1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/aprofiler.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has %u entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notified either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 595     // Currently, only attempts to allocate GC alloc regions set
 596     // do_expand to true. So, we should only reach here during a
 597     // safepoint. If this assumption changes we might have to
 598     // reconsider the use of _expand_heap_after_alloc_failure.
 599     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 600 
 601     ergo_verbose1(ErgoHeapSizing,
 602                   "attempt heap expansion",
 603                   ergo_format_reason("region allocation request failed")
 604                   ergo_format_byte("allocation request"),
 605                   word_size * HeapWordSize);
 606     if (expand(word_size * HeapWordSize)) {
 607       // Given that expand() succeeded in expanding the heap, and we
 608       // always expand the heap by an amount aligned to the heap
 609       // region size, the free list should in theory not be empty. So
 610       // it would probably be OK to use remove_head(). But the extra
 611       // check for NULL is unlikely to be a performance issue here (we
 612       // just expanded the heap!) so let's just be conservative and
 613       // use remove_head_or_null().
 614       res = _free_list.remove_head_or_null();
 615     } else {
 616       _expand_heap_after_alloc_failure = false;
 617     }
 618   }
 619   return res;
 620 }
 621 
 622 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 623                                                         size_t word_size) {
 624   assert(isHumongous(word_size), "word_size should be humongous");
 625   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 626 
 627   uint first = G1_NULL_HRS_INDEX;
 628   if (num_regions == 1) {
 629     // Only one region to allocate, no need to go through the slower
 630     // path. The caller will attempt the expansion if this fails, so
 631     // let's not try to expand here too.
 632     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 633     if (hr != NULL) {
 634       first = hr->hrs_index();
 635     } else {
 636       first = G1_NULL_HRS_INDEX;
 637     }
 638   } else {
 639     // We can't allocate humongous regions while cleanupComplete() is
 640     // running, since some of the regions we find to be empty might not
 641     // yet be added to the free list and it is not straightforward to
 642     // know which list they are on so that we can remove them. Note
 643     // that we only need to do this if we need to allocate more than
 644     // one region to satisfy the current humongous allocation
 645     // request. If we are only allocating one region we use the common
 646     // region allocation code (see above).
 647     wait_while_free_regions_coming();
 648     append_secondary_free_list_if_not_empty_with_lock();
 649 
 650     if (free_regions() >= num_regions) {
 651       first = _hrs.find_contiguous(num_regions);
 652       if (first != G1_NULL_HRS_INDEX) {
 653         for (uint i = first; i < first + num_regions; ++i) {
 654           HeapRegion* hr = region_at(i);
 655           assert(hr->is_empty(), "sanity");
 656           assert(is_on_master_free_list(hr), "sanity");
 657           hr->set_pending_removal(true);
 658         }
 659         _free_list.remove_all_pending(num_regions);
 660       }
 661     }
 662   }
 663   return first;
 664 }
 665 
 666 HeapWord*
 667 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 668                                                            uint num_regions,
 669                                                            size_t word_size) {
 670   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 671   assert(isHumongous(word_size), "word_size should be humongous");
 672   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 673 
 674   // Index of last region in the series + 1.
 675   uint last = first + num_regions;
 676 
 677   // We need to initialize the region(s) we just discovered. This is
 678   // a bit tricky given that it can happen concurrently with
 679   // refinement threads refining cards on these regions and
 680   // potentially wanting to refine the BOT as they are scanning
 681   // those cards (this can happen shortly after a cleanup; see CR
 682   // 6991377). So we have to set up the region(s) carefully and in
 683   // a specific order.
 684 
 685   // The word size sum of all the regions we will allocate.
 686   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 687   assert(word_size <= word_size_sum, "sanity");
 688 
 689   // This will be the "starts humongous" region.
 690   HeapRegion* first_hr = region_at(first);
 691   // The header of the new object will be placed at the bottom of
 692   // the first region.
 693   HeapWord* new_obj = first_hr->bottom();
 694   // This will be the new end of the first region in the series that
 695   // should also match the end of the last region in the series.
 696   HeapWord* new_end = new_obj + word_size_sum;
 697   // This will be the new top of the first region that will reflect
 698   // this allocation.
 699   HeapWord* new_top = new_obj + word_size;
 700 
 701   // First, we need to zero the header of the space that we will be
 702   // allocating. When we update top further down, some refinement
 703   // threads might try to scan the region. By zeroing the header we
 704   // ensure that any thread that will try to scan the region will
 705   // come across the zero klass word and bail out.
 706   //
 707   // NOTE: It would not have been correct to have used
 708   // CollectedHeap::fill_with_object() and make the space look like
 709   // an int array. The thread that is doing the allocation will
 710   // later update the object header to a potentially different array
 711   // type and, for a very short period of time, the klass and length
 712   // fields will be inconsistent. This could cause a refinement
 713   // thread to calculate the object size incorrectly.
 714   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 715 
 716   // We will set up the first region as "starts humongous". This
 717   // will also update the BOT covering all the regions to reflect
 718   // that there is a single object that starts at the bottom of the
 719   // first region.
 720   first_hr->set_startsHumongous(new_top, new_end);
 721 
 722   // Then, if there are any, we will set up the "continues
 723   // humongous" regions.
 724   HeapRegion* hr = NULL;
 725   for (uint i = first + 1; i < last; ++i) {
 726     hr = region_at(i);
 727     hr->set_continuesHumongous(first_hr);
 728   }
 729   // If we have "continues humongous" regions (hr != NULL), then the
 730   // end of the last one should match new_end.
 731   assert(hr == NULL || hr->end() == new_end, "sanity");
 732 
 733   // Up to this point no concurrent thread would have been able to
 734   // do any scanning on any region in this series. All the top
 735   // fields still point to bottom, so the intersection between
 736   // [bottom,top] and [card_start,card_end] will be empty. Before we
 737   // update the top fields, we'll do a storestore to make sure that
 738   // no thread sees the update to top before the zeroing of the
 739   // object header and the BOT initialization.
 740   OrderAccess::storestore();
 741 
 742   // Now that the BOT and the object header have been initialized,
 743   // we can update top of the "starts humongous" region.
 744   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 745          "new_top should be in this region");
 746   first_hr->set_top(new_top);
 747   if (_hr_printer.is_active()) {
 748     HeapWord* bottom = first_hr->bottom();
 749     HeapWord* end = first_hr->orig_end();
 750     if ((first + 1) == last) {
 751       // the series has a single humongous region
 752       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 753     } else {
 754       // the series has more than one humongous regions
 755       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 756     }
 757   }
 758 
 759   // Now, we will update the top fields of the "continues humongous"
 760   // regions. The reason we need to do this is that, otherwise,
 761   // these regions would look empty and this will confuse parts of
 762   // G1. For example, the code that looks for a consecutive number
 763   // of empty regions will consider them empty and try to
 764   // re-allocate them. We can extend is_empty() to also include
 765   // !continuesHumongous(), but it is easier to just update the top
 766   // fields here. The way we set top for all regions (i.e., top ==
 767   // end for all regions but the last one, top == new_top for the
 768   // last one) is actually used when we will free up the humongous
 769   // region in free_humongous_region().
 770   hr = NULL;
 771   for (uint i = first + 1; i < last; ++i) {
 772     hr = region_at(i);
 773     if ((i + 1) == last) {
 774       // last continues humongous region
 775       assert(hr->bottom() < new_top && new_top <= hr->end(),
 776              "new_top should fall on this region");
 777       hr->set_top(new_top);
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 779     } else {
 780       // not last one
 781       assert(new_top > hr->end(), "new_top should be above this region");
 782       hr->set_top(hr->end());
 783       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 784     }
 785   }
 786   // If we have continues humongous regions (hr != NULL), then the
 787   // end of the last one should match new_end and its top should
 788   // match new_top.
 789   assert(hr == NULL ||
 790          (hr->end() == new_end && hr->top() == new_top), "sanity");
 791 
 792   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 793   _summary_bytes_used += first_hr->used();
 794   _humongous_set.add(first_hr);
 795 
 796   return new_obj;
 797 }
 798 
 799 // If could fit into free regions w/o expansion, try.
 800 // Otherwise, if can expand, do so.
 801 // Otherwise, if using ex regions might help, try with ex given back.
 802 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 803   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 804 
 805   verify_region_sets_optional();
 806 
 807   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 808   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 809   uint x_num = expansion_regions();
 810   uint fs = _hrs.free_suffix();
 811   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 812   if (first == G1_NULL_HRS_INDEX) {
 813     // The only thing we can do now is attempt expansion.
 814     if (fs + x_num >= num_regions) {
 815       // If the number of regions we're trying to allocate for this
 816       // object is at most the number of regions in the free suffix,
 817       // then the call to humongous_obj_allocate_find_first() above
 818       // should have succeeded and we wouldn't be here.
 819       //
 820       // We should only be trying to expand when the free suffix is
 821       // not sufficient for the object _and_ we have some expansion
 822       // room available.
 823       assert(num_regions > fs, "earlier allocation should have succeeded");
 824 
 825       ergo_verbose1(ErgoHeapSizing,
 826                     "attempt heap expansion",
 827                     ergo_format_reason("humongous allocation request failed")
 828                     ergo_format_byte("allocation request"),
 829                     word_size * HeapWordSize);
 830       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 831         // Even though the heap was expanded, it might not have
 832         // reached the desired size. So, we cannot assume that the
 833         // allocation will succeed.
 834         first = humongous_obj_allocate_find_first(num_regions, word_size);
 835       }
 836     }
 837   }
 838 
 839   HeapWord* result = NULL;
 840   if (first != G1_NULL_HRS_INDEX) {
 841     result =
 842       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 843     assert(result != NULL, "it should always return a valid result");
 844 
 845     // A successful humongous object allocation changes the used space
 846     // information of the old generation so we need to recalculate the
 847     // sizes and update the jstat counters here.
 848     g1mm()->update_sizes();
 849   }
 850 
 851   verify_region_sets_optional();
 852 
 853   return result;
 854 }
 855 
 856 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 857   assert_heap_not_locked_and_not_at_safepoint();
 858   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 859 
 860   unsigned int dummy_gc_count_before;
 861   return attempt_allocation(word_size, &dummy_gc_count_before);
 862 }
 863 
 864 HeapWord*
 865 G1CollectedHeap::mem_allocate(size_t word_size,
 866                               bool*  gc_overhead_limit_was_exceeded) {
 867   assert_heap_not_locked_and_not_at_safepoint();
 868 
 869   // Loop until the allocation is satisfied, or unsatisfied after GC.
 870   for (int try_count = 1; /* we'll return */; try_count += 1) {
 871     unsigned int gc_count_before;
 872 
 873     HeapWord* result = NULL;
 874     if (!isHumongous(word_size)) {
 875       result = attempt_allocation(word_size, &gc_count_before);
 876     } else {
 877       result = attempt_allocation_humongous(word_size, &gc_count_before);
 878     }
 879     if (result != NULL) {
 880       return result;
 881     }
 882 
 883     // Create the garbage collection operation...
 884     VM_G1CollectForAllocation op(gc_count_before, word_size);
 885     // ...and get the VM thread to execute it.
 886     VMThread::execute(&op);
 887 
 888     if (op.prologue_succeeded() && op.pause_succeeded()) {
 889       // If the operation was successful we'll return the result even
 890       // if it is NULL. If the allocation attempt failed immediately
 891       // after a Full GC, it's unlikely we'll be able to allocate now.
 892       HeapWord* result = op.result();
 893       if (result != NULL && !isHumongous(word_size)) {
 894         // Allocations that take place on VM operations do not do any
 895         // card dirtying and we have to do it here. We only have to do
 896         // this for non-humongous allocations, though.
 897         dirty_young_block(result, word_size);
 898       }
 899       return result;
 900     } else {
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret) {
 918   // Make sure you read the note in attempt_allocation_humongous().
 919 
 920   assert_heap_not_locked_and_not_at_safepoint();
 921   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 922          "be called for humongous allocation requests");
 923 
 924   // We should only get here after the first-level allocation attempt
 925   // (attempt_allocation()) failed to allocate.
 926 
 927   // We will loop until a) we manage to successfully perform the
 928   // allocation or b) we successfully schedule a collection which
 929   // fails to perform the allocation. b) is the only case when we'll
 930   // return NULL.
 931   HeapWord* result = NULL;
 932   for (int try_count = 1; /* we'll return */; try_count += 1) {
 933     bool should_try_gc;
 934     unsigned int gc_count_before;
 935 
 936     {
 937       MutexLockerEx x(Heap_lock);
 938 
 939       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 940                                                       false /* bot_updates */);
 941       if (result != NULL) {
 942         return result;
 943       }
 944 
 945       // If we reach here, attempt_allocation_locked() above failed to
 946       // allocate a new region. So the mutator alloc region should be NULL.
 947       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 948 
 949       if (GC_locker::is_active_and_needs_gc()) {
 950         if (g1_policy()->can_expand_young_list()) {
 951           // No need for an ergo verbose message here,
 952           // can_expand_young_list() does this when it returns true.
 953           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 954                                                       false /* bot_updates */);
 955           if (result != NULL) {
 956             return result;
 957           }
 958         }
 959         should_try_gc = false;
 960       } else {
 961         // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       bool succeeded;
 978       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 979       if (result != NULL) {
 980         assert(succeeded, "only way to get back a non-NULL result");
 981         return result;
 982       }
 983 
 984       if (succeeded) {
 985         // If we get here we successfully scheduled a collection which
 986         // failed to allocate. No point in trying to allocate
 987         // further. We'll just return NULL.
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992     } else {
 993       // The GCLocker is either active or the GCLocker initiated
 994       // GC has not yet been performed. Stall until it is and
 995       // then retry the allocation.
 996       GC_locker::stall_until_clear();
 997     }
 998 
 999     // We can reach here if we were unsuccessful in scheduling a
1000     // collection (because another thread beat us to it) or if we were
1001     // stalled due to the GC locker. In either can we should retry the
1002     // allocation attempt in case another thread successfully
1003     // performed a collection and reclaimed enough space. We do the
1004     // first attempt (without holding the Heap_lock) here and the
1005     // follow-on attempt will be at the start of the next loop
1006     // iteration (after taking the Heap_lock).
1007     result = _mutator_alloc_region.attempt_allocation(word_size,
1008                                                       false /* bot_updates */);
1009     if (result != NULL) {
1010       return result;
1011     }
1012 
1013     // Give a warning if we seem to be looping forever.
1014     if ((QueuedAllocationWarningCount > 0) &&
1015         (try_count % QueuedAllocationWarningCount == 0)) {
1016       warning("G1CollectedHeap::attempt_allocation_slow() "
1017               "retries %d times", try_count);
1018     }
1019   }
1020 
1021   ShouldNotReachHere();
1022   return NULL;
1023 }
1024 
1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026                                           unsigned int * gc_count_before_ret) {
1027   // The structure of this method has a lot of similarities to
1028   // attempt_allocation_slow(). The reason these two were not merged
1029   // into a single one is that such a method would require several "if
1030   // allocation is not humongous do this, otherwise do that"
1031   // conditional paths which would obscure its flow. In fact, an early
1032   // version of this code did use a unified method which was harder to
1033   // follow and, as a result, it had subtle bugs that were hard to
1034   // track down. So keeping these two methods separate allows each to
1035   // be more readable. It will be good to keep these two in sync as
1036   // much as possible.
1037 
1038   assert_heap_not_locked_and_not_at_safepoint();
1039   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1040          "should only be called for humongous allocations");
1041 
1042   // Humongous objects can exhaust the heap quickly, so we should check if we
1043   // need to start a marking cycle at each humongous object allocation. We do
1044   // the check before we do the actual allocation. The reason for doing it
1045   // before the allocation is that we avoid having to keep track of the newly
1046   // allocated memory while we do a GC.
1047   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1048                                            word_size)) {
1049     collect(GCCause::_g1_humongous_allocation);
1050   }
1051 
1052   // We will loop until a) we manage to successfully perform the
1053   // allocation or b) we successfully schedule a collection which
1054   // fails to perform the allocation. b) is the only case when we'll
1055   // return NULL.
1056   HeapWord* result = NULL;
1057   for (int try_count = 1; /* we'll return */; try_count += 1) {
1058     bool should_try_gc;
1059     unsigned int gc_count_before;
1060 
1061     {
1062       MutexLockerEx x(Heap_lock);
1063 
1064       // Given that humongous objects are not allocated in young
1065       // regions, we'll first try to do the allocation without doing a
1066       // collection hoping that there's enough space in the heap.
1067       result = humongous_obj_allocate(word_size);
1068       if (result != NULL) {
1069         return result;
1070       }
1071 
1072       if (GC_locker::is_active_and_needs_gc()) {
1073         should_try_gc = false;
1074       } else {
1075          // The GCLocker may not be active but the GCLocker initiated
1076         // GC may not yet have been performed (GCLocker::needs_gc()
1077         // returns true). In this case we do not try this GC and
1078         // wait until the GCLocker initiated GC is performed, and
1079         // then retry the allocation.
1080         if (GC_locker::needs_gc()) {
1081           should_try_gc = false;
1082         } else {
1083           // Read the GC count while still holding the Heap_lock.
1084           gc_count_before = total_collections();
1085           should_try_gc = true;
1086         }
1087       }
1088     }
1089 
1090     if (should_try_gc) {
1091       // If we failed to allocate the humongous object, we should try to
1092       // do a collection pause (if we're allowed) in case it reclaims
1093       // enough space for the allocation to succeed after the pause.
1094 
1095       bool succeeded;
1096       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1097       if (result != NULL) {
1098         assert(succeeded, "only way to get back a non-NULL result");
1099         return result;
1100       }
1101 
1102       if (succeeded) {
1103         // If we get here we successfully scheduled a collection which
1104         // failed to allocate. No point in trying to allocate
1105         // further. We'll just return NULL.
1106         MutexLockerEx x(Heap_lock);
1107         *gc_count_before_ret = total_collections();
1108         return NULL;
1109       }
1110     } else {
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115     }
1116 
1117     // We can reach here if we were unsuccessful in scheduling a
1118     // collection (because another thread beat us to it) or if we were
1119     // stalled due to the GC locker. In either can we should retry the
1120     // allocation attempt in case another thread successfully
1121     // performed a collection and reclaimed enough space.  Give a
1122     // warning if we seem to be looping forever.
1123 
1124     if ((QueuedAllocationWarningCount > 0) &&
1125         (try_count % QueuedAllocationWarningCount == 0)) {
1126       warning("G1CollectedHeap::attempt_allocation_humongous() "
1127               "retries %d times", try_count);
1128     }
1129   }
1130 
1131   ShouldNotReachHere();
1132   return NULL;
1133 }
1134 
1135 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1136                                        bool expect_null_mutator_alloc_region) {
1137   assert_at_safepoint(true /* should_be_vm_thread */);
1138   assert(_mutator_alloc_region.get() == NULL ||
1139                                              !expect_null_mutator_alloc_region,
1140          "the current alloc region was unexpectedly found to be non-NULL");
1141 
1142   if (!isHumongous(word_size)) {
1143     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1144                                                       false /* bot_updates */);
1145   } else {
1146     HeapWord* result = humongous_obj_allocate(word_size);
1147     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1148       g1_policy()->set_initiate_conc_mark_if_possible();
1149     }
1150     return result;
1151   }
1152 
1153   ShouldNotReachHere();
1154 }
1155 
1156 class PostMCRemSetClearClosure: public HeapRegionClosure {
1157   G1CollectedHeap* _g1h;
1158   ModRefBarrierSet* _mr_bs;
1159 public:
1160   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1161     _g1h(g1h), _mr_bs(mr_bs) { }
1162   bool doHeapRegion(HeapRegion* r) {
1163     if (r->continuesHumongous()) {
1164       return false;
1165     }
1166     _g1h->reset_gc_time_stamps(r);
1167     HeapRegionRemSet* hrrs = r->rem_set();
1168     if (hrrs != NULL) hrrs->clear();
1169     // You might think here that we could clear just the cards
1170     // corresponding to the used region.  But no: if we leave a dirty card
1171     // in a region we might allocate into, then it would prevent that card
1172     // from being enqueued, and cause it to be missed.
1173     // Re: the performance cost: we shouldn't be doing full GC anyway!
1174     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1175     return false;
1176   }
1177 };
1178 
1179 void G1CollectedHeap::clear_rsets_post_compaction() {
1180   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1181   heap_region_iterate(&rs_clear);
1182 }
1183 
1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1185   G1CollectedHeap*   _g1h;
1186   UpdateRSOopClosure _cl;
1187   int                _worker_i;
1188 public:
1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190     _cl(g1->g1_rem_set(), worker_i),
1191     _worker_i(worker_i),
1192     _g1h(g1)
1193   { }
1194 
1195   bool doHeapRegion(HeapRegion* r) {
1196     if (!r->continuesHumongous()) {
1197       _cl.set_from(r);
1198       r->oop_iterate(&_cl);
1199     }
1200     return false;
1201   }
1202 };
1203 
1204 class ParRebuildRSTask: public AbstractGangTask {
1205   G1CollectedHeap* _g1;
1206 public:
1207   ParRebuildRSTask(G1CollectedHeap* g1)
1208     : AbstractGangTask("ParRebuildRSTask"),
1209       _g1(g1)
1210   { }
1211 
1212   void work(uint worker_id) {
1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215                                           _g1->workers()->active_workers(),
1216                                          HeapRegion::RebuildRSClaimValue);
1217   }
1218 };
1219 
1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
1221 private:
1222   G1HRPrinter* _hr_printer;
1223 public:
1224   bool doHeapRegion(HeapRegion* hr) {
1225     assert(!hr->is_young(), "not expecting to find young regions");
1226     // We only generate output for non-empty regions.
1227     if (!hr->is_empty()) {
1228       if (!hr->isHumongous()) {
1229         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1230       } else if (hr->startsHumongous()) {
1231         if (hr->region_num() == 1) {
1232           // single humongous region
1233           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1234         } else {
1235           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1236         }
1237       } else {
1238         assert(hr->continuesHumongous(), "only way to get here");
1239         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1240       }
1241     }
1242     return false;
1243   }
1244 
1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1246     : _hr_printer(hr_printer) { }
1247 };
1248 
1249 void G1CollectedHeap::print_hrs_post_compaction() {
1250   PostCompactionPrinterClosure cl(hr_printer());
1251   heap_region_iterate(&cl);
1252 }
1253 
1254 double G1CollectedHeap::verify(bool guard, const char* msg) {
1255   double verify_time_ms = 0.0;
1256 
1257   if (guard && total_collections() >= VerifyGCStartAt) {
1258     double verify_start = os::elapsedTime();
1259     HandleMark hm;  // Discard invalid handles created during verification
1260     gclog_or_tty->print(msg);
1261     prepare_for_verify();
1262     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1263     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1264   }
1265 
1266   return verify_time_ms;
1267 }
1268 
1269 void G1CollectedHeap::verify_before_gc() {
1270   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1271   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1272 }
1273 
1274 void G1CollectedHeap::verify_after_gc() {
1275   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1276   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1277 }
1278 
1279 bool G1CollectedHeap::do_collection(bool explicit_gc,
1280                                     bool clear_all_soft_refs,
1281                                     size_t word_size) {
1282   assert_at_safepoint(true /* should_be_vm_thread */);
1283 
1284   if (GC_locker::check_active_before_gc()) {
1285     return false;
1286   }
1287 
1288   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1289   gc_timer->register_gc_start(os::elapsed_counter());
1290 
1291   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1292   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1293 
1294   SvcGCMarker sgcm(SvcGCMarker::FULL);
1295   ResourceMark rm;
1296 
1297   print_heap_before_gc();
1298   trace_heap_before_gc(gc_tracer);
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1317     TraceCollectorStats tcs(g1mm()->full_collection_counters());
1318     TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1319 
1320     double start = os::elapsedTime();
1321     g1_policy()->record_full_collection_start();
1322 
1323     // Note: When we have a more flexible GC logging framework that
1324     // allows us to add optional attributes to a GC log record we
1325     // could consider timing and reporting how long we wait in the
1326     // following two methods.
1327     wait_while_free_regions_coming();
1328     // If we start the compaction before the CM threads finish
1329     // scanning the root regions we might trip them over as we'll
1330     // be moving objects / updating references. So let's wait until
1331     // they are done. By telling them to abort, they should complete
1332     // early.
1333     _cm->root_regions()->abort();
1334     _cm->root_regions()->wait_until_scan_finished();
1335     append_secondary_free_list_if_not_empty_with_lock();
1336 
1337     gc_prologue(true);
1338     increment_total_collections(true /* full gc */);
1339     increment_old_marking_cycles_started();
1340 
1341     size_t g1h_prev_used = used();
1342     assert(used() == recalculate_used(), "Should be equal");
1343 
1344     verify_before_gc();
1345 
1346     pre_full_gc_dump(gc_timer);
1347 
1348     COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350     // Disable discovery and empty the discovered lists
1351     // for the CM ref processor.
1352     ref_processor_cm()->disable_discovery();
1353     ref_processor_cm()->abandon_partial_discovery();
1354     ref_processor_cm()->verify_no_references_recorded();
1355 
1356     // Abandon current iterations of concurrent marking and concurrent
1357     // refinement, if any are in progress. We have to do this before
1358     // wait_until_scan_finished() below.
1359     concurrent_mark()->abort();
1360 
1361     // Make sure we'll choose a new allocation region afterwards.
1362     release_mutator_alloc_region();
1363     abandon_gc_alloc_regions();
1364     g1_rem_set()->cleanupHRRS();
1365 
1366     // We should call this after we retire any currently active alloc
1367     // regions so that all the ALLOC / RETIRE events are generated
1368     // before the start GC event.
1369     _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371     // We may have added regions to the current incremental collection
1372     // set between the last GC or pause and now. We need to clear the
1373     // incremental collection set and then start rebuilding it afresh
1374     // after this full GC.
1375     abandon_collection_set(g1_policy()->inc_cset_head());
1376     g1_policy()->clear_incremental_cset();
1377     g1_policy()->stop_incremental_cset_building();
1378 
1379     tear_down_region_sets(false /* free_list_only */);
1380     g1_policy()->set_gcs_are_young(true);
1381 
1382     // See the comments in g1CollectedHeap.hpp and
1383     // G1CollectedHeap::ref_processing_init() about
1384     // how reference processing currently works in G1.
1385 
1386     // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387     ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389     // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390     ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392     ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393     ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395     // Do collection work
1396     {
1397       HandleMark hm;  // Discard invalid handles created during gc
1398       G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399     }
1400 
1401     assert(free_regions() == 0, "we should not have added any free regions");
1402     rebuild_region_sets(false /* free_list_only */);
1403 
1404     // Enqueue any discovered reference objects that have
1405     // not been removed from the discovered lists.
1406     ref_processor_stw()->enqueue_discovered_references();
1407 
1408     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410     MemoryService::track_memory_usage();
1411 
1412     verify_after_gc();
1413 
1414     assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1415     ref_processor_stw()->verify_no_references_recorded();
1416 
1417     // Note: since we've just done a full GC, concurrent
1418     // marking is no longer active. Therefore we need not
1419     // re-enable reference discovery for the CM ref processor.
1420     // That will be done at the start of the next marking cycle.
1421     assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1422     ref_processor_cm()->verify_no_references_recorded();
1423 
1424     reset_gc_time_stamp();
1425     // Since everything potentially moved, we will clear all remembered
1426     // sets, and clear all cards.  Later we will rebuild remembered
1427     // sets. We will also reset the GC time stamps of the regions.
1428     clear_rsets_post_compaction();
1429     check_gc_time_stamps();
1430 
1431     // Resize the heap if necessary.
1432     resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1433 
1434     if (_hr_printer.is_active()) {
1435       // We should do this after we potentially resize the heap so
1436       // that all the COMMIT / UNCOMMIT events are generated before
1437       // the end GC event.
1438 
1439       print_hrs_post_compaction();
1440       _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1441     }
1442 
1443     if (_cg1r->use_cache()) {
1444       _cg1r->clear_and_record_card_counts();
1445       _cg1r->clear_hot_cache();
1446     }
1447 
1448     // Rebuild remembered sets of all regions.
1449     if (G1CollectedHeap::use_parallel_gc_threads()) {
1450       uint n_workers =
1451         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1452                                        workers()->active_workers(),
1453                                        Threads::number_of_non_daemon_threads());
1454       assert(UseDynamicNumberOfGCThreads ||
1455              n_workers == workers()->total_workers(),
1456              "If not dynamic should be using all the  workers");
1457       workers()->set_active_workers(n_workers);
1458       // Set parallel threads in the heap (_n_par_threads) only
1459       // before a parallel phase and always reset it to 0 after
1460       // the phase so that the number of parallel threads does
1461       // no get carried forward to a serial phase where there
1462       // may be code that is "possibly_parallel".
1463       set_par_threads(n_workers);
1464 
1465       ParRebuildRSTask rebuild_rs_task(this);
1466       assert(check_heap_region_claim_values(
1467              HeapRegion::InitialClaimValue), "sanity check");
1468       assert(UseDynamicNumberOfGCThreads ||
1469              workers()->active_workers() == workers()->total_workers(),
1470         "Unless dynamic should use total workers");
1471       // Use the most recent number of  active workers
1472       assert(workers()->active_workers() > 0,
1473         "Active workers not properly set");
1474       set_par_threads(workers()->active_workers());
1475       workers()->run_task(&rebuild_rs_task);
1476       set_par_threads(0);
1477       assert(check_heap_region_claim_values(
1478              HeapRegion::RebuildRSClaimValue), "sanity check");
1479       reset_heap_region_claim_values();
1480     } else {
1481       RebuildRSOutOfRegionClosure rebuild_rs(this);
1482       heap_region_iterate(&rebuild_rs);
1483     }
1484 
1485     if (G1Log::fine()) {
1486       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1487     }
1488 
1489     if (true) { // FIXME
1490       // Ask the permanent generation to adjust size for full collections
1491       perm()->compute_new_size();
1492     }
1493 
1494     // Start a new incremental collection set for the next pause
1495     assert(g1_policy()->collection_set() == NULL, "must be");
1496     g1_policy()->start_incremental_cset_building();
1497 
1498     // Clear the _cset_fast_test bitmap in anticipation of adding
1499     // regions to the incremental collection set for the next
1500     // evacuation pause.
1501     clear_cset_fast_test();
1502 
1503     init_mutator_alloc_region();
1504 
1505     double end = os::elapsedTime();
1506     g1_policy()->record_full_collection_end();
1507 
1508 #ifdef TRACESPINNING
1509     ParallelTaskTerminator::print_termination_counts();
1510 #endif
1511 
1512     gc_epilogue(true);
1513 
1514     // Discard all rset updates
1515     JavaThread::dirty_card_queue_set().abandon_logs();
1516     assert(!G1DeferredRSUpdate
1517            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1518 
1519     _young_list->reset_sampled_info();
1520     // At this point there should be no regions in the
1521     // entire heap tagged as young.
1522     assert( check_young_list_empty(true /* check_heap */),
1523       "young list should be empty at this point");
1524 
1525     // Update the number of full collections that have been completed.
1526     increment_old_marking_cycles_completed(false /* concurrent */);
1527 
1528     _hrs.verify_optional();
1529     verify_region_sets_optional();
1530 
1531     print_heap_after_gc();
1532     trace_heap_after_gc(gc_tracer);
1533 
1534     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1535     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1536     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1537     // before any GC notifications are raised.
1538     g1mm()->update_sizes();
1539   }
1540 
1541   post_full_gc_dump(gc_timer);
1542 
1543   gc_timer->register_gc_end(os::elapsed_counter());
1544 
1545   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1546 
1547   return true;
1548 }
1549 
1550 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1551   // do_collection() will return whether it succeeded in performing
1552   // the GC. Currently, there is no facility on the
1553   // do_full_collection() API to notify the caller than the collection
1554   // did not succeed (e.g., because it was locked out by the GC
1555   // locker). So, right now, we'll ignore the return value.
1556   bool dummy = do_collection(true,                /* explicit_gc */
1557                              clear_all_soft_refs,
1558                              0                    /* word_size */);
1559 }
1560 
1561 // This code is mostly copied from TenuredGeneration.
1562 void
1563 G1CollectedHeap::
1564 resize_if_necessary_after_full_collection(size_t word_size) {
1565   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1566 
1567   // Include the current allocation, if any, and bytes that will be
1568   // pre-allocated to support collections, as "used".
1569   const size_t used_after_gc = used();
1570   const size_t capacity_after_gc = capacity();
1571   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1572 
1573   // This is enforced in arguments.cpp.
1574   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1575          "otherwise the code below doesn't make sense");
1576 
1577   // We don't have floating point command-line arguments
1578   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1579   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1580   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1581   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1582 
1583   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1584   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1585 
1586   // We have to be careful here as these two calculations can overflow
1587   // 32-bit size_t's.
1588   double used_after_gc_d = (double) used_after_gc;
1589   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1590   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1591 
1592   // Let's make sure that they are both under the max heap size, which
1593   // by default will make them fit into a size_t.
1594   double desired_capacity_upper_bound = (double) max_heap_size;
1595   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1596                                     desired_capacity_upper_bound);
1597   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1598                                     desired_capacity_upper_bound);
1599 
1600   // We can now safely turn them into size_t's.
1601   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1602   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1603 
1604   // This assert only makes sense here, before we adjust them
1605   // with respect to the min and max heap size.
1606   assert(minimum_desired_capacity <= maximum_desired_capacity,
1607          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1608                  "maximum_desired_capacity = "SIZE_FORMAT,
1609                  minimum_desired_capacity, maximum_desired_capacity));
1610 
1611   // Should not be greater than the heap max size. No need to adjust
1612   // it with respect to the heap min size as it's a lower bound (i.e.,
1613   // we'll try to make the capacity larger than it, not smaller).
1614   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1615   // Should not be less than the heap min size. No need to adjust it
1616   // with respect to the heap max size as it's an upper bound (i.e.,
1617   // we'll try to make the capacity smaller than it, not greater).
1618   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1619 
1620   if (capacity_after_gc < minimum_desired_capacity) {
1621     // Don't expand unless it's significant
1622     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1623     ergo_verbose4(ErgoHeapSizing,
1624                   "attempt heap expansion",
1625                   ergo_format_reason("capacity lower than "
1626                                      "min desired capacity after Full GC")
1627                   ergo_format_byte("capacity")
1628                   ergo_format_byte("occupancy")
1629                   ergo_format_byte_perc("min desired capacity"),
1630                   capacity_after_gc, used_after_gc,
1631                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1632     expand(expand_bytes);
1633 
1634     // No expansion, now see if we want to shrink
1635   } else if (capacity_after_gc > maximum_desired_capacity) {
1636     // Capacity too large, compute shrinking size
1637     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1638     ergo_verbose4(ErgoHeapSizing,
1639                   "attempt heap shrinking",
1640                   ergo_format_reason("capacity higher than "
1641                                      "max desired capacity after Full GC")
1642                   ergo_format_byte("capacity")
1643                   ergo_format_byte("occupancy")
1644                   ergo_format_byte_perc("max desired capacity"),
1645                   capacity_after_gc, used_after_gc,
1646                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1647     shrink(shrink_bytes);
1648   }
1649 }
1650 
1651 
1652 HeapWord*
1653 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1654                                            bool* succeeded) {
1655   assert_at_safepoint(true /* should_be_vm_thread */);
1656 
1657   *succeeded = true;
1658   // Let's attempt the allocation first.
1659   HeapWord* result =
1660     attempt_allocation_at_safepoint(word_size,
1661                                  false /* expect_null_mutator_alloc_region */);
1662   if (result != NULL) {
1663     assert(*succeeded, "sanity");
1664     return result;
1665   }
1666 
1667   // In a G1 heap, we're supposed to keep allocation from failing by
1668   // incremental pauses.  Therefore, at least for now, we'll favor
1669   // expansion over collection.  (This might change in the future if we can
1670   // do something smarter than full collection to satisfy a failed alloc.)
1671   result = expand_and_allocate(word_size);
1672   if (result != NULL) {
1673     assert(*succeeded, "sanity");
1674     return result;
1675   }
1676 
1677   // Expansion didn't work, we'll try to do a Full GC.
1678   bool gc_succeeded = do_collection(false, /* explicit_gc */
1679                                     false, /* clear_all_soft_refs */
1680                                     word_size);
1681   if (!gc_succeeded) {
1682     *succeeded = false;
1683     return NULL;
1684   }
1685 
1686   // Retry the allocation
1687   result = attempt_allocation_at_safepoint(word_size,
1688                                   true /* expect_null_mutator_alloc_region */);
1689   if (result != NULL) {
1690     assert(*succeeded, "sanity");
1691     return result;
1692   }
1693 
1694   // Then, try a Full GC that will collect all soft references.
1695   gc_succeeded = do_collection(false, /* explicit_gc */
1696                                true,  /* clear_all_soft_refs */
1697                                word_size);
1698   if (!gc_succeeded) {
1699     *succeeded = false;
1700     return NULL;
1701   }
1702 
1703   // Retry the allocation once more
1704   result = attempt_allocation_at_safepoint(word_size,
1705                                   true /* expect_null_mutator_alloc_region */);
1706   if (result != NULL) {
1707     assert(*succeeded, "sanity");
1708     return result;
1709   }
1710 
1711   assert(!collector_policy()->should_clear_all_soft_refs(),
1712          "Flag should have been handled and cleared prior to this point");
1713 
1714   // What else?  We might try synchronous finalization later.  If the total
1715   // space available is large enough for the allocation, then a more
1716   // complete compaction phase than we've tried so far might be
1717   // appropriate.
1718   assert(*succeeded, "sanity");
1719   return NULL;
1720 }
1721 
1722 // Attempting to expand the heap sufficiently
1723 // to support an allocation of the given "word_size".  If
1724 // successful, perform the allocation and return the address of the
1725 // allocated block, or else "NULL".
1726 
1727 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1728   assert_at_safepoint(true /* should_be_vm_thread */);
1729 
1730   verify_region_sets_optional();
1731 
1732   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1733   ergo_verbose1(ErgoHeapSizing,
1734                 "attempt heap expansion",
1735                 ergo_format_reason("allocation request failed")
1736                 ergo_format_byte("allocation request"),
1737                 word_size * HeapWordSize);
1738   if (expand(expand_bytes)) {
1739     _hrs.verify_optional();
1740     verify_region_sets_optional();
1741     return attempt_allocation_at_safepoint(word_size,
1742                                  false /* expect_null_mutator_alloc_region */);
1743   }
1744   return NULL;
1745 }
1746 
1747 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1748                                              HeapWord* new_end) {
1749   assert(old_end != new_end, "don't call this otherwise");
1750   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1751 
1752   // Update the committed mem region.
1753   _g1_committed.set_end(new_end);
1754   // Tell the card table about the update.
1755   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1756   // Tell the BOT about the update.
1757   _bot_shared->resize(_g1_committed.word_size());
1758 }
1759 
1760 bool G1CollectedHeap::expand(size_t expand_bytes) {
1761   size_t old_mem_size = _g1_storage.committed_size();
1762   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1763   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1764                                        HeapRegion::GrainBytes);
1765   ergo_verbose2(ErgoHeapSizing,
1766                 "expand the heap",
1767                 ergo_format_byte("requested expansion amount")
1768                 ergo_format_byte("attempted expansion amount"),
1769                 expand_bytes, aligned_expand_bytes);
1770 
1771   // First commit the memory.
1772   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1773   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1774   if (successful) {
1775     // Then propagate this update to the necessary data structures.
1776     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1777     update_committed_space(old_end, new_end);
1778 
1779     FreeRegionList expansion_list("Local Expansion List");
1780     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1781     assert(mr.start() == old_end, "post-condition");
1782     // mr might be a smaller region than what was requested if
1783     // expand_by() was unable to allocate the HeapRegion instances
1784     assert(mr.end() <= new_end, "post-condition");
1785 
1786     size_t actual_expand_bytes = mr.byte_size();
1787     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1788     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1789            "post-condition");
1790     if (actual_expand_bytes < aligned_expand_bytes) {
1791       // We could not expand _hrs to the desired size. In this case we
1792       // need to shrink the committed space accordingly.
1793       assert(mr.end() < new_end, "invariant");
1794 
1795       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1796       // First uncommit the memory.
1797       _g1_storage.shrink_by(diff_bytes);
1798       // Then propagate this update to the necessary data structures.
1799       update_committed_space(new_end, mr.end());
1800     }
1801     _free_list.add_as_tail(&expansion_list);
1802 
1803     if (_hr_printer.is_active()) {
1804       HeapWord* curr = mr.start();
1805       while (curr < mr.end()) {
1806         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1807         _hr_printer.commit(curr, curr_end);
1808         curr = curr_end;
1809       }
1810       assert(curr == mr.end(), "post-condition");
1811     }
1812     g1_policy()->record_new_heap_size(n_regions());
1813   } else {
1814     ergo_verbose0(ErgoHeapSizing,
1815                   "did not expand the heap",
1816                   ergo_format_reason("heap expansion operation failed"));
1817     // The expansion of the virtual storage space was unsuccessful.
1818     // Let's see if it was because we ran out of swap.
1819     if (G1ExitOnExpansionFailure &&
1820         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1821       // We had head room...
1822       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1823     }
1824   }
1825   return successful;
1826 }
1827 
1828 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1829   size_t old_mem_size = _g1_storage.committed_size();
1830   size_t aligned_shrink_bytes =
1831     ReservedSpace::page_align_size_down(shrink_bytes);
1832   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1833                                          HeapRegion::GrainBytes);
1834   uint num_regions_deleted = 0;
1835   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1836   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1837   assert(mr.end() == old_end, "post-condition");
1838 
1839   ergo_verbose3(ErgoHeapSizing,
1840                 "shrink the heap",
1841                 ergo_format_byte("requested shrinking amount")
1842                 ergo_format_byte("aligned shrinking amount")
1843                 ergo_format_byte("attempted shrinking amount"),
1844                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1845   if (mr.byte_size() > 0) {
1846     if (_hr_printer.is_active()) {
1847       HeapWord* curr = mr.end();
1848       while (curr > mr.start()) {
1849         HeapWord* curr_end = curr;
1850         curr -= HeapRegion::GrainWords;
1851         _hr_printer.uncommit(curr, curr_end);
1852       }
1853       assert(curr == mr.start(), "post-condition");
1854     }
1855 
1856     _g1_storage.shrink_by(mr.byte_size());
1857     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1858     assert(mr.start() == new_end, "post-condition");
1859 
1860     _expansion_regions += num_regions_deleted;
1861     update_committed_space(old_end, new_end);
1862     HeapRegionRemSet::shrink_heap(n_regions());
1863     g1_policy()->record_new_heap_size(n_regions());
1864   } else {
1865     ergo_verbose0(ErgoHeapSizing,
1866                   "did not shrink the heap",
1867                   ergo_format_reason("heap shrinking operation failed"));
1868   }
1869 }
1870 
1871 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1872   verify_region_sets_optional();
1873 
1874   // We should only reach here at the end of a Full GC which means we
1875   // should not not be holding to any GC alloc regions. The method
1876   // below will make sure of that and do any remaining clean up.
1877   abandon_gc_alloc_regions();
1878 
1879   // Instead of tearing down / rebuilding the free lists here, we
1880   // could instead use the remove_all_pending() method on free_list to
1881   // remove only the ones that we need to remove.
1882   tear_down_region_sets(true /* free_list_only */);
1883   shrink_helper(shrink_bytes);
1884   rebuild_region_sets(true /* free_list_only */);
1885 
1886   _hrs.verify_optional();
1887   verify_region_sets_optional();
1888 }
1889 
1890 // Public methods.
1891 
1892 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1893 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1894 #endif // _MSC_VER
1895 
1896 
1897 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1898   SharedHeap(policy_),
1899   _g1_policy(policy_),
1900   _dirty_card_queue_set(false),
1901   _into_cset_dirty_card_queue_set(false),
1902   _is_alive_closure_cm(this),
1903   _is_alive_closure_stw(this),
1904   _ref_processor_cm(NULL),
1905   _ref_processor_stw(NULL),
1906   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1907   _bot_shared(NULL),
1908   _evac_failure_scan_stack(NULL),
1909   _mark_in_progress(false),
1910   _cg1r(NULL), _summary_bytes_used(0),
1911   _g1mm(NULL),
1912   _refine_cte_cl(NULL),
1913   _full_collection(false),
1914   _free_list("Master Free List"),
1915   _secondary_free_list("Secondary Free List"),
1916   _old_set("Old Set"),
1917   _humongous_set("Master Humongous Set"),
1918   _free_regions_coming(false),
1919   _young_list(new YoungList(this)),
1920   _gc_time_stamp(0),
1921   _retained_old_gc_alloc_region(NULL),
1922   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1923   _old_plab_stats(OldPLABSize, PLABWeight),
1924   _expand_heap_after_alloc_failure(true),
1925   _surviving_young_words(NULL),
1926   _old_marking_cycles_started(0),
1927   _old_marking_cycles_completed(0),
1928   _concurrent_cycle_started(false),
1929   _in_cset_fast_test(NULL),
1930   _in_cset_fast_test_base(NULL),
1931   _dirty_cards_region_list(NULL),
1932   _worker_cset_start_region(NULL),
1933   _worker_cset_start_region_time_stamp(NULL),
1934   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1935   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1936   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1937   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1938 
1939   _g1h = this;
1940   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1941     vm_exit_during_initialization("Failed necessary allocation.");
1942   }
1943 
1944   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1945 
1946   int n_queues = MAX2((int)ParallelGCThreads, 1);
1947   _task_queues = new RefToScanQueueSet(n_queues);
1948 
1949   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1950   assert(n_rem_sets > 0, "Invariant.");
1951 
1952   HeapRegionRemSetIterator** iter_arr = NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1953   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1954   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1955   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1956 
1957   for (int i = 0; i < n_queues; i++) {
1958     RefToScanQueue* q = new RefToScanQueue();
1959     q->initialize();
1960     _task_queues->register_queue(i, q);
1961     iter_arr[i] = new HeapRegionRemSetIterator();
1962     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1963   }
1964   _rem_set_iterator = iter_arr;
1965 
1966   clear_cset_start_regions();
1967 
1968   // Initialize the G1EvacuationFailureALot counters and flags.
1969   NOT_PRODUCT(reset_evacuation_should_fail();)
1970 
1971   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1972 }
1973 
1974 jint G1CollectedHeap::initialize() {
1975   CollectedHeap::pre_initialize();
1976   os::enable_vtime();
1977 
1978   G1Log::init();
1979 
1980   // Necessary to satisfy locking discipline assertions.
1981 
1982   MutexLocker x(Heap_lock);
1983 
1984   // We have to initialize the printer before committing the heap, as
1985   // it will be used then.
1986   _hr_printer.set_active(G1PrintHeapRegions);
1987 
1988   // While there are no constraints in the GC code that HeapWordSize
1989   // be any particular value, there are multiple other areas in the
1990   // system which believe this to be true (e.g. oop->object_size in some
1991   // cases incorrectly returns the size in wordSize units rather than
1992   // HeapWordSize).
1993   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1994 
1995   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1996   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1997 
1998   // Ensure that the sizes are properly aligned.
1999   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2000   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2001 
2002   _cg1r = new ConcurrentG1Refine();
2003 
2004   // Reserve the maximum.
2005   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
2006   // Includes the perm-gen.
2007 
2008   // When compressed oops are enabled, the preferred heap base
2009   // is calculated by subtracting the requested size from the
2010   // 32Gb boundary and using the result as the base address for
2011   // heap reservation. If the requested size is not aligned to
2012   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2013   // into the ReservedHeapSpace constructor) then the actual
2014   // base of the reserved heap may end up differing from the
2015   // address that was requested (i.e. the preferred heap base).
2016   // If this happens then we could end up using a non-optimal
2017   // compressed oops mode.
2018 
2019   // Since max_byte_size is aligned to the size of a heap region (checked
2020   // above), we also need to align the perm gen size as it might not be.
2021   const size_t total_reserved = max_byte_size +
2022                                 align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
2023   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
2024 
2025   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
2026 
2027   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
2028                             UseLargePages, addr);
2029 
2030   if (UseCompressedOops) {
2031     if (addr != NULL && !heap_rs.is_reserved()) {
2032       // Failed to reserve at specified address - the requested memory
2033       // region is taken already, for example, by 'java' launcher.
2034       // Try again to reserver heap higher.
2035       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
2036 
2037       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2038                                  UseLargePages, addr);
2039 
2040       if (addr != NULL && !heap_rs0.is_reserved()) {
2041         // Failed to reserve at specified address again - give up.
2042         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
2043         assert(addr == NULL, "");
2044 
2045         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2046                                    UseLargePages, addr);
2047         heap_rs = heap_rs1;
2048       } else {
2049         heap_rs = heap_rs0;
2050       }
2051     }
2052   }
2053 
2054   if (!heap_rs.is_reserved()) {
2055     vm_exit_during_initialization("Could not reserve enough space for object heap");
2056     return JNI_ENOMEM;
2057   }
2058 
2059   // It is important to do this in a way such that concurrent readers can't
2060   // temporarily think something is in the heap.  (I've actually seen this
2061   // happen in asserts: DLD.)
2062   _reserved.set_word_size(0);
2063   _reserved.set_start((HeapWord*)heap_rs.base());
2064   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2065 
2066   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2067 
2068   // Create the gen rem set (and barrier set) for the entire reserved region.
2069   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2070   set_barrier_set(rem_set()->bs());
2071   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2072     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2073   } else {
2074     vm_exit_during_initialization("G1 requires a mod ref bs.");
2075     return JNI_ENOMEM;
2076   }
2077 
2078   // Also create a G1 rem set.
2079   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2080     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2081   } else {
2082     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2083     return JNI_ENOMEM;
2084   }
2085 
2086   // Carve out the G1 part of the heap.
2087 
2088   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2089   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2090                            g1_rs.size()/HeapWordSize);
2091   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2092 
2093   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2094 
2095   _g1_storage.initialize(g1_rs, 0);
2096   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2097   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2098                   (HeapWord*) _g1_reserved.end(),
2099                   _expansion_regions);
2100 
2101   // 6843694 - ensure that the maximum region index can fit
2102   // in the remembered set structures.
2103   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2104   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2105 
2106   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2107   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2108   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2109             "too many cards per region");
2110 
2111   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2112 
2113   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2114                                              heap_word_size(init_byte_size));
2115 
2116   _g1h = this;
2117 
2118    _in_cset_fast_test_length = max_regions();
2119    _in_cset_fast_test_base =
2120                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2121 
2122    // We're biasing _in_cset_fast_test to avoid subtracting the
2123    // beginning of the heap every time we want to index; basically
2124    // it's the same with what we do with the card table.
2125    _in_cset_fast_test = _in_cset_fast_test_base -
2126                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2127 
2128    // Clear the _cset_fast_test bitmap in anticipation of adding
2129    // regions to the incremental collection set for the first
2130    // evacuation pause.
2131    clear_cset_fast_test();
2132 
2133   // Create the ConcurrentMark data structure and thread.
2134   // (Must do this late, so that "max_regions" is defined.)
2135   _cm       = new ConcurrentMark(heap_rs, max_regions());
2136   _cmThread = _cm->cmThread();
2137 
2138   // Initialize the from_card cache structure of HeapRegionRemSet.
2139   HeapRegionRemSet::init_heap(max_regions());
2140 
2141   // Now expand into the initial heap size.
2142   if (!expand(init_byte_size)) {
2143     vm_exit_during_initialization("Failed to allocate initial heap.");
2144     return JNI_ENOMEM;
2145   }
2146 
2147   // Perform any initialization actions delegated to the policy.
2148   g1_policy()->init();
2149 
2150   _refine_cte_cl =
2151     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2152                                     g1_rem_set(),
2153                                     concurrent_g1_refine());
2154   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2155 
2156   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2157                                                SATB_Q_FL_lock,
2158                                                G1SATBProcessCompletedThreshold,
2159                                                Shared_SATB_Q_lock);
2160 
2161   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2162                                                 DirtyCardQ_FL_lock,
2163                                                 concurrent_g1_refine()->yellow_zone(),
2164                                                 concurrent_g1_refine()->red_zone(),
2165                                                 Shared_DirtyCardQ_lock);
2166 
2167   if (G1DeferredRSUpdate) {
2168     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2169                                       DirtyCardQ_FL_lock,
2170                                       -1, // never trigger processing
2171                                       -1, // no limit on length
2172                                       Shared_DirtyCardQ_lock,
2173                                       &JavaThread::dirty_card_queue_set());
2174   }
2175 
2176   // Initialize the card queue set used to hold cards containing
2177   // references into the collection set.
2178   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2179                                              DirtyCardQ_FL_lock,
2180                                              -1, // never trigger processing
2181                                              -1, // no limit on length
2182                                              Shared_DirtyCardQ_lock,
2183                                              &JavaThread::dirty_card_queue_set());
2184 
2185   // In case we're keeping closure specialization stats, initialize those
2186   // counts and that mechanism.
2187   SpecializationStats::clear();
2188 
2189   // Do later initialization work for concurrent refinement.
2190   _cg1r->init();
2191 
2192   // Here we allocate the dummy full region that is required by the
2193   // G1AllocRegion class. If we don't pass an address in the reserved
2194   // space here, lots of asserts fire.
2195 
2196   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2197                                              _g1_reserved.start());
2198   // We'll re-use the same region whether the alloc region will
2199   // require BOT updates or not and, if it doesn't, then a non-young
2200   // region will complain that it cannot support allocations without
2201   // BOT updates. So we'll tag the dummy region as young to avoid that.
2202   dummy_region->set_young();
2203   // Make sure it's full.
2204   dummy_region->set_top(dummy_region->end());
2205   G1AllocRegion::setup(this, dummy_region);
2206 
2207   init_mutator_alloc_region();
2208 
2209   // Do create of the monitoring and management support so that
2210   // values in the heap have been properly initialized.
2211   _g1mm = new G1MonitoringSupport(this);
2212 
2213   return JNI_OK;
2214 }
2215 
2216 void G1CollectedHeap::ref_processing_init() {
2217   // Reference processing in G1 currently works as follows:
2218   //
2219   // * There are two reference processor instances. One is
2220   //   used to record and process discovered references
2221   //   during concurrent marking; the other is used to
2222   //   record and process references during STW pauses
2223   //   (both full and incremental).
2224   // * Both ref processors need to 'span' the entire heap as
2225   //   the regions in the collection set may be dotted around.
2226   //
2227   // * For the concurrent marking ref processor:
2228   //   * Reference discovery is enabled at initial marking.
2229   //   * Reference discovery is disabled and the discovered
2230   //     references processed etc during remarking.
2231   //   * Reference discovery is MT (see below).
2232   //   * Reference discovery requires a barrier (see below).
2233   //   * Reference processing may or may not be MT
2234   //     (depending on the value of ParallelRefProcEnabled
2235   //     and ParallelGCThreads).
2236   //   * A full GC disables reference discovery by the CM
2237   //     ref processor and abandons any entries on it's
2238   //     discovered lists.
2239   //
2240   // * For the STW processor:
2241   //   * Non MT discovery is enabled at the start of a full GC.
2242   //   * Processing and enqueueing during a full GC is non-MT.
2243   //   * During a full GC, references are processed after marking.
2244   //
2245   //   * Discovery (may or may not be MT) is enabled at the start
2246   //     of an incremental evacuation pause.
2247   //   * References are processed near the end of a STW evacuation pause.
2248   //   * For both types of GC:
2249   //     * Discovery is atomic - i.e. not concurrent.
2250   //     * Reference discovery will not need a barrier.
2251 
2252   SharedHeap::ref_processing_init();
2253   MemRegion mr = reserved_region();
2254 
2255   // Concurrent Mark ref processor
2256   _ref_processor_cm =
2257     new ReferenceProcessor(mr,    // span
2258                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2259                                 // mt processing
2260                            (int) ParallelGCThreads,
2261                                 // degree of mt processing
2262                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2263                                 // mt discovery
2264                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2265                                 // degree of mt discovery
2266                            false,
2267                                 // Reference discovery is not atomic
2268                            &_is_alive_closure_cm,
2269                                 // is alive closure
2270                                 // (for efficiency/performance)
2271                            true);
2272                                 // Setting next fields of discovered
2273                                 // lists requires a barrier.
2274 
2275   // STW ref processor
2276   _ref_processor_stw =
2277     new ReferenceProcessor(mr,    // span
2278                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2279                                 // mt processing
2280                            MAX2((int)ParallelGCThreads, 1),
2281                                 // degree of mt processing
2282                            (ParallelGCThreads > 1),
2283                                 // mt discovery
2284                            MAX2((int)ParallelGCThreads, 1),
2285                                 // degree of mt discovery
2286                            true,
2287                                 // Reference discovery is atomic
2288                            &_is_alive_closure_stw,
2289                                 // is alive closure
2290                                 // (for efficiency/performance)
2291                            false);
2292                                 // Setting next fields of discovered
2293                                 // lists requires a barrier.
2294 }
2295 
2296 size_t G1CollectedHeap::capacity() const {
2297   return _g1_committed.byte_size();
2298 }
2299 
2300 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2301   assert(!hr->continuesHumongous(), "pre-condition");
2302   hr->reset_gc_time_stamp();
2303   if (hr->startsHumongous()) {
2304     uint first_index = hr->hrs_index() + 1;
2305     uint last_index = hr->last_hc_index();
2306     for (uint i = first_index; i < last_index; i += 1) {
2307       HeapRegion* chr = region_at(i);
2308       assert(chr->continuesHumongous(), "sanity");
2309       chr->reset_gc_time_stamp();
2310     }
2311   }
2312 }
2313 
2314 #ifndef PRODUCT
2315 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2316 private:
2317   unsigned _gc_time_stamp;
2318   bool _failures;
2319 
2320 public:
2321   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2322     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2323 
2324   virtual bool doHeapRegion(HeapRegion* hr) {
2325     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2326     if (_gc_time_stamp != region_gc_time_stamp) {
2327       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2328                              "expected %d", HR_FORMAT_PARAMS(hr),
2329                              region_gc_time_stamp, _gc_time_stamp);
2330       _failures = true;
2331     }
2332     return false;
2333   }
2334 
2335   bool failures() { return _failures; }
2336 };
2337 
2338 void G1CollectedHeap::check_gc_time_stamps() {
2339   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2340   heap_region_iterate(&cl);
2341   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2342 }
2343 #endif // PRODUCT
2344 
2345 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2346                                                  DirtyCardQueue* into_cset_dcq,
2347                                                  bool concurrent,
2348                                                  int worker_i) {
2349   // Clean cards in the hot card cache
2350   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2351 
2352   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2353   int n_completed_buffers = 0;
2354   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2355     n_completed_buffers++;
2356   }
2357   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2358   dcqs.clear_n_completed_buffers();
2359   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2360 }
2361 
2362 
2363 // Computes the sum of the storage used by the various regions.
2364 
2365 size_t G1CollectedHeap::used() const {
2366   assert(Heap_lock->owner() != NULL,
2367          "Should be owned on this thread's behalf.");
2368   size_t result = _summary_bytes_used;
2369   // Read only once in case it is set to NULL concurrently
2370   HeapRegion* hr = _mutator_alloc_region.get();
2371   if (hr != NULL)
2372     result += hr->used();
2373   return result;
2374 }
2375 
2376 size_t G1CollectedHeap::used_unlocked() const {
2377   size_t result = _summary_bytes_used;
2378   return result;
2379 }
2380 
2381 class SumUsedClosure: public HeapRegionClosure {
2382   size_t _used;
2383 public:
2384   SumUsedClosure() : _used(0) {}
2385   bool doHeapRegion(HeapRegion* r) {
2386     if (!r->continuesHumongous()) {
2387       _used += r->used();
2388     }
2389     return false;
2390   }
2391   size_t result() { return _used; }
2392 };
2393 
2394 size_t G1CollectedHeap::recalculate_used() const {
2395   SumUsedClosure blk;
2396   heap_region_iterate(&blk);
2397   return blk.result();
2398 }
2399 
2400 size_t G1CollectedHeap::unsafe_max_alloc() {
2401   if (free_regions() > 0) return HeapRegion::GrainBytes;
2402   // otherwise, is there space in the current allocation region?
2403 
2404   // We need to store the current allocation region in a local variable
2405   // here. The problem is that this method doesn't take any locks and
2406   // there may be other threads which overwrite the current allocation
2407   // region field. attempt_allocation(), for example, sets it to NULL
2408   // and this can happen *after* the NULL check here but before the call
2409   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2410   // to be a problem in the optimized build, since the two loads of the
2411   // current allocation region field are optimized away.
2412   HeapRegion* hr = _mutator_alloc_region.get();
2413   if (hr == NULL) {
2414     return 0;
2415   }
2416   return hr->free();
2417 }
2418 
2419 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2420   switch (cause) {
2421     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2422     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2423     case GCCause::_g1_humongous_allocation: return true;
2424     default:                                return false;
2425   }
2426 }
2427 
2428 #ifndef PRODUCT
2429 void G1CollectedHeap::allocate_dummy_regions() {
2430   // Let's fill up most of the region
2431   size_t word_size = HeapRegion::GrainWords - 1024;
2432   // And as a result the region we'll allocate will be humongous.
2433   guarantee(isHumongous(word_size), "sanity");
2434 
2435   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2436     // Let's use the existing mechanism for the allocation
2437     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2438     if (dummy_obj != NULL) {
2439       MemRegion mr(dummy_obj, word_size);
2440       CollectedHeap::fill_with_object(mr);
2441     } else {
2442       // If we can't allocate once, we probably cannot allocate
2443       // again. Let's get out of the loop.
2444       break;
2445     }
2446   }
2447 }
2448 #endif // !PRODUCT
2449 
2450 void G1CollectedHeap::increment_old_marking_cycles_started() {
2451   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2452     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2453     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2454     _old_marking_cycles_started, _old_marking_cycles_completed));
2455 
2456   _old_marking_cycles_started++;
2457 }
2458 
2459 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2460   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2461 
2462   // We assume that if concurrent == true, then the caller is a
2463   // concurrent thread that was joined the Suspendible Thread
2464   // Set. If there's ever a cheap way to check this, we should add an
2465   // assert here.
2466 
2467   // Given that this method is called at the end of a Full GC or of a
2468   // concurrent cycle, and those can be nested (i.e., a Full GC can
2469   // interrupt a concurrent cycle), the number of full collections
2470   // completed should be either one (in the case where there was no
2471   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2472   // behind the number of full collections started.
2473 
2474   // This is the case for the inner caller, i.e. a Full GC.
2475   assert(concurrent ||
2476          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2477          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2478          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2479                  "is inconsistent with _old_marking_cycles_completed = %u",
2480                  _old_marking_cycles_started, _old_marking_cycles_completed));
2481 
2482   // This is the case for the outer caller, i.e. the concurrent cycle.
2483   assert(!concurrent ||
2484          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2485          err_msg("for outer caller (concurrent cycle): "
2486                  "_old_marking_cycles_started = %u "
2487                  "is inconsistent with _old_marking_cycles_completed = %u",
2488                  _old_marking_cycles_started, _old_marking_cycles_completed));
2489 
2490   _old_marking_cycles_completed += 1;
2491 
2492   // We need to clear the "in_progress" flag in the CM thread before
2493   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2494   // is set) so that if a waiter requests another System.gc() it doesn't
2495   // incorrectly see that a marking cycle is still in progress.
2496   if (concurrent) {
2497     _cmThread->clear_in_progress();
2498   }
2499 
2500   // This notify_all() will ensure that a thread that called
2501   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2502   // and it's waiting for a full GC to finish will be woken up. It is
2503   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2504   FullGCCount_lock->notify_all();
2505 }
2506 
2507 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2508   _concurrent_cycle_started = true;
2509   _gc_timer_cm->register_gc_start(start_time);
2510 
2511   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2512   trace_heap_before_gc(_gc_tracer_cm);
2513 }
2514 
2515 void G1CollectedHeap::register_concurrent_cycle_end() {
2516   if (_concurrent_cycle_started) {
2517     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2518 
2519     if (_cm->has_aborted()) {
2520       _gc_tracer_cm->report_concurrent_mode_failure();
2521     }
2522     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2523 
2524     _concurrent_cycle_started = false;
2525   }
2526 }
2527 
2528 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2529   if (_concurrent_cycle_started) {
2530     trace_heap_after_gc(_gc_tracer_cm);
2531   }
2532 }
2533 
2534 G1YCType G1CollectedHeap::yc_type() {
2535   bool is_young = g1_policy()->gcs_are_young();
2536   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2537   bool is_during_mark = mark_in_progress();
2538 
2539   if (is_initial_mark) {
2540     return InitialMark;
2541   } else if (is_during_mark) {
2542     return DuringMark;
2543   } else if (is_young) {
2544     return Normal;
2545   } else {
2546     return Mixed;
2547   }
2548 }
2549 
2550 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2551   assert_at_safepoint(true /* should_be_vm_thread */);
2552   GCCauseSetter gcs(this, cause);
2553   switch (cause) {
2554     case GCCause::_heap_inspection:
2555     case GCCause::_heap_dump: {
2556       HandleMark hm;
2557       do_full_collection(false);         // don't clear all soft refs
2558       break;
2559     }
2560     default: // XXX FIX ME
2561       ShouldNotReachHere(); // Unexpected use of this function
2562   }
2563 }
2564 
2565 void G1CollectedHeap::collect(GCCause::Cause cause) {
2566   assert_heap_not_locked();
2567 
2568   unsigned int gc_count_before;
2569   unsigned int old_marking_count_before;
2570   bool retry_gc;
2571 
2572   do {
2573     retry_gc = false;
2574 
2575     {
2576       MutexLocker ml(Heap_lock);
2577 
2578       // Read the GC count while holding the Heap_lock
2579       gc_count_before = total_collections();
2580       old_marking_count_before = _old_marking_cycles_started;
2581     }
2582 
2583     if (should_do_concurrent_full_gc(cause)) {
2584       // Schedule an initial-mark evacuation pause that will start a
2585       // concurrent cycle. We're setting word_size to 0 which means that
2586       // we are not requesting a post-GC allocation.
2587       VM_G1IncCollectionPause op(gc_count_before,
2588                                  0,     /* word_size */
2589                                  true,  /* should_initiate_conc_mark */
2590                                  g1_policy()->max_pause_time_ms(),
2591                                  cause);
2592 
2593       VMThread::execute(&op);
2594       if (!op.pause_succeeded()) {
2595         if (old_marking_count_before == _old_marking_cycles_started) {
2596           retry_gc = op.should_retry_gc();
2597         } else {
2598           // A Full GC happened while we were trying to schedule the
2599           // initial-mark GC. No point in starting a new cycle given
2600           // that the whole heap was collected anyway.
2601         }
2602 
2603         if (retry_gc) {
2604           if (GC_locker::is_active_and_needs_gc()) {
2605             GC_locker::stall_until_clear();
2606           }
2607         }
2608       }
2609     } else {
2610       if (cause == GCCause::_gc_locker
2611           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2612 
2613         // Schedule a standard evacuation pause. We're setting word_size
2614         // to 0 which means that we are not requesting a post-GC allocation.
2615         VM_G1IncCollectionPause op(gc_count_before,
2616                                    0,     /* word_size */
2617                                    false, /* should_initiate_conc_mark */
2618                                    g1_policy()->max_pause_time_ms(),
2619                                    cause);
2620         VMThread::execute(&op);
2621       } else {
2622         // Schedule a Full GC.
2623         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2624         VMThread::execute(&op);
2625       }
2626     }
2627   } while (retry_gc);
2628 }
2629 
2630 bool G1CollectedHeap::is_in(const void* p) const {
2631   if (_g1_committed.contains(p)) {
2632     // Given that we know that p is in the committed space,
2633     // heap_region_containing_raw() should successfully
2634     // return the containing region.
2635     HeapRegion* hr = heap_region_containing_raw(p);
2636     return hr->is_in(p);
2637   } else {
2638     return _perm_gen->as_gen()->is_in(p);
2639   }
2640 }
2641 
2642 // Iteration functions.
2643 
2644 // Iterates an OopClosure over all ref-containing fields of objects
2645 // within a HeapRegion.
2646 
2647 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2648   MemRegion _mr;
2649   OopClosure* _cl;
2650 public:
2651   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2652     : _mr(mr), _cl(cl) {}
2653   bool doHeapRegion(HeapRegion* r) {
2654     if (!r->continuesHumongous()) {
2655       r->oop_iterate(_cl);
2656     }
2657     return false;
2658   }
2659 };
2660 
2661 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2662   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2663   heap_region_iterate(&blk);
2664   if (do_perm) {
2665     perm_gen()->oop_iterate(cl);
2666   }
2667 }
2668 
2669 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2670   IterateOopClosureRegionClosure blk(mr, cl);
2671   heap_region_iterate(&blk);
2672   if (do_perm) {
2673     perm_gen()->oop_iterate(cl);
2674   }
2675 }
2676 
2677 // Iterates an ObjectClosure over all objects within a HeapRegion.
2678 
2679 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2680   ObjectClosure* _cl;
2681 public:
2682   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2683   bool doHeapRegion(HeapRegion* r) {
2684     if (! r->continuesHumongous()) {
2685       r->object_iterate(_cl);
2686     }
2687     return false;
2688   }
2689 };
2690 
2691 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2692   IterateObjectClosureRegionClosure blk(cl);
2693   heap_region_iterate(&blk);
2694   if (do_perm) {
2695     perm_gen()->object_iterate(cl);
2696   }
2697 }
2698 
2699 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2700   // FIXME: is this right?
2701   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2702 }
2703 
2704 // Calls a SpaceClosure on a HeapRegion.
2705 
2706 class SpaceClosureRegionClosure: public HeapRegionClosure {
2707   SpaceClosure* _cl;
2708 public:
2709   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2710   bool doHeapRegion(HeapRegion* r) {
2711     _cl->do_space(r);
2712     return false;
2713   }
2714 };
2715 
2716 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2717   SpaceClosureRegionClosure blk(cl);
2718   heap_region_iterate(&blk);
2719 }
2720 
2721 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2722   _hrs.iterate(cl);
2723 }
2724 
2725 void
2726 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2727                                                  uint worker_id,
2728                                                  uint no_of_par_workers,
2729                                                  jint claim_value) {
2730   const uint regions = n_regions();
2731   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2732                              no_of_par_workers :
2733                              1);
2734   assert(UseDynamicNumberOfGCThreads ||
2735          no_of_par_workers == workers()->total_workers(),
2736          "Non dynamic should use fixed number of workers");
2737   // try to spread out the starting points of the workers
2738   const HeapRegion* start_hr =
2739                         start_region_for_worker(worker_id, no_of_par_workers);
2740   const uint start_index = start_hr->hrs_index();
2741 
2742   // each worker will actually look at all regions
2743   for (uint count = 0; count < regions; ++count) {
2744     const uint index = (start_index + count) % regions;
2745     assert(0 <= index && index < regions, "sanity");
2746     HeapRegion* r = region_at(index);
2747     // we'll ignore "continues humongous" regions (we'll process them
2748     // when we come across their corresponding "start humongous"
2749     // region) and regions already claimed
2750     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2751       continue;
2752     }
2753     // OK, try to claim it
2754     if (r->claimHeapRegion(claim_value)) {
2755       // success!
2756       assert(!r->continuesHumongous(), "sanity");
2757       if (r->startsHumongous()) {
2758         // If the region is "starts humongous" we'll iterate over its
2759         // "continues humongous" first; in fact we'll do them
2760         // first. The order is important. In on case, calling the
2761         // closure on the "starts humongous" region might de-allocate
2762         // and clear all its "continues humongous" regions and, as a
2763         // result, we might end up processing them twice. So, we'll do
2764         // them first (notice: most closures will ignore them anyway) and
2765         // then we'll do the "starts humongous" region.
2766         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2767           HeapRegion* chr = region_at(ch_index);
2768 
2769           // if the region has already been claimed or it's not
2770           // "continues humongous" we're done
2771           if (chr->claim_value() == claim_value ||
2772               !chr->continuesHumongous()) {
2773             break;
2774           }
2775 
2776           // Noone should have claimed it directly. We can given
2777           // that we claimed its "starts humongous" region.
2778           assert(chr->claim_value() != claim_value, "sanity");
2779           assert(chr->humongous_start_region() == r, "sanity");
2780 
2781           if (chr->claimHeapRegion(claim_value)) {
2782             // we should always be able to claim it; noone else should
2783             // be trying to claim this region
2784 
2785             bool res2 = cl->doHeapRegion(chr);
2786             assert(!res2, "Should not abort");
2787 
2788             // Right now, this holds (i.e., no closure that actually
2789             // does something with "continues humongous" regions
2790             // clears them). We might have to weaken it in the future,
2791             // but let's leave these two asserts here for extra safety.
2792             assert(chr->continuesHumongous(), "should still be the case");
2793             assert(chr->humongous_start_region() == r, "sanity");
2794           } else {
2795             guarantee(false, "we should not reach here");
2796           }
2797         }
2798       }
2799 
2800       assert(!r->continuesHumongous(), "sanity");
2801       bool res = cl->doHeapRegion(r);
2802       assert(!res, "Should not abort");
2803     }
2804   }
2805 }
2806 
2807 class ResetClaimValuesClosure: public HeapRegionClosure {
2808 public:
2809   bool doHeapRegion(HeapRegion* r) {
2810     r->set_claim_value(HeapRegion::InitialClaimValue);
2811     return false;
2812   }
2813 };
2814 
2815 void G1CollectedHeap::reset_heap_region_claim_values() {
2816   ResetClaimValuesClosure blk;
2817   heap_region_iterate(&blk);
2818 }
2819 
2820 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2821   ResetClaimValuesClosure blk;
2822   collection_set_iterate(&blk);
2823 }
2824 
2825 #ifdef ASSERT
2826 // This checks whether all regions in the heap have the correct claim
2827 // value. I also piggy-backed on this a check to ensure that the
2828 // humongous_start_region() information on "continues humongous"
2829 // regions is correct.
2830 
2831 class CheckClaimValuesClosure : public HeapRegionClosure {
2832 private:
2833   jint _claim_value;
2834   uint _failures;
2835   HeapRegion* _sh_region;
2836 
2837 public:
2838   CheckClaimValuesClosure(jint claim_value) :
2839     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2840   bool doHeapRegion(HeapRegion* r) {
2841     if (r->claim_value() != _claim_value) {
2842       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2843                              "claim value = %d, should be %d",
2844                              HR_FORMAT_PARAMS(r),
2845                              r->claim_value(), _claim_value);
2846       ++_failures;
2847     }
2848     if (!r->isHumongous()) {
2849       _sh_region = NULL;
2850     } else if (r->startsHumongous()) {
2851       _sh_region = r;
2852     } else if (r->continuesHumongous()) {
2853       if (r->humongous_start_region() != _sh_region) {
2854         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2855                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2856                                HR_FORMAT_PARAMS(r),
2857                                r->humongous_start_region(),
2858                                _sh_region);
2859         ++_failures;
2860       }
2861     }
2862     return false;
2863   }
2864   uint failures() { return _failures; }
2865 };
2866 
2867 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2868   CheckClaimValuesClosure cl(claim_value);
2869   heap_region_iterate(&cl);
2870   return cl.failures() == 0;
2871 }
2872 
2873 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2874 private:
2875   jint _claim_value;
2876   uint _failures;
2877 
2878 public:
2879   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2880     _claim_value(claim_value), _failures(0) { }
2881 
2882   uint failures() { return _failures; }
2883 
2884   bool doHeapRegion(HeapRegion* hr) {
2885     assert(hr->in_collection_set(), "how?");
2886     assert(!hr->isHumongous(), "H-region in CSet");
2887     if (hr->claim_value() != _claim_value) {
2888       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2889                              "claim value = %d, should be %d",
2890                              HR_FORMAT_PARAMS(hr),
2891                              hr->claim_value(), _claim_value);
2892       _failures += 1;
2893     }
2894     return false;
2895   }
2896 };
2897 
2898 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2899   CheckClaimValuesInCSetHRClosure cl(claim_value);
2900   collection_set_iterate(&cl);
2901   return cl.failures() == 0;
2902 }
2903 #endif // ASSERT
2904 
2905 // Clear the cached CSet starting regions and (more importantly)
2906 // the time stamps. Called when we reset the GC time stamp.
2907 void G1CollectedHeap::clear_cset_start_regions() {
2908   assert(_worker_cset_start_region != NULL, "sanity");
2909   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2910 
2911   int n_queues = MAX2((int)ParallelGCThreads, 1);
2912   for (int i = 0; i < n_queues; i++) {
2913     _worker_cset_start_region[i] = NULL;
2914     _worker_cset_start_region_time_stamp[i] = 0;
2915   }
2916 }
2917 
2918 // Given the id of a worker, obtain or calculate a suitable
2919 // starting region for iterating over the current collection set.
2920 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2921   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2922 
2923   HeapRegion* result = NULL;
2924   unsigned gc_time_stamp = get_gc_time_stamp();
2925 
2926   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2927     // Cached starting region for current worker was set
2928     // during the current pause - so it's valid.
2929     // Note: the cached starting heap region may be NULL
2930     // (when the collection set is empty).
2931     result = _worker_cset_start_region[worker_i];
2932     assert(result == NULL || result->in_collection_set(), "sanity");
2933     return result;
2934   }
2935 
2936   // The cached entry was not valid so let's calculate
2937   // a suitable starting heap region for this worker.
2938 
2939   // We want the parallel threads to start their collection
2940   // set iteration at different collection set regions to
2941   // avoid contention.
2942   // If we have:
2943   //          n collection set regions
2944   //          p threads
2945   // Then thread t will start at region floor ((t * n) / p)
2946 
2947   result = g1_policy()->collection_set();
2948   if (G1CollectedHeap::use_parallel_gc_threads()) {
2949     uint cs_size = g1_policy()->cset_region_length();
2950     uint active_workers = workers()->active_workers();
2951     assert(UseDynamicNumberOfGCThreads ||
2952              active_workers == workers()->total_workers(),
2953              "Unless dynamic should use total workers");
2954 
2955     uint end_ind   = (cs_size * worker_i) / active_workers;
2956     uint start_ind = 0;
2957 
2958     if (worker_i > 0 &&
2959         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2960       // Previous workers starting region is valid
2961       // so let's iterate from there
2962       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2963       result = _worker_cset_start_region[worker_i - 1];
2964     }
2965 
2966     for (uint i = start_ind; i < end_ind; i++) {
2967       result = result->next_in_collection_set();
2968     }
2969   }
2970 
2971   // Note: the calculated starting heap region may be NULL
2972   // (when the collection set is empty).
2973   assert(result == NULL || result->in_collection_set(), "sanity");
2974   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2975          "should be updated only once per pause");
2976   _worker_cset_start_region[worker_i] = result;
2977   OrderAccess::storestore();
2978   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2979   return result;
2980 }
2981 
2982 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2983                                                      uint no_of_par_workers) {
2984   uint worker_num =
2985            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2986   assert(UseDynamicNumberOfGCThreads ||
2987          no_of_par_workers == workers()->total_workers(),
2988          "Non dynamic should use fixed number of workers");
2989   const uint start_index = n_regions() * worker_i / worker_num;
2990   return region_at(start_index);
2991 }
2992 
2993 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2994   HeapRegion* r = g1_policy()->collection_set();
2995   while (r != NULL) {
2996     HeapRegion* next = r->next_in_collection_set();
2997     if (cl->doHeapRegion(r)) {
2998       cl->incomplete();
2999       return;
3000     }
3001     r = next;
3002   }
3003 }
3004 
3005 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
3006                                                   HeapRegionClosure *cl) {
3007   if (r == NULL) {
3008     // The CSet is empty so there's nothing to do.
3009     return;
3010   }
3011 
3012   assert(r->in_collection_set(),
3013          "Start region must be a member of the collection set.");
3014   HeapRegion* cur = r;
3015   while (cur != NULL) {
3016     HeapRegion* next = cur->next_in_collection_set();
3017     if (cl->doHeapRegion(cur) && false) {
3018       cl->incomplete();
3019       return;
3020     }
3021     cur = next;
3022   }
3023   cur = g1_policy()->collection_set();
3024   while (cur != r) {
3025     HeapRegion* next = cur->next_in_collection_set();
3026     if (cl->doHeapRegion(cur) && false) {
3027       cl->incomplete();
3028       return;
3029     }
3030     cur = next;
3031   }
3032 }
3033 
3034 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3035   return n_regions() > 0 ? region_at(0) : NULL;
3036 }
3037 
3038 
3039 Space* G1CollectedHeap::space_containing(const void* addr) const {
3040   Space* res = heap_region_containing(addr);
3041   if (res == NULL)
3042     res = perm_gen()->space_containing(addr);
3043   return res;
3044 }
3045 
3046 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3047   Space* sp = space_containing(addr);
3048   if (sp != NULL) {
3049     return sp->block_start(addr);
3050   }
3051   return NULL;
3052 }
3053 
3054 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3055   Space* sp = space_containing(addr);
3056   assert(sp != NULL, "block_size of address outside of heap");
3057   return sp->block_size(addr);
3058 }
3059 
3060 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3061   Space* sp = space_containing(addr);
3062   return sp->block_is_obj(addr);
3063 }
3064 
3065 bool G1CollectedHeap::supports_tlab_allocation() const {
3066   return true;
3067 }
3068 
3069 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3070   return HeapRegion::GrainBytes;
3071 }
3072 
3073 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3074   // Return the remaining space in the cur alloc region, but not less than
3075   // the min TLAB size.
3076 
3077   // Also, this value can be at most the humongous object threshold,
3078   // since we can't allow tlabs to grow big enough to accommodate
3079   // humongous objects.
3080 
3081   HeapRegion* hr = _mutator_alloc_region.get();
3082   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3083   if (hr == NULL) {
3084     return max_tlab_size;
3085   } else {
3086     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3087   }
3088 }
3089 
3090 size_t G1CollectedHeap::max_capacity() const {
3091   return _g1_reserved.byte_size();
3092 }
3093 
3094 jlong G1CollectedHeap::millis_since_last_gc() {
3095   // assert(false, "NYI");
3096   return 0;
3097 }
3098 
3099 void G1CollectedHeap::prepare_for_verify() {
3100   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3101     ensure_parsability(false);
3102   }
3103   g1_rem_set()->prepare_for_verify();
3104 }
3105 
3106 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3107                                               VerifyOption vo) {
3108   switch (vo) {
3109   case VerifyOption_G1UsePrevMarking:
3110     return hr->obj_allocated_since_prev_marking(obj);
3111   case VerifyOption_G1UseNextMarking:
3112     return hr->obj_allocated_since_next_marking(obj);
3113   case VerifyOption_G1UseMarkWord:
3114     return false;
3115   default:
3116     ShouldNotReachHere();
3117   }
3118   return false; // keep some compilers happy
3119 }
3120 
3121 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3122   switch (vo) {
3123   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3124   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3125   case VerifyOption_G1UseMarkWord:    return NULL;
3126   default:                            ShouldNotReachHere();
3127   }
3128   return NULL; // keep some compilers happy
3129 }
3130 
3131 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3132   switch (vo) {
3133   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3134   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3135   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3136   default:                            ShouldNotReachHere();
3137   }
3138   return false; // keep some compilers happy
3139 }
3140 
3141 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3142   switch (vo) {
3143   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3144   case VerifyOption_G1UseNextMarking: return "NTAMS";
3145   case VerifyOption_G1UseMarkWord:    return "NONE";
3146   default:                            ShouldNotReachHere();
3147   }
3148   return NULL; // keep some compilers happy
3149 }
3150 
3151 class VerifyLivenessOopClosure: public OopClosure {
3152   G1CollectedHeap* _g1h;
3153   VerifyOption _vo;
3154 public:
3155   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3156     _g1h(g1h), _vo(vo)
3157   { }
3158   void do_oop(narrowOop *p) { do_oop_work(p); }
3159   void do_oop(      oop *p) { do_oop_work(p); }
3160 
3161   template <class T> void do_oop_work(T *p) {
3162     oop obj = oopDesc::load_decode_heap_oop(p);
3163     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3164               "Dead object referenced by a not dead object");
3165   }
3166 };
3167 
3168 class VerifyObjsInRegionClosure: public ObjectClosure {
3169 private:
3170   G1CollectedHeap* _g1h;
3171   size_t _live_bytes;
3172   HeapRegion *_hr;
3173   VerifyOption _vo;
3174 public:
3175   // _vo == UsePrevMarking -> use "prev" marking information,
3176   // _vo == UseNextMarking -> use "next" marking information,
3177   // _vo == UseMarkWord    -> use mark word from object header.
3178   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3179     : _live_bytes(0), _hr(hr), _vo(vo) {
3180     _g1h = G1CollectedHeap::heap();
3181   }
3182   void do_object(oop o) {
3183     VerifyLivenessOopClosure isLive(_g1h, _vo);
3184     assert(o != NULL, "Huh?");
3185     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3186       // If the object is alive according to the mark word,
3187       // then verify that the marking information agrees.
3188       // Note we can't verify the contra-positive of the
3189       // above: if the object is dead (according to the mark
3190       // word), it may not be marked, or may have been marked
3191       // but has since became dead, or may have been allocated
3192       // since the last marking.
3193       if (_vo == VerifyOption_G1UseMarkWord) {
3194         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3195       }
3196 
3197       o->oop_iterate(&isLive);
3198       if (!_hr->obj_allocated_since_prev_marking(o)) {
3199         size_t obj_size = o->size();    // Make sure we don't overflow
3200         _live_bytes += (obj_size * HeapWordSize);
3201       }
3202     }
3203   }
3204   size_t live_bytes() { return _live_bytes; }
3205 };
3206 
3207 class PrintObjsInRegionClosure : public ObjectClosure {
3208   HeapRegion *_hr;
3209   G1CollectedHeap *_g1;
3210 public:
3211   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3212     _g1 = G1CollectedHeap::heap();
3213   };
3214 
3215   void do_object(oop o) {
3216     if (o != NULL) {
3217       HeapWord *start = (HeapWord *) o;
3218       size_t word_sz = o->size();
3219       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3220                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3221                           (void*) o, word_sz,
3222                           _g1->isMarkedPrev(o),
3223                           _g1->isMarkedNext(o),
3224                           _hr->obj_allocated_since_prev_marking(o));
3225       HeapWord *end = start + word_sz;
3226       HeapWord *cur;
3227       int *val;
3228       for (cur = start; cur < end; cur++) {
3229         val = (int *) cur;
3230         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3231       }
3232     }
3233   }
3234 };
3235 
3236 class VerifyRegionClosure: public HeapRegionClosure {
3237 private:
3238   bool             _par;
3239   VerifyOption     _vo;
3240   bool             _failures;
3241 public:
3242   // _vo == UsePrevMarking -> use "prev" marking information,
3243   // _vo == UseNextMarking -> use "next" marking information,
3244   // _vo == UseMarkWord    -> use mark word from object header.
3245   VerifyRegionClosure(bool par, VerifyOption vo)
3246     : _par(par),
3247       _vo(vo),
3248       _failures(false) {}
3249 
3250   bool failures() {
3251     return _failures;
3252   }
3253 
3254   bool doHeapRegion(HeapRegion* r) {
3255     if (!r->continuesHumongous()) {
3256       bool failures = false;
3257       r->verify(_vo, &failures);
3258       if (failures) {
3259         _failures = true;
3260       } else {
3261         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3262         r->object_iterate(&not_dead_yet_cl);
3263         if (_vo != VerifyOption_G1UseNextMarking) {
3264           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3265             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3266                                    "max_live_bytes "SIZE_FORMAT" "
3267                                    "< calculated "SIZE_FORMAT,
3268                                    r->bottom(), r->end(),
3269                                    r->max_live_bytes(),
3270                                  not_dead_yet_cl.live_bytes());
3271             _failures = true;
3272           }
3273         } else {
3274           // When vo == UseNextMarking we cannot currently do a sanity
3275           // check on the live bytes as the calculation has not been
3276           // finalized yet.
3277         }
3278       }
3279     }
3280     return false; // stop the region iteration if we hit a failure
3281   }
3282 };
3283 
3284 class VerifyRootsClosure: public OopsInGenClosure {
3285 private:
3286   G1CollectedHeap* _g1h;
3287   VerifyOption     _vo;
3288   bool             _failures;
3289 public:
3290   // _vo == UsePrevMarking -> use "prev" marking information,
3291   // _vo == UseNextMarking -> use "next" marking information,
3292   // _vo == UseMarkWord    -> use mark word from object header.
3293   VerifyRootsClosure(VerifyOption vo) :
3294     _g1h(G1CollectedHeap::heap()),
3295     _vo(vo),
3296     _failures(false) { }
3297 
3298   bool failures() { return _failures; }
3299 
3300   template <class T> void do_oop_nv(T* p) {
3301     T heap_oop = oopDesc::load_heap_oop(p);
3302     if (!oopDesc::is_null(heap_oop)) {
3303       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3304       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3305         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3306                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3307         if (_vo == VerifyOption_G1UseMarkWord) {
3308           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3309         }
3310         obj->print_on(gclog_or_tty);
3311         _failures = true;
3312       }
3313     }
3314   }
3315 
3316   void do_oop(oop* p)       { do_oop_nv(p); }
3317   void do_oop(narrowOop* p) { do_oop_nv(p); }
3318 };
3319 
3320 // This is the task used for parallel heap verification.
3321 
3322 class G1ParVerifyTask: public AbstractGangTask {
3323 private:
3324   G1CollectedHeap* _g1h;
3325   VerifyOption     _vo;
3326   bool             _failures;
3327 
3328 public:
3329   // _vo == UsePrevMarking -> use "prev" marking information,
3330   // _vo == UseNextMarking -> use "next" marking information,
3331   // _vo == UseMarkWord    -> use mark word from object header.
3332   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3333     AbstractGangTask("Parallel verify task"),
3334     _g1h(g1h),
3335     _vo(vo),
3336     _failures(false) { }
3337 
3338   bool failures() {
3339     return _failures;
3340   }
3341 
3342   void work(uint worker_id) {
3343     HandleMark hm;
3344     VerifyRegionClosure blk(true, _vo);
3345     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3346                                           _g1h->workers()->active_workers(),
3347                                           HeapRegion::ParVerifyClaimValue);
3348     if (blk.failures()) {
3349       _failures = true;
3350     }
3351   }
3352 };
3353 
3354 void G1CollectedHeap::verify(bool silent) {
3355   verify(silent, VerifyOption_G1UsePrevMarking);
3356 }
3357 
3358 void G1CollectedHeap::verify(bool silent,
3359                              VerifyOption vo) {
3360   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3361     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3362     VerifyRootsClosure rootsCl(vo);
3363 
3364     assert(Thread::current()->is_VM_thread(),
3365       "Expected to be executed serially by the VM thread at this point");
3366 
3367     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3368 
3369     // We apply the relevant closures to all the oops in the
3370     // system dictionary, the string table and the code cache.
3371     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3372 
3373     process_strong_roots(true,      // activate StrongRootsScope
3374                          true,      // we set "collecting perm gen" to true,
3375                                     // so we don't reset the dirty cards in the perm gen.
3376                          ScanningOption(so),  // roots scanning options
3377                          &rootsCl,
3378                          &blobsCl,
3379                          &rootsCl);
3380 
3381     // If we're verifying after the marking phase of a Full GC then we can't
3382     // treat the perm gen as roots into the G1 heap. Some of the objects in
3383     // the perm gen may be dead and hence not marked. If one of these dead
3384     // objects is considered to be a root then we may end up with a false
3385     // "Root location <x> points to dead ob <y>" failure.
3386     if (vo != VerifyOption_G1UseMarkWord) {
3387       // Since we used "collecting_perm_gen" == true above, we will not have
3388       // checked the refs from perm into the G1-collected heap. We check those
3389       // references explicitly below. Whether the relevant cards are dirty
3390       // is checked further below in the rem set verification.
3391       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3392       perm_gen()->oop_iterate(&rootsCl);
3393     }
3394     bool failures = rootsCl.failures();
3395 
3396     if (vo != VerifyOption_G1UseMarkWord) {
3397       // If we're verifying during a full GC then the region sets
3398       // will have been torn down at the start of the GC. Therefore
3399       // verifying the region sets will fail. So we only verify
3400       // the region sets when not in a full GC.
3401       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3402       verify_region_sets();
3403     }
3404 
3405     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3406     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3407       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3408              "sanity check");
3409 
3410       G1ParVerifyTask task(this, vo);
3411       assert(UseDynamicNumberOfGCThreads ||
3412         workers()->active_workers() == workers()->total_workers(),
3413         "If not dynamic should be using all the workers");
3414       int n_workers = workers()->active_workers();
3415       set_par_threads(n_workers);
3416       workers()->run_task(&task);
3417       set_par_threads(0);
3418       if (task.failures()) {
3419         failures = true;
3420       }
3421 
3422       // Checks that the expected amount of parallel work was done.
3423       // The implication is that n_workers is > 0.
3424       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3425              "sanity check");
3426 
3427       reset_heap_region_claim_values();
3428 
3429       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3430              "sanity check");
3431     } else {
3432       VerifyRegionClosure blk(false, vo);
3433       heap_region_iterate(&blk);
3434       if (blk.failures()) {
3435         failures = true;
3436       }
3437     }
3438     if (!silent) gclog_or_tty->print("RemSet ");
3439     rem_set()->verify();
3440 
3441     if (failures) {
3442       gclog_or_tty->print_cr("Heap:");
3443       // It helps to have the per-region information in the output to
3444       // help us track down what went wrong. This is why we call
3445       // print_extended_on() instead of print_on().
3446       print_extended_on(gclog_or_tty);
3447       gclog_or_tty->print_cr("");
3448 #ifndef PRODUCT
3449       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3450         concurrent_mark()->print_reachable("at-verification-failure",
3451                                            vo, false /* all */);
3452       }
3453 #endif
3454       gclog_or_tty->flush();
3455     }
3456     guarantee(!failures, "there should not have been any failures");
3457   } else {
3458     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
3459   }
3460 }
3461 
3462 class PrintRegionClosure: public HeapRegionClosure {
3463   outputStream* _st;
3464 public:
3465   PrintRegionClosure(outputStream* st) : _st(st) {}
3466   bool doHeapRegion(HeapRegion* r) {
3467     r->print_on(_st);
3468     return false;
3469   }
3470 };
3471 
3472 void G1CollectedHeap::print_on(outputStream* st) const {
3473   st->print(" %-20s", "garbage-first heap");
3474   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3475             capacity()/K, used_unlocked()/K);
3476   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3477             _g1_storage.low_boundary(),
3478             _g1_storage.high(),
3479             _g1_storage.high_boundary());
3480   st->cr();
3481   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3482   uint young_regions = _young_list->length();
3483   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3484             (size_t) young_regions * HeapRegion::GrainBytes / K);
3485   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3486   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3487             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3488   st->cr();
3489   perm()->as_gen()->print_on(st);
3490 }
3491 
3492 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3493   print_on(st);
3494 
3495   // Print the per-region information.
3496   st->cr();
3497   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3498                "HS=humongous(starts), HC=humongous(continues), "
3499                "CS=collection set, F=free, TS=gc time stamp, "
3500                "PTAMS=previous top-at-mark-start, "
3501                "NTAMS=next top-at-mark-start)");
3502   PrintRegionClosure blk(st);
3503   heap_region_iterate(&blk);
3504 }
3505 
3506 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3507   if (G1CollectedHeap::use_parallel_gc_threads()) {
3508     workers()->print_worker_threads_on(st);
3509   }
3510   _cmThread->print_on(st);
3511   st->cr();
3512   _cm->print_worker_threads_on(st);
3513   _cg1r->print_worker_threads_on(st);
3514   st->cr();
3515 }
3516 
3517 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3518   if (G1CollectedHeap::use_parallel_gc_threads()) {
3519     workers()->threads_do(tc);
3520   }
3521   tc->do_thread(_cmThread);
3522   _cg1r->threads_do(tc);
3523 }
3524 
3525 void G1CollectedHeap::print_tracing_info() const {
3526   // We'll overload this to mean "trace GC pause statistics."
3527   if (TraceGen0Time || TraceGen1Time) {
3528     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3529     // to that.
3530     g1_policy()->print_tracing_info();
3531   }
3532   if (G1SummarizeRSetStats) {
3533     g1_rem_set()->print_summary_info();
3534   }
3535   if (G1SummarizeConcMark) {
3536     concurrent_mark()->print_summary_info();
3537   }
3538   g1_policy()->print_yg_surv_rate_info();
3539   SpecializationStats::print();
3540 }
3541 
3542 #ifndef PRODUCT
3543 // Helpful for debugging RSet issues.
3544 
3545 class PrintRSetsClosure : public HeapRegionClosure {
3546 private:
3547   const char* _msg;
3548   size_t _occupied_sum;
3549 
3550 public:
3551   bool doHeapRegion(HeapRegion* r) {
3552     HeapRegionRemSet* hrrs = r->rem_set();
3553     size_t occupied = hrrs->occupied();
3554     _occupied_sum += occupied;
3555 
3556     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3557                            HR_FORMAT_PARAMS(r));
3558     if (occupied == 0) {
3559       gclog_or_tty->print_cr("  RSet is empty");
3560     } else {
3561       hrrs->print();
3562     }
3563     gclog_or_tty->print_cr("----------");
3564     return false;
3565   }
3566 
3567   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3568     gclog_or_tty->cr();
3569     gclog_or_tty->print_cr("========================================");
3570     gclog_or_tty->print_cr(msg);
3571     gclog_or_tty->cr();
3572   }
3573 
3574   ~PrintRSetsClosure() {
3575     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3576     gclog_or_tty->print_cr("========================================");
3577     gclog_or_tty->cr();
3578   }
3579 };
3580 
3581 void G1CollectedHeap::print_cset_rsets() {
3582   PrintRSetsClosure cl("Printing CSet RSets");
3583   collection_set_iterate(&cl);
3584 }
3585 
3586 void G1CollectedHeap::print_all_rsets() {
3587   PrintRSetsClosure cl("Printing All RSets");;
3588   heap_region_iterate(&cl);
3589 }
3590 #endif // PRODUCT
3591 
3592 G1CollectedHeap* G1CollectedHeap::heap() {
3593   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3594          "not a garbage-first heap");
3595   return _g1h;
3596 }
3597 
3598 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3599   // always_do_update_barrier = false;
3600   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3601   // Call allocation profiler
3602   AllocationProfiler::iterate_since_last_gc();
3603   // Fill TLAB's and such
3604   ensure_parsability(true);
3605 }
3606 
3607 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3608   // FIXME: what is this about?
3609   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3610   // is set.
3611   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3612                         "derived pointer present"));
3613   // always_do_update_barrier = true;
3614 
3615   // We have just completed a GC. Update the soft reference
3616   // policy with the new heap occupancy
3617   Universe::update_heap_info_at_gc();
3618 }
3619 
3620 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3621                                                unsigned int gc_count_before,
3622                                                bool* succeeded) {
3623   assert_heap_not_locked_and_not_at_safepoint();
3624   g1_policy()->record_stop_world_start();
3625   VM_G1IncCollectionPause op(gc_count_before,
3626                              word_size,
3627                              false, /* should_initiate_conc_mark */
3628                              g1_policy()->max_pause_time_ms(),
3629                              GCCause::_g1_inc_collection_pause);
3630   VMThread::execute(&op);
3631 
3632   HeapWord* result = op.result();
3633   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3634   assert(result == NULL || ret_succeeded,
3635          "the result should be NULL if the VM did not succeed");
3636   *succeeded = ret_succeeded;
3637 
3638   assert_heap_not_locked();
3639   return result;
3640 }
3641 
3642 void
3643 G1CollectedHeap::doConcurrentMark() {
3644   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3645   if (!_cmThread->in_progress()) {
3646     _cmThread->set_started();
3647     CGC_lock->notify();
3648   }
3649 }
3650 
3651 size_t G1CollectedHeap::pending_card_num() {
3652   size_t extra_cards = 0;
3653   JavaThread *curr = Threads::first();
3654   while (curr != NULL) {
3655     DirtyCardQueue& dcq = curr->dirty_card_queue();
3656     extra_cards += dcq.size();
3657     curr = curr->next();
3658   }
3659   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3660   size_t buffer_size = dcqs.buffer_size();
3661   size_t buffer_num = dcqs.completed_buffers_num();
3662 
3663   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3664   // in bytes - not the number of 'entries'. We need to convert
3665   // into a number of cards.
3666   return (buffer_size * buffer_num + extra_cards) / oopSize;
3667 }
3668 
3669 size_t G1CollectedHeap::cards_scanned() {
3670   return g1_rem_set()->cardsScanned();
3671 }
3672 
3673 void
3674 G1CollectedHeap::setup_surviving_young_words() {
3675   assert(_surviving_young_words == NULL, "pre-condition");
3676   uint array_length = g1_policy()->young_cset_region_length();
3677   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3678   if (_surviving_young_words == NULL) {
3679     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3680                           "Not enough space for young surv words summary.");
3681   }
3682   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3683 #ifdef ASSERT
3684   for (uint i = 0;  i < array_length; ++i) {
3685     assert( _surviving_young_words[i] == 0, "memset above" );
3686   }
3687 #endif // !ASSERT
3688 }
3689 
3690 void
3691 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3692   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3693   uint array_length = g1_policy()->young_cset_region_length();
3694   for (uint i = 0; i < array_length; ++i) {
3695     _surviving_young_words[i] += surv_young_words[i];
3696   }
3697 }
3698 
3699 void
3700 G1CollectedHeap::cleanup_surviving_young_words() {
3701   guarantee( _surviving_young_words != NULL, "pre-condition" );
3702   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3703   _surviving_young_words = NULL;
3704 }
3705 
3706 #ifdef ASSERT
3707 class VerifyCSetClosure: public HeapRegionClosure {
3708 public:
3709   bool doHeapRegion(HeapRegion* hr) {
3710     // Here we check that the CSet region's RSet is ready for parallel
3711     // iteration. The fields that we'll verify are only manipulated
3712     // when the region is part of a CSet and is collected. Afterwards,
3713     // we reset these fields when we clear the region's RSet (when the
3714     // region is freed) so they are ready when the region is
3715     // re-allocated. The only exception to this is if there's an
3716     // evacuation failure and instead of freeing the region we leave
3717     // it in the heap. In that case, we reset these fields during
3718     // evacuation failure handling.
3719     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3720 
3721     // Here's a good place to add any other checks we'd like to
3722     // perform on CSet regions.
3723     return false;
3724   }
3725 };
3726 #endif // ASSERT
3727 
3728 #if TASKQUEUE_STATS
3729 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3730   st->print_raw_cr("GC Task Stats");
3731   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3732   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3733 }
3734 
3735 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3736   print_taskqueue_stats_hdr(st);
3737 
3738   TaskQueueStats totals;
3739   const int n = workers() != NULL ? workers()->total_workers() : 1;
3740   for (int i = 0; i < n; ++i) {
3741     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3742     totals += task_queue(i)->stats;
3743   }
3744   st->print_raw("tot "); totals.print(st); st->cr();
3745 
3746   DEBUG_ONLY(totals.verify());
3747 }
3748 
3749 void G1CollectedHeap::reset_taskqueue_stats() {
3750   const int n = workers() != NULL ? workers()->total_workers() : 1;
3751   for (int i = 0; i < n; ++i) {
3752     task_queue(i)->stats.reset();
3753   }
3754 }
3755 #endif // TASKQUEUE_STATS
3756 
3757 void G1CollectedHeap::log_gc_header() {
3758   if (!G1Log::fine()) {
3759     return;
3760   }
3761 
3762   gclog_or_tty->date_stamp(PrintGCDateStamps);
3763   gclog_or_tty->stamp(PrintGCTimeStamps);
3764 
3765   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3766     .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3767     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3768 
3769   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3770 }
3771 
3772 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3773   if (!G1Log::fine()) {
3774     return;
3775   }
3776 
3777   if (G1Log::finer()) {
3778     if (evacuation_failed()) {
3779       gclog_or_tty->print(" (to-space exhausted)");
3780     }
3781     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3782     g1_policy()->phase_times()->note_gc_end();
3783     g1_policy()->phase_times()->print(pause_time_sec);
3784     g1_policy()->print_detailed_heap_transition();
3785   } else {
3786     if (evacuation_failed()) {
3787       gclog_or_tty->print("--");
3788     }
3789     g1_policy()->print_heap_transition();
3790     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3791   }
3792   gclog_or_tty->flush();
3793 }
3794 
3795 bool
3796 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3797   assert_at_safepoint(true /* should_be_vm_thread */);
3798   guarantee(!is_gc_active(), "collection is not reentrant");
3799 
3800   if (GC_locker::check_active_before_gc()) {
3801     return false;
3802   }
3803 
3804   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3805 
3806   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3807 
3808   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3809   ResourceMark rm;
3810 
3811   print_heap_before_gc();
3812   trace_heap_before_gc(_gc_tracer_stw);
3813 
3814   HRSPhaseSetter x(HRSPhaseEvacuation);
3815   verify_region_sets_optional();
3816   verify_dirty_young_regions();
3817 
3818   // This call will decide whether this pause is an initial-mark
3819   // pause. If it is, during_initial_mark_pause() will return true
3820   // for the duration of this pause.
3821   g1_policy()->decide_on_conc_mark_initiation();
3822 
3823   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3824   assert(!g1_policy()->during_initial_mark_pause() ||
3825           g1_policy()->gcs_are_young(), "sanity");
3826 
3827   // We also do not allow mixed GCs during marking.
3828   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3829 
3830   // Record whether this pause is an initial mark. When the current
3831   // thread has completed its logging output and it's safe to signal
3832   // the CM thread, the flag's value in the policy has been reset.
3833   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3834 
3835   // Inner scope for scope based logging, timers, and stats collection
3836   {
3837     EvacuationInfo evacuation_info;
3838 
3839     if (g1_policy()->during_initial_mark_pause()) {
3840       // We are about to start a marking cycle, so we increment the
3841       // full collection counter.
3842       increment_old_marking_cycles_started();
3843       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3844     }
3845 
3846     _gc_tracer_stw->report_yc_type(yc_type());
3847 
3848     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3849 
3850     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3851                                 workers()->active_workers() : 1);
3852     double pause_start_sec = os::elapsedTime();
3853     g1_policy()->phase_times()->note_gc_start(active_workers);
3854     log_gc_header();
3855 
3856     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3857     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3858 
3859     // If the secondary_free_list is not empty, append it to the
3860     // free_list. No need to wait for the cleanup operation to finish;
3861     // the region allocation code will check the secondary_free_list
3862     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3863     // set, skip this step so that the region allocation code has to
3864     // get entries from the secondary_free_list.
3865     if (!G1StressConcRegionFreeing) {
3866       append_secondary_free_list_if_not_empty_with_lock();
3867     }
3868 
3869     assert(check_young_list_well_formed(),
3870       "young list should be well formed");
3871 
3872     // Don't dynamically change the number of GC threads this early.  A value of
3873     // 0 is used to indicate serial work.  When parallel work is done,
3874     // it will be set.
3875 
3876     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3877       IsGCActiveMark x;
3878 
3879       gc_prologue(false);
3880       increment_total_collections(false /* full gc */);
3881       increment_gc_time_stamp();
3882 
3883       verify_before_gc();
3884 
3885       COMPILER2_PRESENT(DerivedPointerTable::clear());
3886 
3887       // Please see comment in g1CollectedHeap.hpp and
3888       // G1CollectedHeap::ref_processing_init() to see how
3889       // reference processing currently works in G1.
3890 
3891       // Enable discovery in the STW reference processor
3892       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3893                                             true /*verify_no_refs*/);
3894 
3895       {
3896         // We want to temporarily turn off discovery by the
3897         // CM ref processor, if necessary, and turn it back on
3898         // on again later if we do. Using a scoped
3899         // NoRefDiscovery object will do this.
3900         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3901 
3902         // Forget the current alloc region (we might even choose it to be part
3903         // of the collection set!).
3904         release_mutator_alloc_region();
3905 
3906         // We should call this after we retire the mutator alloc
3907         // region(s) so that all the ALLOC / RETIRE events are generated
3908         // before the start GC event.
3909         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3910 
3911         // This timing is only used by the ergonomics to handle our pause target.
3912         // It is unclear why this should not include the full pause. We will
3913         // investigate this in CR 7178365.
3914         //
3915         // Preserving the old comment here if that helps the investigation:
3916         //
3917         // The elapsed time induced by the start time below deliberately elides
3918         // the possible verification above.
3919         double sample_start_time_sec = os::elapsedTime();
3920         size_t start_used_bytes = used();
3921 
3922 #if YOUNG_LIST_VERBOSE
3923         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3924         _young_list->print();
3925         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3926 #endif // YOUNG_LIST_VERBOSE
3927 
3928         g1_policy()->record_collection_pause_start(sample_start_time_sec,
3929                                                    start_used_bytes);
3930 
3931         double scan_wait_start = os::elapsedTime();
3932         // We have to wait until the CM threads finish scanning the
3933         // root regions as it's the only way to ensure that all the
3934         // objects on them have been correctly scanned before we start
3935         // moving them during the GC.
3936         bool waited = _cm->root_regions()->wait_until_scan_finished();
3937         double wait_time_ms = 0.0;
3938         if (waited) {
3939           double scan_wait_end = os::elapsedTime();
3940           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3941         }
3942         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3943 
3944 #if YOUNG_LIST_VERBOSE
3945         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3946         _young_list->print();
3947 #endif // YOUNG_LIST_VERBOSE
3948 
3949         if (g1_policy()->during_initial_mark_pause()) {
3950           concurrent_mark()->checkpointRootsInitialPre();
3951         }
3952         perm_gen()->save_marks();
3953 
3954 #if YOUNG_LIST_VERBOSE
3955         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3956         _young_list->print();
3957         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3958 #endif // YOUNG_LIST_VERBOSE
3959 
3960         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3961 
3962         _cm->note_start_of_gc();
3963         // We should not verify the per-thread SATB buffers given that
3964         // we have not filtered them yet (we'll do so during the
3965         // GC). We also call this after finalize_cset() to
3966         // ensure that the CSet has been finalized.
3967         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3968                                  true  /* verify_enqueued_buffers */,
3969                                  false /* verify_thread_buffers */,
3970                                  true  /* verify_fingers */);
3971 
3972         if (_hr_printer.is_active()) {
3973           HeapRegion* hr = g1_policy()->collection_set();
3974           while (hr != NULL) {
3975             G1HRPrinter::RegionType type;
3976             if (!hr->is_young()) {
3977               type = G1HRPrinter::Old;
3978             } else if (hr->is_survivor()) {
3979               type = G1HRPrinter::Survivor;
3980             } else {
3981               type = G1HRPrinter::Eden;
3982             }
3983             _hr_printer.cset(hr);
3984             hr = hr->next_in_collection_set();
3985           }
3986         }
3987 
3988 #ifdef ASSERT
3989         VerifyCSetClosure cl;
3990         collection_set_iterate(&cl);
3991 #endif // ASSERT
3992 
3993         setup_surviving_young_words();
3994 
3995         // Initialize the GC alloc regions.
3996         init_gc_alloc_regions(evacuation_info);
3997 
3998         // Actually do the work...
3999         evacuate_collection_set(evacuation_info);
4000 
4001         // We do this to mainly verify the per-thread SATB buffers
4002         // (which have been filtered by now) since we didn't verify
4003         // them earlier. No point in re-checking the stacks / enqueued
4004         // buffers given that the CSet has not changed since last time
4005         // we checked.
4006         _cm->verify_no_cset_oops(false /* verify_stacks */,
4007                                  false /* verify_enqueued_buffers */,
4008                                  true  /* verify_thread_buffers */,
4009                                  true  /* verify_fingers */);
4010 
4011         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4012         g1_policy()->clear_collection_set();
4013 
4014         cleanup_surviving_young_words();
4015 
4016         // Start a new incremental collection set for the next pause.
4017         g1_policy()->start_incremental_cset_building();
4018 
4019         // Clear the _cset_fast_test bitmap in anticipation of adding
4020         // regions to the incremental collection set for the next
4021         // evacuation pause.
4022         clear_cset_fast_test();
4023 
4024         _young_list->reset_sampled_info();
4025 
4026         // Don't check the whole heap at this point as the
4027         // GC alloc regions from this pause have been tagged
4028         // as survivors and moved on to the survivor list.
4029         // Survivor regions will fail the !is_young() check.
4030         assert(check_young_list_empty(false /* check_heap */),
4031           "young list should be empty");
4032 
4033 #if YOUNG_LIST_VERBOSE
4034         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4035         _young_list->print();
4036 #endif // YOUNG_LIST_VERBOSE
4037 
4038         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4039                                              _young_list->first_survivor_region(),
4040                                              _young_list->last_survivor_region());
4041 
4042         _young_list->reset_auxilary_lists();
4043 
4044         if (evacuation_failed()) {
4045           _summary_bytes_used = recalculate_used();
4046           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4047           for (uint i = 0; i < n_queues; i++) {
4048             if (_evacuation_failed_info_array[i].has_failed()) {
4049               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4050             }
4051           }
4052         } else {
4053           // The "used" of the the collection set have already been subtracted
4054           // when they were freed.  Add in the bytes evacuated.
4055           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4056         }
4057 
4058         if (g1_policy()->during_initial_mark_pause()) {
4059           // We have to do this before we notify the CM threads that
4060           // they can start working to make sure that all the
4061           // appropriate initialization is done on the CM object.
4062           concurrent_mark()->checkpointRootsInitialPost();
4063           set_marking_started();
4064           // Note that we don't actually trigger the CM thread at
4065           // this point. We do that later when we're sure that
4066           // the current thread has completed its logging output.
4067         }
4068 
4069         allocate_dummy_regions();
4070 
4071 #if YOUNG_LIST_VERBOSE
4072         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4073         _young_list->print();
4074         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4075 #endif // YOUNG_LIST_VERBOSE
4076 
4077         init_mutator_alloc_region();
4078 
4079         {
4080           size_t expand_bytes = g1_policy()->expansion_amount();
4081           if (expand_bytes > 0) {
4082             size_t bytes_before = capacity();
4083             // No need for an ergo verbose message here,
4084             // expansion_amount() does this when it returns a value > 0.
4085             if (!expand(expand_bytes)) {
4086               // We failed to expand the heap so let's verify that
4087               // committed/uncommitted amount match the backing store
4088               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4089               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4090             }
4091           }
4092         }
4093 
4094         // We redo the verification but now wrt to the new CSet which
4095         // has just got initialized after the previous CSet was freed.
4096         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4097                                  true  /* verify_enqueued_buffers */,
4098                                  true  /* verify_thread_buffers */,
4099                                  true  /* verify_fingers */);
4100         _cm->note_end_of_gc();
4101 
4102         // This timing is only used by the ergonomics to handle our pause target.
4103         // It is unclear why this should not include the full pause. We will
4104         // investigate this in CR 7178365.
4105         double sample_end_time_sec = os::elapsedTime();
4106         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4107         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4108 
4109         MemoryService::track_memory_usage();
4110 
4111         // In prepare_for_verify() below we'll need to scan the deferred
4112         // update buffers to bring the RSets up-to-date if
4113         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4114         // the update buffers we'll probably need to scan cards on the
4115         // regions we just allocated to (i.e., the GC alloc
4116         // regions). However, during the last GC we called
4117         // set_saved_mark() on all the GC alloc regions, so card
4118         // scanning might skip the [saved_mark_word()...top()] area of
4119         // those regions (i.e., the area we allocated objects into
4120         // during the last GC). But it shouldn't. Given that
4121         // saved_mark_word() is conditional on whether the GC time stamp
4122         // on the region is current or not, by incrementing the GC time
4123         // stamp here we invalidate all the GC time stamps on all the
4124         // regions and saved_mark_word() will simply return top() for
4125         // all the regions. This is a nicer way of ensuring this rather
4126         // than iterating over the regions and fixing them. In fact, the
4127         // GC time stamp increment here also ensures that
4128         // saved_mark_word() will return top() between pauses, i.e.,
4129         // during concurrent refinement. So we don't need the
4130         // is_gc_active() check to decided which top to use when
4131         // scanning cards (see CR 7039627).
4132         increment_gc_time_stamp();
4133 
4134         verify_after_gc();
4135 
4136         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4137         ref_processor_stw()->verify_no_references_recorded();
4138 
4139         // CM reference discovery will be re-enabled if necessary.
4140       }
4141 
4142       // We should do this after we potentially expand the heap so
4143       // that all the COMMIT events are generated before the end GC
4144       // event, and after we retire the GC alloc regions so that all
4145       // RETIRE events are generated before the end GC event.
4146       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4147 
4148       if (mark_in_progress()) {
4149         concurrent_mark()->update_g1_committed();
4150       }
4151 
4152 #ifdef TRACESPINNING
4153       ParallelTaskTerminator::print_termination_counts();
4154 #endif
4155 
4156       gc_epilogue(false);
4157     }
4158 
4159     // Print the remainder of the GC log output.
4160     log_gc_footer(os::elapsedTime() - pause_start_sec);
4161 
4162     // It is not yet to safe to tell the concurrent mark to
4163     // start as we have some optional output below. We don't want the
4164     // output from the concurrent mark thread interfering with this
4165     // logging output either.
4166 
4167     _hrs.verify_optional();
4168     verify_region_sets_optional();
4169 
4170     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4171     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4172 
4173     print_heap_after_gc();
4174     trace_heap_after_gc(_gc_tracer_stw);
4175 
4176     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4177     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4178     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4179     // before any GC notifications are raised.
4180     g1mm()->update_sizes();
4181 
4182     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4183     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4184     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4185     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4186   }
4187 
4188   if (G1SummarizeRSetStats &&
4189       (G1SummarizeRSetStatsPeriod > 0) &&
4190       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4191     g1_rem_set()->print_summary_info();
4192   }
4193   // It should now be safe to tell the concurrent mark thread to start
4194   // without its logging output interfering with the logging output
4195   // that came from the pause.
4196 
4197   if (should_start_conc_mark) {
4198     // CAUTION: after the doConcurrentMark() call below,
4199     // the concurrent marking thread(s) could be running
4200     // concurrently with us. Make sure that anything after
4201     // this point does not assume that we are the only GC thread
4202     // running. Note: of course, the actual marking work will
4203     // not start until the safepoint itself is released in
4204     // ConcurrentGCThread::safepoint_desynchronize().
4205     doConcurrentMark();
4206   }
4207 
4208   return true;
4209 }
4210 
4211 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4212 {
4213   size_t gclab_word_size;
4214   switch (purpose) {
4215     case GCAllocForSurvived:
4216       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4217       break;
4218     case GCAllocForTenured:
4219       gclab_word_size = _old_plab_stats.desired_plab_sz();
4220       break;
4221     default:
4222       assert(false, "unknown GCAllocPurpose");
4223       gclab_word_size = _old_plab_stats.desired_plab_sz();
4224       break;
4225   }
4226 
4227   // Prevent humongous PLAB sizes for two reasons:
4228   // * PLABs are allocated using a similar paths as oops, but should
4229   //   never be in a humongous region
4230   // * Allowing humongous PLABs needlessly churns the region free lists
4231   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4232 }
4233 
4234 void G1CollectedHeap::init_mutator_alloc_region() {
4235   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4236   _mutator_alloc_region.init();
4237 }
4238 
4239 void G1CollectedHeap::release_mutator_alloc_region() {
4240   _mutator_alloc_region.release();
4241   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4242 }
4243 
4244 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4245   assert_at_safepoint(true /* should_be_vm_thread */);
4246 
4247   _survivor_gc_alloc_region.init();
4248   _old_gc_alloc_region.init();
4249   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4250   _retained_old_gc_alloc_region = NULL;
4251 
4252   // We will discard the current GC alloc region if:
4253   // a) it's in the collection set (it can happen!),
4254   // b) it's already full (no point in using it),
4255   // c) it's empty (this means that it was emptied during
4256   // a cleanup and it should be on the free list now), or
4257   // d) it's humongous (this means that it was emptied
4258   // during a cleanup and was added to the free list, but
4259   // has been subsequently used to allocate a humongous
4260   // object that may be less than the region size).
4261   if (retained_region != NULL &&
4262       !retained_region->in_collection_set() &&
4263       !(retained_region->top() == retained_region->end()) &&
4264       !retained_region->is_empty() &&
4265       !retained_region->isHumongous()) {
4266     retained_region->set_saved_mark();
4267     // The retained region was added to the old region set when it was
4268     // retired. We have to remove it now, since we don't allow regions
4269     // we allocate to in the region sets. We'll re-add it later, when
4270     // it's retired again.
4271     _old_set.remove(retained_region);
4272     bool during_im = g1_policy()->during_initial_mark_pause();
4273     retained_region->note_start_of_copying(during_im);
4274     _old_gc_alloc_region.set(retained_region);
4275     _hr_printer.reuse(retained_region);
4276     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4277   }
4278 }
4279 
4280 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4281   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4282                                          _old_gc_alloc_region.count());
4283   _survivor_gc_alloc_region.release();
4284   // If we have an old GC alloc region to release, we'll save it in
4285   // _retained_old_gc_alloc_region. If we don't
4286   // _retained_old_gc_alloc_region will become NULL. This is what we
4287   // want either way so no reason to check explicitly for either
4288   // condition.
4289   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4290 
4291   if (ResizePLAB) {
4292     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4293     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4294   }
4295 }
4296 
4297 void G1CollectedHeap::abandon_gc_alloc_regions() {
4298   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4299   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4300   _retained_old_gc_alloc_region = NULL;
4301 }
4302 
4303 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4304   _drain_in_progress = false;
4305   set_evac_failure_closure(cl);
4306   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4307 }
4308 
4309 void G1CollectedHeap::finalize_for_evac_failure() {
4310   assert(_evac_failure_scan_stack != NULL &&
4311          _evac_failure_scan_stack->length() == 0,
4312          "Postcondition");
4313   assert(!_drain_in_progress, "Postcondition");
4314   delete _evac_failure_scan_stack;
4315   _evac_failure_scan_stack = NULL;
4316 }
4317 
4318 void G1CollectedHeap::remove_self_forwarding_pointers() {
4319   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4320 
4321   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4322 
4323   if (G1CollectedHeap::use_parallel_gc_threads()) {
4324     set_par_threads();
4325     workers()->run_task(&rsfp_task);
4326     set_par_threads(0);
4327   } else {
4328     rsfp_task.work(0);
4329   }
4330 
4331   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4332 
4333   // Reset the claim values in the regions in the collection set.
4334   reset_cset_heap_region_claim_values();
4335 
4336   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4337 
4338   // Now restore saved marks, if any.
4339   assert(_objs_with_preserved_marks.size() ==
4340             _preserved_marks_of_objs.size(), "Both or none.");
4341   while (!_objs_with_preserved_marks.is_empty()) {
4342     oop obj = _objs_with_preserved_marks.pop();
4343     markOop m = _preserved_marks_of_objs.pop();
4344     obj->set_mark(m);
4345   }
4346   _objs_with_preserved_marks.clear(true);
4347   _preserved_marks_of_objs.clear(true);
4348 }
4349 
4350 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4351   _evac_failure_scan_stack->push(obj);
4352 }
4353 
4354 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4355   assert(_evac_failure_scan_stack != NULL, "precondition");
4356 
4357   while (_evac_failure_scan_stack->length() > 0) {
4358      oop obj = _evac_failure_scan_stack->pop();
4359      _evac_failure_closure->set_region(heap_region_containing(obj));
4360      obj->oop_iterate_backwards(_evac_failure_closure);
4361   }
4362 }
4363 
4364 oop
4365 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4366                                                oop old) {
4367   assert(obj_in_cs(old),
4368          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4369                  (HeapWord*) old));
4370   markOop m = old->mark();
4371   oop forward_ptr = old->forward_to_atomic(old);
4372   if (forward_ptr == NULL) {
4373     // Forward-to-self succeeded.
4374     assert(_par_scan_state != NULL, "par scan state");
4375     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4376     uint queue_num = _par_scan_state->queue_num();
4377 
4378     _evacuation_failed = true;
4379     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4380     if (_evac_failure_closure != cl) {
4381       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4382       assert(!_drain_in_progress,
4383              "Should only be true while someone holds the lock.");
4384       // Set the global evac-failure closure to the current thread's.
4385       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4386       set_evac_failure_closure(cl);
4387       // Now do the common part.
4388       handle_evacuation_failure_common(old, m);
4389       // Reset to NULL.
4390       set_evac_failure_closure(NULL);
4391     } else {
4392       // The lock is already held, and this is recursive.
4393       assert(_drain_in_progress, "This should only be the recursive case.");
4394       handle_evacuation_failure_common(old, m);
4395     }
4396     return old;
4397   } else {
4398     // Forward-to-self failed. Either someone else managed to allocate
4399     // space for this object (old != forward_ptr) or they beat us in
4400     // self-forwarding it (old == forward_ptr).
4401     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4402            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4403                    "should not be in the CSet",
4404                    (HeapWord*) old, (HeapWord*) forward_ptr));
4405     return forward_ptr;
4406   }
4407 }
4408 
4409 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4410   preserve_mark_if_necessary(old, m);
4411 
4412   HeapRegion* r = heap_region_containing(old);
4413   if (!r->evacuation_failed()) {
4414     r->set_evacuation_failed(true);
4415     _hr_printer.evac_failure(r);
4416   }
4417 
4418   push_on_evac_failure_scan_stack(old);
4419 
4420   if (!_drain_in_progress) {
4421     // prevent recursion in copy_to_survivor_space()
4422     _drain_in_progress = true;
4423     drain_evac_failure_scan_stack();
4424     _drain_in_progress = false;
4425   }
4426 }
4427 
4428 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4429   assert(evacuation_failed(), "Oversaving!");
4430   // We want to call the "for_promotion_failure" version only in the
4431   // case of a promotion failure.
4432   if (m->must_be_preserved_for_promotion_failure(obj)) {
4433     _objs_with_preserved_marks.push(obj);
4434     _preserved_marks_of_objs.push(m);
4435   }
4436 }
4437 
4438 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4439                                                   size_t word_size) {
4440   if (purpose == GCAllocForSurvived) {
4441     HeapWord* result = survivor_attempt_allocation(word_size);
4442     if (result != NULL) {
4443       return result;
4444     } else {
4445       // Let's try to allocate in the old gen in case we can fit the
4446       // object there.
4447       return old_attempt_allocation(word_size);
4448     }
4449   } else {
4450     assert(purpose ==  GCAllocForTenured, "sanity");
4451     HeapWord* result = old_attempt_allocation(word_size);
4452     if (result != NULL) {
4453       return result;
4454     } else {
4455       // Let's try to allocate in the survivors in case we can fit the
4456       // object there.
4457       return survivor_attempt_allocation(word_size);
4458     }
4459   }
4460 
4461   ShouldNotReachHere();
4462   // Trying to keep some compilers happy.
4463   return NULL;
4464 }
4465 
4466 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4467   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4468 
4469 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4470   : _g1h(g1h),
4471     _refs(g1h->task_queue(queue_num)),
4472     _dcq(&g1h->dirty_card_queue_set()),
4473     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4474     _g1_rem(g1h->g1_rem_set()),
4475     _hash_seed(17), _queue_num(queue_num),
4476     _term_attempts(0),
4477     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4478     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4479     _age_table(false),
4480     _strong_roots_time(0), _term_time(0),
4481     _alloc_buffer_waste(0), _undo_waste(0) {
4482   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4483   // we "sacrifice" entry 0 to keep track of surviving bytes for
4484   // non-young regions (where the age is -1)
4485   // We also add a few elements at the beginning and at the end in
4486   // an attempt to eliminate cache contention
4487   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4488   uint array_length = PADDING_ELEM_NUM +
4489                       real_length +
4490                       PADDING_ELEM_NUM;
4491   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4492   if (_surviving_young_words_base == NULL)
4493     vm_exit_out_of_memory(array_length * sizeof(size_t),
4494                           "Not enough space for young surv histo.");
4495   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4496   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4497 
4498   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4499   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4500 
4501   _start = os::elapsedTime();
4502 }
4503 
4504 void
4505 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4506 {
4507   st->print_raw_cr("GC Termination Stats");
4508   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4509                    " ------waste (KiB)------");
4510   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4511                    "  total   alloc    undo");
4512   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4513                    " ------- ------- -------");
4514 }
4515 
4516 void
4517 G1ParScanThreadState::print_termination_stats(int i,
4518                                               outputStream* const st) const
4519 {
4520   const double elapsed_ms = elapsed_time() * 1000.0;
4521   const double s_roots_ms = strong_roots_time() * 1000.0;
4522   const double term_ms    = term_time() * 1000.0;
4523   st->print_cr("%3d %9.2f %9.2f %6.2f "
4524                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4525                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4526                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4527                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4528                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4529                alloc_buffer_waste() * HeapWordSize / K,
4530                undo_waste() * HeapWordSize / K);
4531 }
4532 
4533 #ifdef ASSERT
4534 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4535   assert(ref != NULL, "invariant");
4536   assert(UseCompressedOops, "sanity");
4537   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4538   oop p = oopDesc::load_decode_heap_oop(ref);
4539   assert(_g1h->is_in_g1_reserved(p),
4540          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4541   return true;
4542 }
4543 
4544 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4545   assert(ref != NULL, "invariant");
4546   if (has_partial_array_mask(ref)) {
4547     // Must be in the collection set--it's already been copied.
4548     oop p = clear_partial_array_mask(ref);
4549     assert(_g1h->obj_in_cs(p),
4550            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4551   } else {
4552     oop p = oopDesc::load_decode_heap_oop(ref);
4553     assert(_g1h->is_in_g1_reserved(p),
4554            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4555   }
4556   return true;
4557 }
4558 
4559 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4560   if (ref.is_narrow()) {
4561     return verify_ref((narrowOop*) ref);
4562   } else {
4563     return verify_ref((oop*) ref);
4564   }
4565 }
4566 #endif // ASSERT
4567 
4568 void G1ParScanThreadState::trim_queue() {
4569   assert(_evac_cl != NULL, "not set");
4570   assert(_evac_failure_cl != NULL, "not set");
4571   assert(_partial_scan_cl != NULL, "not set");
4572 
4573   StarTask ref;
4574   do {
4575     // Drain the overflow stack first, so other threads can steal.
4576     while (refs()->pop_overflow(ref)) {
4577       deal_with_reference(ref);
4578     }
4579 
4580     while (refs()->pop_local(ref)) {
4581       deal_with_reference(ref);
4582     }
4583   } while (!refs()->is_empty());
4584 }
4585 
4586 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4587                                      G1ParScanThreadState* par_scan_state) :
4588   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4589   _par_scan_state(par_scan_state),
4590   _worker_id(par_scan_state->queue_num()),
4591   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4592   _mark_in_progress(_g1->mark_in_progress()) { }
4593 
4594 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4595 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4596 #ifdef ASSERT
4597   HeapRegion* hr = _g1->heap_region_containing(obj);
4598   assert(hr != NULL, "sanity");
4599   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4600 #endif // ASSERT
4601 
4602   // We know that the object is not moving so it's safe to read its size.
4603   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4604 }
4605 
4606 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4607 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4608   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4609 #ifdef ASSERT
4610   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4611   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4612   assert(from_obj != to_obj, "should not be self-forwarded");
4613 
4614   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4615   assert(from_hr != NULL, "sanity");
4616   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4617 
4618   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4619   assert(to_hr != NULL, "sanity");
4620   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4621 #endif // ASSERT
4622 
4623   // The object might be in the process of being copied by another
4624   // worker so we cannot trust that its to-space image is
4625   // well-formed. So we have to read its size from its from-space
4626   // image which we know should not be changing.
4627   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4628 }
4629 
4630 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4631 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4632   ::copy_to_survivor_space(oop old) {
4633   size_t word_sz = old->size();
4634   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4635   // +1 to make the -1 indexes valid...
4636   int       young_index = from_region->young_index_in_cset()+1;
4637   assert( (from_region->is_young() && young_index >  0) ||
4638          (!from_region->is_young() && young_index == 0), "invariant" );
4639   G1CollectorPolicy* g1p = _g1->g1_policy();
4640   markOop m = old->mark();
4641   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4642                                            : m->age();
4643   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4644                                                              word_sz);
4645   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4646 #ifndef PRODUCT
4647   // Should this evacuation fail?
4648   if (_g1->evacuation_should_fail()) {
4649     if (obj_ptr != NULL) {
4650       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4651       obj_ptr = NULL;
4652     }
4653   }
4654 #endif // !PRODUCT
4655 
4656   if (obj_ptr == NULL) {
4657     // This will either forward-to-self, or detect that someone else has
4658     // installed a forwarding pointer.
4659     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4660   }
4661 
4662   oop obj = oop(obj_ptr);
4663 
4664   // We're going to allocate linearly, so might as well prefetch ahead.
4665   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4666 
4667   oop forward_ptr = old->forward_to_atomic(obj);
4668   if (forward_ptr == NULL) {
4669     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4670     if (g1p->track_object_age(alloc_purpose)) {
4671       // We could simply do obj->incr_age(). However, this causes a
4672       // performance issue. obj->incr_age() will first check whether
4673       // the object has a displaced mark by checking its mark word;
4674       // getting the mark word from the new location of the object
4675       // stalls. So, given that we already have the mark word and we
4676       // are about to install it anyway, it's better to increase the
4677       // age on the mark word, when the object does not have a
4678       // displaced mark word. We're not expecting many objects to have
4679       // a displaced marked word, so that case is not optimized
4680       // further (it could be...) and we simply call obj->incr_age().
4681 
4682       if (m->has_displaced_mark_helper()) {
4683         // in this case, we have to install the mark word first,
4684         // otherwise obj looks to be forwarded (the old mark word,
4685         // which contains the forward pointer, was copied)
4686         obj->set_mark(m);
4687         obj->incr_age();
4688       } else {
4689         m = m->incr_age();
4690         obj->set_mark(m);
4691       }
4692       _par_scan_state->age_table()->add(obj, word_sz);
4693     } else {
4694       obj->set_mark(m);
4695     }
4696 
4697     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4698     surv_young_words[young_index] += word_sz;
4699 
4700     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4701       // We keep track of the next start index in the length field of
4702       // the to-space object. The actual length can be found in the
4703       // length field of the from-space object.
4704       arrayOop(obj)->set_length(0);
4705       oop* old_p = set_partial_array_mask(old);
4706       _par_scan_state->push_on_queue(old_p);
4707     } else {
4708       // No point in using the slower heap_region_containing() method,
4709       // given that we know obj is in the heap.
4710       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4711       obj->oop_iterate_backwards(&_scanner);
4712     }
4713   } else {
4714     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4715     obj = forward_ptr;
4716   }
4717   return obj;
4718 }
4719 
4720 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4721 template <class T>
4722 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4723 ::do_oop_work(T* p) {
4724   oop obj = oopDesc::load_decode_heap_oop(p);
4725   assert(barrier != G1BarrierRS || obj != NULL,
4726          "Precondition: G1BarrierRS implies obj is non-NULL");
4727 
4728   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4729 
4730   // here the null check is implicit in the cset_fast_test() test
4731   if (_g1->in_cset_fast_test(obj)) {
4732     oop forwardee;
4733     if (obj->is_forwarded()) {
4734       forwardee = obj->forwardee();
4735     } else {
4736       forwardee = copy_to_survivor_space(obj);
4737     }
4738     assert(forwardee != NULL, "forwardee should not be NULL");
4739     oopDesc::encode_store_heap_oop(p, forwardee);
4740     if (do_mark_object && forwardee != obj) {
4741       // If the object is self-forwarded we don't need to explicitly
4742       // mark it, the evacuation failure protocol will do so.
4743       mark_forwarded_object(obj, forwardee);
4744     }
4745 
4746     // When scanning the RS, we only care about objs in CS.
4747     if (barrier == G1BarrierRS) {
4748       _par_scan_state->update_rs(_from, p, _worker_id);
4749     }
4750   } else {
4751     // The object is not in collection set. If we're a root scanning
4752     // closure during an initial mark pause (i.e. do_mark_object will
4753     // be true) then attempt to mark the object.
4754     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4755       mark_object(obj);
4756     }
4757   }
4758 
4759   if (barrier == G1BarrierEvac && obj != NULL) {
4760     _par_scan_state->update_rs(_from, p, _worker_id);
4761   }
4762 
4763   if (do_gen_barrier && obj != NULL) {
4764     par_do_barrier(p);
4765   }
4766 }
4767 
4768 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4769 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4770 
4771 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4772   assert(has_partial_array_mask(p), "invariant");
4773   oop from_obj = clear_partial_array_mask(p);
4774 
4775   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4776   assert(from_obj->is_objArray(), "must be obj array");
4777   objArrayOop from_obj_array = objArrayOop(from_obj);
4778   // The from-space object contains the real length.
4779   int length                 = from_obj_array->length();
4780 
4781   assert(from_obj->is_forwarded(), "must be forwarded");
4782   oop to_obj                 = from_obj->forwardee();
4783   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4784   objArrayOop to_obj_array   = objArrayOop(to_obj);
4785   // We keep track of the next start index in the length field of the
4786   // to-space object.
4787   int next_index             = to_obj_array->length();
4788   assert(0 <= next_index && next_index < length,
4789          err_msg("invariant, next index: %d, length: %d", next_index, length));
4790 
4791   int start                  = next_index;
4792   int end                    = length;
4793   int remainder              = end - start;
4794   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4795   if (remainder > 2 * ParGCArrayScanChunk) {
4796     end = start + ParGCArrayScanChunk;
4797     to_obj_array->set_length(end);
4798     // Push the remainder before we process the range in case another
4799     // worker has run out of things to do and can steal it.
4800     oop* from_obj_p = set_partial_array_mask(from_obj);
4801     _par_scan_state->push_on_queue(from_obj_p);
4802   } else {
4803     assert(length == end, "sanity");
4804     // We'll process the final range for this object. Restore the length
4805     // so that the heap remains parsable in case of evacuation failure.
4806     to_obj_array->set_length(end);
4807   }
4808   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4809   // Process indexes [start,end). It will also process the header
4810   // along with the first chunk (i.e., the chunk with start == 0).
4811   // Note that at this point the length field of to_obj_array is not
4812   // correct given that we are using it to keep track of the next
4813   // start index. oop_iterate_range() (thankfully!) ignores the length
4814   // field and only relies on the start / end parameters.  It does
4815   // however return the size of the object which will be incorrect. So
4816   // we have to ignore it even if we wanted to use it.
4817   to_obj_array->oop_iterate_range(&_scanner, start, end);
4818 }
4819 
4820 class G1ParEvacuateFollowersClosure : public VoidClosure {
4821 protected:
4822   G1CollectedHeap*              _g1h;
4823   G1ParScanThreadState*         _par_scan_state;
4824   RefToScanQueueSet*            _queues;
4825   ParallelTaskTerminator*       _terminator;
4826 
4827   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4828   RefToScanQueueSet*      queues()         { return _queues; }
4829   ParallelTaskTerminator* terminator()     { return _terminator; }
4830 
4831 public:
4832   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4833                                 G1ParScanThreadState* par_scan_state,
4834                                 RefToScanQueueSet* queues,
4835                                 ParallelTaskTerminator* terminator)
4836     : _g1h(g1h), _par_scan_state(par_scan_state),
4837       _queues(queues), _terminator(terminator) {}
4838 
4839   void do_void();
4840 
4841 private:
4842   inline bool offer_termination();
4843 };
4844 
4845 bool G1ParEvacuateFollowersClosure::offer_termination() {
4846   G1ParScanThreadState* const pss = par_scan_state();
4847   pss->start_term_time();
4848   const bool res = terminator()->offer_termination();
4849   pss->end_term_time();
4850   return res;
4851 }
4852 
4853 void G1ParEvacuateFollowersClosure::do_void() {
4854   StarTask stolen_task;
4855   G1ParScanThreadState* const pss = par_scan_state();
4856   pss->trim_queue();
4857 
4858   do {
4859     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4860       assert(pss->verify_task(stolen_task), "sanity");
4861       if (stolen_task.is_narrow()) {
4862         pss->deal_with_reference((narrowOop*) stolen_task);
4863       } else {
4864         pss->deal_with_reference((oop*) stolen_task);
4865       }
4866 
4867       // We've just processed a reference and we might have made
4868       // available new entries on the queues. So we have to make sure
4869       // we drain the queues as necessary.
4870       pss->trim_queue();
4871     }
4872   } while (!offer_termination());
4873 
4874   pss->retire_alloc_buffers();
4875 }
4876 
4877 class G1ParTask : public AbstractGangTask {
4878 protected:
4879   G1CollectedHeap*       _g1h;
4880   RefToScanQueueSet      *_queues;
4881   ParallelTaskTerminator _terminator;
4882   uint _n_workers;
4883 
4884   Mutex _stats_lock;
4885   Mutex* stats_lock() { return &_stats_lock; }
4886 
4887   size_t getNCards() {
4888     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4889       / G1BlockOffsetSharedArray::N_bytes;
4890   }
4891 
4892 public:
4893   G1ParTask(G1CollectedHeap* g1h,
4894             RefToScanQueueSet *task_queues)
4895     : AbstractGangTask("G1 collection"),
4896       _g1h(g1h),
4897       _queues(task_queues),
4898       _terminator(0, _queues),
4899       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4900   {}
4901 
4902   RefToScanQueueSet* queues() { return _queues; }
4903 
4904   RefToScanQueue *work_queue(int i) {
4905     return queues()->queue(i);
4906   }
4907 
4908   ParallelTaskTerminator* terminator() { return &_terminator; }
4909 
4910   virtual void set_for_termination(int active_workers) {
4911     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4912     // in the young space (_par_seq_tasks) in the G1 heap
4913     // for SequentialSubTasksDone.
4914     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4915     // both of which need setting by set_n_termination().
4916     _g1h->SharedHeap::set_n_termination(active_workers);
4917     _g1h->set_n_termination(active_workers);
4918     terminator()->reset_for_reuse(active_workers);
4919     _n_workers = active_workers;
4920   }
4921 
4922   void work(uint worker_id) {
4923     if (worker_id >= _n_workers) return;  // no work needed this round
4924 
4925     double start_time_ms = os::elapsedTime() * 1000.0;
4926     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4927 
4928     {
4929       ResourceMark rm;
4930       HandleMark   hm;
4931 
4932       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4933 
4934       G1ParScanThreadState            pss(_g1h, worker_id);
4935       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4936       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4937       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4938 
4939       pss.set_evac_closure(&scan_evac_cl);
4940       pss.set_evac_failure_closure(&evac_failure_cl);
4941       pss.set_partial_scan_closure(&partial_scan_cl);
4942 
4943       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4944       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4945 
4946       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4947       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4948 
4949       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4950       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4951 
4952       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4953         // We also need to mark copied objects.
4954         scan_root_cl = &scan_mark_root_cl;
4955         scan_perm_cl = &scan_mark_perm_cl;
4956       }
4957 
4958       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4959 
4960       pss.start_strong_roots();
4961       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4962                                     SharedHeap::SO_AllClasses,
4963                                     scan_root_cl,
4964                                     &push_heap_rs_cl,
4965                                     scan_perm_cl,
4966                                     worker_id);
4967       pss.end_strong_roots();
4968 
4969       {
4970         double start = os::elapsedTime();
4971         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4972         evac.do_void();
4973         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4974         double term_ms = pss.term_time()*1000.0;
4975         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4976         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4977       }
4978       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4979       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4980 
4981       if (ParallelGCVerbose) {
4982         MutexLocker x(stats_lock());
4983         pss.print_termination_stats(worker_id);
4984       }
4985 
4986       assert(pss.refs()->is_empty(), "should be empty");
4987 
4988       // Close the inner scope so that the ResourceMark and HandleMark
4989       // destructors are executed here and are included as part of the
4990       // "GC Worker Time".
4991     }
4992 
4993     double end_time_ms = os::elapsedTime() * 1000.0;
4994     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4995   }
4996 };
4997 
4998 // *** Common G1 Evacuation Stuff
4999 
5000 // Closures that support the filtering of CodeBlobs scanned during
5001 // external root scanning.
5002 
5003 // Closure applied to reference fields in code blobs (specifically nmethods)
5004 // to determine whether an nmethod contains references that point into
5005 // the collection set. Used as a predicate when walking code roots so
5006 // that only nmethods that point into the collection set are added to the
5007 // 'marked' list.
5008 
5009 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5010 
5011   class G1PointsIntoCSOopClosure : public OopClosure {
5012     G1CollectedHeap* _g1;
5013     bool _points_into_cs;
5014   public:
5015     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5016       _g1(g1), _points_into_cs(false) { }
5017 
5018     bool points_into_cs() const { return _points_into_cs; }
5019 
5020     template <class T>
5021     void do_oop_nv(T* p) {
5022       if (!_points_into_cs) {
5023         T heap_oop = oopDesc::load_heap_oop(p);
5024         if (!oopDesc::is_null(heap_oop) &&
5025             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5026           _points_into_cs = true;
5027         }
5028       }
5029     }
5030 
5031     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5032     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5033   };
5034 
5035   G1CollectedHeap* _g1;
5036 
5037 public:
5038   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5039     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5040 
5041   virtual void do_code_blob(CodeBlob* cb) {
5042     nmethod* nm = cb->as_nmethod_or_null();
5043     if (nm != NULL && !(nm->test_oops_do_mark())) {
5044       G1PointsIntoCSOopClosure predicate_cl(_g1);
5045       nm->oops_do(&predicate_cl);
5046 
5047       if (predicate_cl.points_into_cs()) {
5048         // At least one of the reference fields or the oop relocations
5049         // in the nmethod points into the collection set. We have to
5050         // 'mark' this nmethod.
5051         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5052         // or MarkingCodeBlobClosure::do_code_blob() change.
5053         if (!nm->test_set_oops_do_mark()) {
5054           do_newly_marked_nmethod(nm);
5055         }
5056       }
5057     }
5058   }
5059 };
5060 
5061 // This method is run in a GC worker.
5062 
5063 void
5064 G1CollectedHeap::
5065 g1_process_strong_roots(bool collecting_perm_gen,
5066                         ScanningOption so,
5067                         OopClosure* scan_non_heap_roots,
5068                         OopsInHeapRegionClosure* scan_rs,
5069                         OopsInGenClosure* scan_perm,
5070                         int worker_i) {
5071 
5072   // First scan the strong roots, including the perm gen.
5073   double ext_roots_start = os::elapsedTime();
5074   double closure_app_time_sec = 0.0;
5075 
5076   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5077   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
5078   buf_scan_perm.set_generation(perm_gen());
5079 
5080   // Walk the code cache w/o buffering, because StarTask cannot handle
5081   // unaligned oop locations.
5082   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5083 
5084   process_strong_roots(false, // no scoping; this is parallel code
5085                        collecting_perm_gen, so,
5086                        &buf_scan_non_heap_roots,
5087                        &eager_scan_code_roots,
5088                        &buf_scan_perm);
5089 
5090   // Now the CM ref_processor roots.
5091   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5092     // We need to treat the discovered reference lists of the
5093     // concurrent mark ref processor as roots and keep entries
5094     // (which are added by the marking threads) on them live
5095     // until they can be processed at the end of marking.
5096     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5097   }
5098 
5099   // Finish up any enqueued closure apps (attributed as object copy time).
5100   buf_scan_non_heap_roots.done();
5101   buf_scan_perm.done();
5102 
5103   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
5104                                 buf_scan_non_heap_roots.closure_app_seconds();
5105   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5106 
5107   double ext_root_time_ms =
5108     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5109 
5110   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5111 
5112   // During conc marking we have to filter the per-thread SATB buffers
5113   // to make sure we remove any oops into the CSet (which will show up
5114   // as implicitly live).
5115   double satb_filtering_ms = 0.0;
5116   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5117     if (mark_in_progress()) {
5118       double satb_filter_start = os::elapsedTime();
5119 
5120       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5121 
5122       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5123     }
5124   }
5125   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5126 
5127   // Now scan the complement of the collection set.
5128   if (scan_rs != NULL) {
5129     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5130   }
5131 
5132   _process_strong_tasks->all_tasks_completed();
5133 }
5134 
5135 void
5136 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5137                                        OopClosure* non_root_closure) {
5138   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5139   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5140 }
5141 
5142 // Weak Reference Processing support
5143 
5144 // An always "is_alive" closure that is used to preserve referents.
5145 // If the object is non-null then it's alive.  Used in the preservation
5146 // of referent objects that are pointed to by reference objects
5147 // discovered by the CM ref processor.
5148 class G1AlwaysAliveClosure: public BoolObjectClosure {
5149   G1CollectedHeap* _g1;
5150 public:
5151   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5152   void do_object(oop p) { assert(false, "Do not call."); }
5153   bool do_object_b(oop p) {
5154     if (p != NULL) {
5155       return true;
5156     }
5157     return false;
5158   }
5159 };
5160 
5161 bool G1STWIsAliveClosure::do_object_b(oop p) {
5162   // An object is reachable if it is outside the collection set,
5163   // or is inside and copied.
5164   return !_g1->obj_in_cs(p) || p->is_forwarded();
5165 }
5166 
5167 // Non Copying Keep Alive closure
5168 class G1KeepAliveClosure: public OopClosure {
5169   G1CollectedHeap* _g1;
5170 public:
5171   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5172   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5173   void do_oop(      oop* p) {
5174     oop obj = *p;
5175 
5176     if (_g1->obj_in_cs(obj)) {
5177       assert( obj->is_forwarded(), "invariant" );
5178       *p = obj->forwardee();
5179     }
5180   }
5181 };
5182 
5183 // Copying Keep Alive closure - can be called from both
5184 // serial and parallel code as long as different worker
5185 // threads utilize different G1ParScanThreadState instances
5186 // and different queues.
5187 
5188 class G1CopyingKeepAliveClosure: public OopClosure {
5189   G1CollectedHeap*         _g1h;
5190   OopClosure*              _copy_non_heap_obj_cl;
5191   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5192   G1ParScanThreadState*    _par_scan_state;
5193 
5194 public:
5195   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5196                             OopClosure* non_heap_obj_cl,
5197                             OopsInHeapRegionClosure* perm_obj_cl,
5198                             G1ParScanThreadState* pss):
5199     _g1h(g1h),
5200     _copy_non_heap_obj_cl(non_heap_obj_cl),
5201     _copy_perm_obj_cl(perm_obj_cl),
5202     _par_scan_state(pss)
5203   {}
5204 
5205   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5206   virtual void do_oop(      oop* p) { do_oop_work(p); }
5207 
5208   template <class T> void do_oop_work(T* p) {
5209     oop obj = oopDesc::load_decode_heap_oop(p);
5210 
5211     if (_g1h->obj_in_cs(obj)) {
5212       // If the referent object has been forwarded (either copied
5213       // to a new location or to itself in the event of an
5214       // evacuation failure) then we need to update the reference
5215       // field and, if both reference and referent are in the G1
5216       // heap, update the RSet for the referent.
5217       //
5218       // If the referent has not been forwarded then we have to keep
5219       // it alive by policy. Therefore we have copy the referent.
5220       //
5221       // If the reference field is in the G1 heap then we can push
5222       // on the PSS queue. When the queue is drained (after each
5223       // phase of reference processing) the object and it's followers
5224       // will be copied, the reference field set to point to the
5225       // new location, and the RSet updated. Otherwise we need to
5226       // use the the non-heap or perm closures directly to copy
5227       // the referent object and update the pointer, while avoiding
5228       // updating the RSet.
5229 
5230       if (_g1h->is_in_g1_reserved(p)) {
5231         _par_scan_state->push_on_queue(p);
5232       } else {
5233         // The reference field is not in the G1 heap.
5234         if (_g1h->perm_gen()->is_in(p)) {
5235           _copy_perm_obj_cl->do_oop(p);
5236         } else {
5237           _copy_non_heap_obj_cl->do_oop(p);
5238         }
5239       }
5240     }
5241   }
5242 };
5243 
5244 // Serial drain queue closure. Called as the 'complete_gc'
5245 // closure for each discovered list in some of the
5246 // reference processing phases.
5247 
5248 class G1STWDrainQueueClosure: public VoidClosure {
5249 protected:
5250   G1CollectedHeap* _g1h;
5251   G1ParScanThreadState* _par_scan_state;
5252 
5253   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5254 
5255 public:
5256   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5257     _g1h(g1h),
5258     _par_scan_state(pss)
5259   { }
5260 
5261   void do_void() {
5262     G1ParScanThreadState* const pss = par_scan_state();
5263     pss->trim_queue();
5264   }
5265 };
5266 
5267 // Parallel Reference Processing closures
5268 
5269 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5270 // processing during G1 evacuation pauses.
5271 
5272 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5273 private:
5274   G1CollectedHeap*   _g1h;
5275   RefToScanQueueSet* _queues;
5276   FlexibleWorkGang*  _workers;
5277   int                _active_workers;
5278 
5279 public:
5280   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5281                         FlexibleWorkGang* workers,
5282                         RefToScanQueueSet *task_queues,
5283                         int n_workers) :
5284     _g1h(g1h),
5285     _queues(task_queues),
5286     _workers(workers),
5287     _active_workers(n_workers)
5288   {
5289     assert(n_workers > 0, "shouldn't call this otherwise");
5290   }
5291 
5292   // Executes the given task using concurrent marking worker threads.
5293   virtual void execute(ProcessTask& task);
5294   virtual void execute(EnqueueTask& task);
5295 };
5296 
5297 // Gang task for possibly parallel reference processing
5298 
5299 class G1STWRefProcTaskProxy: public AbstractGangTask {
5300   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5301   ProcessTask&     _proc_task;
5302   G1CollectedHeap* _g1h;
5303   RefToScanQueueSet *_task_queues;
5304   ParallelTaskTerminator* _terminator;
5305 
5306 public:
5307   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5308                      G1CollectedHeap* g1h,
5309                      RefToScanQueueSet *task_queues,
5310                      ParallelTaskTerminator* terminator) :
5311     AbstractGangTask("Process reference objects in parallel"),
5312     _proc_task(proc_task),
5313     _g1h(g1h),
5314     _task_queues(task_queues),
5315     _terminator(terminator)
5316   {}
5317 
5318   virtual void work(uint worker_id) {
5319     // The reference processing task executed by a single worker.
5320     ResourceMark rm;
5321     HandleMark   hm;
5322 
5323     G1STWIsAliveClosure is_alive(_g1h);
5324 
5325     G1ParScanThreadState pss(_g1h, worker_id);
5326 
5327     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5328     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5329     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5330 
5331     pss.set_evac_closure(&scan_evac_cl);
5332     pss.set_evac_failure_closure(&evac_failure_cl);
5333     pss.set_partial_scan_closure(&partial_scan_cl);
5334 
5335     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5336     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5337 
5338     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5339     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5340 
5341     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5342     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5343 
5344     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5345       // We also need to mark copied objects.
5346       copy_non_heap_cl = &copy_mark_non_heap_cl;
5347       copy_perm_cl = &copy_mark_perm_cl;
5348     }
5349 
5350     // Keep alive closure.
5351     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5352 
5353     // Complete GC closure
5354     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5355 
5356     // Call the reference processing task's work routine.
5357     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5358 
5359     // Note we cannot assert that the refs array is empty here as not all
5360     // of the processing tasks (specifically phase2 - pp2_work) execute
5361     // the complete_gc closure (which ordinarily would drain the queue) so
5362     // the queue may not be empty.
5363   }
5364 };
5365 
5366 // Driver routine for parallel reference processing.
5367 // Creates an instance of the ref processing gang
5368 // task and has the worker threads execute it.
5369 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5370   assert(_workers != NULL, "Need parallel worker threads.");
5371 
5372   ParallelTaskTerminator terminator(_active_workers, _queues);
5373   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5374 
5375   _g1h->set_par_threads(_active_workers);
5376   _workers->run_task(&proc_task_proxy);
5377   _g1h->set_par_threads(0);
5378 }
5379 
5380 // Gang task for parallel reference enqueueing.
5381 
5382 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5383   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5384   EnqueueTask& _enq_task;
5385 
5386 public:
5387   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5388     AbstractGangTask("Enqueue reference objects in parallel"),
5389     _enq_task(enq_task)
5390   { }
5391 
5392   virtual void work(uint worker_id) {
5393     _enq_task.work(worker_id);
5394   }
5395 };
5396 
5397 // Driver routine for parallel reference enqueueing.
5398 // Creates an instance of the ref enqueueing gang
5399 // task and has the worker threads execute it.
5400 
5401 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5402   assert(_workers != NULL, "Need parallel worker threads.");
5403 
5404   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5405 
5406   _g1h->set_par_threads(_active_workers);
5407   _workers->run_task(&enq_task_proxy);
5408   _g1h->set_par_threads(0);
5409 }
5410 
5411 // End of weak reference support closures
5412 
5413 // Abstract task used to preserve (i.e. copy) any referent objects
5414 // that are in the collection set and are pointed to by reference
5415 // objects discovered by the CM ref processor.
5416 
5417 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5418 protected:
5419   G1CollectedHeap* _g1h;
5420   RefToScanQueueSet      *_queues;
5421   ParallelTaskTerminator _terminator;
5422   uint _n_workers;
5423 
5424 public:
5425   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5426     AbstractGangTask("ParPreserveCMReferents"),
5427     _g1h(g1h),
5428     _queues(task_queues),
5429     _terminator(workers, _queues),
5430     _n_workers(workers)
5431   { }
5432 
5433   void work(uint worker_id) {
5434     ResourceMark rm;
5435     HandleMark   hm;
5436 
5437     G1ParScanThreadState            pss(_g1h, worker_id);
5438     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5439     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5440     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5441 
5442     pss.set_evac_closure(&scan_evac_cl);
5443     pss.set_evac_failure_closure(&evac_failure_cl);
5444     pss.set_partial_scan_closure(&partial_scan_cl);
5445 
5446     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5447 
5448 
5449     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5450     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5451 
5452     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5453     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5454 
5455     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5456     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5457 
5458     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5459       // We also need to mark copied objects.
5460       copy_non_heap_cl = &copy_mark_non_heap_cl;
5461       copy_perm_cl = &copy_mark_perm_cl;
5462     }
5463 
5464     // Is alive closure
5465     G1AlwaysAliveClosure always_alive(_g1h);
5466 
5467     // Copying keep alive closure. Applied to referent objects that need
5468     // to be copied.
5469     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5470 
5471     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5472 
5473     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5474     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5475 
5476     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5477     // So this must be true - but assert just in case someone decides to
5478     // change the worker ids.
5479     assert(0 <= worker_id && worker_id < limit, "sanity");
5480     assert(!rp->discovery_is_atomic(), "check this code");
5481 
5482     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5483     for (uint idx = worker_id; idx < limit; idx += stride) {
5484       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5485 
5486       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5487       while (iter.has_next()) {
5488         // Since discovery is not atomic for the CM ref processor, we
5489         // can see some null referent objects.
5490         iter.load_ptrs(DEBUG_ONLY(true));
5491         oop ref = iter.obj();
5492 
5493         // This will filter nulls.
5494         if (iter.is_referent_alive()) {
5495           iter.make_referent_alive();
5496         }
5497         iter.move_to_next();
5498       }
5499     }
5500 
5501     // Drain the queue - which may cause stealing
5502     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5503     drain_queue.do_void();
5504     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5505     assert(pss.refs()->is_empty(), "should be");
5506   }
5507 };
5508 
5509 // Weak Reference processing during an evacuation pause (part 1).
5510 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5511   double ref_proc_start = os::elapsedTime();
5512 
5513   ReferenceProcessor* rp = _ref_processor_stw;
5514   assert(rp->discovery_enabled(), "should have been enabled");
5515 
5516   // Any reference objects, in the collection set, that were 'discovered'
5517   // by the CM ref processor should have already been copied (either by
5518   // applying the external root copy closure to the discovered lists, or
5519   // by following an RSet entry).
5520   //
5521   // But some of the referents, that are in the collection set, that these
5522   // reference objects point to may not have been copied: the STW ref
5523   // processor would have seen that the reference object had already
5524   // been 'discovered' and would have skipped discovering the reference,
5525   // but would not have treated the reference object as a regular oop.
5526   // As a result the copy closure would not have been applied to the
5527   // referent object.
5528   //
5529   // We need to explicitly copy these referent objects - the references
5530   // will be processed at the end of remarking.
5531   //
5532   // We also need to do this copying before we process the reference
5533   // objects discovered by the STW ref processor in case one of these
5534   // referents points to another object which is also referenced by an
5535   // object discovered by the STW ref processor.
5536 
5537   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5538            no_of_gc_workers == workers()->active_workers(),
5539            "Need to reset active GC workers");
5540 
5541   set_par_threads(no_of_gc_workers);
5542   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5543                                                  no_of_gc_workers,
5544                                                  _task_queues);
5545 
5546   if (G1CollectedHeap::use_parallel_gc_threads()) {
5547     workers()->run_task(&keep_cm_referents);
5548   } else {
5549     keep_cm_referents.work(0);
5550   }
5551 
5552   set_par_threads(0);
5553 
5554   // Closure to test whether a referent is alive.
5555   G1STWIsAliveClosure is_alive(this);
5556 
5557   // Even when parallel reference processing is enabled, the processing
5558   // of JNI refs is serial and performed serially by the current thread
5559   // rather than by a worker. The following PSS will be used for processing
5560   // JNI refs.
5561 
5562   // Use only a single queue for this PSS.
5563   G1ParScanThreadState pss(this, 0);
5564 
5565   // We do not embed a reference processor in the copying/scanning
5566   // closures while we're actually processing the discovered
5567   // reference objects.
5568   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5569   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5570   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5571 
5572   pss.set_evac_closure(&scan_evac_cl);
5573   pss.set_evac_failure_closure(&evac_failure_cl);
5574   pss.set_partial_scan_closure(&partial_scan_cl);
5575 
5576   assert(pss.refs()->is_empty(), "pre-condition");
5577 
5578   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5579   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5580 
5581   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5582   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5583 
5584   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5585   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5586 
5587   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5588     // We also need to mark copied objects.
5589     copy_non_heap_cl = &copy_mark_non_heap_cl;
5590     copy_perm_cl = &copy_mark_perm_cl;
5591   }
5592 
5593   // Keep alive closure.
5594   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5595 
5596   // Serial Complete GC closure
5597   G1STWDrainQueueClosure drain_queue(this, &pss);
5598 
5599   // Setup the soft refs policy...
5600   rp->setup_policy(false);
5601 
5602   ReferenceProcessorStats stats;
5603   if (!rp->processing_is_mt()) {
5604     // Serial reference processing...
5605     stats = rp->process_discovered_references(&is_alive,
5606                                               &keep_alive,
5607                                               &drain_queue,
5608                                               NULL,
5609                                               _gc_timer_stw);
5610   } else {
5611     // Parallel reference processing
5612     assert(rp->num_q() == no_of_gc_workers, "sanity");
5613     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5614 
5615     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5616     stats = rp->process_discovered_references(&is_alive,
5617                                               &keep_alive,
5618                                               &drain_queue,
5619                                               &par_task_executor,
5620                                               _gc_timer_stw);
5621   }
5622 
5623   _gc_tracer_stw->report_gc_reference_stats(stats);
5624   // We have completed copying any necessary live referent objects
5625   // (that were not copied during the actual pause) so we can
5626   // retire any active alloc buffers
5627   pss.retire_alloc_buffers();
5628   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5629 
5630   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5631   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5632 }
5633 
5634 // Weak Reference processing during an evacuation pause (part 2).
5635 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5636   double ref_enq_start = os::elapsedTime();
5637 
5638   ReferenceProcessor* rp = _ref_processor_stw;
5639   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5640 
5641   // Now enqueue any remaining on the discovered lists on to
5642   // the pending list.
5643   if (!rp->processing_is_mt()) {
5644     // Serial reference processing...
5645     rp->enqueue_discovered_references();
5646   } else {
5647     // Parallel reference enqueueing
5648 
5649     assert(no_of_gc_workers == workers()->active_workers(),
5650            "Need to reset active workers");
5651     assert(rp->num_q() == no_of_gc_workers, "sanity");
5652     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5653 
5654     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5655     rp->enqueue_discovered_references(&par_task_executor);
5656   }
5657 
5658   rp->verify_no_references_recorded();
5659   assert(!rp->discovery_enabled(), "should have been disabled");
5660 
5661   // FIXME
5662   // CM's reference processing also cleans up the string and symbol tables.
5663   // Should we do that here also? We could, but it is a serial operation
5664   // and could significantly increase the pause time.
5665 
5666   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5667   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5668 }
5669 
5670 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5671   _expand_heap_after_alloc_failure = true;
5672   _evacuation_failed = false;
5673 
5674   // Should G1EvacuationFailureALot be in effect for this GC?
5675   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5676 
5677   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5678   concurrent_g1_refine()->set_use_cache(false);
5679   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5680 
5681   uint n_workers;
5682   if (G1CollectedHeap::use_parallel_gc_threads()) {
5683     n_workers =
5684       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5685                                      workers()->active_workers(),
5686                                      Threads::number_of_non_daemon_threads());
5687     assert(UseDynamicNumberOfGCThreads ||
5688            n_workers == workers()->total_workers(),
5689            "If not dynamic should be using all the  workers");
5690     workers()->set_active_workers(n_workers);
5691     set_par_threads(n_workers);
5692   } else {
5693     assert(n_par_threads() == 0,
5694            "Should be the original non-parallel value");
5695     n_workers = 1;
5696   }
5697 
5698   G1ParTask g1_par_task(this, _task_queues);
5699 
5700   init_for_evac_failure(NULL);
5701 
5702   rem_set()->prepare_for_younger_refs_iterate(true);
5703 
5704   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5705   double start_par_time_sec = os::elapsedTime();
5706   double end_par_time_sec;
5707 
5708   {
5709     StrongRootsScope srs(this);
5710 
5711     if (G1CollectedHeap::use_parallel_gc_threads()) {
5712       // The individual threads will set their evac-failure closures.
5713       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5714       // These tasks use ShareHeap::_process_strong_tasks
5715       assert(UseDynamicNumberOfGCThreads ||
5716              workers()->active_workers() == workers()->total_workers(),
5717              "If not dynamic should be using all the  workers");
5718       workers()->run_task(&g1_par_task);
5719     } else {
5720       g1_par_task.set_for_termination(n_workers);
5721       g1_par_task.work(0);
5722     }
5723     end_par_time_sec = os::elapsedTime();
5724 
5725     // Closing the inner scope will execute the destructor
5726     // for the StrongRootsScope object. We record the current
5727     // elapsed time before closing the scope so that time
5728     // taken for the SRS destructor is NOT included in the
5729     // reported parallel time.
5730   }
5731 
5732   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5733   g1_policy()->phase_times()->record_par_time(par_time_ms);
5734 
5735   double code_root_fixup_time_ms =
5736         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5737   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5738 
5739   set_par_threads(0);
5740 
5741   // Process any discovered reference objects - we have
5742   // to do this _before_ we retire the GC alloc regions
5743   // as we may have to copy some 'reachable' referent
5744   // objects (and their reachable sub-graphs) that were
5745   // not copied during the pause.
5746   process_discovered_references(n_workers);
5747 
5748   // Weak root processing.
5749   // Note: when JSR 292 is enabled and code blobs can contain
5750   // non-perm oops then we will need to process the code blobs
5751   // here too.
5752   {
5753     G1STWIsAliveClosure is_alive(this);
5754     G1KeepAliveClosure keep_alive(this);
5755     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5756   }
5757 
5758   release_gc_alloc_regions(n_workers, evacuation_info);
5759   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5760 
5761   concurrent_g1_refine()->clear_hot_cache();
5762   concurrent_g1_refine()->set_use_cache(true);
5763 
5764   finalize_for_evac_failure();
5765 
5766   if (evacuation_failed()) {
5767     remove_self_forwarding_pointers();
5768 
5769     // Reset the G1EvacuationFailureALot counters and flags
5770     // Note: the values are reset only when an actual
5771     // evacuation failure occurs.
5772     NOT_PRODUCT(reset_evacuation_should_fail();)
5773   }
5774 
5775   // Enqueue any remaining references remaining on the STW
5776   // reference processor's discovered lists. We need to do
5777   // this after the card table is cleaned (and verified) as
5778   // the act of enqueueing entries on to the pending list
5779   // will log these updates (and dirty their associated
5780   // cards). We need these updates logged to update any
5781   // RSets.
5782   enqueue_discovered_references(n_workers);
5783 
5784   if (G1DeferredRSUpdate) {
5785     RedirtyLoggedCardTableEntryFastClosure redirty;
5786     dirty_card_queue_set().set_closure(&redirty);
5787     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5788 
5789     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5790     dcq.merge_bufferlists(&dirty_card_queue_set());
5791     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5792   }
5793   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5794 }
5795 
5796 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5797                                      size_t* pre_used,
5798                                      FreeRegionList* free_list,
5799                                      OldRegionSet* old_proxy_set,
5800                                      HumongousRegionSet* humongous_proxy_set,
5801                                      HRRSCleanupTask* hrrs_cleanup_task,
5802                                      bool par) {
5803   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5804     if (hr->isHumongous()) {
5805       assert(hr->startsHumongous(), "we should only see starts humongous");
5806       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5807     } else {
5808       _old_set.remove_with_proxy(hr, old_proxy_set);
5809       free_region(hr, pre_used, free_list, par);
5810     }
5811   } else {
5812     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5813   }
5814 }
5815 
5816 void G1CollectedHeap::free_region(HeapRegion* hr,
5817                                   size_t* pre_used,
5818                                   FreeRegionList* free_list,
5819                                   bool par) {
5820   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5821   assert(!hr->is_empty(), "the region should not be empty");
5822   assert(free_list != NULL, "pre-condition");
5823 
5824   *pre_used += hr->used();
5825   hr->hr_clear(par, true /* clear_space */);
5826   free_list->add_as_head(hr);
5827 }
5828 
5829 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5830                                      size_t* pre_used,
5831                                      FreeRegionList* free_list,
5832                                      HumongousRegionSet* humongous_proxy_set,
5833                                      bool par) {
5834   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5835   assert(free_list != NULL, "pre-condition");
5836   assert(humongous_proxy_set != NULL, "pre-condition");
5837 
5838   size_t hr_used = hr->used();
5839   size_t hr_capacity = hr->capacity();
5840   size_t hr_pre_used = 0;
5841   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5842   // We need to read this before we make the region non-humongous,
5843   // otherwise the information will be gone.
5844   uint last_index = hr->last_hc_index();
5845   hr->set_notHumongous();
5846   free_region(hr, &hr_pre_used, free_list, par);
5847 
5848   uint i = hr->hrs_index() + 1;
5849   while (i < last_index) {
5850     HeapRegion* curr_hr = region_at(i);
5851     assert(curr_hr->continuesHumongous(), "invariant");
5852     curr_hr->set_notHumongous();
5853     free_region(curr_hr, &hr_pre_used, free_list, par);
5854     i += 1;
5855   }
5856   assert(hr_pre_used == hr_used,
5857          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5858                  "should be the same", hr_pre_used, hr_used));
5859   *pre_used += hr_pre_used;
5860 }
5861 
5862 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5863                                        FreeRegionList* free_list,
5864                                        OldRegionSet* old_proxy_set,
5865                                        HumongousRegionSet* humongous_proxy_set,
5866                                        bool par) {
5867   if (pre_used > 0) {
5868     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5869     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5870     assert(_summary_bytes_used >= pre_used,
5871            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5872                    "should be >= pre_used: "SIZE_FORMAT,
5873                    _summary_bytes_used, pre_used));
5874     _summary_bytes_used -= pre_used;
5875   }
5876   if (free_list != NULL && !free_list->is_empty()) {
5877     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5878     _free_list.add_as_head(free_list);
5879   }
5880   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5881     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5882     _old_set.update_from_proxy(old_proxy_set);
5883   }
5884   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5885     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5886     _humongous_set.update_from_proxy(humongous_proxy_set);
5887   }
5888 }
5889 
5890 class G1ParCleanupCTTask : public AbstractGangTask {
5891   CardTableModRefBS* _ct_bs;
5892   G1CollectedHeap* _g1h;
5893   HeapRegion* volatile _su_head;
5894 public:
5895   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5896                      G1CollectedHeap* g1h) :
5897     AbstractGangTask("G1 Par Cleanup CT Task"),
5898     _ct_bs(ct_bs), _g1h(g1h) { }
5899 
5900   void work(uint worker_id) {
5901     HeapRegion* r;
5902     while (r = _g1h->pop_dirty_cards_region()) {
5903       clear_cards(r);
5904     }
5905   }
5906 
5907   void clear_cards(HeapRegion* r) {
5908     // Cards of the survivors should have already been dirtied.
5909     if (!r->is_survivor()) {
5910       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5911     }
5912   }
5913 };
5914 
5915 #ifndef PRODUCT
5916 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5917   G1CollectedHeap* _g1h;
5918   CardTableModRefBS* _ct_bs;
5919 public:
5920   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5921     : _g1h(g1h), _ct_bs(ct_bs) { }
5922   virtual bool doHeapRegion(HeapRegion* r) {
5923     if (r->is_survivor()) {
5924       _g1h->verify_dirty_region(r);
5925     } else {
5926       _g1h->verify_not_dirty_region(r);
5927     }
5928     return false;
5929   }
5930 };
5931 
5932 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5933   // All of the region should be clean.
5934   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5935   MemRegion mr(hr->bottom(), hr->end());
5936   ct_bs->verify_not_dirty_region(mr);
5937 }
5938 
5939 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5940   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5941   // dirty allocated blocks as they allocate them. The thread that
5942   // retires each region and replaces it with a new one will do a
5943   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5944   // not dirty that area (one less thing to have to do while holding
5945   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5946   // is dirty.
5947   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5948   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5949   ct_bs->verify_dirty_region(mr);
5950 }
5951 
5952 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5953   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5954   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5955     verify_dirty_region(hr);
5956   }
5957 }
5958 
5959 void G1CollectedHeap::verify_dirty_young_regions() {
5960   verify_dirty_young_list(_young_list->first_region());
5961 }
5962 #endif
5963 
5964 void G1CollectedHeap::cleanUpCardTable() {
5965   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5966   double start = os::elapsedTime();
5967 
5968   {
5969     // Iterate over the dirty cards region list.
5970     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5971 
5972     if (G1CollectedHeap::use_parallel_gc_threads()) {
5973       set_par_threads();
5974       workers()->run_task(&cleanup_task);
5975       set_par_threads(0);
5976     } else {
5977       while (_dirty_cards_region_list) {
5978         HeapRegion* r = _dirty_cards_region_list;
5979         cleanup_task.clear_cards(r);
5980         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5981         if (_dirty_cards_region_list == r) {
5982           // The last region.
5983           _dirty_cards_region_list = NULL;
5984         }
5985         r->set_next_dirty_cards_region(NULL);
5986       }
5987     }
5988 #ifndef PRODUCT
5989     if (G1VerifyCTCleanup || VerifyAfterGC) {
5990       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5991       heap_region_iterate(&cleanup_verifier);
5992     }
5993 #endif
5994   }
5995 
5996   double elapsed = os::elapsedTime() - start;
5997   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5998 }
5999 
6000 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6001   size_t pre_used = 0;
6002   FreeRegionList local_free_list("Local List for CSet Freeing");
6003 
6004   double young_time_ms     = 0.0;
6005   double non_young_time_ms = 0.0;
6006 
6007   // Since the collection set is a superset of the the young list,
6008   // all we need to do to clear the young list is clear its
6009   // head and length, and unlink any young regions in the code below
6010   _young_list->clear();
6011 
6012   G1CollectorPolicy* policy = g1_policy();
6013 
6014   double start_sec = os::elapsedTime();
6015   bool non_young = true;
6016 
6017   HeapRegion* cur = cs_head;
6018   int age_bound = -1;
6019   size_t rs_lengths = 0;
6020 
6021   while (cur != NULL) {
6022     assert(!is_on_master_free_list(cur), "sanity");
6023     if (non_young) {
6024       if (cur->is_young()) {
6025         double end_sec = os::elapsedTime();
6026         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6027         non_young_time_ms += elapsed_ms;
6028 
6029         start_sec = os::elapsedTime();
6030         non_young = false;
6031       }
6032     } else {
6033       if (!cur->is_young()) {
6034         double end_sec = os::elapsedTime();
6035         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6036         young_time_ms += elapsed_ms;
6037 
6038         start_sec = os::elapsedTime();
6039         non_young = true;
6040       }
6041     }
6042 
6043     rs_lengths += cur->rem_set()->occupied();
6044 
6045     HeapRegion* next = cur->next_in_collection_set();
6046     assert(cur->in_collection_set(), "bad CS");
6047     cur->set_next_in_collection_set(NULL);
6048     cur->set_in_collection_set(false);
6049 
6050     if (cur->is_young()) {
6051       int index = cur->young_index_in_cset();
6052       assert(index != -1, "invariant");
6053       assert((uint) index < policy->young_cset_region_length(), "invariant");
6054       size_t words_survived = _surviving_young_words[index];
6055       cur->record_surv_words_in_group(words_survived);
6056 
6057       // At this point the we have 'popped' cur from the collection set
6058       // (linked via next_in_collection_set()) but it is still in the
6059       // young list (linked via next_young_region()). Clear the
6060       // _next_young_region field.
6061       cur->set_next_young_region(NULL);
6062     } else {
6063       int index = cur->young_index_in_cset();
6064       assert(index == -1, "invariant");
6065     }
6066 
6067     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6068             (!cur->is_young() && cur->young_index_in_cset() == -1),
6069             "invariant" );
6070 
6071     if (!cur->evacuation_failed()) {
6072       MemRegion used_mr = cur->used_region();
6073 
6074       // And the region is empty.
6075       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6076       free_region(cur, &pre_used, &local_free_list, false /* par */);
6077     } else {
6078       cur->uninstall_surv_rate_group();
6079       if (cur->is_young()) {
6080         cur->set_young_index_in_cset(-1);
6081       }
6082       cur->set_not_young();
6083       cur->set_evacuation_failed(false);
6084       // The region is now considered to be old.
6085       _old_set.add(cur);
6086       evacuation_info.increment_collectionset_used_after(cur->used());
6087     }
6088     cur = next;
6089   }
6090 
6091   evacuation_info.set_regions_freed(local_free_list.length());
6092   policy->record_max_rs_lengths(rs_lengths);
6093   policy->cset_regions_freed();
6094 
6095   double end_sec = os::elapsedTime();
6096   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6097 
6098   if (non_young) {
6099     non_young_time_ms += elapsed_ms;
6100   } else {
6101     young_time_ms += elapsed_ms;
6102   }
6103 
6104   update_sets_after_freeing_regions(pre_used, &local_free_list,
6105                                     NULL /* old_proxy_set */,
6106                                     NULL /* humongous_proxy_set */,
6107                                     false /* par */);
6108   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6109   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6110 }
6111 
6112 // This routine is similar to the above but does not record
6113 // any policy statistics or update free lists; we are abandoning
6114 // the current incremental collection set in preparation of a
6115 // full collection. After the full GC we will start to build up
6116 // the incremental collection set again.
6117 // This is only called when we're doing a full collection
6118 // and is immediately followed by the tearing down of the young list.
6119 
6120 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6121   HeapRegion* cur = cs_head;
6122 
6123   while (cur != NULL) {
6124     HeapRegion* next = cur->next_in_collection_set();
6125     assert(cur->in_collection_set(), "bad CS");
6126     cur->set_next_in_collection_set(NULL);
6127     cur->set_in_collection_set(false);
6128     cur->set_young_index_in_cset(-1);
6129     cur = next;
6130   }
6131 }
6132 
6133 void G1CollectedHeap::set_free_regions_coming() {
6134   if (G1ConcRegionFreeingVerbose) {
6135     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6136                            "setting free regions coming");
6137   }
6138 
6139   assert(!free_regions_coming(), "pre-condition");
6140   _free_regions_coming = true;
6141 }
6142 
6143 void G1CollectedHeap::reset_free_regions_coming() {
6144   assert(free_regions_coming(), "pre-condition");
6145 
6146   {
6147     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6148     _free_regions_coming = false;
6149     SecondaryFreeList_lock->notify_all();
6150   }
6151 
6152   if (G1ConcRegionFreeingVerbose) {
6153     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6154                            "reset free regions coming");
6155   }
6156 }
6157 
6158 void G1CollectedHeap::wait_while_free_regions_coming() {
6159   // Most of the time we won't have to wait, so let's do a quick test
6160   // first before we take the lock.
6161   if (!free_regions_coming()) {
6162     return;
6163   }
6164 
6165   if (G1ConcRegionFreeingVerbose) {
6166     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6167                            "waiting for free regions");
6168   }
6169 
6170   {
6171     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6172     while (free_regions_coming()) {
6173       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6174     }
6175   }
6176 
6177   if (G1ConcRegionFreeingVerbose) {
6178     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6179                            "done waiting for free regions");
6180   }
6181 }
6182 
6183 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6184   assert(heap_lock_held_for_gc(),
6185               "the heap lock should already be held by or for this thread");
6186   _young_list->push_region(hr);
6187 }
6188 
6189 class NoYoungRegionsClosure: public HeapRegionClosure {
6190 private:
6191   bool _success;
6192 public:
6193   NoYoungRegionsClosure() : _success(true) { }
6194   bool doHeapRegion(HeapRegion* r) {
6195     if (r->is_young()) {
6196       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6197                              r->bottom(), r->end());
6198       _success = false;
6199     }
6200     return false;
6201   }
6202   bool success() { return _success; }
6203 };
6204 
6205 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6206   bool ret = _young_list->check_list_empty(check_sample);
6207 
6208   if (check_heap) {
6209     NoYoungRegionsClosure closure;
6210     heap_region_iterate(&closure);
6211     ret = ret && closure.success();
6212   }
6213 
6214   return ret;
6215 }
6216 
6217 class TearDownRegionSetsClosure : public HeapRegionClosure {
6218 private:
6219   OldRegionSet *_old_set;
6220 
6221 public:
6222   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6223 
6224   bool doHeapRegion(HeapRegion* r) {
6225     if (r->is_empty()) {
6226       // We ignore empty regions, we'll empty the free list afterwards
6227     } else if (r->is_young()) {
6228       // We ignore young regions, we'll empty the young list afterwards
6229     } else if (r->isHumongous()) {
6230       // We ignore humongous regions, we're not tearing down the
6231       // humongous region set
6232     } else {
6233       // The rest should be old
6234       _old_set->remove(r);
6235     }
6236     return false;
6237   }
6238 
6239   ~TearDownRegionSetsClosure() {
6240     assert(_old_set->is_empty(), "post-condition");
6241   }
6242 };
6243 
6244 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6245   assert_at_safepoint(true /* should_be_vm_thread */);
6246 
6247   if (!free_list_only) {
6248     TearDownRegionSetsClosure cl(&_old_set);
6249     heap_region_iterate(&cl);
6250 
6251     // Need to do this after the heap iteration to be able to
6252     // recognize the young regions and ignore them during the iteration.
6253     _young_list->empty_list();
6254   }
6255   _free_list.remove_all();
6256 }
6257 
6258 class RebuildRegionSetsClosure : public HeapRegionClosure {
6259 private:
6260   bool            _free_list_only;
6261   OldRegionSet*   _old_set;
6262   FreeRegionList* _free_list;
6263   size_t          _total_used;
6264 
6265 public:
6266   RebuildRegionSetsClosure(bool free_list_only,
6267                            OldRegionSet* old_set, FreeRegionList* free_list) :
6268     _free_list_only(free_list_only),
6269     _old_set(old_set), _free_list(free_list), _total_used(0) {
6270     assert(_free_list->is_empty(), "pre-condition");
6271     if (!free_list_only) {
6272       assert(_old_set->is_empty(), "pre-condition");
6273     }
6274   }
6275 
6276   bool doHeapRegion(HeapRegion* r) {
6277     if (r->continuesHumongous()) {
6278       return false;
6279     }
6280 
6281     if (r->is_empty()) {
6282       // Add free regions to the free list
6283       _free_list->add_as_tail(r);
6284     } else if (!_free_list_only) {
6285       assert(!r->is_young(), "we should not come across young regions");
6286 
6287       if (r->isHumongous()) {
6288         // We ignore humongous regions, we left the humongous set unchanged
6289       } else {
6290         // The rest should be old, add them to the old set
6291         _old_set->add(r);
6292       }
6293       _total_used += r->used();
6294     }
6295 
6296     return false;
6297   }
6298 
6299   size_t total_used() {
6300     return _total_used;
6301   }
6302 };
6303 
6304 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6305   assert_at_safepoint(true /* should_be_vm_thread */);
6306 
6307   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6308   heap_region_iterate(&cl);
6309 
6310   if (!free_list_only) {
6311     _summary_bytes_used = cl.total_used();
6312   }
6313   assert(_summary_bytes_used == recalculate_used(),
6314          err_msg("inconsistent _summary_bytes_used, "
6315                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6316                  _summary_bytes_used, recalculate_used()));
6317 }
6318 
6319 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6320   _refine_cte_cl->set_concurrent(concurrent);
6321 }
6322 
6323 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6324   HeapRegion* hr = heap_region_containing(p);
6325   if (hr == NULL) {
6326     return is_in_permanent(p);
6327   } else {
6328     return hr->is_in(p);
6329   }
6330 }
6331 
6332 // Methods for the mutator alloc region
6333 
6334 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6335                                                       bool force) {
6336   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6337   assert(!force || g1_policy()->can_expand_young_list(),
6338          "if force is true we should be able to expand the young list");
6339   bool young_list_full = g1_policy()->is_young_list_full();
6340   if (force || !young_list_full) {
6341     HeapRegion* new_alloc_region = new_region(word_size,
6342                                               false /* do_expand */);
6343     if (new_alloc_region != NULL) {
6344       set_region_short_lived_locked(new_alloc_region);
6345       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6346       return new_alloc_region;
6347     }
6348   }
6349   return NULL;
6350 }
6351 
6352 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6353                                                   size_t allocated_bytes) {
6354   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6355   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6356 
6357   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6358   _summary_bytes_used += allocated_bytes;
6359   _hr_printer.retire(alloc_region);
6360   // We update the eden sizes here, when the region is retired,
6361   // instead of when it's allocated, since this is the point that its
6362   // used space has been recored in _summary_bytes_used.
6363   g1mm()->update_eden_size();
6364 }
6365 
6366 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6367                                                     bool force) {
6368   return _g1h->new_mutator_alloc_region(word_size, force);
6369 }
6370 
6371 void G1CollectedHeap::set_par_threads() {
6372   // Don't change the number of workers.  Use the value previously set
6373   // in the workgroup.
6374   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6375   uint n_workers = workers()->active_workers();
6376   assert(UseDynamicNumberOfGCThreads ||
6377            n_workers == workers()->total_workers(),
6378       "Otherwise should be using the total number of workers");
6379   if (n_workers == 0) {
6380     assert(false, "Should have been set in prior evacuation pause.");
6381     n_workers = ParallelGCThreads;
6382     workers()->set_active_workers(n_workers);
6383   }
6384   set_par_threads(n_workers);
6385 }
6386 
6387 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6388                                        size_t allocated_bytes) {
6389   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6390 }
6391 
6392 // Methods for the GC alloc regions
6393 
6394 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6395                                                  uint count,
6396                                                  GCAllocPurpose ap) {
6397   assert(FreeList_lock->owned_by_self(), "pre-condition");
6398 
6399   if (count < g1_policy()->max_regions(ap)) {
6400     HeapRegion* new_alloc_region = new_region(word_size,
6401                                               true /* do_expand */);
6402     if (new_alloc_region != NULL) {
6403       // We really only need to do this for old regions given that we
6404       // should never scan survivors. But it doesn't hurt to do it
6405       // for survivors too.
6406       new_alloc_region->set_saved_mark();
6407       if (ap == GCAllocForSurvived) {
6408         new_alloc_region->set_survivor();
6409         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6410       } else {
6411         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6412       }
6413       bool during_im = g1_policy()->during_initial_mark_pause();
6414       new_alloc_region->note_start_of_copying(during_im);
6415       return new_alloc_region;
6416     } else {
6417       g1_policy()->note_alloc_region_limit_reached(ap);
6418     }
6419   }
6420   return NULL;
6421 }
6422 
6423 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6424                                              size_t allocated_bytes,
6425                                              GCAllocPurpose ap) {
6426   bool during_im = g1_policy()->during_initial_mark_pause();
6427   alloc_region->note_end_of_copying(during_im);
6428   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6429   if (ap == GCAllocForSurvived) {
6430     young_list()->add_survivor_region(alloc_region);
6431   } else {
6432     _old_set.add(alloc_region);
6433   }
6434   _hr_printer.retire(alloc_region);
6435 }
6436 
6437 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6438                                                        bool force) {
6439   assert(!force, "not supported for GC alloc regions");
6440   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6441 }
6442 
6443 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6444                                           size_t allocated_bytes) {
6445   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6446                                GCAllocForSurvived);
6447 }
6448 
6449 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6450                                                   bool force) {
6451   assert(!force, "not supported for GC alloc regions");
6452   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6453 }
6454 
6455 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6456                                      size_t allocated_bytes) {
6457   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6458                                GCAllocForTenured);
6459 }
6460 // Heap region set verification
6461 
6462 class VerifyRegionListsClosure : public HeapRegionClosure {
6463 private:
6464   FreeRegionList*     _free_list;
6465   OldRegionSet*       _old_set;
6466   HumongousRegionSet* _humongous_set;
6467   uint                _region_count;
6468 
6469 public:
6470   VerifyRegionListsClosure(OldRegionSet* old_set,
6471                            HumongousRegionSet* humongous_set,
6472                            FreeRegionList* free_list) :
6473     _old_set(old_set), _humongous_set(humongous_set),
6474     _free_list(free_list), _region_count(0) { }
6475 
6476   uint region_count() { return _region_count; }
6477 
6478   bool doHeapRegion(HeapRegion* hr) {
6479     _region_count += 1;
6480 
6481     if (hr->continuesHumongous()) {
6482       return false;
6483     }
6484 
6485     if (hr->is_young()) {
6486       // TODO
6487     } else if (hr->startsHumongous()) {
6488       _humongous_set->verify_next_region(hr);
6489     } else if (hr->is_empty()) {
6490       _free_list->verify_next_region(hr);
6491     } else {
6492       _old_set->verify_next_region(hr);
6493     }
6494     return false;
6495   }
6496 };
6497 
6498 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6499                                              HeapWord* bottom) {
6500   HeapWord* end = bottom + HeapRegion::GrainWords;
6501   MemRegion mr(bottom, end);
6502   assert(_g1_reserved.contains(mr), "invariant");
6503   // This might return NULL if the allocation fails
6504   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6505 }
6506 
6507 void G1CollectedHeap::verify_region_sets() {
6508   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6509 
6510   // First, check the explicit lists.
6511   _free_list.verify();
6512   {
6513     // Given that a concurrent operation might be adding regions to
6514     // the secondary free list we have to take the lock before
6515     // verifying it.
6516     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6517     _secondary_free_list.verify();
6518   }
6519   _old_set.verify();
6520   _humongous_set.verify();
6521 
6522   // If a concurrent region freeing operation is in progress it will
6523   // be difficult to correctly attributed any free regions we come
6524   // across to the correct free list given that they might belong to
6525   // one of several (free_list, secondary_free_list, any local lists,
6526   // etc.). So, if that's the case we will skip the rest of the
6527   // verification operation. Alternatively, waiting for the concurrent
6528   // operation to complete will have a non-trivial effect on the GC's
6529   // operation (no concurrent operation will last longer than the
6530   // interval between two calls to verification) and it might hide
6531   // any issues that we would like to catch during testing.
6532   if (free_regions_coming()) {
6533     return;
6534   }
6535 
6536   // Make sure we append the secondary_free_list on the free_list so
6537   // that all free regions we will come across can be safely
6538   // attributed to the free_list.
6539   append_secondary_free_list_if_not_empty_with_lock();
6540 
6541   // Finally, make sure that the region accounting in the lists is
6542   // consistent with what we see in the heap.
6543   _old_set.verify_start();
6544   _humongous_set.verify_start();
6545   _free_list.verify_start();
6546 
6547   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6548   heap_region_iterate(&cl);
6549 
6550   _old_set.verify_end();
6551   _humongous_set.verify_end();
6552   _free_list.verify_end();
6553 }