * @see #clip
2498      * @see #setClip
2499      * @see #setComposite
2500      */
2501     public void draw(Shape s) {
2502         try {
2503             shapepipe.draw(this, s);
2504         } catch (InvalidPipeException e) {
2505             try {
2506                 revalidateAll();
2507                 shapepipe.draw(this, s);
2508             } catch (InvalidPipeException e2) {
2509                 // Still catching the exception; we are not yet ready to
2510                 // validate the surfaceData correctly.  Fail for now and
2511                 // try again next time around.
2512             }
2513         } finally {
2514             surfaceData.markDirty();
2515         }
2516     }
2517 
2518 
2519     /**
2520      * Fills the interior of a Path using the settings of the current
2521      * graphics state. The rendering attributes applied include the
2522      * clip, transform, paint or color, and composite.
2523      * @see #setPaint
2524      * @see java.awt.Graphics#setColor
2525      * @see #transform
2526      * @see #setTransform
2527      * @see #setComposite
2528      * @see #clip
2529      * @see #setClip
2530      */
2531     public void fill(Shape s) {
2532         try {
2533             shapepipe.fill(this, s);
2534         } catch (InvalidPipeException e) {
2535             try {
2536                 revalidateAll();
2537                 shapepipe.fill(this, s);
2538             } catch (InvalidPipeException e2) {
2539                 // Still catching the exception; we are not yet ready to
2540                 // validate the surfaceData correctly.  Fail for now and
2541                 // try again next time around.
2542             }
2543         } finally {
2544             surfaceData.markDirty();
2545         }
2546     }
2547 
2548     /**
2549      * Returns true if the given AffineTransform is an integer
2550      * translation.
2551      */
2552     private static boolean isIntegerTranslation(AffineTransform xform) {
2553         if (xform.isIdentity()) {
2554             return true;
2555         }
2556         if (xform.getType() == AffineTransform.TYPE_TRANSLATION) {
2557             double tx = xform.getTranslateX();
2558             double ty = xform.getTranslateY();
2559             return (tx == (int)tx && ty == (int)ty);
2560         }
2561         return false;
2562     }
2563 
2564     /**
2565      * Returns the index of the tile corresponding to the supplied position
2566      * given the tile grid offset and size along the same axis.
2567      */
2568     private static int getTileIndex(int p, int tileGridOffset, int tileSize) {
2569         p -= tileGridOffset;
2570         if (p < 0) {
2571             p += 1 - tileSize;          // force round to -infinity (ceiling)
2572         }
2573         return p/tileSize;
2574     }
2575 
2576     /**
2577      * Returns a rectangle in image coordinates that may be required
2578      * in order to draw the given image into the given clipping region
2579      * through a pair of AffineTransforms.  In addition, horizontal and
2580      * vertical padding factors for antialising and interpolation may
2581      * be used.
2582      */
2583     private static Rectangle getImageRegion(RenderedImage img,
2584                                             Region compClip,
2585                                             AffineTransform transform,
2586                                             AffineTransform xform,
2587                                             int padX, int padY) {
2588         Rectangle imageRect =
2589             new Rectangle(img.getMinX(), img.getMinY(),
2590                           img.getWidth(), img.getHeight());
2591 
2592         Rectangle result = null;
2593         try {
2594             double p[] = new double[8];
2595             p[0] = p[2] = compClip.getLoX();
2596             p[4] = p[6] = compClip.getHiX();
2597             p[1] = p[5] = compClip.getLoY();
2598             p[3] = p[7] = compClip.getHiY();
2599 
2600             // Inverse transform the output bounding rect
2601             transform.inverseTransform(p, 0, p, 0, 4);
2602             xform.inverseTransform(p, 0, p, 0, 4);
2603 
2604             // Determine a bounding box for the inverse transformed region
2605             double x0,x1,y0,y1;
2606             x0 = x1 = p[0];
2607             y0 = y1 = p[1];
2608 
2609             for (int i = 2; i < 8; ) {
2610                 double pt = p[i++];
2611                 if (pt < x0)  {
2612                     x0 = pt;
2613                 } else if (pt > x1) {
2614                     x1 = pt;
2615                 }
2616                 pt = p[i++];
2617                 if (pt < y0)  {
2618                     y0 = pt;
2619                 } else if (pt > y1) {
2620                     y1 = pt;
2621                 }
2622             }
2623 
2624             // This is padding for anti-aliasing and such.  It may
2625             // be more than is needed.
2626             int x = (int)x0 - padX;
2627             int w = (int)(x1 - x0 + 2*padX);
2628             int y = (int)y0 - padY;
2629             int h = (int)(y1 - y0 + 2*padY);
2630 
2631             Rectangle clipRect = new Rectangle(x,y,w,h);
2632             result = clipRect.intersection(imageRect);
2633         } catch (NoninvertibleTransformException nte) {
2634             // Worst case bounds are the bounds of the image.
2635             result = imageRect;
2636         }
2637 
2638         return result;
2639     }
2640 
2641     /**
2642      * Draws an image, applying a transform from image space into user space
2643      * before drawing.
2644      * The transformation from user space into device space is done with
2645      * the current transform in the Graphics2D.
2646      * The given transformation is applied to the image before the
2647      * transform attribute in the Graphics2D state is applied.
2648      * The rendering attributes applied include the clip, transform,
2649      * and composite attributes. Note that the result is
2650      * undefined, if the given transform is noninvertible.
2651      * @param img The image to be drawn. Does nothing if img is null.
2652      * @param xform The transformation from image space into user space.
2653      * @see #transform
2654      * @see #setTransform
2655      * @see #setComposite
2656      * @see #clip
2657      * @see #setClip
2658      */
2659     public void drawRenderedImage(RenderedImage img,
2660                                   AffineTransform xform) {
2661 
2662         if (img == null) {
2663             return;
2664         }
2665 
2666         // BufferedImage case: use a simple drawImage call
2667         if (img instanceof BufferedImage) {
2668             BufferedImage bufImg = (BufferedImage)img;
2669             drawImage(bufImg,xform,null);
2670             return;
2671         }
2672 
2673         // transformState tracks the state of transform and
2674         // transX, transY contain the integer casts of the
2675         // translation factors
2676         boolean isIntegerTranslate =
2677             (transformState <= TRANSFORM_INT_TRANSLATE) &&
2678             isIntegerTranslation(xform);
2679 
2680         // Include padding for interpolation/antialiasing if necessary
2681         int pad = isIntegerTranslate ? 0 : 3;
2682 
2683         Region clip;
2684         try {
2685             clip = getCompClip();
2686         } catch (InvalidPipeException e) {
2687             return;
2688         }
2689 
2690         // Determine the region of the image that may contribute to
2691         // the clipped drawing area
2692         Rectangle region = getImageRegion(img,
2693                                           clip,
2694                                           transform,
2695                                           xform,
2696                                           pad, pad);
2697         if (region.width <= 0 || region.height <= 0) {
2698             return;
2699         }
2700 
2701         // Attempt to optimize integer translation of tiled images.
2702         // Although theoretically we are O.K. if the concatenation of
2703         // the user transform and the device transform is an integer
2704         // translation, we'll play it safe and only optimize the case
2705         // where both are integer translations.
2706         if (isIntegerTranslate) {
2707             // Use optimized code
2708             // Note that drawTranslatedRenderedImage calls copyImage
2709             // which takes the user space to device space transform into
2710             // account, but we need to provide the image space to user space
2711             // translations.
2712 
2713             drawTranslatedRenderedImage(img, region,
2714                                         (int) xform.getTranslateX(),
2715                                         (int) xform.getTranslateY());
2716             return;
2717         }
2718 
2719         // General case: cobble the necessary region into a single Raster
2720         Raster raster = img.getData(region);
2721 
2722         // Make a new Raster with the same contents as raster
2723         // but starting at (0, 0).  This raster is thus in the same
2724         // coordinate system as the SampleModel of the original raster.
2725         WritableRaster wRaster =
2726               Raster.createWritableRaster(raster.getSampleModel(),
2727                                           raster.getDataBuffer(),
2728                                           null);
2729 
2730         // If the original raster was in a different coordinate
2731         // system than its SampleModel, we need to perform an
2732         // additional translation in order to get the (minX, minY)
2733         // pixel of raster to be pixel (0, 0) of wRaster.  We also
2734         // have to have the correct width and height.
2735         int minX = raster.getMinX();
2736         int minY = raster.getMinY();
2737         int width = raster.getWidth();
2738         int height = raster.getHeight();
2739         int px = minX - raster.getSampleModelTranslateX();
2740         int py = minY - raster.getSampleModelTranslateY();
2741         if (px != 0 || py != 0 || width != wRaster.getWidth() ||
2742             height != wRaster.getHeight()) {
2743             wRaster =
2744                 wRaster.createWritableChild(px,
2745                                             py,
2746                                             width,
2747                                             height,
2748                                             0, 0,
2749                                             null);
2750         }
2751 
2752         // Now we have a BufferedImage starting at (0, 0)
2753         // with the same contents that started at (minX, minY)
2754         // in raster.  So we must draw the BufferedImage with a
2755         // translation of (minX, minY).
2756         AffineTransform transXform = (AffineTransform)xform.clone();
2757         transXform.translate(minX, minY);
2758 
2759         ColorModel cm = img.getColorModel();
2760         BufferedImage bufImg = new BufferedImage(cm,
2761                                                  wRaster,
2762                                                  cm.isAlphaPremultiplied(),
2763                                                  null);
2764         drawImage(bufImg, transXform, null);
2765     }
2766 
2767     /**
2768      * Intersects {@code destRect} with {@code clip} and
2769      * overwrites {@code destRect} with the result.
2770      * Returns false if the intersection was empty, true otherwise.
2771      */
2772     private boolean clipTo(Rectangle destRect, Rectangle clip) {
2773         int x1 = Math.max(destRect.x, clip.x);
2774         int x2 = Math.min(destRect.x + destRect.width, clip.x + clip.width);
2775         int y1 = Math.max(destRect.y, clip.y);
2776         int y2 = Math.min(destRect.y + destRect.height, clip.y + clip.height);
2777         if (((x2 - x1) < 0) || ((y2 - y1) < 0)) {
2778             destRect.width = -1; // Set both just to be safe
2779             destRect.height = -1;
2780             return false;
2781         } else {
2782             destRect.x = x1;
2783             destRect.y = y1;
2784             destRect.width = x2 - x1;
2785             destRect.height = y2 - y1;
2786             return true;
2787         }
2788     }
2789 
2790     /**
2791      * Draw a portion of a RenderedImage tile-by-tile with a given
2792      * integer image to user space translation.  The user to
2793      * device transform must also be an integer translation.
2794      */
2795     private void drawTranslatedRenderedImage(RenderedImage img,
2796                                              Rectangle region,
2797                                              int i2uTransX,
2798                                              int i2uTransY) {
2799         // Cache tile grid info
2800         int tileGridXOffset = img.getTileGridXOffset();
2801         int tileGridYOffset = img.getTileGridYOffset();
2802         int tileWidth = img.getTileWidth();
2803         int tileHeight = img.getTileHeight();
2804 
2805         // Determine the tile index extrema in each direction
2806         int minTileX =
2807             getTileIndex(region.x, tileGridXOffset, tileWidth);
2808         int minTileY =
2809             getTileIndex(region.y, tileGridYOffset, tileHeight);
2810         int maxTileX =
2811             getTileIndex(region.x + region.width - 1,
2812                          tileGridXOffset, tileWidth);
2813         int maxTileY =
2814             getTileIndex(region.y + region.height - 1,
2815                          tileGridYOffset, tileHeight);
2816 
2817         // Create a single ColorModel to use for all BufferedImages
2818         ColorModel colorModel = img.getColorModel();
2819 
2820         // Reuse the same Rectangle for each iteration
2821         Rectangle tileRect = new Rectangle();
2822 
2823         for (int ty = minTileY; ty <= maxTileY; ty++) {
2824             for (int tx = minTileX; tx <= maxTileX; tx++) {
2825                 // Get the current tile.
2826                 Raster raster = img.getTile(tx, ty);
2827 
2828                 // Fill in tileRect with the tile bounds
2829                 tileRect.x = tx*tileWidth + tileGridXOffset;
2830                 tileRect.y = ty*tileHeight + tileGridYOffset;
2831                 tileRect.width = tileWidth;
2832                 tileRect.height = tileHeight;
2833 
2834                 // Clip the tile against the image bounds and
2835                 // backwards mapped clip region
2836                 // The result can't be empty
2837                 clipTo(tileRect, region);
2838 
2839                 // Create a WritableRaster containing the tile
2840                 WritableRaster wRaster = null;
2841                 if (raster instanceof WritableRaster) {
2842                     wRaster = (WritableRaster)raster;
2843                 } else {
2844                     // Create a WritableRaster in the same coordinate system
2845                     // as the original raster.
2846                     wRaster =
2847                         Raster.createWritableRaster(raster.getSampleModel(),
2848                                                     raster.getDataBuffer(),
2849                                                     null);
2850                 }
2851 
2852                 // Translate wRaster to start at (0, 0) and to contain
2853                 // only the relevent portion of the tile
2854                 wRaster = wRaster.createWritableChild(tileRect.x, tileRect.y,
2855                                                       tileRect.width,
2856                                                       tileRect.height,
2857                                                       0, 0,
2858                                                       null);
2859 
2860                 // Wrap wRaster in a BufferedImage
2861                 BufferedImage bufImg =
2862                     new BufferedImage(colorModel,
2863                                       wRaster,
2864                                       colorModel.isAlphaPremultiplied(),
2865                                       null);
2866                 // Now we have a BufferedImage starting at (0, 0) that
2867                 // represents data from a Raster starting at
2868                 // (tileRect.x, tileRect.y).  Additionally, it needs
2869                 // to be translated by (i2uTransX, i2uTransY).  We call
2870                 // copyImage to draw just the region of interest
2871                 // without needing to create a child image.
2872                 copyImage(bufImg, tileRect.x + i2uTransX,
2873                           tileRect.y + i2uTransY, 0, 0, tileRect.width,
2874                           tileRect.height, null, null);
2875             }
2876         }
2877     }
2878 
2879     public void drawRenderableImage(RenderableImage img,
2880                                     AffineTransform xform) {
2881 
2882         if (img == null) {
2883             return;
2884         }
2885 
2886         AffineTransform pipeTransform = transform;
2887         AffineTransform concatTransform = new AffineTransform(xform);
2888         concatTransform.concatenate(pipeTransform);
2889         AffineTransform reverseTransform;
2890 
2891         RenderContext rc = new RenderContext(concatTransform);
2892 
2893         try {
2894             reverseTransform = pipeTransform.createInverse();
2895         } catch (NoninvertibleTransformException nte) {
2896             rc = new RenderContext(pipeTransform);
2897             reverseTransform = new AffineTransform();
2898         }
2899 
2900         RenderedImage rendering = img.createRendering(rc);
2901         drawRenderedImage(rendering,reverseTransform);
2902     }
2903 
2904 
2905 
2906     /*
2907      * Transform the bounding box of the BufferedImage
2908      */
2909     protected Rectangle transformBounds(Rectangle rect,
2910                                         AffineTransform tx) {
2911         if (tx.isIdentity()) {
2912             return rect;
2913         }
2914 
2915         Shape s = transformShape(tx, rect);
2916         return s.getBounds();
2917     }
2918 
2919     // text rendering methods
2920     public void drawString(String str, int x, int y) {
2921         if (str == null) {
2922             throw new NullPointerException("String is null");
2923         }
2924 
2925         if (font.hasLayoutAttributes()) {
2926             if (str.length() == 0) {
2927                 return;
2928             }
2929             new TextLayout(str, font, getFontRenderContext()).draw(this, x, y);
2930             return;
2931         }
2932 
2933         try {
2934             textpipe.drawString(this, str, x, y);
2935         } catch (InvalidPipeException e) {
2936             try {
2937                 revalidateAll();
2938                 textpipe.drawString(this, str, x, y);
2939             } catch (InvalidPipeException e2) {
2940                 // Still catching the exception; we are not yet ready to
2941                 // validate the surfaceData correctly.  Fail for now and
2942                 // try again next time around.
2943             }
2944         } finally {
2945             surfaceData.markDirty();
2946         }
2947     }
2948 
2949     public void drawString(String str, float x, float y) {
2950         if (str == null) {
2951             throw new NullPointerException("String is null");
2952         }
2953 
2954         if (font.hasLayoutAttributes()) {
2955             if (str.length() == 0) {
2956                 return;
2957             }
2958             new TextLayout(str, font, getFontRenderContext()).draw(this, x, y);
2959             return;
2960         }
2961 
2962         try {
2963             textpipe.drawString(this, str, x, y);
2964         } catch (InvalidPipeException e) {
2965             try {
2966                 revalidateAll();
2967                 textpipe.drawString(this, str, x, y);
2968             } catch (InvalidPipeException e2) {
2969                 // Still catching the exception; we are not yet ready to
2970                 // validate the surfaceData correctly.  Fail for now and
2971                 // try again next time around.
2972             }
2973         } finally {
2974             surfaceData.markDirty();
2975         }
2976     }
2977 
2978     public void drawString(AttributedCharacterIterator iterator,
2979                            int x, int y) {
2980         if (iterator == null) {
2981             throw new NullPointerException("AttributedCharacterIterator is null");
2982         }
2983         if (iterator.getBeginIndex() == iterator.getEndIndex()) {
2984             return; /* nothing to draw */
2985         }
2986         TextLayout tl = new TextLayout(iterator, getFontRenderContext());
2987         tl.draw(this, (float) x, (float) y);
2988     }
2989 
2990     public void drawString(AttributedCharacterIterator iterator,
2991                            float x, float y) {
2992         if (iterator == null) {
2993             throw new NullPointerException("AttributedCharacterIterator is null");
2994         }
2995         if (iterator.getBeginIndex() == iterator.getEndIndex()) {
2996             return; /* nothing to draw */
2997         }
2998         TextLayout tl = new TextLayout(iterator, getFontRenderContext());
2999         tl.draw(this, x, y);
3000     }
3001 
3002     public void drawGlyphVector(GlyphVector gv, float x, float y)
3003     {
3004         if (gv == null) {
3005             throw new NullPointerException("GlyphVector is null");
3006         }
3007 
3008         try {
3009             textpipe.drawGlyphVector(this, gv, x, y);
3010         } catch (InvalidPipeException e) {
3011             try {
3012                 revalidateAll();
3013                 textpipe.drawGlyphVector(this, gv, x, y);
3014             } catch (InvalidPipeException e2) {
3015                 // Still catching the exception; we are not yet ready to
3016                 // validate the surfaceData correctly.  Fail for now and
3017                 // try again next time around.
3018             }
3019         } finally {
3020             surfaceData.markDirty();
3021         }
3022     }
3023 
3024     public void drawChars(char data[], int offset, int length, int x, int y) {
3025 
3026         if (data == null) {
3027             throw new NullPointerException("char data is null");
3028         }
3029         if (offset < 0 || length < 0 || offset + length > data.length) {
3030             throw new ArrayIndexOutOfBoundsException("bad offset/length");
3031         }
3032         if (font.hasLayoutAttributes()) {
3033             if (data.length == 0) {
3034                 return;
3035             }
3036             new TextLayout(new String(data, offset, length),
3037                            font, getFontRenderContext()).draw(this, x, y);
3038             return;
3039         }
3040 
3041         try {
3042             textpipe.drawChars(this, data, offset, length, x, y);
3043         } catch (InvalidPipeException e) {
3044             try {
3045                 revalidateAll();
3046                 textpipe.drawChars(this, data, offset, length, x, y);
3047             } catch (InvalidPipeException e2) {
3048                 // Still catching the exception; we are not yet ready to
3049                 // validate the surfaceData correctly.  Fail for now and
3050                 // try again next time around.
3051             }
3052         } finally {
3053             surfaceData.markDirty();
3054         }
3055     }
3056 
3057     public void drawBytes(byte data[], int offset, int length, int x, int y) {
3058         if (data == null) {
3059             throw new NullPointerException("byte data is null");
3060         }
3061         if (offset < 0 || length < 0 || offset + length > data.length) {
3062             throw new ArrayIndexOutOfBoundsException("bad offset/length");
3063         }
3064         /* Byte data is interpreted as 8-bit ASCII. Re-use drawChars loops */
3065         char chData[] = new char[length];
3066         for (int i = length; i-- > 0; ) {
3067             chData[i] = (char)(data[i+offset] & 0xff);
3068         }
3069         if (font.hasLayoutAttributes()) {
3070             if (data.length == 0) {
3071                 return;
3072             }
3073             new TextLayout(new String(chData),
3074                            font, getFontRenderContext()).draw(this, x, y);
3075             return;
3076         }
3077 
3078         try {
3079             textpipe.drawChars(this, chData, 0, length, x, y);
3080         } catch (InvalidPipeException e) {
3081             try {
3082                 revalidateAll();
3083                 textpipe.drawChars(this, chData, 0, length, x, y);
3084             } catch (InvalidPipeException e2) {
3085                 // Still catching the exception; we are not yet ready to
3086                 // validate the surfaceData correctly.  Fail for now and
3087                 // try again next time around.
3088             }
3089         } finally {
3090             surfaceData.markDirty();
3091         }
3092     }
3093 // end of text rendering methods
3094 
3095     private Boolean drawHiDPIImage(Image img,
3096                                    int dx1, int dy1, int dx2, int dy2,
3097                                    int sx1, int sy1, int sx2, int sy2,
3098                                    Color bgcolor, ImageObserver observer,
3099                                    AffineTransform xform) {
3100 
3101         if (img instanceof VolatileImage) {
3102             final SurfaceData sd = SurfaceManager.getManager(img)
3103                     .getPrimarySurfaceData();
3104             final double scaleX = sd.getDefaultScaleX();
3105             final double scaleY = sd.getDefaultScaleY();
3106             if (scaleX == 1 && scaleY == 1) {
3107                 return null;
3108             }
3109             sx1 = Region.clipScale(sx1, scaleX);
3110             sx2 = Region.clipScale(sx2, scaleX);
3111             sy1 = Region.clipScale(sy1, scaleY);
3112             sy2 = Region.clipScale(sy2, scaleY);
3113 
3114             AffineTransform tx = null;
3115             if (xform != null) {
3116                 tx = new AffineTransform(transform);
3117                 transform(xform);
3118             }
3119             boolean result = scaleImage(img, dx1, dy1, dx2, dy2,
3120                                         sx1, sy1, sx2, sy2,
3121                                         bgcolor, observer);
3122             if (tx != null) {
3123                 transform.setTransform(tx);
3124                 invalidateTransform();
3125             }
3126             return result;
3127         } else if (img instanceof MultiResolutionImage) {
3128             // get scaled destination image size
3129 
3130             int width = img.getWidth(observer);
3131             int height = img.getHeight(observer);
3132 
3133             MultiResolutionImage mrImage = (MultiResolutionImage) img;
3134             ResolutionVariantItem rvItem = getResolutionVariant(mrImage,
3135                                                                 width, height,
3136                                                                 dx1, dy1, dx2, dy2,
3137                                                                 sx1, sy1, sx2, sy2,
3138                                                                 xform);
3139 
3140 
3141             if (rvItem != null) {
3142                 // recalculate source region for the resolution variant
3143                 Image resolutionVariant = rvItem.getImage();
3144 
3145                 ImageObserver rvObserver = MultiResolutionToolkitImage.
3146                         getResolutionVariantObserver(img, observer,
3147                                                      rvItem.getScaleX(),
3148                                                      rvItem.getScaleY(),
3149                                                      false);
3150                 int rvWidth = resolutionVariant.getWidth(rvObserver);
3151                 int rvHeight = resolutionVariant.getHeight(rvObserver);
3152 
3153                 if (0 < width && 0 < height && 0 < rvWidth && 0 < rvHeight) {
3154 
3155                     double widthScale = ((double) rvWidth) / width;
3156                     double heightScale = ((double) rvHeight) / height;
3157 
3158                     sx1 = Region.clipScale(sx1, widthScale);
3159                     sy1 = Region.clipScale(sy1, heightScale);
3160                     sx2 = Region.clipScale(sx2, widthScale);
3161                     sy2 = Region.clipScale(sy2, heightScale);
3162 
3163                     observer = rvObserver;
3164                     img = resolutionVariant;
3165 
3166                     if (xform != null) {
3167                         assert dx1 == 0 && dy1 == 0;
3168                         assert dx2 == img.getWidth(observer);
3169                         assert dy2 == img.getHeight(observer);
3170                         AffineTransform renderTX = new AffineTransform(xform);
3171                         renderTX.scale(1 / widthScale, 1 / heightScale);
3172                         return transformImage(img, renderTX, observer);
3173                     }
3174 
3175                     return scaleImage(img, dx1, dy1, dx2, dy2,
3176                                       sx1, sy1, sx2, sy2,
3177                                       bgcolor, observer);
3178                 }
3179             }
3180         }
3181         return null;
3182     }
3183 
3184     private boolean scaleImage(Image img, int dx1, int dy1, int dx2, int dy2,
3185                                int sx1, int sy1, int sx2, int sy2,
3186                                Color bgcolor, ImageObserver observer)
3187     {
3188         try {
3189             return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2, sx1, sy1,
3190                                         sx2, sy2, bgcolor, observer);
3191         } catch (InvalidPipeException e) {
3192             try {
3193                 revalidateAll();
3194                 return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2, sx1,
3195                                             sy1, sx2, sy2, bgcolor, observer);
3196             } catch (InvalidPipeException e2) {
3197                 // Still catching the exception; we are not yet ready to
3198                 // validate the surfaceData correctly.  Fail for now and
3199                 // try again next time around.
3200                 return false;
3201             }
3202         } finally {
3203             surfaceData.markDirty();
3204         }
3205     }
3206 
3207     private boolean transformImage(Image img,
3208                                    AffineTransform xform,
3209                                    ImageObserver observer)
3210     {
3211         try {
3212             return imagepipe.transformImage(this, img, xform, observer);
3213         } catch (InvalidPipeException e) {
3214             try {
3215                 revalidateAll();
3216                 return imagepipe.transformImage(this, img, xform, observer);
3217             } catch (InvalidPipeException e2) {
3218                 // Still catching the exception; we are not yet ready to
3219                 // validate the surfaceData correctly.  Fail for now and
3220                 // try again next time around.
3221                 return false;
3222             }
3223         } finally {
3224             surfaceData.markDirty();
3225         }
3226     }
3227 
3228     private ResolutionVariantItem getResolutionVariant(MultiResolutionImage img,
3229             int srcWidth, int srcHeight, int dx1, int dy1, int dx2, int dy2,
3230             int sx1, int sy1, int sx2, int sy2, AffineTransform xform) {
3231 
3232         if (srcWidth <= 0 || srcHeight <= 0) {
3233             return null;
3234         }
3235 
3236         int sw = sx2 - sx1;
3237         int sh = sy2 - sy1;
3238 
3239         if (sw == 0 || sh == 0) {
3240             return null;
3241         }
3242 
3243         AffineTransform tx;
3244 
3245         if (xform == null) {
3246             tx = transform;
3247         } else {
3248             tx = new AffineTransform(transform);
3249             tx.concatenate(xform);
3250         }
3251 
3252         int type = tx.getType();
3253         int dw = dx2 - dx1;
3254         int dh = dy2 - dy1;
3255 
3256         double destImageWidth;
3257         double destImageHeight;
3258 
3259         if (resolutionVariantHint == SunHints.INTVAL_RESOLUTION_VARIANT_BASE) {
3260             destImageWidth = srcWidth;
3261             destImageHeight = srcHeight;
3262         } else if (resolutionVariantHint == SunHints.INTVAL_RESOLUTION_VARIANT_DPI_FIT) {
3263             AffineTransform configTransform = getDefaultTransform();
3264             if (configTransform.isIdentity()) {
3265                 destImageWidth = srcWidth;
3266                 destImageHeight = srcHeight;
3267             } else {
3268                 destImageWidth = srcWidth * configTransform.getScaleX();
3269                 destImageHeight = srcHeight * configTransform.getScaleY();
3270             }
3271         } else {
3272             double destRegionWidth;
3273             double destRegionHeight;
3274 
3275             if ((type & ~(TYPE_TRANSLATION | TYPE_FLIP)) == 0) {
3276                 destRegionWidth = dw;
3277                 destRegionHeight = dh;
3278             } else if ((type & ~(TYPE_TRANSLATION | TYPE_FLIP | TYPE_MASK_SCALE)) == 0) {
3279                 destRegionWidth = dw * tx.getScaleX();
3280                 destRegionHeight = dh * tx.getScaleY();
3281             } else {
3282                 destRegionWidth = dw * Math.hypot(
3283                         tx.getScaleX(), tx.getShearY());
3284                 destRegionHeight = dh * Math.hypot(
3285                         tx.getShearX(), tx.getScaleY());
3286             }
3287             destImageWidth = Math.abs(srcWidth * destRegionWidth / sw);
3288             destImageHeight = Math.abs(srcHeight * destRegionHeight / sh);
3289         }
3290 
3291        ResolutionVariantItem rvItem = getResolutionVariantItem(
3292                 img, srcWidth, srcHeight, destImageWidth, destImageHeight);
3293 
3294         Image resolutionVariant = rvItem.getImage();
3295         if (resolutionVariant == img) {
3296             return null;
3297         }
3298 
3299         if (resolutionVariant instanceof ToolkitImage
3300                 && ((ToolkitImage) resolutionVariant).hasError()) {
3301             return null;
3302         }
3303 
3304         return rvItem;
3305     }
3306 
3307     private static ResolutionVariantItem getResolutionVariantItem(
3308             MultiResolutionImage img,
3309             double srcWidth, double srcHeight,
3310             double dstWidth, double dstHeight) {
3311 
3312         if (img instanceof MultiResolutionToolkitImage) {
3313             return ((MultiResolutionToolkitImage) img)
3314                     .getResolutionVariantItem(dstWidth, dstHeight);
3315         }
3316 
3317         Image resolutionVariant
3318                 = img.getResolutionVariant(dstWidth, dstHeight);
3319         double sx = resolutionVariant.getWidth(null) / srcWidth;
3320         double sy = resolutionVariant.getWidth(null) / srcHeight;
3321         return new ResolutionVariantItem(resolutionVariant, sx, sy);
3322     }
3323     /**
3324      * Draws an image scaled to x,y,w,h in nonblocking mode with a
3325      * callback object.
3326      */
3327     public boolean drawImage(Image img, int x, int y, int width, int height,
3328                              ImageObserver observer) {
3329         return drawImage(img, x, y, width, height, null, observer);
3330     }
3331 
3332     /**
3333      * Not part of the advertised API but a useful utility method
3334      * to call internally.  This is for the case where we are
3335      * drawing to/from given coordinates using a given width/height,
3336      * but we guarantee that the surfaceData's width/height of the src and dest
3337      * areas are equal (no scale needed). Note that this method intentionally
3338      * ignore scale factor of the source image, and copy it as is.
3339      */
3340     public boolean copyImage(Image img, int dx, int dy, int sx, int sy,
3341                              int width, int height, Color bgcolor,
3342                              ImageObserver observer) {
3343         try {
3344             return imagepipe.copyImage(this, img, dx, dy, sx, sy,
3345                                        width, height, bgcolor, observer);
3346         } catch (InvalidPipeException e) {
3347             try {
3348                 revalidateAll();
3349                 return imagepipe.copyImage(this, img, dx, dy, sx, sy,
3350                                            width, height, bgcolor, observer);
3351             } catch (InvalidPipeException e2) {
3352                 // Still catching the exception; we are not yet ready to
3353                 // validate the surfaceData correctly.  Fail for now and
3354                 // try again next time around.
3355                 return false;
3356             }
3357         } finally {
3358             surfaceData.markDirty();
3359         }
3360     }
3361 
3362     /**
3363      * Draws an image scaled to x,y,w,h in nonblocking mode with a
3364      * solid background color and a callback object.
3365      */
3366     public boolean drawImage(Image img, int x, int y, int width, int height,
3367                              Color bg, ImageObserver observer) {
3368 
3369         if (img == null) {
3370             return true;
3371         }
3372 
3373         if ((width == 0) || (height == 0)) {
3374             return true;
3375         }
3376 
3377         final int imgW = img.getWidth(null);
3378         final int imgH = img.getHeight(null);
3379         Boolean hidpiImageDrawn = drawHiDPIImage(img, x, y, x + width, y + height,
3380                                                  0, 0, imgW, imgH, bg, observer,
3381                                                  null);
3382         if (hidpiImageDrawn != null) {
3383             return hidpiImageDrawn;
3384         }
3385 
3386         if (width == imgW && height == imgH) {
3387             return copyImage(img, x, y, 0, 0, width, height, bg, observer);
3388         }
3389 
3390         try {
3391             return imagepipe.scaleImage(this, img, x, y, width, height,
3392                                         bg, observer);
3393         } catch (InvalidPipeException e) {
3394             try {
3395                 revalidateAll();
3396                 return imagepipe.scaleImage(this, img, x, y, width, height,
3397                                             bg, observer);
3398             } catch (InvalidPipeException e2) {
3399                 // Still catching the exception; we are not yet ready to
3400                 // validate the surfaceData correctly.  Fail for now and
3401                 // try again next time around.
3402                 return false;
3403             }
3404         } finally {
3405             surfaceData.markDirty();
3406         }
3407     }
3408 
3409     /**
3410      * Draws an image at x,y in nonblocking mode.
3411      */
3412     public boolean drawImage(Image img, int x, int y, ImageObserver observer) {
3413         return drawImage(img, x, y, null, observer);
3414     }
3415 
3416     /**
3417      * Draws an image at x,y in nonblocking mode with a solid background
3418      * color and a callback object.
3419      */
3420     public boolean drawImage(Image img, int x, int y, Color bg,
3421                              ImageObserver observer) {
3422 
3423         if (img == null) {
3424             return true;
3425         }
3426 
3427         final int imgW = img.getWidth(null);
3428         final int imgH = img.getHeight(null);
3429         Boolean hidpiImageDrawn = drawHiDPIImage(img, x, y, x + imgW, y + imgH,
3430                                                  0, 0, imgW, imgH, bg, observer,
3431                                                  null);
3432         if (hidpiImageDrawn != null) {
3433             return hidpiImageDrawn;
3434         }
3435 
3436         try {
3437             return imagepipe.copyImage(this, img, x, y, bg, observer);
3438         } catch (InvalidPipeException e) {
3439             try {
3440                 revalidateAll();
3441                 return imagepipe.copyImage(this, img, x, y, bg, observer);
3442             } catch (InvalidPipeException e2) {
3443                 // Still catching the exception; we are not yet ready to
3444                 // validate the surfaceData correctly.  Fail for now and
3445                 // try again next time around.
3446                 return false;
3447             }
3448         } finally {
3449             surfaceData.markDirty();
3450         }
3451     }
3452 
3453     /**
3454      * Draws a subrectangle of an image scaled to a destination rectangle
3455      * in nonblocking mode with a callback object.
3456      */
3457     public boolean drawImage(Image img,
3458                              int dx1, int dy1, int dx2, int dy2,
3459                              int sx1, int sy1, int sx2, int sy2,
3460                              ImageObserver observer) {
3461         return drawImage(img, dx1, dy1, dx2, dy2, sx1, sy1, sx2, sy2, null,
3462                          observer);
3463     }
3464 
3465     /**
3466      * Draws a subrectangle of an image scaled to a destination rectangle in
3467      * nonblocking mode with a solid background color and a callback object.
3468      */
3469     public boolean drawImage(Image img,
3470                              int dx1, int dy1, int dx2, int dy2,
3471                              int sx1, int sy1, int sx2, int sy2,
3472                              Color bgcolor, ImageObserver observer) {
3473 
3474         if (img == null) {
3475             return true;
3476         }
3477 
3478         if (dx1 == dx2 || dy1 == dy2 ||
3479             sx1 == sx2 || sy1 == sy2)
3480         {
3481             return true;
3482         }
3483 
3484         Boolean hidpiImageDrawn = drawHiDPIImage(img, dx1, dy1, dx2, dy2,
3485                                                  sx1, sy1, sx2, sy2,
3486                                                  bgcolor, observer, null);
3487 
3488         if (hidpiImageDrawn != null) {
3489             return hidpiImageDrawn;
3490         }
3491 
3492         if (((sx2 - sx1) == (dx2 - dx1)) &&
3493             ((sy2 - sy1) == (dy2 - dy1)))
3494         {
3495             // Not a scale - forward it to a copy routine
3496             int srcX, srcY, dstX, dstY, width, height;
3497             if (sx2 > sx1) {
3498                 width = sx2 - sx1;
3499                 srcX = sx1;
3500                 dstX = dx1;
3501             } else {
3502                 width = sx1 - sx2;
3503                 srcX = sx2;
3504                 dstX = dx2;
3505             }
3506             if (sy2 > sy1) {
3507                 height = sy2-sy1;
3508                 srcY = sy1;
3509                 dstY = dy1;
3510             } else {
3511                 height = sy1-sy2;
3512                 srcY = sy2;
3513                 dstY = dy2;
3514             }
3515             return copyImage(img, dstX, dstY, srcX, srcY,
3516                              width, height, bgcolor, observer);
3517         }
3518 
3519         try {
3520             return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2,
3521                                           sx1, sy1, sx2, sy2, bgcolor,
3522                                           observer);
3523         } catch (InvalidPipeException e) {
3524             try {
3525                 revalidateAll();
3526                 return imagepipe.scaleImage(this, img, dx1, dy1, dx2, dy2,
3527                                               sx1, sy1, sx2, sy2, bgcolor,
3528                                               observer);
3529             } catch (InvalidPipeException e2) {
3530                 // Still catching the exception; we are not yet ready to
3531                 // validate the surfaceData correctly.  Fail for now and
3532                 // try again next time around.
3533                 return false;
3534             }
3535         } finally {
3536             surfaceData.markDirty();
3537         }
3538     }
3539 
3540     /**
3541      * Draw an image, applying a transform from image space into user space
3542      * before drawing.
3543      * The transformation from user space into device space is done with
3544      * the current transform in the Graphics2D.
3545      * The given transformation is applied to the image before the
3546      * transform attribute in the Graphics2D state is applied.
3547      * The rendering attributes applied include the clip, transform,
3548      * paint or color and composite attributes. Note that the result is
3549      * undefined, if the given transform is non-invertible.
3550      * @param img The image to be drawn.
3551      * @param xform The transformation from image space into user space.
3552      * @param observer The image observer to be notified on the image producing
3553      * progress.
3554      * @see #transform
3555      * @see #setComposite
3556      * @see #setClip
3557      */
3558     public boolean drawImage(Image img,
3559                              AffineTransform xform,
3560                              ImageObserver observer) {
3561 
3562         if (img == null) {
3563             return true;
3564         }
3565 
3566         if (xform == null || xform.isIdentity()) {
3567             return drawImage(img, 0, 0, null, observer);
3568         }
3569 
3570         final int w = img.getWidth(null);
3571         final int h = img.getHeight(null);
3572         Boolean hidpiImageDrawn = drawHiDPIImage(img, 0, 0, w, h, 0, 0, w, h,
3573                                                  null, observer, xform);
3574 
3575         if (hidpiImageDrawn != null) {
3576             return hidpiImageDrawn;
3577         }
3578 
3579         return transformImage(img, xform, observer);
3580     }
3581 
3582     public void drawImage(BufferedImage bImg,
3583                           BufferedImageOp op,
3584                           int x,
3585                           int y)  {
3586 
3587         if (bImg == null) {
3588             return;
3589         }
3590 
3591         try {
3592             imagepipe.transformImage(this, bImg, op, x, y);
3593         } catch (InvalidPipeException e) {
3594             try {
3595                 revalidateAll();
3596                 imagepipe.transformImage(this, bImg, op, x, y);
3597             } catch (InvalidPipeException e2) {
3598                 // Still catching the exception; we are not yet ready to
3599                 // validate the surfaceData correctly.  Fail for now and
3600                 // try again next time around.
3601             }
3602         } finally {
3603             surfaceData.markDirty();
3604         }
3605     }
3606 
3607     /**
3608     * Get the rendering context of the font
3609     * within this Graphics2D context.
3610     */
3611     public FontRenderContext getFontRenderContext() {
3612         if (cachedFRC == null) {
3613             int aahint = textAntialiasHint;
3614             if (aahint == SunHints.INTVAL_TEXT_ANTIALIAS_DEFAULT &&
3615                 antialiasHint == SunHints.INTVAL_ANTIALIAS_ON) {
3616                 aahint = SunHints.INTVAL_TEXT_ANTIALIAS_ON;
3617             }
3618             // Translation components should be excluded from the FRC transform
3619             AffineTransform tx = null;
3620             if (transformState >= TRANSFORM_TRANSLATESCALE) {
3621                 if (transform.getTranslateX() == 0 &&
3622                     transform.getTranslateY() == 0) {
3623                     tx = transform;
3624                 } else {
3625                     tx = new AffineTransform(transform.getScaleX(),
3626                                              transform.getShearY(),
3627                                              transform.getShearX(),
3628                                              transform.getScaleY(),
3629                                              0, 0);
3630                 }
3631             }
3632             cachedFRC = new FontRenderContext(tx,
3633              SunHints.Value.get(SunHints.INTKEY_TEXT_ANTIALIASING, aahint),
3634              SunHints.Value.get(SunHints.INTKEY_FRACTIONALMETRICS,
3635                                 fractionalMetricsHint));
3636         }
3637         return cachedFRC;
3638     }
3639     private FontRenderContext cachedFRC;
3640 
3641     /**
3642      * This object has no resources to dispose of per se, but the
3643      * doc comments for the base method in java.awt.Graphics imply
3644      * that this object will not be useable after it is disposed.
3645      * So, we sabotage the object to prevent further use to prevent
3646      * developers from relying on behavior that may not work on
3647      * other, less forgiving, VMs that really need to dispose of
3648      * resources.
3649      */
3650     public void dispose() {
3651         surfaceData = NullSurfaceData.theInstance;
3652         invalidatePipe();
3653     }
3654 
3655     /**
3656      * Graphics has a finalize method that automatically calls dispose()
3657      * for subclasses.  For SunGraphics2D we do not need to be finalized
3658      * so that method simply causes us to be enqueued on the Finalizer
3659      * queues for no good reason.  Unfortunately, that method and
3660      * implementation are now considered part of the public contract
3661      * of that base class so we can not remove or gut the method.
3662      * We override it here with an empty method and the VM is smart
3663      * enough to know that if our override is empty then it should not
3664      * mark us as finalizeable.
3665      */
3666     public void finalize() {
3667         // DO NOT REMOVE THIS METHOD
3668     }
3669 
3670     /**
3671      * Returns destination that this Graphics renders to.  This could be
3672      * either an Image or a Component; subclasses of SurfaceData are
3673      * responsible for returning the appropriate object.
3674      */
3675     public Object getDestination() {
3676         return surfaceData.getDestination();
3677     }
3678 
3679     /**
3680      * {@inheritDoc}
3681      *
3682      * @see sun.java2d.DestSurfaceProvider#getDestSurface
3683      */
3684     @Override
3685     public Surface getDestSurface() {
3686         return surfaceData;
3687     }
3688 }