1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcWhen.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/vmThread.hpp"
  45 #include "services/memTracker.hpp"
  46 #include "utilities/vmError.hpp"
  47 
  48 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  49 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  50 PSPermGen*   ParallelScavengeHeap::_perm_gen = NULL;
  51 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  52 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  53 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  54 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  55 
  56 static void trace_gen_sizes(const char* const str,
  57                             size_t pg_min, size_t pg_max,
  58                             size_t og_min, size_t og_max,
  59                             size_t yg_min, size_t yg_max)
  60 {
  61   if (TracePageSizes) {
  62     tty->print_cr("%s:  " SIZE_FORMAT "," SIZE_FORMAT " "
  63                   SIZE_FORMAT "," SIZE_FORMAT " "
  64                   SIZE_FORMAT "," SIZE_FORMAT " "
  65                   SIZE_FORMAT,
  66                   str, pg_min / K, pg_max / K,
  67                   og_min / K, og_max / K,
  68                   yg_min / K, yg_max / K,
  69                   (pg_max + og_max + yg_max) / K);
  70   }
  71 }
  72 
  73 jint ParallelScavengeHeap::initialize() {
  74   CollectedHeap::pre_initialize();
  75 
  76   // Cannot be initialized until after the flags are parsed
  77   // GenerationSizer flag_parser;
  78   _collector_policy = new GenerationSizer();
  79 
  80   size_t yg_min_size = _collector_policy->min_young_gen_size();
  81   size_t yg_max_size = _collector_policy->max_young_gen_size();
  82   size_t og_min_size = _collector_policy->min_old_gen_size();
  83   size_t og_max_size = _collector_policy->max_old_gen_size();
  84   // Why isn't there a min_perm_gen_size()?
  85   size_t pg_min_size = _collector_policy->perm_gen_size();
  86   size_t pg_max_size = _collector_policy->max_perm_gen_size();
  87 
  88   trace_gen_sizes("ps heap raw",
  89                   pg_min_size, pg_max_size,
  90                   og_min_size, og_max_size,
  91                   yg_min_size, yg_max_size);
  92 
  93   // The ReservedSpace ctor used below requires that the page size for the perm
  94   // gen is <= the page size for the rest of the heap (young + old gens).
  95   const size_t og_page_sz = os::page_size_for_region(yg_min_size + og_min_size,
  96                                                      yg_max_size + og_max_size,
  97                                                      8);
  98   const size_t pg_page_sz = MIN2(os::page_size_for_region(pg_min_size,
  99                                                           pg_max_size, 16),
 100                                  og_page_sz);
 101 
 102   const size_t pg_align = set_alignment(_perm_gen_alignment,  pg_page_sz);
 103   const size_t og_align = set_alignment(_old_gen_alignment,   og_page_sz);
 104   const size_t yg_align = set_alignment(_young_gen_alignment, og_page_sz);
 105 
 106   // Update sizes to reflect the selected page size(s).
 107   //
 108   // NEEDS_CLEANUP.  The default TwoGenerationCollectorPolicy uses NewRatio; it
 109   // should check UseAdaptiveSizePolicy.  Changes from generationSizer could
 110   // move to the common code.
 111   yg_min_size = align_size_up(yg_min_size, yg_align);
 112   yg_max_size = align_size_up(yg_max_size, yg_align);
 113   size_t yg_cur_size =
 114     align_size_up(_collector_policy->young_gen_size(), yg_align);
 115   yg_cur_size = MAX2(yg_cur_size, yg_min_size);
 116 
 117   og_min_size = align_size_up(og_min_size, og_align);
 118   // Align old gen size down to preserve specified heap size.
 119   assert(og_align == yg_align, "sanity");
 120   og_max_size = align_size_down(og_max_size, og_align);
 121   og_max_size = MAX2(og_max_size, og_min_size);
 122   size_t og_cur_size =
 123     align_size_down(_collector_policy->old_gen_size(), og_align);
 124   og_cur_size = MAX2(og_cur_size, og_min_size);
 125 
 126   pg_min_size = align_size_up(pg_min_size, pg_align);
 127   pg_max_size = align_size_up(pg_max_size, pg_align);
 128   size_t pg_cur_size = pg_min_size;
 129 
 130   trace_gen_sizes("ps heap rnd",
 131                   pg_min_size, pg_max_size,
 132                   og_min_size, og_max_size,
 133                   yg_min_size, yg_max_size);
 134 
 135   const size_t total_reserved = pg_max_size + og_max_size + yg_max_size;
 136   char* addr = Universe::preferred_heap_base(total_reserved, Universe::UnscaledNarrowOop);
 137 
 138   // The main part of the heap (old gen + young gen) can often use a larger page
 139   // size than is needed or wanted for the perm gen.  Use the "compound
 140   // alignment" ReservedSpace ctor to avoid having to use the same page size for
 141   // all gens.
 142 
 143   ReservedHeapSpace heap_rs(pg_max_size, pg_align, og_max_size + yg_max_size,
 144                             og_align, addr);
 145 
 146   if (UseCompressedOops) {
 147     if (addr != NULL && !heap_rs.is_reserved()) {
 148       // Failed to reserve at specified address - the requested memory
 149       // region is taken already, for example, by 'java' launcher.
 150       // Try again to reserver heap higher.
 151       addr = Universe::preferred_heap_base(total_reserved, Universe::ZeroBasedNarrowOop);
 152       ReservedHeapSpace heap_rs0(pg_max_size, pg_align, og_max_size + yg_max_size,
 153                                  og_align, addr);
 154       if (addr != NULL && !heap_rs0.is_reserved()) {
 155         // Failed to reserve at specified address again - give up.
 156         addr = Universe::preferred_heap_base(total_reserved, Universe::HeapBasedNarrowOop);
 157         assert(addr == NULL, "");
 158         ReservedHeapSpace heap_rs1(pg_max_size, pg_align, og_max_size + yg_max_size,
 159                                    og_align, addr);
 160         heap_rs = heap_rs1;
 161       } else {
 162         heap_rs = heap_rs0;
 163       }
 164     }
 165   }
 166 
 167   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
 168 
 169   os::trace_page_sizes("ps perm", pg_min_size, pg_max_size, pg_page_sz,
 170                        heap_rs.base(), pg_max_size);
 171   os::trace_page_sizes("ps main", og_min_size + yg_min_size,
 172                        og_max_size + yg_max_size, og_page_sz,
 173                        heap_rs.base() + pg_max_size,
 174                        heap_rs.size() - pg_max_size);
 175   if (!heap_rs.is_reserved()) {
 176     vm_shutdown_during_initialization(
 177       "Could not reserve enough space for object heap");
 178     return JNI_ENOMEM;
 179   }
 180 
 181   _reserved = MemRegion((HeapWord*)heap_rs.base(),
 182                         (HeapWord*)(heap_rs.base() + heap_rs.size()));
 183 
 184   CardTableExtension* const barrier_set = new CardTableExtension(_reserved, 3);
 185   _barrier_set = barrier_set;
 186   oopDesc::set_bs(_barrier_set);
 187   if (_barrier_set == NULL) {
 188     vm_shutdown_during_initialization(
 189       "Could not reserve enough space for barrier set");
 190     return JNI_ENOMEM;
 191   }
 192 
 193   // Initial young gen size is 4 Mb
 194   //
 195   // XXX - what about flag_parser.young_gen_size()?
 196   const size_t init_young_size = align_size_up(4 * M, yg_align);
 197   yg_cur_size = MAX2(MIN2(init_young_size, yg_max_size), yg_cur_size);
 198 
 199   // Split the reserved space into perm gen and the main heap (everything else).
 200   // The main heap uses a different alignment.
 201   ReservedSpace perm_rs = heap_rs.first_part(pg_max_size);
 202   ReservedSpace main_rs = heap_rs.last_part(pg_max_size, og_align);
 203 
 204   // Make up the generations
 205   // Calculate the maximum size that a generation can grow.  This
 206   // includes growth into the other generation.  Note that the
 207   // parameter _max_gen_size is kept as the maximum
 208   // size of the generation as the boundaries currently stand.
 209   // _max_gen_size is still used as that value.
 210   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 211   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
 212 
 213   _gens = new AdjoiningGenerations(main_rs,
 214                                    og_cur_size,
 215                                    og_min_size,
 216                                    og_max_size,
 217                                    yg_cur_size,
 218                                    yg_min_size,
 219                                    yg_max_size,
 220                                    yg_align);
 221 
 222   _old_gen = _gens->old_gen();
 223   _young_gen = _gens->young_gen();
 224 
 225   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
 226   const size_t old_capacity = _old_gen->capacity_in_bytes();
 227   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 228   _size_policy =
 229     new PSAdaptiveSizePolicy(eden_capacity,
 230                              initial_promo_size,
 231                              young_gen()->to_space()->capacity_in_bytes(),
 232                              intra_heap_alignment(),
 233                              max_gc_pause_sec,
 234                              max_gc_minor_pause_sec,
 235                              GCTimeRatio
 236                              );
 237 
 238   _perm_gen = new PSPermGen(perm_rs,
 239                             pg_align,
 240                             pg_cur_size,
 241                             pg_cur_size,
 242                             pg_max_size,
 243                             "perm", 2);
 244 
 245   assert(!UseAdaptiveGCBoundary ||
 246     (old_gen()->virtual_space()->high_boundary() ==
 247      young_gen()->virtual_space()->low_boundary()),
 248     "Boundaries must meet");
 249   // initialize the policy counters - 2 collectors, 3 generations
 250   _gc_policy_counters =
 251     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 252   _psh = this;
 253 
 254   // Set up the GCTaskManager
 255   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 256 
 257   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 258     return JNI_ENOMEM;
 259   }
 260 
 261   return JNI_OK;
 262 }
 263 
 264 void ParallelScavengeHeap::post_initialize() {
 265   // Need to init the tenuring threshold
 266   PSScavenge::initialize();
 267   if (UseParallelOldGC) {
 268     PSParallelCompact::post_initialize();
 269   } else {
 270     PSMarkSweep::initialize();
 271   }
 272   PSPromotionManager::initialize();
 273 }
 274 
 275 void ParallelScavengeHeap::update_counters() {
 276   young_gen()->update_counters();
 277   old_gen()->update_counters();
 278   perm_gen()->update_counters();
 279 }
 280 
 281 size_t ParallelScavengeHeap::capacity() const {
 282   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 283   return value;
 284 }
 285 
 286 size_t ParallelScavengeHeap::used() const {
 287   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 288   return value;
 289 }
 290 
 291 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 292   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 293 }
 294 
 295 
 296 size_t ParallelScavengeHeap::permanent_capacity() const {
 297   return perm_gen()->capacity_in_bytes();
 298 }
 299 
 300 size_t ParallelScavengeHeap::permanent_used() const {
 301   return perm_gen()->used_in_bytes();
 302 }
 303 
 304 size_t ParallelScavengeHeap::max_capacity() const {
 305   size_t estimated = reserved_region().byte_size();
 306   estimated -= perm_gen()->reserved().byte_size();
 307   if (UseAdaptiveSizePolicy) {
 308     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 309   } else {
 310     estimated -= young_gen()->to_space()->capacity_in_bytes();
 311   }
 312   return MAX2(estimated, capacity());
 313 }
 314 
 315 bool ParallelScavengeHeap::is_in(const void* p) const {
 316   if (young_gen()->is_in(p)) {
 317     return true;
 318   }
 319 
 320   if (old_gen()->is_in(p)) {
 321     return true;
 322   }
 323 
 324   if (perm_gen()->is_in(p)) {
 325     return true;
 326   }
 327 
 328   return false;
 329 }
 330 
 331 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 332   if (young_gen()->is_in_reserved(p)) {
 333     return true;
 334   }
 335 
 336   if (old_gen()->is_in_reserved(p)) {
 337     return true;
 338   }
 339 
 340   if (perm_gen()->is_in_reserved(p)) {
 341     return true;
 342   }
 343 
 344   return false;
 345 }
 346 
 347 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 348   return is_in_young((oop)addr);
 349 }
 350 
 351 #ifdef ASSERT
 352 // Don't implement this by using is_in_young().  This method is used
 353 // in some cases to check that is_in_young() is correct.
 354 bool ParallelScavengeHeap::is_in_partial_collection(const void *p) {
 355   assert(is_in_reserved(p) || p == NULL,
 356     "Does not work if address is non-null and outside of the heap");
 357   // The order of the generations is perm (low addr), old, young (high addr)
 358   return p >= old_gen()->reserved().end();
 359 }
 360 #endif
 361 
 362 // There are two levels of allocation policy here.
 363 //
 364 // When an allocation request fails, the requesting thread must invoke a VM
 365 // operation, transfer control to the VM thread, and await the results of a
 366 // garbage collection. That is quite expensive, and we should avoid doing it
 367 // multiple times if possible.
 368 //
 369 // To accomplish this, we have a basic allocation policy, and also a
 370 // failed allocation policy.
 371 //
 372 // The basic allocation policy controls how you allocate memory without
 373 // attempting garbage collection. It is okay to grab locks and
 374 // expand the heap, if that can be done without coming to a safepoint.
 375 // It is likely that the basic allocation policy will not be very
 376 // aggressive.
 377 //
 378 // The failed allocation policy is invoked from the VM thread after
 379 // the basic allocation policy is unable to satisfy a mem_allocate
 380 // request. This policy needs to cover the entire range of collection,
 381 // heap expansion, and out-of-memory conditions. It should make every
 382 // attempt to allocate the requested memory.
 383 
 384 // Basic allocation policy. Should never be called at a safepoint, or
 385 // from the VM thread.
 386 //
 387 // This method must handle cases where many mem_allocate requests fail
 388 // simultaneously. When that happens, only one VM operation will succeed,
 389 // and the rest will not be executed. For that reason, this method loops
 390 // during failed allocation attempts. If the java heap becomes exhausted,
 391 // we rely on the size_policy object to force a bail out.
 392 HeapWord* ParallelScavengeHeap::mem_allocate(
 393                                      size_t size,
 394                                      bool* gc_overhead_limit_was_exceeded) {
 395   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 396   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 397   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 398 
 399   // In general gc_overhead_limit_was_exceeded should be false so
 400   // set it so here and reset it to true only if the gc time
 401   // limit is being exceeded as checked below.
 402   *gc_overhead_limit_was_exceeded = false;
 403 
 404   HeapWord* result = young_gen()->allocate(size);
 405 
 406   uint loop_count = 0;
 407   uint gc_count = 0;
 408 
 409   while (result == NULL) {
 410     // We don't want to have multiple collections for a single filled generation.
 411     // To prevent this, each thread tracks the total_collections() value, and if
 412     // the count has changed, does not do a new collection.
 413     //
 414     // The collection count must be read only while holding the heap lock. VM
 415     // operations also hold the heap lock during collections. There is a lock
 416     // contention case where thread A blocks waiting on the Heap_lock, while
 417     // thread B is holding it doing a collection. When thread A gets the lock,
 418     // the collection count has already changed. To prevent duplicate collections,
 419     // The policy MUST attempt allocations during the same period it reads the
 420     // total_collections() value!
 421     {
 422       MutexLocker ml(Heap_lock);
 423       gc_count = Universe::heap()->total_collections();
 424 
 425       result = young_gen()->allocate(size);
 426       if (result != NULL) {
 427         return result;
 428       }
 429 
 430       // If certain conditions hold, try allocating from the old gen.
 431       result = mem_allocate_old_gen(size);
 432       if (result != NULL) {
 433         return result;
 434       }
 435 
 436       // Failed to allocate without a gc.
 437       if (GC_locker::is_active_and_needs_gc()) {
 438         // If this thread is not in a jni critical section, we stall
 439         // the requestor until the critical section has cleared and
 440         // GC allowed. When the critical section clears, a GC is
 441         // initiated by the last thread exiting the critical section; so
 442         // we retry the allocation sequence from the beginning of the loop,
 443         // rather than causing more, now probably unnecessary, GC attempts.
 444         JavaThread* jthr = JavaThread::current();
 445         if (!jthr->in_critical()) {
 446           MutexUnlocker mul(Heap_lock);
 447           GC_locker::stall_until_clear();
 448           continue;
 449         } else {
 450           if (CheckJNICalls) {
 451             fatal("Possible deadlock due to allocating while"
 452                   " in jni critical section");
 453           }
 454           return NULL;
 455         }
 456       }
 457     }
 458 
 459     if (result == NULL) {
 460       // Generate a VM operation
 461       VM_ParallelGCFailedAllocation op(size, gc_count);
 462       VMThread::execute(&op);
 463 
 464       // Did the VM operation execute? If so, return the result directly.
 465       // This prevents us from looping until time out on requests that can
 466       // not be satisfied.
 467       if (op.prologue_succeeded()) {
 468         assert(Universe::heap()->is_in_or_null(op.result()),
 469           "result not in heap");
 470 
 471         // If GC was locked out during VM operation then retry allocation
 472         // and/or stall as necessary.
 473         if (op.gc_locked()) {
 474           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 475           continue;  // retry and/or stall as necessary
 476         }
 477 
 478         // Exit the loop if the gc time limit has been exceeded.
 479         // The allocation must have failed above ("result" guarding
 480         // this path is NULL) and the most recent collection has exceeded the
 481         // gc overhead limit (although enough may have been collected to
 482         // satisfy the allocation).  Exit the loop so that an out-of-memory
 483         // will be thrown (return a NULL ignoring the contents of
 484         // op.result()),
 485         // but clear gc_overhead_limit_exceeded so that the next collection
 486         // starts with a clean slate (i.e., forgets about previous overhead
 487         // excesses).  Fill op.result() with a filler object so that the
 488         // heap remains parsable.
 489         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 490         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 491         assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 492         if (limit_exceeded && softrefs_clear) {
 493           *gc_overhead_limit_was_exceeded = true;
 494           size_policy()->set_gc_overhead_limit_exceeded(false);
 495           if (PrintGCDetails && Verbose) {
 496             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 497               "return NULL because gc_overhead_limit_exceeded is set");
 498           }
 499           if (op.result() != NULL) {
 500             CollectedHeap::fill_with_object(op.result(), size);
 501           }
 502           return NULL;
 503         }
 504 
 505         return op.result();
 506       }
 507     }
 508 
 509     // The policy object will prevent us from looping forever. If the
 510     // time spent in gc crosses a threshold, we will bail out.
 511     loop_count++;
 512     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 513         (loop_count % QueuedAllocationWarningCount == 0)) {
 514       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 515               " size=%d", loop_count, size);
 516     }
 517   }
 518 
 519   return result;
 520 }
 521 
 522 // A "death march" is a series of ultra-slow allocations in which a full gc is
 523 // done before each allocation, and after the full gc the allocation still
 524 // cannot be satisfied from the young gen.  This routine detects that condition;
 525 // it should be called after a full gc has been done and the allocation
 526 // attempted from the young gen. The parameter 'addr' should be the result of
 527 // that young gen allocation attempt.
 528 void
 529 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 530   if (addr != NULL) {
 531     _death_march_count = 0;  // death march has ended
 532   } else if (_death_march_count == 0) {
 533     if (should_alloc_in_eden(size)) {
 534       _death_march_count = 1;    // death march has started
 535     }
 536   }
 537 }
 538 
 539 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 540   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 541     // Size is too big for eden, or gc is locked out.
 542     return old_gen()->allocate(size);
 543   }
 544 
 545   // If a "death march" is in progress, allocate from the old gen a limited
 546   // number of times before doing a GC.
 547   if (_death_march_count > 0) {
 548     if (_death_march_count < 64) {
 549       ++_death_march_count;
 550       return old_gen()->allocate(size);
 551     } else {
 552       _death_march_count = 0;
 553     }
 554   }
 555   return NULL;
 556 }
 557 
 558 // Failed allocation policy. Must be called from the VM thread, and
 559 // only at a safepoint! Note that this method has policy for allocation
 560 // flow, and NOT collection policy. So we do not check for gc collection
 561 // time over limit here, that is the responsibility of the heap specific
 562 // collection methods. This method decides where to attempt allocations,
 563 // and when to attempt collections, but no collection specific policy.
 564 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 565   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 566   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 567   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 568   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 569 
 570   // We assume that allocation in eden will fail unless we collect.
 571 
 572   // First level allocation failure, scavenge and allocate in young gen.
 573   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 574   const bool invoked_full_gc = PSScavenge::invoke();
 575   HeapWord* result = young_gen()->allocate(size);
 576 
 577   // Second level allocation failure.
 578   //   Mark sweep and allocate in young generation.
 579   if (result == NULL && !invoked_full_gc) {
 580     invoke_full_gc(false);
 581     result = young_gen()->allocate(size);
 582   }
 583 
 584   death_march_check(result, size);
 585 
 586   // Third level allocation failure.
 587   //   After mark sweep and young generation allocation failure,
 588   //   allocate in old generation.
 589   if (result == NULL) {
 590     result = old_gen()->allocate(size);
 591   }
 592 
 593   // Fourth level allocation failure. We're running out of memory.
 594   //   More complete mark sweep and allocate in young generation.
 595   if (result == NULL) {
 596     invoke_full_gc(true);
 597     result = young_gen()->allocate(size);
 598   }
 599 
 600   // Fifth level allocation failure.
 601   //   After more complete mark sweep, allocate in old generation.
 602   if (result == NULL) {
 603     result = old_gen()->allocate(size);
 604   }
 605 
 606   return result;
 607 }
 608 
 609 //
 610 // This is the policy loop for allocating in the permanent generation.
 611 // If the initial allocation fails, we create a vm operation which will
 612 // cause a collection.
 613 HeapWord* ParallelScavengeHeap::permanent_mem_allocate(size_t size) {
 614   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 615   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 616   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 617 
 618   HeapWord* result;
 619 
 620   uint loop_count = 0;
 621   uint gc_count = 0;
 622   uint full_gc_count = 0;
 623 
 624   do {
 625     // We don't want to have multiple collections for a single filled generation.
 626     // To prevent this, each thread tracks the total_collections() value, and if
 627     // the count has changed, does not do a new collection.
 628     //
 629     // The collection count must be read only while holding the heap lock. VM
 630     // operations also hold the heap lock during collections. There is a lock
 631     // contention case where thread A blocks waiting on the Heap_lock, while
 632     // thread B is holding it doing a collection. When thread A gets the lock,
 633     // the collection count has already changed. To prevent duplicate collections,
 634     // The policy MUST attempt allocations during the same period it reads the
 635     // total_collections() value!
 636     {
 637       MutexLocker ml(Heap_lock);
 638       gc_count      = Universe::heap()->total_collections();
 639       full_gc_count = Universe::heap()->total_full_collections();
 640 
 641       result = perm_gen()->allocate_permanent(size);
 642 
 643       if (result != NULL) {
 644         return result;
 645       }
 646 
 647       if (GC_locker::is_active_and_needs_gc()) {
 648         // If this thread is not in a jni critical section, we stall
 649         // the requestor until the critical section has cleared and
 650         // GC allowed. When the critical section clears, a GC is
 651         // initiated by the last thread exiting the critical section; so
 652         // we retry the allocation sequence from the beginning of the loop,
 653         // rather than causing more, now probably unnecessary, GC attempts.
 654         JavaThread* jthr = JavaThread::current();
 655         if (!jthr->in_critical()) {
 656           MutexUnlocker mul(Heap_lock);
 657           GC_locker::stall_until_clear();
 658           continue;
 659         } else {
 660           if (CheckJNICalls) {
 661             fatal("Possible deadlock due to allocating while"
 662                   " in jni critical section");
 663           }
 664           return NULL;
 665         }
 666       }
 667     }
 668 
 669     if (result == NULL) {
 670 
 671       // Exit the loop if the gc time limit has been exceeded.
 672       // The allocation must have failed above (result must be NULL),
 673       // and the most recent collection must have exceeded the
 674       // gc time limit.  Exit the loop so that an out-of-memory
 675       // will be thrown (returning a NULL will do that), but
 676       // clear gc_overhead_limit_exceeded so that the next collection
 677       // will succeeded if the applications decides to handle the
 678       // out-of-memory and tries to go on.
 679       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 680       if (limit_exceeded) {
 681         size_policy()->set_gc_overhead_limit_exceeded(false);
 682         if (PrintGCDetails && Verbose) {
 683           gclog_or_tty->print_cr("ParallelScavengeHeap::permanent_mem_allocate:"
 684             " return NULL because gc_overhead_limit_exceeded is set");
 685         }
 686         assert(result == NULL, "Allocation did not fail");
 687         return NULL;
 688       }
 689 
 690       // Generate a VM operation
 691       VM_ParallelGCFailedPermanentAllocation op(size, gc_count, full_gc_count);
 692       VMThread::execute(&op);
 693 
 694       // Did the VM operation execute? If so, return the result directly.
 695       // This prevents us from looping until time out on requests that can
 696       // not be satisfied.
 697       if (op.prologue_succeeded()) {
 698         assert(Universe::heap()->is_in_permanent_or_null(op.result()),
 699           "result not in heap");
 700         // If GC was locked out during VM operation then retry allocation
 701         // and/or stall as necessary.
 702         if (op.gc_locked()) {
 703           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 704           continue;  // retry and/or stall as necessary
 705         }
 706         // If a NULL results is being returned, an out-of-memory
 707         // will be thrown now.  Clear the gc_overhead_limit_exceeded
 708         // flag to avoid the following situation.
 709         //      gc_overhead_limit_exceeded is set during a collection
 710         //      the collection fails to return enough space and an OOM is thrown
 711         //      a subsequent GC prematurely throws an out-of-memory because
 712         //        the gc_overhead_limit_exceeded counts did not start
 713         //        again from 0.
 714         if (op.result() == NULL) {
 715           size_policy()->reset_gc_overhead_limit_count();
 716         }
 717         return op.result();
 718       }
 719     }
 720 
 721     // The policy object will prevent us from looping forever. If the
 722     // time spent in gc crosses a threshold, we will bail out.
 723     loop_count++;
 724     if ((QueuedAllocationWarningCount > 0) &&
 725         (loop_count % QueuedAllocationWarningCount == 0)) {
 726       warning("ParallelScavengeHeap::permanent_mem_allocate retries %d times \n\t"
 727               " size=%d", loop_count, size);
 728     }
 729   } while (result == NULL);
 730 
 731   return result;
 732 }
 733 
 734 //
 735 // This is the policy code for permanent allocations which have failed
 736 // and require a collection. Note that just as in failed_mem_allocate,
 737 // we do not set collection policy, only where & when to allocate and
 738 // collect.
 739 HeapWord* ParallelScavengeHeap::failed_permanent_mem_allocate(size_t size) {
 740   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 741   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 742   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 743   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 744   assert(size > perm_gen()->free_in_words(), "Allocation should fail");
 745 
 746   // We assume (and assert!) that an allocation at this point will fail
 747   // unless we collect.
 748 
 749   // First level allocation failure.  Mark-sweep and allocate in perm gen.
 750   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 751   invoke_full_gc(false);
 752   HeapWord* result = perm_gen()->allocate_permanent(size);
 753 
 754   // Second level allocation failure. We're running out of memory.
 755   if (result == NULL) {
 756     invoke_full_gc(true);
 757     result = perm_gen()->allocate_permanent(size);
 758   }
 759 
 760   return result;
 761 }
 762 
 763 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 764   CollectedHeap::ensure_parsability(retire_tlabs);
 765   young_gen()->eden_space()->ensure_parsability();
 766 }
 767 
 768 size_t ParallelScavengeHeap::unsafe_max_alloc() {
 769   return young_gen()->eden_space()->free_in_bytes();
 770 }
 771 
 772 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 773   return young_gen()->eden_space()->tlab_capacity(thr);
 774 }
 775 
 776 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 777   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 778 }
 779 
 780 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 781   return young_gen()->allocate(size);
 782 }
 783 
 784 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 785   CollectedHeap::accumulate_statistics_all_tlabs();
 786 }
 787 
 788 void ParallelScavengeHeap::resize_all_tlabs() {
 789   CollectedHeap::resize_all_tlabs();
 790 }
 791 
 792 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 793   // We don't need barriers for stores to objects in the
 794   // young gen and, a fortiori, for initializing stores to
 795   // objects therein.
 796   return is_in_young(new_obj);
 797 }
 798 
 799 // This method is used by System.gc() and JVMTI.
 800 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 801   assert(!Heap_lock->owned_by_self(),
 802     "this thread should not own the Heap_lock");
 803 
 804   unsigned int gc_count      = 0;
 805   unsigned int full_gc_count = 0;
 806   {
 807     MutexLocker ml(Heap_lock);
 808     // This value is guarded by the Heap_lock
 809     gc_count      = Universe::heap()->total_collections();
 810     full_gc_count = Universe::heap()->total_full_collections();
 811   }
 812 
 813   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 814   VMThread::execute(&op);
 815 }
 816 
 817 // This interface assumes that it's being called by the
 818 // vm thread. It collects the heap assuming that the
 819 // heap lock is already held and that we are executing in
 820 // the context of the vm thread.
 821 void ParallelScavengeHeap::collect_as_vm_thread(GCCause::Cause cause) {
 822   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 823   assert(Heap_lock->is_locked(), "Precondition#2");
 824   GCCauseSetter gcs(this, cause);
 825   switch (cause) {
 826     case GCCause::_heap_inspection:
 827     case GCCause::_heap_dump: {
 828       HandleMark hm;
 829       invoke_full_gc(false);
 830       break;
 831     }
 832     default: // XXX FIX ME
 833       ShouldNotReachHere();
 834   }
 835 }
 836 
 837 
 838 void ParallelScavengeHeap::oop_iterate(OopClosure* cl) {
 839   Unimplemented();
 840 }
 841 
 842 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 843   young_gen()->object_iterate(cl);
 844   old_gen()->object_iterate(cl);
 845   perm_gen()->object_iterate(cl);
 846 }
 847 
 848 void ParallelScavengeHeap::permanent_oop_iterate(OopClosure* cl) {
 849   Unimplemented();
 850 }
 851 
 852 void ParallelScavengeHeap::permanent_object_iterate(ObjectClosure* cl) {
 853   perm_gen()->object_iterate(cl);
 854 }
 855 
 856 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 857   if (young_gen()->is_in_reserved(addr)) {
 858     assert(young_gen()->is_in(addr),
 859            "addr should be in allocated part of young gen");
 860     // called from os::print_location by find or VMError
 861     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 862     Unimplemented();
 863   } else if (old_gen()->is_in_reserved(addr)) {
 864     assert(old_gen()->is_in(addr),
 865            "addr should be in allocated part of old gen");
 866     return old_gen()->start_array()->object_start((HeapWord*)addr);
 867   } else if (perm_gen()->is_in_reserved(addr)) {
 868     assert(perm_gen()->is_in(addr),
 869            "addr should be in allocated part of perm gen");
 870     return perm_gen()->start_array()->object_start((HeapWord*)addr);
 871   }
 872   return 0;
 873 }
 874 
 875 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 876   return oop(addr)->size();
 877 }
 878 
 879 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 880   return block_start(addr) == addr;
 881 }
 882 
 883 jlong ParallelScavengeHeap::millis_since_last_gc() {
 884   return UseParallelOldGC ?
 885     PSParallelCompact::millis_since_last_gc() :
 886     PSMarkSweep::millis_since_last_gc();
 887 }
 888 
 889 void ParallelScavengeHeap::prepare_for_verify() {
 890   ensure_parsability(false);  // no need to retire TLABs for verification
 891 }
 892 
 893 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 894   PSOldGen* old = old_gen();
 895   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 896   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 897   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 898 
 899   PSYoungGen* young = young_gen();
 900   VirtualSpaceSummary young_summary(young->reserved().start(),
 901     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 902 
 903   MutableSpace* eden = young_gen()->eden_space();
 904   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 905 
 906   MutableSpace* from = young_gen()->from_space();
 907   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 908 
 909   MutableSpace* to = young_gen()->to_space();
 910   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 911 
 912   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 913   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 914 }
 915 
 916 VirtualSpaceSummary ParallelScavengeHeap::create_perm_gen_space_summary() {
 917   PSVirtualSpace* space = perm_gen()->virtual_space();
 918   return VirtualSpaceSummary(
 919     (HeapWord*)space->low_boundary(),
 920     (HeapWord*)space->high(),
 921     (HeapWord*)space->high_boundary());
 922 }
 923 
 924 void ParallelScavengeHeap::print_on(outputStream* st) const {
 925   young_gen()->print_on(st);
 926   old_gen()->print_on(st);
 927   perm_gen()->print_on(st);
 928 }
 929 
 930 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 931   PSScavenge::gc_task_manager()->threads_do(tc);
 932 }
 933 
 934 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 935   PSScavenge::gc_task_manager()->print_threads_on(st);
 936 }
 937 
 938 void ParallelScavengeHeap::print_tracing_info() const {
 939   if (TraceGen0Time) {
 940     double time = PSScavenge::accumulated_time()->seconds();
 941     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 942   }
 943   if (TraceGen1Time) {
 944     double time = PSMarkSweep::accumulated_time()->seconds();
 945     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 946   }
 947 }
 948 
 949 
 950 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 951   // Why do we need the total_collections()-filter below?
 952   if (total_collections() > 0) {
 953     if (!silent) {
 954       gclog_or_tty->print("permanent ");
 955     }
 956     perm_gen()->verify();
 957 
 958     if (!silent) {
 959       gclog_or_tty->print("tenured ");
 960     }
 961     old_gen()->verify();
 962 
 963     if (!silent) {
 964       gclog_or_tty->print("eden ");
 965     }
 966     young_gen()->verify();
 967   }
 968 }
 969 
 970 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 971   if (PrintGCDetails && Verbose) {
 972     gclog_or_tty->print(" "  SIZE_FORMAT
 973                         "->" SIZE_FORMAT
 974                         "("  SIZE_FORMAT ")",
 975                         prev_used, used(), capacity());
 976   } else {
 977     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 978                         "->" SIZE_FORMAT "K"
 979                         "("  SIZE_FORMAT "K)",
 980                         prev_used / K, used() / K, capacity() / K);
 981   }
 982 }
 983 
 984 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 985   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 986   const PermGenSummary& perm_gen_summary = create_perm_gen_summary();
 987   gc_tracer->report_gc_heap_summary(when, heap_summary, perm_gen_summary);
 988 }
 989 
 990 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 991   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 992   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 993   return _psh;
 994 }
 995 
 996 // Before delegating the resize to the young generation,
 997 // the reserved space for the young and old generations
 998 // may be changed to accomodate the desired resize.
 999 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
1000     size_t survivor_size) {
1001   if (UseAdaptiveGCBoundary) {
1002     if (size_policy()->bytes_absorbed_from_eden() != 0) {
1003       size_policy()->reset_bytes_absorbed_from_eden();
1004       return;  // The generation changed size already.
1005     }
1006     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
1007   }
1008 
1009   // Delegate the resize to the generation.
1010   _young_gen->resize(eden_size, survivor_size);
1011 }
1012 
1013 // Before delegating the resize to the old generation,
1014 // the reserved space for the young and old generations
1015 // may be changed to accomodate the desired resize.
1016 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
1017   if (UseAdaptiveGCBoundary) {
1018     if (size_policy()->bytes_absorbed_from_eden() != 0) {
1019       size_policy()->reset_bytes_absorbed_from_eden();
1020       return;  // The generation changed size already.
1021     }
1022     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
1023   }
1024 
1025   // Delegate the resize to the generation.
1026   _old_gen->resize(desired_free_space);
1027 }
1028 
1029 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
1030   // nothing particular
1031 }
1032 
1033 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
1034   // nothing particular
1035 }
1036 
1037 #ifndef PRODUCT
1038 void ParallelScavengeHeap::record_gen_tops_before_GC() {
1039   if (ZapUnusedHeapArea) {
1040     young_gen()->record_spaces_top();
1041     old_gen()->record_spaces_top();
1042     perm_gen()->record_spaces_top();
1043   }
1044 }
1045 
1046 void ParallelScavengeHeap::gen_mangle_unused_area() {
1047   if (ZapUnusedHeapArea) {
1048     young_gen()->eden_space()->mangle_unused_area();
1049     young_gen()->to_space()->mangle_unused_area();
1050     young_gen()->from_space()->mangle_unused_area();
1051     old_gen()->object_space()->mangle_unused_area();
1052     perm_gen()->object_space()->mangle_unused_area();
1053   }
1054 }
1055 #endif