1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc_implementation/shared/gcHeapSummary.hpp"
  28 #include "gc_implementation/shared/gcTrace.hpp"
  29 #include "gc_implementation/shared/gcTraceTime.hpp"
  30 #include "gc_implementation/shared/gcWhen.hpp"
  31 #include "gc_implementation/shared/vmGCOperations.hpp"
  32 #include "gc_interface/allocTracer.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "gc_interface/collectedHeap.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "runtime/init.hpp"
  38 #include "services/heapDumper.hpp"
  39 #ifdef TARGET_OS_FAMILY_linux
  40 # include "thread_linux.inline.hpp"
  41 #endif
  42 #ifdef TARGET_OS_FAMILY_solaris
  43 # include "thread_solaris.inline.hpp"
  44 #endif
  45 #ifdef TARGET_OS_FAMILY_windows
  46 # include "thread_windows.inline.hpp"
  47 #endif
  48 #ifdef TARGET_OS_FAMILY_bsd
  49 # include "thread_bsd.inline.hpp"
  50 #endif
  51 
  52 
  53 #ifdef ASSERT
  54 int CollectedHeap::_fire_out_of_memory_count = 0;
  55 #endif
  56 
  57 size_t CollectedHeap::_filler_array_max_size = 0;
  58 
  59 template <>
  60 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  61   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  62   st->print_raw(m);
  63 }
  64 
  65 void GCHeapLog::log_heap(bool before) {
  66   if (!should_log()) {
  67     return;
  68   }
  69 
  70   double timestamp = fetch_timestamp();
  71   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  72   int index = compute_log_index();
  73   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  74   _records[index].timestamp = timestamp;
  75   _records[index].data.is_before = before;
  76   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  77   if (before) {
  78     Universe::print_heap_before_gc(&st, true);
  79   } else {
  80     Universe::print_heap_after_gc(&st, true);
  81   }
  82 }
  83 
  84 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  85   size_t capacity_in_words = capacity() / HeapWordSize;
  86 
  87   return VirtualSpaceSummary(
  88     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  89 }
  90 
  91 GCHeapSummary CollectedHeap::create_heap_summary() {
  92   VirtualSpaceSummary heap_space = create_heap_space_summary();
  93   return GCHeapSummary(heap_space, used());
  94 }
  95 
  96 PermGenSummary CollectedHeap::create_perm_gen_summary() {
  97   VirtualSpaceSummary perm_space = create_perm_gen_space_summary();
  98   SpaceSummary object_space(perm_space.start(), perm_space.committed_end(), permanent_used());
  99 
 100   return PermGenSummary(perm_space, object_space);
 101 }
 102 
 103 void CollectedHeap::print_heap_before_gc() {
 104   if (PrintHeapAtGC) {
 105     Universe::print_heap_before_gc();
 106   }
 107   if (_gc_heap_log != NULL) {
 108     _gc_heap_log->log_heap_before();
 109   }
 110 }
 111 
 112 void CollectedHeap::print_heap_after_gc() {
 113   if (PrintHeapAtGC) {
 114     Universe::print_heap_after_gc();
 115   }
 116   if (_gc_heap_log != NULL) {
 117     _gc_heap_log->log_heap_after();
 118   }
 119 }
 120 
 121 void CollectedHeap::trace_heap(GCWhen::Type when, GCTracer* gc_tracer) {
 122   const GCHeapSummary& heap_summary = create_heap_summary();
 123   const PermGenSummary& perm_summary = create_perm_gen_summary();
 124   gc_tracer->report_gc_heap_summary(when, heap_summary, perm_summary);
 125 }
 126 
 127 void CollectedHeap::trace_heap_before_gc(GCTracer* gc_tracer) {
 128   trace_heap(GCWhen::BeforeGC, gc_tracer);
 129 }
 130 
 131 void CollectedHeap::trace_heap_after_gc(GCTracer* gc_tracer) {
 132   trace_heap(GCWhen::AfterGC, gc_tracer);
 133 }
 134 
 135 // Memory state functions.
 136 
 137 
 138 CollectedHeap::CollectedHeap() : _n_par_threads(0)
 139 {
 140   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 141   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 142   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 143                                              max_len / elements_per_word);
 144 
 145   _barrier_set = NULL;
 146   _is_gc_active = false;
 147   _total_collections = _total_full_collections = 0;
 148   _gc_cause = _gc_lastcause = GCCause::_no_gc;
 149   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 150   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 151 
 152   if (UsePerfData) {
 153     EXCEPTION_MARK;
 154 
 155     // create the gc cause jvmstat counters
 156     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 157                              80, GCCause::to_string(_gc_cause), CHECK);
 158 
 159     _perf_gc_lastcause =
 160                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 161                              80, GCCause::to_string(_gc_lastcause), CHECK);
 162   }
 163   _defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
 164   // Create the ring log
 165   if (LogEvents) {
 166     _gc_heap_log = new GCHeapLog();
 167   } else {
 168     _gc_heap_log = NULL;
 169   }
 170 }
 171 
 172 void CollectedHeap::pre_initialize() {
 173   // Used for ReduceInitialCardMarks (when COMPILER2 is used);
 174   // otherwise remains unused.
 175 #ifdef COMPILER2
 176   _defer_initial_card_mark =    ReduceInitialCardMarks && can_elide_tlab_store_barriers()
 177                              && (DeferInitialCardMark || card_mark_must_follow_store());
 178 #else
 179   assert(_defer_initial_card_mark == false, "Who would set it?");
 180 #endif
 181 }
 182 
 183 #ifndef PRODUCT
 184 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
 185   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 186     for (size_t slot = 0; slot < size; slot += 1) {
 187       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 188              "Found badHeapWordValue in post-allocation check");
 189     }
 190   }
 191 }
 192 
 193 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 194   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 195     for (size_t slot = 0; slot < size; slot += 1) {
 196       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 197              "Found non badHeapWordValue in pre-allocation check");
 198     }
 199   }
 200 }
 201 #endif // PRODUCT
 202 
 203 #ifdef ASSERT
 204 void CollectedHeap::check_for_valid_allocation_state() {
 205   Thread *thread = Thread::current();
 206   // How to choose between a pending exception and a potential
 207   // OutOfMemoryError?  Don't allow pending exceptions.
 208   // This is a VM policy failure, so how do we exhaustively test it?
 209   assert(!thread->has_pending_exception(),
 210          "shouldn't be allocating with pending exception");
 211   if (StrictSafepointChecks) {
 212     assert(thread->allow_allocation(),
 213            "Allocation done by thread for which allocation is blocked "
 214            "by No_Allocation_Verifier!");
 215     // Allocation of an oop can always invoke a safepoint,
 216     // hence, the true argument
 217     thread->check_for_valid_safepoint_state(true);
 218   }
 219 }
 220 #endif
 221 
 222 HeapWord* CollectedHeap::allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size) {
 223 
 224   // Retain tlab and allocate object in shared space if
 225   // the amount free in the tlab is too large to discard.
 226   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 227     thread->tlab().record_slow_allocation(size);
 228     return NULL;
 229   }
 230 
 231   // Discard tlab and allocate a new one.
 232   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 233   size_t new_tlab_size = thread->tlab().compute_size(size);
 234 
 235   thread->tlab().clear_before_allocation();
 236 
 237   if (new_tlab_size == 0) {
 238     return NULL;
 239   }
 240 
 241   // Allocate a new TLAB...
 242   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 243   if (obj == NULL) {
 244     return NULL;
 245   }
 246 
 247   AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);
 248 
 249   if (ZeroTLAB) {
 250     // ..and clear it.
 251     Copy::zero_to_words(obj, new_tlab_size);
 252   } else {
 253     // ...and zap just allocated object.
 254 #ifdef ASSERT
 255     // Skip mangling the space corresponding to the object header to
 256     // ensure that the returned space is not considered parsable by
 257     // any concurrent GC thread.
 258     size_t hdr_size = oopDesc::header_size();
 259     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 260 #endif // ASSERT
 261   }
 262   thread->tlab().fill(obj, obj + size, new_tlab_size);
 263   return obj;
 264 }
 265 
 266 void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
 267   MemRegion deferred = thread->deferred_card_mark();
 268   if (!deferred.is_empty()) {
 269     assert(_defer_initial_card_mark, "Otherwise should be empty");
 270     {
 271       // Verify that the storage points to a parsable object in heap
 272       DEBUG_ONLY(oop old_obj = oop(deferred.start());)
 273       assert(is_in(old_obj), "Not in allocated heap");
 274       assert(!can_elide_initializing_store_barrier(old_obj),
 275              "Else should have been filtered in new_store_pre_barrier()");
 276       assert(!is_in_permanent(old_obj), "Sanity: not expected");
 277       assert(old_obj->is_oop(true), "Not an oop");
 278       assert(old_obj->is_parsable(), "Will not be concurrently parsable");
 279       assert(deferred.word_size() == (size_t)(old_obj->size()),
 280              "Mismatch: multiple objects?");
 281     }
 282     BarrierSet* bs = barrier_set();
 283     assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 284     bs->write_region(deferred);
 285     // "Clear" the deferred_card_mark field
 286     thread->set_deferred_card_mark(MemRegion());
 287   }
 288   assert(thread->deferred_card_mark().is_empty(), "invariant");
 289 }
 290 
 291 // Helper for ReduceInitialCardMarks. For performance,
 292 // compiled code may elide card-marks for initializing stores
 293 // to a newly allocated object along the fast-path. We
 294 // compensate for such elided card-marks as follows:
 295 // (a) Generational, non-concurrent collectors, such as
 296 //     GenCollectedHeap(ParNew,DefNew,Tenured) and
 297 //     ParallelScavengeHeap(ParallelGC, ParallelOldGC)
 298 //     need the card-mark if and only if the region is
 299 //     in the old gen, and do not care if the card-mark
 300 //     succeeds or precedes the initializing stores themselves,
 301 //     so long as the card-mark is completed before the next
 302 //     scavenge. For all these cases, we can do a card mark
 303 //     at the point at which we do a slow path allocation
 304 //     in the old gen, i.e. in this call.
 305 // (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
 306 //     in addition that the card-mark for an old gen allocated
 307 //     object strictly follow any associated initializing stores.
 308 //     In these cases, the memRegion remembered below is
 309 //     used to card-mark the entire region either just before the next
 310 //     slow-path allocation by this thread or just before the next scavenge or
 311 //     CMS-associated safepoint, whichever of these events happens first.
 312 //     (The implicit assumption is that the object has been fully
 313 //     initialized by this point, a fact that we assert when doing the
 314 //     card-mark.)
 315 // (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
 316 //     G1 concurrent marking is in progress an SATB (pre-write-)barrier is
 317 //     is used to remember the pre-value of any store. Initializing
 318 //     stores will not need this barrier, so we need not worry about
 319 //     compensating for the missing pre-barrier here. Turning now
 320 //     to the post-barrier, we note that G1 needs a RS update barrier
 321 //     which simply enqueues a (sequence of) dirty cards which may
 322 //     optionally be refined by the concurrent update threads. Note
 323 //     that this barrier need only be applied to a non-young write,
 324 //     but, like in CMS, because of the presence of concurrent refinement
 325 //     (much like CMS' precleaning), must strictly follow the oop-store.
 326 //     Thus, using the same protocol for maintaining the intended
 327 //     invariants turns out, serendepitously, to be the same for both
 328 //     G1 and CMS.
 329 //
 330 // For any future collector, this code should be reexamined with
 331 // that specific collector in mind, and the documentation above suitably
 332 // extended and updated.
 333 oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
 334   // If a previous card-mark was deferred, flush it now.
 335   flush_deferred_store_barrier(thread);
 336   if (can_elide_initializing_store_barrier(new_obj)) {
 337     // The deferred_card_mark region should be empty
 338     // following the flush above.
 339     assert(thread->deferred_card_mark().is_empty(), "Error");
 340   } else {
 341     MemRegion mr((HeapWord*)new_obj, new_obj->size());
 342     assert(!mr.is_empty(), "Error");
 343     if (_defer_initial_card_mark) {
 344       // Defer the card mark
 345       thread->set_deferred_card_mark(mr);
 346     } else {
 347       // Do the card mark
 348       BarrierSet* bs = barrier_set();
 349       assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
 350       bs->write_region(mr);
 351     }
 352   }
 353   return new_obj;
 354 }
 355 
 356 size_t CollectedHeap::filler_array_hdr_size() {
 357   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 358 }
 359 
 360 size_t CollectedHeap::filler_array_min_size() {
 361   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 362 }
 363 
 364 #ifdef ASSERT
 365 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 366 {
 367   assert(words >= min_fill_size(), "too small to fill");
 368   assert(words % MinObjAlignment == 0, "unaligned size");
 369   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 370   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 371 }
 372 
 373 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 374 {
 375   if (ZapFillerObjects && zap) {
 376     Copy::fill_to_words(start + filler_array_hdr_size(),
 377                         words - filler_array_hdr_size(), 0XDEAFBABE);
 378   }
 379 }
 380 #endif // ASSERT
 381 
 382 void
 383 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 384 {
 385   assert(words >= filler_array_min_size(), "too small for an array");
 386   assert(words <= filler_array_max_size(), "too big for a single object");
 387 
 388   const size_t payload_size = words - filler_array_hdr_size();
 389   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 390   assert((int)len >= 0, err_msg("size too large " SIZE_FORMAT " becomes %d", words, (int)len));
 391 
 392   // Set the length first for concurrent GC.
 393   ((arrayOop)start)->set_length((int)len);
 394   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
 395   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 396 }
 397 
 398 void
 399 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 400 {
 401   assert(words <= filler_array_max_size(), "too big for a single object");
 402 
 403   if (words >= filler_array_min_size()) {
 404     fill_with_array(start, words, zap);
 405   } else if (words > 0) {
 406     assert(words == min_fill_size(), "unaligned size");
 407     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
 408   }
 409 }
 410 
 411 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 412 {
 413   DEBUG_ONLY(fill_args_check(start, words);)
 414   HandleMark hm;  // Free handles before leaving.
 415   fill_with_object_impl(start, words, zap);
 416 }
 417 
 418 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 419 {
 420   DEBUG_ONLY(fill_args_check(start, words);)
 421   HandleMark hm;  // Free handles before leaving.
 422 
 423 #ifdef _LP64
 424   // A single array can fill ~8G, so multiple objects are needed only in 64-bit.
 425   // First fill with arrays, ensuring that any remaining space is big enough to
 426   // fill.  The remainder is filled with a single object.
 427   const size_t min = min_fill_size();
 428   const size_t max = filler_array_max_size();
 429   while (words > max) {
 430     const size_t cur = words - max >= min ? max : max - min;
 431     fill_with_array(start, cur, zap);
 432     start += cur;
 433     words -= cur;
 434   }
 435 #endif
 436 
 437   fill_with_object_impl(start, words, zap);
 438 }
 439 
 440 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 441   guarantee(false, "thread-local allocation buffers not supported");
 442   return NULL;
 443 }
 444 
 445 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 446   // The second disjunct in the assertion below makes a concession
 447   // for the start-up verification done while the VM is being
 448   // created. Callers be careful that you know that mutators
 449   // aren't going to interfere -- for instance, this is permissible
 450   // if we are still single-threaded and have either not yet
 451   // started allocating (nothing much to verify) or we have
 452   // started allocating but are now a full-fledged JavaThread
 453   // (and have thus made our TLAB's) available for filling.
 454   assert(SafepointSynchronize::is_at_safepoint() ||
 455          !is_init_completed(),
 456          "Should only be called at a safepoint or at start-up"
 457          " otherwise concurrent mutator activity may make heap "
 458          " unparsable again");
 459   const bool use_tlab = UseTLAB;
 460   const bool deferred = _defer_initial_card_mark;
 461   // The main thread starts allocating via a TLAB even before it
 462   // has added itself to the threads list at vm boot-up.
 463   assert(!use_tlab || Threads::first() != NULL,
 464          "Attempt to fill tlabs before main thread has been added"
 465          " to threads list is doomed to failure!");
 466   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 467      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 468 #ifdef COMPILER2
 469      // The deferred store barriers must all have been flushed to the
 470      // card-table (or other remembered set structure) before GC starts
 471      // processing the card-table (or other remembered set).
 472      if (deferred) flush_deferred_store_barrier(thread);
 473 #else
 474      assert(!deferred, "Should be false");
 475      assert(thread->deferred_card_mark().is_empty(), "Should be empty");
 476 #endif
 477   }
 478 }
 479 
 480 void CollectedHeap::accumulate_statistics_all_tlabs() {
 481   if (UseTLAB) {
 482     assert(SafepointSynchronize::is_at_safepoint() ||
 483          !is_init_completed(),
 484          "should only accumulate statistics on tlabs at safepoint");
 485 
 486     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 487   }
 488 }
 489 
 490 void CollectedHeap::resize_all_tlabs() {
 491   if (UseTLAB) {
 492     assert(SafepointSynchronize::is_at_safepoint() ||
 493          !is_init_completed(),
 494          "should only resize tlabs at safepoint");
 495 
 496     ThreadLocalAllocBuffer::resize_all_tlabs();
 497   }
 498 }
 499 
 500 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 501   if (HeapDumpBeforeFullGC) {
 502     GCTraceTime tt("Heap Dump (before full gc): ", PrintGCDetails, false, timer);
 503     // We are doing a "major" collection and a heap dump before
 504     // major collection has been requested.
 505     HeapDumper::dump_heap();
 506   }
 507   if (PrintClassHistogramBeforeFullGC) {
 508     GCTraceTime tt("Class Histogram (before full gc): ", PrintGCDetails, true, timer);
 509     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 510     inspector.doit();
 511   }
 512 }
 513 
 514 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 515   if (HeapDumpAfterFullGC) {
 516     GCTraceTime tt("Heap Dump (after full gc): ", PrintGCDetails, false, timer);
 517     HeapDumper::dump_heap();
 518   }
 519   if (PrintClassHistogramAfterFullGC) {
 520     GCTraceTime tt("Class Histogram (after full gc): ", PrintGCDetails, true, timer);
 521     VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
 522     inspector.doit();
 523   }
 524 }
 525 
 526 oop CollectedHeap::Class_obj_allocate(KlassHandle klass, int size, KlassHandle real_klass, TRAPS) {
 527   debug_only(check_for_valid_allocation_state());
 528   assert(!Universe::heap()->is_gc_active(), "Allocation during gc not allowed");
 529   assert(size >= 0, "int won't convert to size_t");
 530   HeapWord* obj;
 531   if (JavaObjectsInPerm) {
 532     obj = common_permanent_mem_allocate_init(size, CHECK_NULL);
 533   } else {
 534     assert(ScavengeRootsInCode > 0, "must be");
 535     obj = common_mem_allocate_init(real_klass, size, CHECK_NULL);
 536   }
 537   post_allocation_setup_common(klass, obj);
 538   assert(Universe::is_bootstrapping() ||
 539          !((oop)obj)->blueprint()->oop_is_array(), "must not be an array");
 540   NOT_PRODUCT(Universe::heap()->check_for_bad_heap_word_value(obj, size));
 541   oop mirror = (oop)obj;
 542 
 543   java_lang_Class::set_oop_size(mirror, size);
 544 
 545   // Setup indirections
 546   if (!real_klass.is_null()) {
 547     java_lang_Class::set_klass(mirror, real_klass());
 548     real_klass->set_java_mirror(mirror);
 549   }
 550 
 551   instanceMirrorKlass* mk = instanceMirrorKlass::cast(mirror->klass());
 552   assert(size == mk->instance_size(real_klass), "should have been set");
 553 
 554   // notify jvmti and dtrace
 555   post_allocation_notify(klass, (oop)obj);
 556 
 557   return mirror;
 558 }
 559 
 560 /////////////// Unit tests ///////////////
 561 
 562 #ifndef PRODUCT
 563 void CollectedHeap::test_is_in() {
 564   CollectedHeap* heap = Universe::heap();
 565 
 566   uintptr_t epsilon    = (uintptr_t) MinObjAlignment;
 567   uintptr_t heap_start = (uintptr_t) heap->_reserved.start();
 568   uintptr_t heap_end   = (uintptr_t) heap->_reserved.end();
 569 
 570   // Test that NULL is not in the heap.
 571   assert(!heap->is_in(NULL), "NULL is unexpectedly in the heap");
 572 
 573   // Test that a pointer to before the heap start is reported as outside the heap.
 574   assert(heap_start >= ((uintptr_t)NULL + epsilon), "sanity");
 575   void* before_heap = (void*)(heap_start - epsilon);
 576   assert(!heap->is_in(before_heap),
 577       err_msg("before_heap: " PTR_FORMAT " is unexpectedly in the heap", before_heap));
 578 
 579   // Test that a pointer to after the heap end is reported as outside the heap.
 580   assert(heap_end <= ((uintptr_t)-1 - epsilon), "sanity");
 581   void* after_heap = (void*)(heap_end + epsilon);
 582   assert(!heap->is_in(after_heap),
 583       err_msg("after_heap: " PTR_FORMAT " is unexpectedly in the heap", after_heap));
 584 }
 585 #endif