1 /*
   2  * Copyright (c) 2003, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "interpreter/interpreterRuntime.hpp"
  28 #include "interpreter/templateTable.hpp"
  29 #include "memory/universe.inline.hpp"
  30 #include "oops/methodDataOop.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "prims/methodHandles.hpp"
  34 #include "runtime/sharedRuntime.hpp"
  35 #include "runtime/stubRoutines.hpp"
  36 #include "runtime/synchronizer.hpp"
  37 
  38 #ifndef CC_INTERP
  39 
  40 #define __ _masm->
  41 
  42 // Platform-dependent initialization
  43 
  44 void TemplateTable::pd_initialize() {
  45   // No amd64 specific initialization
  46 }
  47 
  48 // Address computation: local variables
  49 
  50 static inline Address iaddress(int n) {
  51   return Address(r14, Interpreter::local_offset_in_bytes(n));
  52 }
  53 
  54 static inline Address laddress(int n) {
  55   return iaddress(n + 1);
  56 }
  57 
  58 static inline Address faddress(int n) {
  59   return iaddress(n);
  60 }
  61 
  62 static inline Address daddress(int n) {
  63   return laddress(n);
  64 }
  65 
  66 static inline Address aaddress(int n) {
  67   return iaddress(n);
  68 }
  69 
  70 static inline Address iaddress(Register r) {
  71   return Address(r14, r, Address::times_8);
  72 }
  73 
  74 static inline Address laddress(Register r) {
  75   return Address(r14, r, Address::times_8, Interpreter::local_offset_in_bytes(1));
  76 }
  77 
  78 static inline Address faddress(Register r) {
  79   return iaddress(r);
  80 }
  81 
  82 static inline Address daddress(Register r) {
  83   return laddress(r);
  84 }
  85 
  86 static inline Address aaddress(Register r) {
  87   return iaddress(r);
  88 }
  89 
  90 static inline Address at_rsp() {
  91   return Address(rsp, 0);
  92 }
  93 
  94 // At top of Java expression stack which may be different than esp().  It
  95 // isn't for category 1 objects.
  96 static inline Address at_tos   () {
  97   return Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  98 }
  99 
 100 static inline Address at_tos_p1() {
 101   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
 102 }
 103 
 104 static inline Address at_tos_p2() {
 105   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
 106 }
 107 
 108 static inline Address at_tos_p3() {
 109   return Address(rsp,  Interpreter::expr_offset_in_bytes(3));
 110 }
 111 
 112 // Condition conversion
 113 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 114   switch (cc) {
 115   case TemplateTable::equal        : return Assembler::notEqual;
 116   case TemplateTable::not_equal    : return Assembler::equal;
 117   case TemplateTable::less         : return Assembler::greaterEqual;
 118   case TemplateTable::less_equal   : return Assembler::greater;
 119   case TemplateTable::greater      : return Assembler::lessEqual;
 120   case TemplateTable::greater_equal: return Assembler::less;
 121   }
 122   ShouldNotReachHere();
 123   return Assembler::zero;
 124 }
 125 
 126 
 127 // Miscelaneous helper routines
 128 // Store an oop (or NULL) at the address described by obj.
 129 // If val == noreg this means store a NULL
 130 
 131 static void do_oop_store(InterpreterMacroAssembler* _masm,
 132                          Address obj,
 133                          Register val,
 134                          BarrierSet::Name barrier,
 135                          bool precise) {
 136   assert(val == noreg || val == rax, "parameter is just for looks");
 137   switch (barrier) {
 138 #ifndef SERIALGC
 139     case BarrierSet::G1SATBCT:
 140     case BarrierSet::G1SATBCTLogging:
 141       {
 142         // flatten object address if needed
 143         if (obj.index() == noreg && obj.disp() == 0) {
 144           if (obj.base() != rdx) {
 145             __ movq(rdx, obj.base());
 146           }
 147         } else {
 148           __ leaq(rdx, obj);
 149         }
 150         __ g1_write_barrier_pre(rdx /* obj */,
 151                                 rbx /* pre_val */,
 152                                 r15_thread /* thread */,
 153                                 r8  /* tmp */,
 154                                 val != noreg /* tosca_live */,
 155                                 false /* expand_call */);
 156         if (val == noreg) {
 157           __ store_heap_oop_null(Address(rdx, 0));
 158         } else {
 159           __ store_heap_oop(Address(rdx, 0), val);
 160           __ g1_write_barrier_post(rdx /* store_adr */,
 161                                    val /* new_val */,
 162                                    r15_thread /* thread */,
 163                                    r8 /* tmp */,
 164                                    rbx /* tmp2 */);
 165         }
 166 
 167       }
 168       break;
 169 #endif // SERIALGC
 170     case BarrierSet::CardTableModRef:
 171     case BarrierSet::CardTableExtension:
 172       {
 173         if (val == noreg) {
 174           __ store_heap_oop_null(obj);
 175         } else {
 176           __ store_heap_oop(obj, val);
 177           // flatten object address if needed
 178           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 179             __ store_check(obj.base());
 180           } else {
 181             __ leaq(rdx, obj);
 182             __ store_check(rdx);
 183           }
 184         }
 185       }
 186       break;
 187     case BarrierSet::ModRef:
 188     case BarrierSet::Other:
 189       if (val == noreg) {
 190         __ store_heap_oop_null(obj);
 191       } else {
 192         __ store_heap_oop(obj, val);
 193       }
 194       break;
 195     default      :
 196       ShouldNotReachHere();
 197 
 198   }
 199 }
 200 
 201 Address TemplateTable::at_bcp(int offset) {
 202   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 203   return Address(r13, offset);
 204 }
 205 
 206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 208                                    int byte_no) {
 209   if (!RewriteBytecodes)  return;
 210   Label L_patch_done;
 211 
 212   switch (bc) {
 213   case Bytecodes::_fast_aputfield:
 214   case Bytecodes::_fast_bputfield:
 215   case Bytecodes::_fast_cputfield:
 216   case Bytecodes::_fast_dputfield:
 217   case Bytecodes::_fast_fputfield:
 218   case Bytecodes::_fast_iputfield:
 219   case Bytecodes::_fast_lputfield:
 220   case Bytecodes::_fast_sputfield:
 221     {
 222       // We skip bytecode quickening for putfield instructions when
 223       // the put_code written to the constant pool cache is zero.
 224       // This is required so that every execution of this instruction
 225       // calls out to InterpreterRuntime::resolve_get_put to do
 226       // additional, required work.
 227       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 228       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 229       __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
 230       __ movl(bc_reg, bc);
 231       __ cmpl(temp_reg, (int) 0);
 232       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 233     }
 234     break;
 235   default:
 236     assert(byte_no == -1, "sanity");
 237     // the pair bytecodes have already done the load.
 238     if (load_bc_into_bc_reg) {
 239       __ movl(bc_reg, bc);
 240     }
 241   }
 242 
 243   if (JvmtiExport::can_post_breakpoint()) {
 244     Label L_fast_patch;
 245     // if a breakpoint is present we can't rewrite the stream directly
 246     __ movzbl(temp_reg, at_bcp(0));
 247     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 248     __ jcc(Assembler::notEqual, L_fast_patch);
 249     __ get_method(temp_reg);
 250     // Let breakpoint table handling rewrite to quicker bytecode
 251     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, r13, bc_reg);
 252 #ifndef ASSERT
 253     __ jmpb(L_patch_done);
 254 #else
 255     __ jmp(L_patch_done);
 256 #endif
 257     __ bind(L_fast_patch);
 258   }
 259 
 260 #ifdef ASSERT
 261   Label L_okay;
 262   __ load_unsigned_byte(temp_reg, at_bcp(0));
 263   __ cmpl(temp_reg, (int) Bytecodes::java_code(bc));
 264   __ jcc(Assembler::equal, L_okay);
 265   __ cmpl(temp_reg, bc_reg);
 266   __ jcc(Assembler::equal, L_okay);
 267   __ stop("patching the wrong bytecode");
 268   __ bind(L_okay);
 269 #endif
 270 
 271   // patch bytecode
 272   __ movb(at_bcp(0), bc_reg);
 273   __ bind(L_patch_done);
 274 }
 275 
 276 
 277 // Individual instructions
 278 
 279 void TemplateTable::nop() {
 280   transition(vtos, vtos);
 281   // nothing to do
 282 }
 283 
 284 void TemplateTable::shouldnotreachhere() {
 285   transition(vtos, vtos);
 286   __ stop("shouldnotreachhere bytecode");
 287 }
 288 
 289 void TemplateTable::aconst_null() {
 290   transition(vtos, atos);
 291   __ xorl(rax, rax);
 292 }
 293 
 294 void TemplateTable::iconst(int value) {
 295   transition(vtos, itos);
 296   if (value == 0) {
 297     __ xorl(rax, rax);
 298   } else {
 299     __ movl(rax, value);
 300   }
 301 }
 302 
 303 void TemplateTable::lconst(int value) {
 304   transition(vtos, ltos);
 305   if (value == 0) {
 306     __ xorl(rax, rax);
 307   } else {
 308     __ movl(rax, value);
 309   }
 310 }
 311 
 312 void TemplateTable::fconst(int value) {
 313   transition(vtos, ftos);
 314   static float one = 1.0f, two = 2.0f;
 315   switch (value) {
 316   case 0:
 317     __ xorps(xmm0, xmm0);
 318     break;
 319   case 1:
 320     __ movflt(xmm0, ExternalAddress((address) &one));
 321     break;
 322   case 2:
 323     __ movflt(xmm0, ExternalAddress((address) &two));
 324     break;
 325   default:
 326     ShouldNotReachHere();
 327     break;
 328   }
 329 }
 330 
 331 void TemplateTable::dconst(int value) {
 332   transition(vtos, dtos);
 333   static double one = 1.0;
 334   switch (value) {
 335   case 0:
 336     __ xorpd(xmm0, xmm0);
 337     break;
 338   case 1:
 339     __ movdbl(xmm0, ExternalAddress((address) &one));
 340     break;
 341   default:
 342     ShouldNotReachHere();
 343     break;
 344   }
 345 }
 346 
 347 void TemplateTable::bipush() {
 348   transition(vtos, itos);
 349   __ load_signed_byte(rax, at_bcp(1));
 350 }
 351 
 352 void TemplateTable::sipush() {
 353   transition(vtos, itos);
 354   __ load_unsigned_short(rax, at_bcp(1));
 355   __ bswapl(rax);
 356   __ sarl(rax, 16);
 357 }
 358 
 359 void TemplateTable::ldc(bool wide) {
 360   transition(vtos, vtos);
 361   Label call_ldc, notFloat, notClass, Done;
 362 
 363   if (wide) {
 364     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 365   } else {
 366     __ load_unsigned_byte(rbx, at_bcp(1));
 367   }
 368 
 369   __ get_cpool_and_tags(rcx, rax);
 370   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 371   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 372 
 373   // get type
 374   __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 375 
 376   // unresolved string - get the resolved string
 377   __ cmpl(rdx, JVM_CONSTANT_UnresolvedString);
 378   __ jccb(Assembler::equal, call_ldc);
 379 
 380   // unresolved class - get the resolved class
 381   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 382   __ jccb(Assembler::equal, call_ldc);
 383 
 384   // unresolved class in error state - call into runtime to throw the error
 385   // from the first resolution attempt
 386   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 387   __ jccb(Assembler::equal, call_ldc);
 388 
 389   // resolved class - need to call vm to get java mirror of the class
 390   __ cmpl(rdx, JVM_CONSTANT_Class);
 391   __ jcc(Assembler::notEqual, notClass);
 392 
 393   __ bind(call_ldc);
 394   __ movl(c_rarg1, wide);
 395   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
 396   __ push_ptr(rax);
 397   __ verify_oop(rax);
 398   __ jmp(Done);
 399 
 400   __ bind(notClass);
 401   __ cmpl(rdx, JVM_CONSTANT_Float);
 402   __ jccb(Assembler::notEqual, notFloat);
 403   // ftos
 404   __ movflt(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 405   __ push_f();
 406   __ jmp(Done);
 407 
 408   __ bind(notFloat);
 409 #ifdef ASSERT
 410   {
 411     Label L;
 412     __ cmpl(rdx, JVM_CONSTANT_Integer);
 413     __ jcc(Assembler::equal, L);
 414     __ cmpl(rdx, JVM_CONSTANT_String);
 415     __ jcc(Assembler::equal, L);
 416     __ cmpl(rdx, JVM_CONSTANT_Object);
 417     __ jcc(Assembler::equal, L);
 418     __ stop("unexpected tag type in ldc");
 419     __ bind(L);
 420   }
 421 #endif
 422   // atos and itos
 423   Label isOop;
 424   __ cmpl(rdx, JVM_CONSTANT_Integer);
 425   __ jcc(Assembler::notEqual, isOop);
 426   __ movl(rax, Address(rcx, rbx, Address::times_8, base_offset));
 427   __ push_i(rax);
 428   __ jmp(Done);
 429 
 430   __ bind(isOop);
 431   __ movptr(rax, Address(rcx, rbx, Address::times_8, base_offset));
 432   __ push_ptr(rax);
 433 
 434   if (VerifyOops) {
 435     __ verify_oop(rax);
 436   }
 437 
 438   __ bind(Done);
 439 }
 440 
 441 // Fast path for caching oop constants.
 442 // %%% We should use this to handle Class and String constants also.
 443 // %%% It will simplify the ldc/primitive path considerably.
 444 void TemplateTable::fast_aldc(bool wide) {
 445   transition(vtos, atos);
 446 
 447   if (!EnableInvokeDynamic) {
 448     // We should not encounter this bytecode if !EnableInvokeDynamic.
 449     // The verifier will stop it.  However, if we get past the verifier,
 450     // this will stop the thread in a reasonable way, without crashing the JVM.
 451     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
 452                      InterpreterRuntime::throw_IncompatibleClassChangeError));
 453     // the call_VM checks for exception, so we should never return here.
 454     __ should_not_reach_here();
 455     return;
 456   }
 457 
 458   const Register cache = rcx;
 459   const Register index = rdx;
 460 
 461   resolve_cache_and_index(f12_oop, rax, cache, index, wide ? sizeof(u2) : sizeof(u1));
 462   if (VerifyOops) {
 463     __ verify_oop(rax);
 464   }
 465 
 466   Label L_done, L_throw_exception;
 467   const Register con_klass_temp = rcx;  // same as cache
 468   const Register array_klass_temp = rdx;  // same as index
 469   __ load_klass(con_klass_temp, rax);
 470   __ lea(array_klass_temp, ExternalAddress((address)Universe::systemObjArrayKlassObj_addr()));
 471   __ cmpptr(con_klass_temp, Address(array_klass_temp, 0));
 472   __ jcc(Assembler::notEqual, L_done);
 473   __ cmpl(Address(rax, arrayOopDesc::length_offset_in_bytes()), 0);
 474   __ jcc(Assembler::notEqual, L_throw_exception);
 475   __ xorptr(rax, rax);
 476   __ jmp(L_done);
 477 
 478   // Load the exception from the system-array which wraps it:
 479   __ bind(L_throw_exception);
 480   __ load_heap_oop(rax, Address(rax, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 481   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
 482 
 483   __ bind(L_done);
 484 }
 485 
 486 void TemplateTable::ldc2_w() {
 487   transition(vtos, vtos);
 488   Label Long, Done;
 489   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 490 
 491   __ get_cpool_and_tags(rcx, rax);
 492   const int base_offset = constantPoolOopDesc::header_size() * wordSize;
 493   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
 494 
 495   // get type
 496   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset),
 497           JVM_CONSTANT_Double);
 498   __ jccb(Assembler::notEqual, Long);
 499   // dtos
 500   __ movdbl(xmm0, Address(rcx, rbx, Address::times_8, base_offset));
 501   __ push_d();
 502   __ jmpb(Done);
 503 
 504   __ bind(Long);
 505   // ltos
 506   __ movq(rax, Address(rcx, rbx, Address::times_8, base_offset));
 507   __ push_l();
 508 
 509   __ bind(Done);
 510 }
 511 
 512 void TemplateTable::locals_index(Register reg, int offset) {
 513   __ load_unsigned_byte(reg, at_bcp(offset));
 514   __ negptr(reg);
 515 }
 516 
 517 void TemplateTable::iload() {
 518   transition(vtos, itos);
 519   if (RewriteFrequentPairs) {
 520     Label rewrite, done;
 521     const Register bc = c_rarg3;
 522     assert(rbx != bc, "register damaged");
 523 
 524     // get next byte
 525     __ load_unsigned_byte(rbx,
 526                           at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 527     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 528     // last two iloads in a pair.  Comparing against fast_iload means that
 529     // the next bytecode is neither an iload or a caload, and therefore
 530     // an iload pair.
 531     __ cmpl(rbx, Bytecodes::_iload);
 532     __ jcc(Assembler::equal, done);
 533 
 534     __ cmpl(rbx, Bytecodes::_fast_iload);
 535     __ movl(bc, Bytecodes::_fast_iload2);
 536     __ jccb(Assembler::equal, rewrite);
 537 
 538     // if _caload, rewrite to fast_icaload
 539     __ cmpl(rbx, Bytecodes::_caload);
 540     __ movl(bc, Bytecodes::_fast_icaload);
 541     __ jccb(Assembler::equal, rewrite);
 542 
 543     // rewrite so iload doesn't check again.
 544     __ movl(bc, Bytecodes::_fast_iload);
 545 
 546     // rewrite
 547     // bc: fast bytecode
 548     __ bind(rewrite);
 549     patch_bytecode(Bytecodes::_iload, bc, rbx, false);
 550     __ bind(done);
 551   }
 552 
 553   // Get the local value into tos
 554   locals_index(rbx);
 555   __ movl(rax, iaddress(rbx));
 556 }
 557 
 558 void TemplateTable::fast_iload2() {
 559   transition(vtos, itos);
 560   locals_index(rbx);
 561   __ movl(rax, iaddress(rbx));
 562   __ push(itos);
 563   locals_index(rbx, 3);
 564   __ movl(rax, iaddress(rbx));
 565 }
 566 
 567 void TemplateTable::fast_iload() {
 568   transition(vtos, itos);
 569   locals_index(rbx);
 570   __ movl(rax, iaddress(rbx));
 571 }
 572 
 573 void TemplateTable::lload() {
 574   transition(vtos, ltos);
 575   locals_index(rbx);
 576   __ movq(rax, laddress(rbx));
 577 }
 578 
 579 void TemplateTable::fload() {
 580   transition(vtos, ftos);
 581   locals_index(rbx);
 582   __ movflt(xmm0, faddress(rbx));
 583 }
 584 
 585 void TemplateTable::dload() {
 586   transition(vtos, dtos);
 587   locals_index(rbx);
 588   __ movdbl(xmm0, daddress(rbx));
 589 }
 590 
 591 void TemplateTable::aload() {
 592   transition(vtos, atos);
 593   locals_index(rbx);
 594   __ movptr(rax, aaddress(rbx));
 595 }
 596 
 597 void TemplateTable::locals_index_wide(Register reg) {
 598   __ movl(reg, at_bcp(2));
 599   __ bswapl(reg);
 600   __ shrl(reg, 16);
 601   __ negptr(reg);
 602 }
 603 
 604 void TemplateTable::wide_iload() {
 605   transition(vtos, itos);
 606   locals_index_wide(rbx);
 607   __ movl(rax, iaddress(rbx));
 608 }
 609 
 610 void TemplateTable::wide_lload() {
 611   transition(vtos, ltos);
 612   locals_index_wide(rbx);
 613   __ movq(rax, laddress(rbx));
 614 }
 615 
 616 void TemplateTable::wide_fload() {
 617   transition(vtos, ftos);
 618   locals_index_wide(rbx);
 619   __ movflt(xmm0, faddress(rbx));
 620 }
 621 
 622 void TemplateTable::wide_dload() {
 623   transition(vtos, dtos);
 624   locals_index_wide(rbx);
 625   __ movdbl(xmm0, daddress(rbx));
 626 }
 627 
 628 void TemplateTable::wide_aload() {
 629   transition(vtos, atos);
 630   locals_index_wide(rbx);
 631   __ movptr(rax, aaddress(rbx));
 632 }
 633 
 634 void TemplateTable::index_check(Register array, Register index) {
 635   // destroys rbx
 636   // check array
 637   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 638   // sign extend index for use by indexed load
 639   __ movl2ptr(index, index);
 640   // check index
 641   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 642   if (index != rbx) {
 643     // ??? convention: move aberrant index into ebx for exception message
 644     assert(rbx != array, "different registers");
 645     __ movl(rbx, index);
 646   }
 647   __ jump_cc(Assembler::aboveEqual,
 648              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 649 }
 650 
 651 void TemplateTable::iaload() {
 652   transition(itos, itos);
 653   __ pop_ptr(rdx);
 654   // eax: index
 655   // rdx: array
 656   index_check(rdx, rax); // kills rbx
 657   __ movl(rax, Address(rdx, rax,
 658                        Address::times_4,
 659                        arrayOopDesc::base_offset_in_bytes(T_INT)));
 660 }
 661 
 662 void TemplateTable::laload() {
 663   transition(itos, ltos);
 664   __ pop_ptr(rdx);
 665   // eax: index
 666   // rdx: array
 667   index_check(rdx, rax); // kills rbx
 668   __ movq(rax, Address(rdx, rbx,
 669                        Address::times_8,
 670                        arrayOopDesc::base_offset_in_bytes(T_LONG)));
 671 }
 672 
 673 void TemplateTable::faload() {
 674   transition(itos, ftos);
 675   __ pop_ptr(rdx);
 676   // eax: index
 677   // rdx: array
 678   index_check(rdx, rax); // kills rbx
 679   __ movflt(xmm0, Address(rdx, rax,
 680                          Address::times_4,
 681                          arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 682 }
 683 
 684 void TemplateTable::daload() {
 685   transition(itos, dtos);
 686   __ pop_ptr(rdx);
 687   // eax: index
 688   // rdx: array
 689   index_check(rdx, rax); // kills rbx
 690   __ movdbl(xmm0, Address(rdx, rax,
 691                           Address::times_8,
 692                           arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 693 }
 694 
 695 void TemplateTable::aaload() {
 696   transition(itos, atos);
 697   __ pop_ptr(rdx);
 698   // eax: index
 699   // rdx: array
 700   index_check(rdx, rax); // kills rbx
 701   __ load_heap_oop(rax, Address(rdx, rax,
 702                                 UseCompressedOops ? Address::times_4 : Address::times_8,
 703                                 arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 704 }
 705 
 706 void TemplateTable::baload() {
 707   transition(itos, itos);
 708   __ pop_ptr(rdx);
 709   // eax: index
 710   // rdx: array
 711   index_check(rdx, rax); // kills rbx
 712   __ load_signed_byte(rax,
 713                       Address(rdx, rax,
 714                               Address::times_1,
 715                               arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 716 }
 717 
 718 void TemplateTable::caload() {
 719   transition(itos, itos);
 720   __ pop_ptr(rdx);
 721   // eax: index
 722   // rdx: array
 723   index_check(rdx, rax); // kills rbx
 724   __ load_unsigned_short(rax,
 725                          Address(rdx, rax,
 726                                  Address::times_2,
 727                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 728 }
 729 
 730 // iload followed by caload frequent pair
 731 void TemplateTable::fast_icaload() {
 732   transition(vtos, itos);
 733   // load index out of locals
 734   locals_index(rbx);
 735   __ movl(rax, iaddress(rbx));
 736 
 737   // eax: index
 738   // rdx: array
 739   __ pop_ptr(rdx);
 740   index_check(rdx, rax); // kills rbx
 741   __ load_unsigned_short(rax,
 742                          Address(rdx, rax,
 743                                  Address::times_2,
 744                                  arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 745 }
 746 
 747 void TemplateTable::saload() {
 748   transition(itos, itos);
 749   __ pop_ptr(rdx);
 750   // eax: index
 751   // rdx: array
 752   index_check(rdx, rax); // kills rbx
 753   __ load_signed_short(rax,
 754                        Address(rdx, rax,
 755                                Address::times_2,
 756                                arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 757 }
 758 
 759 void TemplateTable::iload(int n) {
 760   transition(vtos, itos);
 761   __ movl(rax, iaddress(n));
 762 }
 763 
 764 void TemplateTable::lload(int n) {
 765   transition(vtos, ltos);
 766   __ movq(rax, laddress(n));
 767 }
 768 
 769 void TemplateTable::fload(int n) {
 770   transition(vtos, ftos);
 771   __ movflt(xmm0, faddress(n));
 772 }
 773 
 774 void TemplateTable::dload(int n) {
 775   transition(vtos, dtos);
 776   __ movdbl(xmm0, daddress(n));
 777 }
 778 
 779 void TemplateTable::aload(int n) {
 780   transition(vtos, atos);
 781   __ movptr(rax, aaddress(n));
 782 }
 783 
 784 void TemplateTable::aload_0() {
 785   transition(vtos, atos);
 786   // According to bytecode histograms, the pairs:
 787   //
 788   // _aload_0, _fast_igetfield
 789   // _aload_0, _fast_agetfield
 790   // _aload_0, _fast_fgetfield
 791   //
 792   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 793   // _aload_0 bytecode checks if the next bytecode is either
 794   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 795   // rewrites the current bytecode into a pair bytecode; otherwise it
 796   // rewrites the current bytecode into _fast_aload_0 that doesn't do
 797   // the pair check anymore.
 798   //
 799   // Note: If the next bytecode is _getfield, the rewrite must be
 800   //       delayed, otherwise we may miss an opportunity for a pair.
 801   //
 802   // Also rewrite frequent pairs
 803   //   aload_0, aload_1
 804   //   aload_0, iload_1
 805   // These bytecodes with a small amount of code are most profitable
 806   // to rewrite
 807   if (RewriteFrequentPairs) {
 808     Label rewrite, done;
 809     const Register bc = c_rarg3;
 810     assert(rbx != bc, "register damaged");
 811     // get next byte
 812     __ load_unsigned_byte(rbx,
 813                           at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 814 
 815     // do actual aload_0
 816     aload(0);
 817 
 818     // if _getfield then wait with rewrite
 819     __ cmpl(rbx, Bytecodes::_getfield);
 820     __ jcc(Assembler::equal, done);
 821 
 822     // if _igetfield then reqrite to _fast_iaccess_0
 823     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) ==
 824            Bytecodes::_aload_0,
 825            "fix bytecode definition");
 826     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 827     __ movl(bc, Bytecodes::_fast_iaccess_0);
 828     __ jccb(Assembler::equal, rewrite);
 829 
 830     // if _agetfield then reqrite to _fast_aaccess_0
 831     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) ==
 832            Bytecodes::_aload_0,
 833            "fix bytecode definition");
 834     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 835     __ movl(bc, Bytecodes::_fast_aaccess_0);
 836     __ jccb(Assembler::equal, rewrite);
 837 
 838     // if _fgetfield then reqrite to _fast_faccess_0
 839     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) ==
 840            Bytecodes::_aload_0,
 841            "fix bytecode definition");
 842     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 843     __ movl(bc, Bytecodes::_fast_faccess_0);
 844     __ jccb(Assembler::equal, rewrite);
 845 
 846     // else rewrite to _fast_aload0
 847     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) ==
 848            Bytecodes::_aload_0,
 849            "fix bytecode definition");
 850     __ movl(bc, Bytecodes::_fast_aload_0);
 851 
 852     // rewrite
 853     // bc: fast bytecode
 854     __ bind(rewrite);
 855     patch_bytecode(Bytecodes::_aload_0, bc, rbx, false);
 856 
 857     __ bind(done);
 858   } else {
 859     aload(0);
 860   }
 861 }
 862 
 863 void TemplateTable::istore() {
 864   transition(itos, vtos);
 865   locals_index(rbx);
 866   __ movl(iaddress(rbx), rax);
 867 }
 868 
 869 void TemplateTable::lstore() {
 870   transition(ltos, vtos);
 871   locals_index(rbx);
 872   __ movq(laddress(rbx), rax);
 873 }
 874 
 875 void TemplateTable::fstore() {
 876   transition(ftos, vtos);
 877   locals_index(rbx);
 878   __ movflt(faddress(rbx), xmm0);
 879 }
 880 
 881 void TemplateTable::dstore() {
 882   transition(dtos, vtos);
 883   locals_index(rbx);
 884   __ movdbl(daddress(rbx), xmm0);
 885 }
 886 
 887 void TemplateTable::astore() {
 888   transition(vtos, vtos);
 889   __ pop_ptr(rax);
 890   locals_index(rbx);
 891   __ movptr(aaddress(rbx), rax);
 892 }
 893 
 894 void TemplateTable::wide_istore() {
 895   transition(vtos, vtos);
 896   __ pop_i();
 897   locals_index_wide(rbx);
 898   __ movl(iaddress(rbx), rax);
 899 }
 900 
 901 void TemplateTable::wide_lstore() {
 902   transition(vtos, vtos);
 903   __ pop_l();
 904   locals_index_wide(rbx);
 905   __ movq(laddress(rbx), rax);
 906 }
 907 
 908 void TemplateTable::wide_fstore() {
 909   transition(vtos, vtos);
 910   __ pop_f();
 911   locals_index_wide(rbx);
 912   __ movflt(faddress(rbx), xmm0);
 913 }
 914 
 915 void TemplateTable::wide_dstore() {
 916   transition(vtos, vtos);
 917   __ pop_d();
 918   locals_index_wide(rbx);
 919   __ movdbl(daddress(rbx), xmm0);
 920 }
 921 
 922 void TemplateTable::wide_astore() {
 923   transition(vtos, vtos);
 924   __ pop_ptr(rax);
 925   locals_index_wide(rbx);
 926   __ movptr(aaddress(rbx), rax);
 927 }
 928 
 929 void TemplateTable::iastore() {
 930   transition(itos, vtos);
 931   __ pop_i(rbx);
 932   __ pop_ptr(rdx);
 933   // eax: value
 934   // ebx: index
 935   // rdx: array
 936   index_check(rdx, rbx); // prefer index in ebx
 937   __ movl(Address(rdx, rbx,
 938                   Address::times_4,
 939                   arrayOopDesc::base_offset_in_bytes(T_INT)),
 940           rax);
 941 }
 942 
 943 void TemplateTable::lastore() {
 944   transition(ltos, vtos);
 945   __ pop_i(rbx);
 946   __ pop_ptr(rdx);
 947   // rax: value
 948   // ebx: index
 949   // rdx: array
 950   index_check(rdx, rbx); // prefer index in ebx
 951   __ movq(Address(rdx, rbx,
 952                   Address::times_8,
 953                   arrayOopDesc::base_offset_in_bytes(T_LONG)),
 954           rax);
 955 }
 956 
 957 void TemplateTable::fastore() {
 958   transition(ftos, vtos);
 959   __ pop_i(rbx);
 960   __ pop_ptr(rdx);
 961   // xmm0: value
 962   // ebx:  index
 963   // rdx:  array
 964   index_check(rdx, rbx); // prefer index in ebx
 965   __ movflt(Address(rdx, rbx,
 966                    Address::times_4,
 967                    arrayOopDesc::base_offset_in_bytes(T_FLOAT)),
 968            xmm0);
 969 }
 970 
 971 void TemplateTable::dastore() {
 972   transition(dtos, vtos);
 973   __ pop_i(rbx);
 974   __ pop_ptr(rdx);
 975   // xmm0: value
 976   // ebx:  index
 977   // rdx:  array
 978   index_check(rdx, rbx); // prefer index in ebx
 979   __ movdbl(Address(rdx, rbx,
 980                    Address::times_8,
 981                    arrayOopDesc::base_offset_in_bytes(T_DOUBLE)),
 982            xmm0);
 983 }
 984 
 985 void TemplateTable::aastore() {
 986   Label is_null, ok_is_subtype, done;
 987   transition(vtos, vtos);
 988   // stack: ..., array, index, value
 989   __ movptr(rax, at_tos());    // value
 990   __ movl(rcx, at_tos_p1()); // index
 991   __ movptr(rdx, at_tos_p2()); // array
 992 
 993   Address element_address(rdx, rcx,
 994                           UseCompressedOops? Address::times_4 : Address::times_8,
 995                           arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 996 
 997   index_check(rdx, rcx);     // kills rbx
 998   // do array store check - check for NULL value first
 999   __ testptr(rax, rax);
1000   __ jcc(Assembler::zero, is_null);
1001 
1002   // Move subklass into rbx
1003   __ load_klass(rbx, rax);
1004   // Move superklass into rax
1005   __ load_klass(rax, rdx);
1006   __ movptr(rax, Address(rax,
1007                          objArrayKlass::element_klass_offset()));
1008   // Compress array + index*oopSize + 12 into a single register.  Frees rcx.
1009   __ lea(rdx, element_address);
1010 
1011   // Generate subtype check.  Blows rcx, rdi
1012   // Superklass in rax.  Subklass in rbx.
1013   __ gen_subtype_check(rbx, ok_is_subtype);
1014 
1015   // Come here on failure
1016   // object is at TOS
1017   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
1018 
1019   // Come here on success
1020   __ bind(ok_is_subtype);
1021 
1022   // Get the value we will store
1023   __ movptr(rax, at_tos());
1024   // Now store using the appropriate barrier
1025   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
1026   __ jmp(done);
1027 
1028   // Have a NULL in rax, rdx=array, ecx=index.  Store NULL at ary[idx]
1029   __ bind(is_null);
1030   __ profile_null_seen(rbx);
1031 
1032   // Store a NULL
1033   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
1034 
1035   // Pop stack arguments
1036   __ bind(done);
1037   __ addptr(rsp, 3 * Interpreter::stackElementSize);
1038 }
1039 
1040 void TemplateTable::bastore() {
1041   transition(itos, vtos);
1042   __ pop_i(rbx);
1043   __ pop_ptr(rdx);
1044   // eax: value
1045   // ebx: index
1046   // rdx: array
1047   index_check(rdx, rbx); // prefer index in ebx
1048   __ movb(Address(rdx, rbx,
1049                   Address::times_1,
1050                   arrayOopDesc::base_offset_in_bytes(T_BYTE)),
1051           rax);
1052 }
1053 
1054 void TemplateTable::castore() {
1055   transition(itos, vtos);
1056   __ pop_i(rbx);
1057   __ pop_ptr(rdx);
1058   // eax: value
1059   // ebx: index
1060   // rdx: array
1061   index_check(rdx, rbx);  // prefer index in ebx
1062   __ movw(Address(rdx, rbx,
1063                   Address::times_2,
1064                   arrayOopDesc::base_offset_in_bytes(T_CHAR)),
1065           rax);
1066 }
1067 
1068 void TemplateTable::sastore() {
1069   castore();
1070 }
1071 
1072 void TemplateTable::istore(int n) {
1073   transition(itos, vtos);
1074   __ movl(iaddress(n), rax);
1075 }
1076 
1077 void TemplateTable::lstore(int n) {
1078   transition(ltos, vtos);
1079   __ movq(laddress(n), rax);
1080 }
1081 
1082 void TemplateTable::fstore(int n) {
1083   transition(ftos, vtos);
1084   __ movflt(faddress(n), xmm0);
1085 }
1086 
1087 void TemplateTable::dstore(int n) {
1088   transition(dtos, vtos);
1089   __ movdbl(daddress(n), xmm0);
1090 }
1091 
1092 void TemplateTable::astore(int n) {
1093   transition(vtos, vtos);
1094   __ pop_ptr(rax);
1095   __ movptr(aaddress(n), rax);
1096 }
1097 
1098 void TemplateTable::pop() {
1099   transition(vtos, vtos);
1100   __ addptr(rsp, Interpreter::stackElementSize);
1101 }
1102 
1103 void TemplateTable::pop2() {
1104   transition(vtos, vtos);
1105   __ addptr(rsp, 2 * Interpreter::stackElementSize);
1106 }
1107 
1108 void TemplateTable::dup() {
1109   transition(vtos, vtos);
1110   __ load_ptr(0, rax);
1111   __ push_ptr(rax);
1112   // stack: ..., a, a
1113 }
1114 
1115 void TemplateTable::dup_x1() {
1116   transition(vtos, vtos);
1117   // stack: ..., a, b
1118   __ load_ptr( 0, rax);  // load b
1119   __ load_ptr( 1, rcx);  // load a
1120   __ store_ptr(1, rax);  // store b
1121   __ store_ptr(0, rcx);  // store a
1122   __ push_ptr(rax);      // push b
1123   // stack: ..., b, a, b
1124 }
1125 
1126 void TemplateTable::dup_x2() {
1127   transition(vtos, vtos);
1128   // stack: ..., a, b, c
1129   __ load_ptr( 0, rax);  // load c
1130   __ load_ptr( 2, rcx);  // load a
1131   __ store_ptr(2, rax);  // store c in a
1132   __ push_ptr(rax);      // push c
1133   // stack: ..., c, b, c, c
1134   __ load_ptr( 2, rax);  // load b
1135   __ store_ptr(2, rcx);  // store a in b
1136   // stack: ..., c, a, c, c
1137   __ store_ptr(1, rax);  // store b in c
1138   // stack: ..., c, a, b, c
1139 }
1140 
1141 void TemplateTable::dup2() {
1142   transition(vtos, vtos);
1143   // stack: ..., a, b
1144   __ load_ptr(1, rax);  // load a
1145   __ push_ptr(rax);     // push a
1146   __ load_ptr(1, rax);  // load b
1147   __ push_ptr(rax);     // push b
1148   // stack: ..., a, b, a, b
1149 }
1150 
1151 void TemplateTable::dup2_x1() {
1152   transition(vtos, vtos);
1153   // stack: ..., a, b, c
1154   __ load_ptr( 0, rcx);  // load c
1155   __ load_ptr( 1, rax);  // load b
1156   __ push_ptr(rax);      // push b
1157   __ push_ptr(rcx);      // push c
1158   // stack: ..., a, b, c, b, c
1159   __ store_ptr(3, rcx);  // store c in b
1160   // stack: ..., a, c, c, b, c
1161   __ load_ptr( 4, rcx);  // load a
1162   __ store_ptr(2, rcx);  // store a in 2nd c
1163   // stack: ..., a, c, a, b, c
1164   __ store_ptr(4, rax);  // store b in a
1165   // stack: ..., b, c, a, b, c
1166 }
1167 
1168 void TemplateTable::dup2_x2() {
1169   transition(vtos, vtos);
1170   // stack: ..., a, b, c, d
1171   __ load_ptr( 0, rcx);  // load d
1172   __ load_ptr( 1, rax);  // load c
1173   __ push_ptr(rax);      // push c
1174   __ push_ptr(rcx);      // push d
1175   // stack: ..., a, b, c, d, c, d
1176   __ load_ptr( 4, rax);  // load b
1177   __ store_ptr(2, rax);  // store b in d
1178   __ store_ptr(4, rcx);  // store d in b
1179   // stack: ..., a, d, c, b, c, d
1180   __ load_ptr( 5, rcx);  // load a
1181   __ load_ptr( 3, rax);  // load c
1182   __ store_ptr(3, rcx);  // store a in c
1183   __ store_ptr(5, rax);  // store c in a
1184   // stack: ..., c, d, a, b, c, d
1185 }
1186 
1187 void TemplateTable::swap() {
1188   transition(vtos, vtos);
1189   // stack: ..., a, b
1190   __ load_ptr( 1, rcx);  // load a
1191   __ load_ptr( 0, rax);  // load b
1192   __ store_ptr(0, rcx);  // store a in b
1193   __ store_ptr(1, rax);  // store b in a
1194   // stack: ..., b, a
1195 }
1196 
1197 void TemplateTable::iop2(Operation op) {
1198   transition(itos, itos);
1199   switch (op) {
1200   case add  :                    __ pop_i(rdx); __ addl (rax, rdx); break;
1201   case sub  : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1202   case mul  :                    __ pop_i(rdx); __ imull(rax, rdx); break;
1203   case _and :                    __ pop_i(rdx); __ andl (rax, rdx); break;
1204   case _or  :                    __ pop_i(rdx); __ orl  (rax, rdx); break;
1205   case _xor :                    __ pop_i(rdx); __ xorl (rax, rdx); break;
1206   case shl  : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax);      break;
1207   case shr  : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax);      break;
1208   case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax);      break;
1209   default   : ShouldNotReachHere();
1210   }
1211 }
1212 
1213 void TemplateTable::lop2(Operation op) {
1214   transition(ltos, ltos);
1215   switch (op) {
1216   case add  :                    __ pop_l(rdx); __ addptr(rax, rdx); break;
1217   case sub  : __ mov(rdx, rax);  __ pop_l(rax); __ subptr(rax, rdx); break;
1218   case _and :                    __ pop_l(rdx); __ andptr(rax, rdx); break;
1219   case _or  :                    __ pop_l(rdx); __ orptr (rax, rdx); break;
1220   case _xor :                    __ pop_l(rdx); __ xorptr(rax, rdx); break;
1221   default   : ShouldNotReachHere();
1222   }
1223 }
1224 
1225 void TemplateTable::idiv() {
1226   transition(itos, itos);
1227   __ movl(rcx, rax);
1228   __ pop_i(rax);
1229   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1230   //       they are not equal, one could do a normal division (no correction
1231   //       needed), which may speed up this implementation for the common case.
1232   //       (see also JVM spec., p.243 & p.271)
1233   __ corrected_idivl(rcx);
1234 }
1235 
1236 void TemplateTable::irem() {
1237   transition(itos, itos);
1238   __ movl(rcx, rax);
1239   __ pop_i(rax);
1240   // Note: could xor eax and ecx and compare with (-1 ^ min_int). If
1241   //       they are not equal, one could do a normal division (no correction
1242   //       needed), which may speed up this implementation for the common case.
1243   //       (see also JVM spec., p.243 & p.271)
1244   __ corrected_idivl(rcx);
1245   __ movl(rax, rdx);
1246 }
1247 
1248 void TemplateTable::lmul() {
1249   transition(ltos, ltos);
1250   __ pop_l(rdx);
1251   __ imulq(rax, rdx);
1252 }
1253 
1254 void TemplateTable::ldiv() {
1255   transition(ltos, ltos);
1256   __ mov(rcx, rax);
1257   __ pop_l(rax);
1258   // generate explicit div0 check
1259   __ testq(rcx, rcx);
1260   __ jump_cc(Assembler::zero,
1261              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1262   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1263   //       they are not equal, one could do a normal division (no correction
1264   //       needed), which may speed up this implementation for the common case.
1265   //       (see also JVM spec., p.243 & p.271)
1266   __ corrected_idivq(rcx); // kills rbx
1267 }
1268 
1269 void TemplateTable::lrem() {
1270   transition(ltos, ltos);
1271   __ mov(rcx, rax);
1272   __ pop_l(rax);
1273   __ testq(rcx, rcx);
1274   __ jump_cc(Assembler::zero,
1275              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1276   // Note: could xor rax and rcx and compare with (-1 ^ min_int). If
1277   //       they are not equal, one could do a normal division (no correction
1278   //       needed), which may speed up this implementation for the common case.
1279   //       (see also JVM spec., p.243 & p.271)
1280   __ corrected_idivq(rcx); // kills rbx
1281   __ mov(rax, rdx);
1282 }
1283 
1284 void TemplateTable::lshl() {
1285   transition(itos, ltos);
1286   __ movl(rcx, rax);                             // get shift count
1287   __ pop_l(rax);                                 // get shift value
1288   __ shlq(rax);
1289 }
1290 
1291 void TemplateTable::lshr() {
1292   transition(itos, ltos);
1293   __ movl(rcx, rax);                             // get shift count
1294   __ pop_l(rax);                                 // get shift value
1295   __ sarq(rax);
1296 }
1297 
1298 void TemplateTable::lushr() {
1299   transition(itos, ltos);
1300   __ movl(rcx, rax);                             // get shift count
1301   __ pop_l(rax);                                 // get shift value
1302   __ shrq(rax);
1303 }
1304 
1305 void TemplateTable::fop2(Operation op) {
1306   transition(ftos, ftos);
1307   switch (op) {
1308   case add:
1309     __ addss(xmm0, at_rsp());
1310     __ addptr(rsp, Interpreter::stackElementSize);
1311     break;
1312   case sub:
1313     __ movflt(xmm1, xmm0);
1314     __ pop_f(xmm0);
1315     __ subss(xmm0, xmm1);
1316     break;
1317   case mul:
1318     __ mulss(xmm0, at_rsp());
1319     __ addptr(rsp, Interpreter::stackElementSize);
1320     break;
1321   case div:
1322     __ movflt(xmm1, xmm0);
1323     __ pop_f(xmm0);
1324     __ divss(xmm0, xmm1);
1325     break;
1326   case rem:
1327     __ movflt(xmm1, xmm0);
1328     __ pop_f(xmm0);
1329     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2);
1330     break;
1331   default:
1332     ShouldNotReachHere();
1333     break;
1334   }
1335 }
1336 
1337 void TemplateTable::dop2(Operation op) {
1338   transition(dtos, dtos);
1339   switch (op) {
1340   case add:
1341     __ addsd(xmm0, at_rsp());
1342     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1343     break;
1344   case sub:
1345     __ movdbl(xmm1, xmm0);
1346     __ pop_d(xmm0);
1347     __ subsd(xmm0, xmm1);
1348     break;
1349   case mul:
1350     __ mulsd(xmm0, at_rsp());
1351     __ addptr(rsp, 2 * Interpreter::stackElementSize);
1352     break;
1353   case div:
1354     __ movdbl(xmm1, xmm0);
1355     __ pop_d(xmm0);
1356     __ divsd(xmm0, xmm1);
1357     break;
1358   case rem:
1359     __ movdbl(xmm1, xmm0);
1360     __ pop_d(xmm0);
1361     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2);
1362     break;
1363   default:
1364     ShouldNotReachHere();
1365     break;
1366   }
1367 }
1368 
1369 void TemplateTable::ineg() {
1370   transition(itos, itos);
1371   __ negl(rax);
1372 }
1373 
1374 void TemplateTable::lneg() {
1375   transition(ltos, ltos);
1376   __ negq(rax);
1377 }
1378 
1379 // Note: 'double' and 'long long' have 32-bits alignment on x86.
1380 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
1381   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
1382   // of 128-bits operands for SSE instructions.
1383   jlong *operand = (jlong*)(((intptr_t)adr)&((intptr_t)(~0xF)));
1384   // Store the value to a 128-bits operand.
1385   operand[0] = lo;
1386   operand[1] = hi;
1387   return operand;
1388 }
1389 
1390 // Buffer for 128-bits masks used by SSE instructions.
1391 static jlong float_signflip_pool[2*2];
1392 static jlong double_signflip_pool[2*2];
1393 
1394 void TemplateTable::fneg() {
1395   transition(ftos, ftos);
1396   static jlong *float_signflip  = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000);
1397   __ xorps(xmm0, ExternalAddress((address) float_signflip));
1398 }
1399 
1400 void TemplateTable::dneg() {
1401   transition(dtos, dtos);
1402   static jlong *double_signflip  = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000);
1403   __ xorpd(xmm0, ExternalAddress((address) double_signflip));
1404 }
1405 
1406 void TemplateTable::iinc() {
1407   transition(vtos, vtos);
1408   __ load_signed_byte(rdx, at_bcp(2)); // get constant
1409   locals_index(rbx);
1410   __ addl(iaddress(rbx), rdx);
1411 }
1412 
1413 void TemplateTable::wide_iinc() {
1414   transition(vtos, vtos);
1415   __ movl(rdx, at_bcp(4)); // get constant
1416   locals_index_wide(rbx);
1417   __ bswapl(rdx); // swap bytes & sign-extend constant
1418   __ sarl(rdx, 16);
1419   __ addl(iaddress(rbx), rdx);
1420   // Note: should probably use only one movl to get both
1421   //       the index and the constant -> fix this
1422 }
1423 
1424 void TemplateTable::convert() {
1425   // Checking
1426 #ifdef ASSERT
1427   {
1428     TosState tos_in  = ilgl;
1429     TosState tos_out = ilgl;
1430     switch (bytecode()) {
1431     case Bytecodes::_i2l: // fall through
1432     case Bytecodes::_i2f: // fall through
1433     case Bytecodes::_i2d: // fall through
1434     case Bytecodes::_i2b: // fall through
1435     case Bytecodes::_i2c: // fall through
1436     case Bytecodes::_i2s: tos_in = itos; break;
1437     case Bytecodes::_l2i: // fall through
1438     case Bytecodes::_l2f: // fall through
1439     case Bytecodes::_l2d: tos_in = ltos; break;
1440     case Bytecodes::_f2i: // fall through
1441     case Bytecodes::_f2l: // fall through
1442     case Bytecodes::_f2d: tos_in = ftos; break;
1443     case Bytecodes::_d2i: // fall through
1444     case Bytecodes::_d2l: // fall through
1445     case Bytecodes::_d2f: tos_in = dtos; break;
1446     default             : ShouldNotReachHere();
1447     }
1448     switch (bytecode()) {
1449     case Bytecodes::_l2i: // fall through
1450     case Bytecodes::_f2i: // fall through
1451     case Bytecodes::_d2i: // fall through
1452     case Bytecodes::_i2b: // fall through
1453     case Bytecodes::_i2c: // fall through
1454     case Bytecodes::_i2s: tos_out = itos; break;
1455     case Bytecodes::_i2l: // fall through
1456     case Bytecodes::_f2l: // fall through
1457     case Bytecodes::_d2l: tos_out = ltos; break;
1458     case Bytecodes::_i2f: // fall through
1459     case Bytecodes::_l2f: // fall through
1460     case Bytecodes::_d2f: tos_out = ftos; break;
1461     case Bytecodes::_i2d: // fall through
1462     case Bytecodes::_l2d: // fall through
1463     case Bytecodes::_f2d: tos_out = dtos; break;
1464     default             : ShouldNotReachHere();
1465     }
1466     transition(tos_in, tos_out);
1467   }
1468 #endif // ASSERT
1469 
1470   static const int64_t is_nan = 0x8000000000000000L;
1471 
1472   // Conversion
1473   switch (bytecode()) {
1474   case Bytecodes::_i2l:
1475     __ movslq(rax, rax);
1476     break;
1477   case Bytecodes::_i2f:
1478     __ cvtsi2ssl(xmm0, rax);
1479     break;
1480   case Bytecodes::_i2d:
1481     __ cvtsi2sdl(xmm0, rax);
1482     break;
1483   case Bytecodes::_i2b:
1484     __ movsbl(rax, rax);
1485     break;
1486   case Bytecodes::_i2c:
1487     __ movzwl(rax, rax);
1488     break;
1489   case Bytecodes::_i2s:
1490     __ movswl(rax, rax);
1491     break;
1492   case Bytecodes::_l2i:
1493     __ movl(rax, rax);
1494     break;
1495   case Bytecodes::_l2f:
1496     __ cvtsi2ssq(xmm0, rax);
1497     break;
1498   case Bytecodes::_l2d:
1499     __ cvtsi2sdq(xmm0, rax);
1500     break;
1501   case Bytecodes::_f2i:
1502   {
1503     Label L;
1504     __ cvttss2sil(rax, xmm0);
1505     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1506     __ jcc(Assembler::notEqual, L);
1507     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1508     __ bind(L);
1509   }
1510     break;
1511   case Bytecodes::_f2l:
1512   {
1513     Label L;
1514     __ cvttss2siq(rax, xmm0);
1515     // NaN or overflow/underflow?
1516     __ cmp64(rax, ExternalAddress((address) &is_nan));
1517     __ jcc(Assembler::notEqual, L);
1518     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1519     __ bind(L);
1520   }
1521     break;
1522   case Bytecodes::_f2d:
1523     __ cvtss2sd(xmm0, xmm0);
1524     break;
1525   case Bytecodes::_d2i:
1526   {
1527     Label L;
1528     __ cvttsd2sil(rax, xmm0);
1529     __ cmpl(rax, 0x80000000); // NaN or overflow/underflow?
1530     __ jcc(Assembler::notEqual, L);
1531     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1);
1532     __ bind(L);
1533   }
1534     break;
1535   case Bytecodes::_d2l:
1536   {
1537     Label L;
1538     __ cvttsd2siq(rax, xmm0);
1539     // NaN or overflow/underflow?
1540     __ cmp64(rax, ExternalAddress((address) &is_nan));
1541     __ jcc(Assembler::notEqual, L);
1542     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1);
1543     __ bind(L);
1544   }
1545     break;
1546   case Bytecodes::_d2f:
1547     __ cvtsd2ss(xmm0, xmm0);
1548     break;
1549   default:
1550     ShouldNotReachHere();
1551   }
1552 }
1553 
1554 void TemplateTable::lcmp() {
1555   transition(ltos, itos);
1556   Label done;
1557   __ pop_l(rdx);
1558   __ cmpq(rdx, rax);
1559   __ movl(rax, -1);
1560   __ jccb(Assembler::less, done);
1561   __ setb(Assembler::notEqual, rax);
1562   __ movzbl(rax, rax);
1563   __ bind(done);
1564 }
1565 
1566 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1567   Label done;
1568   if (is_float) {
1569     // XXX get rid of pop here, use ... reg, mem32
1570     __ pop_f(xmm1);
1571     __ ucomiss(xmm1, xmm0);
1572   } else {
1573     // XXX get rid of pop here, use ... reg, mem64
1574     __ pop_d(xmm1);
1575     __ ucomisd(xmm1, xmm0);
1576   }
1577   if (unordered_result < 0) {
1578     __ movl(rax, -1);
1579     __ jccb(Assembler::parity, done);
1580     __ jccb(Assembler::below, done);
1581     __ setb(Assembler::notEqual, rdx);
1582     __ movzbl(rax, rdx);
1583   } else {
1584     __ movl(rax, 1);
1585     __ jccb(Assembler::parity, done);
1586     __ jccb(Assembler::above, done);
1587     __ movl(rax, 0);
1588     __ jccb(Assembler::equal, done);
1589     __ decrementl(rax);
1590   }
1591   __ bind(done);
1592 }
1593 
1594 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1595   __ get_method(rcx); // rcx holds method
1596   __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx
1597                                      // holds bumped taken count
1598 
1599   const ByteSize be_offset = methodOopDesc::backedge_counter_offset() +
1600                              InvocationCounter::counter_offset();
1601   const ByteSize inv_offset = methodOopDesc::invocation_counter_offset() +
1602                               InvocationCounter::counter_offset();
1603   const int method_offset = frame::interpreter_frame_method_offset * wordSize;
1604 
1605   // Load up edx with the branch displacement
1606   __ movl(rdx, at_bcp(1));
1607   __ bswapl(rdx);
1608 
1609   if (!is_wide) {
1610     __ sarl(rdx, 16);
1611   }
1612   __ movl2ptr(rdx, rdx);
1613 
1614   // Handle all the JSR stuff here, then exit.
1615   // It's much shorter and cleaner than intermingling with the non-JSR
1616   // normal-branch stuff occurring below.
1617   if (is_jsr) {
1618     // Pre-load the next target bytecode into rbx
1619     __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1, 0));
1620 
1621     // compute return address as bci in rax
1622     __ lea(rax, at_bcp((is_wide ? 5 : 3) -
1623                         in_bytes(constMethodOopDesc::codes_offset())));
1624     __ subptr(rax, Address(rcx, methodOopDesc::const_offset()));
1625     // Adjust the bcp in r13 by the displacement in rdx
1626     __ addptr(r13, rdx);
1627     // jsr returns atos that is not an oop
1628     __ push_i(rax);
1629     __ dispatch_only(vtos);
1630     return;
1631   }
1632 
1633   // Normal (non-jsr) branch handling
1634 
1635   // Adjust the bcp in r13 by the displacement in rdx
1636   __ addptr(r13, rdx);
1637 
1638   assert(UseLoopCounter || !UseOnStackReplacement,
1639          "on-stack-replacement requires loop counters");
1640   Label backedge_counter_overflow;
1641   Label profile_method;
1642   Label dispatch;
1643   if (UseLoopCounter) {
1644     // increment backedge counter for backward branches
1645     // rax: MDO
1646     // ebx: MDO bumped taken-count
1647     // rcx: method
1648     // rdx: target offset
1649     // r13: target bcp
1650     // r14: locals pointer
1651     __ testl(rdx, rdx);             // check if forward or backward branch
1652     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1653     if (TieredCompilation) {
1654       Label no_mdo;
1655       int increment = InvocationCounter::count_increment;
1656       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1657       if (ProfileInterpreter) {
1658         // Are we profiling?
1659         __ movptr(rbx, Address(rcx, in_bytes(methodOopDesc::method_data_offset())));
1660         __ testptr(rbx, rbx);
1661         __ jccb(Assembler::zero, no_mdo);
1662         // Increment the MDO backedge counter
1663         const Address mdo_backedge_counter(rbx, in_bytes(methodDataOopDesc::backedge_counter_offset()) +
1664                                            in_bytes(InvocationCounter::counter_offset()));
1665         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1666                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1667         __ jmp(dispatch);
1668       }
1669       __ bind(no_mdo);
1670       // Increment backedge counter in methodOop
1671       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1672                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1673     } else {
1674       // increment counter
1675       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1676       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1677       __ movl(Address(rcx, be_offset), rax);        // store counter
1678 
1679       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1680       __ andl(rax, InvocationCounter::count_mask_value); // and the status bits
1681       __ addl(rax, Address(rcx, be_offset));        // add both counters
1682 
1683       if (ProfileInterpreter) {
1684         // Test to see if we should create a method data oop
1685         __ cmp32(rax,
1686                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1687         __ jcc(Assembler::less, dispatch);
1688 
1689         // if no method data exists, go to profile method
1690         __ test_method_data_pointer(rax, profile_method);
1691 
1692         if (UseOnStackReplacement) {
1693           // check for overflow against ebx which is the MDO taken count
1694           __ cmp32(rbx,
1695                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1696           __ jcc(Assembler::below, dispatch);
1697 
1698           // When ProfileInterpreter is on, the backedge_count comes
1699           // from the methodDataOop, which value does not get reset on
1700           // the call to frequency_counter_overflow().  To avoid
1701           // excessive calls to the overflow routine while the method is
1702           // being compiled, add a second test to make sure the overflow
1703           // function is called only once every overflow_frequency.
1704           const int overflow_frequency = 1024;
1705           __ andl(rbx, overflow_frequency - 1);
1706           __ jcc(Assembler::zero, backedge_counter_overflow);
1707 
1708         }
1709       } else {
1710         if (UseOnStackReplacement) {
1711           // check for overflow against eax, which is the sum of the
1712           // counters
1713           __ cmp32(rax,
1714                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1715           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1716 
1717         }
1718       }
1719     }
1720     __ bind(dispatch);
1721   }
1722 
1723   // Pre-load the next target bytecode into rbx
1724   __ load_unsigned_byte(rbx, Address(r13, 0));
1725 
1726   // continue with the bytecode @ target
1727   // eax: return bci for jsr's, unused otherwise
1728   // ebx: target bytecode
1729   // r13: target bcp
1730   __ dispatch_only(vtos);
1731 
1732   if (UseLoopCounter) {
1733     if (ProfileInterpreter) {
1734       // Out-of-line code to allocate method data oop.
1735       __ bind(profile_method);
1736       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1737       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1738       __ set_method_data_pointer_for_bcp();
1739       __ jmp(dispatch);
1740     }
1741 
1742     if (UseOnStackReplacement) {
1743       // invocation counter overflow
1744       __ bind(backedge_counter_overflow);
1745       __ negptr(rdx);
1746       __ addptr(rdx, r13); // branch bcp
1747       // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1748       __ call_VM(noreg,
1749                  CAST_FROM_FN_PTR(address,
1750                                   InterpreterRuntime::frequency_counter_overflow),
1751                  rdx);
1752       __ load_unsigned_byte(rbx, Address(r13, 0));  // restore target bytecode
1753 
1754       // rax: osr nmethod (osr ok) or NULL (osr not possible)
1755       // ebx: target bytecode
1756       // rdx: scratch
1757       // r14: locals pointer
1758       // r13: bcp
1759       __ testptr(rax, rax);                        // test result
1760       __ jcc(Assembler::zero, dispatch);         // no osr if null
1761       // nmethod may have been invalidated (VM may block upon call_VM return)
1762       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1763       __ cmpl(rcx, InvalidOSREntryBci);
1764       __ jcc(Assembler::equal, dispatch);
1765 
1766       // We have the address of an on stack replacement routine in eax
1767       // We need to prepare to execute the OSR method. First we must
1768       // migrate the locals and monitors off of the stack.
1769 
1770       __ mov(r13, rax);                             // save the nmethod
1771 
1772       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1773 
1774       // eax is OSR buffer, move it to expected parameter location
1775       __ mov(j_rarg0, rax);
1776 
1777       // We use j_rarg definitions here so that registers don't conflict as parameter
1778       // registers change across platforms as we are in the midst of a calling
1779       // sequence to the OSR nmethod and we don't want collision. These are NOT parameters.
1780 
1781       const Register retaddr = j_rarg2;
1782       const Register sender_sp = j_rarg1;
1783 
1784       // pop the interpreter frame
1785       __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1786       __ leave();                                // remove frame anchor
1787       __ pop(retaddr);                           // get return address
1788       __ mov(rsp, sender_sp);                   // set sp to sender sp
1789       // Ensure compiled code always sees stack at proper alignment
1790       __ andptr(rsp, -(StackAlignmentInBytes));
1791 
1792       // unlike x86 we need no specialized return from compiled code
1793       // to the interpreter or the call stub.
1794 
1795       // push the return address
1796       __ push(retaddr);
1797 
1798       // and begin the OSR nmethod
1799       __ jmp(Address(r13, nmethod::osr_entry_point_offset()));
1800     }
1801   }
1802 }
1803 
1804 
1805 void TemplateTable::if_0cmp(Condition cc) {
1806   transition(itos, vtos);
1807   // assume branch is more often taken than not (loops use backward branches)
1808   Label not_taken;
1809   __ testl(rax, rax);
1810   __ jcc(j_not(cc), not_taken);
1811   branch(false, false);
1812   __ bind(not_taken);
1813   __ profile_not_taken_branch(rax);
1814 }
1815 
1816 void TemplateTable::if_icmp(Condition cc) {
1817   transition(itos, vtos);
1818   // assume branch is more often taken than not (loops use backward branches)
1819   Label not_taken;
1820   __ pop_i(rdx);
1821   __ cmpl(rdx, rax);
1822   __ jcc(j_not(cc), not_taken);
1823   branch(false, false);
1824   __ bind(not_taken);
1825   __ profile_not_taken_branch(rax);
1826 }
1827 
1828 void TemplateTable::if_nullcmp(Condition cc) {
1829   transition(atos, vtos);
1830   // assume branch is more often taken than not (loops use backward branches)
1831   Label not_taken;
1832   __ testptr(rax, rax);
1833   __ jcc(j_not(cc), not_taken);
1834   branch(false, false);
1835   __ bind(not_taken);
1836   __ profile_not_taken_branch(rax);
1837 }
1838 
1839 void TemplateTable::if_acmp(Condition cc) {
1840   transition(atos, vtos);
1841   // assume branch is more often taken than not (loops use backward branches)
1842   Label not_taken;
1843   __ pop_ptr(rdx);
1844   __ cmpptr(rdx, rax);
1845   __ jcc(j_not(cc), not_taken);
1846   branch(false, false);
1847   __ bind(not_taken);
1848   __ profile_not_taken_branch(rax);
1849 }
1850 
1851 void TemplateTable::ret() {
1852   transition(vtos, vtos);
1853   locals_index(rbx);
1854   __ movslq(rbx, iaddress(rbx)); // get return bci, compute return bcp
1855   __ profile_ret(rbx, rcx);
1856   __ get_method(rax);
1857   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1858   __ lea(r13, Address(r13, rbx, Address::times_1,
1859                       constMethodOopDesc::codes_offset()));
1860   __ dispatch_next(vtos);
1861 }
1862 
1863 void TemplateTable::wide_ret() {
1864   transition(vtos, vtos);
1865   locals_index_wide(rbx);
1866   __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp
1867   __ profile_ret(rbx, rcx);
1868   __ get_method(rax);
1869   __ movptr(r13, Address(rax, methodOopDesc::const_offset()));
1870   __ lea(r13, Address(r13, rbx, Address::times_1, constMethodOopDesc::codes_offset()));
1871   __ dispatch_next(vtos);
1872 }
1873 
1874 void TemplateTable::tableswitch() {
1875   Label default_case, continue_execution;
1876   transition(itos, vtos);
1877   // align r13
1878   __ lea(rbx, at_bcp(BytesPerInt));
1879   __ andptr(rbx, -BytesPerInt);
1880   // load lo & hi
1881   __ movl(rcx, Address(rbx, BytesPerInt));
1882   __ movl(rdx, Address(rbx, 2 * BytesPerInt));
1883   __ bswapl(rcx);
1884   __ bswapl(rdx);
1885   // check against lo & hi
1886   __ cmpl(rax, rcx);
1887   __ jcc(Assembler::less, default_case);
1888   __ cmpl(rax, rdx);
1889   __ jcc(Assembler::greater, default_case);
1890   // lookup dispatch offset
1891   __ subl(rax, rcx);
1892   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1893   __ profile_switch_case(rax, rbx, rcx);
1894   // continue execution
1895   __ bind(continue_execution);
1896   __ bswapl(rdx);
1897   __ movl2ptr(rdx, rdx);
1898   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1899   __ addptr(r13, rdx);
1900   __ dispatch_only(vtos);
1901   // handle default
1902   __ bind(default_case);
1903   __ profile_switch_default(rax);
1904   __ movl(rdx, Address(rbx, 0));
1905   __ jmp(continue_execution);
1906 }
1907 
1908 void TemplateTable::lookupswitch() {
1909   transition(itos, itos);
1910   __ stop("lookupswitch bytecode should have been rewritten");
1911 }
1912 
1913 void TemplateTable::fast_linearswitch() {
1914   transition(itos, vtos);
1915   Label loop_entry, loop, found, continue_execution;
1916   // bswap rax so we can avoid bswapping the table entries
1917   __ bswapl(rax);
1918   // align r13
1919   __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of
1920                                     // this instruction (change offsets
1921                                     // below)
1922   __ andptr(rbx, -BytesPerInt);
1923   // set counter
1924   __ movl(rcx, Address(rbx, BytesPerInt));
1925   __ bswapl(rcx);
1926   __ jmpb(loop_entry);
1927   // table search
1928   __ bind(loop);
1929   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt));
1930   __ jcc(Assembler::equal, found);
1931   __ bind(loop_entry);
1932   __ decrementl(rcx);
1933   __ jcc(Assembler::greaterEqual, loop);
1934   // default case
1935   __ profile_switch_default(rax);
1936   __ movl(rdx, Address(rbx, 0));
1937   __ jmp(continue_execution);
1938   // entry found -> get offset
1939   __ bind(found);
1940   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt));
1941   __ profile_switch_case(rcx, rax, rbx);
1942   // continue execution
1943   __ bind(continue_execution);
1944   __ bswapl(rdx);
1945   __ movl2ptr(rdx, rdx);
1946   __ load_unsigned_byte(rbx, Address(r13, rdx, Address::times_1));
1947   __ addptr(r13, rdx);
1948   __ dispatch_only(vtos);
1949 }
1950 
1951 void TemplateTable::fast_binaryswitch() {
1952   transition(itos, vtos);
1953   // Implementation using the following core algorithm:
1954   //
1955   // int binary_search(int key, LookupswitchPair* array, int n) {
1956   //   // Binary search according to "Methodik des Programmierens" by
1957   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1958   //   int i = 0;
1959   //   int j = n;
1960   //   while (i+1 < j) {
1961   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1962   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1963   //     // where a stands for the array and assuming that the (inexisting)
1964   //     // element a[n] is infinitely big.
1965   //     int h = (i + j) >> 1;
1966   //     // i < h < j
1967   //     if (key < array[h].fast_match()) {
1968   //       j = h;
1969   //     } else {
1970   //       i = h;
1971   //     }
1972   //   }
1973   //   // R: a[i] <= key < a[i+1] or Q
1974   //   // (i.e., if key is within array, i is the correct index)
1975   //   return i;
1976   // }
1977 
1978   // Register allocation
1979   const Register key   = rax; // already set (tosca)
1980   const Register array = rbx;
1981   const Register i     = rcx;
1982   const Register j     = rdx;
1983   const Register h     = rdi;
1984   const Register temp  = rsi;
1985 
1986   // Find array start
1987   __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
1988                                           // get rid of this
1989                                           // instruction (change
1990                                           // offsets below)
1991   __ andptr(array, -BytesPerInt);
1992 
1993   // Initialize i & j
1994   __ xorl(i, i);                            // i = 0;
1995   __ movl(j, Address(array, -BytesPerInt)); // j = length(array);
1996 
1997   // Convert j into native byteordering
1998   __ bswapl(j);
1999 
2000   // And start
2001   Label entry;
2002   __ jmp(entry);
2003 
2004   // binary search loop
2005   {
2006     Label loop;
2007     __ bind(loop);
2008     // int h = (i + j) >> 1;
2009     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
2010     __ sarl(h, 1);                               // h = (i + j) >> 1;
2011     // if (key < array[h].fast_match()) {
2012     //   j = h;
2013     // } else {
2014     //   i = h;
2015     // }
2016     // Convert array[h].match to native byte-ordering before compare
2017     __ movl(temp, Address(array, h, Address::times_8));
2018     __ bswapl(temp);
2019     __ cmpl(key, temp);
2020     // j = h if (key <  array[h].fast_match())
2021     __ cmovl(Assembler::less, j, h);
2022     // i = h if (key >= array[h].fast_match())
2023     __ cmovl(Assembler::greaterEqual, i, h);
2024     // while (i+1 < j)
2025     __ bind(entry);
2026     __ leal(h, Address(i, 1)); // i+1
2027     __ cmpl(h, j);             // i+1 < j
2028     __ jcc(Assembler::less, loop);
2029   }
2030 
2031   // end of binary search, result index is i (must check again!)
2032   Label default_case;
2033   // Convert array[i].match to native byte-ordering before compare
2034   __ movl(temp, Address(array, i, Address::times_8));
2035   __ bswapl(temp);
2036   __ cmpl(key, temp);
2037   __ jcc(Assembler::notEqual, default_case);
2038 
2039   // entry found -> j = offset
2040   __ movl(j , Address(array, i, Address::times_8, BytesPerInt));
2041   __ profile_switch_case(i, key, array);
2042   __ bswapl(j);
2043   __ movl2ptr(j, j);
2044   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2045   __ addptr(r13, j);
2046   __ dispatch_only(vtos);
2047 
2048   // default case -> j = default offset
2049   __ bind(default_case);
2050   __ profile_switch_default(i);
2051   __ movl(j, Address(array, -2 * BytesPerInt));
2052   __ bswapl(j);
2053   __ movl2ptr(j, j);
2054   __ load_unsigned_byte(rbx, Address(r13, j, Address::times_1));
2055   __ addptr(r13, j);
2056   __ dispatch_only(vtos);
2057 }
2058 
2059 
2060 void TemplateTable::_return(TosState state) {
2061   transition(state, state);
2062   assert(_desc->calls_vm(),
2063          "inconsistent calls_vm information"); // call in remove_activation
2064 
2065   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2066     assert(state == vtos, "only valid state");
2067     __ movptr(c_rarg1, aaddress(0));
2068     __ load_klass(rdi, c_rarg1);
2069     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2070     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2071     Label skip_register_finalizer;
2072     __ jcc(Assembler::zero, skip_register_finalizer);
2073 
2074     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2075 
2076     __ bind(skip_register_finalizer);
2077   }
2078 
2079   __ remove_activation(state, r13);
2080   __ jmp(r13);
2081 }
2082 
2083 // ----------------------------------------------------------------------------
2084 // Volatile variables demand their effects be made known to all CPU's
2085 // in order.  Store buffers on most chips allow reads & writes to
2086 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2087 // without some kind of memory barrier (i.e., it's not sufficient that
2088 // the interpreter does not reorder volatile references, the hardware
2089 // also must not reorder them).
2090 //
2091 // According to the new Java Memory Model (JMM):
2092 // (1) All volatiles are serialized wrt to each other.  ALSO reads &
2093 //     writes act as aquire & release, so:
2094 // (2) A read cannot let unrelated NON-volatile memory refs that
2095 //     happen after the read float up to before the read.  It's OK for
2096 //     non-volatile memory refs that happen before the volatile read to
2097 //     float down below it.
2098 // (3) Similar a volatile write cannot let unrelated NON-volatile
2099 //     memory refs that happen BEFORE the write float down to after the
2100 //     write.  It's OK for non-volatile memory refs that happen after the
2101 //     volatile write to float up before it.
2102 //
2103 // We only put in barriers around volatile refs (they are expensive),
2104 // not _between_ memory refs (that would require us to track the
2105 // flavor of the previous memory refs).  Requirements (2) and (3)
2106 // require some barriers before volatile stores and after volatile
2107 // loads.  These nearly cover requirement (1) but miss the
2108 // volatile-store-volatile-load case.  This final case is placed after
2109 // volatile-stores although it could just as well go before
2110 // volatile-loads.
2111 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits
2112                                      order_constraint) {
2113   // Helper function to insert a is-volatile test and memory barrier
2114   if (os::is_MP()) { // Not needed on single CPU
2115     __ membar(order_constraint);
2116   }
2117 }
2118 
2119 void TemplateTable::resolve_cache_and_index(int byte_no,
2120                                             Register result,
2121                                             Register Rcache,
2122                                             Register index,
2123                                             size_t index_size) {
2124   const Register temp = rbx;
2125   assert_different_registers(result, Rcache, index, temp);
2126 
2127   Label resolved;
2128   if (byte_no == f12_oop) {
2129     // We are resolved if the f1 field contains a non-null object (CallSite, MethodType, etc.)
2130     // This kind of CP cache entry does not need to match bytecode_1 or bytecode_2, because
2131     // there is a 1-1 relation between bytecode type and CP entry type.
2132     // The caller will also load a methodOop from f2.
2133     assert(result != noreg, ""); //else do cmpptr(Address(...), (int32_t) NULL_WORD)
2134     __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2135     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2136     __ testptr(result, result);
2137     __ jcc(Assembler::notEqual, resolved);
2138   } else {
2139     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2140     assert(result == noreg, "");  //else change code for setting result
2141     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2142     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2143     __ jcc(Assembler::equal, resolved);
2144   }
2145 
2146   // resolve first time through
2147   address entry;
2148   switch (bytecode()) {
2149   case Bytecodes::_getstatic:
2150   case Bytecodes::_putstatic:
2151   case Bytecodes::_getfield:
2152   case Bytecodes::_putfield:
2153     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);
2154     break;
2155   case Bytecodes::_invokevirtual:
2156   case Bytecodes::_invokespecial:
2157   case Bytecodes::_invokestatic:
2158   case Bytecodes::_invokeinterface:
2159     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);
2160     break;
2161   case Bytecodes::_invokehandle:
2162     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);
2163     break;
2164   case Bytecodes::_invokedynamic:
2165     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);
2166     break;
2167   case Bytecodes::_fast_aldc:
2168     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2169     break;
2170   case Bytecodes::_fast_aldc_w:
2171     entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
2172     break;
2173   default:
2174     fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2175     break;
2176   }
2177   __ movl(temp, (int) bytecode());
2178   __ call_VM(noreg, entry, temp);
2179 
2180   // Update registers with resolved info
2181   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2182   if (result != noreg)
2183     __ movptr(result, Address(Rcache, index, Address::times_ptr, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::f1_offset()));
2184   __ bind(resolved);
2185 }
2186 
2187 // The cache and index registers must be set before call
2188 void TemplateTable::load_field_cp_cache_entry(Register obj,
2189                                               Register cache,
2190                                               Register index,
2191                                               Register off,
2192                                               Register flags,
2193                                               bool is_static = false) {
2194   assert_different_registers(cache, index, flags, off);
2195 
2196   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2197   // Field offset
2198   __ movptr(off, Address(cache, index, Address::times_ptr,
2199                          in_bytes(cp_base_offset +
2200                                   ConstantPoolCacheEntry::f2_offset())));
2201   // Flags
2202   __ movl(flags, Address(cache, index, Address::times_ptr,
2203                          in_bytes(cp_base_offset +
2204                                   ConstantPoolCacheEntry::flags_offset())));
2205 
2206   // klass overwrite register
2207   if (is_static) {
2208     __ movptr(obj, Address(cache, index, Address::times_ptr,
2209                            in_bytes(cp_base_offset +
2210                                     ConstantPoolCacheEntry::f1_offset())));
2211   }
2212 }
2213 
2214 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2215                                                Register method,
2216                                                Register itable_index,
2217                                                Register flags,
2218                                                bool is_invokevirtual,
2219                                                bool is_invokevfinal, /*unused*/
2220                                                bool is_invokedynamic) {
2221   // setup registers
2222   const Register cache = rcx;
2223   const Register index = rdx;
2224   assert_different_registers(method, flags);
2225   assert_different_registers(method, cache, index);
2226   assert_different_registers(itable_index, flags);
2227   assert_different_registers(itable_index, cache, index);
2228   // determine constant pool cache field offsets
2229   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2230   const int method_offset = in_bytes(
2231     constantPoolCacheOopDesc::base_offset() +
2232       ((byte_no == f2_byte)
2233        ? ConstantPoolCacheEntry::f2_offset()
2234        : ConstantPoolCacheEntry::f1_offset()));
2235   const int flags_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2236                                     ConstantPoolCacheEntry::flags_offset());
2237   // access constant pool cache fields
2238   const int index_offset = in_bytes(constantPoolCacheOopDesc::base_offset() +
2239                                     ConstantPoolCacheEntry::f2_offset());
2240 
2241   if (byte_no == f12_oop) {
2242     // Resolved f1_oop (CallSite, MethodType, etc.) goes into 'itable_index'.
2243     // Resolved f2_oop (methodOop invoker) will go into 'method' (at index_offset).
2244     // See ConstantPoolCacheEntry::set_dynamic_call and set_method_handle.
2245     size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2246     resolve_cache_and_index(byte_no, itable_index, cache, index, index_size);
2247     __ movptr(method, Address(cache, index, Address::times_ptr, index_offset));
2248     itable_index = noreg;  // hack to disable load below
2249   } else {
2250     resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2251     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2252   }
2253   if (itable_index != noreg) {
2254     // pick up itable index from f2 also:
2255     assert(byte_no == f1_byte, "already picked up f1");
2256     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2257   }
2258   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2259 }
2260 
2261 
2262 // The registers cache and index expected to be set before call.
2263 // Correct values of the cache and index registers are preserved.
2264 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2265                                             bool is_static, bool has_tos) {
2266   // do the JVMTI work here to avoid disturbing the register state below
2267   // We use c_rarg registers here because we want to use the register used in
2268   // the call to the VM
2269   if (JvmtiExport::can_post_field_access()) {
2270     // Check to see if a field access watch has been set before we
2271     // take the time to call into the VM.
2272     Label L1;
2273     assert_different_registers(cache, index, rax);
2274     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2275     __ testl(rax, rax);
2276     __ jcc(Assembler::zero, L1);
2277 
2278     __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2279 
2280     // cache entry pointer
2281     __ addptr(c_rarg2, in_bytes(constantPoolCacheOopDesc::base_offset()));
2282     __ shll(c_rarg3, LogBytesPerWord);
2283     __ addptr(c_rarg2, c_rarg3);
2284     if (is_static) {
2285       __ xorl(c_rarg1, c_rarg1); // NULL object reference
2286     } else {
2287       __ movptr(c_rarg1, at_tos()); // get object pointer without popping it
2288       __ verify_oop(c_rarg1);
2289     }
2290     // c_rarg1: object pointer or NULL
2291     // c_rarg2: cache entry pointer
2292     // c_rarg3: jvalue object on the stack
2293     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2294                                        InterpreterRuntime::post_field_access),
2295                c_rarg1, c_rarg2, c_rarg3);
2296     __ get_cache_and_index_at_bcp(cache, index, 1);
2297     __ bind(L1);
2298   }
2299 }
2300 
2301 void TemplateTable::pop_and_check_object(Register r) {
2302   __ pop_ptr(r);
2303   __ null_check(r);  // for field access must check obj.
2304   __ verify_oop(r);
2305 }
2306 
2307 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2308   transition(vtos, vtos);
2309 
2310   const Register cache = rcx;
2311   const Register index = rdx;
2312   const Register obj   = c_rarg3;
2313   const Register off   = rbx;
2314   const Register flags = rax;
2315   const Register bc = c_rarg3; // uses same reg as obj, so don't mix them
2316 
2317   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2318   jvmti_post_field_access(cache, index, is_static, false);
2319   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2320 
2321   if (!is_static) {
2322     // obj is on the stack
2323     pop_and_check_object(obj);
2324   }
2325 
2326   const Address field(obj, off, Address::times_1);
2327 
2328   Label Done, notByte, notInt, notShort, notChar,
2329               notLong, notFloat, notObj, notDouble;
2330 
2331   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2332   // Make sure we don't need to mask edx after the above shift
2333   assert(btos == 0, "change code, btos != 0");
2334 
2335   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2336   __ jcc(Assembler::notZero, notByte);
2337   // btos
2338   __ load_signed_byte(rax, field);
2339   __ push(btos);
2340   // Rewrite bytecode to be faster
2341   if (!is_static) {
2342     patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx);
2343   }
2344   __ jmp(Done);
2345 
2346   __ bind(notByte);
2347   __ cmpl(flags, atos);
2348   __ jcc(Assembler::notEqual, notObj);
2349   // atos
2350   __ load_heap_oop(rax, field);
2351   __ push(atos);
2352   if (!is_static) {
2353     patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx);
2354   }
2355   __ jmp(Done);
2356 
2357   __ bind(notObj);
2358   __ cmpl(flags, itos);
2359   __ jcc(Assembler::notEqual, notInt);
2360   // itos
2361   __ movl(rax, field);
2362   __ push(itos);
2363   // Rewrite bytecode to be faster
2364   if (!is_static) {
2365     patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx);
2366   }
2367   __ jmp(Done);
2368 
2369   __ bind(notInt);
2370   __ cmpl(flags, ctos);
2371   __ jcc(Assembler::notEqual, notChar);
2372   // ctos
2373   __ load_unsigned_short(rax, field);
2374   __ push(ctos);
2375   // Rewrite bytecode to be faster
2376   if (!is_static) {
2377     patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx);
2378   }
2379   __ jmp(Done);
2380 
2381   __ bind(notChar);
2382   __ cmpl(flags, stos);
2383   __ jcc(Assembler::notEqual, notShort);
2384   // stos
2385   __ load_signed_short(rax, field);
2386   __ push(stos);
2387   // Rewrite bytecode to be faster
2388   if (!is_static) {
2389     patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx);
2390   }
2391   __ jmp(Done);
2392 
2393   __ bind(notShort);
2394   __ cmpl(flags, ltos);
2395   __ jcc(Assembler::notEqual, notLong);
2396   // ltos
2397   __ movq(rax, field);
2398   __ push(ltos);
2399   // Rewrite bytecode to be faster
2400   if (!is_static) {
2401     patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx);
2402   }
2403   __ jmp(Done);
2404 
2405   __ bind(notLong);
2406   __ cmpl(flags, ftos);
2407   __ jcc(Assembler::notEqual, notFloat);
2408   // ftos
2409   __ movflt(xmm0, field);
2410   __ push(ftos);
2411   // Rewrite bytecode to be faster
2412   if (!is_static) {
2413     patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx);
2414   }
2415   __ jmp(Done);
2416 
2417   __ bind(notFloat);
2418 #ifdef ASSERT
2419   __ cmpl(flags, dtos);
2420   __ jcc(Assembler::notEqual, notDouble);
2421 #endif
2422   // dtos
2423   __ movdbl(xmm0, field);
2424   __ push(dtos);
2425   // Rewrite bytecode to be faster
2426   if (!is_static) {
2427     patch_bytecode(Bytecodes::_fast_dgetfield, bc, rbx);
2428   }
2429 #ifdef ASSERT
2430   __ jmp(Done);
2431 
2432   __ bind(notDouble);
2433   __ stop("Bad state");
2434 #endif
2435 
2436   __ bind(Done);
2437   // [jk] not needed currently
2438   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad |
2439   //                                              Assembler::LoadStore));
2440 }
2441 
2442 
2443 void TemplateTable::getfield(int byte_no) {
2444   getfield_or_static(byte_no, false);
2445 }
2446 
2447 void TemplateTable::getstatic(int byte_no) {
2448   getfield_or_static(byte_no, true);
2449 }
2450 
2451 // The registers cache and index expected to be set before call.
2452 // The function may destroy various registers, just not the cache and index registers.
2453 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2454   transition(vtos, vtos);
2455 
2456   ByteSize cp_base_offset = constantPoolCacheOopDesc::base_offset();
2457 
2458   if (JvmtiExport::can_post_field_modification()) {
2459     // Check to see if a field modification watch has been set before
2460     // we take the time to call into the VM.
2461     Label L1;
2462     assert_different_registers(cache, index, rax);
2463     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2464     __ testl(rax, rax);
2465     __ jcc(Assembler::zero, L1);
2466 
2467     __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2468 
2469     if (is_static) {
2470       // Life is simple.  Null out the object pointer.
2471       __ xorl(c_rarg1, c_rarg1);
2472     } else {
2473       // Life is harder. The stack holds the value on top, followed by
2474       // the object.  We don't know the size of the value, though; it
2475       // could be one or two words depending on its type. As a result,
2476       // we must find the type to determine where the object is.
2477       __ movl(c_rarg3, Address(c_rarg2, rscratch1,
2478                            Address::times_8,
2479                            in_bytes(cp_base_offset +
2480                                      ConstantPoolCacheEntry::flags_offset())));
2481       __ shrl(c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
2482       // Make sure we don't need to mask rcx after the above shift
2483       ConstantPoolCacheEntry::verify_tos_state_shift();
2484       __ movptr(c_rarg1, at_tos_p1());  // initially assume a one word jvalue
2485       __ cmpl(c_rarg3, ltos);
2486       __ cmovptr(Assembler::equal,
2487                  c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2488       __ cmpl(c_rarg3, dtos);
2489       __ cmovptr(Assembler::equal,
2490                  c_rarg1, at_tos_p2()); // dtos (two word jvalue)
2491     }
2492     // cache entry pointer
2493     __ addptr(c_rarg2, in_bytes(cp_base_offset));
2494     __ shll(rscratch1, LogBytesPerWord);
2495     __ addptr(c_rarg2, rscratch1);
2496     // object (tos)
2497     __ mov(c_rarg3, rsp);
2498     // c_rarg1: object pointer set up above (NULL if static)
2499     // c_rarg2: cache entry pointer
2500     // c_rarg3: jvalue object on the stack
2501     __ call_VM(noreg,
2502                CAST_FROM_FN_PTR(address,
2503                                 InterpreterRuntime::post_field_modification),
2504                c_rarg1, c_rarg2, c_rarg3);
2505     __ get_cache_and_index_at_bcp(cache, index, 1);
2506     __ bind(L1);
2507   }
2508 }
2509 
2510 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2511   transition(vtos, vtos);
2512 
2513   const Register cache = rcx;
2514   const Register index = rdx;
2515   const Register obj   = rcx;
2516   const Register off   = rbx;
2517   const Register flags = rax;
2518   const Register bc    = c_rarg3;
2519 
2520   resolve_cache_and_index(byte_no, noreg, cache, index, sizeof(u2));
2521   jvmti_post_field_mod(cache, index, is_static);
2522   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2523 
2524   // [jk] not needed currently
2525   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2526   //                                              Assembler::StoreStore));
2527 
2528   Label notVolatile, Done;
2529   __ movl(rdx, flags);
2530   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2531   __ andl(rdx, 0x1);
2532 
2533   // field address
2534   const Address field(obj, off, Address::times_1);
2535 
2536   Label notByte, notInt, notShort, notChar,
2537         notLong, notFloat, notObj, notDouble;
2538 
2539   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2540 
2541   assert(btos == 0, "change code, btos != 0");
2542   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2543   __ jcc(Assembler::notZero, notByte);
2544 
2545   // btos
2546   {
2547     __ pop(btos);
2548     if (!is_static) pop_and_check_object(obj);
2549     __ movb(field, rax);
2550     if (!is_static) {
2551       patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no);
2552     }
2553     __ jmp(Done);
2554   }
2555 
2556   __ bind(notByte);
2557   __ cmpl(flags, atos);
2558   __ jcc(Assembler::notEqual, notObj);
2559 
2560   // atos
2561   {
2562     __ pop(atos);
2563     if (!is_static) pop_and_check_object(obj);
2564     // Store into the field
2565     do_oop_store(_masm, field, rax, _bs->kind(), false);
2566     if (!is_static) {
2567       patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no);
2568     }
2569     __ jmp(Done);
2570   }
2571 
2572   __ bind(notObj);
2573   __ cmpl(flags, itos);
2574   __ jcc(Assembler::notEqual, notInt);
2575 
2576   // itos
2577   {
2578     __ pop(itos);
2579     if (!is_static) pop_and_check_object(obj);
2580     __ movl(field, rax);
2581     if (!is_static) {
2582       patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no);
2583     }
2584     __ jmp(Done);
2585   }
2586 
2587   __ bind(notInt);
2588   __ cmpl(flags, ctos);
2589   __ jcc(Assembler::notEqual, notChar);
2590 
2591   // ctos
2592   {
2593     __ pop(ctos);
2594     if (!is_static) pop_and_check_object(obj);
2595     __ movw(field, rax);
2596     if (!is_static) {
2597       patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no);
2598     }
2599     __ jmp(Done);
2600   }
2601 
2602   __ bind(notChar);
2603   __ cmpl(flags, stos);
2604   __ jcc(Assembler::notEqual, notShort);
2605 
2606   // stos
2607   {
2608     __ pop(stos);
2609     if (!is_static) pop_and_check_object(obj);
2610     __ movw(field, rax);
2611     if (!is_static) {
2612       patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no);
2613     }
2614     __ jmp(Done);
2615   }
2616 
2617   __ bind(notShort);
2618   __ cmpl(flags, ltos);
2619   __ jcc(Assembler::notEqual, notLong);
2620 
2621   // ltos
2622   {
2623     __ pop(ltos);
2624     if (!is_static) pop_and_check_object(obj);
2625     __ movq(field, rax);
2626     if (!is_static) {
2627       patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no);
2628     }
2629     __ jmp(Done);
2630   }
2631 
2632   __ bind(notLong);
2633   __ cmpl(flags, ftos);
2634   __ jcc(Assembler::notEqual, notFloat);
2635 
2636   // ftos
2637   {
2638     __ pop(ftos);
2639     if (!is_static) pop_and_check_object(obj);
2640     __ movflt(field, xmm0);
2641     if (!is_static) {
2642       patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no);
2643     }
2644     __ jmp(Done);
2645   }
2646 
2647   __ bind(notFloat);
2648 #ifdef ASSERT
2649   __ cmpl(flags, dtos);
2650   __ jcc(Assembler::notEqual, notDouble);
2651 #endif
2652 
2653   // dtos
2654   {
2655     __ pop(dtos);
2656     if (!is_static) pop_and_check_object(obj);
2657     __ movdbl(field, xmm0);
2658     if (!is_static) {
2659       patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no);
2660     }
2661   }
2662 
2663 #ifdef ASSERT
2664   __ jmp(Done);
2665 
2666   __ bind(notDouble);
2667   __ stop("Bad state");
2668 #endif
2669 
2670   __ bind(Done);
2671 
2672   // Check for volatile store
2673   __ testl(rdx, rdx);
2674   __ jcc(Assembler::zero, notVolatile);
2675   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2676                                                Assembler::StoreStore));
2677   __ bind(notVolatile);
2678 }
2679 
2680 void TemplateTable::putfield(int byte_no) {
2681   putfield_or_static(byte_no, false);
2682 }
2683 
2684 void TemplateTable::putstatic(int byte_no) {
2685   putfield_or_static(byte_no, true);
2686 }
2687 
2688 void TemplateTable::jvmti_post_fast_field_mod() {
2689   if (JvmtiExport::can_post_field_modification()) {
2690     // Check to see if a field modification watch has been set before
2691     // we take the time to call into the VM.
2692     Label L2;
2693     __ mov32(c_rarg3, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2694     __ testl(c_rarg3, c_rarg3);
2695     __ jcc(Assembler::zero, L2);
2696     __ pop_ptr(rbx);                  // copy the object pointer from tos
2697     __ verify_oop(rbx);
2698     __ push_ptr(rbx);                 // put the object pointer back on tos
2699     // Save tos values before call_VM() clobbers them. Since we have
2700     // to do it for every data type, we use the saved values as the
2701     // jvalue object.
2702     switch (bytecode()) {          // load values into the jvalue object
2703     case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2704     case Bytecodes::_fast_bputfield: // fall through
2705     case Bytecodes::_fast_sputfield: // fall through
2706     case Bytecodes::_fast_cputfield: // fall through
2707     case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2708     case Bytecodes::_fast_dputfield: __ push_d(); break;
2709     case Bytecodes::_fast_fputfield: __ push_f(); break;
2710     case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2711 
2712     default:
2713       ShouldNotReachHere();
2714     }
2715     __ mov(c_rarg3, rsp);             // points to jvalue on the stack
2716     // access constant pool cache entry
2717     __ get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1);
2718     __ verify_oop(rbx);
2719     // rbx: object pointer copied above
2720     // c_rarg2: cache entry pointer
2721     // c_rarg3: jvalue object on the stack
2722     __ call_VM(noreg,
2723                CAST_FROM_FN_PTR(address,
2724                                 InterpreterRuntime::post_field_modification),
2725                rbx, c_rarg2, c_rarg3);
2726 
2727     switch (bytecode()) {             // restore tos values
2728     case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2729     case Bytecodes::_fast_bputfield: // fall through
2730     case Bytecodes::_fast_sputfield: // fall through
2731     case Bytecodes::_fast_cputfield: // fall through
2732     case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2733     case Bytecodes::_fast_dputfield: __ pop_d(); break;
2734     case Bytecodes::_fast_fputfield: __ pop_f(); break;
2735     case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2736     }
2737     __ bind(L2);
2738   }
2739 }
2740 
2741 void TemplateTable::fast_storefield(TosState state) {
2742   transition(state, vtos);
2743 
2744   ByteSize base = constantPoolCacheOopDesc::base_offset();
2745 
2746   jvmti_post_fast_field_mod();
2747 
2748   // access constant pool cache
2749   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2750 
2751   // test for volatile with rdx
2752   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2753                        in_bytes(base +
2754                                 ConstantPoolCacheEntry::flags_offset())));
2755 
2756   // replace index with field offset from cache entry
2757   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2758                          in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2759 
2760   // [jk] not needed currently
2761   // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore |
2762   //                                              Assembler::StoreStore));
2763 
2764   Label notVolatile;
2765   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2766   __ andl(rdx, 0x1);
2767 
2768   // Get object from stack
2769   pop_and_check_object(rcx);
2770 
2771   // field address
2772   const Address field(rcx, rbx, Address::times_1);
2773 
2774   // access field
2775   switch (bytecode()) {
2776   case Bytecodes::_fast_aputfield:
2777     do_oop_store(_masm, field, rax, _bs->kind(), false);
2778     break;
2779   case Bytecodes::_fast_lputfield:
2780     __ movq(field, rax);
2781     break;
2782   case Bytecodes::_fast_iputfield:
2783     __ movl(field, rax);
2784     break;
2785   case Bytecodes::_fast_bputfield:
2786     __ movb(field, rax);
2787     break;
2788   case Bytecodes::_fast_sputfield:
2789     // fall through
2790   case Bytecodes::_fast_cputfield:
2791     __ movw(field, rax);
2792     break;
2793   case Bytecodes::_fast_fputfield:
2794     __ movflt(field, xmm0);
2795     break;
2796   case Bytecodes::_fast_dputfield:
2797     __ movdbl(field, xmm0);
2798     break;
2799   default:
2800     ShouldNotReachHere();
2801   }
2802 
2803   // Check for volatile store
2804   __ testl(rdx, rdx);
2805   __ jcc(Assembler::zero, notVolatile);
2806   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2807                                                Assembler::StoreStore));
2808   __ bind(notVolatile);
2809 }
2810 
2811 
2812 void TemplateTable::fast_accessfield(TosState state) {
2813   transition(atos, state);
2814 
2815   // Do the JVMTI work here to avoid disturbing the register state below
2816   if (JvmtiExport::can_post_field_access()) {
2817     // Check to see if a field access watch has been set before we
2818     // take the time to call into the VM.
2819     Label L1;
2820     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2821     __ testl(rcx, rcx);
2822     __ jcc(Assembler::zero, L1);
2823     // access constant pool cache entry
2824     __ get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1);
2825     __ verify_oop(rax);
2826     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2827     __ mov(c_rarg1, rax);
2828     // c_rarg1: object pointer copied above
2829     // c_rarg2: cache entry pointer
2830     __ call_VM(noreg,
2831                CAST_FROM_FN_PTR(address,
2832                                 InterpreterRuntime::post_field_access),
2833                c_rarg1, c_rarg2);
2834     __ pop_ptr(rax); // restore object pointer
2835     __ bind(L1);
2836   }
2837 
2838   // access constant pool cache
2839   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2840   // replace index with field offset from cache entry
2841   // [jk] not needed currently
2842   // if (os::is_MP()) {
2843   //   __ movl(rdx, Address(rcx, rbx, Address::times_8,
2844   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2845   //                                 ConstantPoolCacheEntry::flags_offset())));
2846   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2847   //   __ andl(rdx, 0x1);
2848   // }
2849   __ movptr(rbx, Address(rcx, rbx, Address::times_8,
2850                          in_bytes(constantPoolCacheOopDesc::base_offset() +
2851                                   ConstantPoolCacheEntry::f2_offset())));
2852 
2853   // rax: object
2854   __ verify_oop(rax);
2855   __ null_check(rax);
2856   Address field(rax, rbx, Address::times_1);
2857 
2858   // access field
2859   switch (bytecode()) {
2860   case Bytecodes::_fast_agetfield:
2861     __ load_heap_oop(rax, field);
2862     __ verify_oop(rax);
2863     break;
2864   case Bytecodes::_fast_lgetfield:
2865     __ movq(rax, field);
2866     break;
2867   case Bytecodes::_fast_igetfield:
2868     __ movl(rax, field);
2869     break;
2870   case Bytecodes::_fast_bgetfield:
2871     __ movsbl(rax, field);
2872     break;
2873   case Bytecodes::_fast_sgetfield:
2874     __ load_signed_short(rax, field);
2875     break;
2876   case Bytecodes::_fast_cgetfield:
2877     __ load_unsigned_short(rax, field);
2878     break;
2879   case Bytecodes::_fast_fgetfield:
2880     __ movflt(xmm0, field);
2881     break;
2882   case Bytecodes::_fast_dgetfield:
2883     __ movdbl(xmm0, field);
2884     break;
2885   default:
2886     ShouldNotReachHere();
2887   }
2888   // [jk] not needed currently
2889   // if (os::is_MP()) {
2890   //   Label notVolatile;
2891   //   __ testl(rdx, rdx);
2892   //   __ jcc(Assembler::zero, notVolatile);
2893   //   __ membar(Assembler::LoadLoad);
2894   //   __ bind(notVolatile);
2895   //};
2896 }
2897 
2898 void TemplateTable::fast_xaccess(TosState state) {
2899   transition(vtos, state);
2900 
2901   // get receiver
2902   __ movptr(rax, aaddress(0));
2903   // access constant pool cache
2904   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2905   __ movptr(rbx,
2906             Address(rcx, rdx, Address::times_8,
2907                     in_bytes(constantPoolCacheOopDesc::base_offset() +
2908                              ConstantPoolCacheEntry::f2_offset())));
2909   // make sure exception is reported in correct bcp range (getfield is
2910   // next instruction)
2911   __ increment(r13);
2912   __ null_check(rax);
2913   switch (state) {
2914   case itos:
2915     __ movl(rax, Address(rax, rbx, Address::times_1));
2916     break;
2917   case atos:
2918     __ load_heap_oop(rax, Address(rax, rbx, Address::times_1));
2919     __ verify_oop(rax);
2920     break;
2921   case ftos:
2922     __ movflt(xmm0, Address(rax, rbx, Address::times_1));
2923     break;
2924   default:
2925     ShouldNotReachHere();
2926   }
2927 
2928   // [jk] not needed currently
2929   // if (os::is_MP()) {
2930   //   Label notVolatile;
2931   //   __ movl(rdx, Address(rcx, rdx, Address::times_8,
2932   //                        in_bytes(constantPoolCacheOopDesc::base_offset() +
2933   //                                 ConstantPoolCacheEntry::flags_offset())));
2934   //   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2935   //   __ testl(rdx, 0x1);
2936   //   __ jcc(Assembler::zero, notVolatile);
2937   //   __ membar(Assembler::LoadLoad);
2938   //   __ bind(notVolatile);
2939   // }
2940 
2941   __ decrement(r13);
2942 }
2943 
2944 
2945 
2946 //-----------------------------------------------------------------------------
2947 // Calls
2948 
2949 void TemplateTable::count_calls(Register method, Register temp) {
2950   // implemented elsewhere
2951   ShouldNotReachHere();
2952 }
2953 
2954 void TemplateTable::prepare_invoke(int byte_no,
2955                                    Register method,  // linked method (or i-klass)
2956                                    Register index,   // itable index, MethodType, etc.
2957                                    Register recv,    // if caller wants to see it
2958                                    Register flags    // if caller wants to test it
2959                                    ) {
2960   // determine flags
2961   const Bytecodes::Code code = bytecode();
2962   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2963   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2964   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2965   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2966   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2967   const bool load_receiver       = (recv  != noreg);
2968   const bool save_flags          = (flags != noreg);
2969   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2970   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2971   assert(flags == noreg || flags == rdx, "");
2972   assert(recv  == noreg || recv  == rcx, "");
2973 
2974   // setup registers & access constant pool cache
2975   if (recv  == noreg)  recv  = rcx;
2976   if (flags == noreg)  flags = rdx;
2977   assert_different_registers(method, index, recv, flags);
2978 
2979   // save 'interpreter return address'
2980   __ save_bcp();
2981 
2982   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2983 
2984   // maybe push appendix to arguments (just before return address)
2985   if (is_invokedynamic || is_invokehandle) {
2986     Label L_no_push;
2987     __ verify_oop(index);
2988     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
2989     __ jccb(Assembler::zero, L_no_push);
2990     // Push the appendix as a trailing parameter.
2991     // This must be done before we get the receiver,
2992     // since the parameter_size includes it.
2993     __ push(index);  // push appendix (MethodType, CallSite, etc.)
2994     __ bind(L_no_push);
2995   }
2996 
2997   // load receiver if needed (after appendix is pushed so parameter size is correct)
2998   // Note: no return address pushed yet
2999   if (load_receiver) {
3000     __ movl(recv, flags);
3001     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
3002     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
3003     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
3004     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3005     __ movptr(recv, recv_addr);
3006     __ verify_oop(recv);
3007   }
3008 
3009   if (save_flags) {
3010     __ movl(r13, flags);
3011   }
3012 
3013   // compute return type
3014   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
3015   // Make sure we don't need to mask flags after the above shift
3016   ConstantPoolCacheEntry::verify_tos_state_shift();
3017   // load return address
3018   {
3019     const address table_addr = (is_invokeinterface || is_invokedynamic) ?
3020         (address)Interpreter::return_5_addrs_by_index_table() :
3021         (address)Interpreter::return_3_addrs_by_index_table();
3022     ExternalAddress table(table_addr);
3023     __ lea(rscratch1, table);
3024     __ movptr(flags, Address(rscratch1, flags, Address::times_ptr));
3025   }
3026 
3027   // push return address
3028   __ push(flags);
3029 
3030   // Restore flags value from the constant pool cache, and restore rsi
3031   // for later null checks.  r13 is the bytecode pointer
3032   if (save_flags) {
3033     __ movl(flags, r13);
3034     __ restore_bcp();
3035   }
3036 }
3037 
3038 
3039 void TemplateTable::invokevirtual_helper(Register index,
3040                                          Register recv,
3041                                          Register flags) {
3042   // Uses temporary registers rax, rdx
3043   assert_different_registers(index, recv, rax, rdx);
3044   assert(index == rbx, "");
3045   assert(recv  == rcx, "");
3046 
3047   // Test for an invoke of a final method
3048   Label notFinal;
3049   __ movl(rax, flags);
3050   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3051   __ jcc(Assembler::zero, notFinal);
3052 
3053   const Register method = index;  // method must be rbx
3054   assert(method == rbx,
3055          "methodOop must be rbx for interpreter calling convention");
3056 
3057   // do the call - the index is actually the method to call
3058   // that is, f2 is a vtable index if !is_vfinal, else f2 is a methodOop
3059   __ verify_oop(method);
3060 
3061   // It's final, need a null check here!
3062   __ null_check(recv);
3063 
3064   // profile this call
3065   __ profile_final_call(rax);
3066 
3067   __ jump_from_interpreted(method, rax);
3068 
3069   __ bind(notFinal);
3070 
3071   // get receiver klass
3072   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3073   __ load_klass(rax, recv);
3074   __ verify_oop(rax);
3075 
3076   // profile this call
3077   __ profile_virtual_call(rax, r14, rdx);
3078 
3079   // get target methodOop & entry point
3080   __ lookup_virtual_method(rax, index, method);
3081   __ jump_from_interpreted(method, rdx);
3082 }
3083 
3084 
3085 void TemplateTable::invokevirtual(int byte_no) {
3086   transition(vtos, vtos);
3087   assert(byte_no == f2_byte, "use this argument");
3088   prepare_invoke(byte_no,
3089                  rbx,    // method or vtable index
3090                  noreg,  // unused itable index
3091                  rcx, rdx); // recv, flags
3092 
3093   // rbx: index
3094   // rcx: receiver
3095   // rdx: flags
3096 
3097   invokevirtual_helper(rbx, rcx, rdx);
3098 }
3099 
3100 
3101 void TemplateTable::invokespecial(int byte_no) {
3102   transition(vtos, vtos);
3103   assert(byte_no == f1_byte, "use this argument");
3104   prepare_invoke(byte_no, rbx, noreg,  // get f1 methodOop
3105                  rcx);  // get receiver also for null check
3106   __ verify_oop(rcx);
3107   __ null_check(rcx);
3108   // do the call
3109   __ verify_oop(rbx);
3110   __ profile_call(rax);
3111   __ jump_from_interpreted(rbx, rax);
3112 }
3113 
3114 
3115 void TemplateTable::invokestatic(int byte_no) {
3116   transition(vtos, vtos);
3117   assert(byte_no == f1_byte, "use this argument");
3118   prepare_invoke(byte_no, rbx);  // get f1 methodOop
3119   // do the call
3120   __ verify_oop(rbx);
3121   __ profile_call(rax);
3122   __ jump_from_interpreted(rbx, rax);
3123 }
3124 
3125 void TemplateTable::fast_invokevfinal(int byte_no) {
3126   transition(vtos, vtos);
3127   assert(byte_no == f2_byte, "use this argument");
3128   __ stop("fast_invokevfinal not used on amd64");
3129 }
3130 
3131 void TemplateTable::invokeinterface(int byte_no) {
3132   transition(vtos, vtos);
3133   assert(byte_no == f1_byte, "use this argument");
3134   prepare_invoke(byte_no, rax, rbx,  // get f1 klassOop, f2 itable index
3135                  rcx, rdx); // recv, flags
3136 
3137   // rax: interface klass (from f1)
3138   // rbx: itable index (from f2)
3139   // rcx: receiver
3140   // rdx: flags
3141 
3142   // Special case of invokeinterface called for virtual method of
3143   // java.lang.Object.  See cpCacheOop.cpp for details.
3144   // This code isn't produced by javac, but could be produced by
3145   // another compliant java compiler.
3146   Label notMethod;
3147   __ movl(r14, rdx);
3148   __ andl(r14, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3149   __ jcc(Assembler::zero, notMethod);
3150 
3151   invokevirtual_helper(rbx, rcx, rdx);
3152   __ bind(notMethod);
3153 
3154   // Get receiver klass into rdx - also a null check
3155   __ restore_locals();  // restore r14
3156   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3157   __ load_klass(rdx, rcx);
3158   __ verify_oop(rdx);
3159 
3160   // profile this call
3161   __ profile_virtual_call(rdx, r13, r14);
3162 
3163   Label no_such_interface, no_such_method;
3164 
3165   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3166                              rdx, rax, rbx,
3167                              // outputs: method, scan temp. reg
3168                              rbx, r13,
3169                              no_such_interface);
3170 
3171   // rbx: methodOop to call
3172   // rcx: receiver
3173   // Check for abstract method error
3174   // Note: This should be done more efficiently via a throw_abstract_method_error
3175   //       interpreter entry point and a conditional jump to it in case of a null
3176   //       method.
3177   __ testptr(rbx, rbx);
3178   __ jcc(Assembler::zero, no_such_method);
3179 
3180   // do the call
3181   // rcx: receiver
3182   // rbx,: methodOop
3183   __ jump_from_interpreted(rbx, rdx);
3184   __ should_not_reach_here();
3185 
3186   // exception handling code follows...
3187   // note: must restore interpreter registers to canonical
3188   //       state for exception handling to work correctly!
3189 
3190   __ bind(no_such_method);
3191   // throw exception
3192   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3193   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3194   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3195   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3196   // the call_VM checks for exception, so we should never return here.
3197   __ should_not_reach_here();
3198 
3199   __ bind(no_such_interface);
3200   // throw exception
3201   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3202   __ restore_bcp();      // r13 must be correct for exception handler   (was destroyed)
3203   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3204   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3205                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3206   // the call_VM checks for exception, so we should never return here.
3207   __ should_not_reach_here();
3208 }
3209 
3210 
3211 void TemplateTable::invokehandle(int byte_no) {
3212   transition(vtos, vtos);
3213   assert(byte_no == f12_oop, "use this argument");
3214   const Register rbx_method = rbx;  // f2
3215   const Register rax_mtype  = rax;  // f1
3216   const Register rcx_recv   = rcx;
3217   const Register rdx_flags  = rdx;
3218 
3219   if (!EnableInvokeDynamic) {
3220     // rewriter does not generate this bytecode
3221     __ should_not_reach_here();
3222     return;
3223   }
3224 
3225   prepare_invoke(byte_no,
3226                  rbx_method, rax_mtype,  // get f2 methodOop, f1 MethodType
3227                  rcx_recv);
3228   __ verify_oop(rbx_method);
3229   __ verify_oop(rcx_recv);
3230   __ null_check(rcx_recv);
3231 
3232   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3233 
3234   // FIXME: profile the LambdaForm also
3235   __ profile_final_call(rax);
3236 
3237   __ jump_from_interpreted(rbx_method, rdx);
3238 }
3239 
3240 
3241 void TemplateTable::invokedynamic(int byte_no) {
3242   transition(vtos, vtos);
3243   assert(byte_no == f12_oop, "use this argument");
3244 
3245   if (!EnableInvokeDynamic) {
3246     // We should not encounter this bytecode if !EnableInvokeDynamic.
3247     // The verifier will stop it.  However, if we get past the verifier,
3248     // this will stop the thread in a reasonable way, without crashing the JVM.
3249     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3250                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3251     // the call_VM checks for exception, so we should never return here.
3252     __ should_not_reach_here();
3253     return;
3254   }
3255 
3256   const Register rbx_method   = rbx;
3257   const Register rax_callsite = rax;
3258 
3259   prepare_invoke(byte_no, rbx_method, rax_callsite);
3260 
3261   // rax: CallSite object (from f1)
3262   // rbx: MH.linkToCallSite method (from f2)
3263 
3264   // Note:  rax_callsite is already pushed by prepare_invoke
3265 
3266   // %%% should make a type profile for any invokedynamic that takes a ref argument
3267   // profile this call
3268   __ profile_call(r13);
3269 
3270   __ verify_oop(rax_callsite);
3271 
3272   __ jump_from_interpreted(rbx_method, rdx);
3273 }
3274 
3275 
3276 //-----------------------------------------------------------------------------
3277 // Allocation
3278 
3279 void TemplateTable::_new() {
3280   transition(vtos, atos);
3281   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3282   Label slow_case;
3283   Label done;
3284   Label initialize_header;
3285   Label initialize_object; // including clearing the fields
3286   Label allocate_shared;
3287 
3288   __ get_cpool_and_tags(rsi, rax);
3289   // Make sure the class we're about to instantiate has been resolved.
3290   // This is done before loading instanceKlass to be consistent with the order
3291   // how Constant Pool is updated (see constantPoolOopDesc::klass_at_put)
3292   const int tags_offset = typeArrayOopDesc::header_size(T_BYTE) * wordSize;
3293   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset),
3294           JVM_CONSTANT_Class);
3295   __ jcc(Assembler::notEqual, slow_case);
3296 
3297   // get instanceKlass
3298   __ movptr(rsi, Address(rsi, rdx,
3299             Address::times_8, sizeof(constantPoolOopDesc)));
3300 
3301   // make sure klass is initialized & doesn't have finalizer
3302   // make sure klass is fully initialized
3303   __ cmpb(Address(rsi,
3304                   instanceKlass::init_state_offset()),
3305           instanceKlass::fully_initialized);
3306   __ jcc(Assembler::notEqual, slow_case);
3307 
3308   // get instance_size in instanceKlass (scaled to a count of bytes)
3309   __ movl(rdx,
3310           Address(rsi,
3311                   Klass::layout_helper_offset()));
3312   // test to see if it has a finalizer or is malformed in some way
3313   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3314   __ jcc(Assembler::notZero, slow_case);
3315 
3316   // Allocate the instance
3317   // 1) Try to allocate in the TLAB
3318   // 2) if fail and the object is large allocate in the shared Eden
3319   // 3) if the above fails (or is not applicable), go to a slow case
3320   // (creates a new TLAB, etc.)
3321 
3322   const bool allow_shared_alloc =
3323     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3324 
3325   if (UseTLAB) {
3326     __ movptr(rax, Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())));
3327     __ lea(rbx, Address(rax, rdx, Address::times_1));
3328     __ cmpptr(rbx, Address(r15_thread, in_bytes(JavaThread::tlab_end_offset())));
3329     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3330     __ movptr(Address(r15_thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3331     if (ZeroTLAB) {
3332       // the fields have been already cleared
3333       __ jmp(initialize_header);
3334     } else {
3335       // initialize both the header and fields
3336       __ jmp(initialize_object);
3337     }
3338   }
3339 
3340   // Allocation in the shared Eden, if allowed.
3341   //
3342   // rdx: instance size in bytes
3343   if (allow_shared_alloc) {
3344     __ bind(allocate_shared);
3345 
3346     ExternalAddress top((address)Universe::heap()->top_addr());
3347     ExternalAddress end((address)Universe::heap()->end_addr());
3348 
3349     const Register RtopAddr = rscratch1;
3350     const Register RendAddr = rscratch2;
3351 
3352     __ lea(RtopAddr, top);
3353     __ lea(RendAddr, end);
3354     __ movptr(rax, Address(RtopAddr, 0));
3355 
3356     // For retries rax gets set by cmpxchgq
3357     Label retry;
3358     __ bind(retry);
3359     __ lea(rbx, Address(rax, rdx, Address::times_1));
3360     __ cmpptr(rbx, Address(RendAddr, 0));
3361     __ jcc(Assembler::above, slow_case);
3362 
3363     // Compare rax with the top addr, and if still equal, store the new
3364     // top addr in rbx at the address of the top addr pointer. Sets ZF if was
3365     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3366     //
3367     // rax: object begin
3368     // rbx: object end
3369     // rdx: instance size in bytes
3370     if (os::is_MP()) {
3371       __ lock();
3372     }
3373     __ cmpxchgptr(rbx, Address(RtopAddr, 0));
3374 
3375     // if someone beat us on the allocation, try again, otherwise continue
3376     __ jcc(Assembler::notEqual, retry);
3377 
3378     __ incr_allocated_bytes(r15_thread, rdx, 0);
3379   }
3380 
3381   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3382     // The object is initialized before the header.  If the object size is
3383     // zero, go directly to the header initialization.
3384     __ bind(initialize_object);
3385     __ decrementl(rdx, sizeof(oopDesc));
3386     __ jcc(Assembler::zero, initialize_header);
3387 
3388     // Initialize object fields
3389     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3390     __ shrl(rdx, LogBytesPerLong);  // divide by oopSize to simplify the loop
3391     {
3392       Label loop;
3393       __ bind(loop);
3394       __ movq(Address(rax, rdx, Address::times_8,
3395                       sizeof(oopDesc) - oopSize),
3396               rcx);
3397       __ decrementl(rdx);
3398       __ jcc(Assembler::notZero, loop);
3399     }
3400 
3401     // initialize object header only.
3402     __ bind(initialize_header);
3403     if (UseBiasedLocking) {
3404       __ movptr(rscratch1, Address(rsi, Klass::prototype_header_offset()));
3405       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()), rscratch1);
3406     } else {
3407       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes()),
3408                (intptr_t) markOopDesc::prototype()); // header (address 0x1)
3409     }
3410     __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code)
3411     __ store_klass_gap(rax, rcx);  // zero klass gap for compressed oops
3412     __ store_klass(rax, rsi);      // store klass last
3413 
3414     {
3415       SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3416       // Trigger dtrace event for fastpath
3417       __ push(atos); // save the return value
3418       __ call_VM_leaf(
3419            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3420       __ pop(atos); // restore the return value
3421 
3422     }
3423     __ jmp(done);
3424   }
3425 
3426 
3427   // slow case
3428   __ bind(slow_case);
3429   __ get_constant_pool(c_rarg1);
3430   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3431   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3432   __ verify_oop(rax);
3433 
3434   // continue
3435   __ bind(done);
3436 }
3437 
3438 void TemplateTable::newarray() {
3439   transition(itos, atos);
3440   __ load_unsigned_byte(c_rarg1, at_bcp(1));
3441   __ movl(c_rarg2, rax);
3442   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3443           c_rarg1, c_rarg2);
3444 }
3445 
3446 void TemplateTable::anewarray() {
3447   transition(itos, atos);
3448   __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3449   __ get_constant_pool(c_rarg1);
3450   __ movl(c_rarg3, rax);
3451   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3452           c_rarg1, c_rarg2, c_rarg3);
3453 }
3454 
3455 void TemplateTable::arraylength() {
3456   transition(atos, itos);
3457   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3458   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3459 }
3460 
3461 void TemplateTable::checkcast() {
3462   transition(atos, atos);
3463   Label done, is_null, ok_is_subtype, quicked, resolved;
3464   __ testptr(rax, rax); // object is in rax
3465   __ jcc(Assembler::zero, is_null);
3466 
3467   // Get cpool & tags index
3468   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3469   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3470   // See if bytecode has already been quicked
3471   __ cmpb(Address(rdx, rbx,
3472                   Address::times_1,
3473                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3474           JVM_CONSTANT_Class);
3475   __ jcc(Assembler::equal, quicked);
3476   __ push(atos); // save receiver for result, and for GC
3477   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3478   __ pop_ptr(rdx); // restore receiver
3479   __ jmpb(resolved);
3480 
3481   // Get superklass in rax and subklass in rbx
3482   __ bind(quicked);
3483   __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check
3484   __ movptr(rax, Address(rcx, rbx,
3485                        Address::times_8, sizeof(constantPoolOopDesc)));
3486 
3487   __ bind(resolved);
3488   __ load_klass(rbx, rdx);
3489 
3490   // Generate subtype check.  Blows rcx, rdi.  Object in rdx.
3491   // Superklass in rax.  Subklass in rbx.
3492   __ gen_subtype_check(rbx, ok_is_subtype);
3493 
3494   // Come here on failure
3495   __ push_ptr(rdx);
3496   // object is at TOS
3497   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3498 
3499   // Come here on success
3500   __ bind(ok_is_subtype);
3501   __ mov(rax, rdx); // Restore object in rdx
3502 
3503   // Collect counts on whether this check-cast sees NULLs a lot or not.
3504   if (ProfileInterpreter) {
3505     __ jmp(done);
3506     __ bind(is_null);
3507     __ profile_null_seen(rcx);
3508   } else {
3509     __ bind(is_null);   // same as 'done'
3510   }
3511   __ bind(done);
3512 }
3513 
3514 void TemplateTable::instanceof() {
3515   transition(atos, itos);
3516   Label done, is_null, ok_is_subtype, quicked, resolved;
3517   __ testptr(rax, rax);
3518   __ jcc(Assembler::zero, is_null);
3519 
3520   // Get cpool & tags index
3521   __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array
3522   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index
3523   // See if bytecode has already been quicked
3524   __ cmpb(Address(rdx, rbx,
3525                   Address::times_1,
3526                   typeArrayOopDesc::header_size(T_BYTE) * wordSize),
3527           JVM_CONSTANT_Class);
3528   __ jcc(Assembler::equal, quicked);
3529 
3530   __ push(atos); // save receiver for result, and for GC
3531   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3532   __ pop_ptr(rdx); // restore receiver
3533   __ verify_oop(rdx);
3534   __ load_klass(rdx, rdx);
3535   __ jmpb(resolved);
3536 
3537   // Get superklass in rax and subklass in rdx
3538   __ bind(quicked);
3539   __ load_klass(rdx, rax);
3540   __ movptr(rax, Address(rcx, rbx,
3541                          Address::times_8, sizeof(constantPoolOopDesc)));
3542 
3543   __ bind(resolved);
3544 
3545   // Generate subtype check.  Blows rcx, rdi
3546   // Superklass in rax.  Subklass in rdx.
3547   __ gen_subtype_check(rdx, ok_is_subtype);
3548 
3549   // Come here on failure
3550   __ xorl(rax, rax);
3551   __ jmpb(done);
3552   // Come here on success
3553   __ bind(ok_is_subtype);
3554   __ movl(rax, 1);
3555 
3556   // Collect counts on whether this test sees NULLs a lot or not.
3557   if (ProfileInterpreter) {
3558     __ jmp(done);
3559     __ bind(is_null);
3560     __ profile_null_seen(rcx);
3561   } else {
3562     __ bind(is_null);   // same as 'done'
3563   }
3564   __ bind(done);
3565   // rax = 0: obj == NULL or  obj is not an instanceof the specified klass
3566   // rax = 1: obj != NULL and obj is     an instanceof the specified klass
3567 }
3568 
3569 //-----------------------------------------------------------------------------
3570 // Breakpoints
3571 void TemplateTable::_breakpoint() {
3572   // Note: We get here even if we are single stepping..
3573   // jbug inists on setting breakpoints at every bytecode
3574   // even if we are in single step mode.
3575 
3576   transition(vtos, vtos);
3577 
3578   // get the unpatched byte code
3579   __ get_method(c_rarg1);
3580   __ call_VM(noreg,
3581              CAST_FROM_FN_PTR(address,
3582                               InterpreterRuntime::get_original_bytecode_at),
3583              c_rarg1, r13);
3584   __ mov(rbx, rax);
3585 
3586   // post the breakpoint event
3587   __ get_method(c_rarg1);
3588   __ call_VM(noreg,
3589              CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3590              c_rarg1, r13);
3591 
3592   // complete the execution of original bytecode
3593   __ dispatch_only_normal(vtos);
3594 }
3595 
3596 //-----------------------------------------------------------------------------
3597 // Exceptions
3598 
3599 void TemplateTable::athrow() {
3600   transition(atos, vtos);
3601   __ null_check(rax);
3602   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3603 }
3604 
3605 //-----------------------------------------------------------------------------
3606 // Synchronization
3607 //
3608 // Note: monitorenter & exit are symmetric routines; which is reflected
3609 //       in the assembly code structure as well
3610 //
3611 // Stack layout:
3612 //
3613 // [expressions  ] <--- rsp               = expression stack top
3614 // ..
3615 // [expressions  ]
3616 // [monitor entry] <--- monitor block top = expression stack bot
3617 // ..
3618 // [monitor entry]
3619 // [frame data   ] <--- monitor block bot
3620 // ...
3621 // [saved rbp    ] <--- rbp
3622 void TemplateTable::monitorenter() {
3623   transition(atos, vtos);
3624 
3625   // check for NULL object
3626   __ null_check(rax);
3627 
3628   const Address monitor_block_top(
3629         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3630   const Address monitor_block_bot(
3631         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3632   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3633 
3634   Label allocated;
3635 
3636   // initialize entry pointer
3637   __ xorl(c_rarg1, c_rarg1); // points to free slot or NULL
3638 
3639   // find a free slot in the monitor block (result in c_rarg1)
3640   {
3641     Label entry, loop, exit;
3642     __ movptr(c_rarg3, monitor_block_top); // points to current entry,
3643                                      // starting with top-most entry
3644     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3645                                      // of monitor block
3646     __ jmpb(entry);
3647 
3648     __ bind(loop);
3649     // check if current entry is used
3650     __ cmpptr(Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD);
3651     // if not used then remember entry in c_rarg1
3652     __ cmov(Assembler::equal, c_rarg1, c_rarg3);
3653     // check if current entry is for same object
3654     __ cmpptr(rax, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
3655     // if same object then stop searching
3656     __ jccb(Assembler::equal, exit);
3657     // otherwise advance to next entry
3658     __ addptr(c_rarg3, entry_size);
3659     __ bind(entry);
3660     // check if bottom reached
3661     __ cmpptr(c_rarg3, c_rarg2);
3662     // if not at bottom then check this entry
3663     __ jcc(Assembler::notEqual, loop);
3664     __ bind(exit);
3665   }
3666 
3667   __ testptr(c_rarg1, c_rarg1); // check if a slot has been found
3668   __ jcc(Assembler::notZero, allocated); // if found, continue with that one
3669 
3670   // allocate one if there's no free slot
3671   {
3672     Label entry, loop;
3673     // 1. compute new pointers             // rsp: old expression stack top
3674     __ movptr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3675     __ subptr(rsp, entry_size);            // move expression stack top
3676     __ subptr(c_rarg1, entry_size);        // move expression stack bottom
3677     __ mov(c_rarg3, rsp);                  // set start value for copy loop
3678     __ movptr(monitor_block_bot, c_rarg1); // set new monitor block bottom
3679     __ jmp(entry);
3680     // 2. move expression stack contents
3681     __ bind(loop);
3682     __ movptr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3683                                                       // word from old location
3684     __ movptr(Address(c_rarg3, 0), c_rarg2);          // and store it at new location
3685     __ addptr(c_rarg3, wordSize);                     // advance to next word
3686     __ bind(entry);
3687     __ cmpptr(c_rarg3, c_rarg1);            // check if bottom reached
3688     __ jcc(Assembler::notEqual, loop);      // if not at bottom then
3689                                             // copy next word
3690   }
3691 
3692   // call run-time routine
3693   // c_rarg1: points to monitor entry
3694   __ bind(allocated);
3695 
3696   // Increment bcp to point to the next bytecode, so exception
3697   // handling for async. exceptions work correctly.
3698   // The object has already been poped from the stack, so the
3699   // expression stack looks correct.
3700   __ increment(r13);
3701 
3702   // store object
3703   __ movptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), rax);
3704   __ lock_object(c_rarg1);
3705 
3706   // check to make sure this monitor doesn't cause stack overflow after locking
3707   __ save_bcp();  // in case of exception
3708   __ generate_stack_overflow_check(0);
3709 
3710   // The bcp has already been incremented. Just need to dispatch to
3711   // next instruction.
3712   __ dispatch_next(vtos);
3713 }
3714 
3715 
3716 void TemplateTable::monitorexit() {
3717   transition(atos, vtos);
3718 
3719   // check for NULL object
3720   __ null_check(rax);
3721 
3722   const Address monitor_block_top(
3723         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3724   const Address monitor_block_bot(
3725         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
3726   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
3727 
3728   Label found;
3729 
3730   // find matching slot
3731   {
3732     Label entry, loop;
3733     __ movptr(c_rarg1, monitor_block_top); // points to current entry,
3734                                      // starting with top-most entry
3735     __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3736                                      // of monitor block
3737     __ jmpb(entry);
3738 
3739     __ bind(loop);
3740     // check if current entry is for same object
3741     __ cmpptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
3742     // if same object then stop searching
3743     __ jcc(Assembler::equal, found);
3744     // otherwise advance to next entry
3745     __ addptr(c_rarg1, entry_size);
3746     __ bind(entry);
3747     // check if bottom reached
3748     __ cmpptr(c_rarg1, c_rarg2);
3749     // if not at bottom then check this entry
3750     __ jcc(Assembler::notEqual, loop);
3751   }
3752 
3753   // error handling. Unlocking was not block-structured
3754   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3755                    InterpreterRuntime::throw_illegal_monitor_state_exception));
3756   __ should_not_reach_here();
3757 
3758   // call run-time routine
3759   // rsi: points to monitor entry
3760   __ bind(found);
3761   __ push_ptr(rax); // make sure object is on stack (contract with oopMaps)
3762   __ unlock_object(c_rarg1);
3763   __ pop_ptr(rax); // discard object
3764 }
3765 
3766 
3767 // Wide instructions
3768 void TemplateTable::wide() {
3769   transition(vtos, vtos);
3770   __ load_unsigned_byte(rbx, at_bcp(1));
3771   __ lea(rscratch1, ExternalAddress((address)Interpreter::_wentry_point));
3772   __ jmp(Address(rscratch1, rbx, Address::times_8));
3773   // Note: the r13 increment step is part of the individual wide
3774   // bytecode implementations
3775 }
3776 
3777 
3778 // Multi arrays
3779 void TemplateTable::multianewarray() {
3780   transition(vtos, atos);
3781   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3782   // last dim is on top of stack; we want address of first one:
3783   // first_addr = last_addr + (ndims - 1) * wordSize
3784   __ lea(c_rarg1, Address(rsp, rax, Address::times_8, -wordSize));
3785   call_VM(rax,
3786           CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3787           c_rarg1);
3788   __ load_unsigned_byte(rbx, at_bcp(3));
3789   __ lea(rsp, Address(rsp, rbx, Address::times_8));
3790 }
3791 #endif // !CC_INTERP