1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/g1YCTypes.hpp"
  42 #include "gc_implementation/g1/heapRegion.inline.hpp"
  43 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  44 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  45 #include "gc_implementation/g1/vm_operations_g1.hpp"
  46 #include "gc_implementation/shared/gcHeapSummary.hpp"
  47 #include "gc_implementation/shared/gcTimer.hpp"
  48 #include "gc_implementation/shared/gcTrace.hpp"
  49 #include "gc_implementation/shared/gcTraceTime.hpp"
  50 #include "gc_implementation/shared/isGCActiveMark.hpp"
  51 #include "memory/gcLocker.inline.hpp"
  52 #include "memory/genOopClosures.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/referenceProcessor.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/oop.pcgc.inline.hpp"
  57 #include "runtime/aprofiler.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // perm gen (or null)
 472      return false;
 473   } else {
 474     return !hr->isHumongous();
 475   }
 476 }
 477 
 478 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 480   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 481 
 482   // Count the dirty cards at the start.
 483   CountNonCleanMemRegionClosure count1(this);
 484   ct_bs->mod_card_iterate(&count1);
 485   int orig_count = count1.n();
 486 
 487   // First clear the logged cards.
 488   ClearLoggedCardTableEntryClosure clear;
 489   dcqs.set_closure(&clear);
 490   dcqs.apply_closure_to_all_completed_buffers();
 491   dcqs.iterate_closure_all_threads(false);
 492   clear.print_histo();
 493 
 494   // Now ensure that there's no dirty cards.
 495   CountNonCleanMemRegionClosure count2(this);
 496   ct_bs->mod_card_iterate(&count2);
 497   if (count2.n() != 0) {
 498     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 499                            count2.n(), orig_count);
 500   }
 501   guarantee(count2.n() == 0, "Card table should be clean.");
 502 
 503   RedirtyLoggedCardTableEntryClosure redirty;
 504   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 505   dcqs.apply_closure_to_all_completed_buffers();
 506   dcqs.iterate_closure_all_threads(false);
 507   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 508                          clear.calls(), orig_count);
 509   guarantee(redirty.calls() == clear.calls(),
 510             "Or else mechanism is broken.");
 511 
 512   CountNonCleanMemRegionClosure count3(this);
 513   ct_bs->mod_card_iterate(&count3);
 514   if (count3.n() != orig_count) {
 515     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 516                            orig_count, count3.n());
 517     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 518   }
 519 
 520   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 521 }
 522 
 523 // Private class members.
 524 
 525 G1CollectedHeap* G1CollectedHeap::_g1h;
 526 
 527 // Private methods.
 528 
 529 HeapRegion*
 530 G1CollectedHeap::new_region_try_secondary_free_list() {
 531   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 532   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 533     if (!_secondary_free_list.is_empty()) {
 534       if (G1ConcRegionFreeingVerbose) {
 535         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 536                                "secondary_free_list has %u entries",
 537                                _secondary_free_list.length());
 538       }
 539       // It looks as if there are free regions available on the
 540       // secondary_free_list. Let's move them to the free_list and try
 541       // again to allocate from it.
 542       append_secondary_free_list();
 543 
 544       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 545              "empty we should have moved at least one entry to the free_list");
 546       HeapRegion* res = _free_list.remove_head();
 547       if (G1ConcRegionFreeingVerbose) {
 548         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 549                                "allocated "HR_FORMAT" from secondary_free_list",
 550                                HR_FORMAT_PARAMS(res));
 551       }
 552       return res;
 553     }
 554 
 555     // Wait here until we get notified either when (a) there are no
 556     // more free regions coming or (b) some regions have been moved on
 557     // the secondary_free_list.
 558     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 559   }
 560 
 561   if (G1ConcRegionFreeingVerbose) {
 562     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 563                            "could not allocate from secondary_free_list");
 564   }
 565   return NULL;
 566 }
 567 
 568 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 569   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 570          "the only time we use this to allocate a humongous region is "
 571          "when we are allocating a single humongous region");
 572 
 573   HeapRegion* res;
 574   if (G1StressConcRegionFreeing) {
 575     if (!_secondary_free_list.is_empty()) {
 576       if (G1ConcRegionFreeingVerbose) {
 577         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 578                                "forced to look at the secondary_free_list");
 579       }
 580       res = new_region_try_secondary_free_list();
 581       if (res != NULL) {
 582         return res;
 583       }
 584     }
 585   }
 586   res = _free_list.remove_head_or_null();
 587   if (res == NULL) {
 588     if (G1ConcRegionFreeingVerbose) {
 589       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 590                              "res == NULL, trying the secondary_free_list");
 591     }
 592     res = new_region_try_secondary_free_list();
 593   }
 594   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 595     // Currently, only attempts to allocate GC alloc regions set
 596     // do_expand to true. So, we should only reach here during a
 597     // safepoint. If this assumption changes we might have to
 598     // reconsider the use of _expand_heap_after_alloc_failure.
 599     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 600 
 601     ergo_verbose1(ErgoHeapSizing,
 602                   "attempt heap expansion",
 603                   ergo_format_reason("region allocation request failed")
 604                   ergo_format_byte("allocation request"),
 605                   word_size * HeapWordSize);
 606     if (expand(word_size * HeapWordSize)) {
 607       // Given that expand() succeeded in expanding the heap, and we
 608       // always expand the heap by an amount aligned to the heap
 609       // region size, the free list should in theory not be empty. So
 610       // it would probably be OK to use remove_head(). But the extra
 611       // check for NULL is unlikely to be a performance issue here (we
 612       // just expanded the heap!) so let's just be conservative and
 613       // use remove_head_or_null().
 614       res = _free_list.remove_head_or_null();
 615     } else {
 616       _expand_heap_after_alloc_failure = false;
 617     }
 618   }
 619   return res;
 620 }
 621 
 622 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 623                                                         size_t word_size) {
 624   assert(isHumongous(word_size), "word_size should be humongous");
 625   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 626 
 627   uint first = G1_NULL_HRS_INDEX;
 628   if (num_regions == 1) {
 629     // Only one region to allocate, no need to go through the slower
 630     // path. The caller will attempt the expansion if this fails, so
 631     // let's not try to expand here too.
 632     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 633     if (hr != NULL) {
 634       first = hr->hrs_index();
 635     } else {
 636       first = G1_NULL_HRS_INDEX;
 637     }
 638   } else {
 639     // We can't allocate humongous regions while cleanupComplete() is
 640     // running, since some of the regions we find to be empty might not
 641     // yet be added to the free list and it is not straightforward to
 642     // know which list they are on so that we can remove them. Note
 643     // that we only need to do this if we need to allocate more than
 644     // one region to satisfy the current humongous allocation
 645     // request. If we are only allocating one region we use the common
 646     // region allocation code (see above).
 647     wait_while_free_regions_coming();
 648     append_secondary_free_list_if_not_empty_with_lock();
 649 
 650     if (free_regions() >= num_regions) {
 651       first = _hrs.find_contiguous(num_regions);
 652       if (first != G1_NULL_HRS_INDEX) {
 653         for (uint i = first; i < first + num_regions; ++i) {
 654           HeapRegion* hr = region_at(i);
 655           assert(hr->is_empty(), "sanity");
 656           assert(is_on_master_free_list(hr), "sanity");
 657           hr->set_pending_removal(true);
 658         }
 659         _free_list.remove_all_pending(num_regions);
 660       }
 661     }
 662   }
 663   return first;
 664 }
 665 
 666 HeapWord*
 667 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 668                                                            uint num_regions,
 669                                                            size_t word_size) {
 670   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 671   assert(isHumongous(word_size), "word_size should be humongous");
 672   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 673 
 674   // Index of last region in the series + 1.
 675   uint last = first + num_regions;
 676 
 677   // We need to initialize the region(s) we just discovered. This is
 678   // a bit tricky given that it can happen concurrently with
 679   // refinement threads refining cards on these regions and
 680   // potentially wanting to refine the BOT as they are scanning
 681   // those cards (this can happen shortly after a cleanup; see CR
 682   // 6991377). So we have to set up the region(s) carefully and in
 683   // a specific order.
 684 
 685   // The word size sum of all the regions we will allocate.
 686   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 687   assert(word_size <= word_size_sum, "sanity");
 688 
 689   // This will be the "starts humongous" region.
 690   HeapRegion* first_hr = region_at(first);
 691   // The header of the new object will be placed at the bottom of
 692   // the first region.
 693   HeapWord* new_obj = first_hr->bottom();
 694   // This will be the new end of the first region in the series that
 695   // should also match the end of the last region in the series.
 696   HeapWord* new_end = new_obj + word_size_sum;
 697   // This will be the new top of the first region that will reflect
 698   // this allocation.
 699   HeapWord* new_top = new_obj + word_size;
 700 
 701   // First, we need to zero the header of the space that we will be
 702   // allocating. When we update top further down, some refinement
 703   // threads might try to scan the region. By zeroing the header we
 704   // ensure that any thread that will try to scan the region will
 705   // come across the zero klass word and bail out.
 706   //
 707   // NOTE: It would not have been correct to have used
 708   // CollectedHeap::fill_with_object() and make the space look like
 709   // an int array. The thread that is doing the allocation will
 710   // later update the object header to a potentially different array
 711   // type and, for a very short period of time, the klass and length
 712   // fields will be inconsistent. This could cause a refinement
 713   // thread to calculate the object size incorrectly.
 714   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 715 
 716   // We will set up the first region as "starts humongous". This
 717   // will also update the BOT covering all the regions to reflect
 718   // that there is a single object that starts at the bottom of the
 719   // first region.
 720   first_hr->set_startsHumongous(new_top, new_end);
 721 
 722   // Then, if there are any, we will set up the "continues
 723   // humongous" regions.
 724   HeapRegion* hr = NULL;
 725   for (uint i = first + 1; i < last; ++i) {
 726     hr = region_at(i);
 727     hr->set_continuesHumongous(first_hr);
 728   }
 729   // If we have "continues humongous" regions (hr != NULL), then the
 730   // end of the last one should match new_end.
 731   assert(hr == NULL || hr->end() == new_end, "sanity");
 732 
 733   // Up to this point no concurrent thread would have been able to
 734   // do any scanning on any region in this series. All the top
 735   // fields still point to bottom, so the intersection between
 736   // [bottom,top] and [card_start,card_end] will be empty. Before we
 737   // update the top fields, we'll do a storestore to make sure that
 738   // no thread sees the update to top before the zeroing of the
 739   // object header and the BOT initialization.
 740   OrderAccess::storestore();
 741 
 742   // Now that the BOT and the object header have been initialized,
 743   // we can update top of the "starts humongous" region.
 744   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 745          "new_top should be in this region");
 746   first_hr->set_top(new_top);
 747   if (_hr_printer.is_active()) {
 748     HeapWord* bottom = first_hr->bottom();
 749     HeapWord* end = first_hr->orig_end();
 750     if ((first + 1) == last) {
 751       // the series has a single humongous region
 752       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 753     } else {
 754       // the series has more than one humongous regions
 755       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 756     }
 757   }
 758 
 759   // Now, we will update the top fields of the "continues humongous"
 760   // regions. The reason we need to do this is that, otherwise,
 761   // these regions would look empty and this will confuse parts of
 762   // G1. For example, the code that looks for a consecutive number
 763   // of empty regions will consider them empty and try to
 764   // re-allocate them. We can extend is_empty() to also include
 765   // !continuesHumongous(), but it is easier to just update the top
 766   // fields here. The way we set top for all regions (i.e., top ==
 767   // end for all regions but the last one, top == new_top for the
 768   // last one) is actually used when we will free up the humongous
 769   // region in free_humongous_region().
 770   hr = NULL;
 771   for (uint i = first + 1; i < last; ++i) {
 772     hr = region_at(i);
 773     if ((i + 1) == last) {
 774       // last continues humongous region
 775       assert(hr->bottom() < new_top && new_top <= hr->end(),
 776              "new_top should fall on this region");
 777       hr->set_top(new_top);
 778       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 779     } else {
 780       // not last one
 781       assert(new_top > hr->end(), "new_top should be above this region");
 782       hr->set_top(hr->end());
 783       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 784     }
 785   }
 786   // If we have continues humongous regions (hr != NULL), then the
 787   // end of the last one should match new_end and its top should
 788   // match new_top.
 789   assert(hr == NULL ||
 790          (hr->end() == new_end && hr->top() == new_top), "sanity");
 791 
 792   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 793   _summary_bytes_used += first_hr->used();
 794   _humongous_set.add(first_hr);
 795 
 796   return new_obj;
 797 }
 798 
 799 // If could fit into free regions w/o expansion, try.
 800 // Otherwise, if can expand, do so.
 801 // Otherwise, if using ex regions might help, try with ex given back.
 802 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 803   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 804 
 805   verify_region_sets_optional();
 806 
 807   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 808   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 809   uint x_num = expansion_regions();
 810   uint fs = _hrs.free_suffix();
 811   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 812   if (first == G1_NULL_HRS_INDEX) {
 813     // The only thing we can do now is attempt expansion.
 814     if (fs + x_num >= num_regions) {
 815       // If the number of regions we're trying to allocate for this
 816       // object is at most the number of regions in the free suffix,
 817       // then the call to humongous_obj_allocate_find_first() above
 818       // should have succeeded and we wouldn't be here.
 819       //
 820       // We should only be trying to expand when the free suffix is
 821       // not sufficient for the object _and_ we have some expansion
 822       // room available.
 823       assert(num_regions > fs, "earlier allocation should have succeeded");
 824 
 825       ergo_verbose1(ErgoHeapSizing,
 826                     "attempt heap expansion",
 827                     ergo_format_reason("humongous allocation request failed")
 828                     ergo_format_byte("allocation request"),
 829                     word_size * HeapWordSize);
 830       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 831         // Even though the heap was expanded, it might not have
 832         // reached the desired size. So, we cannot assume that the
 833         // allocation will succeed.
 834         first = humongous_obj_allocate_find_first(num_regions, word_size);
 835       }
 836     }
 837   }
 838 
 839   HeapWord* result = NULL;
 840   if (first != G1_NULL_HRS_INDEX) {
 841     result =
 842       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 843     assert(result != NULL, "it should always return a valid result");
 844 
 845     // A successful humongous object allocation changes the used space
 846     // information of the old generation so we need to recalculate the
 847     // sizes and update the jstat counters here.
 848     g1mm()->update_sizes();
 849   }
 850 
 851   verify_region_sets_optional();
 852 
 853   return result;
 854 }
 855 
 856 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 857   assert_heap_not_locked_and_not_at_safepoint();
 858   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 859 
 860   unsigned int dummy_gc_count_before;
 861   return attempt_allocation(word_size, &dummy_gc_count_before);
 862 }
 863 
 864 HeapWord*
 865 G1CollectedHeap::mem_allocate(size_t word_size,
 866                               bool*  gc_overhead_limit_was_exceeded) {
 867   assert_heap_not_locked_and_not_at_safepoint();
 868 
 869   // Loop until the allocation is satisfied, or unsatisfied after GC.
 870   for (int try_count = 1; /* we'll return */; try_count += 1) {
 871     unsigned int gc_count_before;
 872 
 873     HeapWord* result = NULL;
 874     if (!isHumongous(word_size)) {
 875       result = attempt_allocation(word_size, &gc_count_before);
 876     } else {
 877       result = attempt_allocation_humongous(word_size, &gc_count_before);
 878     }
 879     if (result != NULL) {
 880       return result;
 881     }
 882 
 883     // Create the garbage collection operation...
 884     VM_G1CollectForAllocation op(gc_count_before, word_size);
 885     // ...and get the VM thread to execute it.
 886     VMThread::execute(&op);
 887 
 888     if (op.prologue_succeeded() && op.pause_succeeded()) {
 889       // If the operation was successful we'll return the result even
 890       // if it is NULL. If the allocation attempt failed immediately
 891       // after a Full GC, it's unlikely we'll be able to allocate now.
 892       HeapWord* result = op.result();
 893       if (result != NULL && !isHumongous(word_size)) {
 894         // Allocations that take place on VM operations do not do any
 895         // card dirtying and we have to do it here. We only have to do
 896         // this for non-humongous allocations, though.
 897         dirty_young_block(result, word_size);
 898       }
 899       return result;
 900     } else {
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret) {
 918   // Make sure you read the note in attempt_allocation_humongous().
 919 
 920   assert_heap_not_locked_and_not_at_safepoint();
 921   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 922          "be called for humongous allocation requests");
 923 
 924   // We should only get here after the first-level allocation attempt
 925   // (attempt_allocation()) failed to allocate.
 926 
 927   // We will loop until a) we manage to successfully perform the
 928   // allocation or b) we successfully schedule a collection which
 929   // fails to perform the allocation. b) is the only case when we'll
 930   // return NULL.
 931   HeapWord* result = NULL;
 932   for (int try_count = 1; /* we'll return */; try_count += 1) {
 933     bool should_try_gc;
 934     unsigned int gc_count_before;
 935 
 936     {
 937       MutexLockerEx x(Heap_lock);
 938 
 939       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 940                                                       false /* bot_updates */);
 941       if (result != NULL) {
 942         return result;
 943       }
 944 
 945       // If we reach here, attempt_allocation_locked() above failed to
 946       // allocate a new region. So the mutator alloc region should be NULL.
 947       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 948 
 949       if (GC_locker::is_active_and_needs_gc()) {
 950         if (g1_policy()->can_expand_young_list()) {
 951           // No need for an ergo verbose message here,
 952           // can_expand_young_list() does this when it returns true.
 953           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 954                                                       false /* bot_updates */);
 955           if (result != NULL) {
 956             return result;
 957           }
 958         }
 959         should_try_gc = false;
 960       } else {
 961         // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       bool succeeded;
 978       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 979       if (result != NULL) {
 980         assert(succeeded, "only way to get back a non-NULL result");
 981         return result;
 982       }
 983 
 984       if (succeeded) {
 985         // If we get here we successfully scheduled a collection which
 986         // failed to allocate. No point in trying to allocate
 987         // further. We'll just return NULL.
 988         MutexLockerEx x(Heap_lock);
 989         *gc_count_before_ret = total_collections();
 990         return NULL;
 991       }
 992     } else {
 993       // The GCLocker is either active or the GCLocker initiated
 994       // GC has not yet been performed. Stall until it is and
 995       // then retry the allocation.
 996       GC_locker::stall_until_clear();
 997     }
 998 
 999     // We can reach here if we were unsuccessful in scheduling a
1000     // collection (because another thread beat us to it) or if we were
1001     // stalled due to the GC locker. In either can we should retry the
1002     // allocation attempt in case another thread successfully
1003     // performed a collection and reclaimed enough space. We do the
1004     // first attempt (without holding the Heap_lock) here and the
1005     // follow-on attempt will be at the start of the next loop
1006     // iteration (after taking the Heap_lock).
1007     result = _mutator_alloc_region.attempt_allocation(word_size,
1008                                                       false /* bot_updates */);
1009     if (result != NULL) {
1010       return result;
1011     }
1012 
1013     // Give a warning if we seem to be looping forever.
1014     if ((QueuedAllocationWarningCount > 0) &&
1015         (try_count % QueuedAllocationWarningCount == 0)) {
1016       warning("G1CollectedHeap::attempt_allocation_slow() "
1017               "retries %d times", try_count);
1018     }
1019   }
1020 
1021   ShouldNotReachHere();
1022   return NULL;
1023 }
1024 
1025 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1026                                           unsigned int * gc_count_before_ret) {
1027   // The structure of this method has a lot of similarities to
1028   // attempt_allocation_slow(). The reason these two were not merged
1029   // into a single one is that such a method would require several "if
1030   // allocation is not humongous do this, otherwise do that"
1031   // conditional paths which would obscure its flow. In fact, an early
1032   // version of this code did use a unified method which was harder to
1033   // follow and, as a result, it had subtle bugs that were hard to
1034   // track down. So keeping these two methods separate allows each to
1035   // be more readable. It will be good to keep these two in sync as
1036   // much as possible.
1037 
1038   assert_heap_not_locked_and_not_at_safepoint();
1039   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1040          "should only be called for humongous allocations");
1041 
1042   // Humongous objects can exhaust the heap quickly, so we should check if we
1043   // need to start a marking cycle at each humongous object allocation. We do
1044   // the check before we do the actual allocation. The reason for doing it
1045   // before the allocation is that we avoid having to keep track of the newly
1046   // allocated memory while we do a GC.
1047   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1048                                            word_size)) {
1049     collect(GCCause::_g1_humongous_allocation);
1050   }
1051 
1052   // We will loop until a) we manage to successfully perform the
1053   // allocation or b) we successfully schedule a collection which
1054   // fails to perform the allocation. b) is the only case when we'll
1055   // return NULL.
1056   HeapWord* result = NULL;
1057   for (int try_count = 1; /* we'll return */; try_count += 1) {
1058     bool should_try_gc;
1059     unsigned int gc_count_before;
1060 
1061     {
1062       MutexLockerEx x(Heap_lock);
1063 
1064       // Given that humongous objects are not allocated in young
1065       // regions, we'll first try to do the allocation without doing a
1066       // collection hoping that there's enough space in the heap.
1067       result = humongous_obj_allocate(word_size);
1068       if (result != NULL) {
1069         return result;
1070       }
1071 
1072       if (GC_locker::is_active_and_needs_gc()) {
1073         should_try_gc = false;
1074       } else {
1075          // The GCLocker may not be active but the GCLocker initiated
1076         // GC may not yet have been performed (GCLocker::needs_gc()
1077         // returns true). In this case we do not try this GC and
1078         // wait until the GCLocker initiated GC is performed, and
1079         // then retry the allocation.
1080         if (GC_locker::needs_gc()) {
1081           should_try_gc = false;
1082         } else {
1083           // Read the GC count while still holding the Heap_lock.
1084           gc_count_before = total_collections();
1085           should_try_gc = true;
1086         }
1087       }
1088     }
1089 
1090     if (should_try_gc) {
1091       // If we failed to allocate the humongous object, we should try to
1092       // do a collection pause (if we're allowed) in case it reclaims
1093       // enough space for the allocation to succeed after the pause.
1094 
1095       bool succeeded;
1096       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1097       if (result != NULL) {
1098         assert(succeeded, "only way to get back a non-NULL result");
1099         return result;
1100       }
1101 
1102       if (succeeded) {
1103         // If we get here we successfully scheduled a collection which
1104         // failed to allocate. No point in trying to allocate
1105         // further. We'll just return NULL.
1106         MutexLockerEx x(Heap_lock);
1107         *gc_count_before_ret = total_collections();
1108         return NULL;
1109       }
1110     } else {
1111       // The GCLocker is either active or the GCLocker initiated
1112       // GC has not yet been performed. Stall until it is and
1113       // then retry the allocation.
1114       GC_locker::stall_until_clear();
1115     }
1116 
1117     // We can reach here if we were unsuccessful in scheduling a
1118     // collection (because another thread beat us to it) or if we were
1119     // stalled due to the GC locker. In either can we should retry the
1120     // allocation attempt in case another thread successfully
1121     // performed a collection and reclaimed enough space.  Give a
1122     // warning if we seem to be looping forever.
1123 
1124     if ((QueuedAllocationWarningCount > 0) &&
1125         (try_count % QueuedAllocationWarningCount == 0)) {
1126       warning("G1CollectedHeap::attempt_allocation_humongous() "
1127               "retries %d times", try_count);
1128     }
1129   }
1130 
1131   ShouldNotReachHere();
1132   return NULL;
1133 }
1134 
1135 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1136                                        bool expect_null_mutator_alloc_region) {
1137   assert_at_safepoint(true /* should_be_vm_thread */);
1138   assert(_mutator_alloc_region.get() == NULL ||
1139                                              !expect_null_mutator_alloc_region,
1140          "the current alloc region was unexpectedly found to be non-NULL");
1141 
1142   if (!isHumongous(word_size)) {
1143     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1144                                                       false /* bot_updates */);
1145   } else {
1146     HeapWord* result = humongous_obj_allocate(word_size);
1147     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1148       g1_policy()->set_initiate_conc_mark_if_possible();
1149     }
1150     return result;
1151   }
1152 
1153   ShouldNotReachHere();
1154 }
1155 
1156 class PostMCRemSetClearClosure: public HeapRegionClosure {
1157   G1CollectedHeap* _g1h;
1158   ModRefBarrierSet* _mr_bs;
1159 public:
1160   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1161     _g1h(g1h), _mr_bs(mr_bs) { }
1162   bool doHeapRegion(HeapRegion* r) {
1163     if (r->continuesHumongous()) {
1164       return false;
1165     }
1166     _g1h->reset_gc_time_stamps(r);
1167     HeapRegionRemSet* hrrs = r->rem_set();
1168     if (hrrs != NULL) hrrs->clear();
1169     // You might think here that we could clear just the cards
1170     // corresponding to the used region.  But no: if we leave a dirty card
1171     // in a region we might allocate into, then it would prevent that card
1172     // from being enqueued, and cause it to be missed.
1173     // Re: the performance cost: we shouldn't be doing full GC anyway!
1174     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1175     return false;
1176   }
1177 };
1178 
1179 void G1CollectedHeap::clear_rsets_post_compaction() {
1180   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1181   heap_region_iterate(&rs_clear);
1182 }
1183 
1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1185   G1CollectedHeap*   _g1h;
1186   UpdateRSOopClosure _cl;
1187   int                _worker_i;
1188 public:
1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190     _cl(g1->g1_rem_set(), worker_i),
1191     _worker_i(worker_i),
1192     _g1h(g1)
1193   { }
1194 
1195   bool doHeapRegion(HeapRegion* r) {
1196     if (!r->continuesHumongous()) {
1197       _cl.set_from(r);
1198       r->oop_iterate(&_cl);
1199     }
1200     return false;
1201   }
1202 };
1203 
1204 class ParRebuildRSTask: public AbstractGangTask {
1205   G1CollectedHeap* _g1;
1206 public:
1207   ParRebuildRSTask(G1CollectedHeap* g1)
1208     : AbstractGangTask("ParRebuildRSTask"),
1209       _g1(g1)
1210   { }
1211 
1212   void work(uint worker_id) {
1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215                                           _g1->workers()->active_workers(),
1216                                          HeapRegion::RebuildRSClaimValue);
1217   }
1218 };
1219 
1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
1221 private:
1222   G1HRPrinter* _hr_printer;
1223 public:
1224   bool doHeapRegion(HeapRegion* hr) {
1225     assert(!hr->is_young(), "not expecting to find young regions");
1226     // We only generate output for non-empty regions.
1227     if (!hr->is_empty()) {
1228       if (!hr->isHumongous()) {
1229         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1230       } else if (hr->startsHumongous()) {
1231         if (hr->region_num() == 1) {
1232           // single humongous region
1233           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1234         } else {
1235           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1236         }
1237       } else {
1238         assert(hr->continuesHumongous(), "only way to get here");
1239         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1240       }
1241     }
1242     return false;
1243   }
1244 
1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1246     : _hr_printer(hr_printer) { }
1247 };
1248 
1249 void G1CollectedHeap::print_hrs_post_compaction() {
1250   PostCompactionPrinterClosure cl(hr_printer());
1251   heap_region_iterate(&cl);
1252 }
1253 
1254 double G1CollectedHeap::verify(bool guard, const char* msg) {
1255   double verify_time_ms = 0.0;
1256 
1257   if (guard && total_collections() >= VerifyGCStartAt) {
1258     double verify_start = os::elapsedTime();
1259     HandleMark hm;  // Discard invalid handles created during verification
1260     gclog_or_tty->print(msg);
1261     prepare_for_verify();
1262     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1263     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1264   }
1265 
1266   return verify_time_ms;
1267 }
1268 
1269 void G1CollectedHeap::verify_before_gc() {
1270   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1271   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1272 }
1273 
1274 void G1CollectedHeap::verify_after_gc() {
1275   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1276   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1277 }
1278 
1279 bool G1CollectedHeap::do_collection(bool explicit_gc,
1280                                     bool clear_all_soft_refs,
1281                                     size_t word_size) {
1282   assert_at_safepoint(true /* should_be_vm_thread */);
1283 
1284   if (GC_locker::check_active_before_gc()) {
1285     return false;
1286   }
1287 
1288   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1289   gc_timer->register_gc_start(os::elapsed_counter());
1290 
1291   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1292   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1293 
1294   SvcGCMarker sgcm(SvcGCMarker::FULL);
1295   ResourceMark rm;
1296 
1297   print_heap_before_gc();
1298   trace_heap_before_gc(gc_tracer);
1299 
1300   HRSPhaseSetter x(HRSPhaseFullGC);
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     {
1317       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1318       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1319       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1320 
1321       double start = os::elapsedTime();
1322       g1_policy()->record_full_collection_start();
1323 
1324       // Note: When we have a more flexible GC logging framework that
1325       // allows us to add optional attributes to a GC log record we
1326       // could consider timing and reporting how long we wait in the
1327       // following two methods.
1328       wait_while_free_regions_coming();
1329       // If we start the compaction before the CM threads finish
1330       // scanning the root regions we might trip them over as we'll
1331       // be moving objects / updating references. So let's wait until
1332       // they are done. By telling them to abort, they should complete
1333       // early.
1334       _cm->root_regions()->abort();
1335       _cm->root_regions()->wait_until_scan_finished();
1336       append_secondary_free_list_if_not_empty_with_lock();
1337 
1338       gc_prologue(true);
1339       increment_total_collections(true /* full gc */);
1340       increment_old_marking_cycles_started();
1341 
1342       assert(used() == recalculate_used(), "Should be equal");
1343 
1344       verify_before_gc();
1345 
1346       pre_full_gc_dump(gc_timer);
1347 
1348       COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350       // Disable discovery and empty the discovered lists
1351       // for the CM ref processor.
1352       ref_processor_cm()->disable_discovery();
1353       ref_processor_cm()->abandon_partial_discovery();
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       // Abandon current iterations of concurrent marking and concurrent
1357       // refinement, if any are in progress. We have to do this before
1358       // wait_until_scan_finished() below.
1359       concurrent_mark()->abort();
1360 
1361       // Make sure we'll choose a new allocation region afterwards.
1362       release_mutator_alloc_region();
1363       abandon_gc_alloc_regions();
1364       g1_rem_set()->cleanupHRRS();
1365 
1366       // We should call this after we retire any currently active alloc
1367       // regions so that all the ALLOC / RETIRE events are generated
1368       // before the start GC event.
1369       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371       // We may have added regions to the current incremental collection
1372       // set between the last GC or pause and now. We need to clear the
1373       // incremental collection set and then start rebuilding it afresh
1374       // after this full GC.
1375       abandon_collection_set(g1_policy()->inc_cset_head());
1376       g1_policy()->clear_incremental_cset();
1377       g1_policy()->stop_incremental_cset_building();
1378 
1379       tear_down_region_sets(false /* free_list_only */);
1380       g1_policy()->set_gcs_are_young(true);
1381 
1382       // See the comments in g1CollectedHeap.hpp and
1383       // G1CollectedHeap::ref_processing_init() about
1384       // how reference processing currently works in G1.
1385 
1386       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395       // Do collection work
1396       {
1397         HandleMark hm;  // Discard invalid handles created during gc
1398         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399       }
1400 
1401       assert(free_regions() == 0, "we should not have added any free regions");
1402       rebuild_region_sets(false /* free_list_only */);
1403 
1404       // Enqueue any discovered reference objects that have
1405       // not been removed from the discovered lists.
1406       ref_processor_stw()->enqueue_discovered_references();
1407 
1408       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410       MemoryService::track_memory_usage();
1411 
1412       verify_after_gc();
1413 
1414       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1415       ref_processor_stw()->verify_no_references_recorded();
1416 
1417       // Note: since we've just done a full GC, concurrent
1418       // marking is no longer active. Therefore we need not
1419       // re-enable reference discovery for the CM ref processor.
1420       // That will be done at the start of the next marking cycle.
1421       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1422       ref_processor_cm()->verify_no_references_recorded();
1423 
1424       reset_gc_time_stamp();
1425       // Since everything potentially moved, we will clear all remembered
1426       // sets, and clear all cards.  Later we will rebuild remembered
1427       // sets. We will also reset the GC time stamps of the regions.
1428       clear_rsets_post_compaction();
1429       check_gc_time_stamps();
1430 
1431       // Resize the heap if necessary.
1432       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1433 
1434       if (_hr_printer.is_active()) {
1435         // We should do this after we potentially resize the heap so
1436         // that all the COMMIT / UNCOMMIT events are generated before
1437         // the end GC event.
1438 
1439         print_hrs_post_compaction();
1440         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1441       }
1442 
1443       if (_cg1r->use_cache()) {
1444         _cg1r->clear_and_record_card_counts();
1445         _cg1r->clear_hot_cache();
1446       }
1447 
1448       // Rebuild remembered sets of all regions.
1449       if (G1CollectedHeap::use_parallel_gc_threads()) {
1450         uint n_workers =
1451           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1452                                                   workers()->active_workers(),
1453                                                   Threads::number_of_non_daemon_threads());
1454         assert(UseDynamicNumberOfGCThreads ||
1455                n_workers == workers()->total_workers(),
1456                "If not dynamic should be using all the  workers");
1457         workers()->set_active_workers(n_workers);
1458         // Set parallel threads in the heap (_n_par_threads) only
1459         // before a parallel phase and always reset it to 0 after
1460         // the phase so that the number of parallel threads does
1461         // no get carried forward to a serial phase where there
1462         // may be code that is "possibly_parallel".
1463         set_par_threads(n_workers);
1464 
1465         ParRebuildRSTask rebuild_rs_task(this);
1466         assert(check_heap_region_claim_values(
1467                HeapRegion::InitialClaimValue), "sanity check");
1468         assert(UseDynamicNumberOfGCThreads ||
1469                workers()->active_workers() == workers()->total_workers(),
1470                "Unless dynamic should use total workers");
1471         // Use the most recent number of  active workers
1472         assert(workers()->active_workers() > 0,
1473                "Active workers not properly set");
1474         set_par_threads(workers()->active_workers());
1475         workers()->run_task(&rebuild_rs_task);
1476         set_par_threads(0);
1477         assert(check_heap_region_claim_values(
1478                HeapRegion::RebuildRSClaimValue), "sanity check");
1479         reset_heap_region_claim_values();
1480       } else {
1481         RebuildRSOutOfRegionClosure rebuild_rs(this);
1482         heap_region_iterate(&rebuild_rs);
1483       }
1484 
1485       if (true) { // FIXME
1486         // Ask the permanent generation to adjust size for full collections
1487         perm()->compute_new_size();
1488       }
1489 
1490 #ifdef TRACESPINNING
1491       ParallelTaskTerminator::print_termination_counts();
1492 #endif
1493 
1494       // Discard all rset updates
1495       JavaThread::dirty_card_queue_set().abandon_logs();
1496       assert(!G1DeferredRSUpdate
1497              || (G1DeferredRSUpdate &&
1498                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1499 
1500       _young_list->reset_sampled_info();
1501       // At this point there should be no regions in the
1502       // entire heap tagged as young.
1503       assert(check_young_list_empty(true /* check_heap */),
1504              "young list should be empty at this point");
1505 
1506       // Update the number of full collections that have been completed.
1507       increment_old_marking_cycles_completed(false /* concurrent */);
1508 
1509       _hrs.verify_optional();
1510       verify_region_sets_optional();
1511 
1512       // Start a new incremental collection set for the next pause
1513       assert(g1_policy()->collection_set() == NULL, "must be");
1514       g1_policy()->start_incremental_cset_building();
1515 
1516       // Clear the _cset_fast_test bitmap in anticipation of adding
1517       // regions to the incremental collection set for the next
1518       // evacuation pause.
1519       clear_cset_fast_test();
1520 
1521       init_mutator_alloc_region();
1522 
1523       double end = os::elapsedTime();
1524       g1_policy()->record_full_collection_end();
1525 
1526       if (G1Log::fine()) {
1527         g1_policy()->print_heap_transition();
1528       }
1529 
1530       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1531       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1532       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1533       // before any GC notifications are raised.
1534       g1mm()->update_sizes();
1535 
1536       gc_epilogue(true);
1537     }
1538 
1539     if (G1Log::finer()) {
1540       g1_policy()->print_detailed_heap_transition();
1541     }
1542 
1543     print_heap_after_gc();
1544     trace_heap_after_gc(gc_tracer);
1545 
1546     post_full_gc_dump(gc_timer);
1547   }
1548 
1549   gc_timer->register_gc_end(os::elapsed_counter());
1550 
1551   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1552 
1553   return true;
1554 }
1555 
1556 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1557   // do_collection() will return whether it succeeded in performing
1558   // the GC. Currently, there is no facility on the
1559   // do_full_collection() API to notify the caller than the collection
1560   // did not succeed (e.g., because it was locked out by the GC
1561   // locker). So, right now, we'll ignore the return value.
1562   bool dummy = do_collection(true,                /* explicit_gc */
1563                              clear_all_soft_refs,
1564                              0                    /* word_size */);
1565 }
1566 
1567 // This code is mostly copied from TenuredGeneration.
1568 void
1569 G1CollectedHeap::
1570 resize_if_necessary_after_full_collection(size_t word_size) {
1571   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1572 
1573   // Include the current allocation, if any, and bytes that will be
1574   // pre-allocated to support collections, as "used".
1575   const size_t used_after_gc = used();
1576   const size_t capacity_after_gc = capacity();
1577   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1578 
1579   // This is enforced in arguments.cpp.
1580   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1581          "otherwise the code below doesn't make sense");
1582 
1583   // We don't have floating point command-line arguments
1584   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1585   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1586   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1587   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1588 
1589   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1590   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1591 
1592   // We have to be careful here as these two calculations can overflow
1593   // 32-bit size_t's.
1594   double used_after_gc_d = (double) used_after_gc;
1595   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1596   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1597 
1598   // Let's make sure that they are both under the max heap size, which
1599   // by default will make them fit into a size_t.
1600   double desired_capacity_upper_bound = (double) max_heap_size;
1601   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1602                                     desired_capacity_upper_bound);
1603   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1604                                     desired_capacity_upper_bound);
1605 
1606   // We can now safely turn them into size_t's.
1607   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1608   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1609 
1610   // This assert only makes sense here, before we adjust them
1611   // with respect to the min and max heap size.
1612   assert(minimum_desired_capacity <= maximum_desired_capacity,
1613          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1614                  "maximum_desired_capacity = "SIZE_FORMAT,
1615                  minimum_desired_capacity, maximum_desired_capacity));
1616 
1617   // Should not be greater than the heap max size. No need to adjust
1618   // it with respect to the heap min size as it's a lower bound (i.e.,
1619   // we'll try to make the capacity larger than it, not smaller).
1620   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1621   // Should not be less than the heap min size. No need to adjust it
1622   // with respect to the heap max size as it's an upper bound (i.e.,
1623   // we'll try to make the capacity smaller than it, not greater).
1624   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1625 
1626   if (capacity_after_gc < minimum_desired_capacity) {
1627     // Don't expand unless it's significant
1628     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1629     ergo_verbose4(ErgoHeapSizing,
1630                   "attempt heap expansion",
1631                   ergo_format_reason("capacity lower than "
1632                                      "min desired capacity after Full GC")
1633                   ergo_format_byte("capacity")
1634                   ergo_format_byte("occupancy")
1635                   ergo_format_byte_perc("min desired capacity"),
1636                   capacity_after_gc, used_after_gc,
1637                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1638     expand(expand_bytes);
1639 
1640     // No expansion, now see if we want to shrink
1641   } else if (capacity_after_gc > maximum_desired_capacity) {
1642     // Capacity too large, compute shrinking size
1643     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1644     ergo_verbose4(ErgoHeapSizing,
1645                   "attempt heap shrinking",
1646                   ergo_format_reason("capacity higher than "
1647                                      "max desired capacity after Full GC")
1648                   ergo_format_byte("capacity")
1649                   ergo_format_byte("occupancy")
1650                   ergo_format_byte_perc("max desired capacity"),
1651                   capacity_after_gc, used_after_gc,
1652                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1653     shrink(shrink_bytes);
1654   }
1655 }
1656 
1657 
1658 HeapWord*
1659 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1660                                            bool* succeeded) {
1661   assert_at_safepoint(true /* should_be_vm_thread */);
1662 
1663   *succeeded = true;
1664   // Let's attempt the allocation first.
1665   HeapWord* result =
1666     attempt_allocation_at_safepoint(word_size,
1667                                  false /* expect_null_mutator_alloc_region */);
1668   if (result != NULL) {
1669     assert(*succeeded, "sanity");
1670     return result;
1671   }
1672 
1673   // In a G1 heap, we're supposed to keep allocation from failing by
1674   // incremental pauses.  Therefore, at least for now, we'll favor
1675   // expansion over collection.  (This might change in the future if we can
1676   // do something smarter than full collection to satisfy a failed alloc.)
1677   result = expand_and_allocate(word_size);
1678   if (result != NULL) {
1679     assert(*succeeded, "sanity");
1680     return result;
1681   }
1682 
1683   // Expansion didn't work, we'll try to do a Full GC.
1684   bool gc_succeeded = do_collection(false, /* explicit_gc */
1685                                     false, /* clear_all_soft_refs */
1686                                     word_size);
1687   if (!gc_succeeded) {
1688     *succeeded = false;
1689     return NULL;
1690   }
1691 
1692   // Retry the allocation
1693   result = attempt_allocation_at_safepoint(word_size,
1694                                   true /* expect_null_mutator_alloc_region */);
1695   if (result != NULL) {
1696     assert(*succeeded, "sanity");
1697     return result;
1698   }
1699 
1700   // Then, try a Full GC that will collect all soft references.
1701   gc_succeeded = do_collection(false, /* explicit_gc */
1702                                true,  /* clear_all_soft_refs */
1703                                word_size);
1704   if (!gc_succeeded) {
1705     *succeeded = false;
1706     return NULL;
1707   }
1708 
1709   // Retry the allocation once more
1710   result = attempt_allocation_at_safepoint(word_size,
1711                                   true /* expect_null_mutator_alloc_region */);
1712   if (result != NULL) {
1713     assert(*succeeded, "sanity");
1714     return result;
1715   }
1716 
1717   assert(!collector_policy()->should_clear_all_soft_refs(),
1718          "Flag should have been handled and cleared prior to this point");
1719 
1720   // What else?  We might try synchronous finalization later.  If the total
1721   // space available is large enough for the allocation, then a more
1722   // complete compaction phase than we've tried so far might be
1723   // appropriate.
1724   assert(*succeeded, "sanity");
1725   return NULL;
1726 }
1727 
1728 // Attempting to expand the heap sufficiently
1729 // to support an allocation of the given "word_size".  If
1730 // successful, perform the allocation and return the address of the
1731 // allocated block, or else "NULL".
1732 
1733 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1734   assert_at_safepoint(true /* should_be_vm_thread */);
1735 
1736   verify_region_sets_optional();
1737 
1738   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1739   ergo_verbose1(ErgoHeapSizing,
1740                 "attempt heap expansion",
1741                 ergo_format_reason("allocation request failed")
1742                 ergo_format_byte("allocation request"),
1743                 word_size * HeapWordSize);
1744   if (expand(expand_bytes)) {
1745     _hrs.verify_optional();
1746     verify_region_sets_optional();
1747     return attempt_allocation_at_safepoint(word_size,
1748                                  false /* expect_null_mutator_alloc_region */);
1749   }
1750   return NULL;
1751 }
1752 
1753 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1754                                              HeapWord* new_end) {
1755   assert(old_end != new_end, "don't call this otherwise");
1756   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1757 
1758   // Update the committed mem region.
1759   _g1_committed.set_end(new_end);
1760   // Tell the card table about the update.
1761   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1762   // Tell the BOT about the update.
1763   _bot_shared->resize(_g1_committed.word_size());
1764 }
1765 
1766 bool G1CollectedHeap::expand(size_t expand_bytes) {
1767   size_t old_mem_size = _g1_storage.committed_size();
1768   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1769   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1770                                        HeapRegion::GrainBytes);
1771   ergo_verbose2(ErgoHeapSizing,
1772                 "expand the heap",
1773                 ergo_format_byte("requested expansion amount")
1774                 ergo_format_byte("attempted expansion amount"),
1775                 expand_bytes, aligned_expand_bytes);
1776 
1777   // First commit the memory.
1778   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1779   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1780   if (successful) {
1781     // Then propagate this update to the necessary data structures.
1782     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1783     update_committed_space(old_end, new_end);
1784 
1785     FreeRegionList expansion_list("Local Expansion List");
1786     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1787     assert(mr.start() == old_end, "post-condition");
1788     // mr might be a smaller region than what was requested if
1789     // expand_by() was unable to allocate the HeapRegion instances
1790     assert(mr.end() <= new_end, "post-condition");
1791 
1792     size_t actual_expand_bytes = mr.byte_size();
1793     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1794     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1795            "post-condition");
1796     if (actual_expand_bytes < aligned_expand_bytes) {
1797       // We could not expand _hrs to the desired size. In this case we
1798       // need to shrink the committed space accordingly.
1799       assert(mr.end() < new_end, "invariant");
1800 
1801       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1802       // First uncommit the memory.
1803       _g1_storage.shrink_by(diff_bytes);
1804       // Then propagate this update to the necessary data structures.
1805       update_committed_space(new_end, mr.end());
1806     }
1807     _free_list.add_as_tail(&expansion_list);
1808 
1809     if (_hr_printer.is_active()) {
1810       HeapWord* curr = mr.start();
1811       while (curr < mr.end()) {
1812         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1813         _hr_printer.commit(curr, curr_end);
1814         curr = curr_end;
1815       }
1816       assert(curr == mr.end(), "post-condition");
1817     }
1818     g1_policy()->record_new_heap_size(n_regions());
1819   } else {
1820     ergo_verbose0(ErgoHeapSizing,
1821                   "did not expand the heap",
1822                   ergo_format_reason("heap expansion operation failed"));
1823     // The expansion of the virtual storage space was unsuccessful.
1824     // Let's see if it was because we ran out of swap.
1825     if (G1ExitOnExpansionFailure &&
1826         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1827       // We had head room...
1828       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1829     }
1830   }
1831   return successful;
1832 }
1833 
1834 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1835   size_t old_mem_size = _g1_storage.committed_size();
1836   size_t aligned_shrink_bytes =
1837     ReservedSpace::page_align_size_down(shrink_bytes);
1838   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1839                                          HeapRegion::GrainBytes);
1840   uint num_regions_deleted = 0;
1841   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1842   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1843   assert(mr.end() == old_end, "post-condition");
1844 
1845   ergo_verbose3(ErgoHeapSizing,
1846                 "shrink the heap",
1847                 ergo_format_byte("requested shrinking amount")
1848                 ergo_format_byte("aligned shrinking amount")
1849                 ergo_format_byte("attempted shrinking amount"),
1850                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1851   if (mr.byte_size() > 0) {
1852     if (_hr_printer.is_active()) {
1853       HeapWord* curr = mr.end();
1854       while (curr > mr.start()) {
1855         HeapWord* curr_end = curr;
1856         curr -= HeapRegion::GrainWords;
1857         _hr_printer.uncommit(curr, curr_end);
1858       }
1859       assert(curr == mr.start(), "post-condition");
1860     }
1861 
1862     _g1_storage.shrink_by(mr.byte_size());
1863     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1864     assert(mr.start() == new_end, "post-condition");
1865 
1866     _expansion_regions += num_regions_deleted;
1867     update_committed_space(old_end, new_end);
1868     HeapRegionRemSet::shrink_heap(n_regions());
1869     g1_policy()->record_new_heap_size(n_regions());
1870   } else {
1871     ergo_verbose0(ErgoHeapSizing,
1872                   "did not shrink the heap",
1873                   ergo_format_reason("heap shrinking operation failed"));
1874   }
1875 }
1876 
1877 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1878   verify_region_sets_optional();
1879 
1880   // We should only reach here at the end of a Full GC which means we
1881   // should not not be holding to any GC alloc regions. The method
1882   // below will make sure of that and do any remaining clean up.
1883   abandon_gc_alloc_regions();
1884 
1885   // Instead of tearing down / rebuilding the free lists here, we
1886   // could instead use the remove_all_pending() method on free_list to
1887   // remove only the ones that we need to remove.
1888   tear_down_region_sets(true /* free_list_only */);
1889   shrink_helper(shrink_bytes);
1890   rebuild_region_sets(true /* free_list_only */);
1891 
1892   _hrs.verify_optional();
1893   verify_region_sets_optional();
1894 }
1895 
1896 // Public methods.
1897 
1898 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1899 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1900 #endif // _MSC_VER
1901 
1902 
1903 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1904   SharedHeap(policy_),
1905   _g1_policy(policy_),
1906   _dirty_card_queue_set(false),
1907   _into_cset_dirty_card_queue_set(false),
1908   _is_alive_closure_cm(this),
1909   _is_alive_closure_stw(this),
1910   _ref_processor_cm(NULL),
1911   _ref_processor_stw(NULL),
1912   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1913   _bot_shared(NULL),
1914   _evac_failure_scan_stack(NULL),
1915   _mark_in_progress(false),
1916   _cg1r(NULL), _summary_bytes_used(0),
1917   _g1mm(NULL),
1918   _refine_cte_cl(NULL),
1919   _full_collection(false),
1920   _free_list("Master Free List"),
1921   _secondary_free_list("Secondary Free List"),
1922   _old_set("Old Set"),
1923   _humongous_set("Master Humongous Set"),
1924   _free_regions_coming(false),
1925   _young_list(new YoungList(this)),
1926   _gc_time_stamp(0),
1927   _retained_old_gc_alloc_region(NULL),
1928   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1929   _old_plab_stats(OldPLABSize, PLABWeight),
1930   _expand_heap_after_alloc_failure(true),
1931   _surviving_young_words(NULL),
1932   _old_marking_cycles_started(0),
1933   _old_marking_cycles_completed(0),
1934   _concurrent_cycle_started(false),
1935   _in_cset_fast_test(NULL),
1936   _in_cset_fast_test_base(NULL),
1937   _dirty_cards_region_list(NULL),
1938   _worker_cset_start_region(NULL),
1939   _worker_cset_start_region_time_stamp(NULL),
1940   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1941   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1942   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1943   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1944 
1945   _g1h = this;
1946   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1947     vm_exit_during_initialization("Failed necessary allocation.");
1948   }
1949 
1950   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1951 
1952   int n_queues = MAX2((int)ParallelGCThreads, 1);
1953   _task_queues = new RefToScanQueueSet(n_queues);
1954 
1955   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1956   assert(n_rem_sets > 0, "Invariant.");
1957 
1958   HeapRegionRemSetIterator** iter_arr = NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1959   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1960   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1961   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1962 
1963   for (int i = 0; i < n_queues; i++) {
1964     RefToScanQueue* q = new RefToScanQueue();
1965     q->initialize();
1966     _task_queues->register_queue(i, q);
1967     iter_arr[i] = new HeapRegionRemSetIterator();
1968     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1969   }
1970   _rem_set_iterator = iter_arr;
1971 
1972   clear_cset_start_regions();
1973 
1974   // Initialize the G1EvacuationFailureALot counters and flags.
1975   NOT_PRODUCT(reset_evacuation_should_fail();)
1976 
1977   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1978 }
1979 
1980 jint G1CollectedHeap::initialize() {
1981   CollectedHeap::pre_initialize();
1982   os::enable_vtime();
1983 
1984   G1Log::init();
1985 
1986   // Necessary to satisfy locking discipline assertions.
1987 
1988   MutexLocker x(Heap_lock);
1989 
1990   // We have to initialize the printer before committing the heap, as
1991   // it will be used then.
1992   _hr_printer.set_active(G1PrintHeapRegions);
1993 
1994   // While there are no constraints in the GC code that HeapWordSize
1995   // be any particular value, there are multiple other areas in the
1996   // system which believe this to be true (e.g. oop->object_size in some
1997   // cases incorrectly returns the size in wordSize units rather than
1998   // HeapWordSize).
1999   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2000 
2001   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2002   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2003 
2004   // Ensure that the sizes are properly aligned.
2005   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2006   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2007 
2008   _cg1r = new ConcurrentG1Refine();
2009 
2010   // Reserve the maximum.
2011   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
2012   // Includes the perm-gen.
2013 
2014   // When compressed oops are enabled, the preferred heap base
2015   // is calculated by subtracting the requested size from the
2016   // 32Gb boundary and using the result as the base address for
2017   // heap reservation. If the requested size is not aligned to
2018   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2019   // into the ReservedHeapSpace constructor) then the actual
2020   // base of the reserved heap may end up differing from the
2021   // address that was requested (i.e. the preferred heap base).
2022   // If this happens then we could end up using a non-optimal
2023   // compressed oops mode.
2024 
2025   // Since max_byte_size is aligned to the size of a heap region (checked
2026   // above), we also need to align the perm gen size as it might not be.
2027   size_t total_reserved = 0;
2028 
2029   total_reserved = add_and_check_overflow(total_reserved, max_byte_size);
2030   size_t pg_max_size = (size_t) align_size_up(pgs->max_size(), HeapRegion::GrainBytes);
2031   total_reserved = add_and_check_overflow(total_reserved, pg_max_size);
2032 
2033   Universe::check_alignment(total_reserved, HeapRegion::GrainBytes, "g1 heap and perm");
2034 
2035   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
2036 
2037   ReservedHeapSpace heap_rs(total_reserved, HeapRegion::GrainBytes,
2038                             UseLargePages, addr);
2039 
2040   if (UseCompressedOops) {
2041     if (addr != NULL && !heap_rs.is_reserved()) {
2042       // Failed to reserve at specified address - the requested memory
2043       // region is taken already, for example, by 'java' launcher.
2044       // Try again to reserver heap higher.
2045       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
2046 
2047       ReservedHeapSpace heap_rs0(total_reserved, HeapRegion::GrainBytes,
2048                                  UseLargePages, addr);
2049 
2050       if (addr != NULL && !heap_rs0.is_reserved()) {
2051         // Failed to reserve at specified address again - give up.
2052         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
2053         assert(addr == NULL, "");
2054 
2055         ReservedHeapSpace heap_rs1(total_reserved, HeapRegion::GrainBytes,
2056                                    UseLargePages, addr);
2057         heap_rs = heap_rs1;
2058       } else {
2059         heap_rs = heap_rs0;
2060       }
2061     }
2062   }
2063 
2064   if (!heap_rs.is_reserved()) {
2065     vm_exit_during_initialization("Could not reserve enough space for object heap");
2066     return JNI_ENOMEM;
2067   }
2068 
2069   // It is important to do this in a way such that concurrent readers can't
2070   // temporarily think something is in the heap.  (I've actually seen this
2071   // happen in asserts: DLD.)
2072   _reserved.set_word_size(0);
2073   _reserved.set_start((HeapWord*)heap_rs.base());
2074   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2075 
2076   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2077 
2078   // Create the gen rem set (and barrier set) for the entire reserved region.
2079   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2080   set_barrier_set(rem_set()->bs());
2081   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2082     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2083   } else {
2084     vm_exit_during_initialization("G1 requires a mod ref bs.");
2085     return JNI_ENOMEM;
2086   }
2087 
2088   // Also create a G1 rem set.
2089   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2090     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2091   } else {
2092     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2093     return JNI_ENOMEM;
2094   }
2095 
2096   // Carve out the G1 part of the heap.
2097 
2098   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2099   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2100                            g1_rs.size()/HeapWordSize);
2101   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
2102 
2103   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
2104 
2105   _g1_storage.initialize(g1_rs, 0);
2106   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2107   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2108                   (HeapWord*) _g1_reserved.end(),
2109                   _expansion_regions);
2110 
2111   // 6843694 - ensure that the maximum region index can fit
2112   // in the remembered set structures.
2113   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2114   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2115 
2116   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2117   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2118   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2119             "too many cards per region");
2120 
2121   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2122 
2123   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2124                                              heap_word_size(init_byte_size));
2125 
2126   _g1h = this;
2127 
2128    _in_cset_fast_test_length = max_regions();
2129    _in_cset_fast_test_base =
2130                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2131 
2132    // We're biasing _in_cset_fast_test to avoid subtracting the
2133    // beginning of the heap every time we want to index; basically
2134    // it's the same with what we do with the card table.
2135    _in_cset_fast_test = _in_cset_fast_test_base -
2136                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2137 
2138    // Clear the _cset_fast_test bitmap in anticipation of adding
2139    // regions to the incremental collection set for the first
2140    // evacuation pause.
2141    clear_cset_fast_test();
2142 
2143   // Create the ConcurrentMark data structure and thread.
2144   // (Must do this late, so that "max_regions" is defined.)
2145   _cm       = new ConcurrentMark(heap_rs, max_regions());
2146   _cmThread = _cm->cmThread();
2147 
2148   // Initialize the from_card cache structure of HeapRegionRemSet.
2149   HeapRegionRemSet::init_heap(max_regions());
2150 
2151   // Now expand into the initial heap size.
2152   if (!expand(init_byte_size)) {
2153     vm_exit_during_initialization("Failed to allocate initial heap.");
2154     return JNI_ENOMEM;
2155   }
2156 
2157   // Perform any initialization actions delegated to the policy.
2158   g1_policy()->init();
2159 
2160   _refine_cte_cl =
2161     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2162                                     g1_rem_set(),
2163                                     concurrent_g1_refine());
2164   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2165 
2166   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2167                                                SATB_Q_FL_lock,
2168                                                G1SATBProcessCompletedThreshold,
2169                                                Shared_SATB_Q_lock);
2170 
2171   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2172                                                 DirtyCardQ_FL_lock,
2173                                                 concurrent_g1_refine()->yellow_zone(),
2174                                                 concurrent_g1_refine()->red_zone(),
2175                                                 Shared_DirtyCardQ_lock);
2176 
2177   if (G1DeferredRSUpdate) {
2178     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2179                                       DirtyCardQ_FL_lock,
2180                                       -1, // never trigger processing
2181                                       -1, // no limit on length
2182                                       Shared_DirtyCardQ_lock,
2183                                       &JavaThread::dirty_card_queue_set());
2184   }
2185 
2186   // Initialize the card queue set used to hold cards containing
2187   // references into the collection set.
2188   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2189                                              DirtyCardQ_FL_lock,
2190                                              -1, // never trigger processing
2191                                              -1, // no limit on length
2192                                              Shared_DirtyCardQ_lock,
2193                                              &JavaThread::dirty_card_queue_set());
2194 
2195   // In case we're keeping closure specialization stats, initialize those
2196   // counts and that mechanism.
2197   SpecializationStats::clear();
2198 
2199   // Do later initialization work for concurrent refinement.
2200   _cg1r->init();
2201 
2202   // Here we allocate the dummy full region that is required by the
2203   // G1AllocRegion class. If we don't pass an address in the reserved
2204   // space here, lots of asserts fire.
2205 
2206   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2207                                              _g1_reserved.start());
2208   // We'll re-use the same region whether the alloc region will
2209   // require BOT updates or not and, if it doesn't, then a non-young
2210   // region will complain that it cannot support allocations without
2211   // BOT updates. So we'll tag the dummy region as young to avoid that.
2212   dummy_region->set_young();
2213   // Make sure it's full.
2214   dummy_region->set_top(dummy_region->end());
2215   G1AllocRegion::setup(this, dummy_region);
2216 
2217   init_mutator_alloc_region();
2218 
2219   // Do create of the monitoring and management support so that
2220   // values in the heap have been properly initialized.
2221   _g1mm = new G1MonitoringSupport(this);
2222 
2223   return JNI_OK;
2224 }
2225 
2226 void G1CollectedHeap::ref_processing_init() {
2227   // Reference processing in G1 currently works as follows:
2228   //
2229   // * There are two reference processor instances. One is
2230   //   used to record and process discovered references
2231   //   during concurrent marking; the other is used to
2232   //   record and process references during STW pauses
2233   //   (both full and incremental).
2234   // * Both ref processors need to 'span' the entire heap as
2235   //   the regions in the collection set may be dotted around.
2236   //
2237   // * For the concurrent marking ref processor:
2238   //   * Reference discovery is enabled at initial marking.
2239   //   * Reference discovery is disabled and the discovered
2240   //     references processed etc during remarking.
2241   //   * Reference discovery is MT (see below).
2242   //   * Reference discovery requires a barrier (see below).
2243   //   * Reference processing may or may not be MT
2244   //     (depending on the value of ParallelRefProcEnabled
2245   //     and ParallelGCThreads).
2246   //   * A full GC disables reference discovery by the CM
2247   //     ref processor and abandons any entries on it's
2248   //     discovered lists.
2249   //
2250   // * For the STW processor:
2251   //   * Non MT discovery is enabled at the start of a full GC.
2252   //   * Processing and enqueueing during a full GC is non-MT.
2253   //   * During a full GC, references are processed after marking.
2254   //
2255   //   * Discovery (may or may not be MT) is enabled at the start
2256   //     of an incremental evacuation pause.
2257   //   * References are processed near the end of a STW evacuation pause.
2258   //   * For both types of GC:
2259   //     * Discovery is atomic - i.e. not concurrent.
2260   //     * Reference discovery will not need a barrier.
2261 
2262   SharedHeap::ref_processing_init();
2263   MemRegion mr = reserved_region();
2264 
2265   // Concurrent Mark ref processor
2266   _ref_processor_cm =
2267     new ReferenceProcessor(mr,    // span
2268                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2269                                 // mt processing
2270                            (int) ParallelGCThreads,
2271                                 // degree of mt processing
2272                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2273                                 // mt discovery
2274                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2275                                 // degree of mt discovery
2276                            false,
2277                                 // Reference discovery is not atomic
2278                            &_is_alive_closure_cm,
2279                                 // is alive closure
2280                                 // (for efficiency/performance)
2281                            true);
2282                                 // Setting next fields of discovered
2283                                 // lists requires a barrier.
2284 
2285   // STW ref processor
2286   _ref_processor_stw =
2287     new ReferenceProcessor(mr,    // span
2288                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2289                                 // mt processing
2290                            MAX2((int)ParallelGCThreads, 1),
2291                                 // degree of mt processing
2292                            (ParallelGCThreads > 1),
2293                                 // mt discovery
2294                            MAX2((int)ParallelGCThreads, 1),
2295                                 // degree of mt discovery
2296                            true,
2297                                 // Reference discovery is atomic
2298                            &_is_alive_closure_stw,
2299                                 // is alive closure
2300                                 // (for efficiency/performance)
2301                            false);
2302                                 // Setting next fields of discovered
2303                                 // lists requires a barrier.
2304 }
2305 
2306 size_t G1CollectedHeap::capacity() const {
2307   return _g1_committed.byte_size();
2308 }
2309 
2310 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2311   assert(!hr->continuesHumongous(), "pre-condition");
2312   hr->reset_gc_time_stamp();
2313   if (hr->startsHumongous()) {
2314     uint first_index = hr->hrs_index() + 1;
2315     uint last_index = hr->last_hc_index();
2316     for (uint i = first_index; i < last_index; i += 1) {
2317       HeapRegion* chr = region_at(i);
2318       assert(chr->continuesHumongous(), "sanity");
2319       chr->reset_gc_time_stamp();
2320     }
2321   }
2322 }
2323 
2324 #ifndef PRODUCT
2325 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2326 private:
2327   unsigned _gc_time_stamp;
2328   bool _failures;
2329 
2330 public:
2331   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2332     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2333 
2334   virtual bool doHeapRegion(HeapRegion* hr) {
2335     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2336     if (_gc_time_stamp != region_gc_time_stamp) {
2337       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2338                              "expected %d", HR_FORMAT_PARAMS(hr),
2339                              region_gc_time_stamp, _gc_time_stamp);
2340       _failures = true;
2341     }
2342     return false;
2343   }
2344 
2345   bool failures() { return _failures; }
2346 };
2347 
2348 void G1CollectedHeap::check_gc_time_stamps() {
2349   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2350   heap_region_iterate(&cl);
2351   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2352 }
2353 #endif // PRODUCT
2354 
2355 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2356                                                  DirtyCardQueue* into_cset_dcq,
2357                                                  bool concurrent,
2358                                                  int worker_i) {
2359   // Clean cards in the hot card cache
2360   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2361 
2362   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2363   int n_completed_buffers = 0;
2364   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2365     n_completed_buffers++;
2366   }
2367   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2368   dcqs.clear_n_completed_buffers();
2369   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2370 }
2371 
2372 
2373 // Computes the sum of the storage used by the various regions.
2374 
2375 size_t G1CollectedHeap::used() const {
2376   assert(Heap_lock->owner() != NULL,
2377          "Should be owned on this thread's behalf.");
2378   size_t result = _summary_bytes_used;
2379   // Read only once in case it is set to NULL concurrently
2380   HeapRegion* hr = _mutator_alloc_region.get();
2381   if (hr != NULL)
2382     result += hr->used();
2383   return result;
2384 }
2385 
2386 size_t G1CollectedHeap::used_unlocked() const {
2387   size_t result = _summary_bytes_used;
2388   return result;
2389 }
2390 
2391 class SumUsedClosure: public HeapRegionClosure {
2392   size_t _used;
2393 public:
2394   SumUsedClosure() : _used(0) {}
2395   bool doHeapRegion(HeapRegion* r) {
2396     if (!r->continuesHumongous()) {
2397       _used += r->used();
2398     }
2399     return false;
2400   }
2401   size_t result() { return _used; }
2402 };
2403 
2404 size_t G1CollectedHeap::recalculate_used() const {
2405   SumUsedClosure blk;
2406   heap_region_iterate(&blk);
2407   return blk.result();
2408 }
2409 
2410 size_t G1CollectedHeap::unsafe_max_alloc() {
2411   if (free_regions() > 0) return HeapRegion::GrainBytes;
2412   // otherwise, is there space in the current allocation region?
2413 
2414   // We need to store the current allocation region in a local variable
2415   // here. The problem is that this method doesn't take any locks and
2416   // there may be other threads which overwrite the current allocation
2417   // region field. attempt_allocation(), for example, sets it to NULL
2418   // and this can happen *after* the NULL check here but before the call
2419   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2420   // to be a problem in the optimized build, since the two loads of the
2421   // current allocation region field are optimized away.
2422   HeapRegion* hr = _mutator_alloc_region.get();
2423   if (hr == NULL) {
2424     return 0;
2425   }
2426   return hr->free();
2427 }
2428 
2429 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2430   switch (cause) {
2431     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2432     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2433     case GCCause::_g1_humongous_allocation: return true;
2434     default:                                return false;
2435   }
2436 }
2437 
2438 #ifndef PRODUCT
2439 void G1CollectedHeap::allocate_dummy_regions() {
2440   // Let's fill up most of the region
2441   size_t word_size = HeapRegion::GrainWords - 1024;
2442   // And as a result the region we'll allocate will be humongous.
2443   guarantee(isHumongous(word_size), "sanity");
2444 
2445   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2446     // Let's use the existing mechanism for the allocation
2447     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2448     if (dummy_obj != NULL) {
2449       MemRegion mr(dummy_obj, word_size);
2450       CollectedHeap::fill_with_object(mr);
2451     } else {
2452       // If we can't allocate once, we probably cannot allocate
2453       // again. Let's get out of the loop.
2454       break;
2455     }
2456   }
2457 }
2458 #endif // !PRODUCT
2459 
2460 void G1CollectedHeap::increment_old_marking_cycles_started() {
2461   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2462     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2463     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2464     _old_marking_cycles_started, _old_marking_cycles_completed));
2465 
2466   _old_marking_cycles_started++;
2467 }
2468 
2469 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2470   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2471 
2472   // We assume that if concurrent == true, then the caller is a
2473   // concurrent thread that was joined the Suspendible Thread
2474   // Set. If there's ever a cheap way to check this, we should add an
2475   // assert here.
2476 
2477   // Given that this method is called at the end of a Full GC or of a
2478   // concurrent cycle, and those can be nested (i.e., a Full GC can
2479   // interrupt a concurrent cycle), the number of full collections
2480   // completed should be either one (in the case where there was no
2481   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2482   // behind the number of full collections started.
2483 
2484   // This is the case for the inner caller, i.e. a Full GC.
2485   assert(concurrent ||
2486          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2487          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2488          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2489                  "is inconsistent with _old_marking_cycles_completed = %u",
2490                  _old_marking_cycles_started, _old_marking_cycles_completed));
2491 
2492   // This is the case for the outer caller, i.e. the concurrent cycle.
2493   assert(!concurrent ||
2494          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2495          err_msg("for outer caller (concurrent cycle): "
2496                  "_old_marking_cycles_started = %u "
2497                  "is inconsistent with _old_marking_cycles_completed = %u",
2498                  _old_marking_cycles_started, _old_marking_cycles_completed));
2499 
2500   _old_marking_cycles_completed += 1;
2501 
2502   // We need to clear the "in_progress" flag in the CM thread before
2503   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2504   // is set) so that if a waiter requests another System.gc() it doesn't
2505   // incorrectly see that a marking cycle is still in progress.
2506   if (concurrent) {
2507     _cmThread->clear_in_progress();
2508   }
2509 
2510   // This notify_all() will ensure that a thread that called
2511   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2512   // and it's waiting for a full GC to finish will be woken up. It is
2513   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2514   FullGCCount_lock->notify_all();
2515 }
2516 
2517 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2518   _concurrent_cycle_started = true;
2519   _gc_timer_cm->register_gc_start(start_time);
2520 
2521   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2522   trace_heap_before_gc(_gc_tracer_cm);
2523 }
2524 
2525 void G1CollectedHeap::register_concurrent_cycle_end() {
2526   if (_concurrent_cycle_started) {
2527     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2528 
2529     if (_cm->has_aborted()) {
2530       _gc_tracer_cm->report_concurrent_mode_failure();
2531     }
2532     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2533 
2534     _concurrent_cycle_started = false;
2535   }
2536 }
2537 
2538 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2539   if (_concurrent_cycle_started) {
2540     trace_heap_after_gc(_gc_tracer_cm);
2541   }
2542 }
2543 
2544 G1YCType G1CollectedHeap::yc_type() {
2545   bool is_young = g1_policy()->gcs_are_young();
2546   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2547   bool is_during_mark = mark_in_progress();
2548 
2549   if (is_initial_mark) {
2550     return InitialMark;
2551   } else if (is_during_mark) {
2552     return DuringMark;
2553   } else if (is_young) {
2554     return Normal;
2555   } else {
2556     return Mixed;
2557   }
2558 }
2559 
2560 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
2561   assert_at_safepoint(true /* should_be_vm_thread */);
2562   GCCauseSetter gcs(this, cause);
2563   switch (cause) {
2564     case GCCause::_heap_inspection:
2565     case GCCause::_heap_dump: {
2566       HandleMark hm;
2567       do_full_collection(false);         // don't clear all soft refs
2568       break;
2569     }
2570     default: // XXX FIX ME
2571       ShouldNotReachHere(); // Unexpected use of this function
2572   }
2573 }
2574 
2575 void G1CollectedHeap::collect(GCCause::Cause cause) {
2576   assert_heap_not_locked();
2577 
2578   unsigned int gc_count_before;
2579   unsigned int old_marking_count_before;
2580   bool retry_gc;
2581 
2582   do {
2583     retry_gc = false;
2584 
2585     {
2586       MutexLocker ml(Heap_lock);
2587 
2588       // Read the GC count while holding the Heap_lock
2589       gc_count_before = total_collections();
2590       old_marking_count_before = _old_marking_cycles_started;
2591     }
2592 
2593     if (should_do_concurrent_full_gc(cause)) {
2594       // Schedule an initial-mark evacuation pause that will start a
2595       // concurrent cycle. We're setting word_size to 0 which means that
2596       // we are not requesting a post-GC allocation.
2597       VM_G1IncCollectionPause op(gc_count_before,
2598                                  0,     /* word_size */
2599                                  true,  /* should_initiate_conc_mark */
2600                                  g1_policy()->max_pause_time_ms(),
2601                                  cause);
2602 
2603       VMThread::execute(&op);
2604       if (!op.pause_succeeded()) {
2605         if (old_marking_count_before == _old_marking_cycles_started) {
2606           retry_gc = op.should_retry_gc();
2607         } else {
2608           // A Full GC happened while we were trying to schedule the
2609           // initial-mark GC. No point in starting a new cycle given
2610           // that the whole heap was collected anyway.
2611         }
2612 
2613         if (retry_gc) {
2614           if (GC_locker::is_active_and_needs_gc()) {
2615             GC_locker::stall_until_clear();
2616           }
2617         }
2618       }
2619     } else {
2620       if (cause == GCCause::_gc_locker
2621           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2622 
2623         // Schedule a standard evacuation pause. We're setting word_size
2624         // to 0 which means that we are not requesting a post-GC allocation.
2625         VM_G1IncCollectionPause op(gc_count_before,
2626                                    0,     /* word_size */
2627                                    false, /* should_initiate_conc_mark */
2628                                    g1_policy()->max_pause_time_ms(),
2629                                    cause);
2630         VMThread::execute(&op);
2631       } else {
2632         // Schedule a Full GC.
2633         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2634         VMThread::execute(&op);
2635       }
2636     }
2637   } while (retry_gc);
2638 }
2639 
2640 bool G1CollectedHeap::is_in(const void* p) const {
2641   if (_g1_committed.contains(p)) {
2642     // Given that we know that p is in the committed space,
2643     // heap_region_containing_raw() should successfully
2644     // return the containing region.
2645     HeapRegion* hr = heap_region_containing_raw(p);
2646     return hr->is_in(p);
2647   } else {
2648     return _perm_gen->as_gen()->is_in(p);
2649   }
2650 }
2651 
2652 // Iteration functions.
2653 
2654 // Iterates an OopClosure over all ref-containing fields of objects
2655 // within a HeapRegion.
2656 
2657 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2658   MemRegion _mr;
2659   OopClosure* _cl;
2660 public:
2661   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
2662     : _mr(mr), _cl(cl) {}
2663   bool doHeapRegion(HeapRegion* r) {
2664     if (!r->continuesHumongous()) {
2665       r->oop_iterate(_cl);
2666     }
2667     return false;
2668   }
2669 };
2670 
2671 void G1CollectedHeap::oop_iterate(OopClosure* cl, bool do_perm) {
2672   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2673   heap_region_iterate(&blk);
2674   if (do_perm) {
2675     perm_gen()->oop_iterate(cl);
2676   }
2677 }
2678 
2679 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl, bool do_perm) {
2680   IterateOopClosureRegionClosure blk(mr, cl);
2681   heap_region_iterate(&blk);
2682   if (do_perm) {
2683     perm_gen()->oop_iterate(cl);
2684   }
2685 }
2686 
2687 // Iterates an ObjectClosure over all objects within a HeapRegion.
2688 
2689 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2690   ObjectClosure* _cl;
2691 public:
2692   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2693   bool doHeapRegion(HeapRegion* r) {
2694     if (! r->continuesHumongous()) {
2695       r->object_iterate(_cl);
2696     }
2697     return false;
2698   }
2699 };
2700 
2701 void G1CollectedHeap::object_iterate(ObjectClosure* cl, bool do_perm) {
2702   IterateObjectClosureRegionClosure blk(cl);
2703   heap_region_iterate(&blk);
2704   if (do_perm) {
2705     perm_gen()->object_iterate(cl);
2706   }
2707 }
2708 
2709 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2710   // FIXME: is this right?
2711   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2712 }
2713 
2714 // Calls a SpaceClosure on a HeapRegion.
2715 
2716 class SpaceClosureRegionClosure: public HeapRegionClosure {
2717   SpaceClosure* _cl;
2718 public:
2719   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2720   bool doHeapRegion(HeapRegion* r) {
2721     _cl->do_space(r);
2722     return false;
2723   }
2724 };
2725 
2726 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2727   SpaceClosureRegionClosure blk(cl);
2728   heap_region_iterate(&blk);
2729 }
2730 
2731 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2732   _hrs.iterate(cl);
2733 }
2734 
2735 void
2736 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2737                                                  uint worker_id,
2738                                                  uint no_of_par_workers,
2739                                                  jint claim_value) {
2740   const uint regions = n_regions();
2741   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2742                              no_of_par_workers :
2743                              1);
2744   assert(UseDynamicNumberOfGCThreads ||
2745          no_of_par_workers == workers()->total_workers(),
2746          "Non dynamic should use fixed number of workers");
2747   // try to spread out the starting points of the workers
2748   const HeapRegion* start_hr =
2749                         start_region_for_worker(worker_id, no_of_par_workers);
2750   const uint start_index = start_hr->hrs_index();
2751 
2752   // each worker will actually look at all regions
2753   for (uint count = 0; count < regions; ++count) {
2754     const uint index = (start_index + count) % regions;
2755     assert(0 <= index && index < regions, "sanity");
2756     HeapRegion* r = region_at(index);
2757     // we'll ignore "continues humongous" regions (we'll process them
2758     // when we come across their corresponding "start humongous"
2759     // region) and regions already claimed
2760     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2761       continue;
2762     }
2763     // OK, try to claim it
2764     if (r->claimHeapRegion(claim_value)) {
2765       // success!
2766       assert(!r->continuesHumongous(), "sanity");
2767       if (r->startsHumongous()) {
2768         // If the region is "starts humongous" we'll iterate over its
2769         // "continues humongous" first; in fact we'll do them
2770         // first. The order is important. In on case, calling the
2771         // closure on the "starts humongous" region might de-allocate
2772         // and clear all its "continues humongous" regions and, as a
2773         // result, we might end up processing them twice. So, we'll do
2774         // them first (notice: most closures will ignore them anyway) and
2775         // then we'll do the "starts humongous" region.
2776         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2777           HeapRegion* chr = region_at(ch_index);
2778 
2779           // if the region has already been claimed or it's not
2780           // "continues humongous" we're done
2781           if (chr->claim_value() == claim_value ||
2782               !chr->continuesHumongous()) {
2783             break;
2784           }
2785 
2786           // Noone should have claimed it directly. We can given
2787           // that we claimed its "starts humongous" region.
2788           assert(chr->claim_value() != claim_value, "sanity");
2789           assert(chr->humongous_start_region() == r, "sanity");
2790 
2791           if (chr->claimHeapRegion(claim_value)) {
2792             // we should always be able to claim it; noone else should
2793             // be trying to claim this region
2794 
2795             bool res2 = cl->doHeapRegion(chr);
2796             assert(!res2, "Should not abort");
2797 
2798             // Right now, this holds (i.e., no closure that actually
2799             // does something with "continues humongous" regions
2800             // clears them). We might have to weaken it in the future,
2801             // but let's leave these two asserts here for extra safety.
2802             assert(chr->continuesHumongous(), "should still be the case");
2803             assert(chr->humongous_start_region() == r, "sanity");
2804           } else {
2805             guarantee(false, "we should not reach here");
2806           }
2807         }
2808       }
2809 
2810       assert(!r->continuesHumongous(), "sanity");
2811       bool res = cl->doHeapRegion(r);
2812       assert(!res, "Should not abort");
2813     }
2814   }
2815 }
2816 
2817 class ResetClaimValuesClosure: public HeapRegionClosure {
2818 public:
2819   bool doHeapRegion(HeapRegion* r) {
2820     r->set_claim_value(HeapRegion::InitialClaimValue);
2821     return false;
2822   }
2823 };
2824 
2825 void G1CollectedHeap::reset_heap_region_claim_values() {
2826   ResetClaimValuesClosure blk;
2827   heap_region_iterate(&blk);
2828 }
2829 
2830 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2831   ResetClaimValuesClosure blk;
2832   collection_set_iterate(&blk);
2833 }
2834 
2835 #ifdef ASSERT
2836 // This checks whether all regions in the heap have the correct claim
2837 // value. I also piggy-backed on this a check to ensure that the
2838 // humongous_start_region() information on "continues humongous"
2839 // regions is correct.
2840 
2841 class CheckClaimValuesClosure : public HeapRegionClosure {
2842 private:
2843   jint _claim_value;
2844   uint _failures;
2845   HeapRegion* _sh_region;
2846 
2847 public:
2848   CheckClaimValuesClosure(jint claim_value) :
2849     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2850   bool doHeapRegion(HeapRegion* r) {
2851     if (r->claim_value() != _claim_value) {
2852       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2853                              "claim value = %d, should be %d",
2854                              HR_FORMAT_PARAMS(r),
2855                              r->claim_value(), _claim_value);
2856       ++_failures;
2857     }
2858     if (!r->isHumongous()) {
2859       _sh_region = NULL;
2860     } else if (r->startsHumongous()) {
2861       _sh_region = r;
2862     } else if (r->continuesHumongous()) {
2863       if (r->humongous_start_region() != _sh_region) {
2864         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2865                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2866                                HR_FORMAT_PARAMS(r),
2867                                r->humongous_start_region(),
2868                                _sh_region);
2869         ++_failures;
2870       }
2871     }
2872     return false;
2873   }
2874   uint failures() { return _failures; }
2875 };
2876 
2877 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2878   CheckClaimValuesClosure cl(claim_value);
2879   heap_region_iterate(&cl);
2880   return cl.failures() == 0;
2881 }
2882 
2883 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2884 private:
2885   jint _claim_value;
2886   uint _failures;
2887 
2888 public:
2889   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2890     _claim_value(claim_value), _failures(0) { }
2891 
2892   uint failures() { return _failures; }
2893 
2894   bool doHeapRegion(HeapRegion* hr) {
2895     assert(hr->in_collection_set(), "how?");
2896     assert(!hr->isHumongous(), "H-region in CSet");
2897     if (hr->claim_value() != _claim_value) {
2898       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2899                              "claim value = %d, should be %d",
2900                              HR_FORMAT_PARAMS(hr),
2901                              hr->claim_value(), _claim_value);
2902       _failures += 1;
2903     }
2904     return false;
2905   }
2906 };
2907 
2908 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2909   CheckClaimValuesInCSetHRClosure cl(claim_value);
2910   collection_set_iterate(&cl);
2911   return cl.failures() == 0;
2912 }
2913 #endif // ASSERT
2914 
2915 // Clear the cached CSet starting regions and (more importantly)
2916 // the time stamps. Called when we reset the GC time stamp.
2917 void G1CollectedHeap::clear_cset_start_regions() {
2918   assert(_worker_cset_start_region != NULL, "sanity");
2919   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2920 
2921   int n_queues = MAX2((int)ParallelGCThreads, 1);
2922   for (int i = 0; i < n_queues; i++) {
2923     _worker_cset_start_region[i] = NULL;
2924     _worker_cset_start_region_time_stamp[i] = 0;
2925   }
2926 }
2927 
2928 // Given the id of a worker, obtain or calculate a suitable
2929 // starting region for iterating over the current collection set.
2930 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2931   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2932 
2933   HeapRegion* result = NULL;
2934   unsigned gc_time_stamp = get_gc_time_stamp();
2935 
2936   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2937     // Cached starting region for current worker was set
2938     // during the current pause - so it's valid.
2939     // Note: the cached starting heap region may be NULL
2940     // (when the collection set is empty).
2941     result = _worker_cset_start_region[worker_i];
2942     assert(result == NULL || result->in_collection_set(), "sanity");
2943     return result;
2944   }
2945 
2946   // The cached entry was not valid so let's calculate
2947   // a suitable starting heap region for this worker.
2948 
2949   // We want the parallel threads to start their collection
2950   // set iteration at different collection set regions to
2951   // avoid contention.
2952   // If we have:
2953   //          n collection set regions
2954   //          p threads
2955   // Then thread t will start at region floor ((t * n) / p)
2956 
2957   result = g1_policy()->collection_set();
2958   if (G1CollectedHeap::use_parallel_gc_threads()) {
2959     uint cs_size = g1_policy()->cset_region_length();
2960     uint active_workers = workers()->active_workers();
2961     assert(UseDynamicNumberOfGCThreads ||
2962              active_workers == workers()->total_workers(),
2963              "Unless dynamic should use total workers");
2964 
2965     uint end_ind   = (cs_size * worker_i) / active_workers;
2966     uint start_ind = 0;
2967 
2968     if (worker_i > 0 &&
2969         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2970       // Previous workers starting region is valid
2971       // so let's iterate from there
2972       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2973       result = _worker_cset_start_region[worker_i - 1];
2974     }
2975 
2976     for (uint i = start_ind; i < end_ind; i++) {
2977       result = result->next_in_collection_set();
2978     }
2979   }
2980 
2981   // Note: the calculated starting heap region may be NULL
2982   // (when the collection set is empty).
2983   assert(result == NULL || result->in_collection_set(), "sanity");
2984   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2985          "should be updated only once per pause");
2986   _worker_cset_start_region[worker_i] = result;
2987   OrderAccess::storestore();
2988   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2989   return result;
2990 }
2991 
2992 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2993                                                      uint no_of_par_workers) {
2994   uint worker_num =
2995            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2996   assert(UseDynamicNumberOfGCThreads ||
2997          no_of_par_workers == workers()->total_workers(),
2998          "Non dynamic should use fixed number of workers");
2999   const uint start_index = n_regions() * worker_i / worker_num;
3000   return region_at(start_index);
3001 }
3002 
3003 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
3004   HeapRegion* r = g1_policy()->collection_set();
3005   while (r != NULL) {
3006     HeapRegion* next = r->next_in_collection_set();
3007     if (cl->doHeapRegion(r)) {
3008       cl->incomplete();
3009       return;
3010     }
3011     r = next;
3012   }
3013 }
3014 
3015 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
3016                                                   HeapRegionClosure *cl) {
3017   if (r == NULL) {
3018     // The CSet is empty so there's nothing to do.
3019     return;
3020   }
3021 
3022   assert(r->in_collection_set(),
3023          "Start region must be a member of the collection set.");
3024   HeapRegion* cur = r;
3025   while (cur != NULL) {
3026     HeapRegion* next = cur->next_in_collection_set();
3027     if (cl->doHeapRegion(cur) && false) {
3028       cl->incomplete();
3029       return;
3030     }
3031     cur = next;
3032   }
3033   cur = g1_policy()->collection_set();
3034   while (cur != r) {
3035     HeapRegion* next = cur->next_in_collection_set();
3036     if (cl->doHeapRegion(cur) && false) {
3037       cl->incomplete();
3038       return;
3039     }
3040     cur = next;
3041   }
3042 }
3043 
3044 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
3045   return n_regions() > 0 ? region_at(0) : NULL;
3046 }
3047 
3048 
3049 Space* G1CollectedHeap::space_containing(const void* addr) const {
3050   Space* res = heap_region_containing(addr);
3051   if (res == NULL)
3052     res = perm_gen()->space_containing(addr);
3053   return res;
3054 }
3055 
3056 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
3057   Space* sp = space_containing(addr);
3058   if (sp != NULL) {
3059     return sp->block_start(addr);
3060   }
3061   return NULL;
3062 }
3063 
3064 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3065   Space* sp = space_containing(addr);
3066   assert(sp != NULL, "block_size of address outside of heap");
3067   return sp->block_size(addr);
3068 }
3069 
3070 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3071   Space* sp = space_containing(addr);
3072   return sp->block_is_obj(addr);
3073 }
3074 
3075 bool G1CollectedHeap::supports_tlab_allocation() const {
3076   return true;
3077 }
3078 
3079 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3080   return HeapRegion::GrainBytes;
3081 }
3082 
3083 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3084   // Return the remaining space in the cur alloc region, but not less than
3085   // the min TLAB size.
3086 
3087   // Also, this value can be at most the humongous object threshold,
3088   // since we can't allow tlabs to grow big enough to accommodate
3089   // humongous objects.
3090 
3091   HeapRegion* hr = _mutator_alloc_region.get();
3092   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3093   if (hr == NULL) {
3094     return max_tlab_size;
3095   } else {
3096     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3097   }
3098 }
3099 
3100 size_t G1CollectedHeap::max_capacity() const {
3101   return _g1_reserved.byte_size();
3102 }
3103 
3104 jlong G1CollectedHeap::millis_since_last_gc() {
3105   // assert(false, "NYI");
3106   return 0;
3107 }
3108 
3109 void G1CollectedHeap::prepare_for_verify() {
3110   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3111     ensure_parsability(false);
3112   }
3113   g1_rem_set()->prepare_for_verify();
3114 }
3115 
3116 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3117                                               VerifyOption vo) {
3118   switch (vo) {
3119   case VerifyOption_G1UsePrevMarking:
3120     return hr->obj_allocated_since_prev_marking(obj);
3121   case VerifyOption_G1UseNextMarking:
3122     return hr->obj_allocated_since_next_marking(obj);
3123   case VerifyOption_G1UseMarkWord:
3124     return false;
3125   default:
3126     ShouldNotReachHere();
3127   }
3128   return false; // keep some compilers happy
3129 }
3130 
3131 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3132   switch (vo) {
3133   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3134   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3135   case VerifyOption_G1UseMarkWord:    return NULL;
3136   default:                            ShouldNotReachHere();
3137   }
3138   return NULL; // keep some compilers happy
3139 }
3140 
3141 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3142   switch (vo) {
3143   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3144   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3145   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3146   default:                            ShouldNotReachHere();
3147   }
3148   return false; // keep some compilers happy
3149 }
3150 
3151 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3152   switch (vo) {
3153   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3154   case VerifyOption_G1UseNextMarking: return "NTAMS";
3155   case VerifyOption_G1UseMarkWord:    return "NONE";
3156   default:                            ShouldNotReachHere();
3157   }
3158   return NULL; // keep some compilers happy
3159 }
3160 
3161 class VerifyLivenessOopClosure: public OopClosure {
3162   G1CollectedHeap* _g1h;
3163   VerifyOption _vo;
3164 public:
3165   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3166     _g1h(g1h), _vo(vo)
3167   { }
3168   void do_oop(narrowOop *p) { do_oop_work(p); }
3169   void do_oop(      oop *p) { do_oop_work(p); }
3170 
3171   template <class T> void do_oop_work(T *p) {
3172     oop obj = oopDesc::load_decode_heap_oop(p);
3173     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3174               "Dead object referenced by a not dead object");
3175   }
3176 };
3177 
3178 class VerifyObjsInRegionClosure: public ObjectClosure {
3179 private:
3180   G1CollectedHeap* _g1h;
3181   size_t _live_bytes;
3182   HeapRegion *_hr;
3183   VerifyOption _vo;
3184 public:
3185   // _vo == UsePrevMarking -> use "prev" marking information,
3186   // _vo == UseNextMarking -> use "next" marking information,
3187   // _vo == UseMarkWord    -> use mark word from object header.
3188   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3189     : _live_bytes(0), _hr(hr), _vo(vo) {
3190     _g1h = G1CollectedHeap::heap();
3191   }
3192   void do_object(oop o) {
3193     VerifyLivenessOopClosure isLive(_g1h, _vo);
3194     assert(o != NULL, "Huh?");
3195     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3196       // If the object is alive according to the mark word,
3197       // then verify that the marking information agrees.
3198       // Note we can't verify the contra-positive of the
3199       // above: if the object is dead (according to the mark
3200       // word), it may not be marked, or may have been marked
3201       // but has since became dead, or may have been allocated
3202       // since the last marking.
3203       if (_vo == VerifyOption_G1UseMarkWord) {
3204         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3205       }
3206 
3207       o->oop_iterate(&isLive);
3208       if (!_hr->obj_allocated_since_prev_marking(o)) {
3209         size_t obj_size = o->size();    // Make sure we don't overflow
3210         _live_bytes += (obj_size * HeapWordSize);
3211       }
3212     }
3213   }
3214   size_t live_bytes() { return _live_bytes; }
3215 };
3216 
3217 class PrintObjsInRegionClosure : public ObjectClosure {
3218   HeapRegion *_hr;
3219   G1CollectedHeap *_g1;
3220 public:
3221   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3222     _g1 = G1CollectedHeap::heap();
3223   };
3224 
3225   void do_object(oop o) {
3226     if (o != NULL) {
3227       HeapWord *start = (HeapWord *) o;
3228       size_t word_sz = o->size();
3229       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3230                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3231                           (void*) o, word_sz,
3232                           _g1->isMarkedPrev(o),
3233                           _g1->isMarkedNext(o),
3234                           _hr->obj_allocated_since_prev_marking(o));
3235       HeapWord *end = start + word_sz;
3236       HeapWord *cur;
3237       int *val;
3238       for (cur = start; cur < end; cur++) {
3239         val = (int *) cur;
3240         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3241       }
3242     }
3243   }
3244 };
3245 
3246 class VerifyRegionClosure: public HeapRegionClosure {
3247 private:
3248   bool             _par;
3249   VerifyOption     _vo;
3250   bool             _failures;
3251 public:
3252   // _vo == UsePrevMarking -> use "prev" marking information,
3253   // _vo == UseNextMarking -> use "next" marking information,
3254   // _vo == UseMarkWord    -> use mark word from object header.
3255   VerifyRegionClosure(bool par, VerifyOption vo)
3256     : _par(par),
3257       _vo(vo),
3258       _failures(false) {}
3259 
3260   bool failures() {
3261     return _failures;
3262   }
3263 
3264   bool doHeapRegion(HeapRegion* r) {
3265     if (!r->continuesHumongous()) {
3266       bool failures = false;
3267       r->verify(_vo, &failures);
3268       if (failures) {
3269         _failures = true;
3270       } else {
3271         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3272         r->object_iterate(&not_dead_yet_cl);
3273         if (_vo != VerifyOption_G1UseNextMarking) {
3274           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3275             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3276                                    "max_live_bytes "SIZE_FORMAT" "
3277                                    "< calculated "SIZE_FORMAT,
3278                                    r->bottom(), r->end(),
3279                                    r->max_live_bytes(),
3280                                  not_dead_yet_cl.live_bytes());
3281             _failures = true;
3282           }
3283         } else {
3284           // When vo == UseNextMarking we cannot currently do a sanity
3285           // check on the live bytes as the calculation has not been
3286           // finalized yet.
3287         }
3288       }
3289     }
3290     return false; // stop the region iteration if we hit a failure
3291   }
3292 };
3293 
3294 class VerifyRootsClosure: public OopsInGenClosure {
3295 private:
3296   G1CollectedHeap* _g1h;
3297   VerifyOption     _vo;
3298   bool             _failures;
3299 public:
3300   // _vo == UsePrevMarking -> use "prev" marking information,
3301   // _vo == UseNextMarking -> use "next" marking information,
3302   // _vo == UseMarkWord    -> use mark word from object header.
3303   VerifyRootsClosure(VerifyOption vo) :
3304     _g1h(G1CollectedHeap::heap()),
3305     _vo(vo),
3306     _failures(false) { }
3307 
3308   bool failures() { return _failures; }
3309 
3310   template <class T> void do_oop_nv(T* p) {
3311     T heap_oop = oopDesc::load_heap_oop(p);
3312     if (!oopDesc::is_null(heap_oop)) {
3313       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3314       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3315         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3316                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3317         if (_vo == VerifyOption_G1UseMarkWord) {
3318           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3319         }
3320         obj->print_on(gclog_or_tty);
3321         _failures = true;
3322       }
3323     }
3324   }
3325 
3326   void do_oop(oop* p)       { do_oop_nv(p); }
3327   void do_oop(narrowOop* p) { do_oop_nv(p); }
3328 };
3329 
3330 // This is the task used for parallel heap verification.
3331 
3332 class G1ParVerifyTask: public AbstractGangTask {
3333 private:
3334   G1CollectedHeap* _g1h;
3335   VerifyOption     _vo;
3336   bool             _failures;
3337 
3338 public:
3339   // _vo == UsePrevMarking -> use "prev" marking information,
3340   // _vo == UseNextMarking -> use "next" marking information,
3341   // _vo == UseMarkWord    -> use mark word from object header.
3342   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3343     AbstractGangTask("Parallel verify task"),
3344     _g1h(g1h),
3345     _vo(vo),
3346     _failures(false) { }
3347 
3348   bool failures() {
3349     return _failures;
3350   }
3351 
3352   void work(uint worker_id) {
3353     HandleMark hm;
3354     VerifyRegionClosure blk(true, _vo);
3355     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3356                                           _g1h->workers()->active_workers(),
3357                                           HeapRegion::ParVerifyClaimValue);
3358     if (blk.failures()) {
3359       _failures = true;
3360     }
3361   }
3362 };
3363 
3364 void G1CollectedHeap::verify(bool silent) {
3365   verify(silent, VerifyOption_G1UsePrevMarking);
3366 }
3367 
3368 void G1CollectedHeap::verify(bool silent,
3369                              VerifyOption vo) {
3370   if (SafepointSynchronize::is_at_safepoint()) {
3371     if (!silent) { gclog_or_tty->print("Roots (excluding permgen) "); }
3372     VerifyRootsClosure rootsCl(vo);
3373 
3374     assert(Thread::current()->is_VM_thread(),
3375            "Expected to be executed serially by the VM thread at this point");
3376 
3377     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3378 
3379     // We apply the relevant closures to all the oops in the
3380     // system dictionary, the string table and the code cache.
3381     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3382 
3383     process_strong_roots(true,      // activate StrongRootsScope
3384                          true,      // we set "collecting perm gen" to true,
3385                                     // so we don't reset the dirty cards in the perm gen.
3386                          ScanningOption(so),  // roots scanning options
3387                          &rootsCl,
3388                          &blobsCl,
3389                          &rootsCl);
3390 
3391     // If we're verifying after the marking phase of a Full GC then we can't
3392     // treat the perm gen as roots into the G1 heap. Some of the objects in
3393     // the perm gen may be dead and hence not marked. If one of these dead
3394     // objects is considered to be a root then we may end up with a false
3395     // "Root location <x> points to dead ob <y>" failure.
3396     if (vo != VerifyOption_G1UseMarkWord) {
3397       // Since we used "collecting_perm_gen" == true above, we will not have
3398       // checked the refs from perm into the G1-collected heap. We check those
3399       // references explicitly below. Whether the relevant cards are dirty
3400       // is checked further below in the rem set verification.
3401       if (!silent) { gclog_or_tty->print("Permgen roots "); }
3402       perm_gen()->oop_iterate(&rootsCl);
3403     }
3404     bool failures = rootsCl.failures();
3405 
3406     if (vo != VerifyOption_G1UseMarkWord) {
3407       // If we're verifying during a full GC then the region sets
3408       // will have been torn down at the start of the GC. Therefore
3409       // verifying the region sets will fail. So we only verify
3410       // the region sets when not in a full GC.
3411       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3412       verify_region_sets();
3413     }
3414 
3415     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3416     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3417       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3418              "sanity check");
3419 
3420       G1ParVerifyTask task(this, vo);
3421       assert(UseDynamicNumberOfGCThreads ||
3422         workers()->active_workers() == workers()->total_workers(),
3423         "If not dynamic should be using all the workers");
3424       int n_workers = workers()->active_workers();
3425       set_par_threads(n_workers);
3426       workers()->run_task(&task);
3427       set_par_threads(0);
3428       if (task.failures()) {
3429         failures = true;
3430       }
3431 
3432       // Checks that the expected amount of parallel work was done.
3433       // The implication is that n_workers is > 0.
3434       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3435              "sanity check");
3436 
3437       reset_heap_region_claim_values();
3438 
3439       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3440              "sanity check");
3441     } else {
3442       VerifyRegionClosure blk(false, vo);
3443       heap_region_iterate(&blk);
3444       if (blk.failures()) {
3445         failures = true;
3446       }
3447     }
3448     if (!silent) gclog_or_tty->print("RemSet ");
3449     rem_set()->verify();
3450 
3451     if (failures) {
3452       gclog_or_tty->print_cr("Heap:");
3453       // It helps to have the per-region information in the output to
3454       // help us track down what went wrong. This is why we call
3455       // print_extended_on() instead of print_on().
3456       print_extended_on(gclog_or_tty);
3457       gclog_or_tty->print_cr("");
3458 #ifndef PRODUCT
3459       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3460         concurrent_mark()->print_reachable("at-verification-failure",
3461                                            vo, false /* all */);
3462       }
3463 #endif
3464       gclog_or_tty->flush();
3465     }
3466     guarantee(!failures, "there should not have been any failures");
3467   } else {
3468     if (!silent)
3469       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3470   }
3471 }
3472 
3473 class PrintRegionClosure: public HeapRegionClosure {
3474   outputStream* _st;
3475 public:
3476   PrintRegionClosure(outputStream* st) : _st(st) {}
3477   bool doHeapRegion(HeapRegion* r) {
3478     r->print_on(_st);
3479     return false;
3480   }
3481 };
3482 
3483 void G1CollectedHeap::print_on(outputStream* st) const {
3484   st->print(" %-20s", "garbage-first heap");
3485   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3486             capacity()/K, used_unlocked()/K);
3487   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3488             _g1_storage.low_boundary(),
3489             _g1_storage.high(),
3490             _g1_storage.high_boundary());
3491   st->cr();
3492   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3493   uint young_regions = _young_list->length();
3494   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3495             (size_t) young_regions * HeapRegion::GrainBytes / K);
3496   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3497   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3498             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3499   st->cr();
3500   perm()->as_gen()->print_on(st);
3501 }
3502 
3503 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3504   print_on(st);
3505 
3506   // Print the per-region information.
3507   st->cr();
3508   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3509                "HS=humongous(starts), HC=humongous(continues), "
3510                "CS=collection set, F=free, TS=gc time stamp, "
3511                "PTAMS=previous top-at-mark-start, "
3512                "NTAMS=next top-at-mark-start)");
3513   PrintRegionClosure blk(st);
3514   heap_region_iterate(&blk);
3515 }
3516 
3517 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3518   if (G1CollectedHeap::use_parallel_gc_threads()) {
3519     workers()->print_worker_threads_on(st);
3520   }
3521   _cmThread->print_on(st);
3522   st->cr();
3523   _cm->print_worker_threads_on(st);
3524   _cg1r->print_worker_threads_on(st);
3525   st->cr();
3526 }
3527 
3528 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3529   if (G1CollectedHeap::use_parallel_gc_threads()) {
3530     workers()->threads_do(tc);
3531   }
3532   tc->do_thread(_cmThread);
3533   _cg1r->threads_do(tc);
3534 }
3535 
3536 void G1CollectedHeap::print_tracing_info() const {
3537   // We'll overload this to mean "trace GC pause statistics."
3538   if (TraceGen0Time || TraceGen1Time) {
3539     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3540     // to that.
3541     g1_policy()->print_tracing_info();
3542   }
3543   if (G1SummarizeRSetStats) {
3544     g1_rem_set()->print_summary_info();
3545   }
3546   if (G1SummarizeConcMark) {
3547     concurrent_mark()->print_summary_info();
3548   }
3549   g1_policy()->print_yg_surv_rate_info();
3550   SpecializationStats::print();
3551 }
3552 
3553 #ifndef PRODUCT
3554 // Helpful for debugging RSet issues.
3555 
3556 class PrintRSetsClosure : public HeapRegionClosure {
3557 private:
3558   const char* _msg;
3559   size_t _occupied_sum;
3560 
3561 public:
3562   bool doHeapRegion(HeapRegion* r) {
3563     HeapRegionRemSet* hrrs = r->rem_set();
3564     size_t occupied = hrrs->occupied();
3565     _occupied_sum += occupied;
3566 
3567     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3568                            HR_FORMAT_PARAMS(r));
3569     if (occupied == 0) {
3570       gclog_or_tty->print_cr("  RSet is empty");
3571     } else {
3572       hrrs->print();
3573     }
3574     gclog_or_tty->print_cr("----------");
3575     return false;
3576   }
3577 
3578   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3579     gclog_or_tty->cr();
3580     gclog_or_tty->print_cr("========================================");
3581     gclog_or_tty->print_cr(msg);
3582     gclog_or_tty->cr();
3583   }
3584 
3585   ~PrintRSetsClosure() {
3586     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3587     gclog_or_tty->print_cr("========================================");
3588     gclog_or_tty->cr();
3589   }
3590 };
3591 
3592 void G1CollectedHeap::print_cset_rsets() {
3593   PrintRSetsClosure cl("Printing CSet RSets");
3594   collection_set_iterate(&cl);
3595 }
3596 
3597 void G1CollectedHeap::print_all_rsets() {
3598   PrintRSetsClosure cl("Printing All RSets");;
3599   heap_region_iterate(&cl);
3600 }
3601 #endif // PRODUCT
3602 
3603 G1CollectedHeap* G1CollectedHeap::heap() {
3604   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3605          "not a garbage-first heap");
3606   return _g1h;
3607 }
3608 
3609 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3610   // always_do_update_barrier = false;
3611   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3612   // Call allocation profiler
3613   AllocationProfiler::iterate_since_last_gc();
3614   // Fill TLAB's and such
3615   ensure_parsability(true);
3616 }
3617 
3618 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3619   // FIXME: what is this about?
3620   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3621   // is set.
3622   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3623                         "derived pointer present"));
3624   // always_do_update_barrier = true;
3625 
3626   // We have just completed a GC. Update the soft reference
3627   // policy with the new heap occupancy
3628   Universe::update_heap_info_at_gc();
3629 }
3630 
3631 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3632                                                unsigned int gc_count_before,
3633                                                bool* succeeded) {
3634   assert_heap_not_locked_and_not_at_safepoint();
3635   g1_policy()->record_stop_world_start();
3636   VM_G1IncCollectionPause op(gc_count_before,
3637                              word_size,
3638                              false, /* should_initiate_conc_mark */
3639                              g1_policy()->max_pause_time_ms(),
3640                              GCCause::_g1_inc_collection_pause);
3641   VMThread::execute(&op);
3642 
3643   HeapWord* result = op.result();
3644   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3645   assert(result == NULL || ret_succeeded,
3646          "the result should be NULL if the VM did not succeed");
3647   *succeeded = ret_succeeded;
3648 
3649   assert_heap_not_locked();
3650   return result;
3651 }
3652 
3653 void
3654 G1CollectedHeap::doConcurrentMark() {
3655   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3656   if (!_cmThread->in_progress()) {
3657     _cmThread->set_started();
3658     CGC_lock->notify();
3659   }
3660 }
3661 
3662 size_t G1CollectedHeap::pending_card_num() {
3663   size_t extra_cards = 0;
3664   JavaThread *curr = Threads::first();
3665   while (curr != NULL) {
3666     DirtyCardQueue& dcq = curr->dirty_card_queue();
3667     extra_cards += dcq.size();
3668     curr = curr->next();
3669   }
3670   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3671   size_t buffer_size = dcqs.buffer_size();
3672   size_t buffer_num = dcqs.completed_buffers_num();
3673 
3674   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3675   // in bytes - not the number of 'entries'. We need to convert
3676   // into a number of cards.
3677   return (buffer_size * buffer_num + extra_cards) / oopSize;
3678 }
3679 
3680 size_t G1CollectedHeap::cards_scanned() {
3681   return g1_rem_set()->cardsScanned();
3682 }
3683 
3684 void
3685 G1CollectedHeap::setup_surviving_young_words() {
3686   assert(_surviving_young_words == NULL, "pre-condition");
3687   uint array_length = g1_policy()->young_cset_region_length();
3688   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3689   if (_surviving_young_words == NULL) {
3690     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3691                           "Not enough space for young surv words summary.");
3692   }
3693   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3694 #ifdef ASSERT
3695   for (uint i = 0;  i < array_length; ++i) {
3696     assert( _surviving_young_words[i] == 0, "memset above" );
3697   }
3698 #endif // !ASSERT
3699 }
3700 
3701 void
3702 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3703   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3704   uint array_length = g1_policy()->young_cset_region_length();
3705   for (uint i = 0; i < array_length; ++i) {
3706     _surviving_young_words[i] += surv_young_words[i];
3707   }
3708 }
3709 
3710 void
3711 G1CollectedHeap::cleanup_surviving_young_words() {
3712   guarantee( _surviving_young_words != NULL, "pre-condition" );
3713   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3714   _surviving_young_words = NULL;
3715 }
3716 
3717 #ifdef ASSERT
3718 class VerifyCSetClosure: public HeapRegionClosure {
3719 public:
3720   bool doHeapRegion(HeapRegion* hr) {
3721     // Here we check that the CSet region's RSet is ready for parallel
3722     // iteration. The fields that we'll verify are only manipulated
3723     // when the region is part of a CSet and is collected. Afterwards,
3724     // we reset these fields when we clear the region's RSet (when the
3725     // region is freed) so they are ready when the region is
3726     // re-allocated. The only exception to this is if there's an
3727     // evacuation failure and instead of freeing the region we leave
3728     // it in the heap. In that case, we reset these fields during
3729     // evacuation failure handling.
3730     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3731 
3732     // Here's a good place to add any other checks we'd like to
3733     // perform on CSet regions.
3734     return false;
3735   }
3736 };
3737 #endif // ASSERT
3738 
3739 #if TASKQUEUE_STATS
3740 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3741   st->print_raw_cr("GC Task Stats");
3742   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3743   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3744 }
3745 
3746 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3747   print_taskqueue_stats_hdr(st);
3748 
3749   TaskQueueStats totals;
3750   const int n = workers() != NULL ? workers()->total_workers() : 1;
3751   for (int i = 0; i < n; ++i) {
3752     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3753     totals += task_queue(i)->stats;
3754   }
3755   st->print_raw("tot "); totals.print(st); st->cr();
3756 
3757   DEBUG_ONLY(totals.verify());
3758 }
3759 
3760 void G1CollectedHeap::reset_taskqueue_stats() {
3761   const int n = workers() != NULL ? workers()->total_workers() : 1;
3762   for (int i = 0; i < n; ++i) {
3763     task_queue(i)->stats.reset();
3764   }
3765 }
3766 #endif // TASKQUEUE_STATS
3767 
3768 void G1CollectedHeap::log_gc_header() {
3769   if (!G1Log::fine()) {
3770     return;
3771   }
3772 
3773   gclog_or_tty->date_stamp(PrintGCDateStamps);
3774   gclog_or_tty->stamp(PrintGCTimeStamps);
3775 
3776   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3777     .append(g1_policy()->gcs_are_young() ? " (young)" : " (mixed)")
3778     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3779 
3780   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3781 }
3782 
3783 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3784   if (!G1Log::fine()) {
3785     return;
3786   }
3787 
3788   if (G1Log::finer()) {
3789     if (evacuation_failed()) {
3790       gclog_or_tty->print(" (to-space exhausted)");
3791     }
3792     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3793     g1_policy()->phase_times()->note_gc_end();
3794     g1_policy()->phase_times()->print(pause_time_sec);
3795     g1_policy()->print_detailed_heap_transition();
3796   } else {
3797     if (evacuation_failed()) {
3798       gclog_or_tty->print("--");
3799     }
3800     g1_policy()->print_heap_transition();
3801     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3802   }
3803   gclog_or_tty->flush();
3804 }
3805 
3806 bool
3807 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3808   assert_at_safepoint(true /* should_be_vm_thread */);
3809   guarantee(!is_gc_active(), "collection is not reentrant");
3810 
3811   if (GC_locker::check_active_before_gc()) {
3812     return false;
3813   }
3814 
3815   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3816 
3817   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3818 
3819   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3820   ResourceMark rm;
3821 
3822   print_heap_before_gc();
3823   trace_heap_before_gc(_gc_tracer_stw);
3824 
3825   HRSPhaseSetter x(HRSPhaseEvacuation);
3826   verify_region_sets_optional();
3827   verify_dirty_young_regions();
3828 
3829   // This call will decide whether this pause is an initial-mark
3830   // pause. If it is, during_initial_mark_pause() will return true
3831   // for the duration of this pause.
3832   g1_policy()->decide_on_conc_mark_initiation();
3833 
3834   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3835   assert(!g1_policy()->during_initial_mark_pause() ||
3836           g1_policy()->gcs_are_young(), "sanity");
3837 
3838   // We also do not allow mixed GCs during marking.
3839   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3840 
3841   // Record whether this pause is an initial mark. When the current
3842   // thread has completed its logging output and it's safe to signal
3843   // the CM thread, the flag's value in the policy has been reset.
3844   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3845 
3846   // Inner scope for scope based logging, timers, and stats collection
3847   {
3848     EvacuationInfo evacuation_info;
3849 
3850     if (g1_policy()->during_initial_mark_pause()) {
3851       // We are about to start a marking cycle, so we increment the
3852       // full collection counter.
3853       increment_old_marking_cycles_started();
3854       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3855     }
3856 
3857     _gc_tracer_stw->report_yc_type(yc_type());
3858 
3859     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3860 
3861     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3862                                 workers()->active_workers() : 1);
3863     double pause_start_sec = os::elapsedTime();
3864     g1_policy()->phase_times()->note_gc_start(active_workers);
3865     log_gc_header();
3866 
3867     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3868     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3869 
3870     // If the secondary_free_list is not empty, append it to the
3871     // free_list. No need to wait for the cleanup operation to finish;
3872     // the region allocation code will check the secondary_free_list
3873     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3874     // set, skip this step so that the region allocation code has to
3875     // get entries from the secondary_free_list.
3876     if (!G1StressConcRegionFreeing) {
3877       append_secondary_free_list_if_not_empty_with_lock();
3878     }
3879 
3880     assert(check_young_list_well_formed(),
3881       "young list should be well formed");
3882 
3883     // Don't dynamically change the number of GC threads this early.  A value of
3884     // 0 is used to indicate serial work.  When parallel work is done,
3885     // it will be set.
3886 
3887     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3888       IsGCActiveMark x;
3889 
3890       gc_prologue(false);
3891       increment_total_collections(false /* full gc */);
3892       increment_gc_time_stamp();
3893 
3894       verify_before_gc();
3895 
3896       COMPILER2_PRESENT(DerivedPointerTable::clear());
3897 
3898       // Please see comment in g1CollectedHeap.hpp and
3899       // G1CollectedHeap::ref_processing_init() to see how
3900       // reference processing currently works in G1.
3901 
3902       // Enable discovery in the STW reference processor
3903       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3904                                             true /*verify_no_refs*/);
3905 
3906       {
3907         // We want to temporarily turn off discovery by the
3908         // CM ref processor, if necessary, and turn it back on
3909         // on again later if we do. Using a scoped
3910         // NoRefDiscovery object will do this.
3911         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3912 
3913         // Forget the current alloc region (we might even choose it to be part
3914         // of the collection set!).
3915         release_mutator_alloc_region();
3916 
3917         // We should call this after we retire the mutator alloc
3918         // region(s) so that all the ALLOC / RETIRE events are generated
3919         // before the start GC event.
3920         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3921 
3922         // This timing is only used by the ergonomics to handle our pause target.
3923         // It is unclear why this should not include the full pause. We will
3924         // investigate this in CR 7178365.
3925         //
3926         // Preserving the old comment here if that helps the investigation:
3927         //
3928         // The elapsed time induced by the start time below deliberately elides
3929         // the possible verification above.
3930         double sample_start_time_sec = os::elapsedTime();
3931 
3932 #if YOUNG_LIST_VERBOSE
3933         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3934         _young_list->print();
3935         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3936 #endif // YOUNG_LIST_VERBOSE
3937 
3938         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3939 
3940         double scan_wait_start = os::elapsedTime();
3941         // We have to wait until the CM threads finish scanning the
3942         // root regions as it's the only way to ensure that all the
3943         // objects on them have been correctly scanned before we start
3944         // moving them during the GC.
3945         bool waited = _cm->root_regions()->wait_until_scan_finished();
3946         double wait_time_ms = 0.0;
3947         if (waited) {
3948           double scan_wait_end = os::elapsedTime();
3949           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3950         }
3951         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3952 
3953 #if YOUNG_LIST_VERBOSE
3954         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3955         _young_list->print();
3956 #endif // YOUNG_LIST_VERBOSE
3957 
3958         if (g1_policy()->during_initial_mark_pause()) {
3959           concurrent_mark()->checkpointRootsInitialPre();
3960         }
3961         perm_gen()->save_marks();
3962 
3963 #if YOUNG_LIST_VERBOSE
3964         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3965         _young_list->print();
3966         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3967 #endif // YOUNG_LIST_VERBOSE
3968 
3969         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3970 
3971         _cm->note_start_of_gc();
3972         // We should not verify the per-thread SATB buffers given that
3973         // we have not filtered them yet (we'll do so during the
3974         // GC). We also call this after finalize_cset() to
3975         // ensure that the CSet has been finalized.
3976         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3977                                  true  /* verify_enqueued_buffers */,
3978                                  false /* verify_thread_buffers */,
3979                                  true  /* verify_fingers */);
3980 
3981         if (_hr_printer.is_active()) {
3982           HeapRegion* hr = g1_policy()->collection_set();
3983           while (hr != NULL) {
3984             G1HRPrinter::RegionType type;
3985             if (!hr->is_young()) {
3986               type = G1HRPrinter::Old;
3987             } else if (hr->is_survivor()) {
3988               type = G1HRPrinter::Survivor;
3989             } else {
3990               type = G1HRPrinter::Eden;
3991             }
3992             _hr_printer.cset(hr);
3993             hr = hr->next_in_collection_set();
3994           }
3995         }
3996 
3997 #ifdef ASSERT
3998         VerifyCSetClosure cl;
3999         collection_set_iterate(&cl);
4000 #endif // ASSERT
4001 
4002         setup_surviving_young_words();
4003 
4004         // Initialize the GC alloc regions.
4005         init_gc_alloc_regions(evacuation_info);
4006 
4007         // Actually do the work...
4008         evacuate_collection_set(evacuation_info);
4009 
4010         // We do this to mainly verify the per-thread SATB buffers
4011         // (which have been filtered by now) since we didn't verify
4012         // them earlier. No point in re-checking the stacks / enqueued
4013         // buffers given that the CSet has not changed since last time
4014         // we checked.
4015         _cm->verify_no_cset_oops(false /* verify_stacks */,
4016                                  false /* verify_enqueued_buffers */,
4017                                  true  /* verify_thread_buffers */,
4018                                  true  /* verify_fingers */);
4019 
4020         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4021         g1_policy()->clear_collection_set();
4022 
4023         cleanup_surviving_young_words();
4024 
4025         // Start a new incremental collection set for the next pause.
4026         g1_policy()->start_incremental_cset_building();
4027 
4028         // Clear the _cset_fast_test bitmap in anticipation of adding
4029         // regions to the incremental collection set for the next
4030         // evacuation pause.
4031         clear_cset_fast_test();
4032 
4033         _young_list->reset_sampled_info();
4034 
4035         // Don't check the whole heap at this point as the
4036         // GC alloc regions from this pause have been tagged
4037         // as survivors and moved on to the survivor list.
4038         // Survivor regions will fail the !is_young() check.
4039         assert(check_young_list_empty(false /* check_heap */),
4040           "young list should be empty");
4041 
4042 #if YOUNG_LIST_VERBOSE
4043         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4044         _young_list->print();
4045 #endif // YOUNG_LIST_VERBOSE
4046 
4047         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4048                                              _young_list->first_survivor_region(),
4049                                              _young_list->last_survivor_region());
4050 
4051         _young_list->reset_auxilary_lists();
4052 
4053         if (evacuation_failed()) {
4054           _summary_bytes_used = recalculate_used();
4055           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4056           for (uint i = 0; i < n_queues; i++) {
4057             if (_evacuation_failed_info_array[i].has_failed()) {
4058               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4059             }
4060           }
4061         } else {
4062           // The "used" of the the collection set have already been subtracted
4063           // when they were freed.  Add in the bytes evacuated.
4064           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4065         }
4066 
4067         if (g1_policy()->during_initial_mark_pause()) {
4068           // We have to do this before we notify the CM threads that
4069           // they can start working to make sure that all the
4070           // appropriate initialization is done on the CM object.
4071           concurrent_mark()->checkpointRootsInitialPost();
4072           set_marking_started();
4073           // Note that we don't actually trigger the CM thread at
4074           // this point. We do that later when we're sure that
4075           // the current thread has completed its logging output.
4076         }
4077 
4078         allocate_dummy_regions();
4079 
4080 #if YOUNG_LIST_VERBOSE
4081         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4082         _young_list->print();
4083         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4084 #endif // YOUNG_LIST_VERBOSE
4085 
4086         init_mutator_alloc_region();
4087 
4088         {
4089           size_t expand_bytes = g1_policy()->expansion_amount();
4090           if (expand_bytes > 0) {
4091             size_t bytes_before = capacity();
4092             // No need for an ergo verbose message here,
4093             // expansion_amount() does this when it returns a value > 0.
4094             if (!expand(expand_bytes)) {
4095               // We failed to expand the heap so let's verify that
4096               // committed/uncommitted amount match the backing store
4097               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4098               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4099             }
4100           }
4101         }
4102 
4103         // We redo the verification but now wrt to the new CSet which
4104         // has just got initialized after the previous CSet was freed.
4105         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4106                                  true  /* verify_enqueued_buffers */,
4107                                  true  /* verify_thread_buffers */,
4108                                  true  /* verify_fingers */);
4109         _cm->note_end_of_gc();
4110 
4111         // This timing is only used by the ergonomics to handle our pause target.
4112         // It is unclear why this should not include the full pause. We will
4113         // investigate this in CR 7178365.
4114         double sample_end_time_sec = os::elapsedTime();
4115         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4116         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4117 
4118         MemoryService::track_memory_usage();
4119 
4120         // In prepare_for_verify() below we'll need to scan the deferred
4121         // update buffers to bring the RSets up-to-date if
4122         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4123         // the update buffers we'll probably need to scan cards on the
4124         // regions we just allocated to (i.e., the GC alloc
4125         // regions). However, during the last GC we called
4126         // set_saved_mark() on all the GC alloc regions, so card
4127         // scanning might skip the [saved_mark_word()...top()] area of
4128         // those regions (i.e., the area we allocated objects into
4129         // during the last GC). But it shouldn't. Given that
4130         // saved_mark_word() is conditional on whether the GC time stamp
4131         // on the region is current or not, by incrementing the GC time
4132         // stamp here we invalidate all the GC time stamps on all the
4133         // regions and saved_mark_word() will simply return top() for
4134         // all the regions. This is a nicer way of ensuring this rather
4135         // than iterating over the regions and fixing them. In fact, the
4136         // GC time stamp increment here also ensures that
4137         // saved_mark_word() will return top() between pauses, i.e.,
4138         // during concurrent refinement. So we don't need the
4139         // is_gc_active() check to decided which top to use when
4140         // scanning cards (see CR 7039627).
4141         increment_gc_time_stamp();
4142 
4143         verify_after_gc();
4144 
4145         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4146         ref_processor_stw()->verify_no_references_recorded();
4147 
4148         // CM reference discovery will be re-enabled if necessary.
4149       }
4150 
4151       // We should do this after we potentially expand the heap so
4152       // that all the COMMIT events are generated before the end GC
4153       // event, and after we retire the GC alloc regions so that all
4154       // RETIRE events are generated before the end GC event.
4155       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4156 
4157       if (mark_in_progress()) {
4158         concurrent_mark()->update_g1_committed();
4159       }
4160 
4161 #ifdef TRACESPINNING
4162       ParallelTaskTerminator::print_termination_counts();
4163 #endif
4164 
4165       gc_epilogue(false);
4166     }
4167 
4168     // Print the remainder of the GC log output.
4169     log_gc_footer(os::elapsedTime() - pause_start_sec);
4170 
4171     // It is not yet to safe to tell the concurrent mark to
4172     // start as we have some optional output below. We don't want the
4173     // output from the concurrent mark thread interfering with this
4174     // logging output either.
4175 
4176     _hrs.verify_optional();
4177     verify_region_sets_optional();
4178 
4179     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4180     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4181 
4182     print_heap_after_gc();
4183     trace_heap_after_gc(_gc_tracer_stw);
4184 
4185     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4186     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4187     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4188     // before any GC notifications are raised.
4189     g1mm()->update_sizes();
4190 
4191     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4192     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4193     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4194     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4195   }
4196 
4197   if (G1SummarizeRSetStats &&
4198       (G1SummarizeRSetStatsPeriod > 0) &&
4199       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4200     g1_rem_set()->print_summary_info();
4201   }
4202   // It should now be safe to tell the concurrent mark thread to start
4203   // without its logging output interfering with the logging output
4204   // that came from the pause.
4205 
4206   if (should_start_conc_mark) {
4207     // CAUTION: after the doConcurrentMark() call below,
4208     // the concurrent marking thread(s) could be running
4209     // concurrently with us. Make sure that anything after
4210     // this point does not assume that we are the only GC thread
4211     // running. Note: of course, the actual marking work will
4212     // not start until the safepoint itself is released in
4213     // ConcurrentGCThread::safepoint_desynchronize().
4214     doConcurrentMark();
4215   }
4216 
4217   return true;
4218 }
4219 
4220 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4221 {
4222   size_t gclab_word_size;
4223   switch (purpose) {
4224     case GCAllocForSurvived:
4225       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4226       break;
4227     case GCAllocForTenured:
4228       gclab_word_size = _old_plab_stats.desired_plab_sz();
4229       break;
4230     default:
4231       assert(false, "unknown GCAllocPurpose");
4232       gclab_word_size = _old_plab_stats.desired_plab_sz();
4233       break;
4234   }
4235 
4236   // Prevent humongous PLAB sizes for two reasons:
4237   // * PLABs are allocated using a similar paths as oops, but should
4238   //   never be in a humongous region
4239   // * Allowing humongous PLABs needlessly churns the region free lists
4240   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4241 }
4242 
4243 void G1CollectedHeap::init_mutator_alloc_region() {
4244   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4245   _mutator_alloc_region.init();
4246 }
4247 
4248 void G1CollectedHeap::release_mutator_alloc_region() {
4249   _mutator_alloc_region.release();
4250   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4251 }
4252 
4253 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4254   assert_at_safepoint(true /* should_be_vm_thread */);
4255 
4256   _survivor_gc_alloc_region.init();
4257   _old_gc_alloc_region.init();
4258   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4259   _retained_old_gc_alloc_region = NULL;
4260 
4261   // We will discard the current GC alloc region if:
4262   // a) it's in the collection set (it can happen!),
4263   // b) it's already full (no point in using it),
4264   // c) it's empty (this means that it was emptied during
4265   // a cleanup and it should be on the free list now), or
4266   // d) it's humongous (this means that it was emptied
4267   // during a cleanup and was added to the free list, but
4268   // has been subsequently used to allocate a humongous
4269   // object that may be less than the region size).
4270   if (retained_region != NULL &&
4271       !retained_region->in_collection_set() &&
4272       !(retained_region->top() == retained_region->end()) &&
4273       !retained_region->is_empty() &&
4274       !retained_region->isHumongous()) {
4275     retained_region->set_saved_mark();
4276     // The retained region was added to the old region set when it was
4277     // retired. We have to remove it now, since we don't allow regions
4278     // we allocate to in the region sets. We'll re-add it later, when
4279     // it's retired again.
4280     _old_set.remove(retained_region);
4281     bool during_im = g1_policy()->during_initial_mark_pause();
4282     retained_region->note_start_of_copying(during_im);
4283     _old_gc_alloc_region.set(retained_region);
4284     _hr_printer.reuse(retained_region);
4285     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4286   }
4287 }
4288 
4289 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4290   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4291                                          _old_gc_alloc_region.count());
4292   _survivor_gc_alloc_region.release();
4293   // If we have an old GC alloc region to release, we'll save it in
4294   // _retained_old_gc_alloc_region. If we don't
4295   // _retained_old_gc_alloc_region will become NULL. This is what we
4296   // want either way so no reason to check explicitly for either
4297   // condition.
4298   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4299 
4300   if (ResizePLAB) {
4301     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4302     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4303   }
4304 }
4305 
4306 void G1CollectedHeap::abandon_gc_alloc_regions() {
4307   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4308   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4309   _retained_old_gc_alloc_region = NULL;
4310 }
4311 
4312 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4313   _drain_in_progress = false;
4314   set_evac_failure_closure(cl);
4315   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4316 }
4317 
4318 void G1CollectedHeap::finalize_for_evac_failure() {
4319   assert(_evac_failure_scan_stack != NULL &&
4320          _evac_failure_scan_stack->length() == 0,
4321          "Postcondition");
4322   assert(!_drain_in_progress, "Postcondition");
4323   delete _evac_failure_scan_stack;
4324   _evac_failure_scan_stack = NULL;
4325 }
4326 
4327 void G1CollectedHeap::remove_self_forwarding_pointers() {
4328   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4329 
4330   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4331 
4332   if (G1CollectedHeap::use_parallel_gc_threads()) {
4333     set_par_threads();
4334     workers()->run_task(&rsfp_task);
4335     set_par_threads(0);
4336   } else {
4337     rsfp_task.work(0);
4338   }
4339 
4340   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4341 
4342   // Reset the claim values in the regions in the collection set.
4343   reset_cset_heap_region_claim_values();
4344 
4345   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4346 
4347   // Now restore saved marks, if any.
4348   assert(_objs_with_preserved_marks.size() ==
4349             _preserved_marks_of_objs.size(), "Both or none.");
4350   while (!_objs_with_preserved_marks.is_empty()) {
4351     oop obj = _objs_with_preserved_marks.pop();
4352     markOop m = _preserved_marks_of_objs.pop();
4353     obj->set_mark(m);
4354   }
4355   _objs_with_preserved_marks.clear(true);
4356   _preserved_marks_of_objs.clear(true);
4357 }
4358 
4359 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4360   _evac_failure_scan_stack->push(obj);
4361 }
4362 
4363 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4364   assert(_evac_failure_scan_stack != NULL, "precondition");
4365 
4366   while (_evac_failure_scan_stack->length() > 0) {
4367      oop obj = _evac_failure_scan_stack->pop();
4368      _evac_failure_closure->set_region(heap_region_containing(obj));
4369      obj->oop_iterate_backwards(_evac_failure_closure);
4370   }
4371 }
4372 
4373 oop
4374 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4375                                                oop old) {
4376   assert(obj_in_cs(old),
4377          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4378                  (HeapWord*) old));
4379   markOop m = old->mark();
4380   oop forward_ptr = old->forward_to_atomic(old);
4381   if (forward_ptr == NULL) {
4382     // Forward-to-self succeeded.
4383     assert(_par_scan_state != NULL, "par scan state");
4384     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4385     uint queue_num = _par_scan_state->queue_num();
4386 
4387     _evacuation_failed = true;
4388     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4389     if (_evac_failure_closure != cl) {
4390       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4391       assert(!_drain_in_progress,
4392              "Should only be true while someone holds the lock.");
4393       // Set the global evac-failure closure to the current thread's.
4394       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4395       set_evac_failure_closure(cl);
4396       // Now do the common part.
4397       handle_evacuation_failure_common(old, m);
4398       // Reset to NULL.
4399       set_evac_failure_closure(NULL);
4400     } else {
4401       // The lock is already held, and this is recursive.
4402       assert(_drain_in_progress, "This should only be the recursive case.");
4403       handle_evacuation_failure_common(old, m);
4404     }
4405     return old;
4406   } else {
4407     // Forward-to-self failed. Either someone else managed to allocate
4408     // space for this object (old != forward_ptr) or they beat us in
4409     // self-forwarding it (old == forward_ptr).
4410     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4411            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4412                    "should not be in the CSet",
4413                    (HeapWord*) old, (HeapWord*) forward_ptr));
4414     return forward_ptr;
4415   }
4416 }
4417 
4418 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4419   preserve_mark_if_necessary(old, m);
4420 
4421   HeapRegion* r = heap_region_containing(old);
4422   if (!r->evacuation_failed()) {
4423     r->set_evacuation_failed(true);
4424     _hr_printer.evac_failure(r);
4425   }
4426 
4427   push_on_evac_failure_scan_stack(old);
4428 
4429   if (!_drain_in_progress) {
4430     // prevent recursion in copy_to_survivor_space()
4431     _drain_in_progress = true;
4432     drain_evac_failure_scan_stack();
4433     _drain_in_progress = false;
4434   }
4435 }
4436 
4437 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4438   assert(evacuation_failed(), "Oversaving!");
4439   // We want to call the "for_promotion_failure" version only in the
4440   // case of a promotion failure.
4441   if (m->must_be_preserved_for_promotion_failure(obj)) {
4442     _objs_with_preserved_marks.push(obj);
4443     _preserved_marks_of_objs.push(m);
4444   }
4445 }
4446 
4447 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4448                                                   size_t word_size) {
4449   if (purpose == GCAllocForSurvived) {
4450     HeapWord* result = survivor_attempt_allocation(word_size);
4451     if (result != NULL) {
4452       return result;
4453     } else {
4454       // Let's try to allocate in the old gen in case we can fit the
4455       // object there.
4456       return old_attempt_allocation(word_size);
4457     }
4458   } else {
4459     assert(purpose ==  GCAllocForTenured, "sanity");
4460     HeapWord* result = old_attempt_allocation(word_size);
4461     if (result != NULL) {
4462       return result;
4463     } else {
4464       // Let's try to allocate in the survivors in case we can fit the
4465       // object there.
4466       return survivor_attempt_allocation(word_size);
4467     }
4468   }
4469 
4470   ShouldNotReachHere();
4471   // Trying to keep some compilers happy.
4472   return NULL;
4473 }
4474 
4475 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4476   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4477 
4478 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4479   : _g1h(g1h),
4480     _refs(g1h->task_queue(queue_num)),
4481     _dcq(&g1h->dirty_card_queue_set()),
4482     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4483     _g1_rem(g1h->g1_rem_set()),
4484     _hash_seed(17), _queue_num(queue_num),
4485     _term_attempts(0),
4486     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4487     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4488     _age_table(false),
4489     _strong_roots_time(0), _term_time(0),
4490     _alloc_buffer_waste(0), _undo_waste(0) {
4491   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4492   // we "sacrifice" entry 0 to keep track of surviving bytes for
4493   // non-young regions (where the age is -1)
4494   // We also add a few elements at the beginning and at the end in
4495   // an attempt to eliminate cache contention
4496   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4497   uint array_length = PADDING_ELEM_NUM +
4498                       real_length +
4499                       PADDING_ELEM_NUM;
4500   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4501   if (_surviving_young_words_base == NULL)
4502     vm_exit_out_of_memory(array_length * sizeof(size_t),
4503                           "Not enough space for young surv histo.");
4504   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4505   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4506 
4507   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4508   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4509 
4510   _start = os::elapsedTime();
4511 }
4512 
4513 void
4514 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4515 {
4516   st->print_raw_cr("GC Termination Stats");
4517   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4518                    " ------waste (KiB)------");
4519   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4520                    "  total   alloc    undo");
4521   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4522                    " ------- ------- -------");
4523 }
4524 
4525 void
4526 G1ParScanThreadState::print_termination_stats(int i,
4527                                               outputStream* const st) const
4528 {
4529   const double elapsed_ms = elapsed_time() * 1000.0;
4530   const double s_roots_ms = strong_roots_time() * 1000.0;
4531   const double term_ms    = term_time() * 1000.0;
4532   st->print_cr("%3d %9.2f %9.2f %6.2f "
4533                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4534                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4535                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4536                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4537                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4538                alloc_buffer_waste() * HeapWordSize / K,
4539                undo_waste() * HeapWordSize / K);
4540 }
4541 
4542 #ifdef ASSERT
4543 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4544   assert(ref != NULL, "invariant");
4545   assert(UseCompressedOops, "sanity");
4546   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4547   oop p = oopDesc::load_decode_heap_oop(ref);
4548   assert(_g1h->is_in_g1_reserved(p),
4549          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4550   return true;
4551 }
4552 
4553 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4554   assert(ref != NULL, "invariant");
4555   if (has_partial_array_mask(ref)) {
4556     // Must be in the collection set--it's already been copied.
4557     oop p = clear_partial_array_mask(ref);
4558     assert(_g1h->obj_in_cs(p),
4559            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4560   } else {
4561     oop p = oopDesc::load_decode_heap_oop(ref);
4562     assert(_g1h->is_in_g1_reserved(p),
4563            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4564   }
4565   return true;
4566 }
4567 
4568 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4569   if (ref.is_narrow()) {
4570     return verify_ref((narrowOop*) ref);
4571   } else {
4572     return verify_ref((oop*) ref);
4573   }
4574 }
4575 #endif // ASSERT
4576 
4577 void G1ParScanThreadState::trim_queue() {
4578   assert(_evac_cl != NULL, "not set");
4579   assert(_evac_failure_cl != NULL, "not set");
4580   assert(_partial_scan_cl != NULL, "not set");
4581 
4582   StarTask ref;
4583   do {
4584     // Drain the overflow stack first, so other threads can steal.
4585     while (refs()->pop_overflow(ref)) {
4586       deal_with_reference(ref);
4587     }
4588 
4589     while (refs()->pop_local(ref)) {
4590       deal_with_reference(ref);
4591     }
4592   } while (!refs()->is_empty());
4593 }
4594 
4595 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4596                                      G1ParScanThreadState* par_scan_state) :
4597   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4598   _par_scan_state(par_scan_state),
4599   _worker_id(par_scan_state->queue_num()),
4600   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4601   _mark_in_progress(_g1->mark_in_progress()) { }
4602 
4603 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4604 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4605 #ifdef ASSERT
4606   HeapRegion* hr = _g1->heap_region_containing(obj);
4607   assert(hr != NULL, "sanity");
4608   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4609 #endif // ASSERT
4610 
4611   // We know that the object is not moving so it's safe to read its size.
4612   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4613 }
4614 
4615 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4616 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4617   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4618 #ifdef ASSERT
4619   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4620   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4621   assert(from_obj != to_obj, "should not be self-forwarded");
4622 
4623   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4624   assert(from_hr != NULL, "sanity");
4625   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4626 
4627   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4628   assert(to_hr != NULL, "sanity");
4629   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4630 #endif // ASSERT
4631 
4632   // The object might be in the process of being copied by another
4633   // worker so we cannot trust that its to-space image is
4634   // well-formed. So we have to read its size from its from-space
4635   // image which we know should not be changing.
4636   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4637 }
4638 
4639 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4640 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4641   ::copy_to_survivor_space(oop old) {
4642   size_t word_sz = old->size();
4643   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4644   // +1 to make the -1 indexes valid...
4645   int       young_index = from_region->young_index_in_cset()+1;
4646   assert( (from_region->is_young() && young_index >  0) ||
4647          (!from_region->is_young() && young_index == 0), "invariant" );
4648   G1CollectorPolicy* g1p = _g1->g1_policy();
4649   markOop m = old->mark();
4650   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4651                                            : m->age();
4652   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4653                                                              word_sz);
4654   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4655 #ifndef PRODUCT
4656   // Should this evacuation fail?
4657   if (_g1->evacuation_should_fail()) {
4658     if (obj_ptr != NULL) {
4659       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4660       obj_ptr = NULL;
4661     }
4662   }
4663 #endif // !PRODUCT
4664 
4665   if (obj_ptr == NULL) {
4666     // This will either forward-to-self, or detect that someone else has
4667     // installed a forwarding pointer.
4668     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4669   }
4670 
4671   oop obj = oop(obj_ptr);
4672 
4673   // We're going to allocate linearly, so might as well prefetch ahead.
4674   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4675 
4676   oop forward_ptr = old->forward_to_atomic(obj);
4677   if (forward_ptr == NULL) {
4678     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4679     if (g1p->track_object_age(alloc_purpose)) {
4680       // We could simply do obj->incr_age(). However, this causes a
4681       // performance issue. obj->incr_age() will first check whether
4682       // the object has a displaced mark by checking its mark word;
4683       // getting the mark word from the new location of the object
4684       // stalls. So, given that we already have the mark word and we
4685       // are about to install it anyway, it's better to increase the
4686       // age on the mark word, when the object does not have a
4687       // displaced mark word. We're not expecting many objects to have
4688       // a displaced marked word, so that case is not optimized
4689       // further (it could be...) and we simply call obj->incr_age().
4690 
4691       if (m->has_displaced_mark_helper()) {
4692         // in this case, we have to install the mark word first,
4693         // otherwise obj looks to be forwarded (the old mark word,
4694         // which contains the forward pointer, was copied)
4695         obj->set_mark(m);
4696         obj->incr_age();
4697       } else {
4698         m = m->incr_age();
4699         obj->set_mark(m);
4700       }
4701       _par_scan_state->age_table()->add(obj, word_sz);
4702     } else {
4703       obj->set_mark(m);
4704     }
4705 
4706     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4707     surv_young_words[young_index] += word_sz;
4708 
4709     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4710       // We keep track of the next start index in the length field of
4711       // the to-space object. The actual length can be found in the
4712       // length field of the from-space object.
4713       arrayOop(obj)->set_length(0);
4714       oop* old_p = set_partial_array_mask(old);
4715       _par_scan_state->push_on_queue(old_p);
4716     } else {
4717       // No point in using the slower heap_region_containing() method,
4718       // given that we know obj is in the heap.
4719       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4720       obj->oop_iterate_backwards(&_scanner);
4721     }
4722   } else {
4723     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4724     obj = forward_ptr;
4725   }
4726   return obj;
4727 }
4728 
4729 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4730 template <class T>
4731 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4732 ::do_oop_work(T* p) {
4733   oop obj = oopDesc::load_decode_heap_oop(p);
4734   assert(barrier != G1BarrierRS || obj != NULL,
4735          "Precondition: G1BarrierRS implies obj is non-NULL");
4736 
4737   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4738 
4739   // here the null check is implicit in the cset_fast_test() test
4740   if (_g1->in_cset_fast_test(obj)) {
4741     oop forwardee;
4742     if (obj->is_forwarded()) {
4743       forwardee = obj->forwardee();
4744     } else {
4745       forwardee = copy_to_survivor_space(obj);
4746     }
4747     assert(forwardee != NULL, "forwardee should not be NULL");
4748     oopDesc::encode_store_heap_oop(p, forwardee);
4749     if (do_mark_object && forwardee != obj) {
4750       // If the object is self-forwarded we don't need to explicitly
4751       // mark it, the evacuation failure protocol will do so.
4752       mark_forwarded_object(obj, forwardee);
4753     }
4754 
4755     // When scanning the RS, we only care about objs in CS.
4756     if (barrier == G1BarrierRS) {
4757       _par_scan_state->update_rs(_from, p, _worker_id);
4758     }
4759   } else {
4760     // The object is not in collection set. If we're a root scanning
4761     // closure during an initial mark pause (i.e. do_mark_object will
4762     // be true) then attempt to mark the object.
4763     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4764       mark_object(obj);
4765     }
4766   }
4767 
4768   if (barrier == G1BarrierEvac && obj != NULL) {
4769     _par_scan_state->update_rs(_from, p, _worker_id);
4770   }
4771 
4772   if (do_gen_barrier && obj != NULL) {
4773     par_do_barrier(p);
4774   }
4775 }
4776 
4777 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4778 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4779 
4780 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4781   assert(has_partial_array_mask(p), "invariant");
4782   oop from_obj = clear_partial_array_mask(p);
4783 
4784   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4785   assert(from_obj->is_objArray(), "must be obj array");
4786   objArrayOop from_obj_array = objArrayOop(from_obj);
4787   // The from-space object contains the real length.
4788   int length                 = from_obj_array->length();
4789 
4790   assert(from_obj->is_forwarded(), "must be forwarded");
4791   oop to_obj                 = from_obj->forwardee();
4792   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4793   objArrayOop to_obj_array   = objArrayOop(to_obj);
4794   // We keep track of the next start index in the length field of the
4795   // to-space object.
4796   int next_index             = to_obj_array->length();
4797   assert(0 <= next_index && next_index < length,
4798          err_msg("invariant, next index: %d, length: %d", next_index, length));
4799 
4800   int start                  = next_index;
4801   int end                    = length;
4802   int remainder              = end - start;
4803   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4804   if (remainder > 2 * ParGCArrayScanChunk) {
4805     end = start + ParGCArrayScanChunk;
4806     to_obj_array->set_length(end);
4807     // Push the remainder before we process the range in case another
4808     // worker has run out of things to do and can steal it.
4809     oop* from_obj_p = set_partial_array_mask(from_obj);
4810     _par_scan_state->push_on_queue(from_obj_p);
4811   } else {
4812     assert(length == end, "sanity");
4813     // We'll process the final range for this object. Restore the length
4814     // so that the heap remains parsable in case of evacuation failure.
4815     to_obj_array->set_length(end);
4816   }
4817   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4818   // Process indexes [start,end). It will also process the header
4819   // along with the first chunk (i.e., the chunk with start == 0).
4820   // Note that at this point the length field of to_obj_array is not
4821   // correct given that we are using it to keep track of the next
4822   // start index. oop_iterate_range() (thankfully!) ignores the length
4823   // field and only relies on the start / end parameters.  It does
4824   // however return the size of the object which will be incorrect. So
4825   // we have to ignore it even if we wanted to use it.
4826   to_obj_array->oop_iterate_range(&_scanner, start, end);
4827 }
4828 
4829 class G1ParEvacuateFollowersClosure : public VoidClosure {
4830 protected:
4831   G1CollectedHeap*              _g1h;
4832   G1ParScanThreadState*         _par_scan_state;
4833   RefToScanQueueSet*            _queues;
4834   ParallelTaskTerminator*       _terminator;
4835 
4836   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4837   RefToScanQueueSet*      queues()         { return _queues; }
4838   ParallelTaskTerminator* terminator()     { return _terminator; }
4839 
4840 public:
4841   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4842                                 G1ParScanThreadState* par_scan_state,
4843                                 RefToScanQueueSet* queues,
4844                                 ParallelTaskTerminator* terminator)
4845     : _g1h(g1h), _par_scan_state(par_scan_state),
4846       _queues(queues), _terminator(terminator) {}
4847 
4848   void do_void();
4849 
4850 private:
4851   inline bool offer_termination();
4852 };
4853 
4854 bool G1ParEvacuateFollowersClosure::offer_termination() {
4855   G1ParScanThreadState* const pss = par_scan_state();
4856   pss->start_term_time();
4857   const bool res = terminator()->offer_termination();
4858   pss->end_term_time();
4859   return res;
4860 }
4861 
4862 void G1ParEvacuateFollowersClosure::do_void() {
4863   StarTask stolen_task;
4864   G1ParScanThreadState* const pss = par_scan_state();
4865   pss->trim_queue();
4866 
4867   do {
4868     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4869       assert(pss->verify_task(stolen_task), "sanity");
4870       if (stolen_task.is_narrow()) {
4871         pss->deal_with_reference((narrowOop*) stolen_task);
4872       } else {
4873         pss->deal_with_reference((oop*) stolen_task);
4874       }
4875 
4876       // We've just processed a reference and we might have made
4877       // available new entries on the queues. So we have to make sure
4878       // we drain the queues as necessary.
4879       pss->trim_queue();
4880     }
4881   } while (!offer_termination());
4882 
4883   pss->retire_alloc_buffers();
4884 }
4885 
4886 class G1ParTask : public AbstractGangTask {
4887 protected:
4888   G1CollectedHeap*       _g1h;
4889   RefToScanQueueSet      *_queues;
4890   ParallelTaskTerminator _terminator;
4891   uint _n_workers;
4892 
4893   Mutex _stats_lock;
4894   Mutex* stats_lock() { return &_stats_lock; }
4895 
4896   size_t getNCards() {
4897     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4898       / G1BlockOffsetSharedArray::N_bytes;
4899   }
4900 
4901 public:
4902   G1ParTask(G1CollectedHeap* g1h,
4903             RefToScanQueueSet *task_queues)
4904     : AbstractGangTask("G1 collection"),
4905       _g1h(g1h),
4906       _queues(task_queues),
4907       _terminator(0, _queues),
4908       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4909   {}
4910 
4911   RefToScanQueueSet* queues() { return _queues; }
4912 
4913   RefToScanQueue *work_queue(int i) {
4914     return queues()->queue(i);
4915   }
4916 
4917   ParallelTaskTerminator* terminator() { return &_terminator; }
4918 
4919   virtual void set_for_termination(int active_workers) {
4920     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4921     // in the young space (_par_seq_tasks) in the G1 heap
4922     // for SequentialSubTasksDone.
4923     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4924     // both of which need setting by set_n_termination().
4925     _g1h->SharedHeap::set_n_termination(active_workers);
4926     _g1h->set_n_termination(active_workers);
4927     terminator()->reset_for_reuse(active_workers);
4928     _n_workers = active_workers;
4929   }
4930 
4931   void work(uint worker_id) {
4932     if (worker_id >= _n_workers) return;  // no work needed this round
4933 
4934     double start_time_ms = os::elapsedTime() * 1000.0;
4935     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4936 
4937     {
4938       ResourceMark rm;
4939       HandleMark   hm;
4940 
4941       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4942 
4943       G1ParScanThreadState            pss(_g1h, worker_id);
4944       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4945       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4946       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4947 
4948       pss.set_evac_closure(&scan_evac_cl);
4949       pss.set_evac_failure_closure(&evac_failure_cl);
4950       pss.set_partial_scan_closure(&partial_scan_cl);
4951 
4952       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4953       G1ParScanPermClosure           only_scan_perm_cl(_g1h, &pss, rp);
4954 
4955       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4956       G1ParScanAndMarkPermClosure    scan_mark_perm_cl(_g1h, &pss, rp);
4957 
4958       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4959       OopsInHeapRegionClosure*       scan_perm_cl = &only_scan_perm_cl;
4960 
4961       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4962         // We also need to mark copied objects.
4963         scan_root_cl = &scan_mark_root_cl;
4964         scan_perm_cl = &scan_mark_perm_cl;
4965       }
4966 
4967       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4968 
4969       pss.start_strong_roots();
4970       _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4971                                     SharedHeap::SO_AllClasses,
4972                                     scan_root_cl,
4973                                     &push_heap_rs_cl,
4974                                     scan_perm_cl,
4975                                     worker_id);
4976       pss.end_strong_roots();
4977 
4978       {
4979         double start = os::elapsedTime();
4980         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4981         evac.do_void();
4982         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4983         double term_ms = pss.term_time()*1000.0;
4984         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4985         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4986       }
4987       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4988       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4989 
4990       if (ParallelGCVerbose) {
4991         MutexLocker x(stats_lock());
4992         pss.print_termination_stats(worker_id);
4993       }
4994 
4995       assert(pss.refs()->is_empty(), "should be empty");
4996 
4997       // Close the inner scope so that the ResourceMark and HandleMark
4998       // destructors are executed here and are included as part of the
4999       // "GC Worker Time".
5000     }
5001 
5002     double end_time_ms = os::elapsedTime() * 1000.0;
5003     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5004   }
5005 };
5006 
5007 // *** Common G1 Evacuation Stuff
5008 
5009 // Closures that support the filtering of CodeBlobs scanned during
5010 // external root scanning.
5011 
5012 // Closure applied to reference fields in code blobs (specifically nmethods)
5013 // to determine whether an nmethod contains references that point into
5014 // the collection set. Used as a predicate when walking code roots so
5015 // that only nmethods that point into the collection set are added to the
5016 // 'marked' list.
5017 
5018 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
5019 
5020   class G1PointsIntoCSOopClosure : public OopClosure {
5021     G1CollectedHeap* _g1;
5022     bool _points_into_cs;
5023   public:
5024     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
5025       _g1(g1), _points_into_cs(false) { }
5026 
5027     bool points_into_cs() const { return _points_into_cs; }
5028 
5029     template <class T>
5030     void do_oop_nv(T* p) {
5031       if (!_points_into_cs) {
5032         T heap_oop = oopDesc::load_heap_oop(p);
5033         if (!oopDesc::is_null(heap_oop) &&
5034             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
5035           _points_into_cs = true;
5036         }
5037       }
5038     }
5039 
5040     virtual void do_oop(oop* p)        { do_oop_nv(p); }
5041     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
5042   };
5043 
5044   G1CollectedHeap* _g1;
5045 
5046 public:
5047   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
5048     CodeBlobToOopClosure(cl, true), _g1(g1) { }
5049 
5050   virtual void do_code_blob(CodeBlob* cb) {
5051     nmethod* nm = cb->as_nmethod_or_null();
5052     if (nm != NULL && !(nm->test_oops_do_mark())) {
5053       G1PointsIntoCSOopClosure predicate_cl(_g1);
5054       nm->oops_do(&predicate_cl);
5055 
5056       if (predicate_cl.points_into_cs()) {
5057         // At least one of the reference fields or the oop relocations
5058         // in the nmethod points into the collection set. We have to
5059         // 'mark' this nmethod.
5060         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5061         // or MarkingCodeBlobClosure::do_code_blob() change.
5062         if (!nm->test_set_oops_do_mark()) {
5063           do_newly_marked_nmethod(nm);
5064         }
5065       }
5066     }
5067   }
5068 };
5069 
5070 // This method is run in a GC worker.
5071 
5072 void
5073 G1CollectedHeap::
5074 g1_process_strong_roots(bool collecting_perm_gen,
5075                         ScanningOption so,
5076                         OopClosure* scan_non_heap_roots,
5077                         OopsInHeapRegionClosure* scan_rs,
5078                         OopsInGenClosure* scan_perm,
5079                         int worker_i) {
5080 
5081   // First scan the strong roots, including the perm gen.
5082   double ext_roots_start = os::elapsedTime();
5083   double closure_app_time_sec = 0.0;
5084 
5085   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5086   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
5087   buf_scan_perm.set_generation(perm_gen());
5088 
5089   // Walk the code cache w/o buffering, because StarTask cannot handle
5090   // unaligned oop locations.
5091   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5092 
5093   process_strong_roots(false, // no scoping; this is parallel code
5094                        collecting_perm_gen, so,
5095                        &buf_scan_non_heap_roots,
5096                        &eager_scan_code_roots,
5097                        &buf_scan_perm);
5098 
5099   // Now the CM ref_processor roots.
5100   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5101     // We need to treat the discovered reference lists of the
5102     // concurrent mark ref processor as roots and keep entries
5103     // (which are added by the marking threads) on them live
5104     // until they can be processed at the end of marking.
5105     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5106   }
5107 
5108   // Finish up any enqueued closure apps (attributed as object copy time).
5109   buf_scan_non_heap_roots.done();
5110   buf_scan_perm.done();
5111 
5112   double obj_copy_time_sec = buf_scan_perm.closure_app_seconds() +
5113                                 buf_scan_non_heap_roots.closure_app_seconds();
5114   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5115 
5116   double ext_root_time_ms =
5117     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5118 
5119   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5120 
5121   // During conc marking we have to filter the per-thread SATB buffers
5122   // to make sure we remove any oops into the CSet (which will show up
5123   // as implicitly live).
5124   double satb_filtering_ms = 0.0;
5125   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5126     if (mark_in_progress()) {
5127       double satb_filter_start = os::elapsedTime();
5128 
5129       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5130 
5131       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5132     }
5133   }
5134   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5135 
5136   // Now scan the complement of the collection set.
5137   if (scan_rs != NULL) {
5138     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5139   }
5140 
5141   _process_strong_tasks->all_tasks_completed();
5142 }
5143 
5144 void
5145 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5146                                        OopClosure* non_root_closure) {
5147   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5148   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5149 }
5150 
5151 // Weak Reference Processing support
5152 
5153 // An always "is_alive" closure that is used to preserve referents.
5154 // If the object is non-null then it's alive.  Used in the preservation
5155 // of referent objects that are pointed to by reference objects
5156 // discovered by the CM ref processor.
5157 class G1AlwaysAliveClosure: public BoolObjectClosure {
5158   G1CollectedHeap* _g1;
5159 public:
5160   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5161   void do_object(oop p) { assert(false, "Do not call."); }
5162   bool do_object_b(oop p) {
5163     if (p != NULL) {
5164       return true;
5165     }
5166     return false;
5167   }
5168 };
5169 
5170 bool G1STWIsAliveClosure::do_object_b(oop p) {
5171   // An object is reachable if it is outside the collection set,
5172   // or is inside and copied.
5173   return !_g1->obj_in_cs(p) || p->is_forwarded();
5174 }
5175 
5176 // Non Copying Keep Alive closure
5177 class G1KeepAliveClosure: public OopClosure {
5178   G1CollectedHeap* _g1;
5179 public:
5180   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5181   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5182   void do_oop(      oop* p) {
5183     oop obj = *p;
5184 
5185     if (_g1->obj_in_cs(obj)) {
5186       assert( obj->is_forwarded(), "invariant" );
5187       *p = obj->forwardee();
5188     }
5189   }
5190 };
5191 
5192 // Copying Keep Alive closure - can be called from both
5193 // serial and parallel code as long as different worker
5194 // threads utilize different G1ParScanThreadState instances
5195 // and different queues.
5196 
5197 class G1CopyingKeepAliveClosure: public OopClosure {
5198   G1CollectedHeap*         _g1h;
5199   OopClosure*              _copy_non_heap_obj_cl;
5200   OopsInHeapRegionClosure* _copy_perm_obj_cl;
5201   G1ParScanThreadState*    _par_scan_state;
5202 
5203 public:
5204   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5205                             OopClosure* non_heap_obj_cl,
5206                             OopsInHeapRegionClosure* perm_obj_cl,
5207                             G1ParScanThreadState* pss):
5208     _g1h(g1h),
5209     _copy_non_heap_obj_cl(non_heap_obj_cl),
5210     _copy_perm_obj_cl(perm_obj_cl),
5211     _par_scan_state(pss)
5212   {}
5213 
5214   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5215   virtual void do_oop(      oop* p) { do_oop_work(p); }
5216 
5217   template <class T> void do_oop_work(T* p) {
5218     oop obj = oopDesc::load_decode_heap_oop(p);
5219 
5220     if (_g1h->obj_in_cs(obj)) {
5221       // If the referent object has been forwarded (either copied
5222       // to a new location or to itself in the event of an
5223       // evacuation failure) then we need to update the reference
5224       // field and, if both reference and referent are in the G1
5225       // heap, update the RSet for the referent.
5226       //
5227       // If the referent has not been forwarded then we have to keep
5228       // it alive by policy. Therefore we have copy the referent.
5229       //
5230       // If the reference field is in the G1 heap then we can push
5231       // on the PSS queue. When the queue is drained (after each
5232       // phase of reference processing) the object and it's followers
5233       // will be copied, the reference field set to point to the
5234       // new location, and the RSet updated. Otherwise we need to
5235       // use the the non-heap or perm closures directly to copy
5236       // the referent object and update the pointer, while avoiding
5237       // updating the RSet.
5238 
5239       if (_g1h->is_in_g1_reserved(p)) {
5240         _par_scan_state->push_on_queue(p);
5241       } else {
5242         // The reference field is not in the G1 heap.
5243         if (_g1h->perm_gen()->is_in(p)) {
5244           _copy_perm_obj_cl->do_oop(p);
5245         } else {
5246           _copy_non_heap_obj_cl->do_oop(p);
5247         }
5248       }
5249     }
5250   }
5251 };
5252 
5253 // Serial drain queue closure. Called as the 'complete_gc'
5254 // closure for each discovered list in some of the
5255 // reference processing phases.
5256 
5257 class G1STWDrainQueueClosure: public VoidClosure {
5258 protected:
5259   G1CollectedHeap* _g1h;
5260   G1ParScanThreadState* _par_scan_state;
5261 
5262   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5263 
5264 public:
5265   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5266     _g1h(g1h),
5267     _par_scan_state(pss)
5268   { }
5269 
5270   void do_void() {
5271     G1ParScanThreadState* const pss = par_scan_state();
5272     pss->trim_queue();
5273   }
5274 };
5275 
5276 // Parallel Reference Processing closures
5277 
5278 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5279 // processing during G1 evacuation pauses.
5280 
5281 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5282 private:
5283   G1CollectedHeap*   _g1h;
5284   RefToScanQueueSet* _queues;
5285   FlexibleWorkGang*  _workers;
5286   int                _active_workers;
5287 
5288 public:
5289   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5290                         FlexibleWorkGang* workers,
5291                         RefToScanQueueSet *task_queues,
5292                         int n_workers) :
5293     _g1h(g1h),
5294     _queues(task_queues),
5295     _workers(workers),
5296     _active_workers(n_workers)
5297   {
5298     assert(n_workers > 0, "shouldn't call this otherwise");
5299   }
5300 
5301   // Executes the given task using concurrent marking worker threads.
5302   virtual void execute(ProcessTask& task);
5303   virtual void execute(EnqueueTask& task);
5304 };
5305 
5306 // Gang task for possibly parallel reference processing
5307 
5308 class G1STWRefProcTaskProxy: public AbstractGangTask {
5309   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5310   ProcessTask&     _proc_task;
5311   G1CollectedHeap* _g1h;
5312   RefToScanQueueSet *_task_queues;
5313   ParallelTaskTerminator* _terminator;
5314 
5315 public:
5316   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5317                      G1CollectedHeap* g1h,
5318                      RefToScanQueueSet *task_queues,
5319                      ParallelTaskTerminator* terminator) :
5320     AbstractGangTask("Process reference objects in parallel"),
5321     _proc_task(proc_task),
5322     _g1h(g1h),
5323     _task_queues(task_queues),
5324     _terminator(terminator)
5325   {}
5326 
5327   virtual void work(uint worker_id) {
5328     // The reference processing task executed by a single worker.
5329     ResourceMark rm;
5330     HandleMark   hm;
5331 
5332     G1STWIsAliveClosure is_alive(_g1h);
5333 
5334     G1ParScanThreadState pss(_g1h, worker_id);
5335 
5336     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5337     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5338     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5339 
5340     pss.set_evac_closure(&scan_evac_cl);
5341     pss.set_evac_failure_closure(&evac_failure_cl);
5342     pss.set_partial_scan_closure(&partial_scan_cl);
5343 
5344     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5345     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5346 
5347     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5348     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5349 
5350     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5351     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5352 
5353     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5354       // We also need to mark copied objects.
5355       copy_non_heap_cl = &copy_mark_non_heap_cl;
5356       copy_perm_cl = &copy_mark_perm_cl;
5357     }
5358 
5359     // Keep alive closure.
5360     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5361 
5362     // Complete GC closure
5363     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5364 
5365     // Call the reference processing task's work routine.
5366     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5367 
5368     // Note we cannot assert that the refs array is empty here as not all
5369     // of the processing tasks (specifically phase2 - pp2_work) execute
5370     // the complete_gc closure (which ordinarily would drain the queue) so
5371     // the queue may not be empty.
5372   }
5373 };
5374 
5375 // Driver routine for parallel reference processing.
5376 // Creates an instance of the ref processing gang
5377 // task and has the worker threads execute it.
5378 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5379   assert(_workers != NULL, "Need parallel worker threads.");
5380 
5381   ParallelTaskTerminator terminator(_active_workers, _queues);
5382   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5383 
5384   _g1h->set_par_threads(_active_workers);
5385   _workers->run_task(&proc_task_proxy);
5386   _g1h->set_par_threads(0);
5387 }
5388 
5389 // Gang task for parallel reference enqueueing.
5390 
5391 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5392   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5393   EnqueueTask& _enq_task;
5394 
5395 public:
5396   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5397     AbstractGangTask("Enqueue reference objects in parallel"),
5398     _enq_task(enq_task)
5399   { }
5400 
5401   virtual void work(uint worker_id) {
5402     _enq_task.work(worker_id);
5403   }
5404 };
5405 
5406 // Driver routine for parallel reference enqueueing.
5407 // Creates an instance of the ref enqueueing gang
5408 // task and has the worker threads execute it.
5409 
5410 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5411   assert(_workers != NULL, "Need parallel worker threads.");
5412 
5413   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5414 
5415   _g1h->set_par_threads(_active_workers);
5416   _workers->run_task(&enq_task_proxy);
5417   _g1h->set_par_threads(0);
5418 }
5419 
5420 // End of weak reference support closures
5421 
5422 // Abstract task used to preserve (i.e. copy) any referent objects
5423 // that are in the collection set and are pointed to by reference
5424 // objects discovered by the CM ref processor.
5425 
5426 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5427 protected:
5428   G1CollectedHeap* _g1h;
5429   RefToScanQueueSet      *_queues;
5430   ParallelTaskTerminator _terminator;
5431   uint _n_workers;
5432 
5433 public:
5434   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5435     AbstractGangTask("ParPreserveCMReferents"),
5436     _g1h(g1h),
5437     _queues(task_queues),
5438     _terminator(workers, _queues),
5439     _n_workers(workers)
5440   { }
5441 
5442   void work(uint worker_id) {
5443     ResourceMark rm;
5444     HandleMark   hm;
5445 
5446     G1ParScanThreadState            pss(_g1h, worker_id);
5447     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5448     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5449     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5450 
5451     pss.set_evac_closure(&scan_evac_cl);
5452     pss.set_evac_failure_closure(&evac_failure_cl);
5453     pss.set_partial_scan_closure(&partial_scan_cl);
5454 
5455     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5456 
5457 
5458     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5459     G1ParScanPermClosure           only_copy_perm_cl(_g1h, &pss, NULL);
5460 
5461     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5462     G1ParScanAndMarkPermClosure    copy_mark_perm_cl(_g1h, &pss, NULL);
5463 
5464     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5465     OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5466 
5467     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5468       // We also need to mark copied objects.
5469       copy_non_heap_cl = &copy_mark_non_heap_cl;
5470       copy_perm_cl = &copy_mark_perm_cl;
5471     }
5472 
5473     // Is alive closure
5474     G1AlwaysAliveClosure always_alive(_g1h);
5475 
5476     // Copying keep alive closure. Applied to referent objects that need
5477     // to be copied.
5478     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_perm_cl, &pss);
5479 
5480     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5481 
5482     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5483     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5484 
5485     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5486     // So this must be true - but assert just in case someone decides to
5487     // change the worker ids.
5488     assert(0 <= worker_id && worker_id < limit, "sanity");
5489     assert(!rp->discovery_is_atomic(), "check this code");
5490 
5491     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5492     for (uint idx = worker_id; idx < limit; idx += stride) {
5493       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5494 
5495       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5496       while (iter.has_next()) {
5497         // Since discovery is not atomic for the CM ref processor, we
5498         // can see some null referent objects.
5499         iter.load_ptrs(DEBUG_ONLY(true));
5500         oop ref = iter.obj();
5501 
5502         // This will filter nulls.
5503         if (iter.is_referent_alive()) {
5504           iter.make_referent_alive();
5505         }
5506         iter.move_to_next();
5507       }
5508     }
5509 
5510     // Drain the queue - which may cause stealing
5511     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5512     drain_queue.do_void();
5513     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5514     assert(pss.refs()->is_empty(), "should be");
5515   }
5516 };
5517 
5518 // Weak Reference processing during an evacuation pause (part 1).
5519 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5520   double ref_proc_start = os::elapsedTime();
5521 
5522   ReferenceProcessor* rp = _ref_processor_stw;
5523   assert(rp->discovery_enabled(), "should have been enabled");
5524 
5525   // Any reference objects, in the collection set, that were 'discovered'
5526   // by the CM ref processor should have already been copied (either by
5527   // applying the external root copy closure to the discovered lists, or
5528   // by following an RSet entry).
5529   //
5530   // But some of the referents, that are in the collection set, that these
5531   // reference objects point to may not have been copied: the STW ref
5532   // processor would have seen that the reference object had already
5533   // been 'discovered' and would have skipped discovering the reference,
5534   // but would not have treated the reference object as a regular oop.
5535   // As a result the copy closure would not have been applied to the
5536   // referent object.
5537   //
5538   // We need to explicitly copy these referent objects - the references
5539   // will be processed at the end of remarking.
5540   //
5541   // We also need to do this copying before we process the reference
5542   // objects discovered by the STW ref processor in case one of these
5543   // referents points to another object which is also referenced by an
5544   // object discovered by the STW ref processor.
5545 
5546   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5547            no_of_gc_workers == workers()->active_workers(),
5548            "Need to reset active GC workers");
5549 
5550   set_par_threads(no_of_gc_workers);
5551   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5552                                                  no_of_gc_workers,
5553                                                  _task_queues);
5554 
5555   if (G1CollectedHeap::use_parallel_gc_threads()) {
5556     workers()->run_task(&keep_cm_referents);
5557   } else {
5558     keep_cm_referents.work(0);
5559   }
5560 
5561   set_par_threads(0);
5562 
5563   // Closure to test whether a referent is alive.
5564   G1STWIsAliveClosure is_alive(this);
5565 
5566   // Even when parallel reference processing is enabled, the processing
5567   // of JNI refs is serial and performed serially by the current thread
5568   // rather than by a worker. The following PSS will be used for processing
5569   // JNI refs.
5570 
5571   // Use only a single queue for this PSS.
5572   G1ParScanThreadState pss(this, 0);
5573 
5574   // We do not embed a reference processor in the copying/scanning
5575   // closures while we're actually processing the discovered
5576   // reference objects.
5577   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5578   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5579   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5580 
5581   pss.set_evac_closure(&scan_evac_cl);
5582   pss.set_evac_failure_closure(&evac_failure_cl);
5583   pss.set_partial_scan_closure(&partial_scan_cl);
5584 
5585   assert(pss.refs()->is_empty(), "pre-condition");
5586 
5587   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5588   G1ParScanPermClosure           only_copy_perm_cl(this, &pss, NULL);
5589 
5590   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5591   G1ParScanAndMarkPermClosure    copy_mark_perm_cl(this, &pss, NULL);
5592 
5593   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5594   OopsInHeapRegionClosure*       copy_perm_cl = &only_copy_perm_cl;
5595 
5596   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5597     // We also need to mark copied objects.
5598     copy_non_heap_cl = &copy_mark_non_heap_cl;
5599     copy_perm_cl = &copy_mark_perm_cl;
5600   }
5601 
5602   // Keep alive closure.
5603   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_perm_cl, &pss);
5604 
5605   // Serial Complete GC closure
5606   G1STWDrainQueueClosure drain_queue(this, &pss);
5607 
5608   // Setup the soft refs policy...
5609   rp->setup_policy(false);
5610 
5611   ReferenceProcessorStats stats;
5612   if (!rp->processing_is_mt()) {
5613     // Serial reference processing...
5614     stats = rp->process_discovered_references(&is_alive,
5615                                               &keep_alive,
5616                                               &drain_queue,
5617                                               NULL,
5618                                               _gc_timer_stw);
5619   } else {
5620     // Parallel reference processing
5621     assert(rp->num_q() == no_of_gc_workers, "sanity");
5622     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5623 
5624     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5625     stats = rp->process_discovered_references(&is_alive,
5626                                               &keep_alive,
5627                                               &drain_queue,
5628                                               &par_task_executor,
5629                                               _gc_timer_stw);
5630   }
5631 
5632   _gc_tracer_stw->report_gc_reference_stats(stats);
5633   // We have completed copying any necessary live referent objects
5634   // (that were not copied during the actual pause) so we can
5635   // retire any active alloc buffers
5636   pss.retire_alloc_buffers();
5637   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5638 
5639   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5640   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5641 }
5642 
5643 // Weak Reference processing during an evacuation pause (part 2).
5644 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5645   double ref_enq_start = os::elapsedTime();
5646 
5647   ReferenceProcessor* rp = _ref_processor_stw;
5648   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5649 
5650   // Now enqueue any remaining on the discovered lists on to
5651   // the pending list.
5652   if (!rp->processing_is_mt()) {
5653     // Serial reference processing...
5654     rp->enqueue_discovered_references();
5655   } else {
5656     // Parallel reference enqueueing
5657 
5658     assert(no_of_gc_workers == workers()->active_workers(),
5659            "Need to reset active workers");
5660     assert(rp->num_q() == no_of_gc_workers, "sanity");
5661     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5662 
5663     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5664     rp->enqueue_discovered_references(&par_task_executor);
5665   }
5666 
5667   rp->verify_no_references_recorded();
5668   assert(!rp->discovery_enabled(), "should have been disabled");
5669 
5670   // FIXME
5671   // CM's reference processing also cleans up the string and symbol tables.
5672   // Should we do that here also? We could, but it is a serial operation
5673   // and could significantly increase the pause time.
5674 
5675   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5676   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5677 }
5678 
5679 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5680   _expand_heap_after_alloc_failure = true;
5681   _evacuation_failed = false;
5682 
5683   // Should G1EvacuationFailureALot be in effect for this GC?
5684   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5685 
5686   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5687   concurrent_g1_refine()->set_use_cache(false);
5688   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5689 
5690   uint n_workers;
5691   if (G1CollectedHeap::use_parallel_gc_threads()) {
5692     n_workers =
5693       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5694                                      workers()->active_workers(),
5695                                      Threads::number_of_non_daemon_threads());
5696     assert(UseDynamicNumberOfGCThreads ||
5697            n_workers == workers()->total_workers(),
5698            "If not dynamic should be using all the  workers");
5699     workers()->set_active_workers(n_workers);
5700     set_par_threads(n_workers);
5701   } else {
5702     assert(n_par_threads() == 0,
5703            "Should be the original non-parallel value");
5704     n_workers = 1;
5705   }
5706 
5707   G1ParTask g1_par_task(this, _task_queues);
5708 
5709   init_for_evac_failure(NULL);
5710 
5711   rem_set()->prepare_for_younger_refs_iterate(true);
5712 
5713   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5714   double start_par_time_sec = os::elapsedTime();
5715   double end_par_time_sec;
5716 
5717   {
5718     StrongRootsScope srs(this);
5719 
5720     if (G1CollectedHeap::use_parallel_gc_threads()) {
5721       // The individual threads will set their evac-failure closures.
5722       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5723       // These tasks use ShareHeap::_process_strong_tasks
5724       assert(UseDynamicNumberOfGCThreads ||
5725              workers()->active_workers() == workers()->total_workers(),
5726              "If not dynamic should be using all the  workers");
5727       workers()->run_task(&g1_par_task);
5728     } else {
5729       g1_par_task.set_for_termination(n_workers);
5730       g1_par_task.work(0);
5731     }
5732     end_par_time_sec = os::elapsedTime();
5733 
5734     // Closing the inner scope will execute the destructor
5735     // for the StrongRootsScope object. We record the current
5736     // elapsed time before closing the scope so that time
5737     // taken for the SRS destructor is NOT included in the
5738     // reported parallel time.
5739   }
5740 
5741   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5742   g1_policy()->phase_times()->record_par_time(par_time_ms);
5743 
5744   double code_root_fixup_time_ms =
5745         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5746   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5747 
5748   set_par_threads(0);
5749 
5750   // Process any discovered reference objects - we have
5751   // to do this _before_ we retire the GC alloc regions
5752   // as we may have to copy some 'reachable' referent
5753   // objects (and their reachable sub-graphs) that were
5754   // not copied during the pause.
5755   process_discovered_references(n_workers);
5756 
5757   // Weak root processing.
5758   // Note: when JSR 292 is enabled and code blobs can contain
5759   // non-perm oops then we will need to process the code blobs
5760   // here too.
5761   {
5762     G1STWIsAliveClosure is_alive(this);
5763     G1KeepAliveClosure keep_alive(this);
5764     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5765   }
5766 
5767   release_gc_alloc_regions(n_workers, evacuation_info);
5768   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5769 
5770   concurrent_g1_refine()->clear_hot_cache();
5771   concurrent_g1_refine()->set_use_cache(true);
5772 
5773   finalize_for_evac_failure();
5774 
5775   if (evacuation_failed()) {
5776     remove_self_forwarding_pointers();
5777 
5778     // Reset the G1EvacuationFailureALot counters and flags
5779     // Note: the values are reset only when an actual
5780     // evacuation failure occurs.
5781     NOT_PRODUCT(reset_evacuation_should_fail();)
5782   }
5783 
5784   // Enqueue any remaining references remaining on the STW
5785   // reference processor's discovered lists. We need to do
5786   // this after the card table is cleaned (and verified) as
5787   // the act of enqueueing entries on to the pending list
5788   // will log these updates (and dirty their associated
5789   // cards). We need these updates logged to update any
5790   // RSets.
5791   enqueue_discovered_references(n_workers);
5792 
5793   if (G1DeferredRSUpdate) {
5794     RedirtyLoggedCardTableEntryFastClosure redirty;
5795     dirty_card_queue_set().set_closure(&redirty);
5796     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5797 
5798     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5799     dcq.merge_bufferlists(&dirty_card_queue_set());
5800     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5801   }
5802   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5803 }
5804 
5805 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5806                                      size_t* pre_used,
5807                                      FreeRegionList* free_list,
5808                                      OldRegionSet* old_proxy_set,
5809                                      HumongousRegionSet* humongous_proxy_set,
5810                                      HRRSCleanupTask* hrrs_cleanup_task,
5811                                      bool par) {
5812   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5813     if (hr->isHumongous()) {
5814       assert(hr->startsHumongous(), "we should only see starts humongous");
5815       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5816     } else {
5817       _old_set.remove_with_proxy(hr, old_proxy_set);
5818       free_region(hr, pre_used, free_list, par);
5819     }
5820   } else {
5821     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5822   }
5823 }
5824 
5825 void G1CollectedHeap::free_region(HeapRegion* hr,
5826                                   size_t* pre_used,
5827                                   FreeRegionList* free_list,
5828                                   bool par) {
5829   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5830   assert(!hr->is_empty(), "the region should not be empty");
5831   assert(free_list != NULL, "pre-condition");
5832 
5833   *pre_used += hr->used();
5834   hr->hr_clear(par, true /* clear_space */);
5835   free_list->add_as_head(hr);
5836 }
5837 
5838 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5839                                      size_t* pre_used,
5840                                      FreeRegionList* free_list,
5841                                      HumongousRegionSet* humongous_proxy_set,
5842                                      bool par) {
5843   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5844   assert(free_list != NULL, "pre-condition");
5845   assert(humongous_proxy_set != NULL, "pre-condition");
5846 
5847   size_t hr_used = hr->used();
5848   size_t hr_capacity = hr->capacity();
5849   size_t hr_pre_used = 0;
5850   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5851   // We need to read this before we make the region non-humongous,
5852   // otherwise the information will be gone.
5853   uint last_index = hr->last_hc_index();
5854   hr->set_notHumongous();
5855   free_region(hr, &hr_pre_used, free_list, par);
5856 
5857   uint i = hr->hrs_index() + 1;
5858   while (i < last_index) {
5859     HeapRegion* curr_hr = region_at(i);
5860     assert(curr_hr->continuesHumongous(), "invariant");
5861     curr_hr->set_notHumongous();
5862     free_region(curr_hr, &hr_pre_used, free_list, par);
5863     i += 1;
5864   }
5865   assert(hr_pre_used == hr_used,
5866          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5867                  "should be the same", hr_pre_used, hr_used));
5868   *pre_used += hr_pre_used;
5869 }
5870 
5871 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5872                                        FreeRegionList* free_list,
5873                                        OldRegionSet* old_proxy_set,
5874                                        HumongousRegionSet* humongous_proxy_set,
5875                                        bool par) {
5876   if (pre_used > 0) {
5877     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5878     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5879     assert(_summary_bytes_used >= pre_used,
5880            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5881                    "should be >= pre_used: "SIZE_FORMAT,
5882                    _summary_bytes_used, pre_used));
5883     _summary_bytes_used -= pre_used;
5884   }
5885   if (free_list != NULL && !free_list->is_empty()) {
5886     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5887     _free_list.add_as_head(free_list);
5888   }
5889   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5890     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5891     _old_set.update_from_proxy(old_proxy_set);
5892   }
5893   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5894     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5895     _humongous_set.update_from_proxy(humongous_proxy_set);
5896   }
5897 }
5898 
5899 class G1ParCleanupCTTask : public AbstractGangTask {
5900   CardTableModRefBS* _ct_bs;
5901   G1CollectedHeap* _g1h;
5902   HeapRegion* volatile _su_head;
5903 public:
5904   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5905                      G1CollectedHeap* g1h) :
5906     AbstractGangTask("G1 Par Cleanup CT Task"),
5907     _ct_bs(ct_bs), _g1h(g1h) { }
5908 
5909   void work(uint worker_id) {
5910     HeapRegion* r;
5911     while (r = _g1h->pop_dirty_cards_region()) {
5912       clear_cards(r);
5913     }
5914   }
5915 
5916   void clear_cards(HeapRegion* r) {
5917     // Cards of the survivors should have already been dirtied.
5918     if (!r->is_survivor()) {
5919       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5920     }
5921   }
5922 };
5923 
5924 #ifndef PRODUCT
5925 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5926   G1CollectedHeap* _g1h;
5927   CardTableModRefBS* _ct_bs;
5928 public:
5929   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5930     : _g1h(g1h), _ct_bs(ct_bs) { }
5931   virtual bool doHeapRegion(HeapRegion* r) {
5932     if (r->is_survivor()) {
5933       _g1h->verify_dirty_region(r);
5934     } else {
5935       _g1h->verify_not_dirty_region(r);
5936     }
5937     return false;
5938   }
5939 };
5940 
5941 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5942   // All of the region should be clean.
5943   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5944   MemRegion mr(hr->bottom(), hr->end());
5945   ct_bs->verify_not_dirty_region(mr);
5946 }
5947 
5948 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5949   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5950   // dirty allocated blocks as they allocate them. The thread that
5951   // retires each region and replaces it with a new one will do a
5952   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5953   // not dirty that area (one less thing to have to do while holding
5954   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5955   // is dirty.
5956   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5957   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5958   ct_bs->verify_dirty_region(mr);
5959 }
5960 
5961 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5962   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5963   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5964     verify_dirty_region(hr);
5965   }
5966 }
5967 
5968 void G1CollectedHeap::verify_dirty_young_regions() {
5969   verify_dirty_young_list(_young_list->first_region());
5970 }
5971 #endif
5972 
5973 void G1CollectedHeap::cleanUpCardTable() {
5974   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5975   double start = os::elapsedTime();
5976 
5977   {
5978     // Iterate over the dirty cards region list.
5979     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5980 
5981     if (G1CollectedHeap::use_parallel_gc_threads()) {
5982       set_par_threads();
5983       workers()->run_task(&cleanup_task);
5984       set_par_threads(0);
5985     } else {
5986       while (_dirty_cards_region_list) {
5987         HeapRegion* r = _dirty_cards_region_list;
5988         cleanup_task.clear_cards(r);
5989         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5990         if (_dirty_cards_region_list == r) {
5991           // The last region.
5992           _dirty_cards_region_list = NULL;
5993         }
5994         r->set_next_dirty_cards_region(NULL);
5995       }
5996     }
5997 #ifndef PRODUCT
5998     if (G1VerifyCTCleanup || VerifyAfterGC) {
5999       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6000       heap_region_iterate(&cleanup_verifier);
6001     }
6002 #endif
6003   }
6004 
6005   double elapsed = os::elapsedTime() - start;
6006   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6007 }
6008 
6009 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6010   size_t pre_used = 0;
6011   FreeRegionList local_free_list("Local List for CSet Freeing");
6012 
6013   double young_time_ms     = 0.0;
6014   double non_young_time_ms = 0.0;
6015 
6016   // Since the collection set is a superset of the the young list,
6017   // all we need to do to clear the young list is clear its
6018   // head and length, and unlink any young regions in the code below
6019   _young_list->clear();
6020 
6021   G1CollectorPolicy* policy = g1_policy();
6022 
6023   double start_sec = os::elapsedTime();
6024   bool non_young = true;
6025 
6026   HeapRegion* cur = cs_head;
6027   int age_bound = -1;
6028   size_t rs_lengths = 0;
6029 
6030   while (cur != NULL) {
6031     assert(!is_on_master_free_list(cur), "sanity");
6032     if (non_young) {
6033       if (cur->is_young()) {
6034         double end_sec = os::elapsedTime();
6035         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6036         non_young_time_ms += elapsed_ms;
6037 
6038         start_sec = os::elapsedTime();
6039         non_young = false;
6040       }
6041     } else {
6042       if (!cur->is_young()) {
6043         double end_sec = os::elapsedTime();
6044         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6045         young_time_ms += elapsed_ms;
6046 
6047         start_sec = os::elapsedTime();
6048         non_young = true;
6049       }
6050     }
6051 
6052     rs_lengths += cur->rem_set()->occupied();
6053 
6054     HeapRegion* next = cur->next_in_collection_set();
6055     assert(cur->in_collection_set(), "bad CS");
6056     cur->set_next_in_collection_set(NULL);
6057     cur->set_in_collection_set(false);
6058 
6059     if (cur->is_young()) {
6060       int index = cur->young_index_in_cset();
6061       assert(index != -1, "invariant");
6062       assert((uint) index < policy->young_cset_region_length(), "invariant");
6063       size_t words_survived = _surviving_young_words[index];
6064       cur->record_surv_words_in_group(words_survived);
6065 
6066       // At this point the we have 'popped' cur from the collection set
6067       // (linked via next_in_collection_set()) but it is still in the
6068       // young list (linked via next_young_region()). Clear the
6069       // _next_young_region field.
6070       cur->set_next_young_region(NULL);
6071     } else {
6072       int index = cur->young_index_in_cset();
6073       assert(index == -1, "invariant");
6074     }
6075 
6076     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6077             (!cur->is_young() && cur->young_index_in_cset() == -1),
6078             "invariant" );
6079 
6080     if (!cur->evacuation_failed()) {
6081       MemRegion used_mr = cur->used_region();
6082 
6083       // And the region is empty.
6084       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6085       free_region(cur, &pre_used, &local_free_list, false /* par */);
6086     } else {
6087       cur->uninstall_surv_rate_group();
6088       if (cur->is_young()) {
6089         cur->set_young_index_in_cset(-1);
6090       }
6091       cur->set_not_young();
6092       cur->set_evacuation_failed(false);
6093       // The region is now considered to be old.
6094       _old_set.add(cur);
6095       evacuation_info.increment_collectionset_used_after(cur->used());
6096     }
6097     cur = next;
6098   }
6099 
6100   evacuation_info.set_regions_freed(local_free_list.length());
6101   policy->record_max_rs_lengths(rs_lengths);
6102   policy->cset_regions_freed();
6103 
6104   double end_sec = os::elapsedTime();
6105   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6106 
6107   if (non_young) {
6108     non_young_time_ms += elapsed_ms;
6109   } else {
6110     young_time_ms += elapsed_ms;
6111   }
6112 
6113   update_sets_after_freeing_regions(pre_used, &local_free_list,
6114                                     NULL /* old_proxy_set */,
6115                                     NULL /* humongous_proxy_set */,
6116                                     false /* par */);
6117   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6118   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6119 }
6120 
6121 // This routine is similar to the above but does not record
6122 // any policy statistics or update free lists; we are abandoning
6123 // the current incremental collection set in preparation of a
6124 // full collection. After the full GC we will start to build up
6125 // the incremental collection set again.
6126 // This is only called when we're doing a full collection
6127 // and is immediately followed by the tearing down of the young list.
6128 
6129 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6130   HeapRegion* cur = cs_head;
6131 
6132   while (cur != NULL) {
6133     HeapRegion* next = cur->next_in_collection_set();
6134     assert(cur->in_collection_set(), "bad CS");
6135     cur->set_next_in_collection_set(NULL);
6136     cur->set_in_collection_set(false);
6137     cur->set_young_index_in_cset(-1);
6138     cur = next;
6139   }
6140 }
6141 
6142 void G1CollectedHeap::set_free_regions_coming() {
6143   if (G1ConcRegionFreeingVerbose) {
6144     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6145                            "setting free regions coming");
6146   }
6147 
6148   assert(!free_regions_coming(), "pre-condition");
6149   _free_regions_coming = true;
6150 }
6151 
6152 void G1CollectedHeap::reset_free_regions_coming() {
6153   assert(free_regions_coming(), "pre-condition");
6154 
6155   {
6156     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6157     _free_regions_coming = false;
6158     SecondaryFreeList_lock->notify_all();
6159   }
6160 
6161   if (G1ConcRegionFreeingVerbose) {
6162     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6163                            "reset free regions coming");
6164   }
6165 }
6166 
6167 void G1CollectedHeap::wait_while_free_regions_coming() {
6168   // Most of the time we won't have to wait, so let's do a quick test
6169   // first before we take the lock.
6170   if (!free_regions_coming()) {
6171     return;
6172   }
6173 
6174   if (G1ConcRegionFreeingVerbose) {
6175     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6176                            "waiting for free regions");
6177   }
6178 
6179   {
6180     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6181     while (free_regions_coming()) {
6182       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6183     }
6184   }
6185 
6186   if (G1ConcRegionFreeingVerbose) {
6187     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6188                            "done waiting for free regions");
6189   }
6190 }
6191 
6192 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6193   assert(heap_lock_held_for_gc(),
6194               "the heap lock should already be held by or for this thread");
6195   _young_list->push_region(hr);
6196 }
6197 
6198 class NoYoungRegionsClosure: public HeapRegionClosure {
6199 private:
6200   bool _success;
6201 public:
6202   NoYoungRegionsClosure() : _success(true) { }
6203   bool doHeapRegion(HeapRegion* r) {
6204     if (r->is_young()) {
6205       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6206                              r->bottom(), r->end());
6207       _success = false;
6208     }
6209     return false;
6210   }
6211   bool success() { return _success; }
6212 };
6213 
6214 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6215   bool ret = _young_list->check_list_empty(check_sample);
6216 
6217   if (check_heap) {
6218     NoYoungRegionsClosure closure;
6219     heap_region_iterate(&closure);
6220     ret = ret && closure.success();
6221   }
6222 
6223   return ret;
6224 }
6225 
6226 class TearDownRegionSetsClosure : public HeapRegionClosure {
6227 private:
6228   OldRegionSet *_old_set;
6229 
6230 public:
6231   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6232 
6233   bool doHeapRegion(HeapRegion* r) {
6234     if (r->is_empty()) {
6235       // We ignore empty regions, we'll empty the free list afterwards
6236     } else if (r->is_young()) {
6237       // We ignore young regions, we'll empty the young list afterwards
6238     } else if (r->isHumongous()) {
6239       // We ignore humongous regions, we're not tearing down the
6240       // humongous region set
6241     } else {
6242       // The rest should be old
6243       _old_set->remove(r);
6244     }
6245     return false;
6246   }
6247 
6248   ~TearDownRegionSetsClosure() {
6249     assert(_old_set->is_empty(), "post-condition");
6250   }
6251 };
6252 
6253 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6254   assert_at_safepoint(true /* should_be_vm_thread */);
6255 
6256   if (!free_list_only) {
6257     TearDownRegionSetsClosure cl(&_old_set);
6258     heap_region_iterate(&cl);
6259 
6260     // Need to do this after the heap iteration to be able to
6261     // recognize the young regions and ignore them during the iteration.
6262     _young_list->empty_list();
6263   }
6264   _free_list.remove_all();
6265 }
6266 
6267 class RebuildRegionSetsClosure : public HeapRegionClosure {
6268 private:
6269   bool            _free_list_only;
6270   OldRegionSet*   _old_set;
6271   FreeRegionList* _free_list;
6272   size_t          _total_used;
6273 
6274 public:
6275   RebuildRegionSetsClosure(bool free_list_only,
6276                            OldRegionSet* old_set, FreeRegionList* free_list) :
6277     _free_list_only(free_list_only),
6278     _old_set(old_set), _free_list(free_list), _total_used(0) {
6279     assert(_free_list->is_empty(), "pre-condition");
6280     if (!free_list_only) {
6281       assert(_old_set->is_empty(), "pre-condition");
6282     }
6283   }
6284 
6285   bool doHeapRegion(HeapRegion* r) {
6286     if (r->continuesHumongous()) {
6287       return false;
6288     }
6289 
6290     if (r->is_empty()) {
6291       // Add free regions to the free list
6292       _free_list->add_as_tail(r);
6293     } else if (!_free_list_only) {
6294       assert(!r->is_young(), "we should not come across young regions");
6295 
6296       if (r->isHumongous()) {
6297         // We ignore humongous regions, we left the humongous set unchanged
6298       } else {
6299         // The rest should be old, add them to the old set
6300         _old_set->add(r);
6301       }
6302       _total_used += r->used();
6303     }
6304 
6305     return false;
6306   }
6307 
6308   size_t total_used() {
6309     return _total_used;
6310   }
6311 };
6312 
6313 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6314   assert_at_safepoint(true /* should_be_vm_thread */);
6315 
6316   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6317   heap_region_iterate(&cl);
6318 
6319   if (!free_list_only) {
6320     _summary_bytes_used = cl.total_used();
6321   }
6322   assert(_summary_bytes_used == recalculate_used(),
6323          err_msg("inconsistent _summary_bytes_used, "
6324                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6325                  _summary_bytes_used, recalculate_used()));
6326 }
6327 
6328 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6329   _refine_cte_cl->set_concurrent(concurrent);
6330 }
6331 
6332 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6333   HeapRegion* hr = heap_region_containing(p);
6334   if (hr == NULL) {
6335     return is_in_permanent(p);
6336   } else {
6337     return hr->is_in(p);
6338   }
6339 }
6340 
6341 // Methods for the mutator alloc region
6342 
6343 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6344                                                       bool force) {
6345   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6346   assert(!force || g1_policy()->can_expand_young_list(),
6347          "if force is true we should be able to expand the young list");
6348   bool young_list_full = g1_policy()->is_young_list_full();
6349   if (force || !young_list_full) {
6350     HeapRegion* new_alloc_region = new_region(word_size,
6351                                               false /* do_expand */);
6352     if (new_alloc_region != NULL) {
6353       set_region_short_lived_locked(new_alloc_region);
6354       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6355       return new_alloc_region;
6356     }
6357   }
6358   return NULL;
6359 }
6360 
6361 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6362                                                   size_t allocated_bytes) {
6363   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6364   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6365 
6366   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6367   _summary_bytes_used += allocated_bytes;
6368   _hr_printer.retire(alloc_region);
6369   // We update the eden sizes here, when the region is retired,
6370   // instead of when it's allocated, since this is the point that its
6371   // used space has been recored in _summary_bytes_used.
6372   g1mm()->update_eden_size();
6373 }
6374 
6375 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6376                                                     bool force) {
6377   return _g1h->new_mutator_alloc_region(word_size, force);
6378 }
6379 
6380 void G1CollectedHeap::set_par_threads() {
6381   // Don't change the number of workers.  Use the value previously set
6382   // in the workgroup.
6383   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6384   uint n_workers = workers()->active_workers();
6385   assert(UseDynamicNumberOfGCThreads ||
6386            n_workers == workers()->total_workers(),
6387       "Otherwise should be using the total number of workers");
6388   if (n_workers == 0) {
6389     assert(false, "Should have been set in prior evacuation pause.");
6390     n_workers = ParallelGCThreads;
6391     workers()->set_active_workers(n_workers);
6392   }
6393   set_par_threads(n_workers);
6394 }
6395 
6396 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6397                                        size_t allocated_bytes) {
6398   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6399 }
6400 
6401 // Methods for the GC alloc regions
6402 
6403 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6404                                                  uint count,
6405                                                  GCAllocPurpose ap) {
6406   assert(FreeList_lock->owned_by_self(), "pre-condition");
6407 
6408   if (count < g1_policy()->max_regions(ap)) {
6409     HeapRegion* new_alloc_region = new_region(word_size,
6410                                               true /* do_expand */);
6411     if (new_alloc_region != NULL) {
6412       // We really only need to do this for old regions given that we
6413       // should never scan survivors. But it doesn't hurt to do it
6414       // for survivors too.
6415       new_alloc_region->set_saved_mark();
6416       if (ap == GCAllocForSurvived) {
6417         new_alloc_region->set_survivor();
6418         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6419       } else {
6420         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6421       }
6422       bool during_im = g1_policy()->during_initial_mark_pause();
6423       new_alloc_region->note_start_of_copying(during_im);
6424       return new_alloc_region;
6425     } else {
6426       g1_policy()->note_alloc_region_limit_reached(ap);
6427     }
6428   }
6429   return NULL;
6430 }
6431 
6432 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6433                                              size_t allocated_bytes,
6434                                              GCAllocPurpose ap) {
6435   bool during_im = g1_policy()->during_initial_mark_pause();
6436   alloc_region->note_end_of_copying(during_im);
6437   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6438   if (ap == GCAllocForSurvived) {
6439     young_list()->add_survivor_region(alloc_region);
6440   } else {
6441     _old_set.add(alloc_region);
6442   }
6443   _hr_printer.retire(alloc_region);
6444 }
6445 
6446 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6447                                                        bool force) {
6448   assert(!force, "not supported for GC alloc regions");
6449   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6450 }
6451 
6452 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6453                                           size_t allocated_bytes) {
6454   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6455                                GCAllocForSurvived);
6456 }
6457 
6458 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6459                                                   bool force) {
6460   assert(!force, "not supported for GC alloc regions");
6461   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6462 }
6463 
6464 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6465                                      size_t allocated_bytes) {
6466   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6467                                GCAllocForTenured);
6468 }
6469 // Heap region set verification
6470 
6471 class VerifyRegionListsClosure : public HeapRegionClosure {
6472 private:
6473   FreeRegionList*     _free_list;
6474   OldRegionSet*       _old_set;
6475   HumongousRegionSet* _humongous_set;
6476   uint                _region_count;
6477 
6478 public:
6479   VerifyRegionListsClosure(OldRegionSet* old_set,
6480                            HumongousRegionSet* humongous_set,
6481                            FreeRegionList* free_list) :
6482     _old_set(old_set), _humongous_set(humongous_set),
6483     _free_list(free_list), _region_count(0) { }
6484 
6485   uint region_count() { return _region_count; }
6486 
6487   bool doHeapRegion(HeapRegion* hr) {
6488     _region_count += 1;
6489 
6490     if (hr->continuesHumongous()) {
6491       return false;
6492     }
6493 
6494     if (hr->is_young()) {
6495       // TODO
6496     } else if (hr->startsHumongous()) {
6497       _humongous_set->verify_next_region(hr);
6498     } else if (hr->is_empty()) {
6499       _free_list->verify_next_region(hr);
6500     } else {
6501       _old_set->verify_next_region(hr);
6502     }
6503     return false;
6504   }
6505 };
6506 
6507 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6508                                              HeapWord* bottom) {
6509   HeapWord* end = bottom + HeapRegion::GrainWords;
6510   MemRegion mr(bottom, end);
6511   assert(_g1_reserved.contains(mr), "invariant");
6512   // This might return NULL if the allocation fails
6513   return new HeapRegion(hrs_index, _bot_shared, mr, true /* is_zeroed */);
6514 }
6515 
6516 void G1CollectedHeap::verify_region_sets() {
6517   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6518 
6519   // First, check the explicit lists.
6520   _free_list.verify();
6521   {
6522     // Given that a concurrent operation might be adding regions to
6523     // the secondary free list we have to take the lock before
6524     // verifying it.
6525     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6526     _secondary_free_list.verify();
6527   }
6528   _old_set.verify();
6529   _humongous_set.verify();
6530 
6531   // If a concurrent region freeing operation is in progress it will
6532   // be difficult to correctly attributed any free regions we come
6533   // across to the correct free list given that they might belong to
6534   // one of several (free_list, secondary_free_list, any local lists,
6535   // etc.). So, if that's the case we will skip the rest of the
6536   // verification operation. Alternatively, waiting for the concurrent
6537   // operation to complete will have a non-trivial effect on the GC's
6538   // operation (no concurrent operation will last longer than the
6539   // interval between two calls to verification) and it might hide
6540   // any issues that we would like to catch during testing.
6541   if (free_regions_coming()) {
6542     return;
6543   }
6544 
6545   // Make sure we append the secondary_free_list on the free_list so
6546   // that all free regions we will come across can be safely
6547   // attributed to the free_list.
6548   append_secondary_free_list_if_not_empty_with_lock();
6549 
6550   // Finally, make sure that the region accounting in the lists is
6551   // consistent with what we see in the heap.
6552   _old_set.verify_start();
6553   _humongous_set.verify_start();
6554   _free_list.verify_start();
6555 
6556   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6557   heap_region_iterate(&cl);
6558 
6559   _old_set.verify_end();
6560   _humongous_set.verify_end();
6561   _free_list.verify_end();
6562 }